Science.gov

Sample records for se te compounds

  1. Bremsstrahlung-isochromat study of the layered compounds InSe, TiSe2, SnSe2, SnS2, and Bi2Te3

    NASA Astrophysics Data System (ADS)

    Smandek, B.; Gao, Y.; Wagener, T. J.; Weaver, J. H.; Lvy, F.; Margaritondo, G.

    1988-03-01

    We present bremsstrahlung-isochromat spectra (BIS) for the layered compounds InSe, TeSe2, SnS2, SnS2, SnSe2, and Bi2Te3 at a photon energy of 1486.6 eV. The spectra exhibit several sharp peaks in the lower conduction bands. These spectral features are compared with theoretical calculations of the density of states and with optical data. In several cases, discrepancies between the BIS spectra and the optical spectra confirm that large core excitonic shifts occur for layered compounds.

  2. Liquid-Phase Epitaxial Growth of ZnS, ZnSe and Their Mixed Compounds Using Te as Solvent

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroshi; Aoki, Masaharu

    1981-01-01

    Epitaxial layers of ZnS, ZnSe and their mixed compounds were grown on ZnS substrates by the liquid-phase epitaxial growth (LPE) method using Te as the solvent. The open-tube slide-boat technique was used, and a suitable starting temperature for growth was found to be 850C for ZnS and 700-800C for ZnSe. The ZnS epitaxial layers grown on {111}A and {111}B oriented ZnS substrates were thin (1 ?m) and smooth, had low, uniform Te concentrations (0.1 at.%) and were highly luminescent. The ZnSe epitaxial layers were relatively thick (10-30 ?m) and had fairly high Te concentrations (a few at.%). Various mixed compound ZnS1-xSex were also grown on ZnS substrates.

  3. Electrochemical reactions of S-, Se-, and Te-containing organic compounds. XV. Oxidation of selenoanisole derivatives

    SciTech Connect

    Latypova, V.Z.; Kargin, Yu.M.; Zhuikov, V.V.; Chmutova, G.A.; Lisitsyn, Yu.A.

    1986-03-10

    The electrochemical oxidation of a number of derivatives of selenoanisole RC/sub 6/H/sub 4/SeCH/sub 3/ in acetonitrile on a platinum rotating disk electrode takes place according to a two-electron elimination mechanism with the formation of an intermediate unstable radical cation, which undergoes a first-order reaction (deprotonation, dealkylation, or an interaction with macrocomponents of the solution). A comparison of the results of the electrochemical oxidation and the spectrophotometry of CT complexes with the use of the methods of sigma-rho analysis demonstrated the constancy of the kinetic components of E/sub 1/2/ (R not equal to p-NH/sub 2/) and the distorting influence of adsorption effects on it. The compound with R = p-NH/sub 2/ reacts like other substituted anilines. The electrophilic constant of the p-SeCH/sub 3/ substituent has been evaluated (sigma/sup +/ = 0.59 +/- 0.05).

  4. Thermoelectric Properties of Ag-Doped Bi2(Se,Te)3 Compounds: Dual Electronic Nature of Ag-Related Lattice Defects.

    PubMed

    Lu, Meng-Pei; Liao, Chien-Neng; Huang, Jing-Yi; Hsu, Hung-Chang

    2015-08-01

    Effects of Ag doping and thermal annealing temperature on thermoelectric transport properties of Bi2(Se,Te)3 compounds are investigated. On the basis of the comprehensive analysis of carrier concentration, Hall mobility, and lattice parameter, we identified two Ag-related interstitial (Agi) and substitutional (AgBi) defects that modulate in different ways the thermoelectric properties of Ag-doped Bi2(Se,Te)3 compounds. When Ag content is less than 0.5 wt %, Agi plays an important role in stabilizing crystal structure and suppressing the formation of donor-like Te vacancy (VTe) defects, leading to the decrease in carrier concentration with increasing Ag content. For the heavily doped Bi2(Se,Te)3 compounds (>0.5 wt % Ag), the increasing concentration of AgBi is held responsible for the increase of electron concentration because formation of AgBi defects is accompanied by annihilation of hole carriers. The analysis of Seebeck coefficients and temperature-dependent electrical properties suggests that electrons in Ag-doped Bi2(Se,Te)3 compounds are subject to a mixed mode of impurity scattering and lattice scattering. A 10% enhancement of thermoelectric figure-of-merit at room temperature was achieved for 1 wt % Ag-doped Bi2(Se,Te)3 as compared to pristine Bi2(Se,Te)3. PMID:26200130

  5. Structural and optical properties of electron-beam-evaporated ZnSe 1- x Te x Ternary compounds with various Te contents

    NASA Astrophysics Data System (ADS)

    Suthagar, J.; Suthan Kissinger, N. J.; Sharli Nath, G. M.; Perumal, K.

    2014-01-01

    ZnSe1- x Te x films with different tellurium (Te) contents were deposited by using an electron beam (EB) evaporation technique onto glass substrates for applications to optoelectronic devices. The structural and the optical properties of the ZnSe1- x Te x films were studied in the present work. The host material ZnSe1- x Te x , were prepared by using the physical vapor deposition method of the electron beam evaporation technique (PVD: EBE) under a pressure of 1 × 10-5 mbar. The X-ray diffractogram indicated that these alloy films had cubic structure with a strong preferential orientation of the crystallites along the (1 1 1) direction. The optical properties showed that the band gap (E g ) values varied from 2.73 to 2.41 eV as the tellurium content varied from 0.2 to 0.8. Thus the material properties can be altered and excellently controlled by controlling the system composition x.

  6. Matrix and impurity element distributions in CdHgTe (CMT) and (Cd,Zn)(Te,Se) compounds by chemical analysis

    NASA Astrophysics Data System (ADS)

    Capper, P.; O'Keefe, E. S.; Maxey, C.; Dutton, D.; Mackett, P.; Butler, C.; Gale, I.

    1996-04-01

    This review describes several of the main techniques used to determine matrix element distributions and those which can provide a survey of impurity levels and assess deliberate doping concentrations in Cd xHg 1 - xTe and CdTe-based substrate materials. The most widely used method to non-destructively determine x is that of Fourier transform infrared (FTIR) spectrometry and lateral x variations in current bulk, LPE and MOVPE material measured by this technique will be presented. Auger electron spectrometry (AES) has been used on bevelled samples to assess variations in x with depth and interface widths in LPE, MOVPE and MBE layers and examples will be given. Near IR spectrometry is also now being used to monitor the variations in Zn and Se content, in CdZnTe and CdTeSe respectively, and results in this area will be described along with measurements of Zn on the micro-scale using AES. All of these techniques need to be calibrated against an absolute chemical analysis technique and we have used atomic absorption spectrometry (AAS). The latter technique also provides the accurate measure of dopant and impurity elements to standardise other techniques. Secondary ion mass spectrometry (SIMS) is mainly used for the determination of dopant depth distributions while laser scan mass spectrometry (LSMS) has the unique capability of providing a survey of low levels of impurities in thin epitaxial layers. Depth profiles of arsenic and iodine in MOVPE heterostructures, using SIMS, will be given. Impurity surveys, using LSMS, in bulk CMT and substrate materials and in CMT epitaxial layers grown by LPE, MOVPE and MBE will be described. Reported glow discharge mass spectrometry (GDMS) results on substrate materials will be compared to the present results.

  7. Fermi level tuning and weak localization/weak antilocalization competition of bulk single crystalline Bi(2-x)Sb(x)Se2Te compounds.

    PubMed

    Shon, Won Hyuk; Rhyee, Jong-Soo

    2015-01-21

    From the investigation of the electrical transport properties of single crystalline Bi(2-x)Sb(x)Se2Te (x = 0.0, 0.6, 0.8, 1.0, 1.2 and 1.4) compounds, we observed a systematic change of the Fermi level from n-type metallic (x = 0.0 and 0.6) or small-gap semiconducting (x = 0.8) to p-type semiconducting (x = 1.0) and metallic (x = 1.2 and 1.4), respectively, with increasing Sb-substitution concentration based on temperature-dependent electrical resistivity ρ(T) and Hall resistivity ρxy(H) measurements, respectively. The parent compound Bi2Se2Te exhibits linear negative magnetoresistance at low magnetic fields (H ⩽ 1 T) by weak localization. The intermediate doped compounds of x = 0.8 and 1.0 showed weak antilocalization (WAL) and weak localization (WL) crossover behavior from the field-dependent magnetoresistance measurements at low temperatures. From the Hikami-Larkin-Nagaoka analysis of the compounds (x = 0.8 and 1.0), we found that there is a competing behavior between WL and WAL in terms of Sb-doping and magnetic field strength. PMID:25524919

  8. The energy gap of the compound FeSe0.5Te0.5 determined by specific heat and Point Contact Spectroscopy

    NASA Astrophysics Data System (ADS)

    Escudero, Roberto; Lpez-Romero, Rodolfo E.

    2015-10-01

    The superconductor FeSe0.5Te0.5 was studied with Point Contact spectroscopy and specific heat in polycrystalline samples. The transition temperature determined by magnetic measurement was TC=14.5 K. The size of the energy gap measured by junctions is ? = 1.9 meV, whereas the gap determined by the specific heat measurements was ? = 2.3 meV. The gap evolution with temperature follows BCS, the ratio 2?/KBTC has values between 2.88 ? 2 ? /KBTC ? 3.04. The compound was grown by solid state synthesis in quartz ampoules under vacuum at 950 C. Crystal structure was characterized by X-ray diffraction. The superconducting properties were characterized by magnetization, resistivity and specific heat. This superconductor shows an isotropic energy gap as observed with the fitting of the specific heat at low temperature.

  9. Phase stabilities of pyrite-related MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te): A systematic DFT study

    NASA Astrophysics Data System (ADS)

    Bachhuber, Frederik; Krach, Alexander; Furtner, Andrea; Shnel, Tilo; Peter, Philipp; Rothballer, Jan; Weihrich, Richard

    2015-03-01

    Pyrite-type and related systems appear for a wide range of binary and ternary combinations of transition metals and main group elements that form Zintl type dumbbell anion units. Those representatives with 20 valence electrons exhibit an extraordinary structural flexibility and interesting properties as low-gap semiconductors or thermoelectric and electrode materials. This work is devoted to the systematic exploration of novel compounds within the class of MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te) by means of density functional calculations. Their preferred structures are predicted from an extended scheme of colored pyrites and marcasites. To determine their stabilities, competing binary MT2 and MCh2 boundary phases are taken into account as well as ternary M3T2Ch2 and M2T3Ch3 systems. Recently established stability diagrams are presented to account for MTCh ordering phenomena with a focus on a not-yet-reported ordering variant of the NiAs2 type. Due to the good agreement with experimental data available for several PtTCh systems, the predictions for the residual systems are considered sufficiently accurate.

  10. Ab initio study of structural, electronic and optical properties of Be-doped CdS, CdSe and CdTe compounds

    NASA Astrophysics Data System (ADS)

    Noor, N. A.; Tahir, W.; Aslam, Fatima; Shaukat, A.

    2012-03-01

    Full-potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method within density functional theory (DFT) has been utilized to calculate structural, electronic and optical properties of Be-doped CdS, CdSe and CdTe compounds with the dopant concentration x in the range 0?x?1. For the contribution of exchange-correlation potential, we used Wu-Cohen generalized gradient approximation (GGA) to calculate structural parameters, whereas both Wu-Cohen and Engel-Vosko GGA have been applied to calculate electronic structure of the materials. Only a slight deviation from Vegard's law has been observed for the calculated lattice constants and bulk moduli of the alloys. Structural and chemical factors that affect the band-gap bowing of these semiconductor alloys have been estimated and discussed. Density of states curves and charge density maps have been calculated and analyzed. Lastly, optical properties of both binary and their related ternary alloys have been discussed in terms of the calculated dielectric function. The resultant optical parameters are compared with the available experimental data and other calculations.

  11. Synthesis, structural characterization and optical properties of new compounds: Centrosymmetric Ba{sub 2}GaMQ{sub 5} (M=Sb,Bi; Q=Se,Te), Ba{sub 2}InSbTe{sub 5} and noncentrosymmetric Ba{sub 2}InSbSe{sub 5}

    SciTech Connect

    Hao, Wenyu; Mei, Dajiang; Yin, Wenlong; Feng, Kai; Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190; Graduate University of Chinese Academy of Sciences, Beijing 100049 ; Yao, Jiyong; Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 ; Wu, Yicheng; Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190

    2013-02-15

    The six compounds Ba{sub 2}GaMQ{sub 5} (M=Sb,Bi; Q=Se,Te) and Ba{sub 2}InSbQ{sub 5} (Q=Se,Te) have been synthesized for the first time. Ba{sub 2}GaMQ{sub 5} (M=Sb,Bi; Q=Se,Te) and Ba{sub 2}InSbTe{sub 5} crystallize in the centrosymmetric space group Pnma, while Ba{sub 2}InSbSe{sub 5} belongs to the noncentrosymmetric polar space group Cmc2{sub 1}. The structures of the six new compounds contain infinite {sup 1}{sub {infinity}}[MM'Q{sub 5}]{sub 4-} anionic chains built by MQ{sub 4} (M Prime =Ga,In) tetrahedra and heavily distorted M Prime Q{sub 6} (M Prime =Sb,Bi) octahedra. Ba{sub 2}InSbSe{sub 5} possesses a band gap of 1.92(5) eV and exhibits a weak powder second harmonic generation signal using the 2090 nm laser as fundamental wavelength. - Graphical abstract: Ba{sub 2}InSbSe{sub 5} contains infinite {sup 1}{sub {infinity}}[InSbSe{sub 5}]{sub 4-} chains which are built by corner-shared InSe{sub 4} tetrahedra chains and edge-shared SbSe{sub 6} octahedra chains connected through edge sharing . Highlights: Black-Right-Pointing-Pointer Ba{sub 2}GaMQ{sub 5} (M=Sb,Bi; Q=Se,Te) and Ba{sub 2}InSbQ{sub 5} (Q=Se,Te) have been synthesized. Black-Right-Pointing-Pointer The structures contain infinite {sup 1}{sub {infinity}}[MM'Q{sub 5}]{sub 4-} (M Prime =Ga,In) anionic chains. Black-Right-Pointing-Pointer The chains are built by distorted MQ{sub 6} (M=Sb,Bi) octahedra and M Prime Q{sub 4} (M Prime =Ga,In) tetrahedra. Black-Right-Pointing-Pointer Ba{sub 2}InSbSe{sub 5} exhibits a weak powder second harmonic generation signal.

  12. Heterojunctions of model CdTe/CdSe mixtures

    SciTech Connect

    van Swol, Frank; Zhou, Xiaowang W.; Challa, Sivakumar R.; Martin, James E.

    2015-03-18

    We report on the strain behavior of compound mixtures of model group II-VI semiconductors. We use the Stillinger-Weber Hamiltonian that we recently introduced, specifically developed to model binary mixtures of group II-VI compounds such as CdTe and CdSe. We also employ molecular dynamics simulations to examine the behavior of thin sheets of material, bilayers of CdTe and CdSe. The lattice mismatch between the two compounds leads to a strong bending of the entire sheet, with about a 0.5 to 1° deflection between neighboring planes. To further analyze bilayer bending, we introduce a simple one-dimensional model and use energy minimization to find the angle of deflection. The analysis is equivalent to a least-squares straight line fit. We consider the effects of bilayers which are asymmetric with respect to the thickness of the CdTe and CdSe parts. We thus learn that the bending can be subdivided into four kinds depending on the compressive/tensile nature of each outer plane of the sheet. We use this approach to directly compare our findings with experimental results on the bending of CdTe/CdSe rods. To reduce the effects of the lattice mismatch we explore diffuse interfaces, where we mix (i.e. alloy) Te and Se, and estimate the strain response.

  13. Heterojunctions of model CdTe/CdSe mixtures

    SciTech Connect

    van Swol, Frank; Zhou, Xiaowang W.; Challa, Sivakumar R.; Martin, James E.

    2015-03-18

    We report on the strain behavior of compound mixtures of model group II-VI semiconductors. We use the Stillinger-Weber Hamiltonian that we recently introduced, specifically developed to model binary mixtures of group II-VI compounds such as CdTe and CdSe. We also employ molecular dynamics simulations to examine the behavior of thin sheets of material, bilayers of CdTe and CdSe. The lattice mismatch between the two compounds leads to a strong bending of the entire sheet, with about a 0.5 to 1 deflection between neighboring planes. To further analyze bilayer bending, we introduce a simple one-dimensional model and use energy minimization to find the angle of deflection. The analysis is equivalent to a least-squares straight line fit. We consider the effects of bilayers which are asymmetric with respect to the thickness of the CdTe and CdSe parts. We thus learn that the bending can be subdivided into four kinds depending on the compressive/tensile nature of each outer plane of the sheet. We use this approach to directly compare our findings with experimental results on the bending of CdTe/CdSe rods. To reduce the effects of the lattice mismatch we explore diffuse interfaces, where we mix (i.e. alloy) Te and Se, and estimate the strain response.

  14. Heterojunctions of model CdTe/CdSe mixtures

    DOE PAGESBeta

    van Swol, Frank; Zhou, Xiaowang W.; Challa, Sivakumar R.; Martin, James E.

    2015-03-18

    We report on the strain behavior of compound mixtures of model group II-VI semiconductors. We use the Stillinger-Weber Hamiltonian that we recently introduced, specifically developed to model binary mixtures of group II-VI compounds such as CdTe and CdSe. We also employ molecular dynamics simulations to examine the behavior of thin sheets of material, bilayers of CdTe and CdSe. The lattice mismatch between the two compounds leads to a strong bending of the entire sheet, with about a 0.5 to 1° deflection between neighboring planes. To further analyze bilayer bending, we introduce a simple one-dimensional model and use energy minimization tomore » find the angle of deflection. The analysis is equivalent to a least-squares straight line fit. We consider the effects of bilayers which are asymmetric with respect to the thickness of the CdTe and CdSe parts. We thus learn that the bending can be subdivided into four kinds depending on the compressive/tensile nature of each outer plane of the sheet. We use this approach to directly compare our findings with experimental results on the bending of CdTe/CdSe rods. To reduce the effects of the lattice mismatch we explore diffuse interfaces, where we mix (i.e. alloy) Te and Se, and estimate the strain response.« less

  15. Heterojunctions of model CdTe/CdSe mixtures

    NASA Astrophysics Data System (ADS)

    van Swol, Frank; Zhou, Xiaowang W.; Challa, Sivakumar R.; Martin, James E.

    2015-04-01

    We report on the strain behavior of compound mixtures of model group II-VI semiconductors. We use the Stillinger-Weber Hamiltonian that we recently introduced, specifically developed to model binary mixtures of group II-VI compounds such as CdTe and CdSe. We employ molecular dynamics simulations to examine the behavior of thin sheets of material, bilayers of CdTe and CdSe. The lattice mismatch between the two compounds leads to a strong bending of the entire sheet, with about a 0.5 to 1° deflection between neighboring planes. To analyze bilayer bending, we introduce a simple one-dimensional model and use energy minimization to find the angle of deflection. The analysis is equivalent to a least-squares straight line fit. We consider the effects of bilayers which are asymmetric with respect to the thickness of the CdTe and CdSe parts. From this we learn that the bending can be subdivided into four kinds depending on the compressive/tensile nature of each outer plane of the sheet. We use this approach to directly compare our findings with experimental results on the bending of CdTe/CdSe rods. To reduce the effects of the lattice mismatch we explore diffuse interfaces, where we mix (i.e. alloy) Te and Se, and estimate the strain response.

  16. X-ray diffraction, Raman study and electrical properties of the new mixed compound Rb1.7K0.3(SO4)0.88(SeO4)0.12Te(OH)6

    NASA Astrophysics Data System (ADS)

    Djemel, M.; Abdelhedi, M.; Ktari, L.; Dammak, M.

    2013-09-01

    At room temperature, the new compound Rb1.7K0.3(SO4)0.88(SeO4)0.12Te(OH)6 crystallizes in the monoclinic system with space group C2. The unit cell parameters are: a = 11.4168 (4), b = 6.6321 (4), c = 13.6078 (6), ? = 106.975 (3), V = 985.46 (8), Z = 4 and ?cal = 3.25 g cm-1. The title compound undergoes a superionic phase transition at T = 479 K. This transition was confirmed by an abrupt increase of conductivity. Differential scanning calorimetry of Rb1.7K0.3(SO4)0.88(SeO4)0.12Te(OH)6 material showed three anomalies at 411, 461, and 479 K, respectively. Raman and IR spectra of Rb1.7K0.3(SO4)0.88(SeO4)0.12Te(OH)6, recorded at room temperature in the frequency 50-4000 cm-1 show that the SO42-, SeO42- and TeO66- groups coexist in the crystal independently.

  17. Photopumped Lasing Characteristics in Green-to-Yellow Range for BeZnSeTe II-VI Compound Quaternary Double Heterostructures Grown on InP Substrates

    NASA Astrophysics Data System (ADS)

    Nomura, Ichirou; Sawafuji, Yutaka; Kishino, Katsumi

    2011-03-01

    The photopumped lasing characteristics of double heterostructures with a BeZnSeTe active layer grown on InP substrates were systematically investigated. Green-to-yellow lasing emissions from 538 to 570 nm were observed at room temperature (RT). The threshold excitation power density (Pth) was approximately 30 kW/cm2. From the temperature dependence of Pth, stable lasing emissions were obtained up to 353 K. The characteristic temperatures of Pth were 106 to 140 K above RT. The relationship between the threshold gain (Gth) and the threshold carrier density (Nth) was estimated from the cavity length dependence of Pth and by waveguide analysis. Using the relationship between Gth and Nth, the threshold current densities (Jth) of electrically pumped BeZnSeTe laser diode structures were calculated to be less than 1.3 kA/cm2. Jth decreases as the lasing wavelength increases from 538 to 570 nm. The above results demonstrate that BeZnSeTe is a promising active-layer material for high-performance green-to-yellow LDs.

  18. Binding energies and heat-of-formation data for USb/sub x/Te/sub 1-x/ and UAs/sub x/Se/sub 1-x/ compounds as derived from photoelectron spectroscopy

    SciTech Connect

    Martensson, N.; Reihl, B.; Vogt, O.

    1982-01-15

    Using high-resolution photoelectronspectroscopy with synchrotron radiation we have accurately determined the core-level binding energies in the nonuranium atoms in USb/sub x/Te/sub 1-x/ and UAs/sub x/Se/sub 1-x/ as a function of the stoichiometric composition. With the use of a Born-Haber cycle a relation between the measured shifts and heat-of-formation data for these compounds is formulated. The analysis demonstrates that photoelectron spectroscopy can become a most valuable method for deriving new heat-of-formation data.

  19. Na2TeS3, Na2TeSe3-mP24, and Na2TeSe3-mC48: Crystal Structures and Optical and Electrical Properties of Sodium Chalcogenidotellurates(IV).

    PubMed

    Pompe, Constantin; Preitschaft, Christian; Weihrich, Richard; Pfitzner, Arno

    2015-12-01

    Pure samples of Na2TeS3 and Na2TeSe3 were synthesized by the reactions of stoichiometric amounts of the elements Na, Te, and Q (Q = S, Se) in the ratio 2:1:3. Both compounds are highly air- and moisture-sensitive. The crystal structures were determined by single-crystal X-ray diffraction. Yellow Na2TeS3 crystallizes in the space group P21/c. Na2TeSe3 exists in a low-temperature modification (Na2TeSe3-mP24, space group P21/c) and a high-temperature modification (Na2TeSe3-mC48, space group C2/c); both modifications are red. Density functional theory calculations confirmed the coexistence of both modifications of Na2TeSe3 because they are very close in energy (ΔE = 0.18 kJ mol(-1)). To the contrary, hypothetic Na2TeS3-mC48 is significantly less favored (ΔE = 1.8 kJ mol(-1)) than the primitive modification. Na2TeS3 and Na2TeSe3-mP24 are isotypic to Li2TeS3, whereas Na2TeSe3-mC48 crystallizes in its own structure type, which was first described by Eisenmann and Zagler. The title compounds have two common structure motifs. Trigonal TeQ3 pyramids form layers, and the Na atoms are surrounded by a distorted octahedral environment of chalcogen atoms. Raman spectra are dominated by the vibration modes of the TeQ3 units. The activation energies of the total conductivity of the title compounds range between 0.68 eV (Na2TeS3) and 1.1 eV (Na2TeSe3). Direct principal band gaps of 1.20 and 1.72 eV were calculated for Na2TeSe3 and Na2TeS3, respectively. The optical band gaps are in the range from 1.38 eV for Li2TeSe3 to 2.35 eV for Na2TeS3. PMID:26600068

  20. PbTe/PbSeTe Quantum dot superlattices with high thermoelectric figures of merit

    NASA Astrophysics Data System (ADS)

    Harman, Theodore C.

    2000-03-01

    High-quality PbTe/PbSeTe quantum-dot superlattice (QDSL) structures have been grown by molecular beam epitaxy and investigated for high thermoelectric figures of merit ZT. Background information on the band structure and properties of PbSeTe alloyed with other binary compounds (in which the 300 K energy gap can approach zero) are presented. Various physical properties of PbTe/PbSeTe QDSL structures on film thicknesses up to approximately 100 m have been measured. Hall coefficient, electrical resistivity, Seebeck coefficient, and x-ray data will be displayed. The measurement of the thermal conductivity on thick QDSL structures using the Peltier heat method will be discussed. This work was sponsored by the Department of the Navy, the Army Research Office, and the Defense Advanced Research Projects Agency (DARPA) under AF Contract No. F19628-95-0002. The opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Air Force.

  1. Phase equilibria and liquid phase epitaxy growth of PbSnSeTe lattice matched to PbSe

    NASA Technical Reports Server (NTRS)

    Mccann, Patrick J.; Fonstad, Clifton G.; Fuchs, Jacob; Feit, Ze'ev

    1987-01-01

    The necessary phase diagram data for growing lattice-matched layers of PbSnSeTe on PbSe are presented. Solid compounds of Pb(1-x)Sn(x)Se(1-y)Te(y) lattice-matched to PbSe were grown from liquid melts consisting of (Pb/1-x/Sn/x/)(1-z)(Se/1-y/Te/y/)(z); phase equilibria data were determined together with liquidus data for values of x(liquid) from 0 to 40 percent and y(liquid) from 0 to 40 percent for temperatures between 450 and 540 C. It was found that relatively large amounts of Te must be added to the melt to achieve lattice matching because of its low segregation coefficient relative to Se. A significant lattice-pulling effect was discovered for the 5-percent Sn case, and a similar effect is expected for the 10- and 20-percent Sn cases.

  2. Near-infrared emission spectra of TeS, TeSe and Te2

    NASA Astrophysics Data System (ADS)

    Setzer, K. D.; Fink, E. H.

    2014-10-01

    Emission spectra of the radicals TeS, TeSe and Te2 in the near-infrared spectral region have been measured with a high-resolution Fourier-transform spectrometer. The molecules were generated in a fast-flow system by reacting microwave-discharged mixtures of Tex, Sx, and/or Sex vapour and Ar carrier gas and excited by energy transfer and energy pooling processes in collisions with metastable oxygen O2(a1Δg). The b1Σ+(b0+) → X3Σ-(X10+,X21) electric dipole transitions of TeS and TeSe and the b1Σ+g(b0+g) → X3Σ-g(X21g) magnetic dipole transition of Te2 were measured at medium and high spectral resolution. A very weak emission at 3356 cm-1 observed in the spectrum of TeSe was identified to be the 0-0 band of the hitherto unknown a1Δ(a2) → X3Σ-(X21) transition of the molecule. Analyses of the spectra have yielded a number of new or improved spectroscopic parameters of the molecules.

  3. BeTe/ZnSe graded band gap ohmic contacts to p-ZnSe

    NASA Astrophysics Data System (ADS)

    Mensz, P. M.

    1994-04-01

    BeTe is not a very well known wide-band semiconductor. Due to the close lattice match to GaAs and ZnSe and p-type as-grown character, BexZn1-xTexSe1-x graded band-gap layers appear an ideal candidate for ohmic contact to p-type ZnSe based semiconductors. These contacts allow for an implementation of epitaxial structures of II-VI compound diode lasers entirely lattice matched to the GaAs substrate. The numerical calculations predict contact resistivity of BexZn1-xTexSe1-x graded gap contacts lower than ?c=10-4 ? cm2 at acceptor doping level 11018 cm-3, which corresponds to a voltage drop across the contact layer of less than 0.1 V during lasing operation.

  4. Optical Characterization of Bulk ZnSeTe Solid Solutions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Zhu, Shen; Lehoczky, S. L.; Wang, Ling Jun

    2000-01-01

    Optical characterization was performed on wafers sliced from crystals of ZnSe, ZnTe, and ZnSe(1-x)Te(x)(0 less than x less than 0.4) grown by physical vapor transport. Energy band gaps at room temperature were determined from optical transmission measurements on 11 wafers. A best fit curve to the band gap versus composition x data gives a bowing parameter of 1.45. This number lies between the value of 1.23 determined previously on ZnSeTe bulk crystals and the value of 1.621 reported on ZnSeTe epilayers. Low-temperature photoluminescence (PL) spectra were measured on six samples. The spectra of ZnSe and ZnTe were dominated by near band edge emissions and no deep donor-acceptor pairs were observed. The PL spectrum exhibited a broad emission for each of the ZnSe(1-x)Te(x) samples, 0.09 less than x less than 0.39. For x=0.09, this emission energy is about 0.2 eV lower than the band gap energy measured at low temperature. As x increases the energy discrepancy gradually decreases and reduces to almost zero at x=0.4. The single broad PL emission spectra and the spectra measured as a function of temperature were interpreted as being associated with the exciton bound to Te clusters because of the high Te content in these samples.

  5. Thermodynamic properties of model CdTe/CdSe mixtures

    SciTech Connect

    van Swol, Frank; Zhou, Xiaowang W.; Challa, Sivakumar R.; Martin, James E.

    2015-02-20

    We report on the thermodynamic properties of binary compound mixtures of model groups IIVI semiconductors. We use the recently introduced StillingerWeber Hamiltonian to model binary mixtures of CdTe and CdSe. We use molecular dynamics simulations to calculate the volume and enthalpy of mixing as a function of mole fraction. The lattice parameter of the mixture closely follows Vegard's law: a linear relation. This implies that the excess volume is a cubic function of mole fraction. A connection is made with hard sphere models of mixed fcc and zincblende structures. We found that the potential energy exhibits a positive deviation from ideal soluton behaviour; the excess enthalpy is nearly independent of temperatures studied (300 and 533 K) and is well described by a simple cubic function of the mole fraction. Using a regular solution approach (combining non-ideal behaviour for the enthalpy with ideal solution behaviour for the entropy of mixing), we arrive at the Gibbs free energy of the mixture. The Gibbs free energy results indicate that the CdTe and CdSe mixtures exhibit phase separation. The upper consolute temperature is found to be 335 K. Finally, we provide the surface energy as a function of composition. Moreover, it roughly follows ideal solution theory, but with a negative deviation (negative excess surface energy). This indicates that alloying increases the stability, even for nano-particles.

  6. Thermodynamic properties of model CdTe/CdSe mixtures

    DOE PAGESBeta

    van Swol, Frank; Zhou, Xiaowang W.; Challa, Sivakumar R.; Martin, James E.

    2015-02-20

    We report on the thermodynamic properties of binary compound mixtures of model groups II–VI semiconductors. We use the recently introduced Stillinger–Weber Hamiltonian to model binary mixtures of CdTe and CdSe. We use molecular dynamics simulations to calculate the volume and enthalpy of mixing as a function of mole fraction. The lattice parameter of the mixture closely follows Vegard's law: a linear relation. This implies that the excess volume is a cubic function of mole fraction. A connection is made with hard sphere models of mixed fcc and zincblende structures. We found that the potential energy exhibits a positive deviation frommore » ideal soluton behaviour; the excess enthalpy is nearly independent of temperatures studied (300 and 533 K) and is well described by a simple cubic function of the mole fraction. Using a regular solution approach (combining non-ideal behaviour for the enthalpy with ideal solution behaviour for the entropy of mixing), we arrive at the Gibbs free energy of the mixture. The Gibbs free energy results indicate that the CdTe and CdSe mixtures exhibit phase separation. The upper consolute temperature is found to be 335 K. Finally, we provide the surface energy as a function of composition. Moreover, it roughly follows ideal solution theory, but with a negative deviation (negative excess surface energy). This indicates that alloying increases the stability, even for nano-particles.« less

  7. Thermodynamic properties of model CdTe/CdSe mixtures

    SciTech Connect

    van Swol, Frank; Zhou, Xiaowang W.; Challa, Sivakumar R.; Martin, James E.

    2015-02-20

    We report on the thermodynamic properties of binary compound mixtures of model groups II–VI semiconductors. We use the recently introduced Stillinger–Weber Hamiltonian to model binary mixtures of CdTe and CdSe. We use molecular dynamics simulations to calculate the volume and enthalpy of mixing as a function of mole fraction. The lattice parameter of the mixture closely follows Vegard's law: a linear relation. This implies that the excess volume is a cubic function of mole fraction. A connection is made with hard sphere models of mixed fcc and zincblende structures. We found that the potential energy exhibits a positive deviation from ideal soluton behaviour; the excess enthalpy is nearly independent of temperatures studied (300 and 533 K) and is well described by a simple cubic function of the mole fraction. Using a regular solution approach (combining non-ideal behaviour for the enthalpy with ideal solution behaviour for the entropy of mixing), we arrive at the Gibbs free energy of the mixture. The Gibbs free energy results indicate that the CdTe and CdSe mixtures exhibit phase separation. The upper consolute temperature is found to be 335 K. Finally, we provide the surface energy as a function of composition. Moreover, it roughly follows ideal solution theory, but with a negative deviation (negative excess surface energy). This indicates that alloying increases the stability, even for nano-particles.

  8. Investigation of correlation effects in FeSe and FeTe by LDA + U method

    NASA Astrophysics Data System (ADS)

    Lohani, H.; Mishra, P.; Sekhar, B. R.

    2015-05-01

    We present a comparative study of the influence of Coulomb interaction and Hund's coupling on the electronic structure of FeSe and FeTe. Our calculations are based on density functional theory (DFT) with local density approximation (LDA + U) framework employed in TB-LMTO ASA code. We found the correlation effects are orbital selective due to the strength of interorbital hybridization among the different Fe-3d orbitals mediated via the chalcogen (Se/Te-p) orbitals and are different in both the compounds. The Coulomb interaction is screened significantly by Te-p bands in FeTe. Similarly the orbital selection is different in both the compounds because of the difference in the chalcogen height.

  9. Impact of ??Te on the structure and Se NMR spectra of Se-rich Ge-Te-Se glasses: a combined experimental and computational investigation.

    PubMed

    Boussel du Bourg, Lila; Roiland, Claire; le Polls, Laurent; Deschamps, Michal; Boussard-Pldel, Catherine; Bureau, Bruno; Pickard, Chris J; Furet, Eric

    2015-11-21

    Selenium-rich Ge-Te-Se glasses have been synthesized along the GeSe4-GeTe4 pseudo-composition line and acquired by (77)Se Hahn echo magic-angle spinning NMR. The comparison with the GeSe4 spectrum shows a drastic modification of the typical double-resonance lineshape even at low Te concentrations (<10%). In order to rationalize this feature and to understand the effect of Te on the structure of our glasses, first-principles molecular dynamics simulations and gauge including projector augmented wave NMR parameter calculations have been performed. The distribution of the tellurium atoms in the selenium phase was shown to be mainly responsible for the (77)Se lineshape changes. Another possible factor related to the perturbation of the ?iso value due to Te proximity appears to be much more limited in the bulk, while the results obtained using molecular models suggest shifts of several hundreds of ppm. PMID:26456891

  10. Optical Characterization of Bulk ZnSeTe Solid Solutions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Zhu, Shen; Lehoczky, S. L.; Wang, Ling Jun

    2000-01-01

    Optical characterization was performed on wafers sliced from crystals of ZnSe, ZnTe and ZnSe (sub 1-x) Te (sub x) (0 less than x less than 0.4) grown by physical vapor transport technique. The energy band gaps at room temperature were determined from optical transmission measurements on 11 wafers. The best fit to the band gap vs. composition, x, data gives a bowing parameter of 1.336 which is between the value of 1.23 determined previously on ZnSeTe bulk crystals by reflectivity and the value of 1.621 reported on epilayers by photoconductivity. Low-temperature photoluminescence (PL) spectra were measured on 6 samples. The spectra of ZnSe and ZnTe were dominated by near band edge emissions and no deep donor-acceptor pairs were observed. The PL spectrum exhibited a broad emission for each of the ZnSe (sub 1-x) Te (sub x) samples, 0.09 less than x less than 0.39. For x = 0.09, this emission energy is about 0.2eV lower than the band gap energy measured at low temperature. As x increases the energy discrepancy gradually decreases and reduces to almost zero at x = 0.4. The single broad PL emission spectra and the spectra measured as a function of temperature were interpreted to be associated with the exciton bound to Te clusters because of the high Te content in these samples.

  11. Optical Properties of PbTe and PbSe

    SciTech Connect

    Ekuma, Chinedu E; Singh, David J; Moreno, Juana; Jarrell, Mark

    2012-01-01

    We report optical properties of PbTe and PbSe as obtained from first-principles calculations with the Tran-Blaha modified Becke-Johnson potential. The results are discussed in relation to existing experimental data, particularly in relation to the temperature dependence of the band gap.

  12. Synthesis and characterization of Bi-Te-Se thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Tripathi, S. K.; Kumari, Ankita; Ridhi, R.; Kaur, Jagdish

    2015-08-01

    Bismuth Telluride (Bi2Te3) and its related alloys act as a promising thermoelectric material and preferred over other thermoelectric materials due to their high stability and efficiency under ambient conditions. In the present work, we have reported economical, environment friendly and low-temperature aqueous chemical method for the synthesis of Bi-Se-Te alloy. The prepared samples are characterized by X-Ray Diffraction to investigate the structural properties and UV-Visible spectroscopy for the spectroscopic analysis. The absorption spectrum reveals the sensitivity in the ultraviolet as well as in visible region.

  13. Electron microscopy of iron chalcogenide FeTe(Se) films

    NASA Astrophysics Data System (ADS)

    Shchichko, I. O.; Presnyakov, M. Yu.; Stepantsov, E. A.; Kazakov, S. M.; Antipov, E. V.; Makarova, I. P.; Vasil'ev, A. L.

    2015-05-01

    The structure of Fe1 + δTe1 - x Se x films ( x = 0; 0.05) grown on single-crystal MgO and LaAlO3 substrates has been investigated by transmission and scanning transmission electron microscopy. The study of Fe1.11Te/MgO structures has revealed two crystallographic orientation relationships between the film and substrate. It is shown that the lattice mismatch between the film and substrate is compensated for by the formation of misfit dislocations. The Burgers vector projection is determined. The stresses in the film can partially be compensated for due to the formation of an intermediate disordered layer. It is shown that a FeTe0.5Se0.5 film grown on a LaAlO3 substrate is single-crystal and that the FeTe0.5Se0.5/LaAlO3 interface in a selected region is coherent. The orientation relationships between the film and substrate are also determined for this case.

  14. Reverse Monte Carlo simulation of Se{sub 80}Te{sub 20} and Se{sub 80}Te{sub 15}Sb{sub 5} glasses

    SciTech Connect

    Abdel-Baset, A. M.; Rashad, M.; Moharram, A. H.

    2013-12-16

    Two-dimensional Monte Carlo of the total pair distribution functions g(r) is determined for Se{sub 80}Te{sub 20} and Se{sub 80}Te{sub 15}Sb{sub 5} alloys, and then it used to assemble the three-dimensional atomic configurations using the reverse Monte Carlo simulation. The partial pair distribution functions g{sub ij}(r) indicate that the basic structure unit in the Se{sub 80}Te{sub 15}Sb{sub 5} glass is di-antimony tri-selenide units connected together through Se-Se and Se-Te chain. The structure of Se{sub 80}Te{sub 20} alloys is a chain of Se-Te and Se-Se in addition to some rings of Se atoms.

  15. Conventional versus unconventional magnetic polarons: ZnMnTe/ZnSe and ZnTe/ZnMnSe quantum dots

    NASA Astrophysics Data System (ADS)

    Barman, B.; Tsai, Y.; Scrace, T.; Murphy, J. R.; Cartwright, A. N.; Pientka, J. M.; Zutic, I.; McCombe, B. D.; Petrou, A.; Sellers, I. R.; Oszwaldowski, R.; Petukhov, A.; Fan, W. C.; Chou, W. C.; Yang, C. S.

    2014-08-01

    We used time resolved photoluminescence (TRPL) spectroscopy to compare the properties of magnetic polarons in two related, spatially indirect, II-VI epitaxially grown quantum dot systems. In sample A (ZnMnTe/ZnSe), the photoexcited holes are confined in the magnetic ZnMnTe quantum dots (QDs), while the electrons remain in the surrounding non-magnetic ZnSe matrix. In sample B (ZnTe/ZnMnSe) on the other hand, the holes are confined in the non-magnetic ZnTe QDs and the electrons move in the magnetic ZnMnSe matrix. The magnetic polaron formation energies, EMP , in these samples were measured from the temporal red-shift of the excitonic emission peak. The magnetic polarons in the two samples exhibit distinct characteristics. In sample A, the magnetic polaron is strongly bound with EMP=35 meV. Furthermore, EMP has unconventionally weak dependence of on both temperature T and magnetic field Bappl . In contrast, magnetic polarons in sample B show conventional characteristics with EMP decreasing with increasing temperature and increasing external magnetic field. We attribute the difference in magnetic polaron properties between the two types of QDs to the difference in the location of the Mn ions in the respective structures.

  16. Prediction of the band structures of Bi2Te3-related binary and Sb/Se-doped ternary thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Ryu, Byungki; Kim, Bong-Seo; Lee, Ji Eun; Joo, Sung-Jae; Min, Bok-Ki; Lee, HeeWoong; Park, Sudong; Oh, Min-Wook

    2016-01-01

    Density functional calculations are performed to study the band structures of Bi2Te3-related binary (Bi2Te3, Sb2Te3, Bi2Se3, and Sb2Se3) and Sb/Se-doped ternary compounds [(Bi1- x Sb x )2Te3 and Bi2(Te1- y Se y )3]. The band gap was found to be increased by Sb doping and to be monotonically increased by Se doping. In ternary compounds, the change in the conduction band structure is more significant as compared to the change in the valence band structure. The band degeneracy of the valence band maximum is maintained at 6 in binaries and ternaries. However, when going from Bi2Te3 to Sb2Te3 (Bi2Se3), the degeneracy of the conduction band minimum is reduced from 6 to 2(1). Based on the results for the band structures, we suggest suitable stoichiometries of ternary compounds for high thermoelectric performance.

  17. Fabrication of Bi2Te3/Sb2Te3 and Bi2Te3/Bi2Te2Se multilayered thin film-based integrated cooling devices

    SciTech Connect

    Xiao, Z.; DiMasi, E.; Hedgemen, K.; Harris, M.

    2010-06-29

    In this article, the authors report on the development of solid-state integrated cooling devices using Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} and Bi{sub 2}Te{sub 3}/Bi{sub 2}Te{sub 2}Se thermoelectric thin films fabricated using sputtering deposition. The multilayer thin films have a periodic structure consisting of alternating Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} layers or Bi{sub 2}Te{sub 3} and Bi{sub 2}Te{sub 2}Se layers, where each layer is about 10 nm thick. The deposited Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} multilayer thin film has a p-type conductivity and the deposited Bi{sub 2}Te{sub 3}/Bi{sub 2}Te{sub 2}Se multilayer thin film has an n-type conductivity. The multilayer structure of films and the interface of layers were analyzed by x-ray diffraction and reflectivity. Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} and Bi{sub 2}Te{sub 3}/Bi{sub 2}Te{sub 2}Se multilayer thin film-based integrated cooling devices were fabricated using standard integrated circuit fabrication process. The temperature difference was measured from the fabricated cooling devices. The devices could be good candidates for the application of high-efficiency solid-state microcooling.

  18. Laser Induced Synthesis Of Crystallised Cu-Te Semiconducting Compounds

    NASA Astrophysics Data System (ADS)

    Hanus, Francoise; Laude, Lucien D.

    1989-04-01

    Laser-synthesis of thin film compound semiconductors has been demonstrated to provide a very efficient way to produce high quality single phase materials for opto-electronic applications. Three semiconducting compounds may be formed in the Cu-Te system: CuTe, Cu7Te5 and Cu2Te with specific optical properties. In this work, these phases have all been laser-synthesized from a sandwich film containing a stack of elemental layers. The overall atomic proportion is closest to the aimed stoichiometry. Upon irradiation and depending on laser fluence, the compound is formed at and above a power density threshold corresponding to the abrupt melting of the film.

  19. Estimation of Density of Localized States in Amorphous Se80Te20 and Se80Te10M10 (M = Cd, In, Sb) Alloys Using AC Conductivity Measurements

    NASA Astrophysics Data System (ADS)

    Chandel, N.; Mehta, N.; Kumar, A.

    2015-08-01

    The ac conductivity of amorphous Se80Te20 (a-Se80Te20) and amorphous Se80Te10M10 (a-Se80Te10M10) alloys has been measured as a function of temperature and frequency in a low-temperature regime. An analysis of the experimental data confirms that ac conductivity is reasonably well interpreted by the Austin-Mott model. The density of localized states was determined in the low-temperature region from 201 K to 280 K. Possible explanations of "metal-induced effects" on the conduction mechanism of a-Se80Te20 alloy are discussed.

  20. NMR in Chevrel-phase solid solution Mo 6Se 8- xTe x

    NASA Astrophysics Data System (ADS)

    Hamard, C.; Le Floch, M.; Pea, O.; Wojakowski, A.

    1999-01-01

    The Mo 6Se 8-Mo 6Te 8 solid solution was studied by X-ray diffraction, magnetic susceptibility and 77Se and 125Te NMR. Dynamic studies show that substitution occurs differently when Se replaces Te in Mo 6Te 8 than when Te replaces Se in Mo 6Se 8. Selenium first fills the high-symmetry sites and then it becomes statistically distributed on the 6f positions of the R3 symmetry. In the second case, Te occupies randomly the 8 X sites of the Mo 6X 8 structure, creating large perturbations of the 125Te NMR spectra over the whole range of x.

  1. Xerographic properties of a Se:Te photoconductors

    SciTech Connect

    Kasap, S.O. )

    1991-07-01

    In this paper due to their desirable spectral response, amorphous Se:Te alloys are widely used as commercial xerographic photoreceptor materials. It is shown that the dark decay of the electrostatic surface potential on a corona-charged a-Se:Te alloy photoreceptor occurs via electric field-enhanced xerographic depletion discharge (FEXDD) in which Polle-Frenkel-assisted thermal emission of holes from deep mobility-gap states and their subsequent sweep out generates a negative bulk space charge. A theoretical expression is derived for the dependence of the xerographic depletion time t{sub d} and the time required for the surface potential to decay to half its value t{sub 1/2} on the initial charging voltage V{sub 0}. Experimental data show good agreement with the theory and enable the Poole-Frenkel coefficient for a-Se:Te to be evaluated. Furthermore, it is shown that at the highest charging voltages, t{sub 1/2} actually decreases with V{sub 0}, which is directly attributable to the FEXDD process.

  2. Hydrogen passivation of Se and Te in AlSb

    SciTech Connect

    McCluskey, M.D.; Haller, E.E.; Walukiewicz, W.; Becla, P.

    1996-06-01

    Using infrared absorption spectroscopy we have observed local vibrational modes (LVM{close_quote}s) arising from {ital DX}-hydrogen complex in AlSb. Hydrogen was diffused into bulk AlSb:Se and AlSb:Te by annealing in sealed quartz ampoules with either hydrogen gas or methanol (CH{sub 3}OH). The persistent photoabsorption of the {ital DX}-like Se donor is significantly reduced after hydrogenation. In hydrogenated AlSb:Se, we attribute the LVM peaks at 1608.6 and 1615.7 cm{sup {minus}1} to hydrogen stretch modes. Deuterated AlSb:Se has only one stretch mode at 1173.4 cm{sup {minus}1}. The second, third, and fourth harmonics of the wag modes are observed and show splittings consistent with {ital C}{sub 3{ital v}} symmetry. In AlSb:Te, we find a hydrogen stretch mode at 1599.0 cm{sup {minus}1} and a deuterium mode at 1164.4 cm{sup {minus}1}. We propose a model in which the hydrogen attaches to an aluminum in a [111] antibonding orientation. {copyright} {ital 1996 The American Physical Society.}

  3. Resonance photoelectron spectroscopy of TiX{sub 2} (X = S, Se, Te) titanium dichalcogenides

    SciTech Connect

    Shkvarin, A. S. Yarmoshenko, Yu. M.; Skorikov, N. A.; Yablonskikh, M. V.; Merentsov, A. I.; Shkvarina, E. G.; Titov, A. N.

    2012-11-15

    The photoelectron valence band spectra of TiS{sub 2}, TiSe{sub 2}, and TiTe{sub 2} dichalcogenides are investigated in the Ti 2p-3d resonance regime. Resonance bands in the vicinity of the Fermi energy are found for TiS{sub 2} and TiTe{sub 2}. The nature of these bands is analyzed based on model calculations of the density of electronic states in TiS{sub 2}, TiSe{sub 2}, and TiTe{sub 2} compounds intercalated by titanium atoms. Analysis of experimental data and their comparison with model calculations showed that these bands have different origins. It is found that the resonance enhancement of an additional band observed in TiS{sub 2} is explained by self-intercalation by titanium during the synthesis of this compound. The resonance enhancement in TiTe{sub 2} is caused by occupation of the 3d band in Ti.

  4. Raman characterization of a new Te-rich binary compound: CdTe2.

    PubMed

    Rousset, Jean; Rzepka, Edouard; Lincot, Daniel

    2009-04-01

    Structural characterization by Raman spectroscopy of CdTe thin films electrodeposited in acidic conditions is considered in this work. This study focuses on the evolution of material properties as a function of the applied potential and the film thickness, demonstrating the possibility to obtain a new Te-rich compound with a II/VI ratio of 1/2 under specific bath conditions. Raman measurements carried out on etched samples first allow the elimination of the assumption of a mixture of phases CdTe + Te and tend to confirm the formation of the CdTe(2) binary compound. The signature of this phase on the Raman spectrum is the increase of the LO band intensity compared to that obtained for the CdTe. The influence of the laser power is also considered. While no effect is observed on CdTe films, the increase of the incident irradiation power leads to the decomposition of the CdTe(2) compound into two more stable phases namely CdTe and Te. PMID:19253976

  5. Features of the electronic structure of FeTe compounds

    NASA Astrophysics Data System (ADS)

    Grechnev, G. E.; Lyogenkaya, A. A.; Panfilov, A. S.; Logosha, A. V.; Kotlyar, O. V.; Gnezdilov, V. P.; Makarova, I. P.; Chareev, D. A.; Mitrofanova, E. S.

    2015-12-01

    A theoretical and experimental study of the electronic structure and nature of the chemical bonds in FeTe compounds in antiferromagnetic (AFM) and paramagnetic phases was carried out. It is established that the nature of the chemical bonds is mainly metallic, and the presence of covalent bonds Fe-Te and Te-Te helps to stabilize the structural distortions of the tetragonal phase of FeTe in the low-temperature region. It is found that the bicollinear AFM structure corresponds to the ground state of the FeTe compound and the calculated value of the magnetic moment MFe = -2.4μB is in good agreement with the data from neutron diffraction measurements. At the same time, the Fermi surface (FS) of the low-temperature AFM phase is radically different from the FS of the paramagnetic FeTe. Reconstructing the FS can lead to a sign change of the Hall coefficient observed in FeTe. The calculation results serve as evidence of the fact that the electronic structures and magnetic properties of FeTe are well-described by the model of itinerant d-electrons and the density functional theory (DFT-GGA).

  6. Electronic band structures and physical properties of ALnTe 4 and ALn3Te 8 compounds ( A=alkali metal; Ln=lanthanoid)

    NASA Astrophysics Data System (ADS)

    Stwe, Klaus

    2003-12-01

    We report about the LMTO-ASA band structure, ELF and COHP calculations for a number of alkali metal rare earth tellurides of the formulas ALnTe 4 ( A=K, Rb, Cs and Ln=Pr, Nd, Gd) and K Ln3Te 8 ( Ln=Pr, Nd) to point out structure-properties relations. The ALnTe 4 compounds crystallize in the KCeSe 4 structure type with Te ions arranged in the form of 4.3 2.4.3 nets, in which interatomic homonuclear distances indicate an arrangement of isolated dumbbells. This could be verified by the COHP and ELF calculations, both of which revealed isolated [Te 2] units. But in contrast to the ionic formulation as A+Ln3+ ([Te 2] 2-) 2, which can be deduced from this observation, the band structure calculations for KPrTe 4, KNdTe 4, RbNdTe 4 and CsNdTe 4 reveal metallic conductivity. This behavior was verified for KNdTe 4 by resistivity measurements performed by a standard four-probe technique. We explain these results by an incomplete carryover of electrons from the rare earth cation onto tellurium due to covalent bonding leaving parts of the Te-Te pp?* antibonding states unoccupied. On the other hand the calculations suggest insulating behavior for KGdTe 4 resulting from a complete filling of the Te-Te pp?* antibonding states due to the increased stability of the half filled 4 f shell. The ALn3Te 8 compounds crystallize in the KNd 3Te 8 structure type, a distorted addition-defect variant of the NdTe 3 type with 4 4 Te nets. As polyanionic fragments L-shaped [Te 3] 2- and infinite zig-zag chains ?1[Te 4] 4- are observed (with interatomic homonuclear distances in the range 2.82-3.00 ), which are separated from each other by distances in the range 3.27-3.49 . Again COHP calculations made evident that these latter interactions are secondary. Within the infinite zig-zag chains ?1[Te 4] 4- the Te ions at the corners of the chain have a higher negative charge than the linear coordinated ones in the middle. KPr 3Te 8 and KNd 3Te 8 are semiconductors, verified for the latter by resistivity measurements.

  7. From magnetism to superconductivity in FeTe1-x Se x

    NASA Astrophysics Data System (ADS)

    Argyriou, Dimitri

    2011-03-01

    The iron chalcogenide FeTe 1-x Se x is structurally the simplest of the Fe-based superconductors and exhibits a Fermi surface similar to iron pnictides. Despite this similarity, the parent compound Fe 1+y Te orders antiferromagnetically with an in-plane magnetic wave vector (? ,0) with an ordered moment of ~ 2 ?B /Fe, suggestive of a localized rather than itinerant character of the magnetic order. This contrasts the pnictide parent compounds where the magnetic order has an in-plane magnetic wave vector (? , ?) that likely arises from Fermi Surface nesting. Regardless both the pnictide and chalcogenide Fe superconductors exhibit a superconducting spin resonance around (? , ?) as probed by neutron scattering. A central question in this burgeoning field is therefore how (? , ?) superconductivity emerges from a (? ,0) magnetic instability ? Using neutron scattering we show that incommensurate magnetic excitations around (? , ?) are found even in the undoped parent compound Fe 1+y Te. With increasing x , the (? ,0)-type magnetic long-range order becomes unstable and correlates with a weak charge carrier localization, while the mode at (? , ?) becomes dominant for x>0.29. Our results suggest a common magnetic origin for superconductivity in iron chalcogenide and pnictide superconductors. This work was carried out in close collaboration with the groups of W.Bao (Renmin), Arno Hies (ILL), Zhiqiang Mao (Tulane), C. Brohom (John Hopkins) and I. Eremin (MPI-Dresden/Bochum). Authors thanks Helmholtz Zentrum Berlin and the DFG (under SPP 1458) for support.

  8. Substitution effects of Ag into FeSe0.5Te0.5 superconductor

    NASA Astrophysics Data System (ADS)

    Migita, M.; Takikawa, Y.; Sugai, K.; Takeda, M.; Uehara, M.; Kuramoto, T.; Takano, Y.; Mizuguchi, Y.; Kimishima, Y.

    2013-01-01

    Ag added bulk FeSe0.5Te0.5 samples Agx(FeSe0.5Te0.5)1-x were prepared by solid-state reaction. The x, nominal concentration of Ag, was ranged between 0 and 0.08. The mixed powder was first put into an alumina tube and sealed in an evacuated quartz tube that was heated at 1323 K for 20 h. Subsequently, it was cooled to 673 K and annealed for 200 h to stabilize the superconductive layers. The pure Ag or Ag compound was not observed in the X-ray diffraction patterns of Ag doped samples. It indicates that the Ag is doped into the lattice site of FeSe0.5Te0.5. The Tc is about 14 K up to x = 0.04, but the Tc decreases gradually to 11 K above x = 0.05. The magnetization decreased with increase of x, but a fishtail-like hump was observed for x = 0.05 sample. The magnetic hysteresis of x = 0.05 sample is larger than that of x = 0 sample above 2T.

  9. Metalorganic vapor phase epitaxy growth of ternary tetradymite Bi2Te3-xSex compounds

    NASA Astrophysics Data System (ADS)

    Kuznetsov, P. I.; Yakushcheva, G. G.; Luzanov, V. A.; Temiryazev, A. G.; Shchamkhalova, B. S.; Jitov, V. A.; Sizov, V. E.

    2015-01-01

    We report on a metal organic vapor epitaxy (MOVPE) of Bi2Te3-xSex films over the entire range of compositions (0 ? x ? 3) for the first time. The films were grown on Al2O3(0001) substrates at 465 C using trimethylbismuth (Bi2Me3), diethyltellurium (Et2Te) and diisopropylselenium (iPro2Se) as metalorganic sources. To realize the 2D growth mode and to grow films with flat surfaces and high crystalline quality, a thin ZnTe buffer layer was used. As-grown films were studied using optical and AFM microscopy techniques and X-ray diffraction. It was found that under steady growth conditions the composition of Bi2Te3-xSex films strongly depends on the film thickness. But a high rate of interdiffusion of chalcogens at the growth temperature rapidly leads to a homogeneous composition of the film in the growth direction. Dependence of the intensity of X-ray reflection (0012) on the composition of Bi2Te3-xSex films x has extremes near x=1 (Bi2Te2 Se) and x=2 (Bi2Se2 Te). The AFM micrographs and profiles show large (above 2 ?m) triangle-shaped atomically flat terraces with step height of a quintuple layer (0.90 nm) of the tetradymite-type compounds. The electronic properties of the grown films have been characterized via four probe magnetotransport measurements.

  10. Crystallization behavior in Se{sub 90}Te{sub 10} and Se{sub 80}Te{sub 20} thin films

    SciTech Connect

    Bartk, Jaroslav Mlek, Jir; Kotl, Petr; Segawa, Hiroyo; Yamabe-Mitarai, Yoko

    2014-03-28

    Isothermal crystal growth kinetics in Se{sub 90}Te{sub 10} and Se{sub 80}Te{sub 20} thin films was studied by microscopy and in situ X-ray diffraction (XRD) measurements. The spherulite-like crystals grew linearly with time. In a narrow temperature range of between 65 and 85?C, crystal growth rates exhibit simple exponential behavior with activation energies E{sub G}?=?193??4?kJ mol{sup ?1} for Se{sub 90}Te{sub 10} and E{sub G}?=?195??4?kJ mol{sup ?1} for Se{sub 80}Te{sub 20}. The crystal growth in both compositions is controlled by liquid-crystal interface kinetics and can be described by a screw dislocation growth model. From the XRD data, the crystallization fraction was estimated. The crystallization data were described by Johnson-Mehl-Avrami (JMA) model with Avrami exponents m?=?1.4??0.3 for Se{sub 90}Te{sub 10} and m?=?1.6??0.4 for Se{sub 80}Te{sub 20}. Activation energies were estimated from the temperature dependence of rate constant evaluated from the JMA model. The activation energies of nucleation-growth process were found to be E{sub c}?=?184??21?kJ mol{sup ?1} for Se{sub 90}Te{sub 10} and E{sub c}?=?179??7?kJ mol{sup ?1} for Se{sub 80}Te{sub 20}, and are comparable with activation energies of crystal growth.

  11. Electronic structure of titanium dichalcogenides TiX{sub 2} (X = S, Se, Te)

    SciTech Connect

    Shkvarin, A. S. Yarmoshenko, Yu. M.; Skorikov, N. A.; Yablonskikh, M. V.; Merentsov, A. I.; Shkvarina, E. G.; Titov, A. N.

    2012-01-15

    The electronic structure and the chemical bond in titanium dichalcogenides TiX{sub 2} (X = S, Se, Te), which are promising electrode materials for lithium batteries, are studied experimentally and theoretically. It is found that the X-ray photoelectron spectra of the valence bands and the core levels of titanium and its X-ray L{sub 2,3} absorption spectra demonstrate a change in the ionic and covalent components of the chemical bond in these compounds. The densities of states in these compounds are calculated by the full-potential augmented-plane-wave method, and multiplet calculations of the X-ray L{sub 2,3} absorption spectra of titanium are performed. It is shown that, in the row TiS{sub 2}-TiSe{sub 2}-TiTe{sub 2}, the covalence increases, the ionicity of the chemical bond decreases, and the effect of the crystal field of a ligand is weakened.

  12. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, R. F.; Burger, A.; Dudley, M.; Ramachandran, N.

    2003-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions.

  13. Structural study of (CdS/ZnSe)/BeTe superlattices for ?=1.55 ?m intersubband transition

    NASA Astrophysics Data System (ADS)

    Li, B. S.; Akimoto, R.; Akita, K.; Hasama, H.

    2004-05-01

    A (CdS/ZnSe)/BeTe superlattice (SL), based on wide band gap II-VI compounds, with a large band offset of 3.1 eV was grown on a GaAs (001) substrate using molecular-bean epitaxy and an intersubband transition (ISB-T) of 0.78 eV (?=1.58 ?m) with a full width at half maximum (FWHM) of 96 meV observed. We studied structural properties using high-resolution x-ray diffraction combined with dynamic simulation and found through the strain state in samples that a ZnSe/BeTe interface having a quaternary interface layer (ZnTe)0.45(BeSe)0.55 is preferentially formed despite the promotion of one molecular layer (ML) ZnTe interface formation. Be-Se bonds thus replace the Zn-Te bond in the transition region. For the CdS/ZnSe interface, an approximately 1 ML Zn0.75Cd0.25S ternary layer accompanied by 1 ML Zn0.85Cd0.15Se forms at the transition region due to Cd diffusion. X-ray (002) ?/2? scan curves for (CdS/ZnSe)/BeTe SLs show sharp, intense satellite peaks exceeding ten orders, indicating high structure quality. We obtained excellent agreement between experimental diffraction patterns and the calculated curve via dynamic simulation for (CdS/ZnSe)/BeTe SLs. The good fits allows us to identify structure parameters in (CdS/ZnSe)/BeTe SLs, which are consistent with results of high-resolution transmission electron microscopy measurement. Based on dynamic simulated results, we obtained a structure of (CdS/ZnSe)/Be1-xMgxTe (x=1.2%) with an average lattice constant aSL matching the GaAs substrate. An ISB-T located at wavelength ?=1.55 ?m with a narrow FWHM of 90 meV was thus realized at room temperature.

  14. Stillinger-Weber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te

    NASA Astrophysics Data System (ADS)

    Zhou, X. W.; Ward, D. K.; Martin, J. E.; van Swol, F. B.; Cruz-Campa, J. L.; Zubia, D.

    2013-08-01

    Bulk and multilayered thin film crystals of II-VI semiconductor compounds are the leading materials for infrared sensing, ?-ray detection, photovoltaics, and quantum dot lighting applications. The key to achieving high performance for these applications is reducing crystallographic defects. Unfortunately, past efforts to improve these materials have been prolonged due to a lack of understanding with regards to defect formation and evolution mechanisms. To enable high-fidelity and high-efficiency atomistic simulations of defect mechanisms, this paper develops a Stillinger-Weber interatomic potential database for semiconductor compounds composed of the major II-VI elements Zn, Cd, Hg, S, Se, and Te. The potential's fidelity is achieved by optimizing all the pertinent model parameters, by imposing reasonable energy trends to correctly capture the transformation between elemental, solid solution, and compound phases, and by capturing exactly the experimental cohesive energies, lattice constants, and bulk moduli of all binary compounds. Verification tests indicate that our model correctly predicts crystalline growth of all binary compounds during molecular dynamics simulations of vapor deposition. Two stringent cases convincingly show that our potential is applicable for a variety of compound configurations involving all the six elements considered here. In the first case, we demonstrate a successful molecular dynamics simulation of crystalline growth of an alloyed (Cd0.28Zn0.68Hg0.04) (Te0.20Se0.18S0.62) compound on a ZnS substrate. In the second case, we demonstrate the predictive power of our model on defects, such as misfit dislocations, stacking faults, and subgrain nucleation, using a complex growth simulation of ZnS/CdSe/HgTe multilayers that also contain all the six elements considered here. Using CdTe as a case study, a comprehensive comparison of our potential with literature potentials is also made. Finally, we also propose unique insights for improving the Stillinger-Weber potential in future developments.

  15. First-principles investigations on ferromagnetic behaviour of Be1-xVxZ (Z = S, Se and Te) (x = 0.25)

    NASA Astrophysics Data System (ADS)

    Doumi, B.; Mokaddem, A.; Sayede, A.; Dahmane, F.; Mogulkoc, Y.; Tadjer, A.

    2015-12-01

    The structural, electronic and magnetic properties of beryllium chalcogenides such as BeS, BeSe and BeTe doped with magnetic vanadium (V) impurity as ternary Be1-xVxZ (Z = S, Se and Te) compounds in zinc blende phase have been performed at concentration x = 0.25, by employing first-principles calculations of full-potential linearized augmented plane-wave method within the framework of density functional theory. The electronic structures of Be0.75V0.25Z (Z = S, Se and Te) compounds revealed a half-metallic ferromagnetic character with 100% spin polarized that emerges this behavior results from the band gap of minority spin and metallic nature of majority spin due to a strong hybridization between 3d (V) and p (S, Se and Te) states dominating at Fermi level. According to the results of magnetic properties calculations, the total magnetic moments of Be0.75V0.25Z (Z = S, Se and Te) are integers Bohr magneton of 3 μB that confirms the half-metallic behavior of these compounds. Therefore, the Be0.75V0.25Z (Z = S, Se and Te) compounds seem to be potential candidates to explore half-metallic ferromagnetism property for near future applications in spintronics.

  16. Synthesis and Characterization of a Series of Quaternary Chalcogenides Ba LnMQ3 ( Ln=Rare Earth, M=Coinage Metal, Q=Se or Te)

    NASA Astrophysics Data System (ADS)

    Yang, Yuting; Ibers, James A.

    1999-10-01

    The compounds BaGdAuSe3, BaLaCuTe3, BaYCuTe3, BaYAgTe3, BaLaAgTe3, BaYbCuTe3, BaGdAgTe3, BaNdCuTe3, and BaPrCuTe3 were prepared by the reaction in a BaBr2/KBr flux at 850C of a rare earth, a coinage-group metal, a chalcogen, and BaSe or BaTe. The unit cells of all of the compounds and the crystal structures of the first four compounds were determined by single-crystal X-ray diffraction methods. With the exception of BaLaCuTe3, which crystallizes with four formula units in the orthorhombic space group Pnma, all of these compounds crystallize with four formula units in the orthorhombic space group Cmcm. BaLaCuTe3, isostructural with ?-BaLaCuSe3 and Eu2CuS3 (i.e., Eu2+Eu3+Cu+(S2-)3), and BaGdAuSe3, BaYCuTe3, and BaYAgTe3, isostructural with KZrCuS3, crystallize in a layered structure in which there are 2?[LnMQ2-3] layers separated by Ba2+ ions. Ln atoms are coordinated by six Q atoms at the corners of a distorted octahedron, and M atoms are coordinated by four Q atoms at the corners of a tetrahedron. The layers are formed by the connection of edge-sharing octahedral chains and corner-sharing tetrahedral chains. Ba atoms are coordinated by seven Q atoms in BaLaCuTe3 and by eight Q atoms in BaGdAuSe3, BaYCuTe3, and BaYAgTe3. BaNdAgTe3 shows temperature-dependent paramagnetism. Its magnetic susceptibility follows the Curie-Weiss law. The effective magnetic moment of 3.4(3) ?B is in agreement with the theoretical value of 3.6 ?B for Nd3+.

  17. Light amplification in CdTe and InSe under two-photon pumping

    NASA Astrophysics Data System (ADS)

    Catalano, I. M.; Cingolani, A.; Ferrara, M.; Lugará, M.

    1984-02-01

    Photoluminescence measurements in CdTe and InSe under high intensity two-photon pumping are reported. The relative non-linear absorption coefficients of both materials have been measured. Stimulated emission spectra of both CdTe and InSe show an amplification effect due to excitonic recombination involving a cooperative process; the related optical gain coefficients have been measured.

  18. A general route for the rapid synthesis of one-dimensional nanostructured single-crystal Te, Se and Se Te alloys directly from Te or/and Se powders

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Zhu, Jun-Jie

    2006-03-01

    A general and template-free 'disproportionation and reversal' route was developed to synthesize one-dimensional (1D) nanostructures of Te, Se and Se-Te alloys directly from Te or/and Se powders. The products were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and scanning electron microscopy (SEM). Te nanorods and nanowires with a width varying from about 40 nm to about 300 nm, Se nanowires with a width of 60-100 nm and a length of 4-6 m, and SexTe100-x alloy nanorods with x in a wide range, and with a width of 30-70 nm and an aspect ratio of three to five, were prepared. The mechanism of formation of the nanorods and nanowires and the effects of the experimental conditions, such as solution concentration, cooling rate, solvent nature and heating process, on the morphology and size of the products have been discussed. We believe that this general route and some other proper reversible processes between solid state and solution state can be extended to the transformations from various bulk materials into nanosized materials with various morphologies.

  19. Facile synthesis of thiol-stabilized CdSe xTe 1- x nanocrystals

    NASA Astrophysics Data System (ADS)

    Sathyamoorthy, R.; Sudhagar, P.; Kumar, R. Saravana; Matheswaran, P.; Nair, Ranjith G.

    2011-02-01

    CdSe xTe 1- x nanocrystals ( x=0.25, 0.40, 0.50, 0.60 and 0.75) were synthesized using thioglycerol as a stabilizing agent. The composition of the CdSe xTe 1- x nanocrystals was precisely controlled by tuning the precursor (Se/Te) ratio. The structural, morphological and optical properties of the nanocrystals were analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), diffused reflectance spectroscopy (DRS) and photoluminescence (PL) measurements. It is found that the Se/Te ratio significantly affects the properties of the resultant CdSe xTe 1- x nanocrystals. XRD pattern of the CdSe xTe 1- x nanocrystals revealed cubic, hexagonal and mixed phases depending on the ratio of Se:Te. Surface morphology of the CdSe xTe 1- x nanocrystals showed nanoclusters of sizes ?50 nm, with the adjacent cluster interlinking each other. DRS revealed the size dependence band gap energy prevailing in the CdSe xTe 1- x nanocrystals from 1.52 to 2.66 eV due to the optical bowing effect. PL measurements exhibited band edge emission in the visible spectral region, and are red shifted with increase in Se concentration. The facile route employed in the present work to synthesis the CdSe xTe 1- x nanocrystals in an aqueous medium is simple and controllable, and the strategy presented will be handy in preparing diverse semiconducting nanocrystals.

  20. Electronic properties of GaSe, InSe, GaS and GaTe layered semiconductors: charge neutrality level and interface barrier heights

    NASA Astrophysics Data System (ADS)

    Brudnyi, V. N.; Sarkisov, S. Yu; Kosobutsky, A. V.

    2015-11-01

    Density functional theory calculations have been applied to study the structural and electronic properties of layered ?-GaSe, ?-InSe, ?-GaS and GaTe compounds. The optimized lattice parameters have been obtained using vdW-DF2-C09 exchange-correlation functional, which is able to describe dispersion forces and produces interlayer distances in close agreement with experiments. Based on the calculated electronic band structures, the energy position of the charge neutrality level (CNL) in the IIIVI semiconductors has been estimated for the first time. The room-temperature values of CNL are found to be 0.80 eV, 1.02 eV, 0.72 eV and 0.77 eV for ?-GaSe, ?-GaS, GaTe and ?-InSe, respectively. The persistent p-type conductivity of the intentionally undoped ?-GaSe, ?-GaS and GaTe and n-type conductivity of ?-InSe crystals are discussed and explained using the concept of CNL. We also estimated the barrier heights for a number of metal/semiconductor and semiconductor/semiconductor interfaces assuming partial Fermi level pinning at the CNL. A reasonable agreement between our calculations and the available experimental data has been obtained.

  1. Interrelation of superconductivity and magnetism in FeSe1-xTex compounds. Pressure effects

    NASA Astrophysics Data System (ADS)

    Panfilov, A. S.; Pashchenko, V. A.; Grechnev, G. E.; Desnenko, V. A.; Fedorchenko, A. V.; Bludov, A. N.; Gnatchenko, S. L.; Chareev, D. A.; Mitrofanovа, E. S.; Vasiliev, A. N.

    2014-07-01

    The effect of isotropic pressures P up to 5 kbar on the superconducting transition temperature Tc of the FeSe1-xTex system (x = 0, 0.85, 0.88, 0.90) is studied. For the first time, a change in the sign of the effect of pressure on Tc on going from FeSe to the tellurium-rich alloys is observed. This makes it possible to specify more precisely the form of the dependence of the pressure derivative dTc/dP on composition in this system. This dependence is compared with first principles calculations of the electron structure and magnetism of FeSe, FeTe, and FeSe0.5Te0.5 as functions of pressure, as well as with our earlier experimental data on the effect of pressure on the magnetic susceptibility of the normal state in FeSe and FeTe. This comparison is indicative of a competitive interrelationship between superconductivity and magnetism in tellurium rich FeSe1-xTex compounds.

  2. Carrier generation and recombination dynamics in type-II ZnSeTe/ZnMnSe quantum structures.

    PubMed

    Lin, Yan-Cheng; Chou, Wu-Ching

    2015-07-31

    Type-II band alignment structure is coveted in the design of photovoltaic devices, since it is beneficial for the transport of photogenerated carriers. Here we study the generation and recombination dynamics of carriers in a type-II quantum structure composed of ZnSe0.92Te0.08 highly mismatched alloys (HMAs) and Zn0.97Mn0.03Se. The photoinduced holes at the ZnSe0.92Te0.08 HMAs firstly undergo rapid relaxation to the isoelectronic centers above the valence band edge and subsequently recombine with the free electrons in the Zn0.97Mn0.03Se. The long carrier lifetimes over 120 ns induced by spatially indirect excitons that are bound to isoelectronic Te trapping states further increase with increasing temperature. PMID:26152911

  3. GW quasiparticle energy study of ternary tetradymite Bi{sub 2}Te{sub 2}Se and Bi{sub 2}Te{sub 2}S thin films

    SciTech Connect

    Shuaibu, Alhassan; Rahman, Md. Mahmudur; Zainuddin, Hishamuddin; Talib, Zainal Abidin; Muhida, Rifki

    2015-04-24

    In this work, we have evaluated the quasiparticle energies of ternary tetradymite Bi{sub 2}Te{sub 2}Se and Bi{sub 2}Te{sub 2}S using first-principles calculation within the G{sub 0}W{sub 0} methods. We have also performed a broad convergence tests in order to investigate the quasiparticle corrections to the structural parameters and to the semi core d electrons in both of the compounds. For each case, we have calculated the many-body corrections within a one-shot GW method of the compounds. Our results have shown that for Bi{sub 2}Te{sub 2}Se the GW corrections increase the band gap to almost 10%, and for specific atomic positions, the band structure shows a close value to the experimental one. For Bi{sub 2}Te{sub 2}S, despite increase in the band gap due to the GW corrections, possibility of bulk resistivity that can be significant for photovoltaic applications was observed.

