Science.gov

Sample records for sea level measurements

  1. Precise mean sea level measurements using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian

    1994-01-01

    This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and

  2. Sea Level Rise and Decadal Variations in the Ligurian Sea Inferred from the Medimaremetre Measurements.

    NASA Astrophysics Data System (ADS)

    Karpytchev, M.; Coulomb, A.; Vallee, M.

    2015-12-01

    Estimations of sea level rise over the last centuries are mostly based on the rare historical sea level records from tide gauge stations usually designed for navigational purposes. In this study, we examine the quality of sea level measurements performed by a mean sea level gauge operated in Nice from 1887 to 1909 and transferred to the nearby town of Villefranche-sur-Mer in 1913 where it stayed in operation untill 1974. The mean sea level gauges, called medimaremetres, were invented for geodetic studies and installed in many French ports since the end of the XIX century. By construction, the medimaremetre was connected to the sea through a porous porcelain crucible in order to filter out the tides and higher frequency sea level oscillations. Ucontrolled properties of the crucible and some systematic errors made the medimaremetre data to be ignored in the current sea level researches. We demonstrate that the Nice-Villefranche medimaremetre measurements are coherent with two available historical tide gauge records from Marseille and Genova and a new century-scale sea level series can be build up by combining the medimaremetre data with the those recorded by a tide gauge operating in Nice since the 1980s. We analyse the low frequency variabilities in Marseille, Nice-Villefranche and Genova and get new insights on the decadal sea level variations in the Ligurian Sea since the end of the XIX century.

  3. Improving sea level record in arctic using ENVISAT altimeter measurements

    NASA Astrophysics Data System (ADS)

    Thibaut, Pierre; Poisson, Jean-Christophe; Hoang, Duc; Quartly, Graham; Kurekin, Andrey

    2015-04-01

    The Arctic is an important component of the climate system whose exact influence on ocean circulation is still poorly understood today. This region is also very sensitive to global warming and some direct consequences like melting ice are particularly visible. In this context, extending the knowledge of the sea level variability as far as possible in the Arctic Ocean is a valuable contribution to the understanding of rapid changes occurring in this region. Due to a particularly complex and unstable environment, ocean observation is challenging considering that sea level measurements can be widely corrupted by the presence of sea ice in the altimeter footprint. In the framework of the ESA Sea Level Climate Change Initiative project, new algorithms have been developed and implemented to process 10 years of ENVISAT altimeter data over the Arctic Ocean and to improve the sea level measurement in this region. The new processing chain contains three main steps. The first task consists in identifying altimetric returns for which a standard proven estimation processing may be used, and in flagging those requiring more sophisticated processing. This will include introducing a novel approach that uses the relationship with neighbouring waveforms to aid in the identification of key reflecting surfaces. The second task consists in applying estimators that performs better in situations where sea-ice covers partially or totally the observed surface. The last task consists in investigating the transition zones to make sure that no artificial discontinuities are introduced by the different processing and to reduce these discontinuities. We propose in this talk, to explain and illustrate the different steps of this study and to show important figures of improvement regarding the estimation of sea level variability in the Arctic Ocean.

  4. Sea level: measuring the bounding surfaces of the ocean.

    PubMed

    Tamisiea, Mark E; Hughes, Chris W; Williams, Simon D P; Bingley, Richard M

    2014-09-28

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196

  5. Sea level: measuring the bounding surfaces of the ocean

    PubMed Central

    Tamisiea, Mark E.; Hughes, Chris W.; Williams, Simon D. P.; Bingley, Richard M.