  4. Beneficial effect of Se substitution on thermoelectric properties of Co{sub 4}Sb{sub 11.9-x}Te{sub x}Se{sub 0.1} skutterudites

    SciTech Connect

    Duan, Bo; Zhai, Pengcheng; Liu, Lisheng; Zhang, Qingjie; Ruan, Xuefeng

    2012-09-15

    Skutterudite-based compounds, Co{sub 4}Sb{sub 12-x-y}Te{sub x}Se{sub y} (x=0.4, 0.5, 0.6 and y=0.0, 0.1), are synthesized by the solid state reaction and the spark plasma sintering methods, and their structure and the thermoelectric properties have been investigated systematically. It is found that Se doping results in decrease of the lattice parameter and refinement of the particle size compared with those of Se-free samples. The Se-doped samples do not yield a certain increase in the power factor, but show a significant depression in the lattice thermal conductivity. The highest dimensionless figure of merit ZT=1.09 is achieved at 800 K for the Co{sub 4}Sb{sub 11.3}Te{sub 0.6}Se{sub 0.1} compound, which is improved by 15% compared with that of Te alone doped Co{sub 4}Sb{sub 11.4}Te{sub 0.6} compound at the corresponding temperature. - Graphical abstract: The Te and Se co-doped Co{sub 4}Sb{sub 11.9-x}Te{sub x}Se{sub 0.1} skutterudites show amazingly lower thermal conductivity ({kappa}) and lattice thermal conductivity ({kappa}{sub L}) compared with those of Co{sub 4}Sb{sub 12-x}Te{sub x} skutterudites. Highlights: Black-Right-Pointing-Pointer Te and Se co-doped Co{sub 4}Sb{sub 12-x-y}Te{sub x}Se{sub y} compounds have been synthesized by the solid state reaction method. Black-Right-Pointing-Pointer Doping of Se resulted in decrease of the lattice parameter and refinement of the particle size. Black-Right-Pointing-Pointer The co-doped skutterudites show amazingly lower lattice thermal conductivity. Black-Right-Pointing-Pointer Co-doping with Te and Se is an attractive approach to enhance the TE performance of skutterudites.

  5. Crystal structure of the new compound Co 6(TeO 3) 2(TeO 6)Cl 2

    NASA Astrophysics Data System (ADS)

    Becker, Richard; Johnsson, Mats

    2004-06-01

    The new compound Co 6(TeO 3) 2(TeO 6)Cl 2 has been isolated during an investigation of the system CoO:CoCl 2:TeO 2. The new compound is deep purple in color and crystallizes in the tetragonal system, space group P4 2/ mbc, a=8.3871(7) , c=18.5634(19) , Z=4. The Co(II) ions have octahedral [Co1O 6] and tetrahedral [Co2O 3Cl] coordinations. Tellurium is present both as Te(IV) with a tetrahedral [Te1O 3E] coordination, where E is the 5s 2 lone-pair and as Te(VI) with an octahedral [Te2O 6] coordination. The structure is made up of intersecting layers of tetrahedra forming channels comprising octahedra chains that run along the c-axis. The new compound is the first cobalt tellurium oxochloride described.

  6. Magneto-transport behaviour of Bi2Se3-x Te x : role of disorder.

    PubMed

    Amaladass, E P; Devidas, T R; Sharma, Shilpam; Sundar, C S; Mani, Awadhesh; Bharathi, A

    2016-02-24

    Magneto-resistance and Hall resistance measurements have been carried out in fast-cooled single crystals of Bi2Se3-x Te x (x??=??0 to 2) in 4-300?K temperature range, under magnetic fields up to 15 T. The variation of resistivity with temperature that points to a metallic behaviour in Bi2Se3, shows an up-turn at low temperatures in the Te doped samples. Magneto-resistance measurements in Bi2Se3 show clear signatures of Shubnikov-de Hass (SdH) oscillations that gets suppressed in the Te doped samples. In the Bi2SeTe2 sample, the magneto-resistance shows a cusp like positive magneto-resistance at low magnetic fields and low temperatures, a feature associated with weak anti-localisation (WAL), that crosses over to negative magneto-resistance at higher fields. The qualitatively different magneto-transport behaviour seen in Bi2SeTe2 as compared to Bi2Se3 is rationalised in terms of the disorder, through an estimate of the carrier density, carrier mobility and an analysis in terms of the Ioffe-Regel criterion with support from Hall Effect measurements. We demonstrate that by introducing Te, in the strongly disordered samples a smooth crossover of SdH and WAL can be seen in the Bi2Se3-x Te x series, both of which provide signatures for the presence of topological surface states. PMID:26812889

  7. Optical properties of water-soluble L-cysteine-capped alloyed CdSeS quantum dot passivated with ZnSeTe and ZnSeTe/ZnS shells

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwasesan; Nyokong, Tebello; Forbes, Patricia B. C.

    2015-08-01

    Alloyed quantum dots (QDs) passivated with shell materials have valuable optical characteristics suitable for a wide array of applications. In this work, alloyed ternary CdSeS QDs passivated with ZnSeTe and ZnSeTe/ZnS shells have been synthesized via a hot-injection method and a ligand exchange reaction employing L-cysteine as a thiol ligand has been used to obtain these water-soluble nanocrystals for the first time. The photoluminescence (PL) quantum yield (QY) of alloyed L-cysteine-capped CdSeS was 71.2% but decreased significantly to 5.2% upon passivation with a ZnSeTe shell. The red shift in PL emission of the CdSeS/ZnSeTe QDs was attributed to be strain-induced whilst a lattice-induced process likely created defect states in the core/shell interface hence contributing to the decline in the PL QY. Nonetheless, the fluorescence stability of CdSeS/ZnSeTe QDs in aqueous solution was unperturbed. Further passivation with a ZnS shell (CdSeS/ZnSeTe/ZnS) improved the PL QY to a value of 58.7% and thus indicates that the defect state in the QDs core/shell/shell structure was reduced. PL lifetime exciton measurements indicated that the rates of decay of the QDs influenced their photophysical properties.

  8. Superconductivity in Strong Spin Orbital Coupling Compound Sb2Se3

    PubMed Central

    Kong, P. P.; Sun, F.; Xing, L. Y.; Zhu, J.; Zhang, S. J.; Li, W. M.; Liu, Q. Q.; Wang, X. C.; Feng, S. M.; Yu, X. H.; Zhu, J. L.; Yu, R. C.; Yang, W. G.; Shen, G. Y.; Zhao, Y. S.; Ahuja, R.; Mao, H. K.; Jin, C. Q.

    2014-01-01

    Recently, A2B3 type strong spin orbital coupling compounds such as Bi2Te3, Bi2Se3 and Sb2Te3 were theoretically predicated to be topological insulators and demonstrated through experimental efforts. The counterpart compound Sb2Se3 on the other hand was found to be topological trivial, but further theoretical studies indicated that the pressure might induce Sb2Se3 into a topological nontrivial state. Here, we report on the discovery of superconductivity in Sb2Se3 single crystal induced via pressure. Our experiments indicated that Sb2Se3 became superconductive at high pressures above 10 GPa proceeded by a pressure induced insulator to metal like transition at ~3 GPa which should be related to the topological quantum transition. The superconducting transition temperature (TC) increased to around 8.0 K with pressure up to 40 GPa while it keeps ambient structure. High pressure Raman revealed that new modes appeared around 10 GPa and 20 GPa, respectively, which correspond to occurrence of superconductivity and to the change of TC slop as the function of high pressure in conjunction with the evolutions of structural parameters at high pressures. PMID:25327696

  9. Superconductivity in strong spin orbital coupling compound Sb2Se3

    DOE PAGESBeta

    Kong, P. P.; Sun, F.; Xing, L. Y.; Zhu, J.; Zhang, S. J.; Li, W. M.; Liu, Q. Q.; Wang, X. C.; Feng, S. M.; Yu, X. H.; et al

    2014-10-20

    Recently, A2B3 type strong spin orbital coupling compounds such as Bi2Te3, Bi2Se3 and Sb2Te3 were theoretically predicated to be topological insulators and demonstrated through experimental efforts. The counterpart compound Sb2Se3 on the other hand was found to be topological trivial, but theoretical studies indicated that the pressure might induce Sb2Se3 into a topological nontrivial state. We report on the discovery of superconductivity in Sb2Se3 single crystal induced via pressure. Our experiments indicated that Sb2Se3 became superconductive at high pressures above 10 GPa proceeded by a pressure induced insulator to metal like transition at ~3 GPa which should be related tomore » the topological quantum transition. The superconducting transition temperature (TC) increased to around 8.0 K with pressure up to 40 GPa while it keeps ambient structure. As a result, high pressure Raman revealed that new modes appeared around 10 GPa and 20 GPa, respectively, which correspond to occurrence of superconductivity and to the change of TC slop as the function of high pressure in conjunction with the evolutions of structural parameters at high pressures.« less

  10. Three-dimensional topological insulators Bi{sub 2}Te{sub 3}, Bi{sub 2}Se{sub 3}, and Bi{sub 2}Te{sub 2}Se - a microwave spectroscopy study

    SciTech Connect

    Wolos, A.; Strzelecka, S. G.; Hruban, A.; Materna, A.; Piersa, M.

    2013-12-04

    We present results of investigations of three-dimensional topological insulators from a family of bismuth compounds performed in electron spin resonance spectrometer. Next to the standard spin resonance spectra in Bi{sub 2}Se{sub 3} originating from bulk conduction electrons (g{sub Verbar;} = 27.5 ± 0.1 and g{sub ⊥} = 19.5 ± 0.1), we observed also cyclotron resonance due to topological surface states in Bi{sub 2}Te{sub 3} and non-resonant signal related to weak anti-localization in Bi{sub 2}Te{sub 2}Se. The analysis of the cyclotron resonance signal yields low Fermi velocity equal to 3250 m/s in Bi{sub 2}Te{sub 3}. The phase coherence length determined from weak anti-localization signal equals to 550 nm at low temperatures in Bi{sub 2}Te{sub 2}Se. Relation of the signals to bulk, topological surface or two-dimensional quantum well states is discussed and where possible indicated.

  11. Anisotropic strain in SmSe and SmTe: Implications for electronic transport

    NASA Astrophysics Data System (ADS)

    Kuroda, Marcelo A.; Jiang, Zhengping; Povolotskyi, Michael; Klimeck, Gerhard; Newns, Dennis M.; Martyna, Glenn J.

    2014-12-01

    Mixed valence rare-earth samarium compounds Sm X (X =Se,Te ) have been recently proposed as candidate materials for use in high-speed, low-power digital switches driven by stress induced changes of resistivity. At room temperature these materials exhibit a pressure driven insulator-to-metal transition with resistivity decreasing by up to seven orders of magnitude over a small pressure range. Thus, the application of only a few GPa's to the piezoresistor (Sm X ) allows the switching device to perform complex logic. Here we study from first principles the electronic properties of these compounds under uniaxial strain and discuss the implications for carrier transport. Based on changes in the band structure and a model we show that the piezoresistive response is mostly governed by the reduction of band gap with strain. Furthermore, the piezoresistive reponse becomes optimal when the Fermi level is pinned near the localized valence band. The piezoresistive effect under uniaxial strain, which must be taken into account in thin films and other systems with reduced dimensionality, is also studied. Under uniaxial strain we find that the piezoresistive response can be substantially larger than in the isotropic case. Analysis of the complex band structure of SmSe yields a tunneling length of the order of 1 nm. This suggest that the conduction mechanism governing the piezoresistive effect in bulk, i.e., thermal promotion of electrons, should still be dominant in few-nanometer-thick films.

  12. Nano-sized Minerals of Elemental Selenium and Tellurium Formed by Bacterial Dissimilatory Reduction of Se- and Te-Oxyanions.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.

    2007-12-01

    Selenium and tellurium are both Group 16 elements that have curious opto-electrical properties making them of potential interest for photovoltaic applications. The process of dissimilatory reduction of selenate and selenite by 3 diverse species of anaerobes, Bacillus selenitireducens, Sulfurospirillum barnesii, and Selenihalanaerobacter shriftii resulted in the accumulation of many uniformly-sized nanospheres (diameter = approx. 300 nm) that aggregated on the outside of their cell envelopes (Oremland et al., 2004). Despite their uniformity of shape, purified Se-nanospheres from the 3 different species displayed significantly different spectral properties (UV- visible light and Raman) indicating differing internal arrangements of their Se atoms. Se-nanospheres from all 3 species also had lower bandgap energies than that of elemental selenium formed by chemical means. We subsequently determined that S. barnesii and B. selenitireducens could grow by dissimilatory reduction of Te- oxyanions, although progress was hampered by the fact that Te concentrations above 0.6 mM proved toxic to cells (Baesman et al., 2007). Unlike the case for Se-nanospheres, the Te-nanoparticles formed by the two microbes were entirely different. S. barnesii formed small, irregularly shaped spheroids (smaller than 50 nm diameter) that coalesced into larger aggregates. In contrast, B. selenitreducens formed nano-rods (10 nm diameter x 200 nm length) that coalesced into larger shards which formed even larger rosette-shaped aggregates once they sloughed off the cells. Spectroscopy of purified Te-rosettes indicated an internal trigonally-shaped array of Te atoms. Future research on Te(0) nano-materials formed by anaerobic bacteria would be aided by isolation of novel species adapted to growth at high batch culture concentrations of Te-oxyanions (approx. 10 mM). Furthermore, the ability of microbes like B. selenitreducens to form selenide by reduction of Se(0) suggests an application in the biological formation of CdSe or perhaps CdTe type-nanomaterials that bypasses the need for highly reactive compounds required for chemical syntheses. Oremland, R.S. et al. (2004). Appl. Environ. Microbiol. 70: 52 - 60. Baesman, S.M., et al. (2007). Appl. Environ. Microbiol. 73: 2135 - 2143.

  13. Crystal growth of ZnSe and related ternary compound semiconductors by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    1993-01-01

    The materials to be investigated are ZnSe and related ternary semiconducting alloys (e.g., ZnS(x)Se(1-x), ZnTe(x)Se(1-x), and Zn(1-x)Cd(x)Se). These materials are useful for opto-electronic applications such as high efficient light emitting diodes and low power threshold and high temperature lasers in the blue-green region of the visible spectrum. The recent demonstration of its optical bistable properties also makes ZnSe a possible candidate material for digital optical computers. The investigation consists of an extensive ground-based study followed by flight experimentation, and involves both experimental and theoretical work. The objectives of the ground-based work are to establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low gravity environment and to obtain the experimental data and perform the analyses required to define the optimum parameters for the flight experiments. During the six months of the Preliminary Definition Phase, the research efforts were concentrated on the binary compound ZnSe - the purification of starting materials of Se by zone refining, the synthesis of ZnSe starting materials, the heat treatments of the starting materials, the vapor transport rate measurements, the vapor partial pressure measurements of ZnSe, the crystal growth of ZnSe by physical vapor transport, and various characterization on the grown ZnSe crystals.

  14. Effects of Se substitution on the thermoelectric performance of n-type Co{sub 4}Sb{sub 11.3}Te{sub 0.7?x}Se{sub x} skutterudites

    SciTech Connect

    Duan, Bo; Zhai, Pengcheng; Liu, Lisheng; Zhang, Qingjie

    2012-07-15

    Highlights: ? The simple solid state reaction technique was employed to prepare Co{sub 4}Sb{sub 11.3}Te{sub 0.7?x}Se{sub x} skutterudites. ? The thermal conductivity decreases gradually with the increasing Se content. ? Doping with moderate Se is an effective way to enhance the thermoelectric performance of Co{sub 4}Sb{sub 11.3}Te{sub 0.7?x}Se{sub x}. ? The highest ZT of 1.11 at 800 K is obtained for the Co{sub 4}Sb{sub 11.3}Te{sub 0.58}Se{sub 0.12} sample. -- Abstract: A series of double-substituted Co{sub 4}Sb{sub 11.3}Te{sub 0.7?x}Se{sub x} skutterudites have been fabricated by combining the solid state reaction and the spark plasma sintering method, and the effects of Se substitution on the thermoelectric properties are characterized by measurements of the electrical conductivity, the Seebeck coefficient and the thermal conductivity in the temperature range of 300800 K. Doping Se into the Co{sub 4}Sb{sub 11.3}Te{sub 0.7?x}Se{sub x} matrix suppresses the carrier concentration, and the electrical conductivity actually decreases with the Se content. However, moderate Se doping is effective in enhancing the thermoelectric performance of the n-type Co{sub 4}Sb{sub 11.3}Te{sub 0.7?x}Se{sub x}, because of the resulted dramatically decreased thermal conductivity. Analyses indicate that the heightened point-defect scattering induced by Se doping together with the electronphonon scattering induced by Te doping is responsible for the reduction of lattice thermal conductivity of these compounds.

  15. Study of phase separation in amorphous Se-Te-Bi material

    NASA Astrophysics Data System (ADS)

    Alvi, M. A.

    2014-09-01

    We have prepared ternary Se80Te17Bi3 and Se80Te14Bi6 glasses using melt-quench technique and performed the non-isothermal kinetics by differential scanning calorimetry (DSC) at various heating rates (β). X-ray diffraction and FESEM have been used to identify the transformed phases. The change in glass transition temperature (Tg) and crystallization temperature (Tc) with heating rates have been used to calculate different crystallization parameters in Se80Te20-xBix chalcogenide glasses. We found that both Tg and Tc becomes larger with increasing β. Activation energies of glass transition (Eg) and crystallization (Ec), the crystallization enthalpy (Hc), thermal stability and glass forming ability (GFA) were determined from the dependency of Tg and Tc on heating rates. From our experimental data, the temperature difference (Tc - Tg) and Hc are largest and lowest, respectively, for Se80Te17Bi3 glass, which shows that Se80Te17Bi3 glass is more stable than Se80Te14Bi6 glass.

  16. Demonstration of surface transport in a hybrid Bi2Se3/Bi2Te3 heterostructure

    PubMed Central

    Zhao, Yanfei; Chang, Cui-Zu; Jiang, Ying; DaSilva, Ashley; Sun, Yi; Wang, Huichao; Xing, Ying; Wang, Yong; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Jian

    2013-01-01

    In spite of much work on topological insulators (TIs), systematic experiments for TI/TI heterostructures remain absent. We grow a high quality heterostructure containing single quintuple layer (QL) of Bi2Se3 on 19 QLs of Bi2Te3 and compare its transport properties with 20 QLs Bi2Se3 and 20 QLs Bi2Te3. All three films are grown on insulating sapphire (0001) substrates by molecular beam epitaxy (MBE). In situ angle-resolved photoemission spectroscopy (ARPES) provides direct evidence that the surface state of 1 QL Bi2Se3/19 QLs Bi2Te3 heterostructure is similar to the surface state of the 20 QLs Bi2Se3 and different with that of the 20 QLs Bi2Te3. In ex situ transport measurements, the observed linear magnetoresistance (MR) and weak antilocalization (WAL) of the hybrid heterostructure are similar to that of the pure Bi2Se3 film and not the Bi2Te3 film. This suggests that the single Bi2Se3 layer on top of 19 QLs Bi2Te3 dominates its transport properties. PMID:24162440

  17. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, R. F.; Dudley, M.; Ramachandran, N.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. The following are the research progress in the past two years. In-situ monitoring of partial pressure by optical absorption technique and visual observation of the growing crystal were performed during vapor growth of ZnSe. Low-temperature photoluminescence (PL) spectra and glow discharge mass spectroscopy (GDMS) were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during crystal growth process. Optical characterization was performed on wafers sliced from the grown crystals of ZnSe, ZnTe and ZnSe(1-x),Te(x), (0Se and ZnTe were dominated by near band edge emissions and no deep donor-acceptor pairs were observed. The PL spectrum exhibited a broad emission for the ZnSe(1-x),Te(x), samples, 0.09Te clusters because of the high Te content in these samples. To validate numerical codes, in-situ monitoring during the PVT of HgI2 was designed. Optical absorption spectra of the vapor phase over HgI2 were measured for wavelengths between 200 and 600nm at sample temperatures between 349 and 610K. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were determined. From these constants the vapor pressure of HgI2 was established as a function of temperature for the liquid and the solid Beta-phases To characterize the growth conditions during the PVT growth of In-doped ZnSe the optical absorbance of the vapor phase over the In-Se system were measured and were used to obtain the partial pressures of Se2(g) and In2Se(g).

  18. Effect of bond polarity in Sb2Te3- x Se x single crystals

    NASA Astrophysics Data System (ADS)

    Lot'k, P.; Novotn, R.; Hork, J.

    1989-03-01

    Sb2Te3- x Se x ( x=000-125) single crystals were prepared from 5N purity elements using a modified Bridgman method. Measurements of the reflectivity spectra in the plasma resonance frequency range, Hall constant R H( B? c) and electrical conductivity ? ?C were carried out on these samples at room temperature. With increasing selenium content a shift of the reflectivity minimum towards longer wavelengths was observed as well as an increase of the Hall constant and a decrease of the electrical conductivity the incorporation of Se atoms into the Sb2Te3 crystal lattice results obviously in a decrease in the concentration of free carriers. This effect is accounted for by a change in the polarity of bonds in the Sb2Te3 crystal lattice, due to the formation of Se{Te/x} substitutional defects.

  19. (77)Se and (125)Te NMR spectroscopy on a selectivity study of organochalcogenanes with L-amino acids.

    PubMed

    Silva, Marcio S; Andrade, Leandro H

    2015-06-01

    The hypervalent selenium- and tellurium-containing compounds (halo-organoselenuranes and halo-organotelluranes) were treated with amino acids to evaluate their reactivity and chemoselectivity by (1)H, (13)C, (77)Se and (125)Te NMR spectroscopy. The study of forced thermal stability was performed and analyzed by NMR. The organotelluranes remained stable at temperatures around 60 C but in the case of organoselenuranes, there was formation of new products at 37 C as a result of halogen loss. (77)Se and (125)Te NMR spectroscopy has proved to be a very efficient and fast technique to evidence the high selectivity of organochalcogenanes against l-amino acids, specific to l-cysteine. PMID:25923042

  20. Electronic structure of the quantum spin Hall parent compound CdTe and related topological issues

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Bian, Guang; Fu, Li; Liu, Chang; Wang, Tao; Zha, Gangqiang; Jie, Wanqi; Neupane, Madhab; Miller, T.; Hasan, M. Z.; Chiang, T.-C.

    2014-11-01

    Cadmium telluride (CdTe), a compound widely used in devices, is a key base material for the experimental realization of the quantum spin Hall phase. We report herein a study of the electronic structure of CdTe by angle-resolved photoemission spectroscopy from well-ordered (110) surfaces. The results are compared with first-principles calculations to illustrate the topological distinction between CdTe and a closely related compound HgTe. Through a theoretical simulation a topological phase transition as well as the Dirac-Kane semimetal phase at the critical point was demonstrated in the mixed compound H gxC d1 -xTe .

  1. Development of ion-implantation confined, shallow mesa stripe (Pn,Sn)Te/Pb(Te,Se) DH laser diodes

    NASA Technical Reports Server (NTRS)

    Fonstad, C. G.; Harton, A.; Jiang, Y.-N.; Appelman, H.

    1983-01-01

    Preliminary results of a program to develop ion implantation confined, shallow mesa stripe (Pb,Sn)Te laser diodes are presented. The practicality of using a shallow mesa stripe to produce single mode laser output and to increase the single mode tuning range are demonstrated. The first results of p-type ion implantation in the lead-tin salts are also reported. It is shown that sodium and lithium both can be used to convert n-type Pb(Te,Se) to p-type. The implant and anneal procedures are described, and electrical characteristics of Li-implanted layers are presented.

  2. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. Significant effects of gravity vector orientation on the growth crystal morphology and point defect distribution were observed.

  3. Structural and electronic properties of MX3 (M = Ti, Zr and Hf; X = S, Se, Te) from first principles calculations

    NASA Astrophysics Data System (ADS)

    Abdulsalam, Mahmud; Joubert, Daniel P.

    2015-07-01

    The structural and electronic properties of layered TiS3, TiSe3, TiTe3, HfS3, HfSe3, HfTe3, ZrS3, ZrSe3 and ZrTe3 with structure P21/m have been investigated using density functional theory for the first time at the atomic level within the vdW-DF and vdW-TS approximations to account for long range dispersive forces, which is important in predicting layered material interlayer spacing accurately. To get reasonable estimates of the band gaps, MBJ band structure calculations were performed. With exception of the tellurides and TiSe3, which are found to be metallic, the compounds are indirect band gap semiconductors with band gap in the range of 0.44 to 2.04 eV. The minimum direct band gaps were found to be in a similar range. The elastic constants of these structures confirm their mechanical stability by satisfying all the stability criteria for monoclinic structures. Phonon band structure and thermal properties were calculated using density functional perturbation theory. The phonon dispersion relations show that the structures are stable under small atomic displacements.

  4. Enhanced thermoelectric properties of solution grown Bi2Te(3-x)Se(x) nanoplatelet composites.

    PubMed

    Soni, Ajay; Yanyuan, Zhao; Ligen, Yu; Aik, Michael Khor Khiam; Dresselhaus, Mildred S; Xiong, Qihua

    2012-03-14

    We report on the enhanced thermoelectric properties of selenium (Se) doped bismuth telluride (Bi(2)Te(3-x)Se(x)) nanoplatelet (NP) composites synthesized by the polyol method. Variation of the Se composition within NPs is demonstrated by X-ray diffraction and Raman spectroscopy. While the calculated lattice parameters closely follow the Vegard's law, a discontinuity in the shifting of the high frequency (E(g)(2) and A(1g)(2)) phonon modes illustrates a two mode behavior for Bi(2)Te(3-x)Se(x) NPs. The electrical resistivity (?) of spark plasma sintered pellet composites shows metallic conduction for pure Bi(2)Te(3) NP composites and semiconducting behavior for intermediate Se compositions. The thermal conductivity (?) for all NP composites is much smaller than the bulk values and is dominated by microstructural grain boundary scattering. With temperature dependent electrical and thermal transport measurements, we show that both the thermoelectric power S (-259 ?V/K) and the figure of merit ZT (0.54) are enhanced by nearly a factor of 4 for SPS pellets of Bi(2)Te(2.7)Se(0.3) in comparison to Bi(2)Te(3) NP composites. Tentatively, such an enhancement of the thermoelectric performance in nanoplatelet composites is attributed to the energy filtering of low energy electrons by abundant grain boundaries in aligned nanocomposites. PMID:22295990

  5. Thermal behavior in Se-Te chalcogenide system: Interplay of thermodynamics and kinetics

    SciTech Connect

    Svoboda, Roman Málek, Jiří

    2014-12-14

    Heat capacity measurements were performed for Se, Se{sub 90}Te{sub 10}, Se{sub 80}Te{sub 20}, and Se{sub 70}Te{sub 30} materials in the 230–630 K temperature range. Both glassy and crystalline C{sub p} dependences were found to be identical within the experimental error. The compositional dependence of the N-type undercooled liquid C{sub p} evolution was explained on the basis of free-volume theory; vibrational and chemical contributions to heat capacity were found to be roughly similar for all Se-Te compositions. The thermal behavior in the Se-Te chalcogenide system was thoroughly studied: glass transition, cold crystallization, and melting were investigated in dependence on composition and various experimental conditions (heating rate, particle size, and pre-nucleation period). The kinetics of the structural relaxation and crystallization processes are described in terms of the Tool-Narayanaswamy-Moynihan and Johnson-Mehl-Avrami models. The complexity of these processes is thoroughly discussed with regard to the compositionally determined changes of molecular structures. The discussion is conducted in terms of the mutual interplay between the thermodynamics and kinetics in this system.

  6. Thermal behavior in Se-Te chalcogenide system: Interplay of thermodynamics and kinetics

    NASA Astrophysics Data System (ADS)

    Svoboda, Roman; Mlek, Ji?

    2014-12-01

    Heat capacity measurements were performed for Se, Se90Te10, Se80Te20, and Se70Te30 materials in the 230-630 K temperature range. Both glassy and crystalline Cp dependences were found to be identical within the experimental error. The compositional dependence of the N-type undercooled liquid Cp evolution was explained on the basis of free-volume theory; vibrational and chemical contributions to heat capacity were found to be roughly similar for all Se-Te compositions. The thermal behavior in the Se-Te chalcogenide system was thoroughly studied: glass transition, cold crystallization, and melting were investigated in dependence on composition and various experimental conditions (heating rate, particle size, and pre-nucleation period). The kinetics of the structural relaxation and crystallization processes are described in terms of the Tool-Narayanaswamy-Moynihan and Johnson-Mehl-Avrami models. The complexity of these processes is thoroughly discussed with regard to the compositionally determined changes of molecular structures. The discussion is conducted in terms of the mutual interplay between the thermodynamics and kinetics in this system.

  7. Antiphase Boundaries in the Turbostratically Disordered Misfit Compound (BiSe)(1+?)NbSe2.

    PubMed

    Mitchson, Gavin; Falmbigl, Matthias; Ditto, Jeffrey; Johnson, David C

    2015-11-01

    (BiSe)(1+?)NbSe2 ferecrystals were synthesized in order to determine whether structural modulation in BiSe layers, characterized by periodic antiphase boundaries and Bi-Bi bonding, occurs. Specular X-ray diffraction revealed the formation of the desired compound with a c-axis lattice parameter of 1.21 nm from precursors with a range of initial compositions and initial periodicities. In-plane X-ray diffraction scans could be indexed as hk0 reflections of the constituents, with a rectangular basal BiSe lattice and a trigonal basal NbSe2 lattice. Electron micrographs showed extensive turbostratic disorder in the samples and the presence of periodic antiphase boundaries (approximately 1.5 nm periodicity) in BiSe layers oriented with the [110] direction parallel to the zone axis of the microscope. This indicates that the structural modulation in the BiSe layers is not due to coherency strain resulting from commensurate in-plane lattices. Electrical transport measurements indicate that holes are the dominant charge carrying species, that there is a weak decrease in resistivity as temperature decreases, and that minimal charge transfer occurs from the BiSe to NbSe2 layers. This is consistent with the lack of charge transfer from the BiX to the TX2 layers reported in misfit layer compounds where antiphase boundaries were observed. This suggests that electronic considerations, i.e., localization of electrons in the Bi-Bi pairs at the antiphase boundaries, play a dominant role in stabilizing the structural modulation. PMID:26465820

  8. Kinematic study of refraction properties of a ZnSe-ZnTe dielectric grating.

    PubMed

    Reyes, J C Salcedo

    2008-12-01

    The plane wave expansion method is applied to determine the thickness of the ZnSe-ZnTe slabs in a semi-infinite dielectric grating in such a way that the maximum reflectivity of the system is obtained. In this way the potential of the ZnSe-ZnTe system for applications in CdSe ultra thin quantum well based monolithic II-VI Vertical Cavity Surface Emitting Laser for the green spectral region is demonstrated. A kinematic analysis of the thickness-dependent refraction at the boundary between a ZnSe-ZnTe semi-infinite one dimensional photonic crystal and a homogeneous material in transverse magnetic polarization and oblique incidence case is presented. PMID:19205245

  9. Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites.

    PubMed

    Yamini, Sima Aminorroaya; Wang, Heng; Ginting, Dianta; Mitchell, David R G; Dou, Shi Xue; Snyder, G Jeffrey

    2014-07-23

    Lead chalcogenides (PbQ, Q = Te, Se, S) have proved to possess high thermoelectric efficiency for both n-type and p-type compounds. Recent success in tuning of electronic band structure, including manipulating the band gap, multiple bands, or introducing resonant states, has led to a significant improvement in the thermoelectric performance of p-type lead chalcogenides compared to the n-type ones. Here, the n-type quaternary composites of (PbTe)0.75(PbS)0.15(PbSe)0.1 are studied to evaluate the effects of nanostructuring on lattice thermal conductivity, carrier mobility, and effective mass variation. The results are compared with the similar ternary systems of (PbTe)(1-x)(PbSe)x, (PbSe)(1-x)(PbS)x, and (PbS)(1-x)(PbTe)x. The reduction in the lattice thermal conductivity owing to phonon scattering at the defects and interfaces was found to be compensated by reduced carrier mobility. This results in a maximum figure of merit, zT, of ∼1.1 at 800 K similar to the performance of the single phase alloys of PbTe, PbSe, and (PbTe)(1-x)(PbSe)x. PMID:24960418

  10. Crystal growth and physical property of Bi-Sb-Te-Se topological insulator materials, and Cu-Bi-Se and Sn-In-Te topological superconductors

    NASA Astrophysics Data System (ADS)

    Gu, Genda; Yang, Alina; Schneeloch, J.; Zhong, R. D.; Xu, Z. J.; Tranquada, J. M.; Pan, Z. H.; Si, W. D.; Shi, X. Y.; Li, Q.; Valla, T.

    2013-03-01

    The discovery of 3D topological insulator materials and topological superconductor opens up a new research field in the condensed matter physics. We have grown a number of Bi-Sb-Te-Se topological insulator, and Cu-Bi-Se and Sn-In-Te topological superconductor single crystals. We have measured the physical properties on these single crystals. We have studied the effect of growth condition and impurity on the bulk electrical conductivity of these single crystals. We try to answer two questions for the topological insulator materials if it is possible to grow the bulk-insulating topological insulator single crystals and Which maximum resistivity of these topological insulator single crystals we can grow. For the topological superconductor, we have got the bulk superconducting single crystals with a maximum Tc =4.5K. DOE under Contract No. DE-AC02-98CH10886 and the DOE Center for Emergent Superconductivity.

  11. In and InSe doping influence on CdTe postmelting effect

    NASA Astrophysics Data System (ADS)

    Shcherbak, L.; Feychuk, P.; Kopach, O.; Falenchuk, O.; Panchuk, O.

    1998-07-01

    The influence of small In or InSe (up to 10 mol. %) additions to the CdTe melt on additional endothermic effects (AEE) positions in DTA thermograms was studied. It was observed, that both AEEs at 1392 K, typical for pure CdTe melt, and “own" at Tm+(9-10) K appear in CdTe+In melt heating curves during thermocycling. The melting of CdTe-InSe alloys occurs step-by-step without “own" postmelting effects. The solid CdTe dissociation enthalpy near Tm (Δ Hdiss=287± 22 kJ/mol) and the CdTe fusion enthalpy (Δ H_f=43.85± 1.15 kJ/mol) were estimated on the base of the obtained DTA data. L'influence de petites additions d'In ou d'InSe (jusqu'à 10 mol%) à du CdTe fondu sur les positions des effets endothermiques additionels (AEE) des thermogrammes d'analyse thermique différentielle (ATD) ont été étudiés. Nous avons observé, à la fois, que l'effet AEE à 1392± 1 K, typique du CdTe pure fondu et qu'un “novel" effet à la temperature de liquidus d'alliage CdTe+In ±(9-10) K sont reproduits dans les courbes de chauffage. La fusion des alliages CdTe-InSe s'effectue pas à pas sans effets de post-fusion particuliers. L'enthalpie de dissociation de CdTe solide près de Tm (Δ Hdiss=287± 22 kJ/mol) et l'enthalpie de fusion de CdTe (Δ H_f=43,85± 1,15 kJ/mol) ont été estimées à partir des donnes obtenues par ATD.

  12. Colloidal synthesis and optical properties of type-II CdSe-CdTe and inverted CdTe-CdSe core-wing heteronanoplatelets.

    PubMed

    Antanovich, A V; Prudnikau, A V; Melnikau, D; Rakovich, Y P; Chuvilin, A; Woggon, U; Achtstein, A W; Artemyev, M V

    2015-05-01

    We developed colloidal synthesis to investigate the structural and electronic properties of CdSe-CdTe and inverted CdTe-CdSe heteronanoplatelets and experimentally demonstrate that the overgrowth of cadmium selenide or cadmium telluride core nanoplatelets with counterpartner chalcogenide wings leads to type-II heteronanoplatelets with emission energies defined by the bandgaps of the CdSe and CdTe platelets and the characteristic band offsets. The observed conduction and valence band offsets of 0.36 eV and 0.56 eV are in line with theoretical predictions. The presented type-II heteronanoplatelets exhibit efficient spatially indirect radiative exciton recombination with a quantum yield as high as 23%. While the exciton lifetime is strongly prolonged in the investigated type-II 2D systems with respect to 2D type-I systems, the occurring 2D giant oscillator strength (GOST) effect still leads to a fast and efficient exciton recombination. This makes type-II heteronanoplatelets interesting candidates for low threshold lasing applications and photovoltaics. PMID:25873332

  13. The pure rotational spectrum of TeSe: Rotational parameters, Born Oppenheimer breakdown corrections, and hyperfine constants

    NASA Astrophysics Data System (ADS)

    Banser, Deike; Grabow, Jens-Uwe; Cocinero, Emilio J.; Lesarri, Alberto; Alonso, José L.

    2006-08-01

    The characterization of tellurium selenide in its electronic ground state (X0 +∑) was possible by using LASER-ablation to isolate the diatomic in a pulsed molecular beam and by applying Fourier transform microwave spectroscopy to obtain the pure rotational spectrum. Employing a global multi-isotopologue analysis to transitions of 43 isotopologues of TeSe in seven vibrational states spectroscopic Dunham parameters Y, Born-Oppenheimer breakdown coefficients δ, the equilibrium bond lengths re, as well as the vibration parameters ωe and ωexe were obtained for all analysed isotopologues. For low vibrational states, the Morse-potential function describes the TeSe-potential very well and provides an estimate of the maximum dissociation energy for this semi-metal compound. In addition, the isotopologue independent molecular constants U and the corresponding Born-Oppenheimer breakdown coefficients Δ were determined. Quite large coefficients Δ0,1Te and Δ0,1Se were necessary for Watson's reference isotopologue independent analysis. This is rationalized by the interaction between the two sublevels of the electronic 3Σ-state. Also the magnetic spin-rotation coupling constants that were achieved for some of the isotopologues reflect this electronic ground state. Field shift effects are found to be negligible.

  14. Thermomagnetic and thermoelectric properties of semiconductors (PbTe, PbSe) at ultrahigh pressures

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, Sergey V.; Shchennikov, Vladimir V.

    2004-02-01

    The longitudinal and transverse thermomagnetic Nernst-Ettingshausen (LNE, TNE) effects and the Maggi-Reghi-Leduc (MRL) effect were measured on PbTe and PbSe micro-samples at ultrahigh pressures upto 20 GPa. Values of the mobility of charge carriers as well as the scattering parameter were estimated both for the low- and high-pressure phase of PbTe and PbSe. At about 3 GPa, the maxima of both Nernst-Ettingshausen effects and magnetoresistance (MR) (and hence of the mobility of charge carriers ?), attributed to the gapless state of PbTe and PbSe were established. The TNE effect was found to be the largest among the effects measured, while the MRL was hardly visible even at the highest mobility values of the charge carriers. The possibilities for using thermomagnetic effects in micro-device technologies are discussed.

  15. Role of polycrystallinity in CdTe and CuInSe sub 2 photovoltaic cells

    SciTech Connect

    Sites, J.R. )

    1991-01-01

    The polycrystalline nature of thin-film CdTe and CuInSe{sub 2} solar cells continues to be a major factor in several individual losses that limit overall cell efficiency. This report describes progress in the quantitative separation of these losses, including both measurement and analysis procedures. It also applies these techniques to several individual cells to help document the overall progress with CdTe and CuInSe{sub 2} cells. Notably, CdTe cells from Photon Energy have reduced window photocurrent losses to 1 mA/Cm{sup 2}; those from the University of South Florida have achieved a maximum power voltage of 693 mV; and CuInSe{sub 2} cells from International Solar Electric Technology have shown a hole density as high as 7 {times} 10{sup 16} cm{sup {minus}3}, implying a significant reduction in compensation. 9 refs.

  16. Analysis of the Influence of Thermal Treatment on the Stability of Ag1-xSb1+xTe2+x and Se-Doped AgSbTe2

    NASA Astrophysics Data System (ADS)

    Wyzga, P. M.; Wojciechowski, K. T.

    2015-10-01

    In order to systematize the knowledge on thermodynamic stability and thermoelectric properties of AgSbTe2-based alloys, several experiments examining the influence of thermal treatment on their structural and thermoelectric properties were performed. Samples with a nominal composition of AgSbTe2 and AgSbTe1.98Se0.02 were prepared and then annealed in various temperature conditions. It was confirmed that Ag1-xSb1+xTe2+x (? phase) is the only thermodynamically stable ternary compound in the Ag2Te-Sb2Te3 pseudobinary system. It was also proved that thermal stability of ? phase is limitedit slowly decomposes below 633 K. In contrast to some reports, it was also indicated that a small amount of Se does not lead to stabilisation of AgSbTe2 crystal structure. Despite slow kinetics of the decomposition processes, thermoelectric properties of the material are notably affected by thermal treatment and amount of Ag2Te precipitations. Maximal ZT value of prepared materials varies from 0.65 at 575 K to 1.07 at 563 K.

  17. Atomic arrangement at ZnTe/CdSe interfaces determined by high resolution scanning transmission electron microscopy and atom probe tomography

    SciTech Connect

    Bonef, Bastien; Rouvière, Jean-Luc; Jouneau, Pierre-Henri; Bellet-Amalric, Edith; Gérard, Lionel; Mariette, Henri; André, Régis; Bougerol, Catherine; Grenier, Adeline

    2015-02-02

    High resolution scanning transmission electron microscopy and atom probe tomography experiments reveal the presence of an intermediate layer at the interface between two binary compounds with no common atom, namely, ZnTe and CdSe for samples grown by Molecular Beam Epitaxy under standard conditions. This thin transition layer, of the order of 1 to 3 atomic planes, contains typically one monolayer of ZnSe. Even if it occurs at each interface, the direct interface, i.e., ZnTe on CdSe, is sharper than the reverse one, where the ZnSe layer is likely surrounded by alloyed layers. On the other hand, a CdTe-like interface was never observed. This interface knowledge is crucial to properly design superlattices for optoelectronic applications and to master band-gap engineering.

  18. Ga-modified As2Se3-Te glasses for active applications in IR photonics

    NASA Astrophysics Data System (ADS)

    Shpotyuk, Ya.; Boussard-Pledel, C.; Nazabal, V.; Chahal, R.; Ari, J.; Pavlyk, B.; Cebulski, J.; Doualan, J. L.; Bureau, B.

    2015-08-01

    Effect of Ga addition on physical properties of glassy As2Se3 alloys within Gax(As0.4Se0.6)100-x system (x = 0-5) is studied for further improvement as rare earth ions matrix hosts. Following conventional synthesis conditions, it has been shown it is possible to introduce up to 3 at.% of Ga into As2Se3 matrix without any crystallization and up to 2 at.% of Ga without any changes in the properties of these alloys. The synthesized Gax(As0.4Se0.6)100-x alloys with 4 and 5 at.% of Ga are partly crystallized by cubic Ga2Se3 crystallites. Tellurium has been introduced in the selected Ga2(As0.4Se0.6)98 glass following the Ga2(As0.4Se0.6)98-yTey cut-section to lower phonon energy and enhance quantum efficiency of the incorporated rare earth ions. The Ga2(As0.4Se0.6)88Te10 glass composition is the richest in Ga and Te, keeping its vitreous state without any crystallization. It has been successfully doped with 500 and 1000 ppmw Pr3+ and drawn into optical fiber possessing low attenuation in mid-IR region. Emission in mid-IR was efficiently recorded by pumping Pr3+: Ga2(As0.4Se0.6)88Te10 glasses at 2 ?m.

  19. A simple route to Bi2Se3 and Bi2Te3 nanocrystals

    NASA Astrophysics Data System (ADS)

    Mntungwa, Nhlakanipho; Rajasekhar, Pullabhotla V. S. R.; Ramasamy, Karthik; Revaprasadu, Neerish

    2014-05-01

    Monodisperse nanocrystals of Bi2Se3 and Bi2Te3 capped with alkylamines have been synthesized via facile solution based method. The method involves reduction of selenium or tellurium using sodium borohydride, followed by thermolysis in an alkylamine at high temperature. Spherical shaped Bi2Se3 nanocrystals were obtained at 190 °C, whereas the reaction at 270 °C, yielded faceted nanocrystals. Similarly, spherical Bi2Te3 nanocrystals were obtained at all temperatures with hexadecylamine and oleylamine capping agents.

  20. Halide-Free Synthesis of Hydrochalcogenide Ionic Liquids of the Type [Cation][HE] (E=S, Se, Te).

    PubMed

    Finger, Lars H; Sundermeyer, Jörg

    2016-03-14

    We present the synthesis and thorough characterization of ionic liquids and organic salts based on hydrochalcogenide HE(-) (E=S, Se, Te) anions. Our approach is based on halide-, metal-, and water-free decarboxylation of methylcarbonate precursors under acidic conditions, resulting from the easily dissociating reagents H2 E. The compounds were characterized by elemental analysis, multinuclear NMR spectroscopy, thermal and single-crystal XRD analyses. The hydrosulfide salts were investigated with respect to their ability to dissolve elemental sulfur in varying stoichiometry. Thus-prepared polysulfide ILs were also analyzed by UV/Vis spectroscopy and cyclic voltammetry. PMID:26879604

  1. Thermal and optical analysis of Te-substituted Sn-Sb-Se chalcogenide semiconductors

    NASA Astrophysics Data System (ADS)

    Chander, Ravi; Thangaraj, R.

    2010-04-01

    Bulk amorphous samples of Te-substituted Sn10Sb20Se70- X Te X (0? X?12) were prepared using a melt quenching technique. Calorimetric studies of the samples were performed using differential scanning calorimetry (DSC) and the glass transition temperature and crystallization temperature were evaluated from DSC scans. The glass transition temperature T g exhibits a sharp decrease for small Te substitution of X=2, thereafter increases with increase in Te content up to X=10, and then decreases for further Te substitution. The apparent activation energy for glass transition and the activation energy for crystallization were calculated using Kissinger, modified Kissinger, and Matusita equations. The change in glass transition temperature T g has been explained based on the bond formation energy of different heteropolar bonds. The optical band gap of thermally evaporated thin films of Sn10Sb20Se70- X Te X (0? X?12) was calculated from reflectance and transmittance data. The optical band gap variation with tellurium content exhibits a sharp decrease for an initial tellurium substitution of X=2 similar to that of the glass transition temperature and thereafter a peak is observed in optical band gap around X=4 composition.

  2. Insights into the Structure of the Stable and Metastable (GeTe)m(Sb2Te3)n Compounds

    SciTech Connect

    Da Silva, J. L. F.; Walsh, A.; Lee, H.

    2008-01-01

    Using first-principles calculations, we identify the mechanisms that lead to the lowest energy structures for the stable and metastable (GeTe){sub m}(Sb{sub 2}Te{sub 3}){sub n} (GST) compounds, namely, strain energy release by the formation of superlattice structures along of the hexagonal [0001] direction and by maximizing the number of Te atoms surrounded by three Ge and three Sb atoms (3Ge-Te-3Sb rule) and Peierls-type bond dimerization. The intrinsic vacancies form ordered planes perpendicular to the stacking direction in both phases, which separate the GST building blocks. The 3Ge-Te-3Sb rule leads to the intermixing of Ge and Sb atoms in the (0001) planes for Ge{sub 3}Sb{sub 2}Te{sub 6} and Ge{sub 2}Sb{sub 2}Te{sub 5}, while only single atomic species in the (0001) planes satisfy this rule for the GeSb{sub 2}Te{sub 4} and GeSb{sub 4}Te{sub 7} compositions. Furthermore, we explain the volume expansion of the metastable phase with respect to the stable phase as a consequence of the different stacking sequence of the Te atoms in the stable and metastable phases, which leads to a smaller Coulomb repulsion in the stable phase. The calculated equilibrium lattice parameters are in excellent agreement with experimental results and differ by less than 1% from the lattice parameters derived from a combination of the GeTe and Sb{sub 2}Te{sub 3} parent compounds.

  3. Intrinsic Josephson Junctions in the Superconducting Compound Fe (Se_{1-x } Tex )y

    NASA Astrophysics Data System (ADS)

    Ionov, Aleksander N.; Melekh, Bernard A.-T.

    2016-01-01

    Transport of Cooper pairs in the direction perpendicular to the layers of an Fe (Se_{0.3 } Te_{0.7})_{0.9} superconductor proceeds through the weak link via the proximity effect. We observed radiation from the chalcogen Fe (Se_{0.3 } Te_{0.7})_{0.9} superconductor in its resistive state.

  4. Diverse lattice dynamics in ternary Cu-Sb-Se compounds

    NASA Astrophysics Data System (ADS)

    Qiu, Wujie; Wu, Lihua; Ke, Xuezhi; Yang, Jihui; Zhang, Wenqing

    2015-09-01

    Searching and designing materials with extremely low lattice thermal conductivity (LTC) has attracted considerable attention in material sciences. Here we systematically demonstrate the diverse lattice dynamics of the ternary Cu-Sb-Se compounds due to the different chemical-bond environments. For Cu3SbSe4 and CuSbSe2, the chemical bond strength is nearly equally distributed in crystalline bulk, and all the atoms are constrained to be around their equilibrium positions. Their thermal transport behaviors are well interpreted by the perturbative phonon-phonon interactions. While for Cu3SbSe3 with obvious chemical-bond hierarchy, one type of atoms is weakly bonded with surrounding atoms, which leads the structure to the part-crystalline state. The part-crystalline state makes a great contribution to the reduction of thermal conductivity that can only be effectively described by including a rattling-like scattering process in addition to the perturbative method. Current results may inspire new approaches to designing materials with low lattice thermal conductivities for high-performance thermoelectric conversion and thermal barrier coatings.

  5. Diverse lattice dynamics in ternary Cu-Sb-Se compounds

    PubMed Central

    Qiu, Wujie; Wu, Lihua; Ke, Xuezhi; Yang, Jihui; Zhang, Wenqing

    2015-01-01

    Searching and designing materials with extremely low lattice thermal conductivity (LTC) has attracted considerable attention in material sciences. Here we systematically demonstrate the diverse lattice dynamics of the ternary Cu-Sb-Se compounds due to the different chemical-bond environments. For Cu3SbSe4 and CuSbSe2, the chemical bond strength is nearly equally distributed in crystalline bulk, and all the atoms are constrained to be around their equilibrium positions. Their thermal transport behaviors are well interpreted by the perturbative phonon-phonon interactions. While for Cu3SbSe3 with obvious chemical-bond hierarchy, one type of atoms is weakly bonded with surrounding atoms, which leads the structure to the part-crystalline state. The part-crystalline state makes a great contribution to the reduction of thermal conductivity that can only be effectively described by including a rattling-like scattering process in addition to the perturbative method. Current results may inspire new approaches to designing materials with low lattice thermal conductivities for high-performance thermoelectric conversion and thermal barrier coatings. PMID:26328765

  6. Diverse lattice dynamics in ternary Cu-Sb-Se compounds.

    PubMed

    Qiu, Wujie; Wu, Lihua; Ke, Xuezhi; Yang, Jihui; Zhang, Wenqing

    2015-01-01

    Searching and designing materials with extremely low lattice thermal conductivity (LTC) has attracted considerable attention in material sciences. Here we systematically demonstrate the diverse lattice dynamics of the ternary Cu-Sb-Se compounds due to the different chemical-bond environments. For Cu3SbSe4 and CuSbSe2, the chemical bond strength is nearly equally distributed in crystalline bulk, and all the atoms are constrained to be around their equilibrium positions. Their thermal transport behaviors are well interpreted by the perturbative phonon-phonon interactions. While for Cu3SbSe3 with obvious chemical-bond hierarchy, one type of atoms is weakly bonded with surrounding atoms, which leads the structure to the part-crystalline state. The part-crystalline state makes a great contribution to the reduction of thermal conductivity that can only be effectively described by including a rattling-like scattering process in addition to the perturbative method. Current results may inspire new approaches to designing materials with low lattice thermal conductivities for high-performance thermoelectric conversion and thermal barrier coatings. PMID:26328765

  7. Thermoelectric transport properties of pristine and Na-doped SnSe(1-x)Te(x) polycrystals.

    PubMed

    Wei, Tian-Ran; Wu, Chao-Feng; Zhang, Xiaozhi; Tan, Qing; Sun, Li; Pan, Yu; Li, Jing-Feng

    2015-11-28

    SnSe, a "simple" and "old" binary compound composed of earth-abundant elements, has been reported to exhibit a high thermoelectric performance in single crystals, which stimulated recent interest in its polycrystalline counterparts. This work investigated the electrical and thermal transport properties of pristine and Na-doped SnSe1-xTex polycrystals prepared by mechanical alloying and spark plasma sintering. It is revealed that SnSe1-xTex solid solutions are formed when x ranges from 0 to 0.2. An energy barrier scattering mechanism is suitable for understanding the electrical conducting behaviour observed in the present SnSe polycrystalline materials, which may be associated with abundant defects at grain boundaries. The thermal conductivity was greatly reduced upon Te substitution due to alloy scattering of phonons as well explained by the Debye model. Due to the increased carrier concentration by Na-doping, thermoelectric figure of merit (ZT) was enhanced in the whole temperature range with a maximum value of 0.72 obtained at a relatively low temperature (773 K) for Sn0.99Na0.01Se0.84Te0.16. PMID:26496971

  8. Predicted thermoelectric properties of olivine-type Fe2GeCh4 (Ch??=??S, Se and Te).

    PubMed

    Gudelli, Vijay Kumar; Kanchana, V; Vaitheeswaran, G

    2016-01-20

    We present here the thermoelectric properties of olivine-type Fe2GeCh4 (Ch??=??S, Se and Te) using the linear augmented plane wave method based on first principles density functional calculations. The calculated transport properties using the semi-local Boltzmann transport equation reveal very high thermopower for both S and Se-based compounds compared to their Te counterparts. The main reason for this high thermopower is the quasi-flat nature of the bands at the valence and conduction band edges. The calculated thermopower of Fe2GeS4 is in good agreement with the experimental reports at room temperature, with the carrier concentration around 10(18)-10(19)cm(-3). All the investigated systems show an anisotropic nature in their electrical conductivity, resulting in a value less than the order of 10(2) along the a-axis compared to the b- and c-axes. Among the studied compounds, Fe2GeS4 and Fe2GeSe4 emerge as promising candidates with good thermoelectric performance. PMID:26683059

  9. PAL spectroscopy of rare-earth doped Ga-Ge-Te/Se glasses

    NASA Astrophysics Data System (ADS)

    Shpotyuk, Ya.; Ingram, A.; Shpotyuk, O.

    2016-04-01

    Positron annihilation lifetime (PAL) spectroscopy was applied for the first time to study free-volume void evolution in chalcogenide glasses of Ga-Ge-Te/Se cut-section exemplified by glassy Ga10Ge15Te75 and Ga10Ge15Te72Se3 doped with 500 ppm of Tb3+ or Pr3+. The collected PAL spectra reconstructed within two-state trapping model reveal decaying tendency in positron trapping efficiency in these glasses under rare-earth doping. This effect results in unchanged or slightly increased defect-related lifetimes τ2 at the cost of more strong decrease in I2 intensities, as well as reduced positron trapping rate in defects and fraction of trapped positrons. Observed changes are ascribed to rare-earth activated elimination of intrinsic free volumes associated mainly with negatively-charged states of chalcogen atoms especially those neighboring with Ga-based polyhedrons.

  10. Thermoelectric properties of indium doped PbTe{sub 1-y}Se{sub y} alloys

    SciTech Connect

    Bali, Ashoka; Mallik, Ramesh Chandra; Wang, Heng; Snyder, G. Jeffrey

    2014-07-21

    Lead telluride and its alloys are well known for their thermoelectric applications. Here, a systematic study of PbTe{sub 1-y}Se{sub y} alloys doped with indium has been done. The powder X-Ray diffraction combined with Rietveld analysis confirmed the polycrystalline single phase nature of the samples, while microstructural analysis with scanning electron microscope results showed densification of samples and presence of micrometer sized particles. The temperature dependent transport properties showed that in these alloys, indium neither pinned the Fermi level as it does in PbTe, nor acted as a resonant dopant as in SnTe. At high temperatures, bipolar effect was observed which restricted the zT to 0.66 at 800 K for the sample with 30% Se content.

  11. Tuning of thermoelectric properties with changing Se content in Sb2Te3

    NASA Astrophysics Data System (ADS)

    Das, D.; Malik, K.; Deb, A. K.; Kulbachinskii, V. A.; Kytin, V. G.; Chatterjee, S.; Das, D.; Dhara, S.; Bandyopadhyay, S.; Banerjee, A.

    2016-02-01

    Polycrystalline Sb2Te3‑x Se x (0.0≤ x≤1.0) samples were synthesized by the solid-state reaction method. The structural analysis showed that up to the maximal concentration of Se, the samples possess rhombohedral crystal symmetry (space group R\\bar{3}m ). The increase of Se content increases the resistivity of the samples. The variation of phonon frequencies, observed from the Raman spectroscopic study, depicts an anomalous behaviour around x=0.2 . The sample Sb2Te2.8Se0.2 also shows maximum Seebeck coefficient, carrier concentration and thermoelectric power factor. The nature of the scattering mechanism controlling the thermopower data has been explored. The thermoelectric properties of the synthesized materials have been analyzed theoretically in the frame of the Boltzmann equation approach.

  12. Topological nature of the FeSe0.5Te0.5 superconductor

    NASA Astrophysics Data System (ADS)

    Wang, Zhijun; Zhang, P.; Xu, Gang; Zeng, L. K.; Miao, H.; Xu, Xiaoyan; Qian, T.; Weng, Hongming; Richard, P.; Fedorov, A. V.; Ding, H.; Dai, Xi; Fang, Zhong

    2015-09-01

    We demonstrate, using first-principles calculations, that the electronic structure of FeSe1 -xTex(x =0.5 ) is topologically nontrivial and characterized by an odd Z2 invariant and Dirac cone type surface states, in sharp contrast to the end member FeSe (x =0 ) . This topological state is induced by the enhanced three-dimensionality and spin-orbit coupling due to Te substitution (compared to FeSe), and characterized by a band inversion at the Z point of the Brillouin zone, which is confirmed by our ARPES measurements. The results suggest that the surface of FeSe0.5Te0.5 may support a nontrivial superconducting channel in proximity to the bulk.

  13. Atomistic simulations of the optical absorption of type-II CdSe/ZnTe superlattices

    PubMed Central

    2012-01-01

    We perform accurate tight binding simulations to design type-II short-period CdSe/ZnTe superlattices suited for photovoltaic applications. Absorption calculations demonstrate a very good agreement with optical results with threshold strongly depending on the chemical species near interfaces. PMID:23031315

  14. Low-temperature photoluminescence analysis of CdTeSe crystals for radiation-detector applications

    SciTech Connect

    YANG G.; Roy, U. N.; Bolotnikov, A. E.; Cui, Y.; Camarda, G.S.; Hossain, A.; and James, R. B.

    2015-10-05

    Goal: Understanding the changes of material defects in CdTeSe following annealing. Experimental results and discussions: Infrared (IR) transmission microscopy; current-voltage measurements (Highlight: Improvement of resistivity of un-doped crystals after annealing); low-temperature photoluminescence (PL) spectrum of as-grown and annealed samples.

  15. Spray Deposition of High Quality CuInSe2 and CdTe Films: Preprint

    SciTech Connect

    Curtis, C. J.; van Hest, M.; Miedaner, A.; Leisch, J.; Hersh, P.; Nekuda, J.; Ginley, D. S.

    2008-05-01

    A number of different ink and deposition approaches have been used for the deposition of CuInSe2 (CIS), Cu(In,Ga)Se2 (CIGS), and CdTe films. For CIS and CIGS, soluble precursors containing Cu, In, and Ga have been developed and used in two ways to produce CIS films. In the first, In-containing precursor films were sprayed on Mo-coated glass substrates and converted by rapid thermal processing (RTP) to In2Se3. Then a Cu-containing film was sprayed down on top of the In2Se3 and the stacked films were again thermally processed to give CIS. In the second approach, the Cu-, In-, and Ga-containing inks were combined in the proper ratio to produce a mixed Cu-In-Ga ink that was sprayed on substrates and thermally processed to give CIGS films directly. For CdTe deposition, ink consisting of CdTe nanoparticles dispersed in methanol was prepared and used to spray precursor films. Annealing these precursor films in the presence of CdCl2 produced large-grained CdTe films. The films were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Optimized spray and processing conditions are crucial to obtain dense, crystalline films.

  16. Evolution of the surface state in Bi2Se2Te thin films during phase transition

    NASA Astrophysics Data System (ADS)

    Choi, Hyejin; Kim, Tae Hyeon; Chae, Jimin; Baeck, Juheyuck; Kee, Chul-Sik; Jeong, Kwang-Ho; Jeong, Hong-Sik; Kang, Chul; Cho, Mann-Ho

    2015-09-01

    Topological insulators, a new quantum state of matter, have created exciting opportunities for studies in topological quantum physics and for exploring spintronics applications due to their gapless helical metallic surface states. In this study, thin films composed of alternate layers of Bi and Se (Te) ({Bi(3 )Te(9 )}n/{Bi(3 )Se(9 )}n) were fabricated by controlling the layer thickness within the atomic scale using thermal evaporation techniques. The high-purity growth of uniform Bi2Se2Te1 thin films has not yet been achieved using a thermal evaporation method. However, as a result of a self-ordering process during annealing, an as-grown amorphous film with p-type polarity could transform into single crystalline Bi2Se2Te1 with n-type polarity. Using THz-time domain spectroscopy (THz-TDS) and ultraviolet photoemission spectroscopy (UPS), we concluded that the conductivity is dominated by the Drude contribution, suggesting the presence of a quantum well state and surface states. Moreover we demonstrated that the emission of terahertz waves from the (001) surface of the single crystalline Bi2Se2Te1 thin film would be possible under the excitation of 790 nm femtosecond optical pulses, indicating the presence of a Dirac-fermion, a photo-Dember effect at the surface state and the transient current within the surface depletion region. The results reported herein provide useful information regarding a valuable deposition method that can be useful in studies of the evolution of surface state electrons in topological insulators.Topological insulators, a new quantum state of matter, have created exciting opportunities for studies in topological quantum physics and for exploring spintronics applications due to their gapless helical metallic surface states. In this study, thin films composed of alternate layers of Bi and Se (Te) ({Bi(3 )Te(9 )}n/{Bi(3 )Se(9 )}n) were fabricated by controlling the layer thickness within the atomic scale using thermal evaporation techniques. The high-purity growth of uniform Bi2Se2Te1 thin films has not yet been achieved using a thermal evaporation method. However, as a result of a self-ordering process during annealing, an as-grown amorphous film with p-type polarity could transform into single crystalline Bi2Se2Te1 with n-type polarity. Using THz-time domain spectroscopy (THz-TDS) and ultraviolet photoemission spectroscopy (UPS), we concluded that the conductivity is dominated by the Drude contribution, suggesting the presence of a quantum well state and surface states. Moreover we demonstrated that the emission of terahertz waves from the (001) surface of the single crystalline Bi2Se2Te1 thin film would be possible under the excitation of 790 nm femtosecond optical pulses, indicating the presence of a Dirac-fermion, a photo-Dember effect at the surface state and the transient current within the surface depletion region. The results reported herein provide useful information regarding a valuable deposition method that can be useful in studies of the evolution of surface state electrons in topological insulators. Electronic supplementary information (ESI) available: RBS results as a function of annealing temperature of {(Bi(3 )Te(9 )}n/{(Bi(3 )Se(9 )}n layered film series. HR-TEM images and EDX results of the as-grown, 150 C, 200 C and 250 C annealed thin films. XRD patterns of the {(Bi(3 )Te(9 )n/{(Bi(3 )Se(9 )n layered film and SEM images as a function of annealing temperature in {(Bi(3 )Te(9 )}n/{(Bi(3 )Se(9 )}n layered film series. Schematic of Bi2Te3 and Bi2Se2Te phonon mode. Vegard's law as a function of annealing temperature of {(Bi(3 )Te(9 )}n/{(Bi(3 )Se(9 )}n films in (006) and (0015) diffraction peaks of thin film series. Hall measurement results as a function of annealing temperature. XRR fitting data for each sample in the as-grown and crystal phases. See DOI: 10.1039/c5nr04354a

  17. Thermoelectric properties of Nb3SbxTe7-x compounds

    NASA Technical Reports Server (NTRS)

    Snyder, J.; Wang, S.; Caillat, T.

    2002-01-01

    Niobium antimony telluride, Nb3Sbx,Te7-x, was synthesized and tested for thermoelectric properties in the Thermoelectrics group at the Jet Propulsion Laboratory. The forty atoms per unit cell of Nb3Sb2Te5 and its varied mixture of atoms yield acomplicated structure, suggesting that Nb3Sb2Te5 and related compounds may exhibit low thermal conductivity and hence a higher ZT value. Nb3SbxTe7-x, compounds were synthesized and subsequently analyzed for their Seebeck voltage, heat conduction, and electrical resistivity. Results indicate that Nb3Sb2Te5 is a heavily doped semiconductor whose thermoelectric properties are compromised by compensating n-type and p-type carriers. Attempts to dope in favor of either carrier by varying the Sb:Te ratio yielded samples containing secondary metallic phases that dominated the transport properties of the resulting compounds.

  18. Time-resolved temperature measurements during laser-induced synthesis of Cu-Te compounds

    NASA Astrophysics Data System (ADS)

    Hanus, F.; Wautelet, M.

    1989-12-01

    Synthesis of thin films of CuxTey compounds on glass is performed under CW Ar+ laser irradiation. The variation of temperature with time is measured by an interferometric method. Experiments tell us that: (1) reactions start at the centrum of the laser spot on the sample; (2) at fixed position, the composition of the compounds begins with CuTe, followed by Cu7Te5 and Cu2Te; (3) the different compounds begin to form at a fixed threshold temperature, independent of the laser beam power (CuTe: 115C, Cu7Te5: 250C; Cu2Te: 275C); (4) in this regime, reactions take place in the solid phase.

  19. Evolution of the surface state in Bi2Se2Te thin films during phase transition.

    PubMed

    Choi, Hyejin; Kim, Tae Hyeon; Chae, Jimin; Baeck, Juheyuck; Kee, Chul-Sik; Jeong, Kwang-Ho; Jeong, Hong-Sik; Kang, Chul; Cho, Mann-Ho

    2015-09-28

    Topological insulators, a new quantum state of matter, have created exciting opportunities for studies in topological quantum physics and for exploring spintronics applications due to their gapless helical metallic surface states. In this study, thin films composed of alternate layers of Bi and Se (Te) ({Bi(3 Å)Te(9 Å)}n/{Bi(3 Å)Se(9 Å)}n) were fabricated by controlling the layer thickness within the atomic scale using thermal evaporation techniques. The high-purity growth of uniform Bi2Se2Te1 thin films has not yet been achieved using a thermal evaporation method. However, as a result of a self-ordering process during annealing, an as-grown amorphous film with p-type polarity could transform into single crystalline Bi2Se2Te1 with n-type polarity. Using THz-time domain spectroscopy (THz-TDS) and ultraviolet photoemission spectroscopy (UPS), we concluded that the conductivity is dominated by the Drude contribution, suggesting the presence of a quantum well state and surface states. Moreover we demonstrated that the emission of terahertz waves from the (001) surface of the single crystalline Bi2Se2Te1 thin film would be possible under the excitation of 790 nm femtosecond optical pulses, indicating the presence of a Dirac-fermion, a photo-Dember effect at the surface state and the transient current within the surface depletion region. The results reported herein provide useful information regarding a valuable deposition method that can be useful in studies of the evolution of surface state electrons in topological insulators. PMID:26300223

  20. Synthesis, Calorimetric and X ray diffraction studies in the solid solution Tl2(SO4)1-X(SeO4)X.Te(OH)6 0?X?1

    NASA Astrophysics Data System (ADS)

    Ktari, L.; Dammak, M.; Mhiri, T.; Kolsi, A. W.

    2009-11-01

    The crystal structures of the thallium tellurate solid solutions Tl2(SO4)1-x(SeO4)x.Te(OH)6 were determined by X-ray diffraction method. The Tl2SeO4.Te(OH)6 (TlSeTe) and Tl2(SO4)0.6(SeO4)0.4.Te(OH)6 (TlSSeTe) compounds crystallize in the monoclinic system with P21/c space group. Whereas the Tl2SO4.Te(OH)6 (TlSTe) compound crystallizes in the P21/a one. The following parameters of TlSeTe structure are: a=12.358(3); b=7.231(1); c=11.986(2); ?=111.092(2)?; Z=4. The TlSeTe structure can be regarded as being built of isolated TeO6 octahedra and SeO4 tetrahedra. The Tl+ cations are intercalated between these kinds of polyhedra. The main feature of this structure is the coexistence of two different and independent anions (SeO42- and TeO66-) in the same unit cell. The structure is stable thanks to O-HO hydrogen bonds which link tetrahedral and octahedral groups. Crystals of Tl2SeO4.Te(OH)6 undergo two endothermal peaks at 373 K and 437 K. These transitions detected by DSC and analysed by dielectric measurements. However, the evolution of the conductivity versus temperature showed the presence of a protonic conduction phase transition at 437 K. The phase transition at 373 K can be related to structural phase transition.

  1. Electrical characterization of vacuum-deposited p-CdTe/n-ZnSe heterojunctions

    NASA Astrophysics Data System (ADS)

    Acharya, Shashidhara; Bangera, Kasturi V.; Shivakumar, G. K.

    2015-11-01

    In this paper, we report a heterojunction of p-CdTe/n-ZnSe fabricated on a quartz substrate using thermal evaporation technique. The materials have a larger band gap difference in comparison to other II-VI heterojunctions-involving CdTe. The larger band gap difference is expected to increase diffusion potential and photovoltaic conversion efficiency. The electrical conduction mechanism involved, barrier height and band offset at the interface that are crucial to determine device performance are evaluated using electrical characterization of heterojunction. The junction exhibited excellent rectification behavior with an estimated barrier height of 0.9 eV.

  2. Temperature dependent radiative and non-radiative recombination dynamics in CdSe-CdTe and CdTe-CdSe type II hetero nanoplatelets.

    PubMed

    Scott, Riccardo; Kickhfel, Sebastian; Schoeps, Oliver; Antanovich, Artsiom; Prudnikau, Anatol; Chuvilin, Andrey; Woggon, Ulrike; Artemyev, Mikhail; Achtstein, Alexander W

    2016-01-20

    We investigate the temperature-dependent decay kinetics of type II CdSe-CdTe and CdTe-CdSe core-lateral shell nanoplatelets. From a kinetic analysis of the photoluminescence (PL) decay and a measurement of the temperature dependent quantum yield we deduce the temperature dependence of the non-radiative and radiative lifetimes of hetero nanoplates. In line with the predictions of the giant oscillator strength effect in 2D we observe a strong increase of the radiative lifetime with temperature. This is attributed to an increase of the homogeneous transition linewidth with temperature. Comparing core only and hetero platelets we observe a significant prolongation of the radiative lifetime in type II platelets by two orders in magnitude while the quantum yield is barely affected. In a careful analysis of the PL decay transients we compare different recombination models, including electron hole pairs and exciton decay, being relevant for the applicability of those structures in photonic applications like solar cells or lasers. We conclude that the observed biexponential PL decay behavior in hetero platelets is predominately due to spatially indirect excitons being present at the hetero junction and not ionized e-h pair recombination. PMID:26743562

  3. First-principles calculations of properties for chalcogen (S, Se, Te) doped silicon

    NASA Astrophysics Data System (ADS)

    Du, Lingyan; Wu, Zhiming; Li, Shibin; Hu, Zheng; Jiang, Yadong

    2016-01-01

    In this paper, density-functional theory based methods are utilized to systematically investigate the properties of chalcogens (S, Se, Te) doped silicon at different doping concentration. The calculated crystal structures indicate that Se-implanted Si at concentration of 1.56% show minimum lattice distortion and formation energy. Intermediate band caused by introduction of chalcogen impurities is beneficial to strong optical absorption in the infrared range. The calculations carried out demonstrate that energy band structure and optical absorption coefficient are all associated with the doping concentration. The bandwidth of intermediate band and forbidden energy gap are broadened due to the increase of impurities concentration. The dependence of optical absorption on doping concentration is confirmed by the calculations. The results reveal that S/Se/Te-doped silicon at concentration on the order of 1.04% is probably suitable candidate for intermediate band materials.

  4. Growth and Optical Spectroscopy of Type-II ZnTe/ZnSe Nanostructures.

    NASA Astrophysics Data System (ADS)

    Berry, J.; Ray, O.; Smorchkova, I. P.; Samarth, N.; Gupta, J. A.; Awschalom, D. D.

    1998-03-01

    The recent observation of zero-dimensional (0D) states in self-assembled CdSe quantum dots (F. S. Flack et al., Phys. Rev. B 54, R17312 (1996)) has prompted us to explore the possibility of forming 0D states during the strained layer epitaxy of ZnTe on ZnSe. While the lattice-mismatch here is identical to that in CdSe/ZnSe, a type-II band alignment is expected, with exciton localization being driven by the efficient confinement of heavy holes within the ZnTe regions. The growth dynamics of ZnTe on (100) ZnSe are studied using in-situ electron diffraction, revealing a distinct transition from 2D to 3D growth with a temperature dependent critical thickness in the range 1-2 monolayers. Far-field photoluminescence (PL) studies at cryogenic temperatures exhibit a systematic evolution of the PL signal to longer wavelengths when the 2D-3D transition occurs. The surface morphology of uncapped samples is examined using atomic force microscopy, while signatures of 0D states in the PL spectrum are sought using spatially-resolved spectroscopic techniques.

  5. Magneto-optical studies of (Zn,Mn)Se/ZnTe quantum dots

    NASA Astrophysics Data System (ADS)

    Barman, B.; Tsai, Y.; Scrace, T.; Zutic, I.; McCombe, B. D.; Petrou, A.; Chou, W. C.; Tsou, M. H.; Yang, C. S.; Sellers, I. R.; Oszwaldowski, R.; Petukhov, A. G.

    2014-03-01

    We have recorded the circular polarization P of photoluminescence from (Zn,Mn)Se/ZnTe quantum dots (QDs) as function of magnetic field B. The polarization at a fixed temperature increases monotonically with B and saturates for B >3 tesla at Psat. The value of Psat depends strongly on the laser photon energy. When we excite above (below) the ZnMnSe gap with photons of energy of 3.81 eV (2.54 eV), we measure Psat = 55 %(Psat = 20 %) . We interpret these results as due to the difference in the Zeeman band splitting between the magnetic (Zn,Mn)Se matrix and the non-magnetic ZnTe QDs. For 3.81 eV excitation, electron-hole pairs are generated mainly in the (Zn,Mn)Se matrix. The majority of the holes relax to the +3/2 state before capture by the ZnTe QDs. With 2.54 eV excitation, all electron-hole pairs are excited in the QDs where the Zeeman splitting is negligible. Thus, Psat is determined in this case by the relatively small Zeeman splitting of ZnMnSe conduction band. We relate these findings to our previous results for magnetic type-II QDs, where Psat does not depend on the exciting photon energy. The work at SUNY Buffalo is supported by NSF, DOE-BES, and ONR.

  6. Thermoelectric properties of Bi2Te3-Bi2Se3 solid solutions prepared by attrition milling and hot pressing

    NASA Astrophysics Data System (ADS)

    Lee, Go-Eun; Kim, Il-Ho; Choi, Soon-Mok; Lim, Young Soo; Seo, Won-Seon; Park, Jae-Soung; Yang, Seung-Ho

    2014-12-01

    Bi2Te3- y Se y ( y = 0.15-0.6) solid solutions were prepared by attrition milling and hot pressing. The lattice constants decreased with increasing Se content, indicating that the Se atoms were successfully substituted into the Te sites. All specimens exhibited n-type conduction, and their electrical resistivities increased slightly with increasing temperature. With increasing Se content, the Seebeck coefficients increased while the thermal conductivity decreased due to the increase in phonon scattering. The maximum figure of merit obtained was 0.63 at 440 K for the undoped Bi2Te2.4Se0.6 solid solution.

  7. Ce2AgYb5/3Se6, La2CuErTe5, and Ce2CuTmTe5: Three new quaternary interlanthanide chalcogenides

    NASA Astrophysics Data System (ADS)

    Babo, Jean-Marie; Albrecht-Schmitt, Thomas E.

    2013-01-01

    Three new ordered quaternary interlanthanide chalcogenides, Ce2AgYb5/3Se6, La2CuErTe5, and Ce2CuTmTe5, have been prepared by direct reaction of the elements in molten NaBr at 900 C. Each compound forms a new structure-type. The Ce2AgYb5/3Se6 structure consists of ?2{[} layers intercalated by Ce3+ cations. These layers are composed of ?1{[} quadruplet ribbons of [YbSe6]9- octahedra and infinite ?1{[} double chains of [AgSe5]9-. The La2CuErTe5 structure is made of one-dimensional ?1{[} ribbons separated by La3+ cations. These ribbons are formed by cis-edge sharing ?1{[} tetrahedral chains and trans-edge sharing ?1{[} chains. While La2CuErTe5 crystallizes in the orthorhombic space group Pnma, Ce2CuTmTe5 crystallizes in the monoclinic space group C2/m. The latter crystal structure is assembled from ?2{[} layers intercalated by Ce3+ cations. These layers consist of single ?1{[} chains connected to each other through dimers or pseudo-double chains.

  8. Photoluminescence of ZnSe{sub x}Te{sub 1-x}/ZnTe multiple-quantum-well structures grown by molecular-beam epitaxy

    SciTech Connect

    Shih, Y.T.; Tsai, Y.L.; Yuan, C.T.; Chen, C.Y.; Yang, C.S.; Chou, W.C.

    2004-12-15

    This work investigates photoluminescence (PL) spectra from ZnSe{sub x}Te{sub 1-x}/ZnTe multiple-quantum-well structures grown on GaAs(001) substrates by molecular-beam epitaxy. The PL data reveal that the band alignment of the ZnSe{sub x}Te{sub 1-x}/ZnTe system is type II. The thermal activation energy for quenching the PL intensity was determined from the temperature-dependent PL spectra. The activation energy was found to increase initially and then decrease as the thickness of the ZnSe{sub x}Te{sub 1-x} layers decreases from 7 to 3 nm. The temperature-dependent broadening of the PL linewidth was also investigated. The LO-phonon scattering was found to be the dominant broadening mechanism.

  9. Low Field Microwave Absorption in thin films of FeSe and FeTeSe deposited by PLD

    NASA Astrophysics Data System (ADS)

    Yuen, Jonathan; Howard, Austin; Chen, Li; Wang, Haiyan; Salamon, Myron; Zakhidov, Anvar

    2013-03-01

    Our motivation is to study the 2D superconductivity of Fe-based materials deposited on different substrates - glass, STO and CNT. Pulsed laser deposition of FeSe and FeSe0.5Te0.5 films was performed. Deposition conditions including laser fluences, frequency, temperature and back pressure were optimized for different substrates. When anisotropic superconductors are confined to lower dimensions, interesting effects have been observed. Enhanced superconductivity might occur from interfacial effects, and it has been claimed that an atomic layer of FeSe may exhibit higher Tc at STO interface. LFMA (microwave absorption at low magnetic fields) is a highly sensitive tool for searching for possible higher Tc phases in FeSe based films, especially when combined with ESR, SQUID magnetometry and resistivity measurements. LFMA uses an external magnetic field to create Josephson Junction vortices, which are non-resonantly excited by MW radiation. Such vortices have strong angle dependence in 2D systems and can be used to carefully probe and understand confinement effects. The LFMA spectrum exhibits two distinct features in different temperatures: a hysteretic LFMA below 8K and non-hysteretic narrow LFMA at higher T. Angle dependences of the LFMA signals are analyzed and the origin of the higher Tc LFMA signals will be discussed.

  10. Competition between applied and exchange magnetic fields in (Zn,Mn)Se/ZnTe quantum dots

    NASA Astrophysics Data System (ADS)

    Barman, Biplob; Tsai, Y.; Scrace, T.; Zutic, I.; McCombe, B. D.; Petrou, A.; Chou, W.-C.; Tsou, M.-H.; Yang, C.-S.; Sellers, I. R.; Oszwaldowski, R.; SUNY Buffalo Collaboration; National Chiao Tung University, Taiwan Collaboration; Graduate Institute of Electro-Optical Engineering, Tatung University, Taiwan Collaboration; University of Oklahoma Collaboration; South Dakota School of Mines; Technology Collaboration

    2015-03-01

    We have measured the peak energy of the photoluminescence (PL) emission and its circular polarization from type II (Zn,Mn)Se/ZnTe Quantum Dot structures in the Faraday and Voigt geometries. In the Faraday geometry the PL energy shows a 6 meV red shift at B =6 tesla. This result verifies that the holes are confined in the non-magnetic ZnTe QDs, while the electrons move in the magnetic (Zn,Mn)Se matrix. The PL circular polarization saturates at 45%. In the Voigt geometry, the circular polarization is near-zero and the red shift is 2 meV. These results are discussed using a model that takes into account that electrons are influenced by the combination of the externally applied magnetic field and the exchange field due to the interaction between the Mn-spins and the carriers. This work is supported by DOE-BES and NSF-DMR.

  11. Modified magnetism within the coherence volume of superconducting FeSeTe

    SciTech Connect

    Leiner, Jonathan C; Thampy, Vivek; Christianson, Andrew D; Abernathy, D.; Stone, Matthew B; Lumsden, Mark D; Sales, Brian C; Safa-Sefat, Athena; Hu, Jin; Mao, Zhiqiang; Bao, Wei; Broholm, Collin L

    2014-01-01

    Neutron Scattering is used to probe magnetic interactions as superconductivity develops in opti- mally doped Fe_(1+ )Se_xTe_(1 x). Applying the first moment sum-rule to comprehensive neutron scatter- ing data, we extract the change in magnetic exchange energy [J_(R-R ) S_R S_R ] in the superconducting state referenced to the normal state. Oscillatory changes are observed for Fe-Fe displacements | R| < , where = 1.3(1) nm is the superconducting coherence length. Dominated by a large reduction in the second nearest neighbor exchange energy (-1.2(2) meV/Fe), the overall reduction in magnetic interaction energy is Hmag = 0.31(9) meV/Fe. Comparison to the superconducting condensation energy E_sc = 0.013(1) meV/Fe, which we extract from specific heat data, suggests the modified magnetism we probe drives superconductivity in Fe_(1+ )Se_xTe_(1 x)

  12. Phonons in Bi2Te3 and Bi2Se3 Thin Films

    NASA Astrophysics Data System (ADS)

    Ren, Shang-Fen; Cheng, Wei

    2011-03-01

    Bi2Te3 and Bi2Se3 are topological insulators attracted great research attention in recent years. In this research, some of calculated results on phonons in Bi2Te3 and Bi2Se3 bulk and single quintuple thin films are presented. The effects of spin-orbit couplings on phonon properties in these materials are discussed. Some features of Raman observations of these materials are explained. Acknowledgement: (1) Subcontract of Dr. Y. Cui's KAUST Investigator Award (No. KUS-l1-001-12). (2) Prof. D. S. Wang at Institute of Physics (CAS), his grant (NSFC-10634070), and Supercomputing Center of CAS in Beijing. (3) WC's visit to LBNL.

  13. Vapour-liquid-solid growth of ternary Bi2Se2Te nanowires

    PubMed Central

    2014-01-01

    High-density growth of single-crystalline Bi2Se2Te nanowires was achieved via the vapour-liquid-solid process. The stoichiometry of samples grown at various substrate temperatures is precisely determined based on energy-dispersive X-ray spectroscopy, X-ray diffraction, and Raman spectroscopy on individual nanowires. We discuss the growth mechanism and present insights into the catalyst-precursor interaction. PMID:24641967

  14. [Cs6 Cl][Fe24 Se26 ]: A Host-Guest Compound with Unique Fe-Se Topology.

    PubMed

    Valldor, Martin; Böhme, Bodo; Prots, Yurii; Borrmann, Horst; Adler, Peter; Schnelle, Walter; Watier, Yves; Kuo, Chang Yang; Pi, Tun-Wen; Hu, Zhiwei; Felser, Claudia; Tjeng, Liu Hao

    2016-03-18

    The novel host-guest compound [Cs6 Cl][Fe24 Se26 ] (I4/mmm; a=11.0991(9), c=22.143(2) Å) was obtained by reacting Cs2 Se, CsCl, Fe, and Se in closed ampoules. This is the first member of a family of compounds with unique Fe-Se topology, which consists of edge-sharing, extended fused cubane [Fe8 Se6 Se8/3 ] blocks that host a guest complex ion, [Cs6 Cl](5+) . Thus Fe is tetrahedrally coordinated and divalent with strong exchange couplings, which results in an ordered antiferromagnetic state below TN =221 K. At low temperatures, a distribution of hyperfine fields in the Mössbauer spectra suggests a structural distortion or a complex spin structure. With its strong Fe-Se covalency, the compound is close to electronic itinerancy and is, therefore, prone to exhibit tunable properties. PMID:26879367

  15. Magnetic polarons in type-II (Zn,Mn)Se/ZnTe quantum dots

    NASA Astrophysics Data System (ADS)

    Murphy, J. R.; Barman, B.; Tsai, Y.; Scrace, T.; Pientka, J. M.; Zutic, I.; McCombe, B. D.; Petrou, A.; Cartwright, A. N.; Chou, W. C.; Tsou, M. H.; Yang, C. S.; Sellers, I. R.; Oszwaldowski, R.; Petukhov, A. G.

    2014-03-01

    We have studied magnetic polaron formation dynamics in (Zn,Mn)Se/ZnTe quantum dots2 (QDs) using time-resolved photoluminescence (TRPL) spectroscopy. The emitted light was spectrally and temporally analyzed; the emission spectra were recorded as function of time delay (?t) from the exciting laser pulse. The recombination time at T = 10 K in our samples is 2.3 ns. The peak energy of the emission red shifts with increasing ?t due to the lowering of the hole-Mn spin complex (magnetic polaron) energy. From this shift we determined the magnetic polaron formation energy (EMP) at T = 10 K to be 20 meV, which is half the value observed in the ZnSe/(Zn,Mn)Te system studied previously.3EMP decreases with increasing temperature, in contrast to the behavior of the ZnSe/(Zn,Mn)Te system3 in which EMP is temperature independent. These results are discussed in terms of a theoretical model. This work is supported by DOE-BES, ONR and NSF.

  16. Preparation and Thermoelectric Properties of n-Type Bi2Te2.7Se0.3:D m

    NASA Astrophysics Data System (ADS)

    Lee, Go-Eun; Eum, A.-Young; Song, Kwon-Min; Kim, Il-Ho; Lim, Young Soo; Seo, Won-Seon; Choi, Byeong-Jun; Hwang, Chang-Won

    2015-06-01

    Bismuth chalcogenides such as p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 are excellent thermoelectric materials near room temperature. They can form homogeneous solid solutions because Bi2Te3, Sb2Te3, and Bi2Se3 have the same class of crystal symmetry. The thermoelectric figure of merit can be improved by increasing the power factor through doping and/or by reducing the thermal conductivity by forming a solid solution. In this study, n-type Bi2Te2.7Se0.3:D m (D: dopant such as I, Cu, Ag) solid solutions were prepared by encapsulated melting and hot pressing. The undoped solid solution had a power factor (PF) of 1.71 mW m-1 K-1 at 323 K and a figure of merit ( ZT) of 0.55 at 423 K. The ZT value was improved due to the increased PF by I or Cu doping, and maximum ZT values were obtained as 1.13 for Bi2Te2.7Se0.3:I0.0075 and 0.74 for Bi2Te2.7Se0.3:Cu0.01 at 423 K. However, the thermoelectric properties of Ag-doped Bi2Te2.7Se0.3 solid solutions barely improved.

  17. Superconductivity in strong spin orbital coupling compound Sb2Se3

    SciTech Connect

    Kong, P. P.; Sun, F.; Xing, L. Y.; Zhu, J.; Zhang, S. J.; Li, W. M.; Liu, Q. Q.; Wang, X. C.; Feng, S. M.; Yu, X. H.; Zhu, J. L.; Yu, R. C.; Yang, W. G.; Shen, G. Y.; Zhao, Y. S.; Ahuja, R.; Mao, H. K.; Jin, C. Q.

    2014-10-20

    Recently, A2B3 type strong spin orbital coupling compounds such as Bi2Te3, Bi2Se3 and Sb2Te3 were theoretically predicated to be topological insulators and demonstrated through experimental efforts. The counterpart compound Sb2Se3 on the other hand was found to be topological trivial, but theoretical studies indicated that the pressure might induce Sb2Se3 into a topological nontrivial state. We report on the discovery of superconductivity in Sb2Se3 single crystal induced via pressure. Our experiments indicated that Sb2Se3 became superconductive at high pressures above 10 GPa proceeded by a pressure induced insulator to metal like transition at ~3 GPa which should be related to the topological quantum transition. The superconducting transition temperature (TC) increased to around 8.0 K with pressure up to 40 GPa while it keeps ambient structure. As a result, high pressure Raman revealed that new modes appeared around 10 GPa and 20 GPa, respectively, which correspond to occurrence of superconductivity and to the change of TC slop as the function of high pressure in conjunction with the evolutions of structural parameters at high pressures.

  18. Type-II ZnTe/ZnSe quantum dots and quantum wells

    NASA Astrophysics Data System (ADS)

    Najjar, Rita; Andr, Rgis; Besombes, Lucien; Bougerol, Catherine; Tatarenko, Serge; Mariette, Henri

    2009-07-01

    ZnTe/ZnSe type-II heterostructures interfaces were investigated versus growth conditions. A well controlled Se/Zn flux ratio allows us to control the structures type: quantum dots with excitonic recombination of around 5 ns photoluminescence decay time or a quantum well with spatially indirect recombination with a much longer decay close to 100 ns. Quantum well luminescence presents a blueshift with increasing excitation power and a non exponential decay, attributed to the 2D separated electron and hole system.

  19. Role of excess Cr at Fe site in FeCrxSe and FeCrxSe0.5Te0.5

    NASA Astrophysics Data System (ADS)

    Yadav, Anil K.; Thakur, Ajay D.; Tomy, C. V.

    2012-06-01

    We report the improvement of superconducting properties on substitution of Cr in excess at the Fe site in FeCrxSe and FeCrxSe0.5Te0.5. In the case of FeCrxSe, there is an increase in superconducting transition temperature (Tc) by ˜40% with a concomitant increase in the superconducting volume fraction upon 2% excess substitution of Cr. In the case FeCrxSe0.5Te0.5, there is an enhancement in superconducting volume fraction with negligible changes in Tc.

  20. Electron transport properties of La-doped AgSbTe2 thermoelectric compounds

    NASA Astrophysics Data System (ADS)

    Min, Bok-Ki; Kim, Bong-Seo; Kim, In-Hye; Lee, Jae-Ki; Kim, Myong-Ho; Oh, Min-Wook; Park, Su-Dong; Lee, Hee-Woong

    2011-09-01

    The purpose of this paper is to investigate the doping effect of La, as a substituent against Sb, on the transport properties of the AgSbTe2 thermoelectric compounds. The samples were fabricated by spark plasma sintering (SPS). The intended compound was Ag(Sb1-xLax)Te2, in which the doping content was x = 0˜0.05. Un-doped and La-doped compounds were revealed a nearly single phase of AgSbTe2, containing a very small amount of Ag2Te. With an increase in La content, the fractured surfaces of Ag(Sb1-xLax)Te2 changed from an irregular morphology to a laminar morphology, indicating a transition from ductile to brittle cleavage fracture. The Seebeck coefficient of the Ag(Sb1-xLax)Te2 compound was, as its highest value, 358 μV/K for Ag(Sb0.98La0.02)Te2 (i.e. x = 0.02) at 150°C. Electrical resistivity exhibited higher values for the compound with the value of x=0.02 than for other compounds. Power factor was higher for the doped sample (x = 0.01) than for the un-doped compound at the temperature region of 25˜300°C. Desirably, the carrier concentration of the Ag (Sb1-xLax)Te2 compound was optimized from 1020/cm3 to 1019 /cm3 by La doping, regardless of doping content.

  1. Structural and conductivity studies of CsK(SO4)0.32(SeO4)0.68Te(OH)6

    NASA Astrophysics Data System (ADS)

    Djemel, M.; Abdelhedi, M.; Zouari, N.; Dammak, M.; Kolsi, A. W.

    2012-12-01

    The compound CsK(SO4)0.32(SeO4)0.68Te(OH)6 crystallizes in the monoclinic P21/n space group. It was analyzed, at room temperature, using X-ray diffractometer data. The main feature of these atomic arrangements is the coexistence of three and different anions (SO42-, SeO42- and TeO66-groups) in the unit cell, connected by hydrogen bonds which make the building of the crystal. The thermal analysis of the title compound shows three distinct endothermal peaks at 435, 460 and 475 K. Complex impedance measurements are performed on this material as a function of both temperature and frequency. The electric conduction has been studied. The temperature dependence on the conductivity indicates that the sample became an ionic conductor at high temperature.

  2. Vapor Growth and Characterization of ZnSeTe Solid Solutions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Sha, Yi-Gao; Volz, M. P.; Carpenter, P.; Lehoczky, S. L.

    2000-01-01

    Six ZnSe(1-x)Te(x) crystals were grown by the physical vapor transport technique. For each of the source material compositions, x = 0.10, 0.20 and 0.30, two crystals were grown - one under the horizontal and the other under the vertical stabilized configurations. The axial and radial compositional uniformity were measured by precision density measurements, wavelength dispersive X-ray spectroscopy (WDS) and optical transmission mappings. The measured radial ZnTe content was quite uniform for all the grown crystals except the horizontally grown crystal for x = 0.30. The WDS results on this crystal indicated a core with uniform ZnTe content, about 0.38, surrounded by a thin region of high ZnTe content with x = 0.8. This feature was confirmed by the SEM back scattering electron images. For the three source compositions the axial compositional variations for the vertically grown crystals were more uniform than that for the horizontally grown crystals. The measured compositions in the crystals grown from source composition of x = 0.10 suggest that the transport mechanism in the system can not be interpreted by a simple one-dimensional diffusion limited model.

  3. Evidence of a Positron bound state on the surface of Bi2Te2Se

    NASA Astrophysics Data System (ADS)

    Shastry, K.; Lim, Z. H.; Joglekar, P. V.; Chirayath, Varghese Anto; Badih, B. A.; Heiman, D.; Barbiellini, B.; Weiss, A. H.,

    2015-03-01

    We describe experiments aimed at probing the sticking of positrons to the surfaces of topological insulators performed at University of Texas at Arlington using the Positron Annihilation induced Auger electron Spectrometer. A magnetically guided beam was used to deposit positrons at the surface of Bi2Te2Se sample at energy of ~ 2 eV. Peaks observed in the energy spectra and intensities of electrons emitted as a result of positron annihilation showed peaks at energies corresponding to Auger peaks in Bi and Te providing clear evidence of Auger emission associated with the annihilation of positrons in a surface bound state. Theoretical estimates of the binding energy of this state are compared with estimates obtained by measuring the incident beam energy threshold for secondary electron emission and the temperature dependence positronium emission. The experiments provide strong evidence for the existence of a positron bound state at the surface of Bi2Te2Se and indicate the practicality of using positron annihilation to selectively probe the critically important top most layer of topological insulator system. Welch Grant 1100 NSF DMR 0907679.

  4. A voltammetric study of compound formation in the Hg-Cd-Te system

    SciTech Connect

    Mori, E.; Mishra, K.K.; Rajeshwar, K. . Dept. of Chemistry)

    1990-04-01

    The cathodic electrodeposition chemistry in the ternary Hg-Cd-Te system has been studied using hydrodynamic voltammetry in conjunction with cyclic photovoltammetry, x-ray diffraction (XRD) analyses, and optical measurements. The binary Hg-Te system was studied first, as a prelude to the more complex ternary case. An H{sub 2}SO{sub 4} electrolyte matrix was used in these studies. The Hg stripping waves observed on the return scan at the disk were altered in shape when the disk was scanned into the Te{sup 4 +} {r arrow} Te{degrees} and Te{sup 4 +} {r arrow} Te{sup 2 {minus}} regimes on the forward sweep. Monitoring of the ring response both at 1.40 V and 0 V permitted selective detection of Hg and Te species generated at the disk. Evidence for the kinetic sluggishness of HgTe compound formation is presented and contrasted with the CdTe case. In both the Hg-Te and Hg-Cd-Te cases,the broad anodic dissolution envelope at potentials positive of {approximately} 0.70 V (contrasting the clean stripping behavior of the individual components in isolation) was taken to be diagnostic of compound formation. The ring response at 1.40 V, which is tuned to Hg{sub 2}{sup 2 +} collection, is shown to be an effective indicator of the presence of free Hg in the electrodeposits. The presence of Cd{sup 2 +} ions and also a sequential deposition mode (Hg first followed by Te and Cd) appeared to facilitate quantitative conversion of elemental Hg. XRD data also show that Te formation (as a separate phase) is less of a problem with the Hg-Cd-Te system, again contrasting the situation with the Cd-Te case. Optical response and Auger electron spectroscopy measurements of the Hg-Cd-Te thin films indicate incomplete alloying of the HgTe and CdTe phases at room temperature.

  5. Improved Thermoelectric Properties of Se-Doped n-Type PbTe1- x Se x (0 ? x ? 1)

    NASA Astrophysics Data System (ADS)

    Basu, Ranita; Bhattacharya, S.; Bhatt, Ranu; Singh, Ajay; Aswal, D. K.; Gupta, S. K.

    2013-07-01

    Enhancement of the thermoelectric figure of merit is of prime importance for any thermoelectric material. Lead telluride has received attention as a potential thermoelectric material. In this work, the effect of Se substitution has been systematically investigated in PbTe1- x Se x . The thermoelectric properties of synthesized alloys were measured in the temperature range of 300 K to 873 K. For the particular composition of x = 0.5, ? was highest at ~292 ?V/K, while k was lowest at ~0.75 W/m-K, resulting in the highest dimensionless figure of merit of ZT ? 0.95 at 600 K. The increase in thermopower for x = 0.5 can be attributed to the high distortion in the crystal lattice which leads to the formation of defect states. These defect states scatter the majority charge carriers, leading to high thermopower and high electrical resistivity. The dramatic reduction of the thermal conductivity for x = 0.5 can be attributed to phonon scattering by defect states.

  6. Recent Advances in the Growth of Bi-Sb-Te-Se Thin Films

    SciTech Connect

    Wang, Guoyu; Endicott, Lynn; Uher, Ctirad

    2011-08-01

    Thin films of Bi?Te?, Sb?Te? and Bi?Se? have been intensively studied during the past ten years both as the best thermoelectric materials operating near room temperature and also as an excellent material with which to explore the newly-discovered form of quantum matter called topological insulators (TI). In this review, we first recapitulate the fundamental properties of bulk forms of these materials, then discuss recent progress in fabrication of thin films and superlattices of these narrowgap semiconductors, discuss their transport properties relevant to their effectiveness as thermoelectric materials, and finally give an outlook on this material system for both fundamental study and applications in thermoelectric energy conversion.

  7. Colloidal synthesis and characterization of CdSe/CdTe core/shell nanowire heterostructures

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Zhang, Wen-Hua; Li, Can

    2011-12-01

    CdSe/CdTe core/shell nanowire heterostructures were synthesized not only in a noncoordinating octadecene (ODE) solvent but also in a coordinating tri- n-octylphosphine oxide (TOPO) solvent, using a relatively safe CdO as the Cd precursor instead of the highly toxic Cd(Me) 2 by a colloidal approach. The polycrystalline CdTe shell was formed in the Volmer-Weber island mode, and its morphology was controlled by delicately adjusting the reaction parameters. The as-prepared core/shell nanowires were characterized by various electron microscopic techniques, energy-dispersive X-ray spectroscopy (EDX) and corresponding elemental mapping, X-ray diffraction (XRD), UV-vis spectroscopy and transient absorption spectroscopy.

  8. Possible mixed coupling mechanism in FeTe1-x Se x within a multiband Eliashberg approach

    NASA Astrophysics Data System (ADS)

    Ummarino, G. A.; Daghero, D.

    2015-11-01

    We show that the phenomenology of the iron chalcogenide superconductor FeTe1-x Se x can be explained within an effective three-band s+/- -wave Eliashberg model. In particular, various experimental data reported in literature—the critical temperature, the energy gaps, the upper critical field, the superfluid density—can be reproduced by this model in a moderate strong-coupling regime provided that both an intraband phononic term and an interband antiferromagnetic spin-fluctuations term are included in the coupling matrix. The intraband coupling is unusual in Fe-based compounds and is required to explain the somehow anomalous association between gap amplitudes and Fermi surfaces, already evidenced by ARPES.

  9. Possible mixed coupling mechanism in FeTe(1-x)Se(x) within a multiband Eliashberg approach.

    PubMed

    Ummarino, G A; Daghero, D

    2015-11-01

    We show that the phenomenology of the iron chalcogenide superconductor FeTe(1-x)Se(x) can be explained within an effective three-band s-wave Eliashberg model. In particular, various experimental data reported in literature-the critical temperature, the energy gaps, the upper critical field, the superfluid density-can be reproduced by this model in a moderate strong-coupling regime provided that both an intraband phononic term and an interband antiferromagnetic spin-fluctuations term are included in the coupling matrix. The intraband coupling is unusual in Fe-based compounds and is required to explain the somehow anomalous association between gap amplitudes and Fermi surfaces, already evidenced by ARPES. PMID:26445023

  10. Ge2Sb2Te5/SnSe2 nanocomposite multilayer thin films for phase change memory application

    NASA Astrophysics Data System (ADS)

    Feng, Xiaoyi; Wen, Ting; Zhai, Jiwei; Lai, Tianshu; Wang, Changzhou; Song, Sannian; Song, Zhitang

    2014-10-01

    By nanocompositing Ge2Sb2Te5 and SnSe2, the electrical and thermal proprieties of Ge2Sb2Te5/SnSe2 multilayer films for phase change random access memory (PCRAM) are better than those of Ge2Sb2Te5 films. The crystallization temperature rises and can be controlled. The resistance gap can reach approximately five orders of magnitude to ensure high data reliability. The activity energy (Ea) is more than 2.60 eV and the temperature for 10 year data retention reach 110 C. The analysis of both XRD patterns and TEM images confirmed the reversible phase change transition between amorphous and crystalline state in Ge2Sb2Te5/SnSe2 nanocomposite multilayer films. According to transient photoreflectance traces, the speed of crystallization process was about 33 ns. Among different Ge2Sb2Te5/SnSe2 multilayer films, the film constitute of [Ge2Sb2Te5 (4 nm)/SnSe2(10 nm)]7 showed better properties and was manufactured by CMOS technology to phase change memory (PCM) cells. This result revealed that the Ge2Sb2Te5/SnSe2 nanocomposite multilayer film is a promising phase change material.

  11. Material engineering of GexTe100-x compounds to improve phase-change memory performances

    NASA Astrophysics Data System (ADS)

    Navarro, G.; Sousa, V.; Persico, A.; Pashkov, N.; Toffoli, A.; Bastien, J.-C.; Perniola, L.; Maitrejean, S.; Roule, A.; Zuliani, P.; Annunziata, R.; De Salvo, B.

    2013-11-01

    In this paper we provide a detailed physical and electrical characterization of Germanium Telluride compounds (GexTe100-x) targeting phase-change memory applications. Thin films of Germanium-rich as well as Tellurium-rich phase-change materials are deposited for material analysis (XRD, resistivity and optical characterization). GexTe100-x compounds are then integrated in lance-type analytical phase-change memory devices allowing for a thorough analysis of the switching characteristics, data retention and endurance performances. Tellurium-rich GeTe alloys exhibit stable programming characteristics and can sustain endurance up to 107 cycles, while Germanium-rich compounds show an unstable RESET state during repeated write/erase cycles, probably affected by Ge segregation. Finally we demonstrate that data retention is strongly improved departing from Ge50Te50 stoichiometric composition.

  12. Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe1+yTe1-xSex [How does annealing in chalcogen vapor induce superconductivity in Fe1+yTe-xSex?

    SciTech Connect

    Lin, Wenzhi; Ganesh, P.; Gianfrancesco, Anthony; Berlijn, Tom; Maier, Thomas A.; Kalinin, Sergei V.; Sales, Brian C.; Pan, Minghu

    2015-02-01

    Recent investigations have shown that Fe1+yTe1-xSex can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To investigate this phenomenon we performed a combination of magnetic susceptibility, specific heat and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe1+yTe1-xSex treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTem (m ≥ 1) complexes. We show that the remaining FeTem complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds.

  13. Fabrication of CuInTe2 and CuInTe(2-x)Se(x) ternary gradient quantum dots and their application to solar cells.

    PubMed

    Kim, Sungwoo; Kang, Meejae; Kim, Seajin; Heo, Jin-Hyuk; Noh, Jun Hong; Im, Sang Hyuk; Seok, Sang Il; Kim, Sang-Wook

    2013-06-25

    We report the first synthesis of colloidal CuInTe2, CuInTe2-xSex gradient alloyed quantum dots (QDs) through a simple hot injection method. We confirmed the composition of synthesized QDs to cationic rich phase of CuIn1.5Te2.5 and Cu0.23In0.36Te0.19Se0.22 with XPS and ICP analysis, and we have also found that the gradient alloyed Cu0.23In0.36Te0.19Se0.22 QDs exhibit greatly improved stability over the CuIn1.5Te2.5 QDs. The solution-processed solar cell based on the gradient alloyed Cu0.23In0.36Te0.19Se0.22 QDs exhibited 17.4 mA/cm(2) of short circuit current density (Jsc), 0.40 V of open circuit voltage (Voc), 44.1% of fill factor (FF), and 3.1% of overall power conversion efficiency at 100 mW/cm(2) AM 1.5G illumination. PMID:23656273

  14. Enhanced thermoelectric properties of N-type polycrystalline In4Se3-x compounds via thermally induced Se deficiency

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Shu, Yu-Tian; Guo, Fu

    2014-03-01

    In4Se3-x compound is considered as a potential thermoelectric material due to its comparably low thermal conductivity among all existing ones. While most studies investigated In4Se3-x thermoelectric properties by controlling selennium or other dopants concentrations, in the current study, it was found that even for a fixed initial In/Se ratio, the resulting In/Se ratio varied significantly with different thermal processing histories (i.e., melting and annealing), which also resulted in varied thermoelectric properties as well as fracture surface morphologies of In4Se3-x polycrystalline specimens. Single phase polycrystalline In4Se3-x compounds were synthesized by combining a sequence of melting, annealing, pulverizing, and spark plasma sintering. The extension of previous thermal history was observed to significantly improve the electrical conductivity (about 121%) and figure of merit (about 53%) of In4Se3-x polycrystalline compounds. The extended thermal history resulted in the increase of Se deficiency (x) from 0.39 to 0.53. This thermally induced Se deficiency was observed to associate with increasing carrier mobility but decreasing concentration, which differs from the general trend observed for the initially adjusted Se deficiency at room temperature. Unusually large dispersed grains with nanosize layers were observed in specimens with the longest thermal history. The mechanism(s) by which previous thermal processing enhances carrier mobility and affect microstructural evolution are briefly discussed.

  15. Strain-controlled switch between ferromagnetism and antiferromagnetism in 1 T -Cr X2 (X =Se , Te) monolayers

    NASA Astrophysics Data System (ADS)

    Lv, H. Y.; Lu, W. J.; Shao, D. F.; Liu, Y.; Sun, Y. P.

    2015-12-01

    We report on the strain-induced switch between ferromagnetic (FM) and antiferromagnetic (AFM) orderings in 1 T -Cr X2 (X =Se , Te) monolayers based on first-principles calculations. The CrSe2 and CrTe2 monolayers without strains are found to be AFM and FM, respectively. Under biaxial tensile strain, the CrSe2 monolayer tends to be FM when the strain is larger than 2%. The FM state is further stabilized when the strain is increased. Moreover, the CrSe2 monolayer becomes half metallic when the tensile strain is larger than 10%, while for the CrTe2 monolayer, the critical strain at which the transition between the FM and AFM states occurs is compressive, of -1 % . Relatively small tensile strains of 4% and 2%, respectively, can enhance the Curie temperature of the CrSe2 and CrTe2 monolayers above room temperature. The strain-induced switch between the FM and AFM states in a CrSe2 (CrTe2) monolayer can be understood by the competition between the AFM Cr-Cr direct exchange interaction and the FM Cr-Se(Te)-Cr superexchange interaction. Tunable and attractive magnetic and electronic properties controlled by flexible strain are desirable for future nanoelectronic applications.

  16. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.

    PubMed

    Tan, Furui; Qu, Shengchun; Zhang, Weifeng; Wang, Zhanguo

    2014-01-01

    A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells. PMID:25386107

  17. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells

    PubMed Central

    2014-01-01

    A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells. PMID:25386107

  18. Exploring the feasibility of Fe(Se,Te) conductors by ex-situ powder-in-tube method

    NASA Astrophysics Data System (ADS)

    Palombo, M.; Malagoli, A.; Pani, M.; Bernini, C.; Manfrinetti, P.; Palenzona, A.; Putti, M.

    2015-06-01

    In this work, the feasibility condition of Powder-In-Tube (PIT) processed wires of Fe(Se,Te) superconductor has been investigated. We faced several technical issues that are extensively described and discussed. In particular, we tested different metals and alloys as external sheaths (Cu, Ag, Nb, Ta, Ni, Fe, cupronickel, brass) concluding that the only sheath that does not affect substantially the Fe(Se,Te) phase is Fe. On the other hand, Fe sheath introduces excess iron in the Fe(Se,Te) phase, which affects the superconducting properties; we investigated the effects of the thermal treatments and of the powder composition in order to avoid it. The maximum Jc value obtained in our samples is 4 102 A/cm2, comparable to other published values of PIT conductors of the 11 family. We conclude that the fabrication of Fe(Se,Te) wires by PIT method is quite challenging and other approaches should be developed.

  19. Reactive molten core fabrication of glass-clad Se(0.8)Te(0.2) semiconductor core optical fibers.

    PubMed

    Tang, Guowu; Qian, Qi; Wen, Xin; Chen, Xiaodong; Liu, Wangwang; Sun, Min; Yang, Zhongmin

    2015-09-01

    Phosphate glass-clad optical fibers comprising amorphous Se(0.8)Te(0.2) semiconductor core were fabricated by a reactive molten core approach. The Se(0.8)Te(0.2) crystals were precipitated in core region by a postdrawing annealing process, which were confirmed by X-ray diffraction, micro-Raman spectra, electron probe X-ray micro-analyzer, and transmission electron microscope measurement results. A two-cm-long crystalline Se(0.8)Te(0.2) semiconductor core optical fiber, electrically contacted to external circuitry through the fiber end facets, exhibits a two-orders-of-magnitude change in conductivity between dark and illuminated states. The great discrepancy in light and dark conductivity suggests that such crystalline Se(0.8)Te(0.2) semiconductor core optical fibers have promising applications in optical switch and photoconductivity of optical fiber array. PMID:26368460

  20. CdSe/CdTe type-II superlattices grown on GaSb (001) substrates by molecular beam epitaxy

    SciTech Connect

    Li Jingjing; Liu Shi; Wang Shumin; Ding Ding; Johnson, Shane R.; Zhang Yonghang; Liu Xinyu; Furdyna, Jacek K.; Smith, David J.

    2012-03-19

    CdSe/CdTe superlattices are grown on GaSb substrates using molecular beam epitaxy. X-ray diffraction measurements and cross-sectional transmission electron microscopy images indicate high crystalline quality. Photoluminescence (PL) measurements show the effective bandgap varies with the superlattice layer thicknesses and confirm the CdSe/CdTe heterostructure has a type-II band edge alignment. The valence band offset between unstrained CdTe and CdSe is determined as 0.63 {+-} 0.06 eV by fitting the measured PL peak positions using the envelope function approximation and the Kronig-Penney model. These results suggest that CdSe/CdTe superlattices are promising candidates for multi-junction solar cells and other optoelectronic devices based on GaSb substrates.

  1. On the dielectric study and AC conductivity measurements of Sb additive Se-Te chalcogenide alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Neha; Patial, Balbir Singh; Thakur, Nagesh

    2016-03-01

    In the present study, investigations of dielectric parameters, viz. dielectric constant ɛ'( ω), dielectric loss ɛ″( ω) and AC conductivity measurements, have been made for bulk chalcogenide Se80- x Te20Sb x ( x = 1, 2, 4, 6 and 10) alloys in the frequency range 20 Hz-1 MHz within the temperature range from 350 to 500 K. The variation of dielectric constant and dielectric loss with frequency at room temperature is reported and discussed in the investigated glassy ternary alloys. The composition dependence of the dielectric constant, dielectric loss and AC conductivity is also reported and discussed.

  2. Role of polycrystallinity in CdTe and CuInSe[sub 2] photovoltaic cells

    SciTech Connect

    Sites, J.R. )

    1992-11-01

    The limiting role of polycrystallinity in thin-film solar calls has been reduced somewhat during the past year, and efficiencies of both CdTe and CuInSe[sub 2] cells are approaching 15%. Quantitative separation of loss mechanisms shows that individual losses, with the exception of forward recombination current, can be made comparable to their single crystal counterparts. One general manifestation of the extraneous trapping states in that the voltage of all polycrystalline thin-film cells drifts upward by 10--50 mV following the onset of illumination.

  3. CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture

    NASA Astrophysics Data System (ADS)

    Dieu Thuy Ung, Thi; Tran, Thi Kim Chi; Nga Pham, Thu; Nghia Nguyen, Duc; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-12-01

    This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ˜500 and 700 nm with the luminescence quantum yield (LQY) of 30-85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml-1. For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3-50 ng μl-1 with a detection limit of 3 ng μL-1 has been performed based on the antibody-antigen recognition.

  4. Band-overlap metallization of BaS, BaSe and BaTe

    NASA Technical Reports Server (NTRS)

    Carlsson, A. E.; Wilkins, J. W.

    1983-01-01

    The insulator-metal transition volumes for BaS, BaSe, and BaTe are calculated for the first time, using the self-consistent augmented spherical wave technique. The metallized transition volumes are smaller than those corresponding to the NaCl yields CsCl structural transitions, but, 10 to 15% larger than those obtained by the Herzfeld dielectric theory. The calculated equilibrium energy gaps in the NaCl structure underestimate the measured ones by 50 to 60%.

  5. Signatures of charge inhomogeneities in the infrared spectra of topological insulators Bi2Se3, Bi2Te3 and Sb2Te3.

    PubMed

    Dordevic, S V; Wolf, M S; Stojilovic, N; Lei, Hechang; Petrovic, C

    2013-02-20

    We present the results of an infrared spectroscopy study of topological insulators Bi(2)Se(3), Bi(2)Te(3) and Sb(2)Te(3). Reflectance spectra of all three materials look similar, with a well defined plasma edge. However, there are some important differences. Most notably, as temperature decreases the plasma edge shifts to lower frequencies in Bi(2)Se(3), whereas in Bi(2)Te(3) and Sb(2)Te(3) it shifts to higher frequencies. In the loss function spectra we identify asymmetric broadening of the plasmon, and assign it to the presence of charge inhomogeneities. It remains to be seen if charge inhomogeneities are characteristic of all topological insulators, and whether they are of intrinsic or extrinsic nature. PMID:23328626

  6. Effect of vacancies on the structure and properties of Ga2(Se0.33Te0.67)3

    NASA Astrophysics Data System (ADS)

    Abdul-Jabbar, N. M.; Forrest, T. R.; Gronsky, R.; Bourret-Courchesne, E. D.; Wirth, B. D.

    2015-08-01

    Ga2(Se0.33Te0.67)3 belongs to a family of materials with large intrinsic vacancy concentrations that are being actively studied due to their potential for diverse applications that include thermoelectrics and phase-change memory. In this article, the Ga2(Se0.33Te0.67)3 structure is investigated via synchrotron x-ray diffraction, electron microscopy, and x-ray absorption experiments. Diffraction and microscopy measurements showed that the extent of vacancy ordering in Ga2(Se0.33Te0.67)3 is highly dependent on thermal annealing. It is posited that stoichiometric vacancies play a role in local atomic distortions in Ga2(Se0.33Te0.67)3 (based on the fine structure signals in the collected x-ray absorption spectra). The effect of vacancy ordering on Ga2(Se0.33Te0.67)3 material properties is also examined through band gap and Hall effect measurements, which reveal that the Ga2(Se0.33Te0.67)3 band gap redshifts by ?0.05 eV as the vacancies order and accompanied by gains in charge carrier mobility. The results serve as an encouraging example of altering material properties via intrinsic structural rearrangement as opposed to extrinsic means, such as doping.

  7. MBE grown BeTe and ZnBeTe films as a new p-contact layer of ZnSe-based II VI lasers

    NASA Astrophysics Data System (ADS)

    Cho, M. W.; Hong, S. K.; Chang, J. H.; Saeki, S.; Nakajima, M.; Yao, T.

    2000-06-01

    Non-alloyed Au/p-ZnSe/p-BeTe ohmic contact layers for ZnSe-based blue-green laser diodes with contact resistivity as low as 4.210 -4 ? cm 2 are reported. This contact layer is basically dislocation free due to small lattice misfit as long as the thickness is thinner than 500 , as confirmed by transmission electron microscopy (TEM) observation. The ZnSe layer serves as a contact layer for BeTe and protecting layer against oxidation as well. The electrical properties of the contact layers are strongly dependent on the ZnSe layer thickness. Au diffusion through the ZnSe layer down to the BeTe layer at room temperature is found to be responsible for ohmic properties. A series of ZnBeTe epilayers with different x values have been grown on GaAs by molecular beam epitaxy (MBE). We can easily control the composition by changing the Zn or Be cell temperatures. Hall effect measurement was performed on as-grown Zn 0.05Be 0.95Te epilayer doped with nitrogen. Hole concentration as high as 210 19 cm -3 has been achieved.

  8. Electron-phonon coupling in layered FeSe compounds

    NASA Astrophysics Data System (ADS)

    Bazhirov, Timur; Cohen, Marvin L.

    2012-02-01

    Iron-chalcogenide superconductors, showing many characteristic physical properties, can serve as a model materials to study the electron-pairing mechanism for all iron-based superconductivity. Layered iron-chalcogenide systems including single layer FeSe, bulk FeSe, K-intercalated FeSe, were studied using first principle pseudopotential density functional based approach. Electronic structure, vibrational properties and electron-phonon coupling strength were studied for the cases with and without iron magnetic moment ordering. The latter is incorporated using local spin density approximation. Our results show significant changes to electronic structure resulting in much higher electron-phonon coupling for spin-resolved configurations. Electron-phonon matrix elements for particular phonon mode of A1g symmetry are showing dramatic increase. Superconducting transition temperature estimates based on McMillan's equation are showing values significantly higher then previously reported, but still not high enough to account for the experimental results.

  9. Ni(3)(Mo(2)O(8))(XO(3)) (X = Se, Te): the first nickel selenite- and tellurite-containing Mo4 clusters.

    PubMed

    Jiang, Hai-Long; Xie, Zhi; Mao, Jiang-Gao

    2007-08-01

    Two new nickel(II) molybdenum(VI) selenium(IV) and tellurium(IV) oxides generally formulated as Ni3(Mo2O8)(XO3) (X = Se, Te) have been synthesized by solid-state reactions of NiO, MoO3, and SeO2 (or TeO2). Both compounds feature 3D network structures built of [Mo4O16]8- tetranuclear cluster units and 2D nickel(II) selenite or tellurite layers. The nickel(II) selenite layer in Ni3(Mo2O8)(SeO3) is formed by [Ni6O22]32- hexanuclear clusters interconnected by selenite groups whereas the thick nickel(II) tellurite layer in Ni3(Mo2O8)(TeO3) is constructed by corrugated nickel(II) oxide chains bridged by the tellurite groups. The results of magnetic property measurements indicate that there are considerable ferromagnetic interactions between nickel(II) centers in both compounds. Their optical properties and band structures have been also studied. PMID:17602613

  10. Structural inhomogeneities in FeTe0.6Se0.4: Relation to superconductivity

    NASA Astrophysics Data System (ADS)

    Prokeš, K.; Schulze, M.; Hartwig, S.; Schäfer, N.; Landsgesell, S.; Blum, C. G. F.; Abou-Ras, D.; Hacisalihoglu, M. Y.; Ressouche, E.; Ouladdiaf, B.; Büchner, B.; Wurmehl, S.

    2015-12-01

    Chemical and structural phase compositions of two single-crystalline samples prepared with different cooling rates from stoichiometric FeTe0.6Se0.4 melts were studied. Both types of samples were investigated in a very comprehensive way using magnetic and electrical transport measurements combined with X-ray, neutron and electron backscatter diffraction. We show that slowly cooled samples are homogeneous on a microscopic scale with only a small excess of iron. Those slowly cooled samples do not exhibit bulk superconductivity down to 1.8 K. In contrast, fast-cooled samples are superconducting below about 14 K but are composed of several chemical phases: they consist of a matrix preserving the crystal structure of slow-cooled samples, and of core-shell structured dendritic inclusions (about 20-30 vol%). These have different crystal structures and chemical compositions and order magnetically at temperatures far above the superconducting transition temperature of the inhomogeneous samples. These structural and chemical inhomogeneities seem to play a vital role in the superconducting properties of this and similar iron-based systems as they lead to internal stress and act in a similar way as the application of the external pressure that reportedly increase the superconducting transition temperature in many iron pnictides and chalcogenides. We argue that a phase pure, homogeneous and stress-free FeTe0.6Se0.4 is non-superconducting.

  11. Phototropic growth control of nanoscale pattern formation in photoelectrodeposited SeTe films

    PubMed Central

    Sadtler, Bryce; Burgos, Stanley P.; Batara, Nicolas A.; Beardslee, Joseph A.; Atwater, Harry A.; Lewis, Nathan S.

    2013-01-01

    Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited seleniumtellurium (SeTe) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model lightmatter interactions in the SeTe films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns. PMID:24218617

  12. Structural properties of Sb- and Te-based binary compounds: Spin-orbit effect

    NASA Astrophysics Data System (ADS)

    Al-Douri, Y.

    2013-01-01

    The band structure of AlSb, GaSb, ZnTe and CdTe is calculated using the empirical pseudopotential method (EPM) coupled with spin-orbit (SO) splitting. We applied our empirical model of bulk modulus with SO effect. It has been noticed that SO has a crucial effect on the band structure of these compounds but does not influence the structural phase transition. The calculated results are in good agreement with the experimental data.

  13. Synthesis, structure, and optical properties of BiCuOCh (Ch=S, Se, and Te)

    SciTech Connect

    Richard, A.P.; Russell, J.A.; Zakutayev, A.; Zakharov, L.N.; Keszler, D.A.; Tate, J.

    2012-03-15

    Crystals of BiCuOSe were grown from a salt flux, and the crystal structure was determined by single-crystal X-ray diffraction. BiCuOSe adopts the tetragonal layered structure of LnCuOCh (Ln=lanthanide; Ch=S, Se, and Te) with bond lengths and bond angles in good agreement with those published for powders. Powders comprising mixed chalcogenides across the series BiCuOCh (Ch=S, Se, and Te) were made by reacting Bi{sub 2}O{sub 2}Ch and Cu{sub 2}Ch. Band gaps determined via infrared diffuse reflectance from powders are E{sub g}=0.82 eV for BiCuOSe, 0.89 eV for BiCuOS{sub 0.5}Se{sub 0.5}, and 1.07 eV for BiCuOS. The band gap of BiCuOSe inferred from infrared transmission measurements on single crystals is in good agreement with the value obtained from diffuse reflectance from the powder. - Graphical abstract: IR absorption of BiCuOCh powders from diffuse reflection (left scale) and polished BiCuOSe single crystal from transmission (right scale). Spectra are normalized to the maximum absorption. Inset: band gap as a function of composition. Highlights: Black-Right-Pointing-Pointer BiCuOSe single crystals are synthesized, and the band gap is measured by direct transmission. Black-Right-Pointing-Pointer A new powder synthesis of BiCuOCh{sub 1-x}Ch Prime {sub x} is demonstrated. Black-Right-Pointing-Pointer Band gaps of BiCuO(S{sub 1-x}Se{sub x}) are determined from diffuse reflection from powders.

  14. Enhancing Thermoelectric Performance of PbTe-Based Compounds by Substituting Elements: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Joseph, Elad; Amouyal, Yaron

    2015-06-01

    We investigate the influence of doping on the thermoelectric (TE) properties of PbTe-based compounds applying first principles calculations. Our approach combines a solution of the Boltzmann transport equation to obtain electronic properties with total energy calculations yielding lattice vibrational properties. We show that electrical conductivity increases from 2.71 104 S m-1 to 3 105 S m-1 at 700 K due to 6.3 at.% lanthanum doping, whereas the Seebeck coefficient decreases from 341.5 ?V K-1 to -52.9 ?V K-1, since La atoms act as electron donors. This trend is accompanied by monotonous reduction of thermal conductivity due to La doping at different levels, e.g., 6.3 at.% La doping significantly affects the elastic bulk properties, resulting in reduction of the average sound velocity from 1980 m s-1 for the pure PbTe-lattice to 1347 m s-1 for the La-doped PbTe lattice, thereby reducing lattice thermal conductivity by ca. 32% at 700 K. We compare the TE performance of different PbTe compounds doped with either La, Y, or Sc, indicating that La doping yields the highest power factor. We demonstrate how this method could be utilized for dopant selection oriented toward improving TE performance.

  15. Electronic Structure of Quantum Spin Hall Parent Compound CdTe

    NASA Astrophysics Data System (ADS)

    Bian, Guang

    2015-03-01

    Cadmium telluride, a compound widely used in devices, is a key base material for the experimental realization of the quantum spin Hall phase. The electronic structure of CdTe has been studied by various theoretical and experimental methods. However, high-resolution band mapping has been lacking to this date. The detailed low-energy electronic structure of CdTe is thus unavailable, but it is of fundamental importance for understanding the topological properties and trends of this type of materials. We report herein, for the first time, a systematic study of the electronic structure of CdTe by angle-resolved photoemission spectroscopy from well-ordered (110) surfaces. The results are compared with first-principles calculations to illustrate the topological distinction between CdTe and a closely related compound HgTe. In addition, topological phase transition from CdTe to HgTe upon alloying and the massless Dirac-Kane semimetal phase at the critical composition are illustrated by computations based on a mixed-pseudopotential simulation.

  16. Y2MoSe3O12 and Y2MoTe3O12: Solid-state synthesis, structure determination, and characterization of two new quaternary mixed metal oxides containing asymmetric coordination environment

    NASA Astrophysics Data System (ADS)

    Bang, Seong-eun; Pan, Zhi; Kim, Yeong Hun; Lee, Dong Woo; Ok, Kang Min

    2013-12-01

    Two new quaternary yttrium molybdenum selenium/tellurium oxides, Y2MoSe3O12 and Y2MoTe3O12 have been prepared by standard solid-state reactions using Y2O3, MoO3, and SeO2 (or TeO2) as reagents. Single-crystal X-ray diffraction was used to determine the crystal structures of the reported materials. Although both of the materials contain second-order Jahn-Teller (SOJT) distortive cations and are stoichiometrically similar, they reveal different structural features: while Y2MoSe3O12 shows a three-dimensional framework consisting of YO8, MoO6, and SeO3 groups, Y2MoTe3O12 exhibits a layered structure composed of YO8, MoO4, TeO3, and TeO4 polyhedra. With the Mo6+ cations in Y2MoSe3O12, a C3-type intraoctahedral distortion toward a face is observed, in which the direction of the out-of-center distortion for Mo6+ is away from the oxide ligand linked to a Se4+ cation. The Se4+ and Te4+ cations in both materials are in asymmetric coordination environment attributed to the lone pairs. Elemental analyses, infrared spectroscopy, thermal analyses, intraoctahedral distortions, and dipole moment calculations for the compounds are also presented.

  17. Magneto-transport behaviour of Bi2Se3‑x Te x : role of disorder

    NASA Astrophysics Data System (ADS)

    Amaladass, E. P.; Devidas, T. R.; Sharma, Shilpam; Sundar, C. S.; Mani, Awadhesh; Bharathi, A.

    2016-02-01

    Magneto-resistance and Hall resistance measurements have been carried out in fast-cooled single crystals of Bi2Se3‑x Te x (x  =  0 to 2) in 4–300 K temperature range, under magnetic fields up to 15 T. The variation of resistivity with temperature that points to a metallic behaviour in Bi2Se3, shows an up-turn at low temperatures in the Te doped samples. Magneto-resistance measurements in Bi2Se3 show clear signatures of Shubnikov–de Hass (SdH) oscillations that gets suppressed in the Te doped samples. In the Bi2SeTe2 sample, the magneto-resistance shows a cusp like positive magneto-resistance at low magnetic fields and low temperatures, a feature associated with weak anti-localisation (WAL), that crosses over to negative magneto-resistance at higher fields. The qualitatively different magneto-transport behaviour seen in Bi2SeTe2 as compared to Bi2Se3 is rationalised in terms of the disorder, through an estimate of the carrier density, carrier mobility and an analysis in terms of the Ioffe–Regel criterion with support from Hall Effect measurements. We demonstrate that by introducing Te, in the strongly disordered samples a smooth crossover of SdH and WAL can be seen in the Bi2Se3‑x Te x series, both of which provide signatures for the presence of topological surface states.

  18. Upper critical field and AC-Susceptibility studies on FeTe0.5Se0.5 superconductor

    NASA Astrophysics Data System (ADS)

    Zargar, Rayees A.; Pal, Anand; Hafiz, A. K.; Awana, V. P. S.

    2015-06-01

    In this study we present synthesis and characterization of FeTe0.5Se0.5 sample that has been prepared by solid state reaction route by encapsulation of stoichiometric high purity (5N) ingredients in an evacuated quartz tube at 750 °C. The resultant compound is crystallized in single phase tetragonal structure with space group P4/nmm, having lattice parameters a = 3.792(1) Å and c = 6.0081(3) Å. The studied compound is superconducting at below 13K in both magnetic and transport measurements. Further superconductivity is barely affected by external applied magnetic field, giving rise to upper critical field of above 180 Tesla at 0 K. The sample is studied extensively for AC susceptibility measurements in superconducting state. The AC drive field and frequency are varied from 1-13 Oe and 33-9999 Hz respectively. It is concluded that though the grain boundaries of this superconductor are mainly metallic the minor (undetectable in XRD) foreign phases and the role of porosity cannot be ruled out completely. This is because both frequency and amplitude affects slightly the superconductivity coupling temperature of the grains.

  19. Structural, elastic, electronic and optical properties of KAlQ2 (Q = Se, Te): A DFT study

    NASA Astrophysics Data System (ADS)

    Benmakhlouf, A.; Bentabet, A.; Bouhemadou, A.; Maabed, S.; Khenata, R.; Bin-Omran, S.

    2015-10-01

    First-principles calculations in the framework of density functional theory have been conducted to explore the structural, elastic, electronic and optical properties of two layered ternary compounds chalcogenides of aluminum KAlSe2 and KAlTe2. We have calculated all of the equilibrium structural parameters; the lattice parameters (a, b and c), angle β and twenty three internal atomic coordinates. The obtained results are in excellent agreement with the available experimental data. We have predicted the single-crystal elastic constants Cij of the title materials using stress-strain approach and then derived the elastic moduli of the polycrystalline aggregates and related properties via the Voigt-Reuss-Hill approximations. The band structure and density of states diagrams have been calculated and analyzed. Both compounds demonstrate semiconducting behavior with direct band gap. The linear optical properties, namely the frequency-dependent dielectric function, absorption coefficient, refractive index, extinction coefficient, reflectivity and energy-loss function, have been calculated and analyzed in a wide energy range up to 20 eV.

  20. Preparation and thermoelectric properties of iodine-doped Bi2Te3-Bi2Se3 solid solutions

    NASA Astrophysics Data System (ADS)

    Lee, Go-Eun; Kim, Il-Ho; Lim, Young Soo; Seo, Won-Seon; Choi, Byeong-Jun; Hwang, Chang-Won

    2014-09-01

    Bismuth chalcogenides, such as p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3, are known to have excellent thermoelectric properties at temperatures near room temperature. Since Bi2Te3, Sb2Te3 and Bi2Se3 have the same class of crystal symmetry, they can form homogeneous solid solutions. The thermoelectric figure of merit can be improved by increasing the power factor through doping to optimize the carrier concentration and/or by reducing the thermal conductivity through the formation of solid solutions for phonon scattering. In this study, n-type Bi2Te2.7Se0.3:I m (m = 0.0 - 0.015) solid solutions were successfully prepared by using encapsulated melting and hot pressing. The increase in the carrier concentration induced by I doping led to an increase in both the electrical conductivity and the electronic thermal conductivity, with I atoms acting as phonon scattering centers reducing the lattice thermal conductivity. The undoped solid solution had a carrier concentration of 6.27 1019 cm-3, a power factor ( PF) of 1.71 mWm-1K-2, and a dimensionless figure of merit ( ZT) of 0.54 at 323 K. However, the ZT value was improved by I doping due to the increased PF, demonstrating a maximum of ZT = 1.13 at 423 K for Bi2Te2.7Se0.3:I0.0075.

  1. Thermoelectric Properties of Cu2HgSnSe4-Cu2HgSnTe4 Solid Solution

    NASA Astrophysics Data System (ADS)

    Navrtil, J.; Kucek, V.; Plech?ek, T.; ?ernokov, E.; Laufek, F.; Draar, ?.; Knotek, P.

    2014-10-01

    Copper-based semiconductors from the family Cu2-II-IV-VI4 have recently attracted a great deal of attention because of their promising thermoelectric (TE) properties. Polycrystalline samples from the Cu2HgSnSe x Te4' x ( x = 0, 0.8, 2, 3.2, 4) solid solution were prepared and structurally characterized by powder x-ray diffraction. The samples from this solid solution crystallize in the stannite structure (space group ). Transport, TE, and thermal properties of hot-pressed samples are reported. About a 20 % reduction in calculated lattice thermal conductivities, compared to the lattice thermal conductivities of pure components of the alloys (i.e. Cu2HgSnSe4 and Cu2HgSnTe4), was observed for Cu2HgSnSe2Te2 alloy. The maximum ZT of the Cu2HgSnSe2Te2 sample reaches 0.6 at 575 K.

  2. Enhanced power factor and high-pressure effects in (Bi,Sb)2(Te,Se)3 thermoelectrics

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, Sergey V.; Morozova, Natalia V.; Korobeinikov, Igor V.; Lukyanova, Lidia N.; Manakov, Andrey Y.; Likhacheva, Anna Y.; Ancharov, Alexey I.; Vokhmyanin, Alexander P.; Berger, Ivan F.; Usov, Oleg A.; Kutasov, Vsevolod A.; Kulbachinskii, Vladimir A.; Okada, Taku; Shchennikov, Vladimir V.

    2015-04-01

    We investigated the effects of applied high pressure on thermoelectric, electric, structural, and optical properties of single-crystalline thermoelectrics, Bi2Te3, BixSb2-xTe3 (x = 0.4, 0.5, 0.6), and Bi2Te2.73Se0.27 with the high thermoelectric performance. We established that moderate pressure of about 2-4 GPa can greatly enhance the thermoelectric power factor of all of them. X-ray diffraction and Raman studies on Bi2Te3 and Bi0.5Sb1.5Te3 found anomalies at similar pressures, indicating a link between crystal structure deformation and physical properties. We speculate about possible mechanisms of the power factor enhancement and suppose that pressure/stress tuning can be an effective tool for the optimization of the thermoelectric performance.

  3. Observation of amorphous to crystalline phase transformation in Te substituted Sn-Sb-Se thin films

    SciTech Connect

    Chander, Ravi

    2015-05-15

    Thin films of Sn-Sb-Se-Te (8 ≤ x ≤ 14) chalcogenide system were prepared by thermal evaporation technique using melt quenched bulk samples. The as-prepared thin films were found amorphous as evidenced from X-ray diffraction studies. Resistivity measurement showed an exponential decrease with temperature upto critical temperature (transition temperature) beyond which a sharp decrease was observed and with further increase in temperature showed an exponential decrease in resistivity with different activation energy. The transition temperature showed a decreasing trend with tellurium content in the sample. The resistivity measurement during cooling run showed no abrupt change in resistivity. The resistivity measurements of annealed films did not show any abrupt change revealing the structural transformation occurring in the material. The transition width showed an increase with tellurium content in the sample. The resistivity ratio showed two order of magnitude improvements for sample with higher tellurium content. The observed transition temperature in this system was found quite less than already commercialized Ge-Sb-Te system for optical and electronic memories.

  4. Observation of amorphous to crystalline phase transformation in Te substituted Sn-Sb-Se thin films

    NASA Astrophysics Data System (ADS)

    Chander, Ravi

    2015-05-01

    Thin films of Sn-Sb-Se-Te (8 ? x ? 14) chalcogenide system were prepared by thermal evaporation technique using melt quenched bulk samples. The as-prepared thin films were found amorphous as evidenced from X-ray diffraction studies. Resistivity measurement showed an exponential decrease with temperature upto critical temperature (transition temperature) beyond which a sharp decrease was observed and with further increase in temperature showed an exponential decrease in resistivity with different activation energy. The transition temperature showed a decreasing trend with tellurium content in the sample. The resistivity measurement during cooling run showed no abrupt change in resistivity. The resistivity measurements of annealed films did not show any abrupt change revealing the structural transformation occurring in the material. The transition width showed an increase with tellurium content in the sample. The resistivity ratio showed two order of magnitude improvements for sample with higher tellurium content. The observed transition temperature in this system was found quite less than already commercialized Ge-Sb-Te system for optical and electronic memories.

  5. The electronic structure of quasi-free-standing germanene on monolayer MX (M = Ga, In; X = S, Se, Te).

    PubMed

    Ni, Zeyuan; Minamitani, Emi; Ando, Yasunobu; Watanabe, Satoshi

    2015-07-15

    For the first time by using the ab initio density functional theory, the stability and electronic structures of germanene on monolayer GaS, GaSe, GaTe and InSe have been investigated. Germanene preserves its buckled-honeycomb structure on all the studied substrates similar to the free-standing case. Moreover, germanene stays neutral and preserves its Dirac-cone-like band structure on monolayer GaTe and InSe. In these two cases, a bandgap of 0.14-0.16 eV opens at the Dirac point of germanene, while the effective masses remain as small as 0.05-0.06 times the free-electron mass. The estimated carrier mobility is up to 2.2 10(5) cm(2) V(-1) s(-1). These features show that monolayer GaTe and InSe are promising as substrates for germanene devices. PMID:26130303

  6. CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms

    PubMed Central

    Gomes, Suzete A.O.; Vieira, Cecilia Stahl; Almeida, Diogo B.; Santos-Mallet, Jacenir R.; Menna-Barreto, Rubem F. S.; Cesar, Carlos L.; Feder, Denise

    2011-01-01

    Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group IIVI or IIIV of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus. PMID:22247686

  7. N-type Doped PbTe and PbSe Alloys for Thermoelectric Applications

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor); LaLonde, Aaron (Inventor); Pei, Yanzhong (Inventor); Wang, Heng (Inventor)

    2014-01-01

    The present invention demonstrates that weak scattering of carriers leads to a high mobility and therefore helps achieve low electric resistivity with high Seebeck coefficient for a thermoelectric material. The inventors demonstrate this effect by obtaining a thermoelectric figure of merit, zT, higher than 1.3 at high temperatures in n-type PbSe, because of the weak scattering of carriers in the conduction band as compared with that in the valence band. The invention further demonstrates favorable thermoelectric transport properties of n-type PbTe.sub.1-xI.sub.x with carrier concentrations ranging from 5.8.times.10.sup.18-1.4.times.10.sup.20 cm.sup.-3.

  8. Investigation of basic thermal behavior of a-Te-Se-Ge-Sb glassy system

    NASA Astrophysics Data System (ADS)

    Nidhi, Anant Vidya; Modgil, Vivek; Chaudhary, Shobhna; Kumar, Prashant; Rangra, V. S.

    2015-05-01

    The bulk material Te9Se72Ge19-xSbx (8≤x≤12) has been prepared by melt quenching technique. The amorphous and glassy nature has been confirmed using XRD and DSC analysis respectively. The thermal kinetics of material is studied through differential scanning calorimetry under non-isothermal condition at constant heating rate. The thermal behavior, activation energy of glass transition and crystallization has been determined using appropriate models. The thermal parameter accounting for thermal stability and quality has been explored along with compositional dependence. A stable glass with high value of Tg and quality has been formed. The mild phase separation has been observed in the material at x=8, 9 and this phase separation dissolves when the Sb content further increases in glassy matrix.

  9. Photosensitive post tuning of chalcogenide Te 20As 30Se 50 narrow bandpass filters

    NASA Astrophysics Data System (ADS)

    Shen, Weidong; Cathelinaud, Michel; Lequime, Michel; Nazabal, Virginie; Liu, Xu

    2008-07-01

    We present an experimental study on the photosensitive properties of narrow bandpass filters based on a chalcogenide Te 20As 30Se 50 (TAS) spacer. The transmittance curve of single TAS layer was shifted towards long wavelength direction after 2 h exposure by Xenon arc lamp. The refractive index and extinction coefficient were both increased together with a red shift of optical gap. A maximum 1.7% photo-induced effect was observed. Narrow band filters constituted by TAS and cryolite were manufactured by electron beam deposition. The transmittance spectrum of the filter during the exposure by a wide band source was in situ measured and the resonant wavelength was observed to turn longer gradually till saturation. A spatially localized central wavelength change up to 5.7 nm was finally obtained. The stability of the photo-induced effect was studied and some comments were given at the end of this paper.

  10. Surface optical and bulk acoustic phonons in the topological insulator, Bi2Se2Te

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Uditendu; Chaudhuri, Dipanjan; Sarkar, Jit; Singh, Sourabh; Gopal, Radha Krishna; Tammu, Sandeep; Upadhya, Prashanth C.; Mitra, Chiranjib

    2015-06-01

    We explore the phonon dynamics in thin films of the topological insulator material Bi2Se2Te using ultrafast pump-probe spectroscopy. The time resolved differential reflectivity in these films exhibit fast and slow oscillations. We have given a careful analysis of variation of phonon frequency as a function of film thickness, which we attribute to the existence of standing acoustic modes. However, no variation in the frequency of the optical phonon modes was found with film thickness. This indicates that the optical phonons intrinsically belong to the surface of topological insulators. The controllability of acoustic phonons by way of varying the film thickness will have tremendous implications in the application of these materials in low power spintronic device operating at room temperature.

  11. Quasiparticle electronic structure of bulk and slab Bi2Se3 and Bi2Te3

    NASA Astrophysics Data System (ADS)

    Barker, Bradford; Deslippe, Jack; Yazyev, Oleg; Louie, Steven G.

    2014-03-01

    We present ab initio calculations of the quasiparticle electronic band structure of three-dimensional topological insulator materials Bi2Se3 and Bi2Te3. The mean-field DFT calculation is performed with fully relativistic pseudopotentials, generating spinor wavefunctions in a plane-wave basis. Quasiparticle properties are computed with a one-shot ab initio GW calculation. We use both bulk and slab forms of the materials to better understand the quasiparticle band gaps and Fermi velocities of the topological surface states of these materials. This work was supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility and the NSF through XSEDE resources at NICS.

  12. Optical studies of SnTe xSe 1-x sintered films

    NASA Astrophysics Data System (ADS)

    Saini, R. K.; Kumar, R.; Jain, Garima

    2009-12-01

    Large scale applications are based on the economical polycrystalline material prepared by convenient, reproducible and commercially viable methods. Polycrystalline sintered films of SnTe xSe 1-x were deposited on glass substrate by screen printing technique. The optical and structural studies of the films were carried out by UV-Vis-NIR spectrophotometer and X-ray diffraction, respectively. The films were polycrystalline in nature with the average grain size 27.77 nm. The solid solution shows a change from orthorhombic to cubic in structure. The energy band gap of the films was determined using absorption spectra. It was found to vary with composition from 1.02 to 0.35 eV.

  13. Photoluminescence of two-dimensional GaTe and GaSe films

    NASA Astrophysics Data System (ADS)

    Del Pozo-Zamudio, O.; Schwarz, S.; Sich, M.; Akimov, I. A.; Bayer, M.; Schofield, R. C.; Chekhovich, E. A.; Robinson, B. J.; Kay, N. D.; Kolosov, O. V.; Dmitriev, A. I.; Lashkarev, G. V.; Borisenko, D. N.; Kolesnikov, N. N.; Tartakovskii, A. I.

    2015-09-01

    Gallium chalcogenides are promising building blocks for novel van der Waals heterostructures. We report on the low-temperature micro-photoluminescence (PL) of GaTe and GaSe films with thicknesses ranging from 200 nm to a single unit cell. In both materials, PL shows a dramatic decrease by 104-105 when film thickness is reduced from 200 to 10 nm. Based on evidence from continuous-wave (cw) and time-resolved PL, we propose a model explaining the PL decrease as a result of non-radiative carrier escape via surface states. Our results emphasize the need for special passivation of two-dimensional films for optoelectronic applications.

  14. Engineering topological surface states: HgS, HgSe, and HgTe.

    PubMed

    Virot, Franois; Hayn, Roland; Richter, Manuel; van den Brink, Jeroen

    2013-10-01

    Using density functional electronic structure calculations, we establish the consequences of surface termination and modification on protected surface states of metacinnabar (?-HgS). Whereas we find that the Dirac cone is isotropic and well separated from the valence band for the (110) surface, it is highly anisotropic at the pure (001) surface. We demonstrate that the anisotropy is modified by surface passivation because the topological surface states include contributions from dangling bonds. Such dangling bonds exist on all pure surfaces within the whole class HgX with X=S, Se, or Te and directly affect the properties of the Dirac cone. Surface modifications also alter the spatial location (depth and decay length) of the topologically protected edge states, which renders them essential for the interpretation of photoemission data. PMID:24138263

  15. Impact of Pb content on the physical parameters of Se-Te-Pb system

    NASA Astrophysics Data System (ADS)

    Anjali, Patial, Balbir Singh; Sharma, Raman; Tripathi, S. K.; Thakur, Nagesh

    2015-05-01

    In the present study, we have investigated the impact of Pb content on the physical parameters in Se-Te-Pb system via average coordination number, constraints, the fraction of floppy modes, cross-linking density, lone pairs electrons, heat of atomization, mean bond energy, cohesive energy and electronegativity. The bulk samples have been prepared by using melt quenching technique. X-ray diffraction pattern of various samples indicates the amorphous nature of investigated glassy alloys. It is observed that average coordination number, average number of constraints and cross-linking density increase with Pb content. However, lone-pair electrons, floppy modes, average heat of atomization, cohesive energy and mean bond energy are found to decrease with Pb atomic percentage.

  16. Impact of Pb content on the physical parameters of Se-Te-Pb system

    SciTech Connect

    Anjali,; Sharma, Raman; Thakur, Nagesh; Patial, Balbir Singh; Tripathi, S. K.

    2015-05-15

    In the present study, we have investigated the impact of Pb content on the physical parameters in Se-Te-Pb system via average coordination number, constraints, the fraction of floppy modes, cross-linking density, lone pairs electrons, heat of atomization, mean bond energy, cohesive energy and electronegativity. The bulk samples have been prepared by using melt quenching technique. X-ray diffraction pattern of various samples indicates the amorphous nature of investigated glassy alloys. It is observed that average coordination number, average number of constraints and cross-linking density increase with Pb content. However, lone-pair electrons, floppy modes, average heat of atomization, cohesive energy and mean bond energy are found to decrease with Pb atomic percentage.

  17. Properties of high-angle Fe(Se,Te) bicrystal grain boundary junctions

    NASA Astrophysics Data System (ADS)

    Sarnelli, E.; Adamo, M.; Nappi, C.; Braccini, V.; Kawale, S.; Bellingeri, E.; Ferdeghini, C.

    2014-04-01

    We report on the characterization of Fe(Se,Te) grain boundary junctions fabricated on a 45 tilt symmetric bicrystal substrate. The junctions show critical current densities of the order of 104 A/cm2, showing a decay of about one order of magnitude with respect to the critical current density of the film, which is very promising for applications. The current-voltage characteristics show resistively shunted junction-like behaviors, with very low normal-state resistance values, typical of superconducting/normal-metal/superconducting junctions. The magnetic field dependences of the critical currents show the typical behaviors of large Josephson junctions. Nevertheless, the critical current is uniformly distributed across the barrier. We present a simplified theoretical model accounting for this effect. The small influence of faceting along the grain boundary on the electrical parameters may be consistent with an s-wave symmetry of the order parameter.