    2014-01-01

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196

  6. Measuring Sea Level Change (Vening Meinesz Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Woodworth, Philip L.

    2010-05-01

    For over 75 years, the Permanent Service for Mean Sea Level (PSMSL) at the Proudman Oceanographic Laboratory has maintained the global data bank for long term sea level change information from tide gauges. This data set has in recent years received most attention in studies of sea level rise related to climate change. However, it is also valuable in research into ocean circulation variability (oceanography), vertical land movements (geology) and geodetic datums (geodesy). This presentation will review some of the main applications of mean sea level information so far. In addition, it will point to the role of tide gauges within what is becoming a powerful combination of gauges, GPS, absolute gravity, satellite altimetry and space gravity for the study of sea and land level variations on a global basis. However, changes in mean levels are only one part of sea level research. Other topics include changes in extreme sea levels which are of practical importance as well as being interesting scientifically. Recent studies have begun to investigate changes in extremes worldwide, identifying those areas where secular changes in extremes tend to be determined by those in mean values, and areas where they are not. In addition, intriguing recent work has identified regional changes in ocean tides which are larger than expected from secular change in the tidal potential. Such tidal changes are also important within studies of extremes. This presentation will attempt to show the wide range of studies possible with a copious globally-distributed tide gauge data set, many of which are very relevant to the understanding of a changing world.

  7. Measuring progress of the global sea level observing system

    NASA Astrophysics Data System (ADS)

    Woodworth, Philip L.; Aarup, Thorkild; Merrifield, Mark; Mitchum, Gary T.; Le Provost, Christian

    Sea level is such a fundamental parameter in the sciences of oceanography geophysics, and climate change, that in the mid-1980s, the Intergovernmental Oceanographic Commission (IOC) established the Global Sea Level Observing System (GLOSS). GLOSS was to improve the quantity and quality of data provided to the Permanent Service for Mean Sea Level (PSMSL), and thereby, data for input to studies of long-term sea level change by the Intergovernmental Panel on Climate Change (IPCC). It would also provide the key data needed for international programs, such as the World Ocean Circulation Experiment (WOCE) and later, the Climate Variability and Predictability Programme (CLIVAR).GLOSS is now one of the main observation components of the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) of IOC and the World Meteorological Organization (WMO). Progress and deficiencies in GLOSS were presented in July to the 22nd IOC Assembly at UNESCO in Paris and are contained in the GLOSS Assessment Report (GAR) [IOC, 2003a].

  8. Coastal sea level measurements using a single geodetic GPS receiver

    NASA Astrophysics Data System (ADS)

    Larson, Kristine M.; Löfgren, Johan S.; Haas, Rüdiger

    2013-04-01

    This paper presents a method to derive local sea level variations using data from a single geodetic-quality Global Navigation Satellite System (GNSS) receiver using GPS (Global Positioning System) signals. This method is based on multipath theory for specular reflections and the use of Signal-to-Noise Ratio (SNR) data. The technique could be valuable for altimeter calibration and validation. Data from two test sites, a dedicated GPS tide gauge at the Onsala Space Observatory (OSO) in Sweden and the Friday Harbor GPS site of the EarthScope Plate Boundary Observatory (PBO) in USA, are analyzed. The sea level results are compared to independently observed sea level data from nearby and in situ tide gauges. For OSO, the Root-Mean-Square (RMS) agreement is better than 5 cm, while it is in the order of 10 cm for Friday Harbor. The correlation coefficients are better than 0.97 for both sites. For OSO, the SNR-based results are also compared with results from a geodetic analysis of GPS data of a two receivers/antennae tide gauge installation. The SNR-based analysis results in a slightly worse RMS agreement with respect to the independent tide gauge data than the geodetic analysis (4.8 cm and 4.0 cm, respectively). However, it provides results even for rough sea surface conditions when the two receivers/antennae installation no longer records the necessary data for a geodetic analysis.

  9. Measuring precise sea level from a buoy using the global positioning system

    SciTech Connect

    Rocken, C.; Kelecy, T.M.; Born, G.H. ); Young, L.E.; Purcell, G.H. Jr.; Wolf, S.K. )

    1990-11-01

    High-accuracy sea surface positioning is required for sea floor geodesy, satellite altimeter verification, and the study of sea level. An experiment to study the feasibility of using the Global Positioning System (GPS) for accurate sea surface positioning was conducted. A GPS-equipped buoy (floater) was deployed off the Scripps pier at La Jolla, California during December 13-15, 1989. Two reference GPS receivers were placed on land, one within {approximately}100 m of the floater, and the other about 80 km inland at the laser ranging site on Monument Peak. The position of the floater was determined relative to the land-fixed receivers using: (a) kinematic GPS processing software developed at the National Geodetic Survey (NGS), and (b) the Jet Propulsion Laboratory's GIPSY (GPS Inferred Positioning SYstem) software. Sea level and ocean wave spectra were calculated from GPPS measurements. These results were compared to measurements made with a NOAA tide gauge and a Paros{trademark} pressure transducer (PPT). GPS sea level for the short 100-m baseline agrees with the PPT sea level at the 1-cm level and has an rms variation of 5 mm over a period of 4 hours. Agreement between results with the two independent GPS analyses is on the order of a few millimeters. Processing of the longer Monument Peak - floater baseline is in progress and will require orbit adjustments and tropospheric modeling to obtain results comparable to the short baseline.

  10. Sea level rise within the west of Arabian Gulf using tide gauge and continuous GPS measurements

    NASA Astrophysics Data System (ADS)

    Ayhan, M. E.; Alothman, A.

    2009-04-01

    Arabian Gulf is connected to Indian Ocean and located in the south-west of the Zagros Trust Belt. To investigate sea level variations within the west of Arabian Gulf, monthly means of sea level at 13 tide gauges along the coast of Saudi Arabia and Bahrain, available in the database of the Permanent Service for Mean Sea Level (PSMSL), are studied. We analyzed individually the monthly means at each station, and estimated secular sea level rate by a robust linear trend fitting. We computed the average relative sea level rise rate of 1.96 ± 0.21 mm/yr within the west of Arabian Gulf based on 4 stations spanning longer than 19 years. Vertical land motions are included into the relative sea level measurements at the tide gauges. Therefore sea level rates at the stations are corrected for vertical land motions using the ICE-5G v1.2 VM4 Glacial Isostatic Adjustment (GIA) model then we found the average sea level rise rate of 2.27 mm/yr. Bahrain International GPS Service (IGS) GPS station, which is close to the Mina Sulman tide gauge station in Bahrain, is the only continuous GPS station accessible in the region. The weekly GPS time series of vertical component at Bahrain IGS-GPS station referring to the ITRF97 from 1999.2 to 2008.6 are downloaded from http://www-gps.mit.edu/~tah/. We fitted a linear trend with an annual signal and one break to the GPS vertical time series and found a vertical land motion rate of 0.48 ± 0.11 mm/yr. Assuming the vertical rate at Bahrain IGS-GPS station represents the vertical rate at each of the other tide gauge stations studied here in the region, we computed average sea level rise rate of 2.44 ± 0.21 mm/yr within the west of Arabian Gulf.

  11. Measuring precise sea level from a buoy using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Rocken, Christian; Kelecy, Thomas M.; Born, George H.; Young, Larry E.; Purcell, George H., Jr.; Wolf, Susan Kornreich

    1990-01-01

    The feasibility of using the Global Positioning System (GPS) for accurate sea surface positioning was examined. An experiment was conducted on the Scripps pier at La Jolla, California from December 13-15, 1989. A GPS-equipped buoy was deployed about 100 m off the pier. Two fixed reference GPS receivers, located on the pier and about 80 km away on Monument Peak, were used to estimate the relative position of the floater. Kinematic GPS processing software, developed at the National Geodetic Survey, and the Jet Propulsion Laboratory's GPS Infrared Processing System software were used to determine the floater position relative to land-fixing receivers. Calculations were made of sea level and ocean wave spectra from GPS measurements. It is found that the GPS sea level for the short 100 m baseline agrees with the PPT sea level at the 1 cm level and has an rms variation of 5 mm over a period of 4 hours.