  18. Kinetic limitation of chemical ordering in Bi2Te3-x Se x layers grown by molecular beam epitaxy.

    PubMed

    Schreyeck, S; Brunner, K; Kirchner, A; Bass, U; Grauer, S; Schumacher, C; Gould, C; Karczewski, G; Geurts, J; Molenkamp, L W

    2016-04-13

    We study the chemical ordering in Bi2Te3-x Se x grown by molecular beam epitaxy on Si substrates. We produce films in the full composition range from x  =  0 to 3, and determine their material properties using energy dispersive x-ray spectroscopy, x-ray diffraction and Raman spectroscopy. By fitting the parameters of a kinetic growth model to these results, we obtain a consistent description of growth at a microscopic level. Our main finding is that despite the incorporation of Se in the central layer being much more probable than that of Te, the formation of a fully ordered Te-Bi-Se-Bi-Te layer is prevented by kinetic of the growth process. Indeed, the Se concentration in the central layer of Bi2Te2Se1 reaches a maximum of only  ≈75% even under ideal growth conditions. A second finding of our work is that the intensity ratio of the 0 0 12 and 0 0 6 x-ray reflections serves as an experimentally accessible quantitative measure of the degree of ordering in these films. PMID:26962934

  19. Effect of La-doping on AgSbTe2 thermoelectric compounds

    NASA Astrophysics Data System (ADS)

    Min, Bok-Ki; Kim, Bong-Seo; Oh, Min-Wook; Ryu, Byung-Ki; Lee, Ji-Eun; Joo, Sung-Jae; Park, Su-Dong; Lee, Hee-Woong; Lee, Ho-seong

    2016-01-01

    Ag(Sb1- x La x )Te2 compounds ( x = 0, 0.01, 0.02, 0.03, and 0.05) were fabricated to study the effect of La-doping on the thermoelectric properties by using a spark-plasma-sintering process. All specimens were nearly single-phase AgSbTe2 with a small amount of Ag2Te. The La doping in AgSbTe2 resulted in a reduction in the electrical and the thermal conductivity but increased the Seebeck coefficient. A small amount of La doping increased the Seebeck coefficient because of the electron filtering effect. The maximum figure of merit was 1.50 due to the enhanced power factor and extremely low thermal conductivity.

  20. Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performance

    NASA Astrophysics Data System (ADS)

    Wang, Shanyu; Zheng, Gang; Luo, Tingting; She, Xiaoyu; Li, Han; Tang, Xinfeng

    2011-11-01

    In this study, we prepared a series of Ag-doped PbSe bulk materials by a melting-quenching process combined with a subsequent spark plasma sintering process, and systematically investigated the doping effects of Ag on the thermoelectric properties. Ag substitution in the Pb site does not introduce resonant levels near the valence band edge or detectable change in the density of state in the vicinity of the Fermi level, but moves the Fermi level down and increases the carrier concentration to a maximum value of ~4.7 × 1019 cm-3 which is still insufficient for heavily doped PbSe compounds. Nonetheless, the non-monotonic variation in carrier concentration with increasing Ag content indicates that Ag doping reaches the solution limit at ~1.0% and the excessive Ag presumably acts as donors in the materials. Moreover, the large energy gap of the PbSe-based material wipes off significant 'roll-over' in the Seebeck coefficient at elevated temperatures which gives rise to high power factors, being comparable to p-type Te analogues. Consequently, the maximum ZT reaches ~1.0 for the 1.5% Ag-doped samples with optimized carrier density, which is ~70% improvement in comparison with an undoped sample and also superior to the commercialized p-type PbTe materials.

  1. Transport properties of the system Bi2Te2.7Se0.3-xPbx fabricated by a conventional melting technique

    NASA Astrophysics Data System (ADS)

    Abdel Hakeem, A. M.

    2015-03-01

    N-type Bi2Te2.7Se0.3-xPbx (x = 0, 0.02, 0.04, 0.06 and 0.08) thermoelectric compounds have been prepared by a conventional melting technique. Microstructure analyses have been carried out for all samples using x-ray diffraction and a scanning electron microscope. The data reveal that the samples are crystallized in the polycrystalline rhombohedral Bi2Te3 phase and the grains have irregular shapes and sizes. The chemical stoichiometry has been examined by means of energy dispersive x-ray spectroscopy (EDAX). The stoichiometries match with the chemical formula (Bi)2(Te-Se-Pb)3. However, superstoichiometry of Pb at the expense of Se content has been observed. The thermoelectric measurements prove that the dominant charge carriers in all materials are electrons over the temperature range of measurements (200-400 K). The temperature dependence of the electrical conductivity shows metallic behavior for all the nominal compositions and over the whole range of temperature. The highest power factor value was recorded for the undoped sample at T = 330 K and was found to be 15.51 ?WK-2 cm-1.

  2. Fabrication of CdS/CdTe solar cells with transparent p-type conductive BaCuSeF back contact

    NASA Astrophysics Data System (ADS)

    Yamamoto, Koichi; Sakakima, Hiroshi; Ogawa, Yohei; Hosono, Aikyo; Okamoto, Tamotsu; Wada, Takahiro

    2015-08-01

    BaCuSeF films were applied to CdS/CdTe solar cells as back electrodes. The interfaces between the CdTe and BaCuSeF layers in the CdS/CdTe solar cells with BaCuSeF back contact deposited at substrate temperatures (TS) of 200 and 300 C were analyzed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). We clearly observed many dislocations in the CdTe layer in the CdS/CdTe solar cell with the BaCuSeF layer deposited at TS = 300 C. We also observed a reaction layer of Cu2.72Te2 between the BaCuSeF and CdTe layers in both solar cells. We concluded that (1) the substrate temperature for the pulsed laser deposition of the BaCuSeF layer and (2) the interface between the CdTe and BaCuSeF layers are important factors for the performance of the CdTe solar cells. We obtained high conversion efficiency of 8.31% for a solar cell with a BaCuSeF layer deposited at TS = 200 C on a CdTe surface etched in a NH3 aqueous solution. The highest conversion efficiency of 9.91% was obtained for a solar cell with a CdTe surface etched in a bromide-bromate solution.

  3. Effects of Composition and Compositional Distribution on the Electronic Structure of ZnSe(1-x)Te(x) Ternary Quantum Dots

    SciTech Connect

    Pandey, Sumeet C.; Maroudas, Dimitrios

    2011-01-01

    We report results of first-principles density functional theory(DFT) calculations for the electronic structure of ZnSe1- x Te x ternary quantum dots (TQDs) and the effects of composition and compositional distribution on the electron density distribution, electronic density of states, and band gap. We analyze the electronic structure of five types of nanocrystal configurations, namely, pristine ZnSe and ZnTe quantum dots, as well as ZnSe/ZnTe core/shell, ZnTe/ZnSe reverse core/shell, and randomly alloyed ZnSe1- x Te x TQDs. We find that the band gaps for ZnSe/ZnTe core/shell TQDs are nonlinearly dependent on the number of Te atoms in the shell, whereas presence of Te in the core of alloyed ZnSe1- x Te x TQDs modifies the electronic energy levels abruptly and significantly in the limits of x ? 0 and x ? 1. Our results imply that distribution of Te atoms in the TQD in the form of a ZnSe/ZnTe core/shell configuration allows for optimum tunability of the band gap and wave function confinement in TQDs.

  4. Inelastic x-ray scattering measurements of phonon dispersion and lifetimes in PbTe1-x Se x alloys

    NASA Astrophysics Data System (ADS)

    Tian, Zhiting; Li, Mingda; Ren, Zhensong; Ma, Hao; Alatas, Ahmet; Wilson, Stephen D.; Li, Ju

    2015-09-01

    PbTe1-x Se x alloys are of special interest to thermoelectric applications. Inelastic x-ray scattering determination of phonon dispersion and lifetimes along the high symmetry directions for PbTe1-x Se x alloys are presented. By comparing with calculated results based on the virtual crystal model calculations combined with ab initio density functional theory, the validity of virtual crystal model is evaluated. The results indicate that the virtual crystal model is overall a good assumption for phonon frequencies and group velocities despite the softening of transverse acoustic phonon modes along [1 1 1] direction, while the treatment of lifetimes warrants caution. In addition, phonons remain a good description of vibrational modes in PbTe1-x Se x alloys.

  5. Composition Dependence of the Hydrostatic Pressure Coefficients of the Bandgap of ZnSe(1-x)Te(x) Alloys

    NASA Technical Reports Server (NTRS)

    Wu, J.; Yu, K. M.; Walukiewicz, W.; Shan, W.; Ager, J. W., III; Haller, E. E.; Miotkowski, I.; Ramdas, A. K.; Su, Ching-Hua

    2003-01-01

    Optical absorption experiments have been performed using diamond anvil cells to measure the hydrostatic pressure dependence of the fundamental bandgap of ZnSe(sub 1-xTe(sub x) alloys over the entire composition range. The first and second-order pressure coefficients are obtained as a function of composition. Starting from the ZnSe side, the magnitude of both coefficients increases slowly until x approx. 0.7, where the ambient-pressure bandgap reaches a minimum. For larger values of x the coefficients rapidly approach the values of ZnTe. The large deviations of the pressure coefficients from the linear interpolation between ZnSe and ZnTe are explained in terms of the band anticrossing model.

  6. Fluorescence properties of alloyed ZnSeS quantum dots overcoated with ZnTe and ZnTe/ZnS shells

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwasesan; Mashazi, Philani; Nyokong, Tebello; Forbes, Patricia B. C.

    2016-04-01

    Fluorescent alloyed ternary ZnSeS quantum dots (QDs) have been synthesized via the pyrolysis of organometallic precursors. The effects of passivation of ZnTe and ZnTe/ZnS shells on the optical properties of the ternary alloyed ZnSeS core have been studied. A ligand exchange reaction using L-cysteine as a capping ligand was used to obtain water-soluble nanocrystals. The nanocrystals were each characterized by UV/vis absorption and fluorescence spectroscopy, transmission electron microscopy, X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The photoluminescence (PL) quantum yield (QY) of alloyed ZnSeS QDs was 14% and this value increased to 27% when ZnTe was overcoated around the surface but further coating with a ZnS shell decreased the PL QY slightly to 24%. This implies that ZnTe shell suppressed non-radiative recombination exciton states in the alloyed core while further layering with a ZnS shell offered no further improvement in suppressing the defect states. XPS analysis confirmed the presence of the first shell layering but showed a weakened intensity signal of S (2p) and Se (3d) for the ZnSeS/ZnTe/ZnS QDs. Our work demonstrates for the first time that shell passivation of alloyed Zn-based QDs can offer improved optical properties. We hope the optical information presented in this work will be useful in the selection of alloyed Zn-based QDs appropriate for the intended application.

  7. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport in Low Gravity

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Ramachandran, N.

    2013-01-01

    Crystals of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, will be grown by physical vapor transport in the Material Science Research Rack (MSRR) on International Space Station (ISS). The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  8. Thermoelectric transport properties of PbTe-based composites incorporated with Cu2Se nano-inclusions

    NASA Astrophysics Data System (ADS)

    Guo, Haifeng; Xin, Hongxing; Qin, Xiaoying; Jian, Zhang; Li, Di; Li, Yuanyue; Li, Cong

    2016-02-01

    Thermoelectric transport properties of Lead telluride (PbTe)-based composites incorporated with Cuprous selenide (Cu2Se) nano-inclusions were investigated from 300 K to 800 K. Here, except for the transition from p-type to n-type conduction that occurs in pristine PbTe at ~530 K due to the difference of mobility between thermally electron and hole at high temperature, another transition from p-type to n-type conduction at 300 K with an increasing proportion of Cu2Se could be due to the donor levels introduced by defects and unsaturated bonds at the interfaces. Moreover, by incorporating a small proportion (5 vol.%) of Cu2Se nanoparticles into the PbTe matrix to form nano-composites, both a reduction (~55%) in lattice thermal conductivity and an enhanced electrical conductivity compared with that of pristine PbTe are obtained, which allows the thermoelectric power factor to reach a larger value (~11.2 μW cm‑1 K‑2). Consequently, a maximum value ZT  =  0.91 is obtained at 760 K in the PbTe-5 vol.% Cu2Se sample.

  9. Water-Soluble Fluorescent CdTe/ZnSe Core/Shell Quantum Dot: Aqueous Phase Synthesis and Cytotoxicity Assays.

    PubMed

    Li, Yansheng; Wang, Wenqian; Zhao, Dan; Chen, Peng; Du, Hongwu; Wen, Yongqiang; Zhang, Xueji

    2015-06-01

    In this manuscript, we demonstrate a novel, facile and environmentally friendly method to directly obtain CdTe/ZnSe core/shell QDs in the aqueous phase based on the method of epitaxial growth of ZnSe shells on CdTe cores. The ZnSe shell and the capping reagent glutathione of the CdTe/ZnSe core/shell QDs greatly increased the biocompatibility and stability of the original CdTe cores. The optical property of the as-prepared CZ QDs could be controlled by precisely adjusting the size of CdTe cores, which showed broad emission spectra from 530 to 688 nm. The crystalline structure of the CZ QDs was extensively characterized by XRD, TEM and HRTEM, etc. Furthermore, since there were several functional groups on glutathione molecules, the QDs could be potentially used for connecting other functional small molecules, biomolecules or nanoparticles. Such QDs have bright future perspectives in the development biological and nanomedical fields. PMID:26369092

  10. Facile preparation and control of Cu-Se compounds with various preparation conditions

    NASA Astrophysics Data System (ADS)

    Jang, Seongwan; Yu, Chanyong; Park, Kang Hyun; Lee, Dooyong; Park, Sungkyun

    2015-01-01

    Preparation of Cu-Se compounds, chalcogenide-based materials, is studied in this paper. The Cu-Se compounds were synthesized by using a hydrothermal method. This method possesses the advantages of simple preparation, facile manipulation, and the use of nontoxic supercritical water as a solvent. The chemical composition of the Cu-Se compounds was controlled by varying the copper source, reaction time, temperature, and surfactant. When CuCl2 was used as a copper source, the Cu-Se compound tended to form a CuSe2 phase. This phase was also formed at short reaction times and low reaction temperatures. Additionally, we investigated the change in the chemical composition of various Cu-Se compounds by using an acid treatment. The CuSe phase easily decomposed in acidic media while the CuSe2 phase showed a high resistance to acidic media. This synthesized CuSe2 can be used as a Cu(In,Ga)Se2 (CIGS) precursor in a nonselenization method. This preparation method is expected to have potential applications in energy-related devices.

  11. Investigation of Optical Nonlinearities in Bi-Doped Se-Te Chalcogenide Thin Films

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2015-03-01

    The present paper reports the nonlinear optical properties of chalcogenide Se85- x Te15Bi x (0 ≤ x ≤ 5) thin films. The formulation proposed by Boling, Fournier, and Snitzer and Tichy and Ticha has been used to compute the nonlinear refractive index n 2. The two-photon absorption coefficient β 2, and first- and third-order susceptibilities [ χ (1) and χ (3)] are also reported. The nonlinear refractive index n 2 is well correlated with the linear refractive index n and Wemple-DiDomenico (WDD) parameters, in turn depending on the density ρ and molar volume V m of the system. The density of the system is calculated experimentally by using Archimedes' principle. The linear optical parameters, viz. n, WDD parameters, and optical bandgap E g, are measured experimentally using ellipsometric curves obtained by spectrophotometry. The composition-dependent behavior of n 2 is analyzed on the basis of various parameters, viz. density, bond distribution, cohesive energy (CE), and optical bandgap E g, of the system. The variation of n 2 and β 2 with changing bandgap E g is also reported. The values of n 2 and χ (3) of the investigated chalcogenides are compared with those of pure silica, oxide, and other Se-based glasses.

  12. Phonon conduction in PbSe, PbTe, and PbTe1-xSex from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Tian, Zhiting; Garg, Jivtesh; Esfarjani, Keivan; Shiga, Takuma; Shiomi, Junichiro; Chen, Gang

    2012-05-01

    We apply first-principles calculations to lead selenide (PbSe) and lead telluride (PbTe) and their alloys (PbTe1-xSex), which are potentially good thermoelectric materials, to investigate their phonon transport properties. By accurately reproducing the lattice thermal conductivity, we validate the approaches adopted in this work. We, then, compare and contrast PbSe and PbTe, evaluate the importance of the optical phonons to lattice thermal conductivity, and estimate the impacts of nanostructuring and alloying on further reducing the lattice thermal conductivity. The results indicate that (1) the optical phonons are important not only because they directly comprise over 20% of the lattice thermal conductivity but also because they provide strong scattering channels for acoustic phonons, which is crucial for the low thermal conductivity; (2) nanostructures of less than 10 nm are needed to reduce the lattice thermal conductivity for pure PbSe and PbTe; and (3) alloying should be a relatively effective way to reduce the lattice thermal conductivity.

  13. Assessing the anticancer compounds Se-methylselenocysteine and glucosinolates in Se-biofortified broccoli (brassica oleracea L. var. italica) sprouts and florets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broccoli (Brassica oleracea L. var. italica) is a rich source of chemopreventive compounds. Here, we evaluated and compared the effect of selenium (Se) treatment on the accumulation of anticancer compound Se-methylselenocysteine (SeMSCys) and glucosinolates in broccoli sprouts and florets. Total Se ...

  14. Predicted thermoelectric properties of olivine-type Fe2GeCh4 (Ch  =  S, Se and Te)

    NASA Astrophysics Data System (ADS)

    Gudelli, Vijay Kumar; Kanchana, V.; Vaitheeswaran, G.

    2016-01-01

    We present here the thermoelectric properties of olivine-type Fe2GeCh4 (Ch  =  S, Se and Te) using the linear augmented plane wave method based on first principles density functional calculations. The calculated transport properties using the semi-local Boltzmann transport equation reveal very high thermopower for both S and Se-based compounds compared to their Te counterparts. The main reason for this high thermopower is the quasi-flat nature of the bands at the valence and conduction band edges. The calculated thermopower of Fe2GeS4 is in good agreement with the experimental reports at room temperature, with the carrier concentration around 1018–1019cm‑3. All the investigated systems show an anisotropic nature in their electrical conductivity, resulting in a value less than the order of 102 along the a-axis compared to the b- and c-axes. Among the studied compounds, Fe2GeS4 and Fe2GeSe4 emerge as promising candidates with good thermoelectric performance.

  15. Effects of Pnictogen Atmosphere Annealing on Fe1+yTe0.6Se0.4

    NASA Astrophysics Data System (ADS)

    Yamada, Tatsuhiro; Sun, Yue; Pyon, Sunseng; Tamegai, Tsuyoshi

    2016-02-01

    It has been clarified that bulk superconductivity in Fe1+yTe0.6Se0.4 can be induced by annealing in an appropriate atmosphere to remove the harmful effects of excess iron. In order to clarify the details of the annealing process, we studied the changes in the physical properties and reaction products of Fe1+yTe0.6Se0.4 annealed in pnictogen (P, As, Sb) atmospheres. Crystals annealed in a pnictogen atmosphere show bulk superconductivity and the values of Tc and Jc are about 14 K and (2-4) × 105 A/cm2 (2 K, self-field), respectively. It is also found that the reaction rate increases with the increase in the saturated vapor pressure of the pnictogen. Unexpectedly, the reaction products of Fe1+yTe0.6Se0.4 after annealing in a P atmosphere mainly consist of FeTe2. In addition, the amount of P required to obtain the optimal Tc is much smaller than the amount of excess iron, which is similar to the case of oxygen annealing. P, oxygen, and to some extent As could serve as catalysts to form FeTe2 to remove excess iron.

  16. Secondary overprinting of S-Se-Te signatures in the Earth's mantle: Implications for the Late Veneer

    NASA Astrophysics Data System (ADS)

    Koenig, S.; Luguet, A.; Lorand, J.; Pearson, D.

    2013-12-01

    Sulphur, Selenium and Tellurium are both chalcophile and highly siderophile elements (HSE) with near-chondritic ratios and absolute abundances in the terrestrial mantle that exceed those predicted by core-mantle differentiation[1]. These 'excess' HSE abundances have been attributed to addition of ca. 0.5% of chondrite-like material that hit the Earth in its accretionary stage between 4 to 3.8 billion years ago after core-mantle differentiation (Late Veneer[2]). Therefore, like other HSE, S, Se and Te are considered potential tracers for the composition of the Late Veneer, provided that their bulk silicate Earth abundances are properly constrained. In contrast to ca. 250 ppm S, Se and Te are ultra-trace elements in the terrestrial mantle. Like all HSE, they are furthermore controlled by base metal sulphides (BMS) and micrometric platinum group minerals (PGMs)[3]. This strong control exerted by the host mineralogy and petrology on the S-Se-Te systematics at both the micro-scale and the whole-rock scale makes detailed mineralogical and petrological studies of BMS and PGM a pre-requisite to fully understand and accurately interpret the whole-rock signatures. Here we combine in-situ sulphide data and detailed mineralogical observations with whole-rock S-Se-Te-HSE signatures of both lherzolites and harburgites from different geodynamic settings. We demonstrate that the near-chondritic Se and Te signature of 'fertile' mantle rocks (Se/Te ≈9×5) is not a primitive signature of the Earth's mantle, but rather reflects strong enrichment in metasomatic HSE host phases, which erased previous pristine signatures. Consequently, current attempts to identify a potential Late Veneer composition are seriously flawed because, neither refertilisation/metasomatism nor true melt depletion (e.g. harzburgitic residues) have been taken into account for the Primitive Upper Mantle composition estimate[4]. Our combined whole rock and in-situ sulphide data indicate a refertilisation trend towards sub-chondritic Se/Te ratios (i.e. Se/Te < 2). On the other hand, harzburgites that preserve depletion signatures show suprachondritic Se/Te ratios (< 31). Altogether this shows that metasomatic enrichment of mantle rocks may lead to a systematic bias and hence underestimation of the current Se/Te estimate of the primitive mantle. The metasomatic origin of the reported S, Se and Te ratios in peridotites that reflect the control of metasomatic BMS and PGMs[5;6] furthermore show that not all whole rock signatures in the Earth's mantle that scatter around near-chondritic values are primary and hence challenge the simple conception that these features may readily solve the long-standing conundrum of the Late Veneer composition. Refs: [1] Rose-Weston et al. (2009) GCA 73, 4598-4615; [2] Kimura et al. (1974) GCA 38, 683-701; [3] Lorand and Alard (2010) 67, 4137-4151; [4] Wang and Becker (2013) Nature 499, 328-331; [5] König et al. (2012) GCA 86, 354-366; [6] König et al. (2013, in press), EPSL.

  17. Enhancement of thermoelectric performance in n-type PbTe1-ySey by doping Cr and tuning Te:Se ratio

    SciTech Connect

    Chere, Eyob K.; Zhang, Qian; McEnaney, Kenneth; Yao, Mengliang; Cao, Feng; Sun, Jingying; Chen, Shuo; Opeil, Cyril; Chen, Gang; Ren, Zhifeng

    2015-04-01

    Lead telluride and its alloys have been extensively studied for medium temperature thermoelectric applications due to decent figure-of-merit (ZT) at temperature close to 900 K. However, little emphasis has been given to improve the ZT near room temperature. In this investigation, we report a systematic study of Cr doping in PbTe1-ySey with y=0, 0.25, 0.5, 0.75, 0.85, and 1. We found the peak ZT temperature increased with increasing concentration of Se. The highest ZT of ~0.6 at room temperature in Te-rich Cr0.015Pb0.985Te0.75Se0.25 was obtained due to a lowered thermal conductivity and enhanced power factor resulted from high Seebeck coefficient of about -220 V K-1 and high Hall mobility ~1120 cm2 V-1 s-1 at room temperature. A room temperature ZT of ~0.5 and peak ZT of ~1 at about 573673 K is shown by Se-rich sample Cr0.01Pb0.99Te0.25Se0.75. This improvement of the room temperature ZTimproved the average ZT over a wide temperature range and could potentially lead to a single leg efficiency of thermoelectric conversion for Te-rich Cr0.015Pb0.985Te0.75Se0.25 up to ~11% and Se-rich Cr0.01Pb0.99Te0.25Se0.75 up to ~13% with cold side and hot side temperature at 300 K and 873 K, respectively, if matched with appropriate p-type legs.

  18. Enhancement of the thermoelectric figure of merit in n-type Cu0.008Bi2Te2.7Se0.3 by using Nb doping

    NASA Astrophysics Data System (ADS)

    Lee, Kyu Hyoung; Ryu, Byungki; Park, Hee Jung; Lee, Kimoon; Roh, Jong Wook; Kim, Sang Il; Hwang, Sungwoo; Choi, Soon-Mok; Kim, Jong-Young; Lee, Jeong Hoon; Lim, Jae-Hong; Kim, Sung Wng

    2016-01-01

    Doping with foreign atom has been shown to be an effective way to enhance the dimensionless figure of merit ZT of Bi2Te3-based thermoelectric raw materials. Herein, we report that doping with Nb is effective in enhancing the Seebeck coefficient of n-type Cu0.008Bi2Te2.7Se0.3 polycrystalline bulks. Considering compensation of the Seebeck coefficient due to decrease of the electrical conductivity in Nb-doped compositions, the absolute value of Seebeck coefficient rather increased benefiting from an enhancement of the density of states (DOS) effective mass m* from 1.09 m 0 (Cu0.008Bi2Te2.7Se0.3) to 1.21 m 0 - 1.27 m 0 (Cu0.008Bi2- x Nb x Te2.7Se0.3) due to a DOS engineering effect. The values of ZT were 0.84 at 300 K and 0.86 at 320 K for Cu0.008Bi1.99Nb0.01Te2.7Se0.3. This compositional tuning approach highlights the possibility of further enhancement of ZT for n-type Bi2Te3-based compounds by using a combination of nanostructuring technologies to reduce the thermal conductivity.

  19. Distinguishability of stacks in ZnTe/ZnSe quantum dots via spectral analysis of Aharonov-Bohm oscillations

    NASA Astrophysics Data System (ADS)

    Roy, Bidisha; Ji, Haojie; Dhomkar, Siddharth; Cadieu, Fred J.; Peng, Le; Moug, Richard; Tamargo, Maria C.; Kuskovsky, Igor L.

    2013-02-01

    A spectral analysis of the Aharonov-Bohm (AB) oscillations in photoluminescence intensity was performed for stacked type-II ZnTe/ZnSe quantum dots (QDs) fabricated within multilayered Zn-Se-Te system with sub-monolayer insertions of Te. Robust AB oscillations allowed for fine probing of distinguishable QDs stacks within the ensemble of QDs. The AB transition magnetic field, B AB , changed from the lower energy side to the higher energy side of the PL spectra revealing the presence of different sets of QDs stacks. The change occurs within the spectral range, where the contributing green and blue bands of the spectra overlapped. "Bundling" in lifetime measurements is seen at transition spectral regions confirming the results.

  20. Thermoelectric and transport properties of mechanically-alloyed Bi2Te3- y Se y solid solutions

    NASA Astrophysics Data System (ADS)

    Eum, A.-Young; Kim, Il-Ho; Choi, Soon-Mok; Lee, Soonil; Seo, Won-Seon; Park, Jae-Soung; Yang, Seung-Ho

    2015-11-01

    Bi2Te3- y Se y ( y = 0 - 0.6) solid solutions were prepared by using mechanical alloying and hot pressing. The lattice constants decreased with increasing Se content, which revealed the successful formation of solid solutions by using a planetary mill. The relative densities of hot-pressed specimens were higher than 96%. All specimens indicated n-type conductions in the measuring temperature range from 323 K to 523 K, and the electrical conductivity slightly decreased with increasing temperature. The Seebeck coefficient increased with increasing Se content, and the electrical and the thermal conductivities decreased; thus, the dimensionless figure of merit was improved. A maximum dimensionless figure of merit of 0.76 was obtained at 473 K for Bi2Te2.55Se0.45.

  1. Nouveaux chalcogenures mixtesGaMo 4( XX') 8 ( X =S, Se, Te)a`clusters tetraedriques Mo 4

    NASA Astrophysics Data System (ADS)

    Yaich, H. Ben; Jegaden, J. C.; Potel, M.; Chevrel, R.; Sergent, M.; Berton, A.; Chaussy, J.; Rastogi, A. K.; Tournier, R.

    1984-02-01

    Nous prsentons ici la prparation et la caractrisation de nouveaux chalcognures mixtes de molybde`ne de formulationGaMo 4( XX') 8avec ( X,X' =S, Se, Te) appartenanta`la famille des chalcognuresGaMo 4X8a`clusters ttradriques Mo 4.

  2. Two-dimensional bismuth-rich nanosheets through the evaporative thinning of Se-doped Bi2Te3

    NASA Astrophysics Data System (ADS)

    Hanson, Eve D.; Shi, Fengyuan; Chasapis, Thomas C.; Kanatzidis, Mercouri G.; Dravid, Vinayak P.

    2016-02-01

    High bulk conductance obscures the behavior of surface states in the prototypical topological insulators Bi2Te3 and Bi2Se3. However, ternary phases of Bi2Te3-ySey with balanced donor and acceptor levels may lead to large bulk resistivity, allowing for the observation of the surface states. Additionally, the contribution of the bulk conductance may be further suppressed by nanostructuring, increasing the surface-to-volume ratio. Herein we report the synthesis of a ternary tetradymite newly confined to two dimensions. Ultra-thin large-area stable nanosheets were fabricated via evaporative thinning of a Bi2Te2.9Se0.1 original phase. Owing to vapor pressure differences, a compositional shift to a final Bi-rich phase is observed. The Se/Te ratio of the nanosheet increases tenfold, due to the higher stability of the Bi-Se bonds. Hexagonal crystal symmetry is maintained despite dramatic changes in thickness and stoichiometry. Given that small variations in stoichiometry of this ternary system can incur large changes in carrier concentration and switch majority carrier type, the large compositional shifts found in this case imply that compositional analysis of similar CVD and PVD grown materials is critical to correctly interpret topological insulator performance. Further, the characterization techniques deployed, including STEM-EDS and ToF-SIMS, serve as a case study in determining such compositional shifts in two-dimensional form.

  3. Pressure-induced superconductivity in topological parent compound Bi2Te3.

    PubMed

    Zhang, J L; Zhang, S J; Weng, H M; Zhang, W; Yang, L X; Liu, Q Q; Feng, S M; Wang, X C; Yu, R C; Cao, L Z; Wang, L; Yang, W G; Liu, H Z; Zhao, W Y; Zhang, S C; Dai, X; Fang, Z; Jin, C Q

    2011-01-01

    We report a successful observation of pressure-induced superconductivity in a topological compound Bi(2)Te(3) with T(c) of ?3 K between 3 to 6 GPa. The combined high-pressure structure investigations with synchrotron radiation indicated that the superconductivity occurred at the ambient phase without crystal structure phase transition. The Hall effects measurements indicated the hole-type carrier in the pressure-induced superconducting Bi(2)Te(3) single crystal. Consequently, the first-principles calculations based on the structural data obtained by the Rietveld refinement of X-ray diffraction patterns at high pressure showed that the electronic structure under pressure remained topologically nontrivial. The results suggested that topological superconductivity can be realized in Bi(2)Te(3) due to the proximity effect between superconducting bulk states and Dirac-type surface states. We also discuss the possibility that the bulk state could be a topological superconductor. PMID:21173267

  4. Non-isothermal crystallization kinetics of ternary Se90Te10-xPbx glasses

    NASA Astrophysics Data System (ADS)

    Atyia, H. E.; Farid, A. S.

    2016-02-01

    Ternary Se90Te10-xPbx with (x=2 and 6 at%) glass compositions have been prepared using a melt quenching technique and performed the non-isothermal kinetics by differential thermal analysis (DTA) at various heating rates. The glassy state of the studied samples has been characterized using x-ray diffraction analysis. The glass transition temperature Tg, the onset temperature of crystallization Tc and the peak temperature of crystallization Tp are found to be composition and heating rate dependent. From heating rate dependence of Tg and Tp, the glass transition activation energies Eg and the crystallization activation energies Ec have been determined according to different methods. The transformation mechanisms have been examined by the values of Avrami exponent n and dimensionality of growth m. Thermal stability and glass formation ability have been monitored through the calculation of the thermal stability S, temperature difference ΔT, Hurby parameter Hr, frequency factor Ko, crystallization rate factor K and fragility index F. The compositional dependence of the above-mentioned parameters indicate that, the stability of the studied glass samples decreases with increasing Pb at% content.

  5. Vortex Dynamics and Irreversibility Line in FeSe0.25Te0.75

    NASA Astrophysics Data System (ADS)

    Puri, A.; Marcelli, A.; Poccia, N.; Ricci, A.; Zeitler, U.; Di Gioacchino, D.

    AC multi-harmonic susceptibility measurements were performed in the FeSe0.25Te0.75 superconductor. A large frequency-magnetic field-temperature (f-H-T) region of the superconducting phase diagram was mapped under a wide range of the DC magnetic field. In particular the irreversibility line was accurately drawn up to 20 T as a function of both T and f. The frequency dependence of the irreversibility line was analyzed using the 3D vortex glass model, well describing the experimental behavior up to high magnetic field. The data evidence the evolution in time of the metastable critical state in a final stable vortex glass phase by decreasing the frequency. Moreover, from the Werthamer, Helfand and Hohenberg theory we estimated the upper critical field μ0Hc2(0 K)∼ 62 T. The observed 3D flux-pinning response points out that this system is suitable for carrying quite high critical currents.

  6. Photoconductivity studies of Te-substituted Sn-Sb-Se semiconducting films

    NASA Astrophysics Data System (ADS)

    Chander, Ravi; Thangaraj, R.

    2014-02-01

    Amorphous thin films of chalcogenide Sn10Sb20Se70- X Te X (0? X?8) composition were deposited using the thermal evaporation technique. The dark conductivity measurement showed a thermally activated conduction process with single activation energy in a studied temperature regime. Photoconductivity showed no maxima in the measured temperature regime revealing that the material belongs to the type II photoconductor. The observed small difference between activation energy for photoconduction ? E ph and dark conduction ?E accounts for low photosensitivity of the material. The intensity variation of the photocurrent obeys the power law with the exponent ?0.56-0.64 revealing the dominant bimolecular recombination mechanism in the studied compositions. Transient photoconductivity revealed that initial rise of the photocurrent becomes slow with tellurium content in the sample. The change in the shape of the transient photocurrent with composition is qualitatively explained based upon change in defect statistics introduced by the tellurium content in the sample. The decay process after the initial decay was found to be nonexponential and is described with a differential life time of charge carrier that showed a decreasing trend with the tellurium content in the sample.

  7. Hall effect study of iron chalcogenide Fe1+y(Te 1-x Se x)

    NASA Astrophysics Data System (ADS)

    Liu, T. J.; Hu, J.; Qian, B.; Mao, Z. Q.

    2011-03-01

    Our previous work reveals three composition regions with distinct physical properties in the phase diagram of Fe 1+y (Te 1-x Se x) (Liu et al., Nature Materials 9, 719 (2010)). Region I (0 <= x <= 0.09) exhibits long range (? , 0) antiferromagnetic (AFM) order, while Region II (0.09 < x < 0.29) displays short range (?, 0) magnetic correlations and is characterized by a weakly localized electronic state. Only in Region III (x >= 0.29) do we find evidence of bulk superconductivity. In this talk, we will report Hall effect studies of this system. In the AFM state of Region I, we find that the inverse Hall angle (IHA) exhibits a quadratic temperature dependence, consistent with the Fermi liquid behavior probed by resistivity and specific heat measurements. In the weakly localized state of Region II, however, the IHA shows a linear temperature dependence, implying that the quasiparticle scattering rate in this region changes significantly compared with the AFM phase. We will discuss how quasiparticle scattering is associated with (?, 0) magnetic fluctuations.

  8. Cs7Sm11[TeO3]12Cl16 and Rb7Nd11[TeO3]12Br16, the new tellurite halides of the tetragonal Rb6LiNd11[SeO3]12Cl16 structure type

    NASA Astrophysics Data System (ADS)

    Charkin, Dmitri O.; Black, Cameron; Downie, Lewis J.; Sklovsky, Dmitry E.; Berdonosov, Peter S.; Olenev, Andrei V.; Zhou, Wuzong; Lightfoot, Philip; Dolgikh, Valery A.

    2015-12-01

    Two new rare-earth - alkali - tellurium oxide halides were synthesized by a salt flux technique and characterized by single-crystal X-ray diffraction. The structures of the new compounds Cs7Sm11[TeO3]12Cl16 (I) and Rb7Nd11[TeO3]12Br16 (II) (both tetragonal, space group I4/mcm) correspond to the sequence of [MLn11(TeO3)12] and [M6X16] layers and bear very strong similarities to those of known selenite analogs. We discuss the trends in similarities and differences in compositions and structural details between the Se and Te compounds; more members of the family are predicted.

  9. Optical and structural properties of amorphous Se x Te100- x aligned nanorods

    NASA Astrophysics Data System (ADS)

    Al-Agel, Faisal A.

    2013-12-01

    In the present work, we report studies on optical and structural phenomenon in as-deposited thin films composed of aligned nanorods of amorphous Se x Te100- x ( x = 3, 6, 9, and 12). In structural studies, field emission scanning electron microscopic (FESEM) images suggest that these thin films contain high yield of aligned nanorods. These nanorods show a completely amorphous nature, which is verified by X-ray diffraction patterns of these thin films. Optical studies include the measurement of spectral dependence of absorption, reflection, and transmission of these thin films, respectively. On the basis of optical absorption data, a direct optical band gap is observed. This observation of a direct optical band gap in these nanorods is interesting as chalcogenides normally show an indirect band gap, and due to this reason, these materials could not become very popular for semiconducting devices. Therefore, this is an important report and will open up new directions for the application of these materials in semiconducting devices. The value of this optical band gap is found to decrease with the increase in selenium (Se) concentration. The reflection and absorption data are employed to estimate the values of optical constants (extinction coefficient ( k) and refractive index ( n)). From the spectral dependence of these optical constants, it is found that the values of refractive index ( n) increase, whereas the values of extinction coefficient ( k) decrease with the increase in photon energy. The real and imaginary parts of dielectric constants calculated with the values of extinction coefficient ( k) and refractive index ( n), are found to vary with photon energy and dopant concentration.

  10. Synthesis and thermoelectric properties of Mn-doped AgSbTe2 compounds

    NASA Astrophysics Data System (ADS)

    Zhang, He; Luo, Jun; Zhu, Hang-Tian; Liu, Quan-Lin; Liang, Jing-Kui; Li, Jing-Bo; Liu, Guang-Yao

    2012-10-01

    Polycrystalline p-type Ag0.9Sb1.1-xMnxTe2.05 (x = 0.05, 0.10, and 0.20) compounds have been prepared by a combined process of melt-quenching and spark plasma sintering. The sample composition of Ag0.9Sb1.1-xMnxTe2.05 has been specially designed in order to achieve the doping effect by replacing part of Sb with Mn and to present the uniformly dispersed Ag2Te phase in the matrix by adding insufficient Te, which is beneficial for optimizing the electrical transport properties and enhancing the phonon scattering effect. All the samples have the NaCl-type structure according to our X-ray powder diffraction analysis. After the treatment of spark plasma sintering, only the sample with x = 0.20 has a small amount of MnTe2 impurities. The thermal analysis indicates that a tiny amount of Ag2Te phase exists in all these samples. The presence of the MnTe2 impurity with high resistance and high thermal conductivity leads to the deteriorative thermoelectric performance of the sample with x = 0.20 due to the decreased electrical transport properties and the increased thermal conductivity. In contrast, the sample with x = 0.10 exhibits enhanced thermoeletric properties due to the Mn-doping effect. A dimensionless thermoelectric figure of merit of 1.2 is attained for the sample with x = 0.10 at 573 K, showing promising thermoelectric properties in the medium temperature range.

  11. Enhanced thermoelectric performance in Bi-doped p-type AgSbTe2 compounds

    NASA Astrophysics Data System (ADS)

    Mohanraman, Rajeshkumar; Sankar, Raman; Chou, F. C.; Lee, C. H.; Chen, Yang-Yuan

    2013-10-01

    The influence of bismuth (Bi) substitution on the thermoelectric properties of AgSbTe2 compounds was investigated and compared with the undoped AgSbTe2. The addition of Bi dopants not only resulted in a reduction in thermal conductivity but also markedly increased the thermopower in the Ag(Sb1-xBix)Te2 series. Additional phonon scatterings were created by Bi doping and led to a reduction of thermal conductivity. The lattice thermal conductivity is significantly reduced which could be ascribed to enhancement of phonon scattering by dopants with greater atomic weight. In addition, the thermopower was enhanced, which was attributed to the electron-filtering effects caused by the nanoscaled microstructures. Because of the extremely low thermal conductivity (0.48 Wm-1K-1) and moderate power factor of AgBi0.05Sb0.95Te2, a maximum ZT value of (1.04 ± 0.08) was reached at 570 K; yielding an enhancement of greater than 10% compared with an undoped AgSbTe2. this result shows promising thermoelectric properties in the medium temperature range.

  12. Super sensitization: grand charge (hole/electron) separation in ATC dye sensitized CdSe, CdSe/ZnS type-I, and CdSe/CdTe type-II core-shell quantum dots.

    PubMed

    Debnath, Tushar; Maity, Partha; Ghosh, Hirendra N

    2014-10-01

    Ultrafast charge-transfer dynamics has been demonstrated in CdSe quantum dots (QD), CdSe/ZnS type-I core-shell, and CdSe/CdTe type-II core-shell nanocrystals after sensitizing the QD materials by aurin tricarboxylic acid (ATC), in which CdSe QD and ATC form a charge-transfer complex. Energy level diagrams suggest that the conduction and valence band of CdSe lies below the LUMO and the HOMO level of ATC, respectively, thus signifying that the photoexcited hole in CdSe can be transferred to ATC and that photoexcited ATC can inject electrons into CdSe QD, which has been confirmed by steady state and time-resolved luminescence studies and also by femtosecond time-resolved absorption measurements. The effect of shell materials (for both type-I and type-II) on charge-transfer processes has been demonstrated. Electron injection in all the systems were measured to be <150?fs. However, the hole transfer time varied from 900?fs to 6?ps depending on the type of materials. The hole-transfer process was found to be most efficient in CdSe QD. On the other hand, it has been found to be facilitated in CdSe/CdTe type-II and retarded in CdSe/ZnS type-I core-shell materials. Interestingly, electron injection from photoexcited ATC to both CdSe/CdTe type-II and CdSe/ZnS type-I core-shell has been found to be more efficient as compared to pure CdSe QD. Our observation suggests the potential of quantum dot core-shell super sensitizers for developing more efficient quantum dot solar cells. PMID:25179856

  13. Crystallization processes in Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass

    SciTech Connect

    Svoboda, Roman; Bezdička, Petr; Gutwirth, Jan; Málek, Jiří

    2015-01-15

    Highlights: • Crystallization kinetics of Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass was studied in dependence on particle size by DSC. • All studied fractions were described in terms of the SB autocatalytic model. • Relatively high amount of Te enhances manifestation of bulk crystallization mechanisms. • XRD analysis of samples crystallized under different conditions showed correlation with DSC data. • XRD analysis revealed a new crystallization mechanism indistinguishable by DSC. - Abstract: Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis were used to study crystallization in Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass under non-isothermal conditions as a function of the particle size. The crystallization kinetics was described in terms of the autocatalytic Šesták–Berggren model. An extensive discussion of all aspects of a full-scale kinetic study of a crystallization process was undertaken. Dominance of the crystallization process originating from mechanically induced strains and heterogeneities was confirmed. Substitution of Se by Te was found to enhance the manifestation of the bulk crystallization mechanisms (at the expense of surface crystallization). The XRD analysis showed significant dependence of the crystalline structural parameters on the crystallization conditions (initial particle size of the glassy grains and applied heating rate). Based on this information, a new microstructural crystallization mechanism, indistinguishable by DSC, was proposed.

  14. High compositional homogeneity of CdTe{sub x}Se{sub 1?x} crystals grown by the Bridgman method

    SciTech Connect

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Tappero, R.; Yang, G.; Gul, R.; James, R. B.; Lee, K.; Lee, W.

    2015-02-01

    We obtained high-quality CdTe{sub x}Se{sub 1?x} (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNLs National Synchrotron Light Source X27A beam line. The compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ?1.0. This high uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing higher efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional Cd{sub x}Zn{sub 1?x}Te (CdZnTe or CZT)

  15. Field-Effect Transistors Based on Few-Layered Ambipolar MoSe2 and ?-MoTe2

    NASA Astrophysics Data System (ADS)

    Rhodes, Daniel; Pradhan, Nihar; Feng, Simin; Moon, Byoung-Hee; Xin, Yan; Memaran, Sharhriar; Siddiq, Muhandis; Bhaskaran, Lakshmi; Hill, Stephen; Terrones, Humberto; Terrones, Mauricio; Pulickel, Ajayan; Balicas, Luis

    2015-03-01

    We report a room temperature study on the electrical responses of field-effect transistors (FETs) based on few-layered MoSe2 and MoTe2, grown by chemical vapor transport, mechanically exfoliated onto SiO2. MoSe2 FETs electrically contacted with Ti display ambipolar behavior with current on/off ratios up to 106 for both hole and electron channels. For both channels the Hall effect indicates Hall mobilities ?H ~= 250 cm2/(Vs), which are comparable to the corresponding field-effect mobilities, ?FE ~ 175 cm2/(Vs), evaluated through two-terminal field-effect configuration. MoTe2 field-effect transistors are observed to be hole-doped, displaying on/off ratios of ~ 106 and subthreshold swings of ~140 mV per decade. Our results suggest that MoSe2 is a good candidate for single atomic layer p -n junctions and for low-power, complementary logic applications, with MoTe2 having similar properties. However, in MoTe2 we observe a field-effect mobility of only ?FE ~ 20 cm2/(Vs) in a bilayer device and ~ 27 cm2/(Vs) in seven layers. This work was supported by the U.S. Army Research Office MURI Grant No. W911NF-11-1-0362. The NHMFL is supported by NSF through NSF-DMR-0084173 and the State of Florida.

  16. Thin-film CdTe and CuInSe{sub 2} photovoltaic technologies

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; von Roedern, B.G.

    1993-08-01

    Total-area conversion efficiency of 15%--15.8% have been achieved for thin-film CdTe and CIS solar cells. Modules with power output of 5--53 W have been demonstrated by several groups world-wide. Critical processes and reaction pathways for achieving excellent PV devices have been eluciated. Research, development and technical issues have been identified, which could result in potential improvements in device and module performance. A 1-kW thin-film CdTe array has been installed and is being tested. Multimegawatt thin-film CdTe manufacturing plants are expected to be completed in 1-2 years.

  17. Growth of CdTexSe1-x from a Te-rich solution for applications in radiation detection

    NASA Astrophysics Data System (ADS)

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Lee, K.; Marshall, M.; Yang, G.; James, R. B.

    2014-01-01

    We grew CdTexSe1-x (CTS) crystals from a Te-rich solution by using the traveling heater method (THM). The average size distribution and concentration of Te inclusions/precipitates in these as-grown samples were measured to be ~7104 cm-3, which is much lower than values typical for the present state-of-the-art commercial CdZnTe (CZT) material. Their low-temperature photoluminescence measurement indicates high quality of the material; however the resistivity obtained via I-V curve measurements was ~5108 ?-cm, which is low in comparison to that required for gamma detectors. A well-resolved alpha response peak can be detected for both planar- and hemispherical detector geometry. The (??)e value for our as-grown sample at room temperature was found to be ~410-3 cm2/V.

  18. Growth of Compound Semiconductors in a Low Gravity Environment: Microgravity Growth of PbSnTe

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Debnam, W. J.; Rosch, W. R.; Baker, N. R.; Narayanan, R.

    1999-01-01

    The growth of the alloy compound semiconductor lead tin telluride (PbSnTe) was chosen for a microgravity flight experiment in the Advanced Automated Directional Solidification Furnace (AADSF), on the United States Microgravity Payload-3 (USNP-3) in February, 1996 and on USNW- 4 in November, 1997. The objective of these experiments was to determine the effect of the reduction in convection, during the growth process, brought about by the microgravity environment. The properties of devices made from PbSnTe, an alloy of PbTe and SnTe, are dependent on the ratio of the elemental components in the starting crystal. Compositional uniformity in the crystal is only obtained if there is no significant mixing in the liquid during growth. The technological importance of PbSnTe lies in its band gap versus composition diagram which has a zero energy crossing at approximately 40% SnTe. This facilitates the construction of long wavelength (greater than 6 gm) infrared detectors and lasers. The properties and utilization of PbSnTe are the subject of other papers. 1,2 PbSnTe is also interesting from a purely scientific point of view. It is, potentially, both solutally and thermally unstable due to the temperature and density gradients present during growth. Density gradients, through thermal expansion, are imposed in directional solidification because temperature gradients are required to extract heat. Solutal gradients occur in directional solidification of alloys due to segregation at the interface. Usually the gradients vary with both experiment design and inherent materials properties. In a simplified one dimensional analysis with the growth axis parallel to the gravity vector, only one of the two instabilities work at a time. During growth, the temperature in the liquid increases ahead of the interface. Therefore the density, due to thermal expansion, is decreasing in that direction. However, the phase diagram shows that the lighter SnTe is preferentially rejected at the interface. This causes the liquid density to increase with distance away from the interface.

  19. Ce{sub 2}AgYb{sub 5/3}Se{sub 6}, La{sub 2}CuErTe{sub 5}, and Ce{sub 2}CuTmTe{sub 5}: Three new quaternary interlanthanide chalcogenides

    SciTech Connect

    Babo, Jean-Marie; Albrecht-Schmitt, Thomas E.

    2013-01-15

    Three new ordered quaternary interlanthanide chalcogenides, Ce{sub 2}AgYb{sub 5/3}Se{sub 6}, La{sub 2}CuErTe{sub 5}, and Ce{sub 2}CuTmTe{sub 5}, have been prepared by direct reaction of the elements in molten NaBr at 900 Degree-Sign C. Each compound forms a new structure-type. The Ce{sub 2}AgYb{sub 5/3}Se{sub 6} structure consists of {infinity}{sup 2}{l_brace} [AgYb{sub 5/6}Se{sub 6}]{sup 6-}{r_brace} layers intercalated by Ce{sup 3+} cations. These layers are composed of {infinity}{sup 1}{l_brace} [Yb{sub 5/3}Se{sub 6}]{sup 7-}{r_brace} quadruplet ribbons of [YbSe{sub 6}]{sup 9-} octahedra and infinite {infinity}{sup 1}{l_brace} [AgSe{sub 6}]{sup 11-}{r_brace} double chains of [AgSe{sub 5}]{sup 9-}. The La{sub 2}CuErTe{sub 5} structure is made of one-dimensional {infinity}{sup 1}{l_brace} [CuErTe{sub 5}]{sup 6-}{r_brace} ribbons separated by La{sup 3+} cations. These ribbons are formed by cis-edge sharing {infinity}{sup 1}{l_brace} [CuTe{sub 2}]{sup 3-}{r_brace} tetrahedral chains and trans-edge sharing {infinity}{sup 1}{l_brace} [ErTe{sub 4}]{sup 5-}{r_brace} chains. While La{sub 2}CuErTe{sub 5} crystallizes in the orthorhombic space group Pnma, Ce{sub 2}CuTmTe{sub 5} crystallizes in the monoclinic space group C2/m. The latter crystal structure is assembled from {infinity}{sup 2}{l_brace} [CuTmTe{sub 5}]{sup 6-}{r_brace} layers intercalated by Ce{sup 3+} cations. These layers consist of single {infinity}{sup 1}{l_brace} [TmTe{sub 4}]{sup 5-}{r_brace} chains connected to each other through dimers or pseudo-double chains. - Graphical abstract: [CuTe{sub 4}]{sup 7-} tetrahedra sharing cis-edges to yield chains in the La{sub 2}CuErTe{sub 5}. Highlights: Black-Right-Pointing-Pointer New ordered interlanthanide tellurides. Black-Right-Pointing-Pointer New quaternary chalcogenides. Black-Right-Pointing-Pointer Low-dimensional lanthanide chalcogenide substructures. Black-Right-Pointing-Pointer Flux synthesis of new chalcogenides.

  20. Raman spectrum of Cu2CdSnSe4 stannite structure semiconductor compound

    NASA Astrophysics Data System (ADS)

    Rincn, C.; Quintero, M.; Moreno, E.; Power, Ch.; Quintero, E.; Henao, J. A.; Macas, M. A.

    2015-12-01

    Raman spectrum of Cu2CdSnSe4 quaternary semiconductor compounds with tetragonal stannite-type structure (space group I 4 bar 2m), a material which has been recognized recently as a potential candidate for thermoelectric applications, has been studied. Most of the fourteen Raman lines expected for this compound according to group theory analysis were observed in the spectrum. Besides to the two strongest A1-symmetry stannite modes at 172 and 192cm-1 originated from the motion of Se anion around the Cu and Sn cations which remain at rest, the leftover observed Raman lines were tentatively assigned to specific eigenmodes of the stannite crystal structure by comparing these line frequencies with those obtained for this compound from IR measurements as well as with those calculated Raman modes for the Cu2ZnSnSe4 stannite-compound reported in the literature. Two spurious Raman lines related to the presence in this compound of SnSe and SnSe2 minority secondary phases have also been found in the Raman spectrum.

  1. Optimization of Thermoelectric Performance of Anisotropic Ag x Sn1- x Se Compounds

    NASA Astrophysics Data System (ADS)

    Leng, Huaqian; Zhou, Min; Zhao, Jie; Han, Yemao; Li, Laifeng

    2016-01-01

    SnSe is a promising thermoelectric material due to its ultralow thermal conductivity. However, stoichiometric SnSe compounds exhibit very low intrinsic defect concentration (3 × 1017 cm-3) and poor electrical transport properties, limiting the thermoelectric performance. In the present work, we investigated the effect of Ag dopant on the thermoelectric properties of SnSe. The results demonstrate that all the Ag x Sn1- x Se compounds exhibited anisotropic thermoelectric properties. The carrier concentration in the Ag x Sn1- x Se compounds greatly increased with increase of the Ag content, saturating at 1.9 × 1019 cm-3 for Ag0.01Sn0.99Se at room temperature. We found that a maximum zT value of 0.74 was obtained for Ag0.01Sn0.99Se perpendicular to the pressing direction at 823 K, being 23% higher than that of undoped SnSe ( zT = 0.6).

  2. Enhanced power factor and high-pressure effects in (Bi,Sb){sub 2}(Te,Se){sub 3} thermoelectrics

    SciTech Connect

    Ovsyannikov, Sergey V. E-mail: sergey2503@gmail.com; Morozova, Natalia V.; Korobeinikov, Igor V.; Vokhmyanin, Alexander P.; Shchennikov, Vladimir V.; Lukyanova, Lidia N.; Usov, Oleg A.; Kutasov, Vsevolod A.; Manakov, Andrey Y.; Likhacheva, Anna Y.; Ancharov, Alexey I.; Berger, Ivan F.; Kulbachinskii, Vladimir A.; Okada, Taku

    2015-04-06

    We investigated the effects of applied high pressure on thermoelectric, electric, structural, and optical properties of single-crystalline thermoelectrics, Bi{sub 2}Te{sub 3}, Bi{sub x}Sb{sub 2−x}Te{sub 3} (x = 0.4, 0.5, 0.6), and Bi{sub 2}Te{sub 2.73}Se{sub 0.27} with the high thermoelectric performance. We established that moderate pressure of about 2–4 GPa can greatly enhance the thermoelectric power factor of all of them. X-ray diffraction and Raman studies on Bi{sub 2}Te{sub 3} and Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} found anomalies at similar pressures, indicating a link between crystal structure deformation and physical properties. We speculate about possible mechanisms of the power factor enhancement and suppose that pressure/stress tuning can be an effective tool for the optimization of the thermoelectric performance.

  3. New phases in the systems Ca?Te?O and Cd?Te?O: the calcium tellurite(IV) Ca 4Te 5O 14, and the cadmium compounds Cd 2Te 3O 9 and Cd 2Te 2O 7 with mixed-valent oxotellurium(IV/VI) anions

    NASA Astrophysics Data System (ADS)

    Weil, Matthias

    2004-01-01

    Single crystals of the new compounds Ca 4Te 5O 14, Cd 2Te 3O 9 and Cd 2Te 2O 7 were obtained during phase formation experiments in the systems Ca?Te?O and Cd?Te?O. The crystal structures {Ca 4Te 5O 14: Pbca, Z=8, a=10.9536(16) , b=16.556(2) , c=15.779(2) , 4247 structure factors, 209 parameters, R[ F2>2 ?( F2)]=0.0184, wR( F2 all)=0.0403; Cd 2Te 3O 9: P2 1/ c, Z=4, a=9.3039(7) , b=7.3196(5) , c=13.2479(7) , ?=122.914(4), 2179 structure factors, 128 parameters, R[ F2>2 ?( F2)]=0.0224, wR( F2 all)=0.0606; Cd 2Te 2O 7: P 1, Z=4, a=7.4328(7) , b=8.3346(6) , c=9.9898(8) , ?=87.005(6), ?=78.843(8), ?=77.210(8), 4246 structure factors, 203 parameters, R[ F2>2 ?( F2)]=0.0279, wR( F2 all)=0.0696} were determined and refined from single crystal X-ray diffraction data. All compounds exhibit new structure types consisting of complex frameworks between the main building units; in all structures one-dimensional channels with cavities about 4.0 in size are observed. Calcium tellurite(IV), Ca 4Te 5O 14, is made up of [CaO 7] polyhedra and Te IVO 3 and Te IVO 4 groups whereas both cadmium compounds are composed of [CdO x] polyhedra ( x=7 for Cd 2Te 3O 9, x=6-8 for Ca 2Te 2O 7) and Te IVO 3 and Te VIO 6 groups, respectively.

  4. Electrochemical control over photoinduced electron transfer and trapping in CdSe-CdTe quantum-dot solids.

    PubMed

    Boehme, Simon C; Walvis, T Ardaan; Infante, Ivan; Grozema, Ferdinand C; Vanmaekelbergh, Danil; Siebbeles, Laurens D A; Houtepen, Arjan J

    2014-07-22

    Understanding and controlling charge transfer between different kinds of colloidal quantum dots (QDs) is important for devices such as light-emitting diodes and solar cells and for thermoelectric applications. Here we study photoinduced electron transfer between CdTe and CdSe QDs in a QD film. We find that very efficient electron trapping in CdTe QDs obstructs electron transfer to CdSe QDs under most conditions. Only the use of thiol ligands results in somewhat slower electron trapping; in this case the competition between trapping and electron transfer results in a small fraction of electrons being transferred to CdSe. However, we demonstrate that electron trapping can be controlled and even avoided altogether by using the unique combination of electrochemistry and transient absorption spectroscopy. When the Fermi level is raised electrochemically, traps are filled with electrons and electron transfer from CdTe to CdSe QDs occurs with unity efficiency. These results show the great importance of knowing and controlling the Fermi level in QD films and open up the possibility of studying the density of trap states in QD films as well as the systematic investigation of the intrinsic electron transfer rates in donor-acceptor films. PMID:24883930

  5. Thermoelectric Properties of Nanocrystalline Bi2(Te1- x Se x )3 Prepared by High-Pressure Sintering

    NASA Astrophysics Data System (ADS)

    Zou, Ping; Xu, Guiying; Wang, Song

    2015-06-01

    Bi2(Te1- x Se x )3 ( x = 0, 0.03, 0.05, 0.07, 0.10) bulk materials were prepared by high-pressure (6.0 GPa) sintering (HPS) at 673 K. The samples were then annealed under vacuum, at 633 K, for 36 h. Phase composition, morphology, and thermoelectric (TE) properties were characterized. The alloys consisted of nanoparticles before and after annealing. Such nanostructures effectively reduce lattice thermal conductivity by enhancing phonon scattering. Substitution of tellurium by selenium had a substantial effect on the electron transport properties of the Bi2(Te1- x Se x )3 alloys. HPS with annealing can improve TE properties by improving the electron transport properties and simultaneously reducing the lattice thermal conductivity of nanostructured samples. A peak thermoelectric figure of merit ( ZT) of 0.81 at 373 K was achieved for the annealed sample with x = 0.10; this value ZT was approximately 8% higher than that of n-type zone-melted material, making these materials more attractive for commercial applications.

  6. Interplay between magnetic impurity and superconductivity in annealed Fe1.05Te0.75Se0.25

    NASA Astrophysics Data System (ADS)

    Lin, Wenzhi; Ganesh, Panchapakesan; Gianfrancesco, Anthony; Berlijn, Tom; Maier, Thomas; Kalilin, Sergei; Sales, Brian; Pan, Minghu

    2014-03-01

    By annealing Fe1.05Te0.75Se0.25 in Te vapor, we are able to recover the moment of the magnetic impurity in the bulk chalcogenide superconductor, and enhance the superconductivity in the material. Scanning tunneling microscopy/ spectroscopy studies across a local magnetic impurity reveal the modification of electronic structure around the impurity on the surface of Fe1.05Te0.75Se0.25 sample after being annealed in the Te-vapor. The superconducting gap feature, normally seen on a pristine area, is suppressed around the magnetic impurity. In addition, density-functional theory calculations are carried out to identify the atomic structure, chemical composition and magnetic moment of impurity. Research was supported (WL, BCS, SVK) by Materials Sciences and Engineering Division, Basic Energy Sciences, the U.S. Department of Energy. This research was conducted (WL, MP) at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Fellowship support (AG) from the UT/ORNL Bredesen Center for Interdisciplinary Research and Graduate Education.

  7. Printed Se-Doped MA n-Type Bi2Te3 Thick-Film Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Madan, Deepa; Chen, Alic; Wright, Paul K.; Evans, James W.

    2012-06-01

    In this work, we highlight new materials processing developments and fabrication techniques for dispenser-printed thick-film single-element thermoelectric generators (TEG). Printed deposition techniques allow for low-cost and scalable manufacturing of microscale energy devices. This work focuses on synthesis of unique composite thermoelectric systems optimized for low-temperature applications. We also demonstrate device fabrication techniques for high-density arrays of high-aspect-ratio planar single-element TEGs. Mechanical alloyed (MA) n-type Bi2Te3 powders were prepared by taking pure elemental Bi and Te in 36:64 molar ratio and using Se as an additive. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used to characterize the as-milled powders to confirm the Bi2Te3 phase formation and particle size below 50 ?m. Thermoelectric properties of the composites were measured from room temperature to 100C. We achieved a dimensionless figure of merit ( ZT) of 0.17 at 300 K for MA n-type Bi2Te3-epoxy composites with 2 wt.% Se additive. A 20 single-leg TEG prototype with 5 mm 400 ?m 120 ?m printed element dimensions was fabricated on a polyimide substrate with evaporated gold contacts. The prototype device produced a power output of 1.6 ?W at 40 ?A and 40 mV voltage for a temperature difference of 20C.

  8. Oxidation behavior of amorphous metallic Ni{sub 3}(SbTe{sub 3}){sub 2} compound

    SciTech Connect

    Jun, Jong-Ho; Jung, Jin-Seung . E-mail: jjscm@kangnung.ac.kr; Oh, Seung-Lim; Kim, Yong-Rok; Lee, Sung-Han; O'Connor, Charles J.

    2006-03-09

    Amorphous Ni{sub 3}(SbTe{sub 3}){sub 2} compound was prepared from a metathesis between Zintl phase K{sub 3}SbTe{sub 3} and NiBr{sub 2} in solution and its oxidation behavior was investigated in the temperature range of 200-700 deg. C in air. To characterize the sample, thermogravimetry (TG), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive analysis by X-ray (EDAX) analyses were performed and electrical conductivity was measured as a function of temperature in the range of 25-800 deg. C in air. The specimen showed a metallic conducting-like behavior below 585 deg. C while a semiconducting-like behavior above 585 deg. C. At a first oxidation step of Ni{sub 3}(SbTe{sub 3}){sub 2} below 500 deg. C, TeO{sub 2} phase is formed. Above 500 deg. C, NiO phase is formed, then some NiO reacts with TeO{sub 2} to form NiTeO{sub 3} and NiSb{sub 2}O{sub 6} is simultaneously formed. Above 700 deg. C, NiTeO{sub 3} is further reacted with TeO{sub 2} to form NiTe{sub 2}O{sub 5}. Both NiTeO{sub 3} and NiTe{sub 2}O{sub 5} are decomposed above 774 deg. C.

  9. Ab initio study of the fundamental properties of HgSe, HgTe and their HgSexTe1-x alloys

    NASA Astrophysics Data System (ADS)

    El Haj Hassan, F.; Shafaay, B. Al; Meradji, H.; Ghemid, S.; Belkhir, H.; Korek, M.

    2011-12-01

    First-principles calculations were performed to study the structural, electronic and thermodynamic properties of HgSe, HgTe and HgSexTe1-x ternary alloys using the full potential-linearized augmented plane wave plus local orbitals method within the density functional theory. We use both the Wu-Cohen and Engel-Vosko generalized gradient approximations of the exchange-correlation energy that are based on the optimization of total energy and corresponding potential, respectively. Our investigation of the effect of composition on the lattice constant, bulk modulus and iconicity for ternary alloys shows almost nonlinear dependence on the composition. Besides, a regular-solution model is used to investigate the thermodynamic stability of the alloys, which mainly indicates a phase miscibility gap. In addition, the quasi-harmonic Debye model is used to determine the thermal properties of alloys up to 700 K.

  10. Development of a computer model for polycrystalline thin-film CuInSe2 and CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Gray, J. L.; Schwartz, R. J.; Lee, Y. J.

    1992-04-01

    This report describes work to develop a highly accurate numerical model for CuInSe2 and CdTe solar cells. ADEPT (A Device Emulation Program and Toolbox), a one-dimensional semiconductor device simulation code developed at Purdue University, was used as the basis of this model. An additional objective was to use ADEPT to analyze the performance of existing and proposed CuInSe2 and CdTe solar cell structures. The work is being performed in two phases. The first phase involved collecting device performance parameters, cell structure information, and material parameters. This information was used to construct the basic models to simulate CuInSe2 and CdTe solar cells. This report is a tabulation of information gathered during the first phase of this project on the performance of existing CuInSe2 and CdTe solar cells, the material properties of CuInSr2, CdTe, and CdS, and the optical absorption properties of CuInSe2, CdTe, and CdS. The second phase will entail further development and the release of a version of ADEPT tailored to CuInSe2 and CdTe solar cells that can be run on a personal computer. In addition, ADEPT will be used to analyze the performance of existing and proposed CuInSe2 and CdTe solar cell structures.

  11. Growth and Characterization of the Quasi-Binary Ga2Te 3-Ga2Se3 Semiconductor Alloy

    NASA Astrophysics Data System (ADS)

    Abdul-Jabbar, Najeb Mohammed

    This dissertation presents an experimental investigation on the growth and characterization of the quasi-binary Ga2Te3-Ga 2Se3 semiconductor alloy. Single crystal Ga2(Se 1-xTex) 3 specimens were grown via modified Bridgman methods for x = 0.60, 0.67, 0.8, 0.9, and 1.0. Preliminary structural characterization via powder x-ray diffraction showed a cubic zincblende structure. Satellite reflections discovered in the powder diffraction patterns alluded to the presence of secondary superstructures. High-resolution x-ray diffraction and x-ray absorption experiments conducted at the Advanced Photon Source, the Stanford Synchrotron Radiation Lightsource, and the Advanced Light Source confirmed the presence of ordered mesoscopic two-dimensional vacancy structures that can influence the pressure-induced amorphization behavior of Ga2SeTe2. More specifically, vacancy ordered and semi-ordered Ga2SeTe2 specimens amorphized at around 10-11 GPa as opposed to vacancy disordered specimens, which amorphized at around 8-9 GPa. X-ray absorption fine structure experiments indicated these vacancy based superstructures locally distort the lattice. However, the symmetry associated the face-centered cubic Bravais lattice is preserved. Local atomic distortions were directly observed via aberration-corrected scanning transmission electron microscopy conducted at the National Center for Electron Microscopy, where an inversion in the cation-anion orientation vector across the boundaries of the two-dimensional vacancy structures was observed. The effect of vacancy ordering on the physical properties of Ga 2(Se1-xTex) 3 was also studied. Positron annihilation spectroscopy revealed that positron lifetimes in Ga2SeTe2 are similar to that of large open-volume defects. As vacancies order, their role in positron trapping diminishes. Band gap measurements via optical absorption demonstrated that vacancy ordering in Ga2SeTe2 drives down band gap energy by approximately 0.05 eV. This observation was accompanied by Hall effect experiments, where the resistivity of vacancy ordered samples decreased by two orders of magnitude with moderate gains in charge carrier mobility.

  12. Electrodeposition and Thermoelectric Properties of Cu-Se Binary Compound Films

    NASA Astrophysics Data System (ADS)

    Yang, Mengqian; Shen, Zhengwu; Liu, Xiaoqing; Wang, Wei

    2016-03-01

    Cu-Se binary compound films have been prepared by electrodeposition from solutions containing CuSO4, H2SeO3, and H2SO4 and their composition, structure, and thermoelectric performance analyzed. Moving the depositing potential negatively increased the Cu content in the film, remarkably so for relatively low Cu2+ concentration in the solution. X-ray diffraction analysis showed that the phase composition of the films varied with their Cu content. Cu-Se binary compound films electrodeposited from solutions with different concentration ratios of CuSO4 to H2SeO3 showed two different phases: α-Cu2- x Se (monoclinic) with Se content in the range of 33.3 at.% to 33.8 at.%, and β-Cu2Se (cubic) with Se content in the range of 35.3 at.% to 36.0 at.%. The highest power factor for electrodeposited Cu2- x Se film was 0.13 mW/(K2 m) with Seebeck coefficient of 56.0 μV/K.

  13. SPECTROSCOPIC INVESTIGATION OF (NH4)2S TREATED GaSeTe FOR RADIATION DETECTOR APPLICATIONS

    SciTech Connect

    Nelson, A; Laurence, T; Conway, A; Behymer, E; Sturm, B; Voss, L; Nikolic, R; Payne, S; Mertiri, A; Pabst, G; Mandal, K; Burger, A

    2009-08-04

    The surface of the layered III-VI chalcogenide semiconductor GaSeTe was treated with (NH{sub 4}){sub 2}S at 60 C to modify the surface chemistry and determine the effect on transport properties. Room temperature photoluminescence (PL) measurements were used to assess the effect of the (NH{sub 4}){sub 2}S treatment on surface defect states. Evaluation of the subsequent surface chemistry was performed with high-resolution core-level photoemission measurements. Metal overlayers were deposited on the (NH{sub 4}){sub 2}S treated surfaces and the I-V characteristics were measured. The measurements were correlated to understand the effect of (NH{sub 4}){sub 2}S modification of the interfacial electronic structure with the goal of optimizing the metal/GaSeTe interface for radiation detector devices.

  14. Characterization of the optical constants and dispersion parameters of chalcogenide Te40Se30S30 thin film: thickness effect

    NASA Astrophysics Data System (ADS)

    Abd-Elrahman, M. I.; Hafiz, M. M.; Qasem, Ammar; Abdel-Rahim, M. A.

    2016-02-01

    Chalcogenide Te40Se30S30 thin films of different thickness (100-450 nm) are prepared by thermal evaporation of the Te40Se30S30 bulk. X-ray examination of the film shows some prominent peaks relate to crystalline phases indicating the crystallization process. The calculated particles of crystals from the X-ray diffraction peaks are found to be from 11 to 26 nm. As the thickness increases, the transmittance decreases and the reflectance increases. This could be attributed to the increment of the absorption of photons as more states will be available for absorbance in the case of thicker films. The decrease in the direct band gap with thickness is accompanied with an increase in energy of localized states. The obtained data for the refractive index could be fit to the dispersion model based on the single oscillator equation. The single-oscillator energy decreases, while the dispersion energy increases as the thickness increases.

  15. Magneto-optical characterizations of FeTe???Se??? thin films with critical current density over 1 MA/cm

    SciTech Connect

    Sun, Yue; Li, Qiang; Tsuchiya, Yuji; Pyon, Sunseng; Tamegai, Tsuyoshi; Zhang, Cheng; Ozaki, Toshinori

    2014-12-03

    We performed magneto-optical (MO) measurements on FeTe???Se??? thin films grown on LaAlO? (LAO) and Yttria-stabilized zirconia (YSZ) single-crystalline substrates. These thin films show superconducting transition temperature Tc ~19 K, 4 K higher than the bulk sample. Typical roof-top patterns can be observed in the MO images of thin films grown on LAO and YSZ, from which a large and homogeneous critical current density Jc ~ 3 - 4 x 10? A/cm at 5 K was obtained. In this study, magnetic flux penetration measurement reveals that the current is almost isotropically distributed in the two thin films. Compared with bulk crystals, FeTe???Se??? thin film demonstrates not only higher Tc, but also much larger Jc, which is attractive for applications.

  16. Study of Some Physical Properties of Se{sub 30}Te{sub 70-x}Sn{sub x} Glasses

    SciTech Connect

    Heera, Pawan; Sharma, Raman

    2011-12-12

    In the present work the effect of Sn doping on the physical properties of, tellurium rich, Se{sub 30}Te{sub 70-x}Sn{sub x} system is studied theoretically. The average coordination number, constraints, lone pair electrons and heat of atomization for Se{sub 30}Te{sub 70-x}Sn{sub x} system are calculated for x = 0,1.5,2.5,5.5 using the well defined relations. The present study shows that the values of lone pair electrons and average single bond energy goes on decreasing with increasing Sn content whereas the average coordination number, constraints and heat of atomization increases with increase in the Sn content.

  17. Scotch tape induced strains for enhancing superconductivity of FeSe0.5Te0.5 single crystals

    NASA Astrophysics Data System (ADS)

    Wang, Weike; Li, Jun; Yang, Jiyong; Gu, Chuanchuan; Chen, Xuliang; Zhang, Zhitao; Zhu, Xuebin; Lu, Wenjian; Wang, Hua-Bing; Wu, Pei-Heng; Yang, Zhaorong; Tian, Mingliang; Zhang, Yuheng; Moshchalkov, Victor V.

    2014-12-01

    We investigated the superconducting transition temperature Tc of FeSe0.5Te0.5 single crystals, which can be enhanced up to 14% by attaching onto a commercial Scotch tape. The Scotch tape exhibits a large cooling shrinkage at low temperatures, which is considerably more pronounced than that of the metallic FeSe0.5Te0.5 single crystal, thus providing a compressive strain of 2.4 10-3 at 15 K. For such strain, we calculated that the lattice parameter of c/a can be increased to 0.31%, which corresponds to the enhancement of the superconductivity. The present finding provides a rapid and simple method to examine the microstructure sensitive physical properties of the layered-structure materials by using the Scotch tape as strain generator.

  18. Nanostructured pinning centers in FeSe0.1Te0.9 thin films for enhanced superconducting properties

    NASA Astrophysics Data System (ADS)

    Huang, Jijie; Chen, Li; Jian, Jie; Khatkhatay, Fauzia; Wang, Haiyan

    2014-10-01

    FeSe0.1Te0.9 thin films were deposited on single crystal SrTiO3 (STO) (100) substrates by a pulse laser deposition (PLD) technique. CeO2 nanolayer was introduced as either cap layer or buffer layer to investigate its pinning effects in FeSe0.1Te0.9 thin films. The results show improved film quality after doping with CeO2 nanolayers, and no impurity phase was identified. All the samples achieve T c of 12.5 K, and in-field J c was greatly enhanced after doping with either cap or buffer CeO2 nanolayer for the field range up to 7 T. The buffered one shows the best self-field J c of 0.89 MA cm-2 at 4 K and a high upper critical field H c 2 of 186 T.