  12. Global sea level rise

    SciTech Connect

    Douglas, B.C. )

    1991-04-15

    Published values for the long-term, global mean sea level rise determined from tide gauge records exhibit considerable scatter, from about 1 mm to 3 mm/yr. This disparity is not attributable to instrument error; long-term trends computed at adjacent sites often agree to within a few tenths of a millimeter per year. Instead, the differing estimates of global sea level rise appear to be in large part due to authors' using data from gauges located at convergent tectonic plate boundaries, where changes of land elevation give fictitious sea level trends. In addition, virtually all gauges undergo subsidence or uplift due to postglacial rebound (PGR) from the last deglaciation at a rate comparable to or greater than the secular rise of sea level. Modeling PGR by the ICE-3G model of Tushingham and Peltier (1991) and avoiding tide gauge records in areas of converging tectonic plates produces a highly consistent set of long sea level records. The value for mean sea level rise obtained from a global set of 21 such stations in nine oceanic regions with an average record length of 76 years during the period 1880-1980 is 1.8 mm/yr {plus minus} 0.1. This result provides confidence that carefully selected long tide gauge records measure the same underlying trend of sea level and that many old tide gauge records are of very high quality.

  13. Contemporary sea level rise.

    PubMed

    Cazenave, Anny; Llovel, William

    2010-01-01

    Measuring sea level change and understanding its causes has considerably improved in the recent years, essentially because new in situ and remote sensing observations have become available. Here we report on most recent results on contemporary sea level rise. We first present sea level observations from tide gauges over the twentieth century and from satellite altimetry since the early 1990s. We next discuss the most recent progress made in quantifying the processes causing sea level change on timescales ranging from years to decades, i.e., thermal expansion of the oceans, land ice mass loss, and land water-storage change. We show that for the 1993-2007 time span, the sum of climate-related contributions (2.85 +/- 0.35 mm year(-1)) is only slightly less than altimetry-based sea level rise (3.3 +/- 0.4 mm year(-1)): approximately 30% of the observed rate of rise is due to ocean thermal expansion and approximately 55% results from land ice melt. Recent acceleration in glacier melting and ice mass loss from the ice sheets increases the latter contribution up to 80% for the past five years. We also review the main causes of regional variability in sea level trends: The dominant contribution results from nonuniform changes in ocean thermal expansion. PMID:21141661

  14. Sea level measurements from inverse modelling of GNSS SNR data - initial results

    NASA Astrophysics Data System (ADS)

    Strandberg, Joakim; Hobiger, Thomas; Haas, Rüdiger

    2016-04-01

    The idea that sea level measurements could be done passively using available GNSS signals was proposed already over two decades ago. Since then several methods of using GNSS signals for measuring sea level have been proposed, using various degrees of specialized equipment. We present a new method to retrieve sea level from GNSS SNR data that relies upon inverse modelling of the detrended SNR data from a single off-the-shelf geodetic GNSS receiver. This method can simultaneously use SNR data from both GPS and GLONASS, and both L1 and L2 frequencies, in order to improve the performance with respect to prior studies. Results from the GNSS-R installation at the Onsala Space Observatory are presented and the retrieved sea level results are compared with data collected by a co-located pressure mareograph. The new method is found to give an RMS error of 1.8 cm. The results are also compared against previous implementations of GNSS tide gauges and found to have lower RMS than both the earlier SNR algorithm and also the dual receiver, phase delay method. This shows that inverse modelling for sea level retrieval has a potential to increase the precision of GNSS-R tide gauges, without the need for specialized equipment. Furthermore, since the method is based on SNR analysis, it can continue to operate during high winds and large sea roughness, in which the dual-receiver phase delay algorithm fails since the receiver connected to the nadir looking antenna does not succeed to lock on the satellites signals. This leads to a more stable and reliable operation. The ability to simultaneously use SNR data from different GNSS systems is also seen as a factor to increase the performance, further reducing the RMS. Therefore, in the future it is of interest to add further GNSS systems, such as Galileo and BeiDou.

  15. Mediterranean sea level variations.

    NASA Astrophysics Data System (ADS)

    Vigo, I.; Sánchez Reales, J. M.; García, D.; Chao, B. F.