  19. Reaction Routes for the Synthesis of CuInSe2 Using Bilayer Compound Precursors

    SciTech Connect

    Krishnan, Rangarajan; Wood, David; Chaudhari, Vaibhav U.; Payzant, E Andrew; Noufi, Rommel; Rozeveld, Steve; Kim, Woo Kyoung; Anderson, Timothy J

    2012-01-01

    The reaction pathways and phase evolution during synthesis of CuInSe{sub 2} (CIS) by a novel bilayer approach were investigated using in situ high-temperature X-ray diffraction. Two bilayer precursor structures, glass/Mo/{gamma}-In{sub 2}Se{sub 3}/{beta}-CuSe + {beta}-Cu{sub 2}Se/Se and glass/Mo/{gamma}-In{sub 2}Se{sub 3}/{beta}-Cu{sub 2}Se/Se, were examined in this study. Temperature ramp experiments revealed that the phase transformation sequence for each bilayer precursor qualitatively follows that predicted by the phase diagram and that the onset temperatures for decomposition of the sub-binary compounds depend on the Se partial pressure. Measurement of the isothermal rate of formation of CuInSe{sub 2} at six temperatures in the range 260 to 310 C for the {gamma}-In{sub 2}Se{sub 3}/{beta}-CuSe + {beta}-Cu{sub 2}Se/Se bilayer suggests relatively slow nucleation followed by diffusion-limited reaction with estimated activation energy of 162({+-}7) and 225 ({+-}16) kJ/mol from Avrami and parabolic models, respectively. Interestingly, the measured activation energy for the same precursor in a 4 mol % H{sub 2}/He ambient (108 ({+-}8) kJ/mol) was lower than that observed in pure N{sub 2} (158 ({+-}16) kJ/mol). The results of isothermal measurements in the temperature range 250 to 300 C for the {gamma}-In{sub 2}Se{sub 3}/{beta}-Cu{sub 2}Se/Se precursor film in an inert ambient are consistent with one-dimensional diffusion-limited growth with estimated activation energy from the Avrami and parabolic models of 194 ({+-}10) and 203 ({+-}12) kJ/mol, respectively.

  20. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current.

    PubMed

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-01-01

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm(2)), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current. PMID:26902593

  1. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current

    PubMed Central

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-01-01

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm2), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current. PMID:26902593

  2. Quantifying electron-phonon coupling in CdTe{sub 1?x}Se{sub x} nanocrystals via coherent phonon manipulation

    SciTech Connect

    Spann, B. T.; Xu, X.

    2014-08-25

    We employ ultrafast transient absorption spectroscopy with temporal pulse shaping to manipulate coherent phonon excitation and quantify the strength of electron-phonon coupling in CdTe{sub 1?x}Se{sub x} nanocrystals (NCs). Raman active CdSe and CdTe longitudinal optical phonon (LO) modes are excited and probed in the time domain. By temporally controlling pump pulse pairs to coherently excite and cancel coherent phonons in the CdTe{sub 1?x}Se{sub x} NCs, we estimate the relative amount of optical energy that is coupled to the coherent CdSe LO mode.

  3. Windowless CdSe/CdTe solar cells with differentiated back contacts: J-V, EQE, and photocurrent mapping.

    PubMed

    Josell, Daniel; Debnath, Ratan; Ha, Jong Y; Guyer, Jonathan; Sahiner, Mehmet A; Reehil, Christopher J; Manners, William A; Nguyen, Nhan V

    2014-09-24

    This study presents windowless CdSe/CdTe thin film photovoltaic devices with in-plane patterning at a submicrometer length scale. The photovoltaic cells are fabricated upon two interdigitated comb electrodes prepatterned at micrometer length scale on an insulating substrate. CdSe is electrodeposited on one electrode, and CdTe is deposited by pulsed laser deposition over the entire surface of the resulting structure. Previous studies of symmetric devices are extended in this study. Specifically, device performance is explored with asymmetric devices having fixed CdTe contact width and a range of CdSe contact widths, and the devices are fabricated with improved dimensional tolerance. Scanning photocurrent microscopy (also known as laser beam induced current mapping) is used to examine local current collection efficiency, providing information on the spatial variation of performance that complements current-voltage and external quantum efficiency measurements of overall device performance. Modeling of carrier transport and recombination indicates consistency of experimental results for local and blanket illumination. Performance under simulated air mass 1.5 illumination exceeds 5% for all dimensions examined, and the best-performing device achieved 5.9% efficiency. PMID:25157419

  4. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe

    NASA Astrophysics Data System (ADS)

    Li, Jin; He, Chaoyu; Meng, Lijun; Xiao, Huaping; Tang, Chao; Wei, Xiaolin; Kim, Jinwoong; Kioussis, Nicholas; Malcolm Stocks, G.; Zhong, Jianxin

    2015-09-01

    Two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe (HgSe) monolayers undergo a trivial insulator to topological insulator transition under in-plane tensile strain of 2.6% (3.1%) due to the combination of the strain and the spin orbital coupling (SOC) effects. Furthermore, the band gaps can be tuned up to large values (0.2?eV for HgTe and 0.05?eV for HgSe) by tensile strain, which far exceed those of current experimentally realized 2D quantum spin Hall insulators. Our results suggest a new type of material suitable for practical applications of 2D TI at room-temperature.

  5. Self-Optimizing Photoelectrochemical Growth of Nanopatterned Se-Te Films in Response to the Spectral Distribution of Incident Illumination.

    PubMed

    Carim, Azhar I; Batara, Nicolas A; Premkumar, Anjali; Atwater, Harry A; Lewis, Nathan S

    2015-10-14

    Photoelectrochemical growth of Se-Te films spontaneously produces highly ordered, nanoscale lamellar morphologies with periodicities that can be tuned by varying the illumination wavelength during deposition. This phenomenon has been characterized further herein by determining the morphologies of photoelectrodeposited Se-Te films in response to tailored spectral illumination profiles. Se-Te films grown under illumination from four different sources, having similar average wavelengths but having spectral bandwidths that spanned several orders of magnitude, all nevertheless produced similar structures which had a single, common periodicity as quantitatively identified via Fourier analysis. Film deposition using simultaneous illumination from two narrowband sources, which differed in average wavelength by several hundred nanometers, resulted in a structure with only a single periodicity intermediate between the periods observed when either source alone was used. This single periodicity could be varied by manipulating the relative intensity of the two sources. An iterative model that combined full-wave electromagnetic effects with Monte Carlo growth simulations, and that considered only the fundamental light-material interactions during deposition, was in accord with the morphologies observed experimentally. Simulations of light absorption and concentration in idealized lamellar arrays, in conjunction with all of the available data, additionally indicated that a self-optimization of the periodicity of the nanoscale pattern, resulting in the maximization of the anisotropy of interfacial light absorption in the three-dimensional structure, is consistent with the observed growth process of such films. PMID:26390263

  6. Weak Anti-localization and Quantum Oscillations of Surface States in Topological Insulator Bi2Se2Te

    PubMed Central

    He, Liang; Meyer, Nicholas; Kou, Xufeng; Zhang, Peng; Chen, Zhi-gang; Fedorov, Alexei V.; Zou, Jin; Riedemann, Trevor M.; Lograsso, Thomas A.; Wang, Kang L.; Tuttle, Gary; Xiu, Faxian

    2012-01-01

    Topological insulators, a new quantum state of matter, create exciting opportunities for studying topological quantum physics and for exploring spintronic applications due to their gapless helical metallic surface states. Here, we report the observation of weak anti-localization and quantum oscillations originated from surface states in Bi2Se2Te crystals. Angle-resolved photoemission spectroscopy measurements on cleaved Bi2Se2Te crystals show a well-defined linear dispersion without intersection of the conduction band. The measured weak anti-localization effect agrees well with the Hikami-Larkin-Nagaoka model and the extracted phase coherent length shows a power-law dependence with temperature (?T?0.44), indicating the presence of the surface states. More importantly, the analysis of a Landau-level fan diagram of Shubnikov-de Hass oscillations yields a finite Berry phase of ?0.42?, suggesting the Dirac nature of the surface states. Our results demonstrate that Bi2Se2Te can serve as a suitable topological insulator candidate for achieving intrinsic quantum transport of surface Dirac fermions. PMID:23061009

  7. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe

    PubMed Central

    Li, Jin; He, Chaoyu; Meng, Lijun; Xiao, Huaping; Tang, Chao; Wei, Xiaolin; Kim, Jinwoong; Kioussis, Nicholas; Malcolm Stocks, G.; Zhong, Jianxin

    2015-01-01

    Two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe (HgSe) monolayers undergo a trivial insulator to topological insulator transition under in-plane tensile strain of 2.6% (3.1%) due to the combination of the strain and the spin orbital coupling (SOC) effects. Furthermore, the band gaps can be tuned up to large values (0.2?eV for HgTe and 0.05?eV for HgSe) by tensile strain, which far exceed those of current experimentally realized 2D quantum spin Hall insulators. Our results suggest a new type of material suitable for practical applications of 2D TI at room-temperature. PMID:26365502

  8. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe.

    PubMed

    Li, Jin; He, Chaoyu; Meng, Lijun; Xiao, Huaping; Tang, Chao; Wei, Xiaolin; Kim, Jinwoong; Kioussis, Nicholas; Stocks, G Malcolm; Zhong, Jianxin

    2015-01-01

    Two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe (HgSe) monolayers undergo a trivial insulator to topological insulator transition under in-plane tensile strain of 2.6% (3.1%) due to the combination of the strain and the spin orbital coupling (SOC) effects. Furthermore, the band gaps can be tuned up to large values (0.2?eV for HgTe and 0.05?eV for HgSe) by tensile strain, which far exceed those of current experimentally realized 2D quantum spin Hall insulators. Our results suggest a new type of material suitable for practical applications of 2D TI at room-temperature. PMID:26365502

  9. Solid state synthesis and characterization of bulk FeTe0.5Se0.5 superconductors

    NASA Astrophysics Data System (ADS)

    Onar, K.; Yakinci, M. E.

    2016-01-01

    FeTe0.5Se0.5 polycrystalline superconductor samples were synthesized by solid- state reaction method at different heating temperatures. The morphological and structural characterization of FeTe0 5Se0.5 samples were carried out by X-rays Diffraction, Scanning Electron Microscope and Energy Dispersive X-ray Spectroscopy. The electrical, magnetic and thermal transport properties were investigated up to 8 T by using physical property measurement system. The results reveal that the sensitivity of electrical and magnetic properties strongly depends on the heat treatment cycles. The upper critical field, Hc2(0), was determined with the magnetic field parallel to the sample surface. It gives a maximum value of 36.3 T. The lower critical field, Hc1(T), was obtained as 210, 140 and 70 Oe at 5, 8 and 12 K, respectively. The coherence length, ξ, at the zero field, was calculated to be 1.94 nm and suggested a transparent intergrain boundaries peculiarity. The μ0Hc2(0)/kBTc rate shows higher value (3.36 T/K) than the Pauli limit (1.84 T/K) which suggests unconventional nature of superconductivity for the polycrystalline FeTe0.5Se0.5 superconducting samples.

  10. Effects of annealing, acid and alcoholic beverages on Fe1+yTe0.6Se0.4

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Taen, T.; Tsuchiya, Y.; Shi, Z. X.; Tamegai, T.

    2013-01-01

    We have systematically investigated and compared different methods to induce superconductivity in the iron chalcogenide Fe1+yTe0.6Se0.4, including annealing in a vacuum, N2, O2 and I2 atmospheres and immersing samples into acid and alcoholic beverages. Vacuum and N2 annealing are proved to be ineffective in inducing superconductivity in a Fe1+yTe0.6Se0.4 single crystal. Annealing in O2 and I2 and immersion in acid and alcoholic beverages can induce superconductivity by oxidizing the excess Fe in the sample. Superconductivity in O2 annealed samples is of a bulk nature, while I2, acid and alcoholic beverages can only induce superconductivity near the surface. By comparing the different effects of O2, I2, acid and alcoholic beverages we propose a scenario to explain how the superconductivity is induced in the non-superconducting as-grown Fe1+yTe0.6Se0.4.

  11. Synthesis and transport property of AgSbTe{sub 2} as a promising thermoelectric compound

    SciTech Connect

    Wang Heng; Li Jingfeng; Zou Minmin; Sui Tao

    2008-11-17

    Polycrystalline AgSbTe{sub 2} ternary compound materials with high phase purity were fabricated using a combined process of mechanical alloying and spark plasma sintering. It was found that stoichiometric AgSbTe{sub 2} is a promising composition for low-and-mediate temperature applications, whose ZT reaches 1.59 at 673 K, benefiting from its extremely low thermal conductivity (0.30 W/mK) in addition to its low electrical resistivity (<1.1x10{sup -4} {omega} m) and large positive Seebeck coefficient (260 {mu}V/K). On the other hand, deviating from this formula would lead to unstable phase structures and higher thermal conductivity, which make the samples less attractive as thermoelectric materials or components of thermoelectric systems.

  12. Element substitution from substrates in Bi2Se3, Bi2Te3 and Sb2Te3 overlayers deposited by hot wall epitaxy

    NASA Astrophysics Data System (ADS)

    Takagaki, Y.; Jahn, U.; Jenichen, B.; Berlin, K.; Kong, X.; Biermann, K.

    2014-09-01

    In depositing Bi2Se3, Bi2Te3 or Sb2Te3 layers on certain substrates by hot wall epitaxy, the Bi and Sb atoms in the layers are replaced by the atoms supplied from the substrates. We extend our exploration on this substitution phenomenon for a number of combinations of the layer and the substrate to infer the factors that determine the occurrence of the substitution. Using a series of Ga- and In-based III-V substrates, it is evidenced that the group III atoms substitute the group V overlayer atoms when the bonds in the substrates are weak. We demonstrate that Ag triggers the substitution more effectively than Cu as a catalyst. The competition between the catalyst-induced substitutions on ternary alloy substrates shows that the dependence on the bond strength is not as strong as to be exclusive. Additionally, defectiveness around the interface between a semicoherently grown ?-In2Se3 layer produced by the substitution and the InAs substrate is demonstrated. The cathodeluminescence properties are also provided focusing on the dependence on the phase of In2Se3.

  13. Visualizing the Atomic-scale Influence on Superconductivity and Vortex Pinning of High-Energy Ion Irradiation in FeSeTe

    NASA Astrophysics Data System (ADS)

    Sprau, Peter; Massee, Freek; Wang, Yonglei; Davis, J. C. Seamus; Gu, Genda; Kwok, Wai-Kwong

    2015-03-01

    The maximum sustainable supercurrent density, JC, may be greatly enhanced by preventing dissipative motion of quantized vortices. Irradiation of superconductors with heavy ions is often used to create nanoscale defects with deep pinning potential for the vortices and this approach holds great promise for high current applications of iron-based superconductivity. However, for these compounds virtually nothing is known directly about the atomic-scale interplay between the crystal damage from high-energy ions, the superconducting order parameter, and the vortex pinning processes. Here, we visualize the atomic-scale effects of irradiating FeSe0.45Te0.55 with 249 MeV Au ions and find two distinct forms of damage: compact regions of crystal disruption ascribable to the actual ion trajectory along with single atomic-site `point' defects. We show directly that the superconducting order is virtually annihilated within the former while it is strongly altered by the latter. Simultaneous atomically-resolved images of the crystal defects, the superconducting density-of-states, and the vortex cores, then reveal how the vortex pinning evolves with increasing field in irradiating FeSe0.45Te0.55.

  14. Hc2(0) and the Kondo Effect in FeSe0.1Te0.9 Epitaxial Films

    NASA Astrophysics Data System (ADS)

    Cornell, Nicholas; Zakhidov, Anvar; Jaime, Marcelo; Huang, Jijie; Wang, Hayan; Salamon, Myron

    2015-03-01

    High-quality, [001]-oriented epitaxial films of FeSe0.1Te0.9 have been grown on SrTiO3. They are found to have increased critical temperatures and critical fields relative to both bulk samples and thin films of the sister compound, FeSe0.5Te0.5. Critical field values in excess of 114 T have been reported based on WHH theory. In addition to these improved properties, most samples show resistance minima above Tc, reminiscent of the Kondo effect, presumably from excess Fe. We report results of a high field investigation of these thin films that reveals an empirical zero-temperature value of Hc2(0) ~ 46 T along [001], significantly less than the WHH estimate, but still exceeding the maximum strong coupling correction to the Pauli limit. Large negative magnetoresistance above the critical field confirms the presence of Kondo behavior in the normal state and persists without saturation up to 60 T. Why the measured critical field exceeds the paramagnetic limit remains a question. However, a Kondo temperature that exceeds the superconducting Tc can lead to overestimated WHH upper critical fields and could explain the wide variation in Tc and Hc2 among the ``11'' iron chalcogenides.

  15. Cadmium amido alkoxide and alkoxide precursors for the synthesis of nanocrystalline CdE (E=S,Se, Te).

    SciTech Connect

    Boyle, Timothy J.; Avilucea, Gabriel; Bunge, Scott D.; Alam, Todd Michael; Headley, Thomas Jeffrey; Holland, Gregory P.

    2004-12-01

    The synthesis and characterization of a family of alternative precursors for the production of CdE nanoparticles (E = S, Se, and Te) is reported. The reaction of Cd(NR{sub 2}){sub 2} where NR{sub 2} = N(SiMe{sub 3}){sub 2} with n HOR led to the isolation of the following: n = 1 [Cd({mu}-OCH{sub 2}CMe{sub 3})(NR{sub 2})(py)]{sub 2} (1, py = pyridine), Cd[({mu}-OC{sub 6}H{sub 3}(Me){sub 2}-2,6){sub 2}Cd(NR{sub 2})(py)]{sub 2} (2), [Cd({mu}-OC{sub 6}H{sub 3}(CHMe{sub 2}){sub 2}-2,6)(NR{sub 2})(py)]{sub 2} (3), [Cd({mu}-OC{sub 6}H{sub 3}(CMe{sub 3}){sub 2}-2,6)(NR{sub 2})(py)]{sub 2} (4), [Cd({mu}-OC{sub 6}H{sub 2}(NH{sub 2}){sub 3}-2,4,6)(NR{sub 2})(py)]{sub 2} (5), and n = 2 [Cd({mu}-OC{sub 6}H{sub 3}(Me){sub 2}-2,6)(OC{sub 6}H{sub 3}(Me){sub 2}-2,6)(py){sub 2}]{sub 2} (6), and [Cd({mu}-OC{sub 6}H{sub 3}(CMe{sub 3}){sub 2}-2,6)(OC{sub 6}H{sub 3}(CMe{sub 3}){sub 2}-2,6)(THF)]{sub 2} (7). For all but 2, the X-ray crystal structures were solved as discrete dinuclear units bridged by alkoxide ligands and either terminal -NR{sub 2} or -OR ligands depending on the stoichiometry of the initial reaction. For 2, a trinuclear species was isolated using four {mu}-OR and two terminal -NR{sub 2} ligands. The coordination of the Cd metal center varied from 3 to 5 where the higher coordination numbers were achieved by binding Lewis basic solvents for the less sterically demanding ligands. These complexes were further characterized in solution by {sup 1}H, {sup 13}C, and {sup 113}Cd NMR along with solid-state {sup 113}Cd NMR spectroscopy. The utility of these complexes as 'alternative precursors' for the controlled preparation of nanocrystalline CdS, CdSe, and CdTe was explored. To synthesize CdE nanocrystals, select species from this family of compounds were individually heated in a coordinating solvent (trioctylphosphine oxide) and then injected with the appropriate chalcogenide stock solution. Transmission electron spectroscopy and UV-vis spectroscopy were used to characterize the resultant particles.

  16. Structure and physical properties of the misfit compounds (PbSe)1.16(TiSe2)m (m = 1, 2)

    NASA Astrophysics Data System (ADS)

    Wang, N. Z.; Yuan, S. F.; Cong, R.; Lu, X. F.; Meng, F. B.; Shang, C.; Chen, X. H.

    2015-12-01

    The single-crystalline misfit compounds (PbSe)1.16(TiSe2) and (PbSe)1.16(TiSe2)2 have been successfully synthesized. The structure and physical properties of the two misfit compounds are systematically investigated. The former consists of one-layer TiSe2 alternating stacking with double-layer PbSe, in contrast with the latter which owns double-layer TiSe2. Moreover, (PbSe)1.16(TiSe2)2 with two-layer TiSe2 shows superconductivity at 2.3 K while (PbSe)1.16(TiSe2) with one-layer TiSe2 is non-superconducting. Anisotropic resistivity indicates much stronger anisotropy of (PbSe)1.16(TiSe2)2 than that of (PbSe)1.16(TiSe2), suggesting much weaker inter-layer coupling and lower dimensionality in the former. Hall and Seebeck coefficients show a sign reversal for (PbSe)1.16(TiSe2) at low temperature, which indicates the change of charge carrier type from electron-dominated to hole-dominated. The comparison of physical properties between the two misfit compounds suggests that the lack of superconductivity in (PbSe)1.16(TiSe2) is related to the change of charge carrier type. Moreover, the reduction of dimensionality in (PbSe)1.16(TiSe2)2 may be helpful for the superconductivity.

  17. Ab initio study of the structural, electronic and optical properties of ZnTe compound

    SciTech Connect

    Bahloul, B.; Deghfel, B.; Amirouche, L.; Bounab, S.; Bentabet, A.; Bouhadda, Y.; Fenineche, N.

    2015-03-30

    Structural, electronic and optical properties of ZnTe compound were calculated using Density Functional Theory (DFT) based on the pseudopotentials and planewaves (PP-PW) method as implemented in the ABINIT computer code, where the exchange–correlation functional is approximated using the local density approximation (LDA) and the generalized gradient approximation (GGA). The obtained results from either LDA or GGa calculation for lattice parameter, energy band gap and optical parameters, such as the fundamental absorption edge, the peaks observed in the imaginary part of the dielectric function, the macroscopic dielectric constants and the optical dielectric constant, are compared with the available theoretical results and experimental data.

  18. Strain-induced giant second-harmonic generation in monolayered 2H-MoX2 (X = S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Rhim, S. H.; Kim, Yong Soo; Freeman, A. J.

    2015-12-01

    Dynamic second-order nonlinear susceptibilities, χ(2)(2 ω,ω,ω)≡χ(2)(ω) , are calculated here within a fully first-principles scheme for monolayered molybdenum dichalcogenides, 2H-MoX2 (X = S, Se, and Te). The absolute values of χ(2)(ω) across the three chalcogens critically depend on the band gap energies upon uniform strain, yielding the highest χ(2)(0 )˜140 pm/V for MoTe2 in the static limit. Under this uniform in-plane stress, 2H-MoX2 can undergo direct-to-indirect transition of band gaps, which in turn substantially affects χ(2)(ω) . The tunability of χ(2)(ω) by either compressive or tensile strain is demonstrated especially for two important experimental wavelengths, 1064 nm and 800 nm, where resonantly enhanced non-linear effects can be exploited: χ(2) of MoSe2 and MoTe2 approach ˜800 pm/V with -2% strain at 1064 nm.

  19. Structural and conductivity studies of CsK(SO{sub 4}){sub 0.32}(SeO{sub 4}){sub 0.68}Te(OH){sub 6}

    SciTech Connect

    Djemel, M.; Abdelhedi, M.; Dammak, M.; Kolsi, A.W.

    2012-12-15

    The compound CsK(SO{sub 4}){sub 0.32}(SeO{sub 4}){sub 0.68}Te(OH){sub 6} crystallizes in the monoclinic P2{sub 1}/n space group. It was analyzed, at room temperature, using X-ray diffractometer data. The main feature of these atomic arrangements is the coexistence of three and different anions (SO{sub 4}{sup 2-}, SeO{sub 4}{sup 2-} and TeO{sub 6}{sup 6-}groups) in the unit cell, connected by hydrogen bonds which make the building of the crystal. The thermal analysis of the title compound shows three distinct endothermal peaks at 435, 460 and 475 K. Complex impedance measurements are performed on this material as a function of both temperature and frequency. The electric conduction has been studied. The temperature dependence on the conductivity indicates that the sample became an ionic conductor at high temperature. - Graphical abstract: Projection of crystal structure CsK(SO{sub 4}){sub 0.32}(SeO{sub 4}){sub 0.68}Te(OH){sub 6} on the ab plane. Highlights: Black-Right-Pointing-Pointer We have studied the results of the crystal structure of the new mixed compound. Black-Right-Pointing-Pointer We have characterized the phase transition observed in DSC curve. Black-Right-Pointing-Pointer The protonic conduction in our material is probably due to a hopping mechanism.

  20. Highly luminescent and biocompatible near-infrared core-shell CdSeTe/CdS/C quantum dots for probe labeling tumor cells.

    PubMed

    He, Li; Li, Lingling; Wang, Wenjing; Abdel-Halim, E S; Zhang, Jianrong; Zhu, Jun-Jie

    2016-01-01

    In this study, double shelled NIR CdSeTe/CdS/C quantum dots (QDs) were synthesized by a liquid phase method. The as-prepared QDs showed low cytotoxicity and good biocompatibility due to the formation of carbon shell. The imaging of targeted Human cervical carcinoma cells (HeLa cells) indicates that the CdSeTe/CdS/C QDs have excellent optical properties and cell viability. These results clearly shows that the CdSeTe/CdS/C QDs can be a good candidate for bioapplications. PMID:26695254

  1. Controllable Growth of Vertical Heterostructure GaTe(x)Se(1-x)/Si by Molecular Beam Epitaxy.

    PubMed

    Liu, Shanshan; Yuan, Xiang; Wang, Peng; Chen, Zhi-Gang; Tang, Lei; Zhang, Enze; Zhang, Cheng; Liu, Yanwen; Wang, Weiyi; Liu, Cong; Chen, Chen; Zou, Jin; Hu, Weida; Xiu, Faxian

    2015-08-25

    Two dimensional (2D) alloys, especially transition metal dichalcogenides, have attracted intense attention owing to their band-gap tunability and potential optoelectrical applications. Here, we report the controllable synthesis of wafer-scale, few-layer GaTexSe1-x alloys (0 ? x ? 1) by molecular beam epitaxy (MBE). We achieve a layer-by-layer growth mode with uniform distribution of Ga, Te, and Se elements across 2 in. wafers. Raman spectroscopy was carried out to explore the composition-dependent vibration frequency of phonons, which matches well with the modified random-element-isodisplacement model. Highly efficient photodiode arrays were also built by depositing few-layer GaTe0.64Se0.36 on n-type Si substrates. These p-n junctions have steady rectification characteristics with a rectifying ratio exceeding 300 and a high external quantum efficiency around 50%. We further measured more devices on MBE-grown GaTexSe1-x/Si heterostructures across the full range to explore the composition-dependent external quantum efficiency. Our study opens a new avenue for the controllable growth of 2D alloys with wafer-scale homogeneity, which is a prominent challenge in 2D material research. PMID:26234804

  2. Nanoscale chemical phase separation in FeTe0.55Se0.45 as seen via scanning tunneling spectroscopy

    SciTech Connect

    He, Xiaobo; Li, Guorong; Zhang, Jiandi; Karki, A B; Jin, Rongying; Sales, Brian C; Safa-Sefat, Athena; McGuire, Michael A; Mandrus, David; Plummer, E. W.

    2011-01-01

    Atomically resolved structural and electronic properties of FeTe{sub 1-x}Se{sub x} (x = 0 and 0.45) have been studied with scanning tunneling microscopy/spectroscopy (STM/STS). In contrast to the extreme flatness of the Te-terminated FeTe surface, nanoscale chemical phase separation between Te and Se atoms is unambiguously revealed on the surface of FeTe{sub 0.55}Se{sub 0.45}. A statistical counting of the two kinds of atoms has the same ratio as that in the bulk. Remarkably, there is no electronic phase separation seen in the tunneling spectroscopy. This indicates that the optimally doped superconductor is chemically inhomogeneous but electronically homogeneous, in contrast to many correlated electron materials.

  3. Effective donor abilities of E-t-Bu and EPh (E = O, S, Se, Te) to a high valent transition metal.

    PubMed

    Bemowski, Ross D; Singh, Amrendra K; Bajorek, Bailey J; DePorre, Yvonne; Odom, Aaron L

    2014-08-28

    Amido rotation in the chromium(vi), d(0)-system NCr(NPr(i)2)2X is under investigation as a method for the parameterization of ligands for their donor properties toward high valent metals. In this study, two new series were prepared and studied based on chalcogenide ligands, X = EBu(t) and EPh and where E = O, S, Se, Te; the OPh and SPh compounds were previously reported. The ligand donor parameters for these ligands correlate with the Cr-E-C angles in these chalcogenide series. In addition, it was found that NBO calculated overlaps and DFT calculated bond dissociation enthalpies correlate within X = halide-, EBu(t)- and EPh-series. All of the new complexes were characterized by X-ray diffraction. PMID:24986246

  4. Synthesis of organic (trimethylsilyl)chalcogenolate salts Cat[TMS-E] (E = S, Se, Te): the methylcarbonate anion as a desilylating agent.

    PubMed

    Finger, Lars H; Scheibe, Benjamin; Sundermeyer, Jrg

    2015-10-01

    A high-yield synthesis of the class of (trimethylsilyl)chalcogenolate organic salts [Cat][TMS-E] (E = S, Se, Te; Cat = BMPyr, DMPyr, NMe4, nBu3MeP) is presented. The title compounds have been prepared by the strictly aprotic reaction between the respective bis(trimethylsilyl)chalcogenide (TMS2E) and methylcarbonate ionic liquids (ILs). This constitutes a novel reaction behavior of methylcarbonate ILs, acting as a nucleophilic desilylating agent and a Lewis base instead of as a Brnsted base. Thus prepared silylchalcogenolate salts represent an activated form of the multifunctional TMS2E reactant series. Pyrrolidinium TMS-S salts have proven to be excellent precursors for the synthesis of pyrrolidinium hexasulfides. The scope of the desilylation reaction can be extended to other silyl-bearing synthons such as (trimethylsilyl)azide and (trimethylsilyl)cyanide. PMID:26371537

  5. Graphene-like Dirac states and quantum spin Hall insulators in square-octagonal M X2 (M =Mo , W; X =S , Se, Te) isomers

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Felser, Claudia; Yan, Binghai

    2015-10-01

    We studied the square-octagonal lattice of the transition metal dichalcogenide M X2 (with M =Mo , W; X =S , Se, and Te), as an isomer of the normal hexagonal compound of M X2 . By band-structure calculations, we observe the graphene-like Dirac band structure in a rectangular lattice of M X2 with nonsymmorphic space group symmetry. Two bands with van Hove singularity points cross each at the Fermi energy, leading to two Dirac cones that locate at opposite momenta. Spin-orbit coupling can open a gap at these Dirac points, inside which gapless topological edge states exists as the quantum spin Hall (QSH) effect, the 2D topological insulator.

  6. Highly sensitive and selective detection of phosphate using novel highly photoluminescent water-soluble Mn-doped ZnTe/ZnSe quantum dots.

    PubMed

    Song, Yu; Li, Yang; Liu, Yunling; Su, Xingguang; Ma, Qiang

    2015-11-01

    Herein, the facile method with high selectivity for phosphate ion (Pi) sensing using novel Type-II core/shell Mn: ZnTe/ZnSe quantum dots (QDs) was reported. This was the first time that Mn: ZnTe/ZnSe QDs with highlighted optical properties were used for sensing. The water-soluble Mn: ZnTe/ZnSe QDs with a high quantum yield of 7% were synthesized by aqueous synthetic method. Compared with traditional ZnSe QDs or Mn: ZnSe QDs, the smaller effective band gap, longer wavelength and lower ionization potential (high valence band edge) for effective hole localization made Type-II core/shell Mn: ZnTe/ZnSe QDs to be stable and had high photoluminescence (PL). Only Mg(2+) was found to be able to enhance Mn: ZnTe/ZnSe QDs PL selectively. The mechanism of fluorescence enhancement was attributed to the passivated surface nonradiative relaxation centers of Mn: ZnTe/ZnSe QDs. In the presence of Pi anion, the PL intensity got quenched due to the aggregation species of QDs via electrostatic attraction between Pi and Mg(2+) on the surface of Mn: ZnTe/ZnSe QDs. Therefore, the quenching effect can be used to detect Pi selectively. The PL was observed to be linearly proportional to the Pi analyte concentration in the range from 0.67 to 50.0 ?mol/L, with a detection limit of 0.2? mol/L (S/N=3). The novel "on-off" fluorescence nanosensor for Pi detection was sensitive and convenient in the real analysis application. The reported analytical method of Mn: ZnTe/ZnSe QDs is highly sensitive and selective, which can corroborate the extension of its usages in chemo/ biosensing and bioimaging. PMID:26452877

  7. Coexistence of electron-glass phase and persistent photoconductivity in GeSbTe compounds

    NASA Astrophysics Data System (ADS)

    Ovadyahu, Z.

    2015-03-01

    It is demonstrated that persistent photoconductivity (PPC), well studied in lightly-doped semiconductors, is observable in GeSbTe compounds using infrared excitation at cryogenic temperatures. The low levels of energy flux necessary to induce an appreciable effect seems surprising given the high carrier concentration n of these ternary alloys (n >1020cm-3 ). On the other hand, their high density of carriers makes GeSbTe films favorable candidates for exhibiting intrinsic electron-glass effects with long relaxation times. These are indeed observed in GeSbTe thin films that are Anderson-localized. In particular, a memory dip is observed in samples with sheet resistances larger than ≈105Ω at T ≈4 K with similar characteristics as in other systems that exhibit intrinsic electron-glass effects. Persistent photoconductivity, however, is observable in GeSbTe films even for sheet resistances of the order of 103Ω , well below the range of disorder required for observing electron-glass effects. These two nonequilibrium phenomena, PPC and electron glass, are shown to be of different nature in terms of other aspects as well. In particular, their relaxation dynamics is qualitatively different; the excess conductance Δ G associated with PPC decays with time as a stretched exponential whereas a logarithmic relaxation law characterizes Δ G (t ) of all electron glasses studied to date. Surprisingly, the magnitude of the memory dip is enhanced when the system is in the PPC state. This counter-intuitive result may be related to the compositional disorder in these materials extending over mesoscopic scales. Evidence in support of this scenario is presented and discussed.

  8. Exceptional suppression of flux-flow resistivity in FeSe0.4Te0.6 by back-flow from excess Fe atoms and Se /Te substitutions

    NASA Astrophysics Data System (ADS)

    Okada, Tatsunori; Nabeshima, Fuyuki; Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka

    2015-02-01

    We measured the microwave surface impedance of FeSe0.4Te0.6 single crystals with and without external magnetic fields. The superfluid density exhibited a quadratic temperature dependence, indicating a strong pair-breaking effect. The flux-flow resistivity behaved as ?f(B ?Bc 2) /?n=? B /Bc 2 . The observed ? value of ?0.66 was considerably smaller than that of other Fe-based materials (? ?1 ) and was attributed to a back-flow of superfluids remarkable in disordered superconductors. This is an observation of the back-flow phenomenon caused by an origin other than the vortex pinning in multiple-band systems.

  9. Electronic structure and morphology of epitaxial Bi{sub 2}Te{sub 2}Se topological insulator films

    SciTech Connect

    Maa, H. Schatz, S.; Fiedler, S.; Seibel, C.; Lutz, P.; Bentmann, H. Reinert, F.; Schreyeck, S.; Gould, C.; Brunner, K.; Molenkamp, L. W.; Karczewski, G.

    2014-11-21

    Epitaxial films of the ternary topological insulator Bi{sub 2}Te{sub 2}Se were grown on Si(111) substrates and investigated for their surface electronic properties and morphology. We employ a Se-capping procedure allowing for the preparation of clean films in the surface-analysis experimental setups. Using angle-resolved photoelectron spectroscopy, we determine the dispersion of the topological surface state. With time after surface preparation, the spectroscopic features in the surface electronic structure exhibit significant temperature-dependent shifts to higher binding energies. Scanning tunneling microscopy images show terraces with typical step edge separations of 50?nm150?nm. X-ray photoelectron spectroscopy indicates an increased Se concentration at the surface.

  10. Polycrystalline CuInSe{sub 2} and CdTe PV solar cells. Annual subcontract report, 15 April 1993--14 April 1994

    SciTech Connect

    Dhere, N.G.

    1994-11-01

    This is an annual technical report on the Phase 2 of a three-year phased research program. The principal objective of the research project is to develop novel and low-cost processes for the fabrication of stable and efficient CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} and CdTe polycrystalline-thin-film solar cells using reliable techniques amenable to scale-up for economic, large-scale manufacture. The aims are to develop a process for the non-toxic selenization so as to avoid the use of extremely toxic H{sub 2}Se in the fabrication of CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} thin-film solar cells; to optimize selenization parameters; to develop a process for the fabrication of CdTe solar cells using Cd and Te layers sputtered from elemental targets; to develop an integrated process for promoting the interdiffusion between Cd/Te layers, CdTe phase formation, grain growth, type conversion, and junction formation; to improve adhesion; to minimize residual stresses; to improve the metallic back-contact; to improve the uniformity, stoichiometry, and morphology of CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} and CdTe thin films; and to improve the efficiency of CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} and CdTe solar cells.

  11. Polycrystalline CuInSe{sub 2} and CdTe solar cells. Annual subcontract report, April 15, 1992--April 14, 1993

    SciTech Connect

    Dhere, N.G.

    1994-08-01

    The principal objective of the research project is to develop processes for the fabrication of cadmium-telluride, CdTe, and copper-indium-gallium-diselenide, Cu(In{sub 1{minus}x}Ga{sub x})Se{sub 2}, polycrystalline-thin-film solar cells using techniques that can be scaled-up for economic manufacture on a large scale. The aims are to fabricate CdTe solar cells using Cd and Te layers sputtered from elemental targets; to promote the interdiffusion between Cd/Te layers, CdTe phase formation, and grain growth; to utilize non-toxic selenization so as to avoid the use of extremely toxic H{sub 2}Se in the fabrication of Cu(In{sub l{minus}x}Ga{sub x})Se{sub 2} thin-film solar cells; to optimize selenization parameters; to improve adhesion; to minimize residual stresses; to improve the uniformity, stoichiometry, and morphology of CdTe and Cu(In{sub 1{minus}x}Ga{sub x})Se{sub 2} thin films, and the efficiency of CdTe and Cu(In{sub 1{minus}x}Ga{sub x})Se{sub 2} solar cells.

  12. Fabrication of fluorescence-based biosensors from functionalized CdSe and CdTe quantum dots for pesticide detection

    NASA Astrophysics Data System (ADS)

    Tran, Thi Kim Chi; Chinh Vu, Duc; Dieu Thuy Ung, Thi; Yen Nguyen, Hai; Hai Nguyen, Ngoc; Cao Dao, Tran; Nga Pham, Thu; Liem Nguyen, Quang

    2012-09-01

    This paper presents the results on the fabrication of highly sensitive fluorescence biosensors for pesticide detection. The biosensors are actually constructed from the complex of quantum dots (QDs), acetylcholinesterase (AChE) and acetylthiocholine (ATCh). The biosensor activity is based on the change of luminescence from CdSe and CdTe QDs with pH, while the pH is changed with the hydrolysis rate of ATCh catalyzed by the enzyme AChE, whose activity is specifically inhibited by pesticides. Two kinds of QDs were used to fabricate our biosensors: (i) CdSe QDs synthesized in high-boiling non-polar organic solvent and then functionalized by shelling with two monolayers (2-ML) of ZnSe and eight monolayers (8-ML) of ZnS and finally capped with 3-mercaptopropionic acid (MPA) to become water soluble; and (ii) CdTe QDs synthesized in aqueous phase then shelled with CdS. For normal checks the fabricated biosensors could detect parathion methyl (PM) pesticide at very low contents of ppm with the threshold as low as 0.05 ppm. The dynamic range from 0.05 ppm to 1 ppm for the pesticide detection could be expandable by increasing the AChE amount in the biosensor.

  13. Physical reasons of emission transformation in infrared CdSeTe/ZnS quantum dots at bioconjugation

    NASA Astrophysics Data System (ADS)

    Torchynska, T. V.

    2015-04-01

    The core/shell CdSeTe/ZnS quantum dots (QDs) with emission at 780-800 nm (1.55-1.60 eV) have been studied by means of photoluminescence (PL) and Raman scattering methods in the nonconjugated state and after conjugation to different antibodies (Ab): (i) mouse monoclonal [8C9] human papilloma virus Ab, anti-HPV 16-E7 Ab, (ii) mouse monoclonal [C1P5] human papilloma virus HPV16 E6+HPV18 E6 Ab, and (iii) pseudo rabies virus (PRV) Ab. The transformations of PL and Raman scattering spectra of QDs, stimulated by conjugated antibodies, have been revealed and discussed. The energy band diagram of core/shell CdSeTe/ZnS QDs has been designed that helps to analyze the PL spectra and their transformations at the bioconjugation. It is shown that the core in CdSeTe/ZnS QDs is complex and including the type II quantum well. The last fact permits to explain the nature of infrared (IR) optical transitions (1.55-1.60 eV) and the high energy PL band (1.88-1.94 eV) in the nonconjugated and bioconjugated QDs. A set of physical reasons has been analyzed with the aim to explain the transformation of PL spectra in bioconjugated QDs. Finally it is shown that two factors are responsible for the PL spectrum transformation at bioconjugation to charged antibodies: (i) the change of energy band profile in QDs and (ii) the shift of QD energy levels in the strong quantum confinement case. The effect of PL spectrum transformation is useful for the study of QD bioconjugation to specific antibodies and can be a powerful technique for early medical diagnostics.

  14. Enhanced photoelectrochemical aptasensing platform based on exciton energy transfer between CdSeTe alloyed quantum dots and SiO2@Au nanocomposites.

    PubMed

    Fan, Gao-Chao; Zhu, Hua; Shen, Qingming; Han, Li; Zhao, Ming; Zhang, Jian-Rong; Zhu, Jun-Jie

    2015-04-25

    High-efficient exciton energy transfer between CdSeTe alloyed quantum dots and SiO2@Au nanocomposites was applied to develop an enhanced photoelectrochemical aptasensing platform with ultrahigh sensitivity, good selectivity, reproducibility and stability. PMID:25804131

  15. Incoherent c-Axis Interplane Response of the Iron Chalcogenide FeTe0:55Se0:45 Superconductor from Infrared Spectroscopy

    SciTech Connect

    Gu, G.D.; Moon, S.J.; Homes, C.C.; Akrap, A.; Xu,, Z.J.; Wen, J.S.; Lin,, Z.W.; Li, Q.; Basov, D.N.

    2011-05-23

    We report on the interplane c-axis electronic response of FeTe{sub 0.55}Se{sub 0.45} investigated by infrared spectroscopy. We find that the normal-state c-axis electronic response of FeTe{sub 0.55}Se{sub 0.45} is incoherent and bears significant similarities to those of mildly underdoped cuprates. The c-axis optical conductivity {sigma}{sub c}({omega}) of FeTe{sub 0.55}Se{sub 0.45} does not display well-defined Drude response at all temperatures. As temperature decreases, {sigma}{sub c}({omega}) is continuously suppressed. The incoherent c-axis response is found to be related to the strong dissipation in the ab-plane transport: a pattern that holds true for various correlated materials as well as FeTe{sub 0.55}Se{sub 0.45}.

  16. X-ray diffraction study of (TlInSe{sub 2}){sub 1-x}(TlGaTe{sub 2}){sub x} crystal system

    SciTech Connect

    Sheleg, A. U. Zub, E. M.; Yachkovskii, A. Ya.; Mustafaeva, S. N.; Kerimova, E. M.

    2012-03-15

    The crystallographic and dynamic characteristics of TlInSe{sub 2} and TlGaTe{sub 2} crystals have been studied by X-ray diffraction in the temperature range of 85-320 K. The temperature dependences of the unit-cell parameters a of TlInSe{sub 2} and TlGaTe{sub 2} crystals, as well as their coefficients of thermal expansion along the [100] direction, are determined. The concentration dependences of the unit-cell parameters a and c for (TlInSe{sub 2}){sub 1-x}(TlGaTe{sub 2}){sub x} crystals are measured. Anomalies are found in the temperature dependences of the unit-cell parameters a and, correspondingly, the coefficient of thermal expansion, indicating the existence of phase transitions in TlInSe{sub 2} and TlGaTe{sub 2} crystals.

  17. Characterization of CdS/CdTe and CdS/CuInSe/sub 2/ thin film solar cells

    SciTech Connect

    Cheng, L.J.; Basol, B.M.; Nguyen, T.T.; Shyu, C.M.; Yoo, H.I.

    1984-05-01

    A study on low cost polycrystalline thin film CdS/CdTe and CdS/CuInSe/sub 2/ solar cells using measurements of spectral response and capacitancevoltage-frequency relationships was performed. Because of high concentrations of localized levels in the energy gap existing in materials and at interfaces, the redistribution of charge among the levels due to illumination plays an important role in the collection of light-generated current in these cells. The results illustrate some related phenomena observed in these cells.

  18. Characterization of CdS/CdTe and CdS/CuInSe2 thin film solar cells

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.; Nguyen, T. T.; Shyu, C. M.; Basol, B. M.; Yoo, H. I.

    1984-01-01

    A study on low cost polycrystalline thin film CdS/CdTe and CdS/CuInSe2 solar cells using measurements of spectral response and capacitance-voltage-frequency relationships was performed. Because of high concentrations of localized levels in the energy gap existing in materials and at interfaces, the redistribution of charge among the levels due to illumination plays an important role in the collection of light-generated current in these cells. The results illustrate some related phenomena observed in these cells.

  19. Separating Lattice and Electronic Thermal Conductivity Contributions in Bi2Se3andBi2Te3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Opeil, Cyril; Yao, Mengliang; Wilson, Stephen; Zebarjadi, Mona

    2015-03-01

    Nanostructured materials are an effective approach in reducing lattice thermal conductivity and improving overall thermoelectric efficiency. A challenge for experimental measurements of thermal conductivity is separating the contributions from both carriers and phonons. Building on the work of K. Lukas et al., Phys. Rev. B 85, 205410 (2012),we report measurements of thermal and electrical conductivity of single crystal thermoelectrics: Bi2Se3andBi2Te3 in a transverse magnetic field up to 9 Tesla. Our experiments provide a separation of the lattice/electronic components and make possible a better theoretical model of the lattice portion of the thermal conductivity in materials.

  20. Electronic structure, transport, and phonons of SrAg C h F (C h = S , Se, Te): Bulk superlattice thermoelectrics

    NASA Astrophysics Data System (ADS)

    Gudelli, Vijay Kumar; Kanchana, V.; Vaitheeswaran, G.; Singh, David J.; Svane, A.; Christensen, N. E.; Mahanti, Subhendra D.

    2015-07-01

    We report calculations of the electronic structure, vibrational properties, and transport for the p -type semiconductors, SrAg C h F (C h = S , Se, and Te). We find soft phonons with low frequency optical branches intersecting the acoustic modes below 50 cm-1, indicative of a material with low thermal conductivity. The bands at and near the valence-band maxima are highly two-dimensional, which leads to high thermopowers even at high carrier concentrations, which is a combination that suggests good thermoelectric performance. These materials may be regarded as bulk realizations of superlattice thermoelectrics.

  1. Competition and cooperativity between tetrel bond and chalcogen bond in complexes involving F2CX (X = Se and Te)

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Liu, Yan-Wen; Li, Qing-Zhong; Li, Wen-Zuo; Cheng, Jian-Bo

    2015-01-01

    F2CX (X = Se and Te) have two Lewis acid sites of ?-hole and ?-hole located respectively in the vicinity of X and C ends, participating in the chalcogen and tetrel bonds with HCN and NH3, respectively. F2CSe forms a stronger tetrel bond, while F2CTe forms a stronger chalcogen bond. F2CX shows weaker tetrel and chalcogen bonds in the ternary system, exhibiting anticooperativity with some different features from positive one. The nature of two interactions and the origin of anticooperativity have been analyzed by means of energy decomposition, molecular electrostatic potential, and orbital interaction.

  2. NaCu6Se4: a layered compound with mixed valency and metallic properties.

    PubMed

    Sturza, Mihai; Malliakas, Christos D; Bugaris, Daniel E; Han, Fei; Chung, Duck Young; Kanatzidis, Mercouri G

    2014-11-17

    A new ternary compound NaCu6Se4 was synthesized from the reaction of Cu in a molten sodium polyselenide flux. The compound crystallizes in trigonal space group R3?m with a = 4.0465(3) and c = 41.493(5) . The crystal structure contains flat two-dimensional slabs of (1)/?[Cu6Se4] with a unique structural arrangement, separated by Na cations. The compound contains mixed valency and has a high conductivity of ?3 10(3) S cm(-1) at room temperature, and exhibits increasing conductivity with decreasing temperature, indicating metallic behavior. A small positive thermopower (4-11 ?V K(-1) from 300 to 500 K) and Hall effect measurements indicate p-type transport with a carrier concentration of ?2.8(3) 10(21) cm(-3) and a hole mobility of ?8.75 cm(2) V(-1) s(-1) at 300 K. NaCu6Se4 exhibits temperature-independent Pauli paramagnetism. PMID:25360672

  3. Thermoelectric efficiency of (1 - x)(GeTe) x(Bi2Se0.2Te2.8) and implementation into highly performing thermoelectric power generators.

    PubMed

    Koenig, J; Winkler, M; Dankwort, T; Hansen, A-L; Pernau, H-F; Duppel, V; Jaegle, M; Bartholom, K; Kienle, L; Bensch, W

    2015-02-14

    Here we report for the first time on a complete simulation assisted "material to module" development of a high performance thermoelectric generator (TEG) based on the combination of a phase change material and established thermoelectrics yielding the compositions (1 - x)(GeTe) x(Bi(2)Se(0.2)Te(2.8)). For the generator design our approach for benchmarking thermoelectric materials is demonstrated which is not restricted to the determination of the intrinsically imprecise ZT value but includes the implementation of the material into a TEG. This approach is enabling a much more reliable benchmarking of thermoelectric materials for TEG application. Furthermore we analyzed the microstructure and performance close to in-operandi conditions for two different compositions in order to demonstrate the sensitivity of the material against processing and thermal cycling. For x = 0.038 the microstructure of the as-prepared material remains unchanged, consequently, excellent and stable thermoelectric performance as prerequisites for TEG production was obtained. For x = 0.063 we observed strain phenomena for the pristine state which are released by the formation of planar defects after thermal cycling. Consequently the thermoelectric performance degrades significantly. These findings highlight a complication for deriving the correlation of microstructure and properties of thermoelectric materials in general. PMID:25559337

  4. A fast synthesis of near-infrared emitting CdTe/CdSe quantum dots with small hydrodynamic diameter for in vivo imaging probes.

    PubMed

    Hu, Dehong; Zhang, Pengfei; Gong, Ping; Lian, Shuhong; Lu, Yangyang; Gao, Duyang; Cai, Lintao

    2011-11-01

    Highly luminescent near-infrared (NIR) emitting CdTe/CdSe quantum dots (QDs) were prepared through a fast and convenient method, and a new type of multivalent polymer ligands was used as the surface substituents to prepare highly stable hydrophilic QDs with small sizes. The well-defined CdTe/CdSe QDs were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy and photoluminescence (PL) spectroscopy, respectively. The as-prepared CdTe/CdSe QDs were photostable with high PL quantum yields (QYs) (up to 66% at room temperature), low toxicity to cells at experimental dosages, and the QDs' fluorescence emissions were tunable between 700 and 820 nm. Furthermore, fluorescence imaging using CdTe/CdSe QDs conjugated with the AS1411 aptamer (targeting nucleolin) probe in cancer cells was reported, and the CdTe/CdSe QDs were also successfully applied for the fluorescence imaging of living animals. Our preliminary results illustrated that the CdTe/CdSe NIR-QDs with small sizes would be an alternative probe for ultrasensitive, multicolor, and multiplex applications, especially for in vivo imaging applications. PMID:21989776

  5. Point defects in CdTexSe1-x crystals grown from a Te-rich solution for applications in detecting radiation

    SciTech Connect

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Lee, W.; Yang, G.; Burger, A.; James, R. B.; Cui, Y.

    2015-04-15

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from (1–30) V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.

  6. Thermoelectric Properties of Cu-Doped n-Type Bi2Te2.85Se0.15 Prepared by Liquid Phase Growth Using a Sliding Boat

    NASA Astrophysics Data System (ADS)

    Kitagawa, Hiroyuki; Matsuura, Tsukasa; Kato, Toshihito; Kamata, Kin-ya

    2015-06-01

    N-type Bi2Te2.85Se0.15 thermoelectric materials were prepared by liquid phase growth (LPG) using a sliding boat, a simple and short fabrication process for Bi2Te3-related materials. Cu was selected as a donor dopant, and its effect on thermoelectric properties was investigated. Thick sheets and bars of Cu x Bi2 Te2.85Se0.15 ( x=0-0.25) of 1-2mm in thickness were obtained using the process. X-ray diffraction patterns and scanning electron micrographs showed that the in-plane direction tended to correspond to the hexagonal c-plane, which is the preferred direction for thermoelectric conversion. Cu-doping was effective in controlling conduction type and carrier (electron) concentration. The conduction type was p-type for undoped Bi2Te2.85Se0.15 and became n-type after Cu-doping. The Hall carrier concentration was increased by Cu-doping. Small resistivity was achieved in Cu0.02Bi2Te2.85Se0.15 owing to an optimized amount of Cu-doping and high crystal orientation. As a result, the maximum power factor near 310K for Cu0.02Bi2Te2.85Se0.15 was approximately 410-3W/K2m and had good reproducibility. Furthermore, the thermal stability of Cu0.02Bi2Te2.85Se0.15 was also confirmed by thermal cycling measurements of electrical resistivity. Thus, n-type Bi2Te2.85Se0.15 with a large power factor was prepared using the present LPG process.

  7. Development of a computer model for polycrystalline thin-film CuInSe sub 2 and CdTe solar cells

    SciTech Connect

    Gray, J.L.; Schwartz, R.J.; Lee, Y.J. )

    1992-04-01

    This report describes work to develop a highly accurate numerical model for CuInSe{sub 2} and CdTe solar cells. ADEPT (A Device Emulation Program and Toolbox), a one-dimensional semiconductor device simulation code developed at Purdue University, was used as the basis of this model. An additional objective was to use ADEPT to analyze the performance of existing and proposed CuInSe{sub 2} and CdTe solar cell structures. The work is being performed in two phases. The first phase involved collecting device performance parameters, cell structure information, and material parameters. This information was used to construct the basic models to simulate CuInSe{sub 2} and CdTe solar cells. This report is a tabulation of information gathered during the first phase of this project on the performance of existing CuInSe{sub 2} and CdTe solar cells, the material properties of CuInSr{sub 2}, CdTe, and CdS, and the optical absorption properties of CuInSe{sub 2}, CdTe, and CdS. The second phase will entail further development and the release of a version of ADEPT tailored to CuInSe{sub 2} and CdTe solar cells that can be run on a personal computer. In addition, ADEPT will be used to analyze the performance of existing and proposed CuInSe{sub 2} and CdTe solar cell structures. 110 refs.

  8. Observation of an electron band above the Fermi level in FeTe{sub 0.55}Se{sub 0.45} from in-situ surface doping

    SciTech Connect

    Zhang, P.; Ma, J.; Qian, T.; Richard, P. Ding, H.; Xu, N.; Xu, Y.-M.; Fedorov, A. V.; Denlinger, J. D.; Gu, G. D.

    2014-10-27

    We used in-situ potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe{sub 0.55}Se{sub 0.45}. The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tune the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily electron-doped KFe{sub 2?x}Se{sub 2} compound.

  9. Selenium and Tellurium concentrations of ultradepleted peridotites determined by isotope dilution ICPMS: implications for Se-Te systematics of the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Knig, S.; Luguet, A.; Lorand, J.-P.; Wombacher, F.; Lissner, M.

    2012-04-01

    As for highly siderophile elements, selenium and tellurium may constitute key tracers for planetary processes such as formation of the Earth's core and the Late Veneer composition, provided that their geochemical behaviour and abundances in the primitive upper mantle (PUM) are constrained. Within this scope, we have developed a high precision analytical method for the simultaneous determination of selenium and tellurium concentrations from a single sample aliquot and various rock matrices, including ultradepleted peridotites. The technique employs isotope dilution, thiol cotton fiber (TCF) separation and hydride generation MC-ICP-MS. A selection of international mafic and ultramafic rock reference materials BIR-1, BE-N, TDB-1, UB-N, FON B 93, BIR-1 and BHVO-2 with a range of 30 to 350 ppb Se and 0.7 to 12 ppb Te show external reproducibilities of 3 to 8% for Se and 0.4 to 11% for Te (2 relative standard deviations (r.s.d.)). We have applied this method to a suite of refractory mantle peridotites (Al2O3 <1.5 wt. %) from Lherz, previously shown to be strongly and uniformly depleted in Se, Te and incompatible elements by high degree of partial melting (20 5%). In contrast to fertile lherzolites which remain at broadly chondritic values (Se/Te = 9), the ultradepleted harzburgites show highly fractionated and up to suprachondritic Se/Te (< 35) that correlate with decreasing Te concentrations. The fractionation is displayed by the depleted peridotites as well as multiple analysis of a single Lherz harzburgite sample (64-3). This shows 1) a strong sample heterogeneity effect for Te and 2) a more incompatible behaviour of Te compared to Se on the whole rock scale, once base metal sulfides are highly depleted and in some cases entirely consumed by partial melting. The marked differences in Se-Te systematics observed between fertile lherzolites and depleted harzburgites can be explained by the combined effect of i) different abundances and proportions of residual and metasomatic base metal sulfides ii) discrete micrometric platinum-group minerals. In addition to re-fertilized lherzolites, harzburgites therefore offer new insights into the behaviour of Se and Te during mantle depletion which is a prerequisite to further constrain the Se and Te abundances of the primitive upper mantle.

  10. Facile synthesis of magic-sized CdSe and CdTe nanocrystals with tunable existence periods

    NASA Astrophysics Data System (ADS)

    Dai, Quanqin; Li, Dongmei; Chang, Jingjing; Song, Yanli; Kan, Shihai; Chen, Haiyong; Zou, Bo; Xu, Weiqing; Xu, Shuping; Liu, Bingbing; Zou, Guangtian

    2007-10-01

    A facile and reproducible approach for the synthesis of magic-sized CdSe and CdTe nanocrystals is established. The as-synthesized CdSe nanocrystals exhibit strong and fixed absorption features with unusually narrow emission spectra. White-light emission can be achieved by two different routes. One is to mix colours emitted from both the magic-sized nanocrystals and the subsequently transformed regular-sized nanocrystals; the other is to expose the magic-sized nanocrystals to ambient conditions. A systematic study of the nanocrystal formation process shows that monomer activity and injection/growth temperatures are important parameters to the growth kinetics of magic-sized nanocrystals. Variation of these parameters provides tunable existence periods in the hot solution.

  11. New bismuth selenium oxides: syntheses, structures, and characterizations of centrosymmetric Bi2(SeO3)2(SeO4) and Bi2(TeO3)2(SeO4) and noncentrosymmetric Bi(SeO3)(HSeO3).

    PubMed

    Lee, Eun Pyo; Song, Seung Yoon; Lee, Dong Woo; Ok, Kang Min

    2013-04-01

    Three new mixed metal selenium oxides materials, Bi2(SeO3)2(SeO4), Bi2(TeO3)2(SeO4), and Bi(SeO3)(HSeO3), have been synthesized by hydrothermal and solid-state reactions using Bi(NO3)35H2O, SeO2 (or TeO2), H2SeO4, and Bi2O3 as reagents. The reported materials have been structurally characterized by single crystal X-ray diffraction. While Bi2(SeO3)2(SeO4) and Bi2(TeO3)2(SeO4) are crystallographically centrosymmetric (CS), Bi(SeO3)(HSeO3) crystallizes in a noncentrosymmetric (NCS) space group. The isostructural Bi2(SeO3)2(SeO4) and Bi2(TeO3)2(SeO4) exhibit three-dimensional framework structures that are composed of BiO6, Se(4+)O3 (or Te(4+)O3), and Se(6+)O4 polyhedra. However, Bi(SeO3)(HSeO3) exhibits corrugated layers that are composed of BiO5, Se(4+)O3, and Se(4+)O2(OH) polyhedra. All three materials contain local asymmetric coordination environments attributable to the lone pairs on the Bi(3+), Se(4+), and/or Te(4+) cations. Powder second-harmonic generation (SHG) measurements on NCS Bi(SeO3)(HSeO3) using 1064 nm radiation indicate that the material has a SHG efficiency of approximately 20 times that of ?-SiO2 and is not phase-matchable (type 1). The origin and magnitude of the SHG efficiency of Bi(SeO3)(HSeO3) is explained by determining the net direction of the polarizations arising from individual asymmetric polyhedra. Infrared spectroscopy, thermal analysis, elemental analysis, and dipole moment calculations for the reported materials are also presented. PMID:23506341

  12. Surface origin of quasi-2D Shubnikov-de Haas oscillations in Bi2Te2Se

    NASA Astrophysics Data System (ADS)

    Kapustin, A. A.; Stolyarov, V. S.; Bozhko, S. I.; Borisenko, D. N.; Kolesnikov, N. N.

    2015-08-01

    Transport measurements at liquid helium temperatures were done on a number of Bi2Te2Se samples with thicknesses ranging from 30 to 200 ?m in order to detect surface states. In each sample we observed Shubnikov-de Haas (SdH) oscillations and sublinear dependence of off-diagonal component of magnetoresistance tensor on magnetic field. The periods of SdH oscillations in inverse magnetic field were found to be the same within 15%. The positions of SdH oscillations are determined by the normal to surface component of magnetic field. We found that the measured conductivity can be well described by a model with two groups of electrons, 2D and 3D. The conductivity of 2D electrons was found to be relatively weakly varying from sample to sample and not depending on thickness in a systematic manner. This behavior can be explained only by their localization on the surface. Comparison of the results of magnetotransport measurements with our scanning tunneling spectroscopy results on atomically smooth Bi2Te2Se surface in ultrahigh vacuum led us to conclude that the surface electrons are separated from the bulk electrons by a depletion layer approximately 100 nm thick. This effect could provide the dominant contribution of surface electrons to conductivity in samples with thicknesses less than 200 nm.

  13. Thermodynamic properties of PbTe, PbSe, and PbS: a ?rst-principles study

    SciTech Connect

    Zhang, Yi; Ke, Xuezhi; Chen, Changfeng; Yang, Jihui; Kent, Paul R

    2009-01-01

    The recent discovery of novel lead chalcogenide-based thermoelectric materials has attracted great interest. These materials exhibit low thermal conductivity which is closely related to their lattice dynamics and thermodynamic properties. In this paper, we report a systematic study of electronic structures and lattice dynamics of the lead chalcogenides PbX (X=Te, Se, S) using ?rst-principles density functional theory calculations and a direct force-constant method. We calculate the struc- tural parameters, elastic moduli, electronic band structures, dielectric constants, and Born e?ective charges. Moreover, we determine phonon dispersions, phonon density of states, and phonon softening modes in these materials. Based on the results of these calculations, we further employ quasihar- monic approximation to calculate the heat capacity, internal energy, and vibrational entropy. The obtained results are in good agreement with experimental data. Lattice thermal conductivities are evaluated in terms of the Gruneisen parameters. The mode Gruneisen parameters are calculated to explain the anharmonicity in these materials. The e?ect of the spin-orbit interaction is found to be negligible in determining the thermodynamic properties of PbTe, PbSe, and PbS.

  14. Two-dimensional nanoplates of Bi2Te3 and Bi2Se3 with reduced thermal stability

    NASA Astrophysics Data System (ADS)

    Kang, Sung Min; Ha, Sung-Soo; Jung, Wan-Gil; Park, Mansoo; Song, Hyon-Seok; Kim, Bong-Joong; Hong, Jung-Il

    2016-02-01

    Free-standing thin nanoplates of Bi2Te3 and Bi2Se3 were synthesized by solvothermal method. It was demonstrated that the thickness of the nanoplates can be controlled by introducing a controlled amount of polyvinylpyrrolidone (PVP) in the synthesis reaction. PVP bonds to the polar basal planes of hexagonal crystal structure of Bi2Te3 and Bi2Se3, and they suppress the growth (speed) of the hexagonal crystals in the c-axis direction. Highly anisotropic growth yielded the formation of 2-dimensional nanostructures of nanoplates. The plates were examined directly with transmission electron microscopy (TEM) with in-situ heating. These crystalline nanoplates with extremely high width to thickness ratios were found to exhibit much lower thermal stability compared to the bulk counterpart or the conventional nanoparticles as represented by the reduced melting temperature. The melting temperature of a nanoplate decreased by more than 100°C compared to the melting temperature of the bulk material. While it is widely known that the meting temperature decreases for nanoparticles with reduced sizees in all three spatial dimensions, we demonstrate that the reduction in one dimension, i.e. thickness of the platelets in the present study, is effective enough to induce much greater decrease of the melting point than the decrease as observed for the case of nanoparticles.

  15. Effect of Sn Doping on the Thermoelectric Properties of n-type Bi2(Te,Se)3 Alloys

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Uk; Lee, Deuk-Hee; Kwon, Beomjin; Hyun, Dow-Bin; Nahm, Sahn; Baek, Seung-Hyub; Kim, Jin-Sang

    2015-06-01

    In the present work, 0.01-0.05wt.% Sn-doped Bi2(Te0.9Se0.1)3 alloys were prepared by mechanical deformation followed by hot pressing, and their thermoelectric properties were studied. We observed that the Sn element is a very effective dopant as an acceptor to control the carrier concentration in the n-type Bi2(Te0.9Se0.1)3 alloys to optimize their thermoelectric property. The n-type carrier concentration can be controlled from 4.2 1019/cm3 to 2.4 1019/cm3 by 0.05wt.% Sn-doping. While the Seebeck coefficient and the electrical resistivity are both increased with doping, the power factor remains the same. Therefore, we found that the thermoelectric figure-of-merit becomes maximized at 0.75 when the thermal conductivity has a minimum value for the 0.03wt.% Sn-doped sample.

  16. Ab initio study of point defects in PbSe and PbTe: Bulk and nanowire

    SciTech Connect

    Wrasse, E. O.; Venezuela, P.; Baierle, R. J.

    2014-11-14

    First principles investigations, within the spin-polarized density functional theory, are performed to study energetic stability and electronic properties of point defects (vacancies and antisites) in PbSe and PbTe: bulk and nanowire (NW). Our results show that the energetic stability of these defects is ruled by relaxation process. These defects have lower formation energies in the nanowire structures as compared to the bulk, being more stable in the surface of the NWs. We also show that in the bulk system only one charge state is stable, otherwise, due to the larger band gaps, more than one charge state may be stable in the NWs. In addition, we have investigated how the presence of intrinsic defects affects the electronic properties of bulk and NW systems. Vacancies give rise to new electronic states near to the edges of the valence and conduction bands while the energetic position of the electronic states from antisites depends on the charge state, being localized inside the band gap or near the edges of the valence or conduction bands. We discuss how these changes in the electronic properties due to intrinsic defects may affect the thermoelectric properties of PbSe and PbTe NWs.

  17. Anisotropy analysis of thermoelectric properties of Bi2Te2.9Se0.1 prepared by SPS method

    NASA Astrophysics Data System (ADS)

    Zybala, Rafal; Wojciechowski, Krzysztof T.

    2012-06-01

    The n-type Bi2Te2.9Se0.1 materials were synthesized by the direct fusion technique. The polycrystalline samples were fabricated by the uniaxial pressing of powders in spark plasma sintering (SPS) apparatus. The materials were subjected to the heat treatment in H2-Ar atmosphere at 470 K for 24 h. The influence of preparation conditions on the anisotropy of electrical and thermal properties was thoroughly studied for the direction perpendicular and parallel to the pressing force. The microstructure and the chemical composition of both types of samples were examined using a scanning microscope (SEM) equipped with an X-ray energy dispersion detector (EDX). The XRD method was applied for the phase analysis of materials, as well as, for determination of preferred orientation of Bi2Te2.9Se0.1 grains. The Seebeck coefficient distribution was studied by the scanning thermoelectric microprobe (STM). Temperature dependences of thermoelectric properties (thermal and electrical conductivities, Seebeck coefficient) were measured in the temperature from 300 K to 550 K. The statistical analysis of results has shown strong influence of pressing force direction both on structural and transport properties. The applied heat treatment of materials significantly improves their thermoelectric figure of merit. Particularly, it was found that annealing in H2-Ar atmosphere leads to enhancement of the ZT three times up to 0.7 at 370 K in perpendicular direction to the pressing force.

  18. Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se)

    NASA Astrophysics Data System (ADS)

    Yin, J.-X.; Wu, Zheng; Wang, J.-H.; Ye, Z.-Y.; Gong, Jing; Hou, X.-Y.; Shan, Lei; Li, Ang; Liang, X.-J.; Wu, X.-X.; Li, Jian; Ting, C.-S.; Wang, Z.-Q.; Hu, J.-P.; Hor, P.-H.; Ding, H.; Pan, S. H.

    2015-07-01

    In superconductors, electrons are paired and condensed into the ground state. An impurity can break the electron pairs into quasiparticles with energy states inside the superconducting gap. The characteristics of such in-gap states reflect accordingly the properties of the superconducting ground state. A zero-energy in-gap state is particularly noteworthy, because it can be the consequence of non-trivial pairing symmetry or topology. Here we use scanning tunnelling microscopy/spectroscopy to demonstrate that an isotropic zero-energy bound state with a decay length of ~10 emerges at each interstitial iron impurity in superconducting Fe(Te,Se). More noticeably, this zero-energy bound state is robust against a magnetic field up to 8 T, as well as perturbations by neighbouring impurities. Such a spectroscopic feature has no natural explanation in terms of impurity states in superconductors with s-wave symmetry, but bears all the characteristics of the Majorana bound state proposed for topological superconductors, indicating that the superconducting state and the scattering mechanism of the interstitial iron impurities in Fe(Te,Se) are highly unconventional.

  19. Application of CdTe/ZnSe quantum dots in in vitro imaging of chicken tissue and embryo.

    PubMed

    Moulick, Amitava; Blazkova, Iva; Milosavljevic, Vedran; Fohlerova, Zdenka; Hubalek, Jaromir; Kopel, Pavel; Vaculovicova, Marketa; Adam, Vojtech; Kizek, Rene

    2015-01-01

    The present work is aimed to synthesize CdTe/ZnSe core/shell quantum dots (QDs) in an easy way and to explore the possibilities of its application in in vitro imaging of chicken tissue and embryo. The QDs were prepared using microwave irradiation with different temperatures, which is a very easy and less time-consuming method. Subsequently, these QDs were characterized by spectrofluorimetry, Transmission Electron Microscopy, X-ray fluorescence analysis and Dynamic Light Scattering measurement. A blueshifting of the emission was found when ZnSe was deposited on CdTe QDs. The QDs showed its fluorescence emission quantum yields up to 25%. They were applied into chicken embryos and breast muscle tissues to study their efficiency in in vitro imaging. All the QDs of different color were able to visualize in in vitro imaging. The highest fluorescence intensity was detected in the case of red QDs prepared at 100°C. The green and red QDs were possible to detect up to the depth of 3 and 4 mm of the tissue, respectively. PMID:25476270

  20. Sb52Se36Te12 material with high-temperature data retention coupled with rapid crystallization speed for phase change application

    NASA Astrophysics Data System (ADS)

    Chen, Liangliang; Song, Sannian; Song, Zhitang; Li, Le; zhang, Zhonghua; Zheng, Yonghui; Zheng, Qianqian; Zhang, Xin; Zhu, Xiuwei; Shao, Hehong

    2015-12-01

    In this paper, Sb52Se36Te12 is proposed for its good data retention and extremely rapid crystallization speed. Compared with usual Ge2Sb2Te5, Sb52Se36Te12 exhibits a higher crystallization temperature of 196 ○C, a better thermal stability, indicating a brilliant performance for data retention of 10 years at 121 ○C, and a much faster switching speed, which is demonstrated by an electric pulse as short as 8 ns that can fulfil the set operation. Thus, Sb52Se36Te12 could be expected to have a wide application in the fields of phase change memory with rapid crystallization speed and high-temperature data retention.

  1. Lattice dynamics of BaFe2X3(X=S,Se) compounds

    DOE PAGESBeta

    Popović, Z. V.; Šćepanović, M.; Lazarević, N.; Opačić, M.; Radonjić, M. M.; Tanasković, D.; Lei, Hechang; Petrovic, C.

    2015-02-27

    We present the Raman scattering spectra of the S=2 spin ladder compounds BaFe₂X₃ (X=S,Se) in a temperature range between 20 and 400 K. Although the crystal structures of these two compounds are both orthorhombic and very similar, they are not isostructural. The unit cell of BaFe₂S₃ (BaFe₂Se₃) is base-centered Cmcm (primitive Pnma), giving 18 (36) modes to be observed in the Raman scattering experiment. We have detected almost all Raman active modes, predicted by factor group analysis, which can be observed from the cleavage planes of these compounds. Assignment of the observed Raman modes of BaFe₂S(Se)₃ is supported by themore » lattice dynamics calculations. The antiferromagnetic long-range spin ordering in BaFe₂Se₃ below TN=255K leaves a fingerprint both in the A1g and B3g phonon mode linewidth and energy.« less

  2. Se-Te fractionation by sulfide-silicate melt partitioning: Implications for the composition of mantle-derived magmas and their melting residues

    NASA Astrophysics Data System (ADS)

    Brenan, James M.

    2015-07-01

    Partitioning of Se and Te has been measured between coexisting sulfide liquid, monosulfide solid solution (MSS) and silicate melt at 0.9-1.5 GPa, 1200-1300 C, fO2 controlled near the fayalite-magnetite-quartz buffer (FMQ-1.2 to -1.6) and 3-22 wt% FeO in the silicate melt. Both elements are highly compatible in the sulfide phase relative to silicate liquid (Dsulfide phase/silicate liquid > 600), with the identity of the sulfide dictating the sense of Se-Te fractionation. Whereas the measured DTe/DSe is ?5-9 for sulfide liquid/silicate liquid partitioning, MSS/silicate melt partitioning fractionates Te from Se in the opposite sense, with DTe/DSe of ?0.5-0.8. At fixed fO2, DSulLiq/SilLiq values for both Se and Te decrease ?8-fold over the range in silicate melt FeO content investigated. The relative values of DSulLiq/SilLiq for Cu to Se increase with increasing FeO in the silicate melt, such that DCu exceeds DSe only for melts with >11 wt% FeO. Hence the standard belief that DCu >DSe as indicative of sulfide removal should be carefully assessed in the context of the FeO content of the magmas involved. Assuming a chondritic mantle Se/Te, predicted MSS and sulfide liquid compositions are generally in accord with natural mantle sulfides, in terms of their designation as MSS or sulfide liquid, based on independent criteria. However, additional variability is likely due to Te redistribution in accessory platinum group minerals (PGM), or that some sulfides are metasomatic. Calculations show that the Se/Te ratio of silicate melt derived from a sulfide liquid-saturated mantle is significantly higher, and more variable, than for silicate melt in equilibrium with residual MSS; modest sulfide liquid removal at low pressure, however, likely obscures the Se/Te fractionation imposed by the source sulfide phase. Models indicate that the composition of MORB is consistent with melts produced from sulfide-bearing sources with chondritic Se/Te, and source sulfur contents higher than estimates for depleted mantle. The calculated composition of sulfide-saturated melting residues show relatively little deviation in Se/Te if MSS is residual, but a sharp drop in this ratio for sulfide liquid control. Although the data are scattered, a portion of the peridotite array near the primitive mantle composition is consistent with model trends, and suggests control by residual MSS.