    2009-04-01

    In this work we report an updated study of the sea level variations for the Mediterranean sea for the period from October 1992 to January 2008. The study addresses two mayor issues: (i)The analysis of the spatial and temporal variability of sea surface height (SSH) from radar altimetry measurements (from TOPEX/Poseidon (T/P) + Jason-1, etc.). We use EOF analysis to explain most of its interannual variation, and how the different basins interact. (ii) The analysis of dynamics and balance of water mass transport for the whole period. We estimate the steric SSH by combining the steric SSH estimated from temperature and salt profiles simulated by the ECCO model with time-variable gravity (TVG) data (from GRACE) for the Mediterranean Sea. The estimated steric SSH together with the SSH obtained from altimetry allow for a more realistic estimation of the water mass variations in the Mediterranean for the whole period.

  16. Understanding Sea Level Changes

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    Today more than 100 million people worldwide live on coastlines within one meter of mean sea level; any short-term or long-term sea level change relative to vertical ground motion is of great societal and economic concern. As palm-environment and historical data have clearly indicated the existence and prevalence of such changes in the past, new scientific information regarding to the nature and causes and a prediction capability are of utmost importance for the future. The 10-20 cm global sea-level rise recorded over the last century has been broadly attributed to two effects: (1) the steric effect (thermal expansion and salinity-density compensation of sea water) following global climate; (2) mass-budget changes due to a number of competing geophysical and hydrological processes in the Earth-atmosphere-hydrosphere-cryosphere system, including water exchange from polar ice sheets and mountain glaciers to the ocean, atmospheric water vapor and land hydrological variations, and anthropogenic effects such as water impoundment in artificial reservoirs and extraction of groundwater, all superimposed on the vertical motions of solid Earth due to tectonics, rebound of the mantle from past and present deglaciation, and other local ground motions. As remote-sensing tools, a number of space geodetic measurements of sea surface topography (e.g., TOPEX/Poseidon, Jason), ice mass (e.g., ICESat), time-variable gravity (e.g. GRACE), and ground motions (SLR, VLBI, GPS, InSAR, Laser altimetry, etc.) become directly relevant. Understanding sea level changes "anywhere, anytime" in a well-defined terrestrial reference frame in terms of climate change and interactions among ice masses, oceans, and the solid Earth, and being able to predict them, emerge as one of the scientific challenges in the Solid Earth Science Working Group (SESWG, 2003) conclusions.

  17. Relative Sea Level Change in Western Alaska As Constructed from Satellite Altimetry and Repeat GPS Measurements.

    NASA Astrophysics Data System (ADS)

    DeGrandpre, K. G.; Freymueller, J. T.; Kinsman, N.

    2014-12-01

    Western Alaska is a remote region populated by small communities situated in low-lying coastal environments that are sensitive to variations in local relative sea level (RSL). RSL is the measurement of sea level relative to the local ground surface. Quantification of RSL variation requires measuring vertical velocities for both tectonic motion (onshore component) and the ocean surface (offshore component). Tide gauges in conjunction with tidal benchmarks record RSL, but in Western Alaska these datums are of short duration and too sparsely distributed both temporally and spatially to be able to accurately project RSL trends. Satellite altimetry is not suited for near shore estimates, but is used in this study because of the limited tide gauge coverage both spatially and temporally. During the summers of 2013 and 2014, campaign GPS surveys of geodetic benchmarks were undertaken to produce statistically significant velocity measurements of the tectonic component of sea level change for the Seward Peninsula, Yukon-Kuskokwim Delta, and Alaska Peninsula. Occupations of tidal benchmarks were also collected to compare historic tidal records from the mid-1900s to more recent data. Preliminary results from the GPS survey suggest regional subsidence of approximately 1-2 mm/yr of the Seward Peninsula, which supports one of the current glacial isostatic adjustment (GIA) models available for Western Alaska. The vertical velocity of the tectonic component and the satellite derived mean sea level trend will be coupled to produce a model of RSL change in Western Alaska that will be used to aid local communities in the development of adaptation strategies for changing coastal environments.

  18. A novel method to measure sea-level with GLONASS-based GNSS-Reflectometry

    NASA Astrophysics Data System (ADS)

    Hobiger, Thomas; Haas, Rüdiger; Löfgren, Johan

    2014-05-01

    Global Navigation Satellite System (GNSS) applications usually process the received satellite signals to determine position, velocity or time of the receiver, or derive information about the atmosphere or ionosphere. In general, GNSS signals are transmitted from satellites and are expected to be received by a ground-based antenna, avoiding multi-path or reflections in order to achieve utmost high precision positioning results. Nevertheless, the information from reflected signals can become a valuable data source, from which (geo-) physical properties can be deduced. This approach, called GNSS-Reflectometry (GNSS-R), can be used to develop instruments that act as an altimeter when arrival times of direct and reflected signals are compared. Current GNSS-R systems usually entirely rely on signals from the Global Positioning Service (GPS). Field experiments could demonstrate that such systems can measure sea level with an accuracy of a few centimeter (Löfgren et al., 2011). However, the usage of the Russian GLONASS system, which has not been considered so far, has the potential to simplify the processing scheme and to allow handling of direct and reflected signals like a bi-static radar. Thus, such a GLONASS-based GNSS-R system was developed and deployed for test purposes at the Onsala Space Observatory, Sweden. Over a period of two weeks in October 2013, sea-level monitoring and measurements with the newly developed GLONASS-based GNSS-R system were carried out, in parallel to measurements with the conventional GPS-based GNSS-R installation at Onsala. In addition, data from tide gauge measurements were available for comparison. It can be shown that precision and accuracy of the GLONASS-based GNSS-R system is comparable to conventional GPS-based GNSS-R solutions. Moreover, the simplicity of the newly developed system allows to make it a cheap and valuable tool for a variety of ocean sciences applications. Such a system could be mounted on a vessel or aboard an airplane

  19. Radiation exposure at sea level measurement between Rio de Janeiro and the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    De Freitas, A. C.; Alencar, A. S.; Coutinho, C. R.; Paschoa, A. S.

    2007-09-01

    A sea trip was made aboard the vessel NApOc Ary Rongel of the Brazilian Navy from Rio de Janeiro (Lat. 22°S) to Admiralty Bay (Lat. 62°S) in the King George Island in the Antarctic Peninsula. This trip was part of the Brazilian Antarctic Programme. Radiation measurements were carried out with a proportional counter along the ship round-trip route, which sailed partially under the South Atlantic Anomaly. Only those measurements, which were taken after the vessel was farther than one nautical mile offshore were used. This procedure minimizes radiation contributions from land. External radiation measurements made offshore give an indication of the secondary cosmic ray intensity at sea level. Barometric pressure measurements were registered along the round-trip route as well. Negative correlations between the measured external radiation and the barometric pressure on the vessel were observed in both ways of the round-trip. In latitudes above 42°S, the negative correlation became more prominent. In 1935 the variation of the secondary cosmic radiation with atmospheric pressure was known as the barometric paradox. Recently, an attempt was made to associate long-term variations of the surface pressure with solar activity and galactic cosmic rays. The results are discussed taking into account that as the barometric pressure increases the particle density in the atmosphere also increases. In such case, there are an increasing number of interactions with the particles produced in the hadronic showers, because of decreasing mean free path. Thus, the number of particles reaching a detector at the sea level decreases.

  20. Balancing regional sea level budgets

    NASA Astrophysics Data System (ADS)

    Leuliette, E. W.; Miller, L.; Tamisiea, M. E.