  3. Disorder-induced structural transitions in topological insulating Ge-Sb-Te compounds

    SciTech Connect

    Kim, Jeongwoo; Jhi, Seung-Hoon

    2015-05-21

    The mechanism for the fast switching between amorphous, metastable, and crystalline structures in chalcogenide phase-change materials has been a long-standing puzzle. Based on first-principles calculations, we study the atomic and electronic properties of metastable Ge{sub 2}Sb{sub 2}Te{sub 5} and investigate the atomic disorder to understand the transition between crystalline hexagonal and cubic structures. In addition, we study the topological insulating property embedded in these compounds and its evolution upon structural changes and atomic disorder. We also discuss the role of the surface-like states arising from the topological insulating property in the metal-insulator transition observed in the hexagonal structure.

  4. Pseudo Jahn-Teller origin of puckering in cyclohexahomoatomic molecules E6 (E = S, Se, Te) and restoring S6 planar ring configuration

    NASA Astrophysics Data System (ADS)

    Ilkhani, Ali Reza

    2015-10-01

    The pseudo Jahn-Teller effect (PJTE) is employed to explore the origin of the puckering structure of cyclohexasulfur (S6), cyclohexaselenium (Se6) and cyclohexatellurium (Te6) and their nondegenerate and degenerate vibronic excited states and their planar structure instabilities have investigated. The ab initio geometry optimization and frequency calculations show that all these cyclohexahomoatomic molecules chose D6h symmetry in the planar configuration, and according the S6 and Se6 experimental structure, the chair form of the molecules is stable structure. The vibronic coupling between the ground state 1A1g and excited state 1B2g is the cause of chair puckering in all these series compounds and the numerical solutions of the PJTE (1A1g+1B2g)⊗b2g problems describe their instability. The adiabatic potential energy surfaces (APES) cross sections of low-lying electronic states along the b2g puckering normal coordinates have calculated by the state-average complete active space self-consistent field (SA-CASSCF) method. The calculation results show that, the chair puckering instability in the S6 from unstable planar configuration with D6h symmetry to a stable D3d distorted geometry, is stronger than others, whereas it is weaker in Te6. Additionally, coordination two canions (X = H+, He2+) to the S6 chair structure restore the planarity of S6 puckered ring in the S6X2 systems, although the D6h symmetry in S6 planar ring configuration changes to the Cs symmetry in the systems.

  5. Stable Four-Coordinate Guanidinatosilicon(IV) Complexes with SiN3El Skeletons (El = S, Se, Te) and Si=El Double Bonds.

    PubMed

    Mck, Felix M; Klo, Dorit; Baus, Johannes A; Burschka, Christian; Bertermann, Rdiger; Poater, Jordi; Fonseca Guerra, Clia; Bickelhaupt, F Matthias; Tacke, Reinhold

    2015-09-28

    To get information about the reactivity profile of the donor-stabilized guanidinatosilicon(II) complexes 2 and 3, a series of oxidative addition reactions was studied. Treatment of 2 and 3 with S8, Se, or Te afforded the respective four-coordinate silicon(IV) complexes 8-10 and 12-14, which contain an SiN3 El skeleton (El = S, Se, Te) with an Si=El double bond. Treatment of 2 with N2O yielded the dinuclear four-coordinate silicon(IV) complex 11 with an SiN3O skeleton and a central four-membered Si2O2 ring. Compounds 8-14 exist both in the solid state and in solution. They were characterized by elemental analyses, NMR spectroscopic studies in the solid state and in solution, and crystal structure analyses. The reactivity profile of 2 was compared with that of the structurally related bis[N,N'-diisopropylbenzamidinato(-)]silicon(II) (1), which is three-coordinate in the solid state and four-coordinate in solution (1'). In contrast, as shown by state-of-the-art relativistic DFT analyses and experimental studies, silylene 2 is three-coordinate both in the solid state and solution. The three-coordinate species 2 is 9.3?kcal?mol(-1) more stable in benzene than the four-coordinate isomer 2'. The reason for this was studied by bonding analyses of 2 and 2', which were compared with those of 1 and 1'. The gas-phase proton affinities of the relevant species in solution (1' and 2) amount to 288.8 and 273.8?kcal?mol(-1), respectively. PMID:26284318

  6. 187Re-187Os systematics, highly siderophile element, S-Se-Te abundances in the components of unequilibrated L chondrites

    NASA Astrophysics Data System (ADS)

    Kadlag, Yogita; Becker, Harry

    2016-01-01

    The 187Re-187Os systematics, abundances of highly siderophile elements (HSE: Re, platinum group elements and Au), Te, Se and S as well as major and minor elements were determined in separated components of two unequilibrated L chondrites QUE 97008 (L3.05) and Ceniceros (L3.7). The 187Re-187Os systematics are disturbed in the components of both meteorites, most likely due to open system behavior of Re during terrestrial weathering of QUE 97008 and alteration on the L chondrite parent body as indicated by an internal errorchron generated for components of Ceniceros. The HSE abundance patterns suggest that the bulk rock abundances were mainly controlled by two different end members. Non-magnetic fractions display lower Re/Os and HSE/Ir than CI chondrites. Chondrules, metal-troilite spherules and fine magnetic fractions, are depleted in refractory HSE and show higher Rh/Ir, Pd/Ir and Au/Ir than in CI chondrites. The different HSE compositions indicate the presence of unequilibrated alloys and loss of refractory HSE-rich carrier phases from the precursors of some L chondrite components. Gold is decoupled from other HSE in magnetic fractions and shows chalcophile affinities with a grain size dependent variation similar to S and Se, presumably inherited from preaccretionary processes. Tellurium is depleted in all components compared to other analysed siderophile elements, and its abundance was most likely controlled by fractional condensation and different geochemical affinities. The volatility dependent depletion of Te requires different physical and chemical conditions than typical for the canonical condensation sequence as represented by carbonaceous chondrites. Tellurium also shows variable geochemical behavior, siderophile in Ceniceros, predominantly chalcophile in QUE 97008. These differences may have been inherited from element partitioning during chondrule formation. Selenium and S on the other hand are almost unfractionated from each other and only show complementary S/Se in a few components, presumably due to the effects of volatility or metal-silicate partitioning during chondrule formation. Terrestrial weathering had negligible effects on the S, Se and Te systematics.

  7. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin; Shih, Hung-Dah

    1998-01-01

    Interest in optical devices which can operate in the visible spectrum has motivated research interest in the II-VI wide band gap semiconductor materials. The recent challenge for semiconductor opto-electronics is the development of a laser which can operate at short visible wavelengths, In the past several years, major advances in thin film technology such as molecular beam epitaxy and metal organic chemical vapor deposition have demonstrated the applicability of II-VI materials to important devices such as light-emitting diodes, lasers, and ultraviolet detectors.The demonstration of its optical bistable properties in bulk and thin film forms also make ZnSe a possible candidate material for the building blocks of a digital optical computer. Despite this, developments in the crystal growth of bulk II-VI semiconductor materials has not advanced far enough to provide the low price, high quality substrates needed for the thin film growth technology. The electrical and optical properties of semiconductor materials depend on the native point defects, (the deviation from stoichiometry), and the impurity or dopant distribution. To date, the bulk growth of ZnSe substrates has been plagued with problems related to defects such as non-uniform distributions of native defects, impurities and dopants, lattice strain, dislocations, grain boundaries, and second phase inclusions which greatly effect the device performance. In the bulk crystal growth of some technologically important semiconductors, such as ZnTe, CdS, ZnSe and ZnS, vapor growth techniques have significant advantages over melt growth techniques due to the high melting points of these materials.

  8. An investigation of new infrared nonlinear optical material: BaCdSnSe4, and three new related centrosymmetric compounds: Ba2SnSe4, Mg2GeSe4, and Ba2Ge2S6.

    PubMed

    Wu, Kui; Su, Xin; Yang, Zhihua; Pan, Shilie

    2015-11-18

    A series of new metal chalcongenides, BaCdSnSe4 (), Ba2SnSe4 (), Mg2GeSe4 (), and Ba2Ge2S6 (), were successfully synthesized for the first time. Among them, compounds and were prepared by a molten flux method with Zn as the flux. In their structures, all of them have MQ4 (M = Sn, Ge; Q = S, Se) units. For compound , the CdSe4 and SnSe4 groups are connected to form CdSnSe6 layers and these layers are linked together by the Ba atoms. Compounds and are composed of isolated MSe4 (M = Sn, Ge) units and charge-balanced by the Ba or Mg atoms, respectively, while compound has infinite ?(GeS3)n chains, which is different from the structures of the other three compounds that only have isolated MSe4 (M = Sn, Ge) units. The measured IR and Raman data of the title compounds show wide infrared transmission ranges. The experimental band gaps of compounds , , and were determined to be 1.79, 1.90, and 2.02 eV, respectively. Band structures were also calculated and indicate that their tetrahedral units, such as [SnSe4], [GeS4] and [GeSe4], determine the energy band gaps of the title compounds, respectively. As for compound , based on fundamental light at 2.09 ?m, the experimental second harmonic generation (SHG) response is about 1.6 times that of the benchmark AgGaS2, which is also consistent with the calculated value. Based on the above results, compound has promising applications in the IR field as a NLO material. PMID:26509847

  9. Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2.

    PubMed

    Zeng, Chao; Ramos-Ruiz, Adriana; Field, Jim A; Sierra-Alvarez, Reyes

    2015-05-01

    Cadmium telluride (CdTe) and cadmium selenide (CdSe) are increasingly being applied in photovoltaic solar cells and electronic components. A major concern is the public health and ecological risks associated with the potential release of toxic cadmium, tellurium, and/or selenium species. In this study, different tests were applied to investigate the leaching behavior of CdTe and CdSe in solutions simulating landfill leachate. CdTe showed a comparatively high leaching potential. In the Toxicity Characteristic Leaching Procedure (TCLP) and Waste Extraction Test (WET), the concentrations of cadmium released from CdTe were about 1500 and 260 times higher than the regulatory limit (1mg/L). In contrast, CdSe was relatively stable and dissolved selenium in both leaching tests was below the regulatory limit (1mg/L). Nonetheless, the regulatory limit for cadmium was exceeded by 5- to 6- fold in both tests. Experiments performed under different pH and redox conditions confirmed a marked enhancement in CdTe and CdSe dissolution both at acidic pH and under aerobic conditions. These findings are in agreement with thermodynamic predictions. Taken as a whole, the results indicate that recycling of decommissioned CdTe-containing devices is desirable to prevent the potential environmental release of toxic cadmium and tellurium in municipal landfills. PMID:25710599

  10. High performance n-type (Bi,Sb)2(Te,Se)3 for low temperature thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Wang, Shanyu; Xie, Wenjie; Li, Han; Tang, Xinfeng

    2010-08-01

    Starting with elemental chunks of bismuth, antimony, tellurium and selenium, densified bulk materials (Bi0.95Sb0.05)2(Te1-xSex)3 (x = 0.10, 0.13, 0.15 and 0.17) were prepared by melt spinning subsequently combined with a spark plasma sintering process. The prepared bulk materials display fine grain size and numerous layered structures with a size of 10-100 nm; moreover, details of the composition difference and phase difference cannot be observed. Measurements of electrical conductivity, Seebeck coefficient and thermal conductivity have been performed in the temperature range 300-500 K, and it is found that the thermoelectric properties are significantly affected by the content of selenium. All the prepared samples show higher ratios of electrical conductivity and total thermal conductivity compared with state-of-the-art commercial zone melted materials, mainly a large reduction in lattice thermal conductivity, which is more beneficial to the concept of 'electron crystal phonon glass'. Subsequently, the resulting thermoelectric figure of merit ZT value reaches a maximum of 1.0 at 460 K for the n-type (Bi0.95Sb0.05)2(Te0.85Se0.15)3 bulk material. Compared with traditional zone melted materials, the peak ZTs move towards a higher temperature and this study demonstrates the possibility of preparing materials with high performance, which can be applied for low temperature power generation or multi-stage devices.

  11. Anisotropic thermal expansion and effect of pressure on magnetic transition temperatures in chromium chalcogenides Cr 3X 4 with X = Se and Te

    NASA Astrophysics Data System (ADS)

    Ohta, Satoru; Kaneko, Takejiro; Yoshida, Hajime

    1996-10-01

    The lattice parameters a( T), b( T), c( T), and ?( T) as a function of temperature ( T) and the pressure dependence of the magnetic transition temperature Ttr for Cr 3X 4 (X ? Se and Te) with the NiAs-like crystal structure (space group I2/m) have been measured. For Cr 3X 4 (X ? Se and Te), anisotropic thermal expansion behavior of the lattice parameters is observed below Ttr. In particular, a( T) and ?( T) for Cr 3Se 4 exhibit an abrupt contraction on heating at about 100 K. The sign of the pressure derivative of Ttr for Cr 3X 4 (X ? Se and Te) is consistent with volumetric expansion behavior. The obtained results are discussed qualitatively from the viewpoint of the band picture.

  12. Density functional theory investigation of the electronic structure and thermoelectric properties of layered MoS{sub 2}, MoSe{sub 2} and their mixed-layer compound

    SciTech Connect

    Lee, Changhoon; Hong, Jisook; Lee, Wang Ro; Kim, Dae Yeon; Shim, Ji Hoon

    2014-03-15

    First principles density functional theory calculations were carried out for the 2H-MoQ{sub 2} (Q=S and Se) and their hypothetical mixed-layer compound. Due to the different electronegativities of S and Se atoms on MoQ{sub 2}, the band gap size could be adjusted in mixed-layer compound MoS{sub 2}/MoSe{sub 2}. Also, the indirect band gap in pure MoQ{sub 2} compounds is changed to the pseudo direct band gap in mixed-layer MoS{sub 2}/MoSe{sub 2} which is similar to the monolayer compound. The layer mixing enhances the thermoelectric properties because of the increased density of states around the Fermi level and the decreased band gap size. Therefore, we suggest that this layer mixing approach should be regarded as a useful way to modulate their electronic structures and to improve their thermoelectric properties. -- Graphical abstract: On the basis of density functional calculations we predict that the mixed-layer compounds 2H-MoS{sub 2}/2H-MoSe{sub 2}, in which two different layers 2H-MoS{sub 2} and 2H-MoSe{sub 2}, have enhanced thermoelectric properties because of the increased density of states around the Fermi level and the decreased band gap size. Highlights: We explored a way of improving TE properties of 2H-MoQ{sub 2} on DFT methods. The mixed-layer compounds MoS{sub 2}/MoSe{sub 2} have enhanced thermoelectric properties. This is caused by modulated electronic structure of mixed layer compound. Layer mixing approach should be regarded as a useful way to improve TE properties.

  13. Colossal magnetoelectric effect in Co3TeO6 family of compounds

    NASA Astrophysics Data System (ADS)

    Artyukhin, Sergey; Oh, Yoon Seok; Yang, Jun Jie; Zapf, Vivien; Kim, Jae Wook; Cheong, Sang-Wook; Vanderbilt, David

    2014-03-01

    Multiferroic Co3TeO6 and related materials attracted much attention recently due to their rich phase diagrams, magnetic field - driven electric polarization and incommensurate spin structures. We model the interacting magnetic and ferroelectric degrees of freedom in these compounds with Landau-type theory and calculate the phase diagram. Comparison of our results with experiment reveals that a particular magnetic anisotropy in some of the compounds results in a second-order spin-flop transition, associated with a large change of polarization. In the vicinity of the transition the spin-flopped phase can be stabilized by a small external magnetic field, which gives rise to a colossal magnetoelectric effect, recently demostrated experimentally. Furthermore, we analyze the types of domain walls that can occur in these materials, and study their interactions. The clamping of domain walls of different types enables the cross-control of ferroic orderings, although they may not be coupled in the bulk. We corraborate our results with ab-initio computations of the polarization, piezoelectric response and optical properties. Our results could pave the way to the design of a new generation of magnetoelectric devices. The work at Rutgers University was supported by the NSF under Grant NSF-DMREF-1233349.

  14. Synthesis and Optical Properties of CdTe(x)Se(1-x)-Based Red to Near-Infrared Emitting Quantum Dots.

    PubMed

    Ma, Qian; Yue, Hanxiao; Zhu, Yuanna; Wang, Junpeng; Che, Quande; Shi, Ruixia; Yang, Ping

    2015-06-01

    A series of red to near-infrared (NIR) emitting quantum dots (QDs) with spherical morphologies and tunable photoluminescence (PL) properties have been synthesized by a facile organic route using octadecene (ODE) as solvent and oleic acid (OA) as single capping agent. CdSe cores with the average size of 4.5 nm display the typical optical behaviors with the PL emission peak around 610 nm. The coating CdZnS shells are introduced on the surface of CdSe cores for improving the photostability and PL efficiency of the initial QDs. As the thickness of CdZnS shells increasing, the gradual red-shift of emission wavelength varying from 617 to 634 nm of the resulting QDs can be observed, along with the remarkable increase of PL quantum yield (QY). The composition-dependent CdTe(x)Se(1-x) (CdTeSe) cores with the emission in NIR region are easily carried out by adjusting the molar ratio of Se/Te. The abnormal variation of optical bowling effect is mainly ascribed to the composition effect of alloyed QDs. Compared with CdTe0.1Se0.9/CdZnS core/shell QDs, the introducing of CdZnS shells on CdTe0.05Se0.95 cores can exhibit better passivation effect on surface status, consequently leading to the red-shifted emission peaks in the range of 739-752 nm with the maximum PL QY reaching up to 45.09%. The unique PL properties of CdTeSe-based QDs in the red to NIR range make these core/shell QDs attractive for future biological sensing and labeling applications. PMID:26369063

  15. Dynamical control of Mn spin-system cooling by photogenerated carriers in a (Zn,Mn)Se/BeTe heterostructure

    NASA Astrophysics Data System (ADS)

    Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.

    2010-08-01

    The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.

  16. Vertical/Planar Growth and Surface Orientation of Bi2Te3 and Bi2Se3 Topological Insulator Nanoplates.

    PubMed

    Jiang, Ying; Zhang, Xun; Wang, Yong; Wang, Na; West, Damien; Zhang, Shengbai; Zhang, Ze

    2015-05-13

    Nanostructures are not only attractive for fundamental research but also offer great promise for bottom-up nanofabrications. In the past, the growth of one-dimensional vertical/planar nanomaterials such as nanowires has made significant progresses. However, works on two-dimensional nanomaterials are still lacking, especially for those grown out of a substrate. We report here a vertical growth of topological insulator, Bi2Se3 and Bi2Te3, nanoplates on mica. In stark contrast to the general belief, these nanoplates are not prisms exposing (100) lateral surfaces, which are expected to minimize the surface area. Instead, they are frustums, enclosed by (01-4), (015), and (001) facets. First-principles calculations, combined with experiments, suggest the importance of surface oxidation in forming these unexpected surfaces. PMID:25919088

  17. Evidence for orbital order and its relation to superconductivity in FeSe0.4Te0.6

    PubMed Central

    Singh, Udai R.; White, Seth C.; Schmaus, Stefan; Tsurkan, Vladimir; Loidl, Alois; Deisenhofer, Joachim; Wahl, Peter

    2015-01-01

    The emergence of nematic electronic states accompanied by a structural phase transition is a recurring theme in many correlated electron materials, including the high-temperature copper oxide– and iron-based superconductors. We provide evidence for nematic electronic states in the iron-chalcogenide superconductor FeSe0.4Te0.6 from quasi-particle scattering detected in spectroscopic maps. The symmetry-breaking states persist above Tc into the normal state. We interpret the scattering patterns by comparison with quasi-particle interference patterns obtained from a tight-binding model, accounting for orbital ordering. The relation to superconductivity and the influence on the coherence length are discussed. PMID:26601277

  18. Growth of niobium on the three-dimensional topological insulator Bi2Te1.95Se1.05

    NASA Astrophysics Data System (ADS)

    Meixner, Philipp; Lim, Seong Joon; Park, Joonbum; Kim, Jun Sung; Fischer, Saskia F.; Seo, Jungpil; Kuk, Young

    2016-01-01

    While applying a new cleaving method, we investigated the growth of Nb on the three-dimensional (3D) topological insulator (TI) Bi2Te1.95Se1.05 by scanning tunneling microscopy and spectroscopy. After the deposition of nearly a full monolayer of Nb by high-energy electron-beam evaporation, we observed a downshift of the bands and the Dirac point on the TI surface, which is the result of an n-type doping of the TI by transition metal adatoms. Extra peaks in the spectroscopy results upon Nb deposition might indicate a Rashba-split of the bulk bands. Nb grew in small 10 nm wide islands upon sub-monolayer growth and in a layer-by-layer growth mode up to an annealing temperature of 450 C.

  19. Flux pinning and relaxation in FeSe0.5Te0.5 single crystals

    NASA Astrophysics Data System (ADS)

    Wu, Z. F.; Wang, Z. H.; Tao, J.; Qiu, L.; Yang, S. G.; Wen, H. H.

    2016-03-01

    A high-quality FeSe0.5Te0.5 single crystal with T c ∼ 14.8 K was obtained by the self-flux method. We present the temperature dependence of resistivity at various fields and the magnetization hysteresis loops at various temperatures. The upper critical field H c2(T) with a criterion of 90% ρ n follows H c2(T) = H c2(0)[1‑T/T c] n . A second peak (namely the fishtail effect) was observed in a large temperature region ranging from 6.5 K to 12 K. According to the theory of Dew-Hughes, we scaled the flux pinning force density for several fixed temperatures and found its maximum position around h = 0.33, here h is the reduced magnetic field. The dynamical relaxation rate Q of the vortices was measured and discussed.

  20. Visible-active photocatalytic behaviors observed in nanostructured lead chalcogenides PbX (X = S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Qiao, Li-Na; Wang, H. C.; Shen, Y.; Lin, Yuan-Hua; Nan, Ce-Wen

    2016-01-01

    Nanostructured lead chalcogenides (PbX, X = Te, Se, S) were prepared via a simple hydrothermal method. The powder samples were characterized by XRD, SEM, SAED and DRS. Phase composition and microstructure analysis indicate that these samples are pure lead chalcogenides phases and have similar morphologies. These lead chalcogenides display efficient absorption in the UV-visible light range. The photocatalytic properties of lead chalcogenides nanoparticles were evaluated by the photodegradation of Congo red under UV-visible light irradiation in air atmosphere. The Congo red solution can be efficiently degraded under visible light in the presence of lead chalcogenides nanoparticles. The photocatalytic activities of lead chalcogenides generally increase with increasing their band gaps and shows no appreciable loss after repeated cycles. Our results may be useful for developing new photocatalyst systems responsive to visible light among narrow band gap semiconductors.

  1. Laser operation by dissociation of metal complexes. II - New transitions in Cd, Fe, Ni, Se, Sn, Te, V, and Zn

    NASA Technical Reports Server (NTRS)

    Chou, M. S.; Cool, T. A.

    1977-01-01

    The reported investigation is a continuation of a study conducted by Chou and Cool (1976). The experimental results discussed are partly related to laser transitions in Cd(I), Cd(II), and Zn(II). Laser transitions in Fe(I), Ni(I), Sn(I), Te(I), and V(I) are also considered along with the observation of a laser pulse with two peaks in connection with the study of laser transitions in Se(I). Experiments related to prospective visible laser operation in thallium at 6550 and 6714 are also discussed, giving attention to spontaneous emission measurements at 6550 and 5350 A, the effects of additive molecules, and laser cavity experiments at 6550 and 6714 A.

  2. Single crystal growth and characterization of Na3Bi and Bi2Te2Se topological materials

    NASA Astrophysics Data System (ADS)

    Kushwaha, Satya K.; Krizan, Jason W.; Cava, R. J.

    2015-03-01

    In recent years, the discoveries of topological insulators (TI) and three-dimensional (3D) Dirac semimetals (TDS) have been of significant interest in condensed matter science. To study these materials experimentally, it is of great importance to grow them in the form of high quality single crystals. Na3Bi is recently discovered TDS and Bi2Te2Se3 (BTS) is one of the interesting TI materials. Na3Bi is extremely air sensitive and shows nontrivial crystallization behavior. BTS crystals usually grow with various point defects and typically exhibit metallic behavior. Here we will report the crystal growth of high quality Na3Bi and insulating BTS single crystals. The characterization of their electronic properties by our collaborators in physics at Princeton and Brookhaven National Laboratory will be briefly described. The growth of single crystals of TIs and TDS is supported at Princeton by grants from the ARO MURI and DARPA.

  3. Evidence for orbital order and its relation to superconductivity in FeSe0.4Te0.6.

    PubMed

    Singh, Udai R; White, Seth C; Schmaus, Stefan; Tsurkan, Vladimir; Loidl, Alois; Deisenhofer, Joachim; Wahl, Peter

    2015-10-01

    The emergence of nematic electronic states accompanied by a structural phase transition is a recurring theme in many correlated electron materials, including the high-temperature copper oxide- and iron-based superconductors. We provide evidence for nematic electronic states in the iron-chalcogenide superconductor FeSe0.4Te0.6 from quasi-particle scattering detected in spectroscopic maps. The symmetry-breaking states persist above T c into the normal state. We interpret the scattering patterns by comparison with quasi-particle interference patterns obtained from a tight-binding model, accounting for orbital ordering. The relation to superconductivity and the influence on the coherence length are discussed. PMID:26601277

  4. Reversible tuning of the surface state in a pseudobinary Bi2(Te-Se)3 topological insulator

    SciTech Connect

    Jiang, Rui; Wang, Lin-Lin; Huang, Mianliang; Dhaka, Rajendra S.; Johnson, Duane D.; Lograsso, Thomas A.; Kaminski, Adam

    2012-08-10

    We use angle-resolved photoemission spectroscopy to study a nontrivial surface state in a pseudobinary Bi2Te2.8Se0.2 topological insulator. We show that, unlike previously studied binaries, this is an intrinsic topological insulator with the conduction bulk band residing well above the chemical potential. Our data indicate that under a good vacuum condition there are no significant aging effects for more than two weeks after cleaving. We also demonstrate that the shift of the Kramers point at low temperature is caused by UV-assisted absorption of molecular hydrogen. Our findings pave the way for applications of these materials in devices and present an easy scheme to tune their properties.

  5. Reversible tuning of the surface state in a pseudobinary Bi2(Te-Se)3 topological insulator

    NASA Astrophysics Data System (ADS)

    Jiang, Rui; Wang, Lin-Lin; Huang, Mianliang; Dhaka, R. S.; Johnson, Duane D.; Lograsso, Thomas A.; Kaminski, Adam

    2012-08-01

    We use angle-resolved photoemission spectroscopy to study a nontrivial surface state in a pseudobinary Bi2Te2.8Se0.2 topological insulator. We show that, unlike previously studied binaries, this is an intrinsic topological insulator with the conduction bulk band residing well above the chemical potential. Our data indicate that under a good vacuum condition there are no significant aging effects for more than two weeks after cleaving. We also demonstrate that the shift of the Kramers point at low temperature is caused by UV-assisted absorption of molecular hydrogen. Our findings pave the way for applications of these materials in devices and present an easy scheme to tune their properties.

  6. Size- effect induced high thermoelectric figure of merit in PbSe and PbTe nanowires.

    PubMed

    Wrasse, Ernesto O; Torres, Alberto; Baierle, Rogrio J; Fazzio, Adalberto; Schmidt, Tome M

    2014-05-01

    The fundamental properties that compose the thermoelectric figure of merit are investigated in the confined systems of PbSe and PbTe nanowires, with the goal to improve the thermoelectric efficiency. Using the Landauer electronic transport theory, we verify that the figure of merit can be several times larger than the bulk value for nanowires with diameters down to the one nanometer scale. This enhancement in the thermoelectric efficiency is primarily due to the reduction of the thermal conductivity and an increase in the power factor. The origin of these desireable properties, that enable the transformation of heat into electricity, comes from the confinement effect which increases the density of states around the Fermi level, either for an n- or p-type system. PMID:24654001

  7. Strong vortex pinning in FeSe0.5Te0.5 epitaxial thin film

    NASA Astrophysics Data System (ADS)

    Bellingeri, E.; Kawale, S.; Pallecchi, I.; Gerbi, A.; Buzio, R.; Braccini, V.; Palenzona, A.; Putti, M.; Adamo, M.; Sarnelli, E.; Ferdeghini, C.

    2012-02-01

    We report on the magnetic field and angular dependence of the critical current density of epitaxial FeTe0.5Se0.5 thin films. The films exhibit high critical current values and weak dependence on the applied magnetic field. The Jc is larger for field parallel to the c-axis, which is the opposite behavior of what expected from the critical field anisotropy. The analysis of the activation energy for vortex motion indicates that the single pinning regime holds up to 9 T, suggesting that correlated pinning centers are more effective than the vortex-vortex interaction even at the largest applied fields. Scanning tunneling microscope analysis indicates threading dislocations as possible pinning centers.

  8. In-Situ Optical Determination of Thermomechanical Properties of ZnSe and ZnTe Crystals

    NASA Technical Reports Server (NTRS)

    Burger, A.; Ndap, J.-O.; Chattopadhyay, K.; Ma, X.; Silberman, E.; Feth, S.; Palosz, W.; Su, C.-H.

    1999-01-01

    At temperatures above 1/2 T(sub m), the generation and movement of dislocations may result due to the load created by the weight of the crystal itself The deformation may be expected to increase the line defect density and may result in generation of low angle grain boundaries, especially in the regions of the crystal attached to the ampule. It has often been suspected that elimination of this effect in space can improve crystallinity of crystals grown under microgravity conditions, however, a direct experimental proof of such relation is still missing. In this work we have designed and built a system of in-situ optical detection and measurement of the mechanical deformations of a crystal wafer under its own weight, and studied the deformation effects as a function of temperature. The results of the measurements for ZnSe and ZnTe crystal wafers will be presented.

  9. Crystal and electronic structure of BiTeI, AuTeI, and PdTeI compounds: A dispersion-corrected density-functional study

    NASA Astrophysics Data System (ADS)

    Gler-K?l?, Smeyra; K?l?, ?etin

    2015-06-01

    Semilocal and dispersion-corrected density-functional calculations have been performed to study the crystal structure, equation of state, and electronic structure of metal tellurohalides with chemical formula MeTeI where Me=Bi, Au, or Pd. A comparative investigation of the results of these calculations is conducted which reveals the role of van der Waals attraction. It is shown that the prediction of crystal structure of metal tellurohalides is systematically improved thanks to the inclusion of van der Waals dispersion. It is found for BiTeI and AuTeI that the energy versus volume curve is anomalously flat in the vicinity of equilibrium volume and the calculated equation of state has an excessively steep slope in the low-pressure region; these are also fixed in the dispersion-corrected calculations. Analysis based on the computation of the volume and axial compressibilities shows that predicting the anisotropy of BiTeI via the semilocal calculations yields an unrealistic result, whereas the results of dispersion-corrected calculations agree with the experimental compressibility data. Our calculations render that BiTeI (AuTeI) is a narrow band gap semiconductor with Rashba-type spin splitting at the band edges (with an indirect band gap) while PdTeI is a metal with relatively low density of states at the Fermi level. The band gaps of BiTeI and AuTeI obtained via semilocal (dispersion-corrected) calculations are found to be greater (smaller) than the respective experimental values, which is against (in line with) the expected trend. Similarly, the Rashba parameters of BiTeI are bracketed by the respective values obtained via semilocal and dispersion-corrected calculations, e.g., a larger value for the Rashba parameter ?R is obtained in association with the reduction of the band gap caused by modification of the crystal structure owing to van der Waals attraction. Excellent agreement with the experimental Rashba parameters is obtained via interpolation of the calculated (semilocal and dispersion-corrected) values.

  10. Manipulation of structural and optical properties in charge-separating ZnTe/ZnSe chalcogenide core/shell semiconductor nanocrystals: Atomistic tight-binding theory

    NASA Astrophysics Data System (ADS)

    Sukkabot, Worasak

    2015-11-01

    The atomistic tight-binding theory (TB) is utilized to study the electronic structures and optical properties of type-II ZnTe/ZnSe chalcogenide core/shell nanocrystals. The purpose of the present study is to theoretically understand the atomistic impact of the ZnSe growth shell on the single-particle spectra, charge densities, optical band gaps, electron-hole overlaps and oscillation strengths. The sensitivity of ZnSe growth shell thickness in analyzing the electronic structures and optical properties of ZnTe/ZnSe core/shell nanocrystals reflects the charge separation of type-II band alignment. The comprehensive calculations of ZnTe/ZnSe core/shell nanocrystals are effectively manipulated by including and changing the ZnSe growth shell thickness. As a comparison, the atomistic tight-binding calculations demonstrate a reasonable agreement with effective mass approximation and experiment. Finally, the computations successfully discover the important factors of the growth shell on the natural behaviors of type-II ZnTe/ZnSe core/shell nanocrystals which affords a guideline to be implemented to the novel electronic cadmium-free nanodevices and the environmentally friendly applications.

  11. High ZT in p-type (PbTe)1-2x(PbSe)x(PbS)x thermoelectric materials.

    PubMed

    Korkosz, Rachel J; Chasapis, Thomas C; Lo, Shih-han; Doak, Jeff W; Kim, Yoon Jun; Wu, Chun-I; Hatzikraniotis, Euripidis; Hogan, Timothy P; Seidman, David N; Wolverton, Chris; Dravid, Vinayak P; Kanatzidis, Mercouri G

    2014-02-26

    Lead chalcogenide thermoelectric systems have been shown to reach record high figure of merit values via modification of the band structure to increase the power factor or via nanostructuring to reduce the thermal conductivity. Recently, (PbTe)1-x(PbSe)x was reported to reach high power factors via a delayed onset of interband crossing. Conversely, the (PbTe)1-x(PbS)x was reported to achieve low thermal conductivities arising from extensive nanostructuring. Here we report the thermoelectric properties of the pseudoternary 2% Na-doped (PbTe)1-2x(PbSe)x(PbS)x system. The (PbTe)1-2x(PbSe)x(PbS)x system is an excellent platform to study phase competition between entropically driven atomic mixing (solid solution behavior) and enthalpy-driven phase separation. We observe that the thermoelectric properties of the PbTe-PbSe-PbS 2% Na doped are superior to those of 2% Na-doped PbTe-PbSe and PbTe-PbS, respectively, achieving a ZT ?2.0 at 800 K. The material exhibits an increased the power factor by virtue of valence band modification combined with a very reduced lattice thermal conductivity deriving from alloy scattering and point defects. The presence of sulfide ions in the rock-salt structure alters the band structure and creates a plateau in the electrical conductivity and thermopower from 600 to 800 K giving a power factor of 27 ?W/cmK(2). The very low total thermal conductivity values of 1.1 W/mK of the x = 0.07 composition is accounted for essentially by phonon scattering from solid solution defects rather than the assistance of endotaxial nanostructures. PMID:24533466

  12. A ZnSe/BeTe p-grading superlattice with a low voltage drop for efficient hole injection in green-yellow BeZnCdSe quantum well laser

    NASA Astrophysics Data System (ADS)

    Akimoto, R.

    2015-03-01

    A ZnSe/BeTe p-grading superlattice (p-GSL) with a low voltage drop is reported for BeZnCdSe quantum well laser diode (LD) in green-yellow visible range. A p-GSL is inserted between a p+-BeTe for ohmic contact layer and a ZnSe/BeMgZnSe p-cladding layer in a LD, for an efficient hole injection in spite of a large potential barrier height of ~0.8 eV between these layers. A GSL design has hence a great impact on a threshold voltage of lasing and thus reliability in LDs. Simple p-n junction devices with various GSL designs are fabricated, where a p-n junction is formed between p-ZnSe and a n-GaAs. In a p-GSL where a pair of ZnSe/BeTe is repeated, BeTe thickness increases with fixed monolayer (ML) step, while ZnSe thickness decreases with the same step when next pair of ZnSe/BeTe is grown. While a grading of 1 ML step is used in the previous LDs, the new GSL design with smaller grading step of 0.5 ML gives a 2 V lower voltage at 200 A/cm2 current injection. Then, LDs characteristics are compared with the GSL of new and old designs, while other layers in LDs are kept nearly identical, which is confirmed by a similar threshold current of ~80 mA and an emission wavelength at ~540 nm in these LDs. The LD with the new GSL design showed a lower threshold voltage for a lasing as well as a higher output power due to a lower device heating.

  13. Role of polycrystallinity in CdTe and CuInSe{sub 2} photovoltaic cells. Annual subcontract report, 1 April 1990--31 March 1991

    SciTech Connect

    Sites, J.R.

    1991-12-31

    The polycrystalline nature of thin-film CdTe and CuInSe{sub 2} solar cells continues to be a major factor in several individual losses that limit overall cell efficiency. This report describes progress in the quantitative separation of these losses, including both measurement and analysis procedures. It also applies these techniques to several individual cells to help document the overall progress with CdTe and CuInSe{sub 2} cells. Notably, CdTe cells from Photon Energy have reduced window photocurrent losses to 1 mA/Cm{sup 2}; those from the University of South Florida have achieved a maximum power voltage of 693 mV; and CuInSe{sub 2} cells from International Solar Electric Technology have shown a hole density as high as 7 {times} 10{sup 16} cm{sup {minus}3}, implying a significant reduction in compensation. 9 refs.

  14. Significance of the whole rock Re-Os ages in cryptically and modally metasomatised cratonic peridotites: Constraints from HSE-Se-Te systematics

    NASA Astrophysics Data System (ADS)

    Luguet, Ambre; Behrens, Melanie; Pearson, D. Graham; König, Stephan; Herwartz, Daniel

    2015-09-01

    The Re-Os isotopic system is the geochronometer of choice to constrain the timing of lithospheric mantle root formation and reconstruct the evolution of Earth's dynamics from the "mantle" perspective. In order to constrain the effects of metasomatic processes on the Re-Os isotopic system, eleven peridotites from the Letlhakane kimberlite pipe were investigated for whole rock major and trace elements, highly siderophile elements (HSE), Se, Te and 187Os/188Os signatures. These spinel peridotites (SP), garnet peridotites (GP), garnet-phlogopite peridotites (GPP) and phlogopite peridotites (PP) experienced cryptic metasomatism and the GP-GPP-PP additionally constitute a sequence of increasing modal metasomatism. The cryptically metasomatised SP appear devoid of base metal sulphides (BMS) and show suprachondritic Se/Te ratios (15-40) and extremely Pd- and Pt-depleted HSE patterns. These features are characteristic of high-degree partial melting residues. Their 187Os/188Os signatures are thus considered to be inherited from the partial melting event. This implies a Neoarchean (2.5-2.8 Ga, TRD eruption) stabilisation of the Letlhakane mantle root and supports the Letlhakane mantle root being a westerly extension of the Zimbabwe cratonic root. The modally metasomatised peridotites contain BMS whose abundance significantly increases from the GPP to the GP and PP. The BMS-poor GPP are only slightly richer in Pt and Pd than the BMS-free SP but have similarly high Se/Te ratios. The BMS-rich GP and PP exhibit significant enrichments in Pt, Pd, Se, Te resulting in HSE-Se-Te signatures similar to that of the Primitive Upper Mantle (PUM). Addition of 0.001-0.05 wt.% metasomatic BMS ± PGM (platinum group minerals, i.e., Pt-tellurides) to highly refractory residues, such as the Letlhakane SP, reproduce well the HSE-Se-Te systematics observed in the BMS-poor and BMS-rich modally metasomatised peridotites. In the GPP, the negligible addition of metasomatic BMS ± PGM did not disturb the 187Os/188Os signatures, indicating TRD eruption ages identical with those of the SP. By contrast, the PP and GP, which suffered significant BMS ± PGM addition, have 187Os/188Os considerably shifted toward more radiogenic values. As a result, unrealistically young TRD eruption ages are obtained that cannot be used to constrain the time frame of the stabilisation of the cratonic roots and the mechanisms of craton formation. The Se-Te and incompatible HSE (i.e., Pt, Pd) are powerful geochemical tools to assess the robustness of the Re-Os isotopic system in mantle peridotites. Specifically, Se/Te and Pd/Ir ratios provide complementary insights into the complex metasomatic history of mantle peridotites. The Se/Te ratio is very sensitive to Os-free PGM metasomatism producing highly variable Se/Te >15 at low, relatively constant Pd/Ir< 0.4 but does not affect the 187Os/188Os systematics. This contrasts with BMS metasomatism, where Pd/Ir becomes more variable (>0.4), at constant but low Se/Te <10 and which is accompanied by modification of the Os isotopic composition of the host peridotite. As they are sensitive indicators of BMS ± PGM metasomatism, HSE, Se and Te should be systematically considered when investigating the timing of stabilisation of lithospheric mantle and its petrogenetic history. This would allow a more robust assessment of the Re-Os ages obtained and provide firmer constraints on the evolution and formation of Archean cratons and early Earth dynamics.

  15. Synthesis and superconductivity in spark plasma sintered pristine and graphene-doped FeSe0.5Te0.5

    NASA Astrophysics Data System (ADS)

    Puneet, Pooja; Podila, Ramakrishna; He, Jian; Rao, Apparao; Howard, Austin; Cornell, Nicholas; Zakhidov, Anvar A.; Department of Physics; Astronomy, Clemson Nanomaterials Center, Clemson University Team; Nanotech Institute, University of Texas at Dallas Team

    2015-03-01

    Replace this text with your abstract body. Here, we present a new ball-milling and spark plasma sintering based technique for the facile synthesis FeSe0.5Te0.5 superconductors (SC) without the need for pre-alloying. This method is advantageous since it is quick and flexible for incorporating other dopants such as graphene for vortex pinning. We observed that FeSe0.5Te0.5 exhibits a coexistence of ferromagnetic (FM) and SC signature plausibly arising from a FM core-SC shell structure. More importantly, the Hc2 values observed from resistivity data are higher than 7 T indicating that SPS process synthesized FeSe0.5Te0.5 samples could lead to nextgeneration superconducting wires and cables.

  16. Microstructure and transport properties of FeTe 0.5Se 0.5 superconducting wires fabricated by ex-situ Powder-in-tube process

    NASA Astrophysics Data System (ADS)

    Ozaki, T.; Deguchi, K.; Mizuguchi, Y.; Kumakura, H.; Takano, Y.

    2011-11-01

    We fabricated FeTe 0.5Se 0.5 superconducting wires using ex-situ Powder-in-tube method with an Fe sheath. It was amazing that superconducting current was observed in the as-drawn wire without any heat treatments. By heat treatment at 200 C for 2 hours, Tczero and Jc at 4.2 K were enhanced up to 9.1 K and 64.1 A/cm 2 ( Ic = 182.6 mA), respectively. Furthermore, the Jc of FeTe 0.5Se 0.5 wire heat treated at 200 C for 2 h was not much sensitive to the applied magnetic fields. Therefore, FeTe 0.5Se 0.5 wires have a great potential for applications.

  17. Aqueous-Processed Inorganic Thin-Film Solar Cells Based on CdSe(x)Te(1-x) Nanocrystals: The Impact of Composition on Photovoltaic Performance.

    PubMed

    Zeng, Qingsen; Chen, Zhaolai; Zhao, Yue; Du, Xiaohang; Liu, Fangyuan; Jin, Gan; Dong, Fengxia; Zhang, Hao; Yang, Bai

    2015-10-21

    Aqueous processed nanocrystal (NC) solar cells are attractive due to their environmental friendliness and cost effectiveness. Controlling the bandgap of absorbing layers is critical for achieving high efficiency for single and multijunction solar cells. Herein, we tune the bandgap of CdTe through the incorporation of Se via aqueous process. The photovoltaic performance of aqueous CdSexTe1-x NCs is systematically investigated, and the impacts of charge generation, transport, and injection on device performance for different compositions are deeply discussed. We discover that the performance degrades with the increasing Se content from CdTe to CdSe. This is mainly ascribed to the lower conduction band (CB) of CdSexTe1-x with higher Se content, which reduces the driving force for electron injection into TiO2. Finally, the performance is improved by mixing CdSexTe1-x NCs with conjugated polymer poly(p-phenylenevinylene) (PPV), and power conversion efficiency (PCE) of 3.35% is achieved based on ternary NCs. This work may provide some information to further optimize the aqueous-processed NC and hybrid solar cells. PMID:26436430

  18. Structure and properties of a non-traditional glass containing TeO2, SeO2 and MoO3

    NASA Astrophysics Data System (ADS)

    Bachvarova-Nedelcheva, A.; Iordanova, R.; Kostov, K. L.; Yordanov, St.; Ganev, V.

    2012-09-01

    A glass containing SeO2, TeO2, MoO3 and La2O3 was obtained at high oxygen pressure (P = 36 MPa) using pure oxides as precursors. The real bulk chemical composition of the glass according to LA-ICP-MS analysis is 17SeO250TeO232MoO31La2O3 (wt.%). The glass was characterized by X-ray diffraction, scanning electron microscopy (SEM), differential thermal analysis (DTA), UV-Vis, XPS, IR and EPR spectroscopy. According to DTA the glass transition temperature (Tg) is below 300 C. By IR and X-ray photoelectron spectroscopy was determined the main building units (TeO3, TeO4, SeO3, Mo2O8) and the existing of mixed bridging bonds only, which build up the amorphous network. It was established by UV-Vis that the glass is transparent above 490 nm. As a result of a lengthy heat treatment, crystallization took place and crystals rich in SeO2 and TeO2 were found incorporated into the amorphous part containing all components.

  19. Photoelectrical properties of Te-substituted Sn-Sb-Se Semiconducting thin films

    NASA Astrophysics Data System (ADS)

    Chander, Ravi; Thangaraj, R.

    2011-12-01

    Thin films of Sn10Sb20Se70-XTeX (0?X?8) composition were deposited using thermal evaporation technique. The prepared films were found amorphous by X-ray diffraction studies. Surface roughness was found to be 2 nm and grain size 30 nm from SPM studies. The dark conductivity measurements showed thermally activated conduction. Photoconductivity measurements showed no maxima in the measured temperature regime and thus materials belong to type II photoconductor. The dc-activation energy for photoconductivity ?Eph has values smaller than dc-activation energy for dark conductivity ?E. Intensity variation of photocurrent obeys power law with exponent ?0.56-0.64 revealing the dominant bimolecular recombination mechanism. Transient photoconductivity measurement showed that the initial rise and decay of photocurrent becomes slow with tellurium content in the sample. The decay process after initial decay was found to be non-exponential and described as differential life time of charge carrier which decreases with tellurium content in the sample.

  20. Ordered defect compounds in CuInSe{sub 2} for photovoltaic solar cell application

    SciTech Connect

    Sato, K.; Katayama-Yoshida, H.

    2014-02-21

    Due to the complete compensation, defect complex (2V{sub Cu}+In{sub Cu}), namely two Cu vacancies and In located at Cu site, is stable in CuInSe{sub 2} (CIS). It is known that the series of ordered defect compounds (ODC) are constracted by ordering the defect complex. Based on the total energy calcalation by using the Korringa-Kohn-Rostoker coherent potential approxiamtion (KKR-CPA) method, we discuss phase separation of the CIS with the defect complexes into ODC and CIS. Since the band alignment between ODC and CIS is calculated to be type 2, effective electron-hole separation at the interface between ODC and CIS can be expected. This causes the enhancement of conversion efficiency of CIS-based solar cell materials.

  1. Luminescent lanthanide selenites and tellurites decorated by MoO4 tetrahedra or MoO6 octahedra: Nd2MoSe2O10, Gd2MoSe3O12, La2MoTe3O12, and Nd2MoTe3O12.

    PubMed

    Shen, Yue-Ling; Jiang, Hai-Long; Xu, Jian; Mao, Jiang-Gao; Cheah, Kok Wai

    2005-12-12

    Solid state reactions of lanthanide oxide, MoO3 and SeO2 (or TeO2) at high temperature in an evacuated quartz tube lead to four new Ln-Mo-Se(Te)-O quaternary phases with four different types of structures, namely, Nd2MoSe2O10, Gd2MoSe3O12, La2MoTe3O12, and Nd2MoTe3O12. The structure of Nd2MoSe2O10 features a 3D architecture built by the intergrowth of the Nd-Se-O layers with the Nd-Mo-O layers. The structure of Gd2MoSe3O12 contains a 3D network of gadolinium selenite with the MoO6 octahedra occupying the cavities of the structure. The structure of La2MoTe3O12 features a 3D network of La2(Te3O8)2+ with the tunnels along the a axis occupied by the MoO4 tetrahedra. Nd2MoTe3O12 features a 2D layer built by the lanthanide ions interconnected by tellurite groups and ditellurite groups, with the MoO4 tetrahedra as the interlayer pendant groups. Room temperature and low temperature luminescent studies indicate that Nd2MoSe2O10 and Nd2MoTe3O12 exhibit strong luminescence in the near-IR region. PMID:16323915

  2. Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys

    PubMed Central

    Vinod, E. M.; Ramesh, K.; Sangunni, K. S.

    2015-01-01

    Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150C and then to a stable hexagonal structure at high temperatures (?250C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)1-xSex thin films (0 ? x ? 0.50) crystallize directly to the stable hexagonal structure for x ? 0.10, when annealed at temperatures ? 150C. The intermediate NaCl structure has been observed only for x < 0.10. Chemically ordered network of GST is largely modified for x ? 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05?eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)1-xSex films are better candidates for phase change memory applications. PMID:25634224

  3. Electrical injection and detection of spin-polarized currents in topological insulator Bi2Te2Se.

    PubMed

    Tian, Jifa; Miotkowski, Ireneusz; Hong, Seokmin; Chen, Yong P

    2015-01-01

    Topological insulators (TIs) are an unusual phase of quantum matter with nontrivial spin-momentum-locked topological surface states (TSS). The electrical detection of spin-momentum-locking of TSS has been lacking till very recently. Many of the results are from samples with significant bulk conduction, such as Bi2Se3, where it can be challenging to separate the surface and bulk contribution to the spin signal. Here, we report spin potentiometric measurements in flakes exfoliated from bulk insulating Bi2Te2Se crystals, using two outside nonmagnetic contacts for driving a DC spin helical current and a middle ferromagnetic (FM)-Al2O3 contact for detecting spin polarization. The voltage measured by the FM electrode exhibits a hysteretic step-like change when sweeping an in-plane magnetic field between opposite directions along the easy axis of the FM contact. Importantly, the direction of the voltage change can be reversed by reversing the direction of current, and the amplitude of the change as measured by the difference in the detector voltage between opposite FM magnetization increases linearly with increasing current, consistent with the current-induced spin polarization of spin-momentum-locked TSS. Our work directly demonstrates the electrical injection and detection of spin polarization in TI and may enable utilization of TSS for applications in nanoelectronics and spintronics. PMID:26391089

  4. Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys

    NASA Astrophysics Data System (ADS)

    Vinod, E. M.; Ramesh, K.; Sangunni, K. S.

    2015-01-01

    Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150°C and then to a stable hexagonal structure at high temperatures (>=250°C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)1-xSex thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150°C. The intermediate NaCl structure has been observed only for x < 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)1-xSex films are better candidates for phase change memory applications.

  5. Electrical injection and detection of spin-polarized currents in topological insulator Bi2Te2Se

    PubMed Central

    Tian, Jifa; Miotkowski, Ireneusz; Hong, Seokmin; Chen, Yong P.

    2015-01-01

    Topological insulators (TIs) are an unusual phase of quantum matter with nontrivial spin-momentum-locked topological surface states (TSS). The electrical detection of spin-momentum-locking of TSS has been lacking till very recently. Many of the results are from samples with significant bulk conduction, such as Bi2Se3, where it can be challenging to separate the surface and bulk contribution to the spin signal. Here, we report spin potentiometric measurements in flakes exfoliated from bulk insulating Bi2Te2Se crystals, using two outside nonmagnetic contacts for driving a DC spin helical current and a middle ferromagnetic (FM)-Al2O3 contact for detecting spin polarization. The voltage measured by the FM electrode exhibits a hysteretic step-like change when sweeping an in-plane magnetic field between opposite directions along the easy axis of the FM contact. Importantly, the direction of the voltage change can be reversed by reversing the direction of current, and the amplitude of the change as measured by the difference in the detector voltage between opposite FM magnetization increases linearly with increasing current, consistent with the current-induced spin polarization of spin-momentum-locked TSS. Our work directly demonstrates the electrical injection and detection of spin polarization in TI and may enable utilization of TSS for applications in nanoelectronics and spintronics. PMID:26391089

  6. Electrical injection and detection of spin-polarized currents in topological insulator Bi2Te2Se

    NASA Astrophysics Data System (ADS)

    Tian, Jifa; Miotkowski, Ireneusz; Hong, Seokmin; Chen, Yong P.

    2015-09-01

    Topological insulators (TIs) are an unusual phase of quantum matter with nontrivial spin-momentum-locked topological surface states (TSS). The electrical detection of spin-momentum-locking of TSS has been lacking till very recently. Many of the results are from samples with significant bulk conduction, such as Bi2Se3, where it can be challenging to separate the surface and bulk contribution to the spin signal. Here, we report spin potentiometric measurements in flakes exfoliated from bulk insulating Bi2Te2Se crystals, using two outside nonmagnetic contacts for driving a DC spin helical current and a middle ferromagnetic (FM)-Al2O3 contact for detecting spin polarization. The voltage measured by the FM electrode exhibits a hysteretic step-like change when sweeping an in-plane magnetic field between opposite directions along the easy axis of the FM contact. Importantly, the direction of the voltage change can be reversed by reversing the direction of current, and the amplitude of the change as measured by the difference in the detector voltage between opposite FM magnetization increases linearly with increasing current, consistent with the current-induced spin polarization of spin-momentum-locked TSS. Our work directly demonstrates the electrical injection and detection of spin polarization in TI and may enable utilization of TSS for applications in nanoelectronics and spintronics.

  7. Effect of thermal annealing on structure and optical band gap of Se{sub 66}Te{sub 25}In{sub 9} thin films

    SciTech Connect

    Dwivedi, D. K.; Pathak, H. P.; Shukla, Nitesh; Kumar, Vipin

    2015-05-15

    Thin films of a-Se{sub 66}Te{sub 25}In{sub 9} have been deposited onto a chemically cleaned glass substrate by thermal evaporation technique under vacuum. Glassy nature of the films has been ascertained by X-ray diffraction pattern. The analysis of absorption spectra, measured at normal incidence, in the spectral range 400-1100 nm has been used for the optical characterization of thin films under investigation. The effect of thermal annealing on structure and optical band gap (E{sub g}) of a-Se{sub 66}Te{sub 25}In{sub 9} have been studied.

  8. Fermi level tuning of topological insulator Bi{sub 2}(Se{sub x}Te{sub 1-x}){sub 3} nanoplates

    SciTech Connect

    Hao Guolin; Qi Xiang; Xue Lin; Cai Canying; Li Jun; Wei Xiaolin; Zhong Jianxin

    2013-01-14

    The crystal structures and morphologies of ternary Bi{sub 2}(Se{sub x}Te{sub 1-x}){sub 3} nanoplates have been systematically characterized by employing atomic force microscopy, scanning electron microscopy, high-resolution transmission electron microscopy equipped with the energy dispersive X-ray spectrometer, and the X-ray diffraction. We find that the Bi{sub 2}(Se{sub x}Te{sub 1-x}){sub 3} nanoplates exhibit uniform charge and surface potential distributions. And their Fermi levels can be effectively tuned up to 0.23 eV by varying the selenium/tellurium composition ratios.

  9. Effects of catalyst ratio and processing conditions on UCC/SE-54/497XL cellular silicone molding compound

    SciTech Connect

    Sanders, R.S.

    1983-11-01

    The effects of heat strip time, heat strip temperature, catalyst ratio, mold cure time, post cure time, and post cure temperature on a hybrid (UCC/SE-54/497XL) cellular silicone molding compound are reported.

  10. Characterization of Electronic Materials HgZnSe and HgZnTe Using Innovative and Conventional Techniques

    NASA Technical Reports Server (NTRS)

    Tanton, George; Kesmodel, Roy; Burden, Judy; Su, Ching-Hua; Cobb, Sharon D.; Lehoczky, S. L.

    2000-01-01

    HgZnSe and HgZnTe are electronic materials of interest for potential IR detector and focal plane array applications due to their improved strength and compositional stability over HgCdTe, but they are difficult to grow on Earth and to fully characterize. Conventional contact methods of characterization, such as Hall and van der Paw, although adequate for many situations are typically labor intensive and not entirely suitable where only very small samples are available. To adequately characterize and compare properties of electronic materials grown in low earth orbit with those grown on Earth, innovative techniques are needed that complement existing methods. This paper describes the implementation and test results of a unique non-contact method of characterizing uniformity, mobility, and carrier concentration together with results from conventional methods applied to HgZnSe and HgZnTe. The innovative method has advantages over conventional contact methods since it circumvents problems of possible contamination from alloying electrical contacts to a sample and also has the capability to map a sample. Non- destructive mapping, the determination of the carrier concentration and mobility at each place on a sample, provides a means to quantitatively compare, at high spatial resolution, effects of microgravity on electronic properties and uniformity of electronic materials grown in low-Earth orbit with Earth grown materials. The mapping technique described here uses a 1mm diameter polarized beam of radiation to probe the sample. Activation of a magnetic field, in which the sample is placed, causes the plane of polarization of the probe beam to rotate. This Faraday rotation is a function of the free carrier concentration and the band parameters of the material. Maps of carrier concentration, mobility, and transmission generated from measurements of the Faraday rotation angles over the temperature range from 300K to 77K will be presented. New information on band parameters, obtained by combining results from conventional Hall measurements of the free carrier concentration with Faraday rotation measurements, will also be presented. One example of how this type of information was derived is illustrated in the following figure which shows Faraday rotation vs wavelength modeled for Hg(l-x)ZnxSe at a temperature of 300K and x=0.07. The plasma contribution, total Faraday rotation, and interband contribution to the Faraday rotation, are designated in the Figure as del(p), FR tot, and del(i) respectively. Experimentally measured values of FR tot, each indicated by + , agree acceptably well with the model at the probe wavelength of 10.6 microns. The model shows that at the probe wavelength, practically all the rotation is due to the plasma component, which can be expressed as delta(sub p)= 2pi(e(sup 3))NBL/c(sup 2)nm*(sup 2) omega(sup 2). In this equation, delta(sub p) is the rotation angle due to the free carrier plasma, N is the free carrier concentration, B the magnetic field strength, L the thickness of the sample, n the index of refraction, omega the probe radiation frequency, c the speed of light, e the electron charge, and m* the effective mass. A measurement of N by conventional techniques, combined with a measurement of the Faraday rotation angle allows m* to be accurately determined since it is an inverse square function.

  11. CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES: Phase Transition and Phonon Spectrum of Zinc-Blende Structure ZnX (X = S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Tan, Jia-Jin; Ji, Guang-Fu; Chen, Xiang-Rong; Gou, Qing-Quan

    2010-06-01

    Calculations have been performed to investigate the pressure-induced solid-solid phase transitions and the mechanical stability for three zinc-blende II-VI semiconductor compounds: ZnS, ZnSe, ZnTe by ab initio plane-wave pseudopotential density functional theory (DFT). Using the generalized gradient approximation (GGA) for exchange and correlation in the scheme of Perdew-Wang 1991 (PW91), the ground state properties and equation of state are obtained, which are well consistent with the experimental data available and other calculations. On the basis of the forth-order Birch-Murnaghan equation of states, the transition pressures Pt are determined through the analysis of enthalpy variation with pressure. A linear-response approach is used to calculate the frequencies of the phonon dispersion. Finally, by the calculations of phonon frequencies, some thermodynamic properties such as the vibrational contribution to the Helmholtz free energy (F), enthalpy (H), entropy (S), and the heat capacity (CV) are also successfully obtained.

  12. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te).

    PubMed

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J C Samus; Ghigo, Gianluca; Gu, Genda D; Kwok, Wai-Kwong

    2015-05-01

    Maximizing the sustainable supercurrent density, J C, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because J C amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSe x Te1-x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or "columnar defects," plus a higher density of single atomic site "point" defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields. PMID:26601180

  13. Fusarium oxysporum induces the production of proteins and volatile organic compounds by Trichoderma harzianum T-E5.

    PubMed

    Zhang, Fengge; Yang, Xingming; Ran, Wei; Shen, Qirong

    2014-10-01

    Trichoderma species have been used widely as biocontrol agents for the suppression of soil-borne pathogens. However, some antagonistic mechanisms of Trichoderma are not well characterized. In this study, a series of laboratory experiments were designed to characterize the importance of mycoparasitism, exoenzymes, and volatile organic compounds (VOCs) by Trichoderma harzianum T-E5 for the control of Fusarium oxysporum f. sp. cucumerinum (FOC). We further tested whether these mechanisms were inducible and upregulated in presence of FOC. The results were as follows: T-E5 heavily parasitized FOC by coiling and twisting the entire mycelium of the pathogen in dual cultures. T-E5 growing medium conditioned with deactivated FOC (T2) showed more proteins and higher cell wall-degrading enzyme activities than T1, suggesting that FOC could induce the upregulation of exoenzymes. The presence of deactivated FOC (T2') also resulted in the upregulation of VOCs that five and eight different types T-E5-derived VOCs were identified from T1' and T2', respectively. Further, the excreted VOCs in T2' showed significantly higher antifungal activities against FOC than T1'. In conclusion, mycoparasitism of T-E5 against FOC involved mycelium contact and the production of complex extracellular substances. Together, these data provide clues to help further clarify the interactions between these fungi. PMID:25135494

  14. Investigation into the growth and structure of thin-film solid solutions of iron-based superconductors in the FeSe{sub 0.92}-FeSe{sub 0.5}Te{sub 0.5} system

    SciTech Connect

    Stepantsov, E. A.; Kazakov, S. M.; Belikov, V. V.; Makarova, I. P.; Arpaia, R.; Gunnarsson, R.; Lombardi, F.

    2013-09-15

    Thin films of FeSe{sub 0.92} and FeSe{sub 0.5}Te{sub 0.5} iron chalcogenide superconductors and solid solutions containing these components in different ratios have been grown on the surface of LaAlO{sub 3} (10 1-bar 2) crystals by pulsed laser deposition. Films of solid solutions have been deposited by simultaneous laser ablation from two targets of the FeSe{sub 0.92} and FeSe{sub 0.5}Te{sub 0.5} stoichiometric compositions onto one substrate. An X-ray diffraction study of the film structure shows that the films grown are epitaxial and their lattice parameters regularly vary with the ratio of the deposited components, which was controllably varied by changing the ablation intensities from the targets.

  15. Y{sub 2}MoSe{sub 3}O{sub 12} and Y{sub 2}MoTe{sub 3}O{sub 12}: Solid-state synthesis, structure determination, and characterization of two new quaternary mixed metal oxides containing asymmetric coordination environment

    SciTech Connect

    Bang, Seong-eun; Pan, Zhi; Kim, Yeong Hun; Lee, Dong Woo; Ok, Kang Min

    2013-12-15

    Two new quaternary yttrium molybdenum selenium/tellurium oxides, Y{sub 2}MoSe{sub 3}O{sub 12} and Y{sub 2}MoTe{sub 3}O{sub 12} have been prepared by standard solid-state reactions using Y{sub 2}O{sub 3}, MoO{sub 3}, and SeO{sub 2} (or TeO{sub 2}) as reagents. Single-crystal X-ray diffraction was used to determine the crystal structures of the reported materials. Although both of the materials contain second-order JahnTeller (SOJT) distortive cations and are stoichiometrically similar, they reveal different structural features: while Y{sub 2}MoSe{sub 3}O{sub 12} shows a three-dimensional framework consisting of YO{sub 8}, MoO{sub 6}, and SeO{sub 3} groups, Y{sub 2}MoTe{sub 3}O{sub 12} exhibits a layered structure composed of YO{sub 8}, MoO{sub 4}, TeO{sub 3}, and TeO{sub 4} polyhedra. With the Mo{sup 6+} cations in Y{sub 2}MoSe{sub 3}O{sub 12}, a C{sub 3}-type intraoctahedral distortion toward a face is observed, in which the direction of the out-of-center distortion for Mo{sup 6+} is away from the oxide ligand linked to a Se{sup 4+} cation. The Se{sup 4+} and Te{sup 4+} cations in both materials are in asymmetric coordination environment attributed to the lone pairs. Elemental analyses, infrared spectroscopy, thermal analyses, intraoctahedral distortions, and dipole moment calculations for the compounds are also presented. - Graphical abstract: Y{sub 2}MoSe{sub 3}O{sub 12} reveals a three-dimensional framework consisting of YO{sub 8}, MoO{sub 6}, and SeO{sub 3} polyhedra, whereas Y{sub 2}MoTe{sub 3}O{sub 12} exhibits a layered structure composed of YO{sub 8}, MoO{sub 4}, TeO{sub 3}, and TeO{sub 4} groups. - Highlights: Two new selenite and tellurite (Y{sub 2}MoQ{sub 3}O{sub 12}; Q=Se and Te) are synthesized. Y{sub 2}MoQ{sub 3}O{sub 12} contain second-order JahnTeller distortive cations in asymmetric environments. The intra-octahedral distortion of the Mo{sup 6+} is influenced by the Se{sup 4+}.

  16. Anion substitution effects on the structure and magnetism of the chromium chalcogenide Cr{sub 5}Te{sub 8}-Part III: Structures and magnetism of the high-temperature modification Cr{sub (1+x)}Q{sub 2} and the low-temperature modification Cr{sub (5+x)}Q{sub 8} (Q=Te, Se; Te:Se=5:3)

    SciTech Connect

    Wontcheu, Joseph; Bensch, Wolfgang Mankovsky, Sergiy; Polesya, Svitlana; Ebert, Hubert; Kremer, Reinhard K.; Bruecher, Eva

    2008-06-15

    The title compounds were synthesized via the high-temperature (HT) route. The materials are characterized by Rietveld analysis, magnetic measurements, and electronic band-structure calculations. Two different structural modifications depending on the synthesis conditions are observed: a HT modification with trigonal basic cells (space group: P-3m1) for Cr{sub (1+x)}Q{sub 2} ((1+x)=1.25, 1.28, 1.34, 1.37, 1.41, 1.43) and a low-temperature (LT) modification with trigonal super-cell (space group: P-3m1) for Cr{sub (5+x)}Q{sub 8} ((5+x)=5.00, 5.12, 5.36, 5.48, 5.64, 5.72). The crystal structures are closely related to the NiAs-type structure with metal vacancies in every second metal layer. The substitution of Te by Se and the change of the Cr concentration induce significant alterations of the magnetic properties. With increasing Cr content the Weiss constant {theta} changes drastically from negative to strong positive values, i.e., with increasing Cr concentration a shift from predominant antiferromagnetic exchange to ferromagnetic exchange occurs. At LTs a complex magnetic behavior is observed. For some members a spin-glass (SG) behavior is found with the freezing temperature T{sub f} following the Vogel-Fulcher law. At the highest Cr concentrations ferromagnetic characteristics dominate with spontaneous magnetizations below the Curie temperatures. The differences of the magnetic properties of the LT and HT phases can be explained on the basis of interatomic distances and angles. For a deeper understanding of the experimental results, they have been compared with the results of spin polarized relativistic Korringa-Kohn-Rostoker electronic band-structure calculations and both results are consistent. To explain the features of temperature-dependent magnetization of the compounds, Monte Carlo (MC) simulations based on the Heisenberg model have been performed with the exchange coupling parameters obtained within the ab-initio calculations of the electronic structure. The possible reasons for a modification of the exchange coupling parameters responsible for the temperature-dependent features are also analyzed. - Graphical abstract: The magnetic properties of Cr{sub 1+x}Q{sub 2} and Cr{sub 5+x}Te{sub 5}Se{sub 3} (Q=Te, Se; ratio=5:3) are strongly influenced by the Cr content and the crystal structure with the Weiss constant and Curie temperature covering a large range.

  17. Use of (77)Se and (125)Te NMR Spectroscopy to Probe Covalency of the Actinide-Chalcogen Bonding in [Th(En){N(SiMe3)2}3](-) (E = Se, Te; n = 1, 2) and Their Oxo-Uranium(VI) Congeners.

    PubMed

    Smiles, Danil E; Wu, Guang; Hrobrik, Peter; Hayton, Trevor W

    2016-01-27

    Reaction of [Th(I)(NR2)3] (R = SiMe3) (1) with 1 equiv of either [K(18-crown-6)]2[Se4] or [K(18-crown-6)]2[Te2] affords the thorium dichalcogenides, [K(18-crown-6)][Th(?(2)-E2)(NR2)3] (E = Se, 2; E = Te, 3), respectively. Removal of one chalcogen atom via reaction with Et3P, or Et3P and Hg, affords the monoselenide and monotelluride complexes of thorium, [K(18-crown-6)][Th(E)(NR2)3] (E = Se, 4; E = Te, 5), respectively. Both 4 and 5 were characterized by X-ray crystallography and were found to feature the shortest known Th-Se and Th-Te bond distances. The electronic structure and nature of the actinide-chalcogen bonds were investigated with (77)Se and (125)Te NMR spectroscopy accompanied by detailed quantum-chemical analysis. We also recorded the (77)Se NMR shift for a U(VI) oxo-selenido complex, [U(O)(Se)(NR2)3](-) (?((77)Se) = 4905 ppm), which features the highest frequency (77)Se NMR shift yet reported, and expands the known (77)Se chemical shift range for diamagnetic substances from ?3300 ppm to almost 6000 ppm. Both (77)Se and (125)Te NMR chemical shifts of given chalcogenide ligands were identified as quantitative measures of the An-E bond covalency within an isoelectronic series and supported significant 5f-orbital participation in actinide-ligand bonding for uranium(VI) complexes in contrast to those involving thorium(IV). Moreover, X-ray diffraction studies together with NMR spectroscopic data and density functional theory (DFT) calculations provide convincing evidence for the actinide-chalcogen multiple bonding in the title complexes. Larger An-E covalency is observed in the [U(O)(E)(NR2)3](-) series, which decreases as the chalcogen atom becomes heavier. PMID:26667146

  18. Catalyst-free vapour-solid technique for deposition of Bi2Te3 and Bi2Se3 nanowires/nanobelts with topological insulator properties.

    PubMed

    Andzane, J; Kunakova, G; Charpentier, S; Hrkac, V; Kienle, L; Baitimirova, M; Bauch, T; Lombardi, F; Erts, D

    2015-10-14

    We present a simple two-stage vapour-solid synthesis method for the growth of bismuth chalcogenide (Bi2Te3, Bi2Se3) topological insulator nanowires/nanobelts by using Bi2Se3 or Bi2Te3 powders as source materials. During the first stage of the synthesis process nanoplateteles, serving as "catalysts" for further nanowire/nanobelt growth, are formed. At a second stage of the synthesis, the introduction of a N2 flow at 35 Torr pressure in the chamber induces the formation of free standing nanowires/nanobelts. The synthesised nanostructures demonstrate a layered single-crystalline structure and Bi?:?Se and Bi?:?Te ratios 40?:?60 at% for both Bi2Se3 and Bi2Te3 nanowires/nanobelts. The presence of Shubnikov de Haas oscillations in the longitudinal magneto-resistance of the nanowires/nanobelts and their specific angular dependence confirms the existence of 2D topological surface states in the synthesised nanostructures. PMID:26365282

  19. Kinetic limitation of chemical ordering in Bi2Te3‑x Se x layers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schreyeck, S.; Brunner, K.; Kirchner, A.; Bass, U.; Grauer, S.; Schumacher, C.; Gould, C.; Karczewski, G.; Geurts, J.; Molenkamp, L. W.

    2016-04-01

    We study the chemical ordering in Bi2Te3‑x Se x grown by molecular beam epitaxy on Si substrates. We produce films in the full composition range from x  =  0 to 3, and determine their material properties using energy dispersive x-ray spectroscopy, x-ray diffraction and Raman spectroscopy. By fitting the parameters of a kinetic growth model to these results, we obtain a consistent description of growth at a microscopic level. Our main finding is that despite the incorporation of Se in the central layer being much more probable than that of Te, the formation of a fully ordered Te–Bi–Se–Bi–Te layer is prevented by kinetic of the growth process. Indeed, the Se concentration in the central layer of Bi2Te2Se1 reaches a maximum of only  ≈75% even under ideal growth conditions. A second finding of our work is that the intensity ratio of the 0 0 12 and 0 0 6 x-ray reflections serves as an experimentally accessible quantitative measure of the degree of ordering in these films.

  20. Suppression of phase separation and giant enhancement of superconducting transition temperature in FeSe(1-x)Te(x) thin films.

    PubMed

    Imai, Yoshinori; Sawada, Yuichi; Nabeshima, Fuyuki; Maeda, Atsutaka

    2015-02-17

    We demonstrate the successful fabrication on CaF2 substrates of FeSe(1-x)Tex films with 0 ? x ? 1, including the region of 0.1 ? x ? 0.4, which is well known to be the "phase-separation region," via pulsed laser deposition that is a thermodynamically nonequilibrium method. In the resulting films, we observe a giant enhancement of the superconducting transition temperature, Tc, in the region of 0.1 ? x ? 0.4: The maximum value reaches 23 K, which is ? 1.5 times as large as the values reported for bulk samples ofFeSe(1-x)Te(x). We present a complete phase diagram of FeSe(1-x)Te(x) films. Surprisingly, a sudden suppression of Tc is observed at 0:1 < x < 0.2, whereas Tc increases with decreasing x for 0.2 ? x < 1. Namely, there is a clear difference between superconductivity realized in x = 0-0.1 and in x ? 0.2. To obtain a film of FeSe(1-x)Te(x) with high Tc, the controls of the Te content x and the in-plane lattice strain are found to be key factors. PMID:25646450

  1. Study on Corrosion Performance of Cu-Te-Se Alloys in a 3.5% Sodium Chloride Solution

    NASA Astrophysics Data System (ADS)

    Jiao, Lin; Li, Meng; Zeng, Tao; Zhu, Dachuan

    2015-11-01

    Samples of Cu-Te-Se alloys, previously aged or treated as a solid solution, were immersed in 3.5% (mass fraction) sodium chloride solution to investigate their corrosion resistance at room temperature by determining their corrosive weight loss. The morphologies of the precipitated phase and surface products following immersion were observed by scanning electron microscope. In addition, energy-dispersive spectroscopic analysis was used to determine the elemental constituents of precipitated phase and corroded surface of the alloy samples. The phase composition was measured by x-ray diffraction, and the electrochemical polarization behavior of the samples was determined using an electrochemical workstation. The experimental results revealed that the alloy samples appeared to corrode uniformly, which was accompanied by a small amount of localized corrosion. There was the possibility that localized corrosion could increase following aging treatment. The addition of a small amount of tellurium and selenium to the alloy appeared to retard oxygen adsorption on the copper in the alloy, which has ameliorated the alloy corrosion due to the similar physical and chemical properties of oxygen. In comparison to the solid solution state, the corrosion resistance of the alloy appeared to decline slightly following aging treatment.

  2. Kondo Effect in CeXc (Xc = S, Se, Te) Studied by Electrical Resistivity Measurements under High Pressure

    NASA Astrophysics Data System (ADS)

    Hayashi, Yuya; Takai, Shun; Matsumura, Takeshi; Tanida, Hiroshi; Sera, Masafumi; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Ochiai, Akira

    2016-03-01

    We have measured the electrical resistivity of cerium monochalcogenides, CeS, CeSe, and CeTe, under high pressures of up to 8 GPa. The pressure dependences of the antiferromagnetic ordering temperature TN, crystal field splitting, and the ln T anomaly of the Kondo effect have been studied to cover the entire region from the magnetic ordering regime at low pressure to the Fermi liquid regime at high pressure. TN initially increases with increasing pressure, and starts to decrease at high pressure as expected from Doniach’s diagram. Simultaneously, the ln T behavior in the resistivity is enhanced, indicating the enhancement of the Kondo effect by pressure. It is also characteristic of CeXc that the crystal field splitting rapidly decreases at a common rate of ‑12.2 K/GPa. This leads to the increase in the degeneracy of the f state and the further enhancement of the Kondo effect. It is shown that the pressure-dependent degeneracy of the f state is a key factor for understanding the pressure dependence of TN, the Kondo effect, magnetoresistance, and the peak structure in the temperature dependence of resistivity.

  3. Synthesis of a potential semiconductor neutron detector crystal LiGa(Se/Te)2: materials purity and compatibility effects

    NASA Astrophysics Data System (ADS)

    Stowe, Ashley C.; Morrell, J.; Battacharya, Pijush; Tupitsyn, Eugene; Burger, Arnold

    2011-09-01

    Lithium containing AIBIIICVI semiconductors are being considered as alternative materials for room temperature neutron detection. One of the primary challenges in growing a high quality crystal of such a material is the reactivity of lithium metal. The presence of nitrides, oxides, and a variety of alkali and alkaline earth metal impurities prevent pure synthesis and truncate crystal growth by introducing multiple nucleation centers during growth. Multiple lithium metal purification methods have been investigated which ultimately raised the metal purity to 99.996%. Multi-cycle vacuum distillation removed all but 40 ppm of metal impurities in lithium metal. LiGa(Se/Te)2 was then synthesized with the high purity lithium metal by a variety of conditions. Lithium metal reacts violently with many standard crucible materials, and thermodynamic studies were undertaken to insure that an appropriate crucible choice was made, with high purity iron and boron nitride crucibles being the least reactive practical materials. Once conditions were optimized for synthesis of the chalcopyrite, vertical Bridgman crystal growth resulted in red crystals. The optical, electronic, and thermodynamic properties were collected.

  4. Polytypism, polymorphism, and superconductivity in TaSe2–xTex

    SciTech Connect

    Luo, Huixia; Xie, Weiwei; Tao, Jing; Inoue, Hiroyuki; Gyenis, András; Krizan, Jason W.; Yazdani, Ali; Zhu, Yimei; Cava, Robert Joseph

    2015-03-03

    Polymorphism in materials often leads to significantly different physical properties - the rutile and anatase polymorphs of TiO₂ are a prime example. Polytypism is a special type of polymorphism, occurring in layered materials when the geometry of a repeating structural layer is maintained but the layer stacking sequence of the overall crystal structure can be varied; SiC is an example of a material with many polytypes. Although polymorphs can have radically different physical properties, it is much rarer for polytypism to impact physical properties in a dramatic fashion. Here we study the effects of polytypism and polymorphism on the superconductivity of TaSe₂, one of the archetypal members of the large family of layered dichalcogenides. We show that it is possible to access 2 stable polytypes and 2 stable polymorphs in the TaSe2-xTex solid solution, and find that the 3R polytype shows a superconducting transition temperature that is between 6 and 17 times higher than that of the much more commonly found 2H polytype. Thus, the reason for this dramatic change is not apparent, but we propose that it arises either from a remarkable dependence of Tc on subtle differences in the characteristics of the single layers present, or from a surprising effect of the layer stacking sequence on electronic properties that instead are expected to be dominated by the properties of a single layer in materials of this kind.

  5. Evolution of the level anticrossing signal in magnetoluminescence of localized excitons in the GaSe-GaTe solid solution

    NASA Astrophysics Data System (ADS)

    Starukhin, A. N.; Nelson, D. K.; Razbirin, B. S.; Fedorov, D. L.; Syunyaev, D. K.

    2015-10-01

    The time dependence of the Zeeman-sublevel anticrossing signal in triplet localized exciton emission in the GaSe0.87Te0.13 semiconductor solid solution has been studied by the time-resolved spectroscopy method under conditions of unpolarized pumping. It has been shown that the anticrossing signal shape changes significantly for the lifetime t of localized excitons. At the time point t = 0, the anticrossing signal is not detected; as t increases, a maximum is formed in the dependence of the exciton emission intensity on the magnetic field (at this stage, the anticrossing signal shape is identical to that observed under conditions of steady-state excitation), which is split into a doublet as t further increases. A theoretical interpretation of the observed time dependence of the Zeeman-sublevel anticrossing signal in localized exciton emission has been proposed. The fine structure parameters and lifetimes of the triplet localized excitons have been determined in different spin states by comparing theory and experiment.

  6. Thermally activated flux flow in Fe1.06Te0.6Se0.4 single crystal

    NASA Astrophysics Data System (ADS)

    Shahbazi, M.; Wang, X. L.; Ghorbani, S. R.; Dou, S. X.; Lin, C. T.

    2015-12-01

    Resistivity of Fe1.06Te0.6Se0.4 single crystal is investigated around superconducting transition region in different magnetic fields. The thermally activated energy (TAE) is analysed using the Arrhenius relation and modified thermally activated flux flow (TAFF) model. The results indicate that the Arrhenius curve slopes are directly related to but not equal to TAE. Therefore, use of the modified TAFF model is suggested, ?(T,B)=?0f exp(-U/T), where the temperature dependence of the pre-factor ?0f=2?cU/T and the nonlinear relation of the TAE should be considered. The modified TAFF method results are in good agreement with the very high critical current density values from the experimental data. It was found that the vortex glass has a narrow region, and it depends weakly on magnetic field. The vortex phase diagram was determined based on the evolution of the vortex-glass transition temperature with magnetic field and the upper critical field.

  7. Measurement and control of size and density of type-II ZnTe/ZnSe submonolayer quantum dots grown by migration enhanced epitaxy

    NASA Astrophysics Data System (ADS)

    Dhomkar, S.; Ji, H.; Roy, B.; Deligiannakis, V.; Wang, A.; Tamargo, M. C.; Kuskovsky, I. L.

    2015-07-01

    For practical applications of self-assembled semiconductor quantum dots (QDs), it is important to control their densities and sizes, however these parameters are difficult to quantify. This is particularly challenging in case of submonolayer QDs, in spite of their remarkable features including absence of wetting layers and significantly small dimensions that are advantageous for many device application. We report here the investigation of submonolayer type-II ZnTe/ZnSe QDs grown via migration enhanced epitaxy (MEE) with varying Te content. The employment of MEE assists in the formation of QDs and facilitates improvement in overall material quality. The structural and optical properties of these QD structures were investigated using a variety of characterization tools. Low temperature photoluminescence measurement allowed for a good estimate of QD thicknesses, while observation of robust Aharanov-Bohm-oscillations in magneto-PL spectra was used to precisely determine diameters of these disc-shaped QDs. These results, in conjunction with high resolution x-ray diffraction and secondary ion mass spectrometry data of the Te concentration, were then used to evaluate the QD density. It is evident from the results that the dot density increases much faster than the QD size with respect to the increase in overall Te content. Most importantly, this study provides the dependence of average QD size and density as a function of Te flux and Te MEE cycles, and shows that these are the key parameters to control the QD dimension and distribution.

  8. Towards a predictive route for selection of doping elements for the thermoelectric compound PbTe from first-principles

    SciTech Connect

    Joseph, Elad; Amouyal, Yaron

    2015-05-07

    Striving for improvements of the thermoelectric (TE) properties of the technologically important lead telluride (PbTe) compound, we investigate the influence of different doping elements on the thermal conductivity, Seebeck coefficient, and electrical conductivity applying density functional theory calculations. Our approach combines total-energy calculations yielding lattice vibrational properties with the Boltzmann transport theory to obtain electronic transport properties. We find that doping with elements from the 1st and 3rd columns of the periodic table reduces the sound velocity and, consequently, the lattice thermal conductivity, while 2nd column dopants have no such influence. Furthermore, 1.6 at. % doping with 4th and 5th column elements provides the highest reduction of lattice thermal conductivity. Out of this group, Hf doping results in maximum reduction of the sound velocity from 2030 m s{sup −1} for pure PbTe to 1370 m s{sup −1}, which is equivalent to ca. 32% reduction of lattice thermal conductivity. The highest power factor values calculated for 1.6 at. % doping range between 40 and 56 μW cm{sup −1} K{sup −2}, and are obtained for substitution with dopants having the same valence as Pb or Te, such as those located at the 2nd, 14th, and 16th columns of the periodic table. We demonstrate how this method may be generalized for dopant-selection-oriented materials design aimed at improving TE performance of other compounds.

  9. Subchronic oral toxicity studies of Se-methylselenocysteine, an organoselenium compound for breast cancer prevention.

    PubMed

    Johnson, W D; Morrissey, R L; Kapetanovic, I; Crowell, J A; McCormick, D L

    2008-03-01

    Se-methylselenocysteine (MSC) is an organoselenium compound being developed for breast cancer chemoprevention. To characterize MSC toxicity, CD rats received daily gavage doses of 0, 0.5, 1.0, or 2.0 mg/kg/day (0, 3, 6, or 12 mg/m(2)/day), and beagle dogs received daily gavage doses of 0, 0.15, 0.3, or 0.6 mg/kg/day (0, 3, 6, or 12 mg/m(2)/day) for 28 days. In rats, MSC induced dose-related hepatomegaly in both sexes; mild anemia, thrombocytopenia, and elevated liver enzymes were observed in high dose females only. Microscopic pathology included hepatocellular degeneration (high dose males, all doses in females); arrested spermatogenesis (high dose males); and atrophy of corpora lutea (middle and high dose females). In dogs, MSC induced mild anemia in middle and high dose males, and in high dose females. Toxicologically significant microscopic lesions in dogs were seen only in the liver (peliosis and vacuolar degeneration in high dose males, midzonal necrosis in males in all dose groups). Based on liver pathology seen in female rats in all dose groups, the no observed adverse effect level (NOAEL) for MSC in rats is <0.5mg/kg/day. Based on alterations in hematology parameters and liver morphology in male dogs in all dose groups, the NOAEL for MSC in dogs is <0.15 mg/kg/day. PMID:18082924

  10. Anisotropic thermoelectric properties of layered compounds in SnX2 (X = S, Se): a promising thermoelectric material.

    PubMed

    Sun, Bao-Zhen; Ma, Zuju; He, Chao; Wu, Kechen

    2015-11-28

    Thermoelectrics interconvert heat to electricity and are of great interest in waste heat recovery, solid-state cooling and so on. Here we assessed the potential of SnS2 and SnSe2 as thermoelectric materials at the temperature gradient from 300 to 800 K. Reflecting the crystal structure, the transport coefficients are highly anisotropic between a and c directions, in particular for the electrical conductivity. The preferred direction for both materials is the a direction in TE application. Most strikingly, when 800 K is reached, SnS2 can show a peak power factor (PF) of 15.50 ?W cm(-1) K(-2) along the a direction, while a relatively low value (11.72 ?W cm(-1) K(-2)) is obtained in the same direction of SnSe2. These values are comparable to those observed in thermoelectrics such as SnSe and SnS. At 300 K, the minimum lattice thermal conductivity (?min) along the a direction is estimated to be about 0.67 and 0.55 W m(-1) K(-1) for SnS2 and SnSe2, respectively, even lower than the measured lattice thermal conductivity of Bi2Te3 (1.28 W m(-1) K(-1) at 300 K). The reasonable PF and ?min suggest that both SnS2 and SnSe2 are potential thermoelectric materials. Indeed, the estimated peak ZT can approach 0.88 for SnSe2 and a higher value of 0.96 for SnS2 along the a direction at a carrier concentration of 1.94 10(19) (SnSe2) vs. 2.87 10(19) cm(-3) (SnS2). The best ZT values in SnX2 (X = S, Se) are comparable to that in Bi2Te3 (0.8), a typical thermoelectric material. We hope that this theoretical investigation will provide useful information for further experimental and theoretical studies on optimizing the thermoelectric properties of SnX2 materials. PMID:26486877

  11. High Compositional Homogeneity of CdTexSe1-x Crystals Grown by the Bridgman Method

    SciTech Connect

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Lee, K.; Lee, W.; Tappero, R.; Yang, G.; Gul, R.; James, R. B.

    2015-02-03

    We obtained high-quality CdTexSe1-x (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The resulting compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ~1.0. This uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing higher efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional CdxZn1-xTe (CdZnTe or CZT).

  12. High Compositional Homogeneity of CdTexSe1-x Crystals Grown by the Bridgman Method

    SciTech Connect

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Lee, K.; Lee, W.; Tappero, R.; Yang, G.; Gul, R.; James, R. B.

    2015-02-03

    We obtained high-quality CdTexSe1-x (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNLs National Synchrotron Light Source X27A beam line. The resulting compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ~1.0. This uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing higher efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional CdxZn1-xTe (CdZnTe or CZT).

  13. Crystal structure, electronic and physical properties of monoclinic RECuTe2 in contrast to RECuSe2 (RE = Pr, Sm, Gd, Dy and Er)

    NASA Astrophysics Data System (ADS)

    Esmaeili, Mehdi; Forbes, Scott; Tseng, Yu-Chih; Mozharivskyj, Yurij

    2014-10-01

    The ternary tellurides RECuTe2 (RE = Gd, Dy and Er) have been synthesized, their crystal structure and charge transport properties have been investigated. The tellurides adopt a monoclinicly distorted variant (C2/m, z = 2) of the trigonal structure (P 3 bar m1, Z = 1) observed for RECuSe2 with RE = Dy, Er. The charge transport properties of RECuSe2 with RE = Pr and Sm have been also explored. While RECuTe2 display a metallic type resistivity, RECuSe2 show semiconducting properties. The room-temperature resistivities are between 0.22 and 10.5 Ω cm, with larger values observed for the selenides. Electronic structure calculations support metallic and semiconducting conductivities for the tellurides and selenides, respectively. The Seebeck coefficient indicates that the dominant charge carries are holes for all phases.

  14. Pulsed laser processing of CdTe and other II-VI compound semiconductor/metal interfaces

    NASA Astrophysics Data System (ADS)

    Brillson, L. J.

    1989-04-01

    It is demonstrated that the chemical and electronic properties of the metal/cadmium telluride or other II-VI compound semiconductor are closely related and that atomic-scale processing techniques can be useful in controlling both the metallurgical and the Schottky barrier features of the interface. Pulsed laser processing combined with surface science techniques revealed microscopic chemical interactions at elevated temperatures for representative metal semiconductor junctions. Optical spectroscopy techniques showed that such chemical interactions produced changes in the deep electronic levels within the semiconductor band gap. Carefully controlled measurements of both chemistry and electronics under UHV conditions established that the E(f) stabilization within the semiconductor band gap was dominated by the presence of these deep levels. Essentially, these deep levels are the link between interface chemistry and Schottky barrier formation. By suppressing this chemical interaction, the semiconductor band bending was controlled over a much wider range than hitherto possible, achieving the lowest p-type barriers to nondegenerately doped CdTe reported to date. These studies were extended to higher quality CdTe films grown by molecular beam epitaxy. These results offer several new opportunities for further improving the chemical and electrical stability, as well as the absolute Schottky barrier heights of metal contacts to CdTe and other II-VI compound semiconductors.

  15. Thermoelectric properties of topological insulator Bi{sub 2}Te{sub 3}, Sb{sub 2}Te{sub 3}, and Bi{sub 2}Se{sub 3} thin film quantum wells

    SciTech Connect

    Osterhage, Hermann Gooth, Johannes; Hamdou, Bacel; Gwozdz, Paul; Zierold, Robert; Nielsch, Kornelius

    2014-09-22

    The thermoelectric (TE) figure of merit ZT of topological insulator Bi{sub 2}Te{sub 3}, Sb{sub 2}Te{sub 3}, and Bi{sub 2}Se{sub 3} thin film quantum wells is calculated for thicknesses below 10?nm, for which hybridization of the surface states as well as quantum confinement in the bulk are individually predicted to enhance ZT. Here, the question is addressed what ZT can be expected from coexisting surface and bulk states in such quantum wells. It is demonstrated that the parallel contributing bulk and surface channels tend to cancel each other out. This is because the surface-to-volume ratios of the thin films prevent the domination of transport through a single channel and because the individual bulk and surface ZTs are optimized at different Fermi levels.

  16. Comparative nm-Resolution Electrical Potential and Resistance Mapping of Cu(In,Ga)Se2, Cu2ZnSnSe4, and CdTe Thin Films

    NASA Astrophysics Data System (ADS)

    Jiang, Chunsheng; Repins, Ingrid; Mansfield, Lorelle; Contreras, Miguel; Moutinho, Helio; Ramanathan, Kannan; Al-Jassim, Mowafak; National Renewable Energy Laboratory Team

    2014-03-01

    We report on a comparative study of three leading thin-film PV materials of Cu(In,Ga)Se2 (CIGS), Cu2ZnSnSe4 (CZTS), and CdTe, by mapping the local electrical potential and resistance using atomic force microscopy (AFM)-based electrical techniques of scanning Kelvin probe force microscopy (SKPFM) and scanning spreading resistance microscopy (SSRM). The SKPFM potential mapping shows consistent results among the three films. The energy bands around the grain boundaries (GBs) bent downward and the GBs are positively charged. However, whether the carriers around the GBs are depleted or inverted could not be determined solely by the potential contrast between the GB and grain surface because surface band bending decreases this contrast. The SSRM resistance mapping shows different results between the films. A higher conduction channel was imaged along the GBs of CIGS and CZTS, indicating an inversion of carriers around the GBs. However, no characteristic resistance was imaged on the GBs of CdTe. This difference of local resistance on the GBs suggests a depletion of carriers in CdTe, in contrast to CIGS and CZTS. These nm-electrical mapping proposes an active GB of CdTe for minority carrier recombination, but inactive GBs of CIGS and CZTS.

  17. Enhanced thermoelectric performance in Cd doped CuInTe{sub 2} compounds

    SciTech Connect

    Cheng, N.; Liu, R.; Bai, S.; Shi, X. Chen, L.

    2014-04-28

    CuIn{sub 1−x}Cd{sub x}Te{sub 2} materials (x = 0, 0.02, 0.05, and 0.1) are prepared using melting-annealing method and the highly densified bulk samples are obtained through Spark Plasma Sintering. The X-ray diffraction data confirm that nearly pure chalcopyrite structures are obtained in all the samples. Due to the substitution of Cd at In sites, the carrier concentration is greatly increased, leading to much enhanced electrical conductivity and power factor. The single parabolic band model is used to describe the electrical transport properties of CuInTe{sub 2} and the low temperature Hall mobility is also modeled. By combing theoretical model and experiment data, the optimum carrier concentration in CuInTe{sub 2} is proposed to explain the greatly enhanced power factors in the Cd doped CuInTe{sub 2}. In addition, the thermal conductivity is reduced by extra phonon scattering due to the atomic mass and radius fluctuations between Cd and In atoms. The maximum zTs are observed in CuIn{sub 0.98}Cd{sub 0.02}Te{sub 2} and CuIn{sub 0.9}Cd{sub 0.1}Te{sub 2} samples, which are improved by over 100% at room temperature and around 20% at 600 K.

  18. Low-Temperature Transport Properties of Bi-Substituted ?-As2Te3 Compounds

    NASA Astrophysics Data System (ADS)

    Vaney, J.-B.; Carreaud, J.; Delaizir, G.; Morin, C.; Monnier, J.; Alleno, E.; Piarristeguy, A.; Pradel, A.; Gonalves, A. P.; Lopes, E. B.; Candolfi, C.; Dauscher, A.; Lenoir, B.

    2015-12-01

    ?-As2Te3 belongs to the family of Bi2Te3-based alloys, a well-known class of efficient thermoelectric materials around room temperature. As2Te3 exists in two allotropic configurations: ?- and ?-As2Te3, of which only the latter crystallizes in the same rhombohedral structure as Bi2Te3. Herein, we report on substitution of Bi for As in the As2-x Bi x Te3 system with x = 0.0, 0.015, 0.025, and 0.035. These samples have been characterized by x-ray diffraction and scanning electron microscopy. The transport properties have been measured at low temperatures (5 K to 300 K) in both directions, parallel and perpendicular to the pressing direction. The results are compared with those obtained in previous study on samples substituted by Sn. Compared with Sn, Bi allows for a clear decrease in electrical resistivity while maintaining the thermal conductivity below 1 W/(m K) over the whole temperature range. As a result, a comparable peak ZT value near 0.2 was obtained at room temperature.

  19. Low-Temperature Transport Properties of Bi-Substituted β-As2Te3 Compounds

    NASA Astrophysics Data System (ADS)

    Vaney, J.-B.; Carreaud, J.; Delaizir, G.; Morin, C.; Monnier, J.; Alleno, E.; Piarristeguy, A.; Pradel, A.; Gonçalves, A. P.; Lopes, E. B.; Candolfi, C.; Dauscher, A.; Lenoir, B.

    2016-03-01

    β-As2Te3 belongs to the family of Bi2Te3-based alloys, a well-known class of efficient thermoelectric materials around room temperature. As2Te3 exists in two allotropic configurations: α- and β-As2Te3, of which only the latter crystallizes in the same rhombohedral structure as Bi2Te3. Herein, we report on substitution of Bi for As in the As2- x Bi x Te3 system with x = 0.0, 0.015, 0.025, and 0.035. These samples have been characterized by x-ray diffraction and scanning electron microscopy. The transport properties have been measured at low temperatures (5 K to 300 K) in both directions, parallel and perpendicular to the pressing direction. The results are compared with those obtained in previous study on samples substituted by Sn. Compared with Sn, Bi allows for a clear decrease in electrical resistivity while maintaining the thermal conductivity below 1 W/(m K) over the whole temperature range. As a result, a comparable peak ZT value near 0.2 was obtained at room temperature.

  20. Polarization Control of Morphological Pattern Orientation During Light-Mediated Synthesis of Nanostructured Se-Te Films.

    PubMed

    Carim, Azhar I; Batara, Nicolas A; Premkumar, Anjali; Atwater, Harry A; Lewis, Nathan S

    2016-01-26

    The template-free growth of well ordered, highly anisotropic lamellar structures has been demonstrated during the photoelectrodeposition of Se-Te films, wherein the orientation of the pattern can be directed by orienting the linear polarization of the incident light. This control mechanism was investigated further herein by examining the morphologies of films grown photoelectrochemically using light from two simultaneous sources that had mutually different linear polarizations. Photoelectrochemical growth with light from two nonorthogonally polarized same-wavelength sources generated lamellar morphologies in which the long axes of the lamellae were oriented parallel to the intensity-weighted average polarization orientation. Simulations of light scattering at the solution-film interface were consistent with this observation. Computer modeling of these growths using combined full-wave electromagnetic and Monte Carlo growth simulations successfully reproduced the experimental morphologies and quantitatively agreed with the pattern orientations observed experimentally by considering only the fundamental light-material interactions during growth. Deposition with light from two orthogonally polarized same-wavelength as well as different-wavelength sources produced structures that consisted of two intersecting sets of orthogonally oriented lamellae in which the relative heights of the two sets could be varied by adjusting the relative source intensities. Simulations of light absorption were performed in analogous, idealized intersecting lamellar structures and revealed that the lamellae preferentially absorbed light polarized with the electric field vector along their long axes. These data sets cumulatively indicate that anisotropic light scattering and light absorption generated by the light polarization produces the anisotropic morphology and that the resultant morphology is a function of all illumination inputs despite differing polarizations. PMID:26592096

  1. FeTe0.55Se0.45 : A multiband superconductor in the clean and dirty limit

    NASA Astrophysics Data System (ADS)

    Homes, C. C.; Dai, Y. M.; Wen, J. S.; Xu, Z. J.; Gu, G. D.

    2015-04-01

    The detailed optical properties of the multiband iron-chalcogenide superconductor FeTe0.55Se0.45 have been reexamined for a large number of temperatures above and below the critical temperature Tc=14 K for light polarized in the a -b planes. Instead of the simple Drude model that assumes a single band, above Tc the normal-state optical properties are best described by the two-Drude model that considers two separate electronic subsystems; we observe a weak response (?p ,D ;1?3000 cm-1) where the scattering rate has a strong temperature dependence (1 /?D ,1?32 cm-1 for T ?Tc ), and a strong response (?p ,D ;2?14 500 cm-1) with a large scattering rate (1 /?D ,2?1720 cm-1) that is essentially temperature independent. The multiband nature of this material precludes the use of the popular generalized-Drude approach commonly applied to single-band materials, implying that any structure observed in the frequency-dependent scattering rate 1 /? (? ) is spurious and it cannot be used as the foundation for optical inversion techniques to determine an electron-boson spectral function ?2F (? ) . Below Tc the optical conductivity is best described using two superconducting optical gaps of 2 ?1?45 and 2 ?2?90 cm-1 applied to the strong and weak responses, respectively. The scattering rates for these two bands are vastly different at low temperature, placing this material simultaneously in both clean and dirty limit. Interestingly, this material falls on the universal scaling line initially observed for the cuprate superconductors.

  2. Preparation and structure of BiCrTeO{sub 6}: A new compound in Bi–Cr–Te–O system. Thermal expansion studies of Cr{sub 2}TeO{sub 6}, Bi{sub 2}TeO{sub 6} and BiCrTeO{sub 6}

    SciTech Connect

    Vats, Bal Govind; Phatak, Rohan; Krishnan, K.; Kannan, S.

    2013-09-01

    Graphical abstract: A new compound BiCrTeO{sub 6} in the Bi–Cr–Te–O system was prepared by solid state route and characterized by X-ray diffraction method. The crystal structure of BiCrTeO{sub 6} shows that there is one distinct site for bismuth (Bi) atom (pink color), one chromium rich (Cr/Te = 68/32) (blue/green color), one tellurium rich (Te/Cr = 68/32) sites (green/blue color), and one distinct site for oxygen (O) atom (red color) in the unit cell. All cations in this structure show an octahedral coordination with oxygen atoms at the corners. The thermogram (TG) of the compound in air shows that it is stable up to 1103 K and decomposes thereafter. The thermal expansion behaviour of BiCrTeO{sub 6} was studied using high temperature X-ray diffraction method from room temperature to 923 K under vacuum of 10{sup −8} atmosphere and showed positive thermal expansion with the average volume thermal expansion coefficients of 16.0 × 10{sup −6}/K. - Highlights: • A new compound BiCrTeO{sub 6} in Bi–Cr–Te–O system was prepared and characterized. • The crystal structure of BiCrTeO{sub 6} was determined by Rietveld refinement method. • The structure of BiCrTeO{sub 6} shows an octahedral coordination for all the metal ions. • The thermal expansion behavior of BiCrTeO{sub 6} from room temperature to 923 K showed a positive thermal expansion. • The average volume thermal expansion coefficient for BiCrTeO{sub 6} is 16.0 × 10{sup −6}/K. - Abstract: A new compound BiCrTeO{sub 6} in Bi–Cr–Te–O system was prepared by solid state reaction of Bi{sub 2}O{sub 3}, Cr{sub 2}O{sub 3} and H{sub 6}TeO{sub 6} in oxygen and characterized by X-ray diffraction (XRD) method. It could be indexed on a trigonal lattice, with the space group P-31c, unit cell parameters a = 5.16268(7) Å and c = 9.91861(17) Å. The crystal structure of BiCrTeO{sub 6} was determined by Rietveld refinement method using the powder XRD data. Structure shows that there is one distinct site for bismuth (Bi) atom, one chromium rich (Cr/Te = 68/32), and one tellurium rich (Te/Cr = 68/32) sites, and one distinct site for oxygen (O) atom in the unit cell. All cations in this structure show an octahedral coordination with oxygen atoms at the corners. The thermogravimetric analysis (TGA) of the compound in air shows that it is stable up to 1103 K and decomposes thereafter. The thermal expansion behavior of Cr{sub 2}TeO{sub 6}, Bi{sub 2}TeO{sub 6} and BiCrTeO{sub 6} was studied using High Temperature X-ray diffraction (HTXRD) method from room temperature to 973, 873 and 923 K respectively under vacuum of 10{sup −8} atmospheres. All the compounds showed positive thermal expansion with the average volume thermal expansion coefficients of 14.38 × 10{sup −6}/K, 22.0 × 10{sup −6}/K and 16.0 × 10{sup −6}/K respectively.

  3. Photoelectrochemical characterization of a rhenium octahedral cluster compound [Re[sub 6]Se[sub 7]Br[sub 4

    SciTech Connect

    Aruchamy, A. . Arizona Materials Labs.); Tamaoki, H.; Fujishima, A. . Dept. of Synthetic Chemistry); Berger, H.; Levy, F. . Institut de Physique Appliquee); Speziali, N.L. . Institut de Cristallographie)

    1994-04-01

    Single crystals of Re[sub 6]Se[sub 7]Br[sub 4] have been grown by chemical vapor transport. The photoelectrochemical characteristics of the compound have been investigated in aqueous electrolytes. Re[sub 6]Se[sub 7]Br[sub 4] behaves as a p-type semiconductor photoelectrode and exhibits considerable cathodic photocurrents in the visible region. Analysis of the spectral response indicates an indirect band gap of about 1.78 eV for the compound. Current-voltage measurements indicate that the electrode is unstable under applied potentials.

  4. A Review of the Characterization Techniques for the Analysis of Etch Processed Surfaces of HgCdTe and Related Compounds

    NASA Astrophysics Data System (ADS)

    Stoltz, A. J.; Benson, J. D.; Jaime-Vasquez, M.; Smith, P. J.; Almeida, L. A.; Jacobs, R.; Markunas, J.; Brogden, K.; Brown, A.; Lennon, C.; Maloney, P.; Supola, N.

    2014-09-01

    HgCdTe is the material system of choice for many infrared sensing applications. Growth of this material can often be challenging. However, processing of this material system can be equally as challenging. Incorrect processing can cause shunting, surface inversion, or high surface recombination velocities that can be detrimental. In order to produce an effective device in HgCdTe, one needs to understand what happens to the HgCdTe surface. Factors like the chemical termination of the HgCdTe surface, surface roughness, and surface reconstruction after a process is performed can dramatically affect the performance of devices made with HgCdTe. We will review different surface characterization techniques and how these techniques can be used conventionally and unconventionally, and how different processes can affect the surfaces of HgCdTe and related compounds.

  5. Development of a computer model for polycrystalline thin-film CuInSe sub 2 and CdTe solar cells

    SciTech Connect

    Gray, J.L.; Schwartz, R.J.; Lee, Y.J. )

    1992-09-01

    This report describes work to develop an accurate numerical model for CuInSe{sub 2} (CIS) and CdTe-based solar cells capable of running on a personal computer. Such a model will aid researchers in designing and analyzing CIS- and CdTe-based solar cells. ADEPT (A Device Emulation Pregrain and Tool) was used as the basis for this model. An additional objective of this research was to use the models developed to analyze the performance of existing and proposed CIS- and CdTe-based solar cells. The development of accurate numerical models for CIS- and CdTe-based solar cells required the compilation of cell performance data (for use in model verification) and the compilation of measurements of material parameters. The development of the numerical models involved implementing the various physical models appropriate to CIS and CdTe, as well as some common window. A version of the model capable of running on an IBM-comparable personal computer was developed (primary code development is on a SUN workstation). A user-friendly interface with pop-up menus is continuing to be developed for release with the IBM-compatible model.

  6. Two isostructural layered oxohalide compounds containing Mn2+, Te4+ and Si4+; crystal structure and magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Zimmermann, Iwan; Kremer, Reinhard K.; Johnsson, Mats

    2014-10-01

    The new compounds Mn4(TeO3)(SiO4)X2 (X=Br, Cl) were synthesized by solid state reactions in sealed evacuated silica tubes. The compounds crystallize in the monoclinic space group P21/m with the unit cell parameters a=5.5463(3) Å (5.49434(7) Å), b=6.4893(4) Å (6.44184(9) Å), c=12.8709(7) Å (12.60451(18) Å), β=93.559(5)° (94.1590(12)°) and Z=2 for the respective Br and Cl analogues. Manganese adopts various distorted coordination polyhedra; [MnO6] octahedra, [MnO5] tetragonal pyramids and [MnO2X2] tetrahedra. Other building blocks are [SiO4] tetrahedra and [TeO3] trigonal pyramids. The structure is made up from layers having no net charge that are connected via weak Van der Waal interactions. The layers that are parallel to (1 1 0) consist of two manganese oxide sheets which are separated by [SiO4] tetrahedra. On the outer sides of the sheets are the [MnO2X2] tetrahedra and the [TeO3] trigonal pyramids connected so that the halide ions and the stereochemically active lone pairs on the tellurium atoms protrude from the layers. Magnetic susceptibility measurements reveal a Curie law with a Weiss temperature of θ=-153(3) K for temperatures ≥100 K and indicate antiferromagnetic ordering at TN ~4 K. Possible structural origins of the large frustration parameter of f=38 are discussed. The new compounds Mn4(TeO3)(SiO4)X2 (X=Br, Cl) are layered with weak Van der Waal interactions in between the layers. Manganese adopts various distorted coordination polyhedral, other building blocks are [SiO4] tetrahedra and [TeO3] trigonal pyramids. Magnetic susceptibility measurements indicate antiferromagnetic ordering at low temperatures and a large frustration parameter.

  7. Development of a computer model for polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells; Annual subcontract report, 1 March 1992--28 February 1993

    SciTech Connect

    Gray, J.L.; Schwartz, R.J.; Lee, Y.J.

    1994-03-01

    Solar cells operate by converting the radiation power from sun light into electrical power through photon absorption by semiconductor materials. The elemental and compound material systems widely used in photovoltaic applications can be produced in a variety of crystalline and non-crystalline forms. Although the crystalline group of materials have exhibited high conversion efficiencies, their production cost are substantially high. Several candidates in the poly- and micro-crystalline family of materials have recently gained much attention due to their potential for low cost manufacturability, stability, reliability and good performance. Among those materials, CuInSe{sub 2} and CdTe are considered to be the best choices for production of thin film solar cells because of the good optical properties and almost ideal band gap energies. Considerable progress was made with respect to cell performance and low cost manufacturing processes. Recently conversion efficiencies of 14.1 and 14.6% have been reported for CuInSe{sub 2} and CdTe based solar cells respectively. Even though the efficiencies of these cells continue to improve, they are not fully understood materials and there lies an uncertainty in their electrical properties and possible attainable performances. The best way to understand the details of current transport mechanisms and recombinations is to model the solar cells numerically. By numerical modeling, the processes which limit the cell performance can be sought and therefore, the most desirable designs for solar cells utilizing these materials as absorbers can be predicted. The problems with numerically modeling CuInSe{sub 2} and CdTe solar cells are that reported values of the pertinent material parameters vary over a wide range, and some quantities such as carrier concentration are not explicitly controlled.

  8. A DFT study of electron-phonon coupling in proxy rocksalt CuX (X = S, Se, Te) structures and its relationship to possible manifestation of superconductivity

    NASA Astrophysics Data System (ADS)

    Grant, Paul; Hammond, Robert

    2015-03-01

    We have previously reported our computational studies on idealized copper monochalcogenide rocksalt structures, both cubic and tetragonal, focusing on their possible antiferromagnetic properties as determined within a Van Vleck-Mott-Anderson-Hubbard framework. For all values of Hubbard U in the range 0-7 eV, only copper monoxide exhibits a Mott-Hubbard electronic structure, the remainder (S, Se, Te) yielding metallic states characterized by nesting Fermi surfaces arising from Jahn-Teller degenerate s-p overlap. These results suggest exploring possible manifestation of superconductivity via electron-phonon mediated Cooper pairing. We will disclose our results to date applying the Eliashberg-McMillan-Allen-Dynes strong coupling framework to the DFT -derived electronic and vibrational states of CuS, CuSe and CuTe.

  9. New Layered Structures of Cuprous Chalcogenides as Thin Film Solar Cell Materials: Cu2Te and Cu2Se

    SciTech Connect

    Nguyen, Manh; Choi, Jin-Ho; Zhao, Xin; Wang, Cai-Zhuang; Zhang, Zhenyu; Ho, Cai-Ming

    2013-10-01

    The stable crystal structures of two cuprous chalcogenides of Cu2X (X = Te or Se) are predicted using an adaptive genetic algorithm in combination with first-principles density functional theory calculations. Both systems are found to prefer a unique and previously unrecognized layered structure, with the total energies much lower than all structures proposed in the literature so far. The newly discovered structures are further shown to be dynamically and mechanically stable, and possess electronic properties consistent with existing experimental observations. In particular, their layered nature is expected to prevail over other structural forms at the interfaces of thin-film solar cells, and knowledge about the precise atomic structures of the interfaces is a prerequisite for achieving long-term stability and high efficiency of CdTe and Cu(In; Ga)Se2 solar cells.

  10. Effect of tellurium substitution in Sn{{10}}Sb{{20}}Se{{70-X}}Te{{X}} (0 < {X} <12) amorphous chalcogenide system

    NASA Astrophysics Data System (ADS)

    Chander, R.; Thangaraj, R.

    2009-10-01

    The as-prepared samples of Sn{10}Sb{20}Se{70-X}Te{X} chalcogenide system were amorphous as evidenced by X-ray diffraction and Differential scanning calorimetry studies. The different crystalline phases emerged in annealed Sn{10}Sb{20}Se{70-X}Te{X} samples have been identified. Glass transition temperature Tg of the as-prepared samples decreases sharply with tellurium substitution upto 2 at% and then it starts increasing upto 10 at% and decreases again on further substitution of tellurium. The change in glass transition temperature Tg has been explained based on bond formation energy of different heteropolar bonds and crystalline phases obtained in the annealed samples with different tellurium contents.

  11. Superconducting FeSe0.5Te0.5 thin films: a morphological and structural investigation with scanning tunnelling microscopy and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Gerbi, A.; Buzio, R.; Bellingeri, E.; Kawale, S.; Marr, D.; Siri, A. S.; Palenzona, A.; Ferdeghini, C.

    2012-01-01

    We used scanning tunnelling microscopy to study the morphology of superconducting FeSe0.5Te0.5 thin films epitaxially grown by pulsed laser deposition. Samples with critical temperature Tc above the bulk value (>16 K) show large atomic terraces, and a square lattice of periodicity 3.8 associated with the Se/Te surface termination. Differences in the height coordinate of the chalcogenide atoms are clearly visible at the atomic level. On the contrary, samples with lower Tc (11 K) show hillocks generated by a spiral surface growth driven by threading dislocations of screw character. A comparative x-ray diffraction analysis reveals differences of compressive strain for the two classes of specimens. Variations in the deposition rate are found to affect film growth and inner strain, which ultimately tune Tc.

  12. Thermal studies of Se{sub 85-x}Te{sub 15}In{sub x} (x = 3,6,9,12) glasses

    SciTech Connect

    Sushama, D.; George, Achamma; Asokan, S.

    2011-10-20

    Bulk glasses of compositions Se{sub 85-x}Te{sub 15}In{sub x} (x = 3,6,9,12) are prepared by melt quenching technique and Differential scanning calorimetry (DSC) is employed to study the thermal stability, crystallization mechanism as well as specific heat of these glasses. It is found that the addition of indium increases the glass transition temperature. From the heating rate dependence of the glass transition temperature the activation energy of glass transition is determined using Kissinger's equation for non-isothermal crystallization of materials. An attempt has been made to explain the variation in the value of T{sub c}, T{sub p} and {Delta}C{sub p} for the composition Se{sub 73}Te{sub 15}In{sub 12} using rigidity percolation threshold (RPT). From the values of (T{sub c}-T{sub g}) the stable glass system is determined.

  13. The role of stoichiometric vacancy periodicity in pressure-induced amorphization of the Ga{sub 2}SeTe{sub 2} semiconductor alloy

    SciTech Connect

    Abdul-Jabbar, N. M.; Kalkan, B.; MacDowell, A. A.; Huang, G.-Y.; Gronsky, R.; Bourret-Courchesne, E. D.; Wirth, B. D.

    2014-08-04

    We observe that pressure-induced amorphization of Ga{sub 2}SeTe{sub 2} (a III-VI semiconductor) is directly influenced by the periodicity of its intrinsic defect structures. Specimens with periodic and semi-periodic two-dimensional vacancy structures become amorphous around 1011?GPa in contrast to those with aperiodic structures, which amorphize around 78?GPa. The result is an instance of altering material phase-change properties via rearrangement of stoichiometric vacancies as opposed to adjusting their concentrations. Based on our experimental findings, we posit that periodic two-dimensional vacancy structures in Ga{sub 2}SeTe{sub 2} provide an energetically preferred crystal lattice that is less prone to collapse under applied pressure. This is corroborated through first-principles electronic structure calculations, which demonstrate that the energy stability of III-VI structures under hydrostatic pressure is highly dependent on the configuration of intrinsic vacancies.

  14. Effect of ionizing radiation on the dielectric characteristics of TlInSe2 and TlGaTe2 single crystals

    NASA Astrophysics Data System (ADS)

    Sheleg, A. U.; Hurtavy, V. G.; Mustafaeva, S. N.; Kerimova, E. M.

    2011-03-01

    The temperature dependences of the electrical conductivity and the permittivity of TlInSe2 and TlGaTe2 crystals unirradiated and irradiated with 4-MeV electrons at a doze of 1016 cm-2 have been investigated. It has been established that electron irradiation leads to a decrease in the electrical conductivity ? and the permittivity ? over the entire temperature range under study (90-320 K). It has been revealed that the TlInSe2 and TlGaTe2 single crystals undergo a sequence of phase transitions characteristic of crystals of this type, which manifest themselves as anomalies in the temperature dependences ? = f( T) and ? = f( T). Electron irradiation at a doze of 1016 cm-2 does not affect the phase transition temperatures of the crystals under investigation.

  15. Effect of thermal annealing on structure and optical band gap of amorphous Se{sub 72}Te{sub 25}Sb{sub 3} thin films

    SciTech Connect

    Dwivedi, D. K. Pathak, H. P. Shukla, Nitesh; Kumar, Vipin

    2014-04-24

    Thin films of a?Se{sub 72}Te{sub 25}Sb{sub 3} were prepared by vacuum evaporation technique in a base pressure of 10{sup ?6} Torr on to well cleaned glass substrate. a?Se{sub 72}Te{sub 25}Sb{sub 3} thin films were annealed at different temperatures below their crystallization temperatures for 2h. The structural analysis of the films has been investigated using X-ray diffraction technique. The optical band gap of as prepared and annealed films as a function of photon energy in the wavelength range 4001100 nm has been studied. It has been found that the optical band gap decreases with increasing annealing temperatures in the present system.

  16. The magnetic state of the low dimensional CuTe2O5 compound below 20 K

    NASA Astrophysics Data System (ADS)

    Miljak, Marko; Herak, Mirta; Milat, Ognjen; Tomai?, Nenad; Berger, Helmuth

    2008-12-01

    We report low field studies of the static magnetic susceptibility and torque measurements in the temperature range 2-330 K for the powder and crystalline CuTe2O5 compound. We show that the observed extraordinarily large magnetic axis rotation below 20 K and small (nearly negligible), but highly anisotropic, low temperature susceptibility upturn (which is thus of intrinsic nature) is a consequence of the changes within the ground state d9 orbital doublet which take place below 20 K, smoothly.

  17. Optical Properties of the Charge-Density-Wave Polychalcogenide Compounds R2Te5 (R=Nd, Sm and Gd)

    SciTech Connect

    Pfuner, F.; Degiorgi, L.; Shin, K.Y.; Fisher, I.R.; /Stanford U., Geballe Lab.

    2010-02-15

    We investigate the rare-earth polychalcogenide R{sub 2}Te{sub 5} (R = Nd, Sm and Gd) charge-density-wave (CDW) compounds by optical methods. From the absorption spectrum we extract the excitation energy of the CDW gap and estimate the fraction of the Fermi surface which is gapped by the formation of the CDW condensate. In analogy to previous findings on the related RTe{sub n} (n = 2 and 3) families, we establish the progressive closing of the CDW gap and the moderate enhancement of the metallic component upon chemically compressing the lattice.

  18. Effect of Fe excess on structural, magnetic and superconducting properties of single-crystalline Fe{sub 1+x}Te{sub 1-y}Se{sub y}

    SciTech Connect

    Viennois, R.; Giannini, E.; Marel, D. van der; Cerny, R.

    2010-04-15

    Single crystals of Fe{sub 1+x}Te{sub 1-y}Se{sub y} have been grown with a controlled Fe excess and Se doping, and the crystal structure has been refined for various compositions. The systematic investigation of magnetic and superconducting properties as a function of the structural parameters shows how the material can be driven into various ground states, depending on doping and the structural modifications. Our results prove that the occupation of the additional Fe site, Fe2, enhances the spin localization. By reducing the excess Fe, the antiferromagnetic ordering is weakened, and the superconducting ground state is favored. We have found that both Fe excess and Se doping in synergy determine the properties of the material and an improved 3-dimensional phase diagram is proposed. - Single crystals of Fe{sub 1+x}Te{sub 1-y}Se{sub y} have been grown with a controlled Fe off-stoichiometry and Se doping and the crystal structure has been refined for various compositions, thus proving the effect of both Fe excess and Se-substitutions on the structural properties. Either antiferromagnetic or superconducting ground state is driven by doping and related structural modifications. An improved 3-D phase diagram is proposed.

  19. Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars.

    PubMed

    Tian, Ming; Xu, Xiaoyun; Liu, Yanlong; Xie, Lin; Pan, Siyi

    2016-01-01

    Broccoli sprouts are natural functional foods for cancer prevention because of their high glucosinolate (GSL) content and high selenium (Se) accumulation capacity. The regulation mechanism of Se on GSL metabolism in broccoli sprouts was explored. In particular, the effects of Se treatment (100 μmol/L selenite and selenate) on the Se, sulfur (S), glucosinolate and sulforaphane contents; myrosinase activity and health-promoting compounds (ascorbic acid, anthocyanin, total phenolics and flavonoids) of three, 5 day old, cultivars were investigated. The treatment did not influence the total GSL and ascorbic acid contents; significantly increased the myrosinase activity and sulforaphane, anthocyanin and flavonoids contents; and decreased the total phenolics content. The increase in sulforaphane during early growth can be primarily attributed to the increased myrosinase activity caused by Se treatment. Broccoli sprouts with suitable selenite and selenate concentrations, in the early growth days, could be desirable for improved human health. PMID:26212985

  20. Mechanical and Electrical Properties of p-type Bi0.4Sb1.6Te3 and n-type Bi2Se0.6Te2.4 Bulk Material for Thermoelectric Applications

    NASA Astrophysics Data System (ADS)

    Kadhim, A.; Hmood, A.; Hassan, H. A.

    2013-04-01

    This study reports on the fabrication of a chalcogen-based thermoelectric power generation (TEG) device using p-type Bi0.4Sb1.6Te3 and n-type Bi2Se0.6Te2.4 bulk thermoelectric materials. The microstructure of the samples was characterized by field emission scanning electron microscopy (FESEM). The phase composition of the powders was characterized by X-ray diffraction (XRD), revealing a rhombohedral structure. The thermoelectric (TE) properties such as Seebeck coefficient (S) and the electrical conductivity (σ) of the resulting alloys were studied in the temperature range of 300 K to 523 K. The power factor (Pfactor) for a Bi0.4Sb1.6Te3 as p-type sample was found to be 4.96 mW/mK2 at 373 K, whereas 2.22 mW/mK2 was obtained at 383 K for a Bi2Se0.6Te2.4 as n-type sample. Electrical power generation characteristics such as high open circuit voltage (Voc) and maximum output power (Pmax) were monitored by changing the temperature conditions required to generate maximum power. The significance of the resistances including the internal resistance (Rin) and contact resistance (RC) between legs and electrodes, are discussed. The maximum output power obtained with the 9 p-n couples device was 39.4 mW under the thermal condition of TH = 523 K hot side temperature and ΔT = 184 K temperature difference.

  1. Thermoelectric generation device based on p-type Bi0.4Sb1.6Te3 and n-type Bi2Se0.6Te2.4 bulk materials prepared by solid state microwave synthesis

    NASA Astrophysics Data System (ADS)

    Kadhim, A.; Hmood, A.; Abu Hassan, H.

    2013-07-01

    This study reports on the fabrication of a chalcogen-based thermoelectric power generation (TEG) device using p-type Bi0.4Sb1.6Te3 and n-type Bi2Se0.6Te2.4 bulk thermoelectric materials. The microstructure of the samples was characterized by scanning electron microscope (SEM). The phase composition of the powders was characterized by X-ray diffraction (XRD), revealing a rhombohedral structure. The thermoelectric (TE) properties such as the Seebeck coefficient (S) and the electrical conductivity (σ) of the resulting alloys were studied in the temperature range of 300-523 K. The power factor (Pfactor) for a Bi0.4Sb1.6Te3 as p-type sample was found to be 4.96 mW/mK2 at 373 K, whereas 2.22 mW/mK2 was obtained at 383 K for a Bi2Se0.6Te2.4 as n-type sample. Electrical power generation characteristics such as high open circuit voltage (Voc) and maximum output power (Pmax) were monitored by changing the temperature conditions required to generate maximum power. The significance of the resistances including the internal resistance (Rin) and contact resistance (RC) between legs and electrodes, are discussed. The maximum output power obtained with the 9 p-n couples device was 39.4 mW under the thermal condition of TH=523 K hot side temperature and ΔT=184 K temperature difference.

  2. Structural and optical properties of In doped Se-Te phase-change thin films: A material for optical data storage

    NASA Astrophysics Data System (ADS)

    Pathak, H. P.; Shukla, Nitesh; Kumar, Vipin; Dwivedi, D. K.

    2016-02-01

    Se75-xTe25Inx (x = 0, 3, 6, & 9) bulk glasses were obtained by melt quench technique. Thin films of thickness 400 nm were prepared by thermal evaporation technique at a base pressure of 10-6 Torr onto well cleaned glass substrate. a-Se75-xTe25Inx thin films were annealed at different temperatures for 2 h. As prepared and annealed films were characterized by X-ray diffraction and UV-Vis spectroscopy. The X-ray diffraction results show that the as-prepared films are of amorphous nature while it shows some poly-crystalline structure in amorphous phases after annealing. The optical absorption spectra of these films were measured in the wavelength range 400-1100 nm in order to derive the extinction and absorption coefficient of these films. It was found that the mechanism of optical absorption follows the rule of allowed non-direct transition. The optical band gap of as prepared and annealed films as a function of photon energy has been studied. The optical band gap is found to decrease with increase in annealing temperature in the present glassy system. It happens due to crystallization of amorphous films. The decrease in optical band gap due to annealing is an interesting behavior for a material to be used in optical storage. The optical band gap has been observed to decrease with the increase of In content in Se-Te glassy system.

  3. Tunneling spectra and superconducting gaps observed by scanning tunneling microscopy near the grain boundaries of FeSe0.3Te0.7 films

    NASA Astrophysics Data System (ADS)

    Lin, K. C.; Li, Y. S.; Shen, Y. T.; Wu, M. K.; Chi, C. C.

    2013-12-01

    We used scanning tunneling microscopy (STM) to study the tunneling spectra of FeSe0.3Te0.7 films with two orientations of the ab-planes and a connection ramp between them. We discovered that by pulsed laser deposition (PLD) method, the a- and b-axis of the FeSe0.3Te0.7 film deposited on an Ar-ion-milled magnesium oxide (MgO) substrate were rotated 45 with respect to those of MgO, whereas the a- and b-axis of the film grown on a pristine MgO substrate were parallel to those of MgO. With photolithography and this technique, we can prepare FeSe0.3Te0.7 films with two orientations on the same MgO substrate so that the connection between them forms a ramp at an angle of about 25 to the substrate plane. In the planar region, for either the 0 or 45 orientation, we observed tunneling spectra with a superconducting gap of about 5 meV and 1.78 meV, respectively. However, a much larger gap at about 18 meV was observed in the ramp region. Furthermore, we observed a small zero-bias conductance peak (ZBCP) inside the large gap at T = 4.3 K. The ZBCP becomes smaller with increasing temperature and disappeared at temperature above 7 K.

  4. Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods

    PubMed Central

    Li, Lingling; Chen, Ying; Lu, Qian; Ji, Jing; Shen, Yuanyuan; Xu, Mi; Fei, Rong; Yang, Guohai; Zhang, Kui; Zhang, Jian-Rong; Zhu, Jun-Jie

    2013-01-01

    The marriage of energy transfer with electrochemiluminescence has produced a new technology named electrochemiluminescence energy transfer (ECL-ET), which can realize effective and sensitive detection of biomolecules. To obtain optimal ECL-ET efficiency, perfect energy overlapped donor/acceptor pair is of great importance. Herein, we present a sensitive ECL-ET based immunosensor for the detection of tumor markers, using energy tunable CdSeTe/CdS/ZnS double shell quantum dots (QDs) and gold nanorods (GNRs) as the donor and acceptor, respectively. Firstly a facile microwave-assisted strategy for the synthesis of green- to near-infrared-emitting CdSeTe/CdS/ZnS QDs with time- and component-tunable photoluminescence was proposed. And, on the basis of the adjustable optical properties of both CdSeTe/CdS/ZnS QDs and GNRs, excellent overlap between donor emission and acceptor absorption can be obtained to ensure effective ECL-ET quenching, thus improving the sensing sensitivity. This method represents a novel approach for versatile detection of biomolecules at low concentrations. PMID:23524874

  5. Nearly lattice matched all wurtzite CdSe/ZnTe type II core-shell nanowires with epitaxial interfaces for photovoltaics.

    PubMed

    Wang, Kai; Rai, Satish C; Marmon, Jason; Chen, Jiajun; Yao, Kun; Wozny, Sarah; Cao, Baobao; Yan, Yanfa; Zhang, Yong; Zhou, Weilie

    2014-04-01

    Achieving a high-quality interface is of great importance in core-shell nanowire solar cells, as it significantly inhibits interfacial recombination and thus improves the photovoltaic performance. Combining thermal evaporation of CdSe and pulsed laser deposition of ZnTe, we successfully synthesized nearly lattice matched all wurtzite CdSe/ZnTe core-shell nanowires on silicon substrates. Comprehensive morphological and structural characterizations revealed that a wurtzite ZnTe shell layer epitaxially grows over a wurtzite CdSe core nanowire with an abrupt interface. Further optical studies confirmed a high-quality interface and demonstrated efficient charge separation induced by the type-II band alignment. A representative photovoltaic device has been demonstrated and yielded an energy-conversion efficiency of 1.7% which can be further improved by surface passivation. The all-wurtzite core-shell nanowire with an epitaxial interface offers an attractive platform to explore the piezo-phototronic effect and promises an efficient hybrid nano-sized, energy harvesting system. PMID:24567192

  6. Preferential orientation and thermoelectric properties of n-type Bi2Te2.85Se0.15 alloys by mechanical alloying and equal channel angular extrusion

    NASA Astrophysics Data System (ADS)

    Fan, X. A.; Yang, J. Y.; Zhu, W.; Bao, S. Q.; Duan, X. K.; Xiao, C. J.; Li, K.

    2007-09-01

    Starting from elemental bismuth, tellurium and selenium powders, n-type Bi2Te2.85Se0.15 solid solution with a fine microstructure was prepared by mechanical alloying and equal channel angular extrusion (ECAE) in the present work. The effect of extrusion temperature on the microstructure and thermoelectric properties of the as-ECAEed samples was investigated. A preferentially oriented microstructure with the basal planes (0 0 l) in the parallel direction to extrusion was formed, and the orientation factors F of the (0 0 l) planes of the 703 K and 753 K ECAEed Bi2Te2.85Se0.15 alloys were 0.26 and 0.28, respectively. The electrical resistivity and the Seebeck coefficient decreased, and the thermal conductivity increased with increasing extrusion temperature. The electrical and thermal transmission performances were strongly affected by the preferentially oriented microstructure and the preferential orientation improved the thermoelectric properties of the ECAEed Bi2Te2.85Se0.15 alloys in the parallel direction to extrusion. The maximum dimensionless figure of merit was obtained when extruded at 753 K at a testing temperature of 343 K, ZT = 0.66.

  7. Packing structure of chains and rings in an expanded liquid Se80Te20 mixture near the semiconductor to metal transition

    NASA Astrophysics Data System (ADS)

    Maruyama, Kenji; Endo, Hirohisa; Hoshino, Hideoki; Kajihara, Yukio; Nakada, Masaru; Sato, Satoshi

    2010-11-01

    X-ray scattering measurements of an expanded liquid Se80Te20 mixture in the temperature range between 300 and 1000 °C and at pressures of 10, 200, and 1600 bar have been carried out. The reverse Monte Carlo simulation and Voronoi-Delaunay void analyses have been applied to clarify the relationship between the voids and chain geometries in the intermediate scale near the semiconductor to metal (SC-M) transition at 800 °C under 200 bar accompanied by a shrinkage of molar volume. The structure of the liquid mixture can be envisaged in terms of a packing of covalently bonded chains and interstitial voids. The thermal expansion leads to a decrease in the number of chains around a chain and is compensated for by empty spaces (voids). The packing density of helical chains decreases and so voids supported by chains increase with rising temperature. At high temperature the shortening of chains and frequent transfer of lone pair electrons on Se (or Te) atoms cause modification of the helical chain to ring and zigzag chain conformations. The stacking of zigzag chains, joined to layers above 800 °C, leads to the formation of metallic domains separated by voids. The shrinkage of molar volume near the SC-M transition arises through the progressive filling of the voids around chains with (Se, Te)5, 6, 7, 8 rings.

  8. Formation Phases and Electrical Properties of Ge-Bi-Te Compounds with Homologous Structures

    NASA Astrophysics Data System (ADS)

    Omoto, Tatsuro; Kanaya, Hiroki; Ishibashi, Hiroki; Kubota, Yoshiki; Kifune, Kouichi; Kosuga, Atsuko

    2016-03-01

    We prepared polycrystalline samples of GeBi6- x In x Te10 ( x = 0, 0.06, 0.18, 0.3, and 0.6) by melting a stoichiometric mixture of Ge, Bi, In, and Te, followed by quenching in water and annealing at 723 K for 1 week. Under these preparation conditions and irrespective of the degree of In-substitution, the samples contained two different periodic structures: GeBi6Te10 and GeBi4Te7 structures. The relationship between the Seebeck coefficient, electrical resistivity, and phase fraction of the two structures was investigated at room temperature. We concluded that changes in the transport properties for all samples may reflect a mixture effect of the phase fraction of the two structures and the amounts of In-substitution in the framework of the assumed structure model in this study. The thermoelectric properties of the samples with x = 0 and 0.18 were determined from 300 K to 723 K from the measured electrical properties and the reported lattice thermal conductivity. The sample with x = 0.18 had the highest dimensionless figure of merit: ZT max = 0.11 at 466 K, which was 1.8 times larger than that of the sample with x = 0.

  9. Formation Phases and Electrical Properties of Ge-Bi-Te Compounds with Homologous Structures

    NASA Astrophysics Data System (ADS)

    Omoto, Tatsuro; Kanaya, Hiroki; Ishibashi, Hiroki; Kubota, Yoshiki; Kifune, Kouichi; Kosuga, Atsuko

    2015-10-01

    We prepared polycrystalline samples of GeBi6-x In x Te10 (x = 0, 0.06, 0.18, 0.3, and 0.6) by melting a stoichiometric mixture of Ge, Bi, In, and Te, followed by quenching in water and annealing at 723 K for 1 week. Under these preparation conditions and irrespective of the degree of In-substitution, the samples contained two different periodic structures: GeBi6Te10 and GeBi4Te7 structures. The relationship between the Seebeck coefficient, electrical resistivity, and phase fraction of the two structures was investigated at room temperature. We concluded that changes in the transport properties for all samples may reflect a mixture effect of the phase fraction of the two structures and the amounts of In-substitution in the framework of the assumed structure model in this study. The thermoelectric properties of the samples with x = 0 and 0.18 were determined from 300 K to 723 K from the measured electrical properties and the reported lattice thermal conductivity. The sample with x = 0.18 had the highest dimensionless figure of merit: ZT max = 0.11 at 466 K, which was 1.8 times larger than that of the sample with x = 0.

  10. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, Robert F.; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin; Shih, Hung-Dah

    2000-01-01

    Interest in optical devices which can operate in the visible spectrum has motivated research interest in the II-VI wide band gap semiconductor materials. The recent challenge for semiconductor opto-electronics is the development of a laser which can operate at short visible wavelengths. In the past several years, major advances in thin film technology such as molecular beam epitaxy and metal organic chemical vapor deposition have demonstrated the applicability of II-VI materials to important devices such as light-emitting diodes, lasers, and ultraviolet detectors. With an energy gap of 2.7 eV at room temperature, and an efficient band- to-band transition, ZnSe has been studied extensively as the primary candidate for a blue light emitting diode for optical displays, high density recording, and military communications. By employing a ternary or quaternary system, the energy band gap of II-VI materials can be tuned to a specific range. While issues related to the compositional inhomogeneity and defect incorporation are still to be fully resolved, ZnSe bulk crystals and ZnSe-based heterostructures such as ZnSe/ZnSeS, ZnSe/ZnCdSe and ZnCdSe/ZnSeS have showed photopumped lasing capability in the blue-green region at a low threshold power and high temperatures. The demonstration of its optical bistable properties in bulk and thin film forms also make ZnSe a possible candidate material for the building blocks of a digital optical computer. Despite this, developments in the crystal growth of bulk H-VI semiconductor materials has not advanced far enough to provide the low price, high quality substrates needed for the thin film growth technology.

  11. Role of polycrystallinity in CdTe and CuInSe{sub 2} photovoltaic cells. Final subcontract report, 1 April 1990--30 November 1993

    SciTech Connect

    Sites, J.R.

    1994-07-01

    The report describes the exploration of several aspects of the role of polycrystallinity in the operation of CdTe, CuInSe{sub 2}, and Cu(In,Ga)Se{sub 2} solar cells. The work included the refinement of several analytical techniques, the documentation and understanding of time-dependent voltage effects, the analysis of a large number of individual cells, and significant progress toward developing a viable current-voltage model. This work was integral to the doctoral training of four students and was greatly assisted by several active collaborations within the polycrystalline thin-film solar cell community.

  12. Solar-energy conversion by combined photovoltaic converters with CdTe and CuInSe{sub 2} base layers

    SciTech Connect

    Khrypunov, G. S. Sokol, E. I.; Yakimenko, Yu. I.; Meriuts, A. V.; Ivashuk, A. V.; Shelest, T. N.

    2014-12-15

    The possibility of the combined use of bifacial thin-film solar cells based on CdTe and frontal solar cells with a CuInSe{sub 2} base layer in tandem structures is experimentally confirmed. It is found that, for the use of bifacial solar cells based on cadmium telluride in a tandem structure, the optimal thickness of their base layer should be 1 μm. The gain in the efficiency of the tandem structure, compared with an individual CuInSe{sub 2}-based solar cell, is 1.8% in the case of series-connected solar cells and 1.3%, for parallel-connected.

  13. Zn2(TeO3)Br2

    PubMed Central

    Zhang, Dong; Johnsson, Mats

    2008-01-01

    Single crystals of dizinc tellurium dibromide trioxide, Zn2(TeO3)Br2, were synthesized via a transport reaction in sealed evacuated silica tubes. The compound has a layered crystal structure in which the building units are [ZnO4Br] distorted square pyramids, [ZnO2Br2] distorted tetrahedra, and [TeO3 E] tetrahedra (E being the 5s 2 lone pair of Te4+) joined through sharing of edges and corners to form layers of no net charge. Bromine atoms and tellurium lone pairs protrude from the surfaces of each layer towards adjacent layers. This new compound Zn2(TeO3)Br2 is isostructural with the synthetic compounds Zn2(TeO3)Cl2, CuZn(TeO3)2, Co2(TeO3)Br2 and the mineral sophiite, Zn2(SeO3)Cl2. PMID:21202162

  14. Synthesis and characterization of eight compounds of the MU8Q17 family: ScU8S17, CoU8S17, NiU8S17, TiU8Se17, VU8Se17, CrU8Se17, CoU8Se17, and NiU8Se17.

    PubMed

    Ward, Matthew D; Mesbah, Adel; Minasian, Stefan G; Shuh, David K; Tyliszczak, Tolek; Lee, Minseong; Choi, Eun Sang; Lebgue, Sbastien; Ibers, James A

    2014-07-01

    The solid-state MU8Q17 compounds ScU8S17, CoU8S17, NiU8S17, TiU8Se17, VU8Se17, CrU8Se17, CoU8Se17, and NiU8Se17 were synthesized from the reactions of the elements at 1173 or 1123 K. These isostructural compounds crystallize in space group C2h3 - C2/m of the monoclinic system in the CrU8S17 structure type. X-ray absorption near-edge structure spectroscopic studies of ScU8S17 indicate that it contains Sc3+, and hence charge balance is achieved with a composition that includes U3+ as well as U4+. The other compounds charge balance with M2+ and U4+. Magnetic susceptibility measurements on ScU8S17 indicate antiferromagnetic couplings and a highly reduced effective magnetic moment. Ab Initio calculations find the compound to be metallic. Surprisingly, the ScS distances are actually longer than all the other MS interactions, even though the ionic radii of Sc3+, low-spin Cr2+, and Ni2+ are similar. PMID:24932673

  15. Superconductivity and disorder effect in TlNi2Se2-x S x compounds

    NASA Astrophysics Data System (ADS)

    Wang, Hangdong; Mao, Qianhui; Chen, Huimin; Su, Qiping; Dong, Chiheng; Khan, Rajwali; Yang, Jinhu; Chen, Bin; Fang, Minghu

    2015-10-01

    After our first discovery of multi-band superconductivity (SC) in the TlNi2Se2 crystal, we successfully grew a series of TlNi2Se2-x S x (0.0?slant x?slant 2.0 ) single crystals. Measurements of resistivity, specific heat, and susceptibility were carried out on these crystals. Superconductivity with {{T}\\text{C}}=2.3 K was first observed in the TlNi2S2 crystal, which also appears to involve heavy electrons with an effective mass m*=13 -25 {{m}\\text{b}} , as inferred from the normal state electronic specific heat and the upper critical field, {{H}\\text{C2}}(T) . It was found that bulk SC and heavy-electron behavior is preserved in all the studied TlNi2Se2-x S x samples. In the mixed state, a novel change of the field dependence of the residual specific heat coefficient, {?\\text{N}}(H) , occurs in TlNi2Se2-x S x with increasing S content. We also found that the {{T}\\text{C}} value changes with the disorder degree induced by the partial substitution of S for Se, characterized by the residual resistivity ratio (RRR). Thus, the TlNi2Se2-x S x system provides a platform to study the effect of disorder on the multi-band SC.

  16. Crystal structure of the Fe2CrSe4 compound from X-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Delgado, Gerzon E.; Sagredo, Vicente

    2004-02-01

    The Fe2CrSe4 compound was synthesized by the melt and annealing technique. Its structure has been refined by the Rietveld method using X-ray powder diffraction data. This compound crystallizes in the monoclinic space group I2/m (No 12) with a Cr3S4-type structure, and unit cell parameters a = 6.2314(1) , b = 3.5770(1) , c = 11.5658(2) , ? = 91.364(2), V = 257.73(2) 3.

  17. Comparison of crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te nanocrystalline thin films: Effects of homogeneous irradiation with an electron beam

    SciTech Connect

    Takashiri, Masayuki Imai, Kazuo; Uyama, Masato; Nishi, Yoshitake; Hagino, Harutoshi; Miyazaki, Koji; Tanaka, Saburo

    2014-06-07

    The effects of homogenous electron beam (EB) irradiation on the crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te thin films were investigated. Both types of thin films were prepared by flash evaporation, after which homogeneous EB irradiation was performed at an acceleration voltage of 0.17?MeV. For the n-type thin films, nanodots with a diameter of less than 10?nm were observed on the surface of rice-like nanostructures, and crystallization and crystal orientation were improved by EB irradiation. The resulting enhancement of mobility led to increased electrical conductivity and thermoelectric power factor for the n-type thin films. In contrast, the crystallization and crystal orientation of the p-type thin films were not influenced by EB irradiation. The carrier concentration increased and mobility decreased with increased EB irradiation dose, possibly because of the generation of defects. As a result, the thermoelectric power factor of p-type thin films was not improved by EB irradiation. The different crystallization behavior of the n-type and p-type thin films is attributed to atomic rearrangement during EB irradiation. Selenium in the n-type thin films is more likely to undergo atomic rearrangement than the other atoms present, so only the crystallinity of the n-type Bi-Se-Te thin films was enhanced.

  18. Orbital Processing of High-Quality Zn-Alloyed CdTe Compound Semiconductors

    NASA Technical Reports Server (NTRS)

    Larson, David J., Jr.; Dudley, M.; Raghothamachar, B.; Alexander, J. I. D.; Carlson, F. M.; Gillies, D.; Volz, M.; Ritter, T. M.; DiMarzio, D.

    1999-01-01

    The objective of this research is to investigate the influences of gravitationally-dependent phenomena (hydrostatic and buoyant) on the growth and quality of doped and alloyed Cadmium-Zinc-Telluride (CdZnTe) crystals grown by the modified seeded Bridgman-Stockbarger technique. It is hypothesized that the damping of the gravitationally-dependent buoyancy convection will substantially enhance chemical homogeneity and the near-elimination of hydrostatic pressure will enable significant reduction in defect (dislocations and twins) density.

  19. Dynamics and mechanism of oxygen annealing in Fe1+yTe0.6Se0.4 single crystal

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Tsuchiya, Yuji; Taen, Toshihiro; Yamada, Tatsuhiro; Pyon, Sunseng; Sugimoto, Akira; Ekino, Toshikazu; Shi, Zhixiang; Tamegai, Tsuyoshi

    2014-04-01

    Iron chalcogenide Fe(Te,Se) attracted much attention due to its simple structure, which is favorable for probing the superconducting mechanism. Its less toxic nature compared with iron arsenides is also advantageous for applications of iron-based superconductors. By intercalating spacer layers, superconducting transition temperature has been raised over 40 K. On the other hand, the presence of excess Fe is almost unavoidable in Fe(Te,Se) single crystals, which hinders the appearance of bulk superconductivity and causes strong controversies over its fundamental properties. Here we report a Systematical study of O2-annealing dynamics in Fe1+yTe1-xSex by controlling the amount of O2, annealing temperature, and time. Bulk superconductivity can be gradually induced by increasing the amount of O2 and annealing time at suitable temperatures. The optimally annealed crystals can be easily obtained by annealing with ~1.5% molar ratio of oxygen at 400C for more than 1 hour. Superconductivity was witnessed to evolve mainly from the edge of the crystal to the central part. After the optimal annealing, the complete removal of excess Fe was demonstrated via STM measurements. Some fundamental properties were recharacterized and compared with those of as-grown crystals to discuss the influence of excess Fe.

  20. Dynamics and mechanism of oxygen annealing in Fe1+yTe0.6Se0.4 single crystal

    PubMed Central

    Sun, Yue; Tsuchiya, Yuji; Taen, Toshihiro; Yamada, Tatsuhiro; Pyon, Sunseng; Sugimoto, Akira; Ekino, Toshikazu; Shi, Zhixiang; Tamegai, Tsuyoshi

    2014-01-01

    Iron chalcogenide Fe(Te,Se) attracted much attention due to its simple structure, which is favorable for probing the superconducting mechanism. Its less toxic nature compared with iron arsenides is also advantageous for applications of iron-based superconductors. By intercalating spacer layers, superconducting transition temperature has been raised over 40?K. On the other hand, the presence of excess Fe is almost unavoidable in Fe(Te,Se) single crystals, which hinders the appearance of bulk superconductivity and causes strong controversies over its fundamental properties. Here we report a Systematical study of O2-annealing dynamics in Fe1+yTe1?xSex by controlling the amount of O2, annealing temperature, and time. Bulk superconductivity can be gradually induced by increasing the amount of O2 and annealing time at suitable temperatures. The optimally annealed crystals can be easily obtained by annealing with ~1.5% molar ratio of oxygen at 400C for more than 1?hour. Superconductivity was witnessed to evolve mainly from the edge of the crystal to the central part. After the optimal annealing, the complete removal of excess Fe was demonstrated via STM measurements. Some fundamental properties were recharacterized and compared with those of as-grown crystals to discuss the influence of excess Fe. PMID:24695095

  1. Excitonic fine structure splitting in ZnTe/ZnX (X = S and Se) core/shell nanocrystals: Atomistic tight-binding theory

    NASA Astrophysics Data System (ADS)

    Sukkabot, Worasak

    2016-03-01

    Implementing the atomistic tight-binding theory in the conjunction with a configuration interaction method of coulomb and exchange description, the excitonic fine structure splitting (FSS) in core/shell semiconductor nanocrystals is usually caused by the intrinsic electron-hole exchange interaction. I demonstrate the control of the excitonic fine structure splitting by suitably engineering the type of the band alignments and the thickness of the growth shell. ZnTe/ZnS and ZnTe/ZnSe core/shell nanocrystals exhibiting the type-I and type-II band profile are used to be the simulated candidates with various growth shell thicknesses. The detailed calculations, consisting of single-particle spectra, optical band gaps, ground-state wave function overlaps, ground-state oscillation strengths, ground-state coulomb energies, ground-state exchange energies and excitonic splitting energies, are all sensitive with the type and dimension of the coated shells. The simulations highlight that ZnTe/ZnSe type-II core/shell nanocrystals with the thick growth shell can offer an intensely reduced excitonic splitting as defined by an associated reduction of electron-hole exchange interaction. This insight is important for the theoretical understanding and practical control by the type of the band alignments and sizes in the growth shell for the quantum state of the emitted light from a biexciton cascade recombination process which will be implemented to the entangled photon source in the novel application of quantum information processing.

  2. Thermoelectric Properties of Heavily Doped n-type Pb1- x Y x Te Compounds

    NASA Astrophysics Data System (ADS)

    Ruan, Limin; Luo, Jun; Zhu, Hangtian; Zhao, Huaizhou; Liang, Jingkui

    2015-10-01

    Structure, transport and thermoelectric properties of Y-doped PbTe samples are reported. The combined analysis of powder x-ray diffraction patterns and scanning electron microscopy images indicates that the Pb1- x Y x Te samples with x = 0.015, 0.02, 0.04, and 0.06 are single phase with the NaCl-type structure. Hall effect measurements reveal that all the samples are heavily doped n-type thermoelectric materials. The substitution of trivalent Y for bivalent Pb provides additional electrons to the PbTe matrix, leading to an increase in carrier concentration at room temperature ranging from 4.36 1019 cm-3 for the sample with x = 0.015 to 2.50 1020 cm-3 for the sample with x = 0.06. Both electrical resistivity and the Seebeck coefficient decrease with the increase of Y content. Meanwhile, the total thermal conductivity presents a notable and unsurprising decline with the increase of Y content, which can be ascribed to the mass fluctuation effect. An optimized figure of merit, ZT, of 1.0 is achieved at 831 K for the sample with x = 0.02.

  3. Material properties of Cu(In, Ga)Se2 thin films prepared by the reaction of thermally evaporated compound materials in H2Se/Ar

    NASA Astrophysics Data System (ADS)

    Alberts, V.; Chenene, M. L.

    2003-09-01

    In this study, device quality chalcopyrite thin films were prepared by a simple and reproducible two-step growth process. The precursors were deposited by the thermal evaporation of pulverized compound materials from a single crucible onto Mo coated glass substrates at temperatures around 250 C. The precursors were subsequently reacted in a controlled H2Se/Ar atmosphere at temperatures ranging between 350 C and 500 C. X-ray fluorescence studies revealed marginal changes in the overall bulk compositions of the films at the respective reaction temperatures, clearly demonstrating the reproducibility of the growth process. The material quality (i.e., surface morphologies, formation of crystalline phases and in-depth compositional uniformity) of the films was compared at the respective reaction temperatures in order to determine optimum processing parameters.

  4. Friedel-Like Oscillations from Interstitial Iron in Superconducting Fe1+yTe0.62Se0.38

    SciTech Connect

    Thampy, Vivek; Kang, Jian; Rodriguez-Rivera, J A; Bao, Wei; Savici, Andrei T; Hu, Jin; Liu, Tijiang; Qian, Bin; Fobes, David; Mao, Z Q; Fu, Changbo; Chen, W. C.; Ye, Qiang; Erwin, R; Gentile, T. R.; Tesanovic, Zlatko; Broholm, Collin L

    2012-01-01

    Using polarized and unpolarized neutron scattering we show that interstitial Fe in superconducting Fe$_{1+y}$Te$_{1-x}$Se$_x$ induces a magnetic Friedel-like oscillation that diffracts at ${\\bf Q}_{\\perp}=(\\frac{1}{2}0)$ and involves $>$50 neighboring Fe sites. The interstitial $>2$~$\\mu_B$ moment is surrounded by compensating ferromagnetic four spin clusters that may seed double stripe ordering in Fe$_{1+y}$Te. A semi-metallic 5-band model with $(\\frac{1}{2}\\frac{1}{2})$ Fermi surface nesting and four fold symmetric super-exchange between interstitial Fe and two in-plane nearest neighbors largely accounts for the observed diffraction.

  5. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Theoretical Prediction for Structural Stabilities and Optical Properties of SrS, SrSe and SrTe under High Pressure

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Cui; Hao, Ai-Min; Yang, Jie; Han, Yong-Hao; Peng, Gang; Gao, Chun-Xiao; Zou, Guang-Tian

    2008-05-01

    An investigation on the structural stabilities and electronic properties of SrX (X = S, Se and Te) under high pressure is conducted using the first-principles calculation based on density functional theory (DFT) with the plane wave basis set as implemented in the CASTEP code. Our results demonstrate that the sequence of the pressure-induced phase transition of the three compounds is the NaCl-type (B1) structure (Fm3m) to the CsCl-type (B2) structure (Pm3m). The phase transition and the metallization pressures are determined theoretically. The pressure effect on the optical properties is discussed. The results are compared with the previous calculations and experimental data.

  6. Effect of charge trapping on effective carrier lifetime in compound semiconductors: High resistivity CdZnTe

    SciTech Connect

    Kamieniecki, Emil

    2014-11-21

    The dominant problem limiting the energy resolution of compound semiconductor based radiation detectors is the trapping of charge carriers. The charge trapping affects energy resolution through the carrier lifetime more than through the mobility. Conventionally, the effective carrier lifetime is determined using a 2-step process based on measurement of the mobility-lifetime product (μτ) and determining drift mobility using time-of-flight measurements. This approach requires fabrication of contacts on the sample. A new RF-based pulse rise-time method, which replaces this 2-step process with a single non-contact direct measurement, is discussed. The application of the RF method is illustrated with high-resistivity detector-grade CdZnTe crystals. The carrier lifetime in the measured CdZnTe, depending on the quality of the crystals, was between about 5 μs and 8 μs. These values are in good agreement with the results obtained using conventional 2-step approach. While the effective carrier lifetime determined from the initial portion of the photoresponse transient combines both recombination and trapping in a manner similar to the conventional 2-step approach, both the conventional and the non-contact RF methods offer only indirect evaluation of the effect of charge trapping in the semiconductors used in radiation detectors. Since degradation of detector resolution is associated not with trapping but essentially with detrapping of carriers, and, in particular, detrapping of holes in n-type semiconductors, it is concluded that evaluation of recombination and detrapping during photoresponse decay is better suited for evaluation of compound semiconductors used in radiation detectors. Furthermore, based on previously reported data, it is concluded that photoresponse decay in high resistivity CdZnTe at room temperature is dominated by detrapping of carriers from the states associated with one type of point defect and by recombination of carriers at one type of extended defects. The recombination at the extended defects produces long, logarithmic decay limiting substantially performance of CdZnTe detectors. This decay is associated with the “electrostatic trapping” of excess holes by the Schottky-type depletion space-charge regions formed around the defects.

  7. Ferromagnetism of Narrow-Gap Ge1-x-ySnxMnyTe and Layered In1-xMnxSe Semiconductors

    NASA Astrophysics Data System (ADS)

    Lashkarev, G. V.; Sichkovskyi, V. I.; Radchenko, M. V.; Dmitriev, A. I.; Slyn'ko, V. E.; Slyn'ko, E. I.; Kovalyuk, Z. D.; Butorin, P. E.; Knoff, W.; Story, T.; Szymczak, R.; Jakieła, R.; Aleshkevych, P.; Dobrowolski, W.

    2008-11-01

    Magnetic susceptibility, Hall effect and resistivity of narrow-gap Ge1-x-ySnxMnyTe single crystals (x=0.083÷0.115; y=0.025÷0.124) were investigated in the temperature range 4.2-300 K revealing a ferromagnetic ordering at TC≈50 K. Temperature dependence of magnetization indicates a superparamagnetic phase with magnetic clusters arranging in a spin glass state below the freezing temperature Tf . Magnetic structure of InSe 2D-ferromagnetic single crystals was studied by SQUID magnetometry, neutron diffraction, secondary ion mass spectroscopy, and wave dispersive spectra. Hysteresis loops of magnetization were observed at least up to 350 K. The cluster model of ferromagnetism is considered. The formation of self-assembled superlattice ferromagnetic InSe:Mn/antiferromagnetic MnSe during growth process and further annealing was established.

  8. The microstructures and superconducting properties of FeSe0.5Te0.5 bulks with original milled powders

    NASA Astrophysics Data System (ADS)

    Li, Xiaoting; Gao, Zhiming; Liu, Yongchang; Ma, Zongqing; Yu, Liming; Li, Huijun; Yang, Hanzhang

    2013-10-01

    A combination of mechanical alloying (MA) and solid-state reaction was applied to synthesize bulk FeSe0.5Te0.5 superconductor. The influence of milling time on microstructures and superconducting properties were investigated in detail. The results showed that both the grain size and the amount of ?-FeSe in the final sintered samples decreased as the milling time increased. In addition, lattice parameters a and c of ?-FeSe also decreased with the milling time increasing, implying the introduction of a positive chemical pressure, which was not favorable for superconductivity of Fe chalcogenides. According to the measured results of resistivity, only the 20 h-milled sintered sample exhibited superconductivity, with Tconset and Tc0 of values 14 K and 10 K, respectively. As the milling time increased, the superconductivity was depressed or even damaged completely.

  9. Bonding in Mo 4.5RU 1.5Te 8, Ni 0.85Mo 6Te 8, Chevrel Phase, and Related Compounds

    NASA Astrophysics Data System (ADS)

    Berry, Frank J.; Gibbs, Christopher

    1994-03-01

    The nature of bonding in some tellurium analogues of Chevrel and related phases is discussed in detail for the first time. The electronic effect, which is a characteristic feature of bonding in sulfides and selenides of this type, has been found not to occur in the closely related tellurides. A reason for this is suggested. Previously unrecognized features of bonding in Chevrel phase sulfides and selenides, and in Mo 4Ru 2Se 8 and Mo 1.5Re 4.5Se 8, are also reported. The bonding characteristics of compounds containing Mo 6, units are shown to be different from the characteristics of those containing Mo 6- xM' x ( M' = Ru, Rh, Re) clusters where the cluster metal M' polarizes the chalcogen valence electrons. Cluster metal oxidation states have been found to influence both intra- and intercluster metal-chalcogen separations in a systematic and predictable fashion.

  10. Coexistence of localized and itinerant electronic states in the multiband iron-based superconductor FeSe0.42Te0.58

    NASA Astrophysics Data System (ADS)

    Ar?on, D.; Jegli?, P.; Zorko, A.; Poto?nik, A.; Ganin, A. Y.; Takabayashi, Y.; Rosseinsky, M. J.; Prassides, K.

    2010-10-01

    We report X-band electron paramagnetic resonance (EPR) and T125e and S77e NMR measurements on single-crystalline superconducting FeSe0.42Te0.58 [Tc=11.5(1)K] . The data provide indications for the coexistence of intrinsic localized and itinerant electronic states. In the normal state, localized moments couple to itinerant electrons in the Fe(Se,Te) layers and affect the local spin susceptibility and spin fluctuations. Below Tc , spin fluctuations become rapidly suppressed and an unconventional superconducting state emerges in which 1/T1 is reduced at a much faster rate than expected for conventional s - or s -wave symmetry. We suggest that the localized states arise from the strong electronic correlations within one of the Fe-derived bands. The multiband electronic structure together with the electronic correlations thus determine the normal and superconducting states of the FeSe1-xTex family, which appears much closer to other high- Tc superconductors than previously anticipated.

  11. Structural properties of Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} topological insulators grown by molecular beam epitaxy on GaAs(001) substrates

    SciTech Connect

    Liu, X.; Leiner, J.; Dobrowolska, M.; Furdyna, J. K.; Smith, D. J.; Fan, J.; Zhang, Y.-H.; Cao, H.; Chen, Y. P.; Kirby, B. J.

    2011-10-24

    Thin films of Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} have been grown on deoxidized GaAs(001) substrates using molecular beam epitaxy. Cross-sectional transmission electron microscopy established the highly parallel nature of the Te(Se)-Bi-Te(Se)-Bi-Te(Se) quintuple layers deposited on the slightly wavy GaAs substrate surface and the different crystal symmetries of the two materials. Raman mapping confirmed the presence of the strong characteristic peaks reported previously for these materials in bulk form. The overall quality of these films reveals the potential of combining topological insulators with ferromagnetic semiconductors for future applications.

  12. Optical properties of (Se{sub 80}Te{sub 20}){sub 100?x}Ag{sub x} (0 ? x ? 4) thin films

    SciTech Connect

    Singh, D. Kumar, S. Sandhu, S. Thangaraj, R.

    2014-04-24

    Thin films of (Se{sub 80}Te{sub 20}){sub 100?x}Ag{sub x} (0 ? x ? 4) glasses were prepared by thermal evaporation of the bulk samples. The transmittance (T) and reflection (R) spectra of amorphous thin films were obtained in the spectral region in the range 4002500 nm. The optical band gap (E{sub g}) has been determined by Taucs extrapolation method. The surface morphology has been determined by the Scanning Electron Microscopy (SEM)

  13. Probing the core-shell-shell structure of CdSe/CdTe/CdS type II quantum dots for solar cell applications

    NASA Astrophysics Data System (ADS)

    Lewis, E. A.; Page, R. C.; Binks, D. J.; Pennycook, T. J.; O'Brien, P.; Haigh, S. J.

    2014-06-01

    A greater understanding of multiple exciton generation in heterostructured colloidal quantum dots can be achieved through detailed modelling, and used to optimise their design for solar cell applications. However, such modelling requires an accurate knowledge of the physical structure of the quantum dots. Here we report the use of high angle annular dark field (HAADF) scanning transmission electron microscope (STEM) imaging to study the size and shape of CdSe/CdTe/CdS type II quantum dots at each of the three stages of their synthesis.

  14. Structural Characterization and Compositional Dependence of Optical Properties of Ge16Se52Te32- x Sb x ( x = 0, 2, 4, 6, 8) Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Kaistha, Arpit; Modgil, Vivek; Rangra, V. S.

    2015-12-01

    Antimony-substituted Ge-Se-Te quaternary chalcogenide glasses have been synthesized using the melt quench technique. The bonding arrangements in the glassy matrices have been studied through infrared spectra in the spectral region from 50 cm-1 to 300 cm-1. The effect of Sb addition on the optical properties has also been studied using ultraviolet-visible-infrared (UV-Vis-IR) spectroscopy on thin films of uniform thickness. The materials possess high refractive index and tunable bandgap with low values of optical loss. They also possess good infrared transparency regions, high refractive index, and low optical bandgap, making them suitable for use in photonic applications.

  15. Role of polycrystallinity in CdTe and CuInSe{sub 2} photovoltaic cells. Annual subcontract report, 1 April 1991--31 March 1992

    SciTech Connect

    Sites, J.R.

    1992-11-01

    The limiting role of polycrystallinity in thin-film solar calls has been reduced somewhat during the past year, and efficiencies of both CdTe and CuInSe{sub 2} cells are approaching 15%. Quantitative separation of loss mechanisms shows that individual losses, with the exception of forward recombination current, can be made comparable to their single crystal counterparts. One general manifestation of the extraneous trapping states in that the voltage of all polycrystalline thin-film cells drifts upward by 10--50 mV following the onset of illumination.

  16. Photoinduced effects in thin films of Te{sub 20}As{sub 30}Se{sub 50} glass with nonlinear characterization

    SciTech Connect

    Fedus, K.; Boudebs, G.; Araujo, Cid B. de; Cathelinaud, M.; Charpentier, F.; Nazabal, V.

    2009-02-09

    We discuss the influence of photoinduced effects (PIEs) on the measurements of nonlinear refractive indices and nonlinear absorption coefficients. A chalcogenide glass film Te{sub 20}As{sub 30}Se{sub 50} was studied using picosecond laser pulses at 1064 nm. The nonlinear imaging technique with phase object (NIT-PO) and the Z-scan technique were applied and their results are compared. The NIT-PO technique reveals clearly the influence of PIE on the samples' response, while by using the Z-scan technique we measured the deepness of ablated regions (holes) produced during the measurements.

  17. Ballistic performance comparison of monolayer transition metal dichalcogenide MX{sub 2} (M = Mo, W; X = S, Se, Te) metal-oxide-semiconductor field effect transistors

    SciTech Connect

    Chang, Jiwon; Register, Leonard F.; Banerjee, Sanjay K.

    2014-02-28

    We study the transport properties of monolayer MX{sub 2} (M = Mo, W; X = S, Se, Te) n- and p-channel metal-oxide-semiconductor field effect transistors (MOSFETs) using full-band ballistic non-equilibrium Green's function simulations with an atomistic tight-binding Hamiltonian with hopping potentials obtained from density functional theory. We discuss the subthreshold slope, drain-induced barrier lowering (DIBL), as well as gate-induced drain leakage (GIDL) for different monolayer MX{sub 2} MOSFETs. We also report the possibility of negative differential resistance behavior in the output characteristics of nanoscale monolayer MX{sub 2} MOSFETs.

  18. Determination of the London penetration depth of FeSe0.3Te0.7 thin films by scanning SQUID microscope

    NASA Astrophysics Data System (ADS)

    Lin, H. T.; Wu, S. L.; Wang, J. W.; Chen, T. J.; Wang, M. J.; Chen, J. C.; Wu, M. K.; Chi, C. C.

    2015-08-01

    We use the scanning SQUID microscope (SSM) to image the vortices in superconducting FeSe0.3Te0.7 (FST) thin films. The observed peak flux value of FST is nearly a quarter of that of an accompanying Nb film. We developed a method for quantitatively determining the London penetration depth of the FST film from the known value of Nb. The obtained value, 0.88 μm, is significantly larger than those obtained from single crystals of similar compositions by using other methods. The methodology developed for this study is useful for measuring London penetration depths of thin-film superconductors in general.

  19. Formation of nanoscale spatially indirect excitons: Evolution of the type-II optical character of CdTe/CdSe heteronanocrystals

    NASA Astrophysics Data System (ADS)

    de Mello Doneg, Celso

    2010-04-01

    In this work, the evolution of the optical properties of nanoscale spatially indirect excitons as a function of the size, shape, and composition of the heteronanostructure is investigated, using colloidal CdTe/CdSe heteronanocrystals (2.6 nm diameter CdTe core and increasing CdSe volume fraction) as a model system. Emphasis is given to quantitative aspects such as the absorption cross section of the lowest-energy exciton transition (?SS) , Stokes shift, linewidths, and the exciton radiative lifetime. The hole wave function remains confined to the CdTe core while the electron wave function is initially delocalized over the whole heteronanocrystal ( type-I1/2 regime), and gradually localizes in the CdSe segment as the growth proceeds, until the spatially indirect exciton transition becomes the lowest-energy transition (type-II regime). This results in a progressive shift of the optical transitions to lower energies, accompanied by a decrease in the oscillator strengths at emission energies and an increase in the exciton radiative lifetimes. The onset of the type-II regime is characterized by the loss of structure of the lowest-energy absorption band, accompanied by a simultaneous increase in the Stokes shift values and transition linewidths. This can be understood by considering the dispersion of the hole and electron states in k space. The ?SS values decrease rapidly in the type-I1/2 regime but only slightly in the type-II regime. This shows that the indirect exciton formation leads primarily to redistribution of the oscillator strength of the lowest-energy transition over a wider frequency range. The total absorption cross section per ion-pair unit (i.e., integrated over all the exciton transitions) remains essentially constant during the heteronanocrystal growth, demonstrating that ?SS is redistributed from higher-energy transitions of both the CdTe and the CdSe segments, in response to the reduction in the electron-hole wave-function overlap. Two radiative decay rates are observed and ascribed to exciton states with different degrees of localization of the electron wave function (an upper state with a faster decay rate and a lower state with a slower decay rate). The results presented here provide fundamental insights into nanoscale spatially indirect exciton transitions, highlighting the crucial role of a number of parameters (viz., electron-hole spatial correlation, exciton dispersion and exciton degeneracy, shape effects, and electronic coupling).

  20. Thermoelectric properties of thin-film Sb0.9Bi1.1Te2.9Se0.1-C composites

    NASA Astrophysics Data System (ADS)

    Kalinin, Yu. E.; Makagonov, V. A.; Sitnikov, A. V.

    2015-10-01

    Thin-film nanocomposites of a Sb0.9Bi1.1Te2.9Se0.1 semiconductor solid solution in the carbon matrix have been synthesized. The low-temperature dependences of the electrical resistivity and thermoelectric power have been investigated in the temperature range of 77-300 K. It has been shown that there is a successive change in the dominant mechanisms of electrical conduction: variable-range hopping conduction over localized states lying in a narrow energy band near the Fermi level, hopping conduction over the nearest neighbors, and hopping electron transfer associated with charge carriers excited into localized states near the band edges.

  1. Microscopic origin of resistance drift in the amorphous state of the phase-change compound GeTe

    NASA Astrophysics Data System (ADS)

    Gabardi, S.; Caravati, S.; Sosso, G. C.; Behler, J.; Bernasconi, M.

    2015-08-01

    Aging is a common feature of the glassy state. In the case of phase-change chalcogenide alloys the aging of the amorphous state is responsible for an increase of the electrical resistance with time. This phenomenon called drift is detrimental in the application of these materials in phase-change nonvolatile memories, which are emerging as promising candidates for storage class memories. By means of combined molecular dynamics and electronic structure calculations based on density functional theory, we have unraveled the atomistic origin of the resistance drift in the prototypical phase-change compound GeTe. The drift results from a widening of the band gap and a reduction of Urbach tails due to structural relaxations leading to the removal of chains of Ge-Ge homopolar bonds. The same structural features are actually responsible for the high mobility above the glass transition which boosts the crystallization speed exploited in the device.

  2. Crystal Structures and Magnetic Properties of Nickel Chain Compounds PbM2Ni6Te3O18 (M = Mn, Cd).

    PubMed

    Doi, Yoshihiro; Suzuki, Ryo; Hinatsu, Yukio; Kodama, Katsuaki; Igawa, Naoki

    2015-11-16

    The synthesis, crystal structures, and magnetic properties of the pentanary oxides PbM2Ni6Te3O18 (M = Mn and Cd) were investigated. These compounds crystallize in a hexagonal structure with space group P63/m, in which the Ni(2+) ions form a zigzag chain along the c axis. From the magnetic susceptibility and specific heat measurements, we found that the PbCd2Ni6Te3O18 behaves as a low-dimensional magnet due to the intrachain antiferromagnetic interaction between Ni(2+) ions. Both compounds show a long-range antiferromagnetic ordering at 25.7 K (M = Cd) and 86.0 K (Mn). The magnetic structure of PbMn2Ni6Te3O18 determined by neutron diffraction measurements is a collinear antiferromagnetic arrangement of Mn(2+) ions in the Mn2O9 dimeric unit and Ni(2+) ions in the zigzag chain. PMID:26496353

  3. Development of a computer model for polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells. Annual subcontract report, 1 January 1990--31 December 1990

    SciTech Connect

    Gray, J.L.; Schwartz, R.J.; Lee, Y.J.

    1992-04-01

    This report describes work to develop a highly accurate numerical model for CuInSe{sub 2} and CdTe solar cells. ADEPT (A Device Emulation Program and Toolbox), a one-dimensional semiconductor device simulation code developed at Purdue University, was used as the basis of this model. An additional objective was to use ADEPT to analyze the performance of existing and proposed CuInSe{sub 2} and CdTe solar cell structures. The work is being performed in two phases. The first phase involved collecting device performance parameters, cell structure information, and material parameters. This information was used to construct the basic models to simulate CuInSe{sub 2} and CdTe solar cells. This report is a tabulation of information gathered during the first phase of this project on the performance of existing CuInSe{sub 2} and CdTe solar cells, the material properties of CuInSr{sub 2}, CdTe, and CdS, and the optical absorption properties of CuInSe{sub 2}, CdTe, and CdS. The second phase will entail further development and the release of a version of ADEPT tailored to CuInSe{sub 2} and CdTe solar cells that can be run on a personal computer. In addition, ADEPT will be used to analyze the performance of existing and proposed CuInSe{sub 2} and CdTe solar cell structures. 110 refs.

  4. Electrical and Switching Properties of TlBiSe2 Chalcogenide Compounds

    NASA Astrophysics Data System (ADS)

    Kalkan, N.; Bas, H.

    2015-11-01

    The electrical conductivity of TlBiSe2 narrow gap semiconductors prepared by the Bridgman-Stockbarger method was investigated. The temperature dependence of the electrical conductivity was measured to establish the dominant conductivity mechanism in a temperature range between 293 K and 373 K. The conduction activation energy has a single value indicating the existence of one type of conduction mechanism in the investigated temperature range. The electrical conductivity of the sample is controlled by a thermally activated mechanism. It was also found that these samples exhibit a current-controlled negative resistance and threshold switching. The value of the threshold voltage decreases exponentially with increasing temperature. The calculated ratio of the threshold energy to the activation energy is one half, and is derived from the electro-thermal model for the switching process. Therefore, the electrical switching in the investigated samples can be explained in terms of the electro-thermal model. A possible conduction mechanism in the pre-switching state of the sample associated with the space charge limited current is described.

  5. Optimum composition of a Bi{sub 2}Te{sub 3-x}Se{sub x} alloy for the n-type leg of a thermoelectric generator

    SciTech Connect

    Prokofieva, L. V. Pshenay-Severin, D. A.; Konstantinov, P. P.; Shabaldin, A. A.

    2009-08-15

    The reliability of determination of model parameters for the Bi{sub 2}Te{sub 3-x}Se{sub x} alloys is improved by extending the concentration and temperature ranges in experimental studies and, correspondingly, in calculations of kinetic coefficients based on the two-band model of the electronic spectrum. The obtained results served as a motivation for a study of the thermoelectric figure of merit for the above-mentioned alloys with x = 0.3, 0.45, and 0.6 and with the electron concentration varied in the range (1-50) x 10{sup 18} cm{sup -3} at temperatures 300-550 K. Comparison of the results showed that the highest efficiency is exhibited by the Bi{sub 2}Te{sub 2.7}Se{sub 0.3} alloy with the absolute value of the thermoelectric power of about 165 {mu}VK{sup -1} at 300 K, and the dimensionless efficiency is equal to 1.2 at 410 K. An appreciable decrease in thermal conductivity in alloys with x = 0.6 at 410 K is related to a larger band gap and could beneficially affect the figure of merit. However, the magnitude of this effect is found to be too small to compensate a decrease in electrical conductivity due to a large fraction of heavy electrons in the concentration and to a high content of selenium.

  6. Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2 (X=S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Ahluwalia, P. K.

    2013-06-01

    Mechanical strain induced tunability in two-dimensional (2D) honeycomb structures of MoX2 (X=S, Se, Te) with a focus on dielectric properties have been investigated in the framework of density functional theory. Mechanical strains reduce the band gap of considered semiconductors by causing a direct-to-indirect band gap transitions and finally rendering them into metal at critical value depending on the types of applied strain. The ultimate tensile strength estimated for MoS2, MoSe2 and MoTe2 monolayers is ?7 GPa, ?6 GPa and ?5 GPa respectively. Band-gap deformation potentials have been found to posses strong dependence on the types of applied strain. Small tensile strains increases the exciton binding energies which can have importance in the applications of optoelectronics. Dielectric properties too get influenced by the type of applied strain as well as the type of material. Imaginary part of dielectric function (?2) shows redshift in the structure peak energy on the application of strains with significant dependence on the types of applied strain. Static dielectric constant (?s) has been found to increase with the increase of tensile strains (both uniaxial and biaxial) and asymmetric biaxial strain. On the other hand, ?s decreases for smaller magnitude of compression strains and show increase at higher magnitude. The change in the magnitude of ?s particularly for compression strains remain material specific.

  7. The role of graphite boat design in liquid phase epitaxial growth of PbSe 0.78Te 0.22 on BaF 2

    NASA Astrophysics Data System (ADS)

    McCann, Patrick J.; Aanegola, Srinath K.

    1994-08-01

    Two different sliding substrate graphite boats were designed and fabricated for liquid phase epitaxial (LPE) growth of PbSe 0.78Te 0.22 on BaF 2 substrates. Layer morphologies were observed using optical and scanning electron microscopy. The first boat did not yield smooth and continuous epitaxial layers even though a number of growth variations were tried. The second boat, however, consistently produced high quality epitaxial layers of PbSe 0.78Te 0.22 on {100} BaF 2 substrates. Differences in the way the graphite boat traps growth solution vapors over the substrate prior to growth are believed to be responsible for the dramatic differences in these LPE growth morphologies. We suspect that formation of a barium-chalcogenide reaction product on the BaF 2 substrate surface prior to growth is essential for obtaining good epitaxial layers and that trapping of growth solution vapors over the substrate prior to growth allows better control of this epitaxy-enabling substrate surface reaction.

  8. Fermi-level stabilization in the topological insulators Bi2Se3 and Bi2Te3: Origin of the surface electron gas

    NASA Astrophysics Data System (ADS)

    Suh, Joonki; Fu, Deyi; Liu, Xinyu; Furdyna, Jacek K.; Yu, Kin Man; Walukiewicz, Wladyslaw; Wu, Junqiao

    2014-03-01

    Two-dimensional electron gas (2DEG) coexists with topological states on the surface of topological insulators (TIs), while the origin of the 2DEG remains elusive. In this work, electron density in TI thin films (Bi2Se3,Bi2Te3, and their alloys) were manipulated by controlling the density of electronically active native defects with particle irradiation. The measured electron concentration increases with irradiation dose but saturates at different levels for Bi2Se3 and Bi2Te3. The results are in quantitative agreement with the amphoteric defect model, which predicts that electronically active native defects shift the Fermi energy (EF) toward a Fermi stabilization level (EFS) located universally at ˜4.9 eV below the vacuum level. Combined with thickness-dependent data, it is demonstrated that regardless of the bulk doping, the surface EF is always pinned at EFS, producing a band bending and 2DEG on TI film surfaces. Our work elucidates native defect physics of TIs with a model universally applicable to other semiconductors and has critical implications for potential device applications of TIs.

  9. Integration of CdSe/CdSexTe1-x Type-II Heterojunction Nanorods into Hierarchically Porous TiO2 Electrode for Efficient Solar Energy Conversion.

    PubMed

    Lee, Sangheon; Flanagan, Joseph C; Kang, Joonhyeon; Kim, Jinhyun; Shim, Moonsub; Park, Byungwoo

    2015-01-01

    Semiconductor sensitized solar cells, a promising candidate for next-generation photovoltaics, have seen notable progress using 0-D quantum dots as light harvesting materials. Integration of higher-dimensional nanostructures and their multi-composition variants into sensitized solar cells is, however, still not fully investigated despite their unique features potentially beneficial for improving performance. Herein, CdSe/CdSexTe1-x type-II heterojunction nanorods are utilized as novel light harvesters for sensitized solar cells for the first time. The CdSe/CdSexTe1-x heterojunction-nanorod sensitized solar cell exhibits ~33% improvement in the power conversion efficiency compared to its single-component counterpart, resulting from superior optoelectronic properties of the type-II heterostructure and 1-octanethiol ligands aiding facile electron extraction at the heterojunction nanorod-TiO2 interface. Additional ~32% enhancement in power conversion efficiency is achieved by introducing percolation channels of large pores in the mesoporous TiO2 electrode, which allow 1-D sensitizers to infiltrate the entire depth of electrode. These strategies combined together lead to 3.02% power conversion efficiency, which is one of the highest values among sensitized solar cells utilizing 1-D nanostructures as sensitizer materials. PMID:26638994

  10. Thermoelectric Properties of Cu-doped Bi2Te2.85Se0.15 Prepared by Pulse-Current Sintering Under Cyclic Uniaxial Pressure

    NASA Astrophysics Data System (ADS)

    Kitagawa, Hiroyuki; Mimura, Naoki; Takimura, Kodai; Morito, Shigekazu; Kikuchi, Kotaro

    2016-03-01

    N-type Cu-doped Bi2Te2.85Se0.15 thermoelectric materials were prepared by pulse-current sintering under cyclic uniaxial pressure, and the effect of the cyclic uniaxial pressure on texture and thermoelectric properties was investigated. Cu x Bi2Te2.85Se0.15 ( x = 0-0.03) powder prepared by mechanical alloying was sintered at 673 K using pulse-current heating under 100 MPa of cyclic uniaxial pressure. X-ray diffraction patterns and electron backscattered diffraction analyses showed that the cyclic uniaxial pressure was effective for texture control. The flattened crystal grains were stacked in the thickness direction of the sintered materials and the hexagonal c-plane strongly tended to align in the direction perpendicular to the uniaxial pressure. As a result of this crystal alignment, the electrical resistivity in the direction perpendicular to the uniaxial pressure became smaller than that of equivalent samples prepared with a constant uniaxial pressure. The smaller resistivity led to a larger power factor, and the figure of merit was improved by the application of cyclic uniaxial pressure.

  11. Enhancement of transition temperature in Fe{sub x}Se{sub 0.5}Te{sub 0.5} film via iron vacancies

    SciTech Connect

    Zhuang, J. C.; Yeoh, W. K. E-mail: zxshi@seu.edu.cn; Cui, X. Y.; Ringer, S. P.; Kim, J. H.; Shi, D. Q.; Wang, X. L.; Dou, S. X.; Shi, Z. X. E-mail: zxshi@seu.edu.cn

    2014-06-30

    The effects of iron deficiency in Fe{sub x}Se{sub 0.5}Te{sub 0.5} thin films (0.8 ≤ x ≤ 1) on superconductivity and electronic properties have been studied. A significant enhancement of the superconducting transition temperature (T{sub C}) up to 21 K was observed in the most Fe deficient film (x = 0.8). Based on the observed and simulated structural variation results, there is a high possibility that Fe vacancies can be formed in the Fe{sub x}Se{sub 0.5}Te{sub 0.5} films. The enhancement of T{sub C} shows a strong relationship with the lattice strain effect induced by Fe vacancies. Importantly, the presence of Fe vacancies alters the charge carrier population by introducing electron charge carriers, with the Fe deficient film showing more metallic behavior than the defect-free film. Our study provides a means to enhance the superconductivity and tune the charge carriers via Fe vacancy, with no reliance on chemical doping.

  12. Enhanced thermoelectric performance of Cu2Se/Bi0.4Sb1.6Te3 nanocomposites at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Li, Y. Y.; Qin, X. Y.; Li, D.; Zhang, J.; Li, C.; Liu, Y. F.; Song, C. J.; Xin, H. X.; Guo, H. F.

    2016-02-01

    Bi2Te3-based thermoelectric materials with large thermoelectric figure of merit, ZT, at elevated temperatures are advantageous in power generation by using the low-grade waste heat. Here, we show that incorporation of small proportion (0.3 vol. %) of nanophase Cu2Se into BiSbTe matrix causes an enhanced high-temperature thermopower due to elevated energy filtering of carriers and inhibition of minority transport besides enhanced phonon blocking from scattering at interfaces, which concurrently result in an ˜20% increase in the power factor and an ˜60% reduction in the lattice thermal conductivity at 488 K. As a result, ZT = 1.6 is achieved at 488 K in the composite system with 0.3 vol. % of Cu2Se. Significantly, its ZT is larger than unit in broad high-temperature range (e.g., ZT = 1.3 at 400 K and ZT = 1.6 at 488 K), which makes this material to be attractive for applications in energy harvesting from the low-grade waste heat.

  13. Photoluminescence of double core/shell infrared (CdSeTe)/ZnS quantum dots conjugated to Pseudo rabies virus antibodies

    NASA Astrophysics Data System (ADS)

    Torchynska, T. V.; Casas Espinola, J. L.; Jaramillo Gómez, J. A.; Douda, J.; Gazarian, K.

    2013-06-01

    Double core CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) have been studied by photoluminescence (PL) and Raman scattering methods in the non-conjugated state and after the conjugation to the Pseudo rabies virus (PRV) antibodies. The transformation of PL spectra, stimulated by the electric charge of antibodies, has been detected for the bioconjugated QDs. Raman scattering spectra are investigated with the aim to reveal the CdSeTe core compositions. The double core QD energy diagrams were designed that help to analyze the PL spectra and their transformation at the bioconjugation. It is revealed that the interface in double core QDs has the type II quantum well character that permits to explain the near IR optical transition (1.60 eV) in the double core QDs. It is shown that the essential transformation of PL spectra is useful for the study of QD bioconjugation with specific antibodies and can be a powerful technique in early medical diagnostics.

  14. Pauli-limited upper critical field of Fe1+yTe1-xSex

    SciTech Connect

    Lei, Hechang; Hu, Rongwei; Choi, E. S.; Warren, J. B.; Petrovic, Cedomir

    2010-03-22

    In this work, we investigated the temperature dependence of the upper critical field ?0Hc2(T) of Fe1.02(3)Te0.61(4)Se0.39(4) and Fe1.05(3)Te0.89(2)Se0.11(2) single crystals by measuring the magnetotransport properties in stable dc magnetic fields up to 35 T. Both crystals show that ?0Hc2(T) in the ab plane and along the c-axis exhibit saturation at low temperatures. The anisotropy of ?0Hc2(T) decreases with decreasing temperature, becoming nearly isotropic when the temperature T?0. Furthermore, ?0Hc2(0) deviates from the conventional Werthamer-Helfand-Hohenberg theoretical prediction values for both field directions. Our analysis indicates that the spin-paramagnetic pair-breaking effect is responsible for the temperature-dependent behavior of ?0Hc2(T) in both field directions.

  15. Transport and thermoelectric properties of Bi2Te2.7Se0.3 prepared by mechanical alloying and hot pressing

    NASA Astrophysics Data System (ADS)

    Eum, A.-Young; Kim, Il-Ho; Choi, Soon-Mok; Lim, Young Soo; Seo, Won-Seon; Park, Jae-Soung; Yang, Seung-Ho

    2015-06-01

    Bi2Te2.7Se0.3 was prepared by mechanical alloying (MA) and hot pressing (HP), after which the effects of HP temperature on the transport and the thermoelectric properties were evaluated. Bismuth chalcogenide phases were synthesized afterMA for 4 h, and no secondary phases were observed. The relative densities of all hot-pressed specimens were higher than 95%. The carrier concentration and the mobility increased with increasing HP temperature, possibly due to the grain growth and the reduced number of lattice defects. All specimens showed n-type conductions in the temperature range from 323 K to 523 K. The electrical conductivity slightly decreased with increasing temperature, exhibiting a degenerate semiconductor behavior. With increasing HP temperature, an increase in the electrical conductivity and a decrease in the Seebeck coefficient were observed. The maximum dimensionless figure of merit obtained was 0.72 at 473 K for the Bi2Te2.7Se0.3 hot-pressed at 673 K due to its low thermal conductivity and high electrical conductivity.

  16. Thermoelectric Properties of Cu-doped Bi2Te2.85Se0.15 Prepared by Pulse-Current Sintering Under Cyclic Uniaxial Pressure

    NASA Astrophysics Data System (ADS)

    Kitagawa, Hiroyuki; Mimura, Naoki; Takimura, Kodai; Morito, Shigekazu; Kikuchi, Kotaro

    2015-10-01

    N-type Cu-doped Bi2Te2.85Se0.15 thermoelectric materials were prepared by pulse-current sintering under cyclic uniaxial pressure, and the effect of the cyclic uniaxial pressure on texture and thermoelectric properties was investigated. Cu x Bi2Te2.85Se0.15 (x = 0-0.03) powder prepared by mechanical alloying was sintered at 673 K using pulse-current heating under 100 MPa of cyclic uniaxial pressure. X-ray diffraction patterns and electron backscattered diffraction analyses showed that the cyclic uniaxial pressure was effective for texture control. The flattened crystal grains were stacked in the thickness direction of the sintered materials and the hexagonal c-plane strongly tended to align in the direction perpendicular to the uniaxial pressure. As a result of this crystal alignment, the electrical resistivity in the direction perpendicular to the uniaxial pressure became smaller than that of equivalent samples prepared with a constant uniaxial pressure. The smaller resistivity led to a larger power factor, and the figure of merit was improved by the application of cyclic uniaxial pressure.

  17. Thermal characterization of ZnBeMnSe mixed compounds by means of photopyroelectric and lock-in thermography methods

    NASA Astrophysics Data System (ADS)

    Strza?kowski, K.; Dadarlat, D.; Streza, M.; Zakrzewski, J.

    2015-06-01

    In this work, a thermal characterization (measurement of dynamic thermal parameters) of quaternary Zn1-x-yBexMnySe mixed crystals was carried out. The crystals under investigation were grown from the melt by the modified high-pressure Bridgman method with different Be and Mn contents. The effect of Be and Mn contents on thermal properties of Zn1-x-yBexMnySe compounds was analyzed, by using the photopyroelectric (PPE) method in the back configuration (BPPE) for thermal diffusivity measurements and the PPE technique in the front configuration for thermal effusivity investigations. Infrared lock-in thermography was used in order to validate the BPPE results. The measured thermal effusivity and diffusivity allowed the calculation of thermal conductivity of the investigated materials.

  18. Orbital processing of high-quality CdTe compound semiconductors

    NASA Technical Reports Server (NTRS)

    Larson, David J., Jr.; Alexander, J. I. D.; Gillies, D.; Carlson, F. M.; Wu, J.; Black, D.

    1994-01-01

    CdZnTe crystals were grown in one-g and in micro-g for comparative analysis. The two micro-g crystals were grown in the Crystal Growth Furnace during the First United States Microgravity Laboratory mission (USML-1). The samples were analyzed for chemical homogeneity, structural perfection, and optoelectronic performance (infrared transmission). Fourier Transform Infrared (FTIR) transmission of both ground and flight materials showed that the infrared transmission was close to theoretical, 63% versus 66%, suggesting that the material was close to the stochiometric composition during both the ground and flight experiments. Infrared microscopy confirmed that the principal precipitates were Te and their size (1-10 microns) and density suggested that the primary flight and ground base samples experienced similar cooling rates. Macrosegregation was predicted, using scaling analysis, to be low even in one-g crystals and this was confirmed experimentally, with nearly diffusion controlled growth achieved even in the partial mixing regime on the ground. Radial segregation was monitored in the flight samples and was found to vary with fraction solidified, but was disturbed due to the asymmetric grvitational and thermal fields experienced by the flight samples. The flight samples, however, were found to be much higher in structural perfection than the ground samples produced in the same furnace under identical growth conditions except for the gravitational level. Rocking curve widths were found to be substantially reduced, from 20/35 (one-g) to 9/20 (micro-g) for the best regions of the crystals. The full width at half maximum (FWHM) of 9 arc seconds is as good as the best reported terrestrially for this material. The ground samples were found to have a fully developed mosaic structure consisting of subgrains, whereas the flight sample dislocations were discrete and no mosaic substructure was evident. The defect density was reduced from 50-100,000 (one-g) to 500-25000 EPD (micro-g). These results were confirmed using rocking curve analysis, synchrotron topography, and etch pit analysis. The low dislocation density is thought to have resulted from the near-absence of hydrostatic pressure which allowed the melt to solidify with minimum or no wall contact, resulting in very low stress being exerted on the crystal during growth or during post-solidification cooling.

  19. Optical detection of organophosphorus compounds based on Mn-doped ZnSe d-dot enzymatic catalytic sensor.

    PubMed

    Gao, Xue; Tang, Guangchao; Su, Xingguang

    2012-01-01

    In this paper, we report a sensitive and selective method for detection of organophosphorus compounds (OPs) based on Mn:ZnSe d-dots-enzyme-hydrogen peroxide (H(2)O(2)) fluorescence quenching system. Acetylcholine esterase (AChE) can hydrolyze acetylcholine (ACh) to choline. Subsequently, choline oxidase (ChOx) oxidizes choline to generate H(2)O(2). The enzyme-generated H(2)O(2) can quench the fluorescence of Mn:ZnSe d-dots. When paraoxon are introduced in solution, it can interact with the active centers of AChE and decrease the enzyme activity. This leads to the decrease of the H(2)O(2) production and then the fluorescence quenching rate of Mn:ZnSe d-dots. Experimental results showed that the enzyme inhibition percentage of Mn:ZnSe d-dots-ChOx-AChE-ACh system was proportional to the logarithm of paraoxon in the range 4.84×10(-11) to 4.84×10(-6) mol/L with the detection limit (S/N=3) of 1.31×10(-11) mol/L. The proposed biosensor has been employed for quick determination of paraoxon in tap water and milk samples with satisfactory reproducibility and accuracy. This nano-biosensor was proved to be sensitive, rapid, simple and tolerance of most interfering substances. PMID:22534106

  20. Improvement of thermoelectric properties induced by uniquely ordered lattice field in Bi{sub 2}Se{sub 0.5}Te{sub 2.5} pillar array

    SciTech Connect

    Tan, Ming Hao, Yanming; Wang, Gangzhi

    2014-07-01

    In this study, it was found that uniquely ordered lattice field favors transport of carriers but hinder that of phonons. The n-Bi{sub 2}Se{sub 0.5}Te{sub 2.5} pillar array film was successfully achieved by a simple ion beam assisted deposition technique. This oriented pillar array structure is clear with pillar diameter of about 30 nm, exhibiting a uniquely ordered lattice field. The properties of the ordered Bi{sub 2}Se{sub 0.5}Te{sub 2.5} pillar array were greatly enhanced in comparison with those of the ordinary film. The Bi{sub 2}Se{sub 0.5}Te{sub 2.5} pillar array with a thermoelectric dimensionless figure-of-merit ZT=1.28 was obtained at room temperature. The in-plane transport mechanisms of the ordered pillar array and the ordinary structures, lattice field model, are proposed and investigated. The specially ordered lattice field is the main reason for the properties enhancement observed in the Bi{sub 2}Se{sub 0.5}Te{sub 2.5} film. Introduction of such ordered lattice field into TE films is therefore a very promising approach. - Graphical abstract: In this study, it was found that uniquely ordered lattice field favors transport of carriers but hinder that of phonons. The Bi{sub 2}Se{sub 0.5}Te{sub 2.5} pillar array film with a thermoelectric dimensionless figure-of-merit ZT=1.28 was obtained at room temperature. The in-plane transport mechanisms of the ordered pillar array and the ordinary structures, the lattice field model, are proposed and investigated. The specially ordered lattice field is the main reason for the properties enhancement observed in the Bi{sub 2}Se{sub 0.5}Te{sub 2.5} pillar array. Introduction of such uniquely ordered lattice field into TE films is therefore a very promising approach. In (a) TEM and (b) HRTEM images of the ordered Bi{sub 2}Se{sub 0.5}Te{sub 2.5} column array. - Highlights: • Uniquely ordered Bi{sub 2}Se{sub 0.5}Te{sub 2.5} pillar array was achieved by an IBAD method. • The pillar array with an ordered lattice field exhibits attractive TE property. • The transport mechanism of such ordered pillar array is proposed and investigated. • Introduction of such ordered lattice field into film is a very promising approach.

  1. Role of surface termination in realizing well-isolated topological surface states within the bulk band gap in TlBiSe2 and TlBiTe2

    NASA Astrophysics Data System (ADS)

    Singh, Bahadur; Lin, Hsin; Prasad, R.; Bansil, A.

    2016-02-01

    Electronic structures associated with the flat (polar) Se/Te- or Tl-terminated surfaces of TlBiSe2 and TlBiTe2 are predicted to harbor not only Dirac cone states, but also trivial dangling bond states near the Fermi energy. However, the latter, trivial states have never been observed in photoemission measurements. In order to address this discrepancy, we have carried out ab initio calculations for various surfaces of TlBiSe2 and TlBiTe2. A rough nonpolar surface with an equal number of Se/Te and Tl atoms in the surface atomic layer is found to destroy the trivial dangling bond states, leaving only the Dirac cone states in the bulk energy gap. The resulting energy dispersions of the Dirac states are in good accord with the corresponding experimental dispersions in TlBiSe2 as well as TlBiTe2. We also show that in the case of flat, Se terminated, high-index (221) and (112) surfaces of TlBiSe2, the trivial surface states shift energetically below the Dirac node and become well separated from the Dirac cone states.

  2. Extreme enrichment of Se, Te, PGE and Au in Cu sulfide microdroplets: evidence from LA-ICP-MS analysis of sulfides in the Skaergaard Intrusion, east Greenland

    NASA Astrophysics Data System (ADS)

    Holwell, David A.; Keays, Reid R.; McDonald, Iain; Williams, Megan R.

    2015-12-01

    The Platinova Reef, in the Skaergaard Intrusion, east Greenland, is an example of a magmatic Cu-PGE-Au sulfide deposit formed in the latter stages of magmatic differentiation. As is characteristic with such deposits, it contains a low volume of sulfide, displays peak metal offsets and is Cu rich but Ni poor. However, even for such deposits, the Platinova Reef contains extremely low volumes of sulfide and the highest Pd and Au tenor sulfides of any magmatic ore deposit. Here, we present the first LA-ICP-MS analyses of sulfide microdroplets from the Platinova Reef, which show that they have the highest Se concentrations (up to 1200 ppm) and lowest S/Se ratios (190-700) of any known magmatic sulfide deposit and have significant Te enrichment. In addition, where sulfide volume increases, there is a change from high Pd-tenor microdroplets trapped in situ to larger, low tenor sulfides. The transition between these two sulfide regimes is marked by sharp peaks in Au, and then Te concentration, followed by a wider peak in Se, which gradually decreases with height. Mineralogical evidence implies that there is no significant post-magmatic hydrothermal S loss and that the metal profiles are essentially a function of magmatic processes. We propose that to generate these extreme precious and semimetal contents, the sulfides must have formed from an anomalously metal-rich package of magma, possibly formed via the dissolution of a previously PGE-enriched sulfide. Other processes such as kinetic diffusion may have also occurred alongside this to produce the ultra-high tenors. The characteristic metal offset pattern observed is largely controlled by partitioning effects, producing offset peaks in the order Pt+Pd>Au>Te>Se>Cu that are entirely consistent with published D values. This study confirms that extreme enrichment in sulfide droplets can occur in closed-system layered intrusions in situ, but this will characteristically form ore deposits that are so low in sulfide that they do not conform to conventional deposit models for Cu-Ni-PGE sulfides which require very high R factors, and settling of sulfide liquids.

  3. CsPb3Bi3Te8 and CsPb4Bi3Te9: low-dimensional compounds and the homologous series CsPbmBi3Te5 + m.

    PubMed

    Hsu, Kuei-Fang; Lal, Sangeeta; Hogan, Tim; Kanatzidis, Mercouri G

    2002-07-01

    Two new thermoelectric materials of quaternary bismuth telluride CsPb3Bi3Te8 and CsPb4Bi3Te9 are reported, which are members of a homologous series featuring anionic slabs [PbmBi3Te5 + m]- (m = 1-4) of monotonically increasing thickness. PMID:12125565

  4. Two isostructural layered oxohalide compounds containing Mn{sup 2+}, Te{sup 4+} and Si{sup 4+}; crystal structure and magnetic susceptibility

    SciTech Connect

    Zimmermann, Iwan; Kremer, Reinhard K.; Johnsson, Mats

    2014-10-15

    The new compounds Mn{sub 4}(TeO{sub 3})(SiO{sub 4})X{sub 2} (X=Br, Cl) were synthesized by solid state reactions in sealed evacuated silica tubes. The compounds crystallize in the monoclinic space group P2{sub 1}/m with the unit cell parameters a=5.5463(3) Å (5.49434(7) Å), b=6.4893(4) Å (6.44184(9) Å), c=12.8709(7) Å (12.60451(18) Å), β=93.559(5)° (94.1590(12)°) and Z=2 for the respective Br and Cl analogues. Manganese adopts various distorted coordination polyhedra; [MnO{sub 6}] octahedra, [MnO{sub 5}] tetragonal pyramids and [MnO{sub 2}X{sub 2}] tetrahedra. Other building blocks are [SiO{sub 4}] tetrahedra and [TeO{sub 3}] trigonal pyramids. The structure is made up from layers having no net charge that are connected via weak Van der Waal interactions. The layers that are parallel to (1 1 0) consist of two manganese oxide sheets which are separated by [SiO{sub 4}] tetrahedra. On the outer sides of the sheets are the [MnO{sub 2}X{sub 2}] tetrahedra and the [TeO{sub 3}] trigonal pyramids connected so that the halide ions and the stereochemically active lone pairs on the tellurium atoms protrude from the layers. Magnetic susceptibility measurements reveal a Curie law with a Weiss temperature of θ=−153(3) K for temperatures ≥100 K and indicate antiferromagnetic ordering at T{sub N} ∼4 K. Possible structural origins of the large frustration parameter of f=38 are discussed. - Graphical abstract: Table of contents caption. The new compounds Mn{sub 4}(TeO{sub 3})(SiO{sub 4})X{sub 2} (X=Br, Cl) are layered with weak Van der Waal interactions in between the layers. Manganese adopts various distorted coordination polyhedral, other building blocks are [SiO{sub 4}] tetrahedra and [TeO{sub 3}] trigonal pyramids. Magnetic susceptibility measurements indicate antiferromagnetic ordering at low temperatures and a large frustration parameter. - Highlights: • Two new isostructural oxohalide compounds are described. • The compounds are the first examples of oxohalides containing both Te{sup 4+} and Si{sup 4+}. • Both compounds display the unusual coordination polyhedron MnO{sub 2}X{sub 2} (X=Cl, Br). • The compounds are made up of charge neutral layers connected via weak interactions. • The compounds are antiferromagnetic and display a large frustration parameter.

  5. Theoretical investigation of the behavior of CuSe2O5 compound in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Saghafi, Z.; Jahangiri, J.; Mahdavifar, S.; Hadipour, H.; Farjami Shayesteh, S.

    2016-01-01

    Based on the analytical and numerical approaches, we investigate thermodynamic properties of CuSe2O5 compound at high magnetic fields which is a candidate for the strong intra-chain interaction in quasi one-dimensional (1D) quantum magnets. Magnetic behavior of the system can be described by the 1D spin-1/2 XXZ model in the presence of the Dzyaloshinskii-Moriya (DM) interaction. Under these circumstances, there is one quantum critical field in this compound. Below the quantum critical field the spin chain system is in the gapless Luttinger liquid (LL) regime, whereas above it one observes a crossover to the gapped saturation magnetic phase. Indications on the thermodynamic curves confirm the occurrence of such a phase transition. The main characteristics of the LL phase are gapless and spin-spin correlation functions decay algebraic. The effects of zero-temperature quantum phase transition are observed even at rather high temperatures in comparison with the counterpart compounds. In addition, we calculate the Wilson ratio in the model. The Wilson ratio at a fixed temperature remains almost independent of the field in the LL region. In the vicinity of the quantum critical field, the Wilson ratio increases and exhibits anomalous enhancement.

  6. Experiment 1: Orbital Processing of High-Quality Zn-Alloyed CdTe Compound Semiconductors

    NASA Technical Reports Server (NTRS)

    Larson, D. J., Jr.; Dudley, M.; Alexander, J. I. D.; Carlson, F. M.; Gillies, D.; DiMarzio, D.

    1998-01-01

    Zinc-alloyed cadmium telluride (Zn:CdTe) crystals were grown in unit gravity and in microgravity for comparative analysis. Two crystals were grown on USML-1/STS-50 in 1992, and two additional crystals were grown on USML-2/STS-73 in 1995. The Crystal Growth Furnace (CGF) in the seeded Bridgman-Stockbarger crystal growth geometry was utilized on both missions. Crystals grown on USML-1/STS-50 were found to have solidified with partial wall contact due to the near-absence of the hydrostatic pressure in microgravity, a residual g-vector that was not axial, and the nonwetting sample/ampoule wetting conditions. Crystals grown on USML-2/STS-73 included: a sample/ampoule identical to the USML-1/STS-73 sample/ampoule, with the addition of a restraining spring to simulate hydrostatic pressure internally, and a tapered ampoule which accomplished 2.2 cm of crystal growth without wall contact. Infrared transmission of all ground and flight samples was found to be 63-66 percent, very close to the theoretical 66 percent, suggesting good stoichiometric control. Infrared microscopy confirmed that the primary precipitates were Te and their size (1-10 microns) and density suggested that the flight- and ground-base samples experienced similar thermal histories. Longitudinal macrosegregation, calculated using scaling analysis, was predicted to be low. Nearly diffusion controlled growth was achieved even in unit gravity and macrosegregation data could be fit with a diffusion controlled model. Radial segregation was monitored and was found to vary with fraction solidified, particularly through the shoulder region, where the sample cross section was varying significantly. It was also disturbed in the flight samples in regions where asymmetric wall contact was noted. In regions where a steady state was established, the radial segregation was invariant within our experimental measurement error. Flight samples were found to be much higher in structural perfection than samples processed in unit gravity under identical growth conditions. In regions where solidification had occurred without wall contact, the free surfaces evidenced virtually no twinning, although twins appeared in the flight samples in regions of wall contact and were pervasive in the ground samples. These results were confirmed using optical microscopy and synchrotron x-ray white beam topography. Full-width half-maximum rocking curve widths (FWHM), recorded in arc-seconds, were significantly reduced from 20 a-s (1 g) to 9 a-s (micro-g) for the best regions of the crystals. The 9 a-s (FWHM) rocking curve value in the unconfined flight samples equals the best value reported terrestrially for this material. The ground samples exhibited a fully developed (111)[110] dislocation mosaic structure, whereas dislocations within the flight samples were discrete and no mosaic structure was evident. The defect density was quantitatively reduced from 75,000 (1 g) to 800 (micro-g) +/-50 percent. Dislocation etch pit density results were confirmed using transmission synchrotron white beam and monochromated beam topography. The low defect density is thought to have resulted from the near absence of hydrostatic pressure, which allowed the molten boule to solidify with little or no wall contact. This minimized the transfer of hoop stresses during solidification and post-solidification processing.

  7. Synthesis of fibrous reticulate nanocrystalline n-type MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5} thin films: Thermocooling applications

    SciTech Connect

    Salunkhe, Manauti M.; Kharade, Rohini R.; Kharade, Suvarta D.; Mali, Sawanta S.; Patil, P.S.; Bhosale, P.N.

    2012-11-15

    Graphical abstract: Ostwald ripening: If small nucleus is close to a larger crystal, ions formed by particle dissolution of smaller crystal incorporated into larger crystal, and film formation takes place by ion by ion condensation. Display Omitted Highlights: ► Arrested Precipitation Technique is applied to deposit MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5}. ► X-ray diffraction confirms the proper phase formation of material. ► MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5} exhibits an n-type semiconducting behavior. ► Good thermoelectric performance suggests future fantasy. -- Abstract: In the present investigation n-type MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5} nanocrystalline thin films with various compositions of Se and Te were successfully deposited on ultrasonically cleaned glass substrates using recently developed Arrested Precipitation Technique (APT). The effect of composition on optical, morphological, structural, electrical and thermocooling properties of MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5} were investigated using UV–vis–NIR Spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometer, thermoelectric power and thermocooling measurements. Thermoelectric properties including electrical conductivity (σ), Seeback coefficient (S) and figure of merit (ZT) were measured at 300 K. Our aim is to investigate thermocooling behavior in respect of variation in composition of Se and Te in MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5} thin films along with optostructural and optoelectric properties.

  8. Dimerization of pentanuclear clusters [Fe3Q(AsMe)(CO)9] (Q = Se, Te) as a conversion pathway to novel cubane-like aggregates.

    PubMed

    Pushkarevsky, Nikolay A; Konchenko, Sergey N; Zabel, Manfred; Bodensteiner, Michael; Scheer, Manfred

    2011-03-01

    The first examples of carbonyl heterocubane-type clusters, [Fe(4)(μ(3)-Q)(2)(μ(3)-AsMe)(2)(CO)(12)] (2, Q = Se (a), Te (b)), which simultaneously contain elements of group 15 and 16, were obtained by thermolysis of [Fe(3)(μ(3)-Q)(μ(3)-AsMe)(CO)(9)] (1) in acetonitrile. The clusters 2 possess a cubic Fe(4)Q(2)As(2) core with alternating Fe and Q/As atoms. The coordination environment of the Fe atoms is close to octahedral, and those of Q or As atoms are tetrahedral, which determines the distorted cubic cluster core geometry. The second main products of thermolysis are the clusters [Fe(6)(μ(3)-Q)(μ(4)-Q)(μ(4)-AsMe)(2)(CO)(12)] (3a,b), whose core contains double the elemental composition of the initial cluster 1. In the case of the Se-containing cluster two other minor products [Fe(4)(μ(4)-Se)(μ(4)-SeAsMe)(CO)(12)] (4) and [Fe(3)(μ(3)-AsMe)(2)(CO)(9)] (5) are formed. Based on the structures and properties of the products, a reaction route for the conversion of 1 into 2 is proposed, which includes the associative formation of the clusters 3 as intermediates, unlike the dissociative pathways previously known for the transformations of similar clusters of the type [Fe(3)Q(2)(CO)(9)]. PMID:21258730

  9. Magnetic and magnetotransport studies of iron-chalcogenide superconductor Fe(Se0.4Te0.6)0.82: observation of thermally activated transport and flux jump

    NASA Astrophysics Data System (ADS)

    Dutta, P.; Chattopadhyay, S.; Das, D.; Majumdar, S.; Chatterjee, S.

    2015-11-01

    The magnetic and magneto-transport behavior of the Fe-based superconductor of nominal composition Fe(Se0.4Te0.6)0.82 has been investigated. Different superconducting parameters such as critical fields, coherence length, penetration depth and the Ginzburg-Landau parameter (?) have been estimated for the present compound. The large value of ? (253) is in line with the unconventional type-II nature of the studied superconductor. Thermally activated transport behavior in the presence of an external magnetic field across the superconducting transition region indicates a crossover from a single-vortex pinning regime to a collective flux creep regime at 50 kOe. The sample shows anomalous field dependence of flux flow resistance, which is presumably connected to the inherent superconducting state of the sample. The isothermal resistivity data as a function of external magnetic field show a signature of flux jump below the superconducting transition temperature (T c). The effect of hydrostatic pressure on the superconducting properties of the compound has also been investigated and about 3 K shift in T c has been observed with the application of 10 kbar of pressure.

  10. From an Isolable Acyclic Phosphinosilylene Adduct to Donor-Stabilized Si?E Compounds (E=O, S, Se).

    PubMed

    Hansen, Kerstin; Szilvsi, Tibor; Blom, Burgert; Irran, Elisabeth; Driess, Matthias

    2015-12-21

    Reaction of the arylchlorosilylene-NHC adduct ArSi(NHC)Cl [Ar=2,6-Trip2 C6 H3 ; NHC=(MeC)2 (NMe)2 C:] 1 with one molar equiv of lithium diphenylphosphanide affords the first stable NHC-stabilized acyclic phosphinosilylene adduct 2 (ArSi(NHC)PPh2 ), which could be structurally characterized. Compound 2, when reacted with one molar equiv selenium and sulfur, affords the silanechalcogenones 4?a and 4?b (ArSi(NHC)(?E)PPh2 , 4?a: E=Se, 4?b: E=S), respectively. Conversion of 2 with an excess of Se and S, through additional insertion of one chalcogen atom into the Si?P bond, leads to 3?a and 3?b (ArSi(NHC)(?E)-E-P(?E)Ph2 , 3?a: E=Se, 3?b: E=S), respectively. Additionally, the exposure of 2 to N2 O or CO2 yielded the isolable NHC-stabilized silanone 4?c, Ar(NHC)(Ph2 P)Si?O. PMID:26592863

  11. Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5

    SciTech Connect

    Du, Z. -Y.; Fang, D. -L.; Wang, Z. -Y.; Du, G.; Yang, X.; Yang, H.; Gu, G.; -H, Wen H.

    2015-05-05

    FeSe0.5Te0.5 single crystals with superconducting critical temperature of 13.5 K are investigated by scanning tunneling microscopy/spectroscopy (STM/STS) measureflents in detail. STM image on the top surface shows an atomically resolved square lattice consisted by white and dark spots with a constant of about 3.73± 0.03 Å which is consistent with the lattice constant 3.78 Å. The Se and Te atoms with a height difference of about 0.35 Å are successfully identified since the sizes of the two kinds of atoms are different. The tunneling spectra show very large zero-bias conductance value and asymmetric coherent peaks in the superconducting state. According to the positions of coherence peaks, we determine the superconducting gap 2Δ = 5.5 meV, and the reduced gap 2Δ/kBTc = 4.9 is larger than the value predicted by the weak-coupling BCS theory. The zero-bias conductance at 1.7 K only have a decrease of about 40% compared with the normal state conductance, which may originate from some scattering and broadening mechanism in the material. This broadening effect will also make the superconducting gap determined by the distance between the coherence peaks larger than the exact gap value. The asymmetric structure of the tunneling spectra near the superconducting gap is induced by the hump on the background. This hump appears at temperature more than twice the superconducting critical temperature. This kind of hump has also been observed in other iron pnictides and needs further investigation. A possible bosonic mode outside the coherence peak with a mode energy Ω of about 5.5 meV is observed in some tunneling spectra, and the ratio between the mode energy and superconducting transition temperature Ω/kBTc ≈ 4.7 is roughly consistent with the universal ratio 4.3 in iron-based superconductors. The high-energy background of the spectra beyond the superconducting gaps shows a V-shape feature. The slopes of the differential conductance spectra at high energy are very different in the areas of Te-atom cluster and Se-atom cluster, and the difference extends to the energy of more than 300 meV. The differential conductance mapping has very little information about the quasi-particle interference of the superconducting state, which may result from the other strong scattering mechanism in the sample.

  12. Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5(in Chinese)

    DOE PAGESBeta

    Du, Z. -Y.; Fang, D. -L.; Wang, Z. -Y.; Du, G.; Yang, X.; Yang, H.; Gu, G.; -H, Wen H.

    2015-05-05

    FeSe0.5Te0.5 single crystals with superconducting critical temperature of 13.5 K are investigated by scanning tunneling microscopy/spectroscopy (STM/STS) measureflents in detail. STM image on the top surface shows an atomically resolved square lattice consisted by white and dark spots with a constant of about 3.73± 0.03 Å which is consistent with the lattice constant 3.78 Å. The Se and Te atoms with a height difference of about 0.35 Å are successfully identified since the sizes of the two kinds of atoms are different. The tunneling spectra show very large zero-bias conductance value and asymmetric coherent peaks in the superconducting state. Accordingmore » to the positions of coherence peaks, we determine the superconducting gap 2Δ = 5.5 meV, and the reduced gap 2Δ/kBTc = 4.9 is larger than the value predicted by the weak-coupling BCS theory. The zero-bias conductance at 1.7 K only have a decrease of about 40% compared with the normal state conductance, which may originate from some scattering and broadening mechanism in the material. This broadening effect will also make the superconducting gap determined by the distance between the coherence peaks larger than the exact gap value. The asymmetric structure of the tunneling spectra near the superconducting gap is induced by the hump on the background. This hump appears at temperature more than twice the superconducting critical temperature. This kind of hump has also been observed in other iron pnictides and needs further investigation. A possible bosonic mode outside the coherence peak with a mode energy Ω of about 5.5 meV is observed in some tunneling spectra, and the ratio between the mode energy and superconducting transition temperature Ω/kBTc ≈ 4.7 is roughly consistent with the universal ratio 4.3 in iron-based superconductors. The high-energy background of the spectra beyond the superconducting gaps shows a V-shape feature. The slopes of the differential conductance spectra at high energy are very different in the areas of Te-atom cluster and Se-atom cluster, and the difference extends to the energy of more than 300 meV. The differential conductance mapping has very little information about the quasi-particle interference of the superconducting state, which may result from the other strong scattering mechanism in the sample.« less

  13. Selenium bioaccessibility in stomach, small intestine and colon: Comparison between pure Se compounds, Se-enriched food crops and food supplements.

    PubMed

    Lavu, Rama V Srikanth; Van De Wiele, Tom; Pratti, Varalakshmi L; Tack, Filip; Du Laing, Gijs

    2016-04-15

    Selenium (Se) is an essential nutrient for humans as it plays an important role in glutathione peroxidase (GPx) activity. Moreover, it may reduce cancer risks. The objective of this work was to examine in vitro the bioaccessibility of Se in three different Se-enriched food supplements and two different Se-enriched food crops, with reference to two pure Se standards, and changes in its speciation during intestinal digestion. Selenate was found to be stable throughout the entire digestion, whereas incubation of selenomethionine resulted in the chemical and microbial production of minor metabolites. The bioaccessibility of Se in Se-enriched food supplements and food crops was found to be highest in the small intestine. Compared to SelenoPrecise and Se-ACE tablets, a yoghurt-based supplement exhibited a much lower Se bioaccessibility, possibly due to the presence of nano- or microparticles of elemental Se. Colon microbiota were found to primarily affect Se bioaccessibility in the colon environment, with the presence of inactivated microbiota resulting in a higher bioaccessibility. A higher potential of Se to reach the colon and become accessible in this phase may result in beneficial effects on the colon health. PMID:26616964

  14. Mechanical and thermal properties of h-MX{sub 2} (M?=?Cr, Mo, W; X?=?O, S, Se, Te) monolayers: A comparative study

    SciTech Connect

    ak?r, Deniz Peeters, Franois M.; Sevik, Cem

    2014-05-19

    Using density functional theory, we obtain the mechanical and thermal properties of MX{sub 2} monolayers (where M?=?Cr, Mo, W and X?=?O, S, Se, Te). The ?-centered phonon frequencies (i.e., A{sub 1}, A{sub 2}{sup ?}, E?, and E?), relative frequency values of A{sub 1}, and E? modes, and mechanical properties (i.e., elastic constants, Young modulus, and Poisson's ratio) display a strong dependence on the type of metal and chalcogenide atoms. In each chalcogenide (metal) group, transition-metal dichalcogenides (TMDCs) with W (O) atom are found to be much stiffer. Consistent with their stability, the thermal expansion of lattice constants for TMDCs with O (Te) is much slower (faster). Furthermore, in a heterostructure of these materials, the difference of the thermal expansion of lattice constants between the individual components becomes quite tiny over the whole temperature range. The calculated mechanical and thermal properties show that TMDCs are promising materials for heterostructures.

  15. Temperature dependence of the band edge emission of the wide gap semiconductor (LaO)CuCh (Ch = S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Ohki, Yusuke; Komatsuzaki, Satoshi; Takahashi, Yumiko; Takase, Kouichi; Takano, Yoshiki; Sekizawa, Kazuko

    2006-09-01

    The layered oxysulfide (LaO)CuS is a transparent p type semiconductor with wide band gap of 3.2 eV, and shows an exciton emission at room temperature. In order to investigate its precise optical properties, we have synthesized a single phase of (LaO)CuCh (Ch = S, Se, Te) and measured the photoluminescence spectra at low temperature. The lattice constants of (LaO)CuCh increase in the order of the atomic number of the chalcogen atoms. All samples are p type semiconductors and the absolute value of the electrical conductivity also increases in the order of the atomic number of the chalcogen atoms. The sharp PL peak near the absorption edge of the reflectance, which originates from free and bound excitons, is observed at 4 Kin (LaO)CuCh. In addition, the exciton emission is observed in all samples at 300 K. The energy gap estimated from the diffuse reflectance varies from 3.2 eV for (LaO)CuS to 2.3 eV for (LaO)CuTe. These results are similar to the characteristics of typical II-VI semiconductors.

  16. Nanojunction-mediated photocatalytic enhancement in heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO nanocrystals.

    PubMed

    Eley, Clive; Li, Tong; Liao, Fenglin; Fairclough, Simon Michael; Smith, Jason M; Smith, George; Tsang, Shik Chi Edman

    2014-07-21

    A series of highly efficient semiconductor nanocrystal (NC) photocatalysts have been synthesized by growing wurtzite-ZnO tetrahedrons around pre-formed CdS, CdSe, and CdTe quantum dots (QDs). The resulting contact between two small but high-quality crystals creates novel CdX/ZnO heterostructured semiconductor nanocrystals (HSNCs) with extensive type-II nanojunctions that exhibit more efficient photocatalytic decomposition of aqueous organic molecules under UV irradiation. Catalytic testing and characterization indicate that catalytic activity increases as a result of a combination of both the intrinsic chemistry of the chalcogenide anions and the heterojunction structure. Atomic probe tomography (APT) is employed for the first time to probe the spatial characteristics of the nanojunction between cadmium chalcogenide and ZnO crystalline phases, which reveals various degrees of ion exchange between the two crystals to relax large lattice mismatches. In the most extreme case, total encapsulation of CdTe by ZnO as a result of interfacial alloying is observed, with the expected advantage of facilitating hole transport for enhanced exciton separation during catalysis. PMID:24962739

  17. Temperature and composition phase diagram in the iron-based ladder compounds Ba1-xCsxFe2Se3

    NASA Astrophysics Data System (ADS)

    Hawai, Takafumi; Nambu, Yusuke; Ohgushi, Kenya; Du, Fei; Hirata, Yasuyuki; Avdeev, Maxim; Uwatoko, Yoshiya; Sekine, Yurina; Fukazawa, Hiroshi; Ma, Jie; Chi, Songxue; Ueda, Yutaka; Yoshizawa, Hideki; Sato, Taku J.

    2015-05-01

    We investigated the iron-based ladder compounds (Ba,Cs ) Fe2Se3 . Their parent compounds BaFe2Se3 and CsFe2Se3 have different space groups, formal valences of Fe, and magnetic structures. Electrical resistivity, specific heat, magnetic susceptibility, x-ray diffraction, and powder neutron diffraction measurements were conducted to obtain a temperature and composition phase diagram of this system. Block magnetism observed in BaFe2Se3 is drastically suppressed with Cs doping. In contrast, stripe magnetism observed in CsFe2Se3 is not so fragile against Ba doping. A new type of magnetic structure appears in intermediate compositions, which is similar to stripe magnetism of CsFe2Se3 , but interladder spin configuration is different. Intermediate compounds show insulating behavior, nevertheless a finite T -linear contribution in specific heat was obtained at low temperatures.

  18. Research Update: Point defects in CdTe{sub x}Se{sub 1−x} crystals grown from a Te-rich solution for applications in detecting radiation

    SciTech Connect

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Yang, G.; James, R. B.; Lee, W.; Cui, Y.; Burger, A.

    2015-04-01

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Current Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from 1 to 30 V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.

  19. Robust Protection from Backscattering in the Topological Insulator Bi1.5Sb0.5Te1.7Se1.3

    NASA Astrophysics Data System (ADS)

    Kim, Sunghun; Yoshizawa, Shunsuke; Ishida, Yukiaki; Eto, Kazuma; Segawa, Kouji; Ando, Yoichi; Shin, Shik; Komori, Fumio

    2014-04-01

    Electron scattering in the topological surface state (TSS) of the topological insulator Bi1.5Sb0.5Te1.7Se1.3 was studied using quasiparticle interference observed by scanning tunneling microscopy. It was found that not only the 180° backscattering but also a wide range of backscattering angles of 100°-180° are effectively prohibited in the TSS. This conclusion was obtained by comparing the observed scattering vectors with the diameters of the constant-energy contours of the TSS, which were measured for both occupied and unoccupied states using time- and angle-resolved photoemission spectroscopy. The robust protection from backscattering in the TSS is good news for applications, but it poses a challenge to the theoretical understanding of the transport in the TSS.

  20. Microwave-Assisted Synthesis of Glutathione-Capped CdTe/CdSe Near-Infrared Quantum Dots for Cell Imaging.

    PubMed

    Chen, Xiaogang; Li, Liang; Lai, Yongxian; Yan, Jianna; Tang, Yichen; Wang, Xiuli

    2015-01-01

    These glutathione (GSH)-conjugated CdTe/CdSe core/shell quantum dot (QD) nanoparticles in aqueous solution were synthesized using a microwave-assisted approach. The prepared type II core/shell QD nanoparticles were characterized by UV-Vis absorption, photoluminescence (PL) spectroscopy, X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). Results revealed that the QD nanoparticles exhibited good dispersity, a uniform size distribution and tunable fluorescence emission in the near-infrared (NIR) region. In addition, these nanoparticles exhibited good biocompatibility and photoluminescence in cell imaging. In particular, this type of core/shell NIR QDs may have potential applications in molecular imaging. PMID:25997004