    2015-12-01

    Balancing the sea-level budget is critical to understanding recent and future climate change as well as balancing Earth's energy budget and water budget. During the last decade, advancements in the ocean observing system — satellite altimeters, hydrographic profiling floats, and space-based gravity missions — have allowed the global mean sea level budget to?be assessed with unprecedented accuracy from direct, rather than inferred, estimates. In particular, several recent studies have used the sea-level budget to bound the rate of deep ocean warming [e.g. Llovel et al. 2014]. On a monthly basis, the sum of the steric component estimated from Argo and the ocean mass (barostatic) component from GRACE agree total sea level from Jason within the estimated uncertainties with the residual difference having an r.m.s. of less than 2 mm [Leuliette 2014]. Direct measurements of ocean warming above 2000 m depth during January 2005 and July 2015 explain about one-third of the observed annual rate of global mean sea-level rise. Extending the understanding of the sea-level budget from global mean sea level to regional patterns of sea level change is crucial for identifying regional differences in recent sea level change. The local sea-level budget can be used to identify any systematic errors in the global ocean observing system. Using the residuals from closing the sea level budget, we demonstrate that systematic regional errors remain, in part due to Argo sampling. We also show the effect of applying revised geocentric pole-tide corrections for GRACE [Wahr et al. 2015] and altimetry [Desai et al., 2015].

  1. Sea level variation

    NASA Technical Reports Server (NTRS)

    Douglas, Bruce C.

    1992-01-01

    Published values for the long-term, global mean sea level rise determined from tide gauge records range from about one to three mm per year. The scatter of the estimates appears to arise largely from the use of data from gauges located at convergent tectonic plate boundaries where changes of land elevation give fictitious sea level trends, and the effects of large interdecadal and longer sea level variations on short (less than 50+ years) or sappy records. In addition, virtually all gauges undergo subsidence or uplift due to isostatic rebound from the last deglaciation at a rate comparable to or greater than the secular rise of sea level. Modeling rebound by the ICE-3G model of Tushingham and Peltier (1990) and avoiding tide gauge records in areas of converging tectonic plates produces a highly consistent set of long sea level records. A global set of 21 such stations in nine oceanic regions with an average record length of 76 years during the period 1880-1980 yields the global sea level rise value 1.8 mm/year +/- 0.1. Greenhouse warming scenarios commonly forecast an additional acceleration of global sea level in the next 5 or 6+ decades in the range 0.1-0.2 mm/yr2. Because of the large power at low frequencies in the sea level spectrum, very long tide gauge records (75 years minimum) have been examined for past apparent sea level acceleration. For the 80-year period 1905-1985, 23 essentially complete tide gauge records in 10 geographic groups are available for analysis. These yielded the apparent global acceleration -0.011 (+/- 0.012) mm/yr2. A larger, less uniform set of 37 records in the same 10 groups with 92 years average length covering the 141 years from 1850-1991 gave 0.001 (+/- 0.008) mm/yr2. Thus there is no evidence for an apparent acceleration in the past 100+ years that is significant either statistically, or in comparison to values associated with global warming. Unfortunately, the large interdecadal fluctuations of sea level severely affect

  2. Sea level change

    SciTech Connect

    Meier, M.F.

    1996-12-31

    The IPCC (Intergovernmental Panel on Climate Change) 1995 Scientific Assessment, Chapter 7. Sea Level Change, presents a modest revision of the similar chapter in the 1990 Assessment. Principal conclusions on observed sea-level change and the principal terms in the sea-level equation (ocean thermal expansion, glaciers, ice sheets, and land hydrology), including our knowledge of the present-day (defined as the 20th Century) components of sea-level rise, and projections of these for the future, are presented here. Some of the interesting glaciological problems which are involved in these studies are discussed in more detail. The emphasis here is on trends over decades to a century, not on shorter variations nor on those of the geologic past. Unfortunately, some of the IPCC projections had not been agreed at the time of writing of this paper, and these projections will not be given here. 15 refs., 2 figs.

  3. Projecting future sea level

    USGS Publications Warehouse

    Cayan, Daniel R.; Bromirski, Peter; Hayhoe, Katharine; Tyree, Mary; Dettinger, Mike; Flick, Reinhard

    2006-01-01

    California’s coastal observations and global model projections indicate that California’s open coast and estuaries will experience increasing sea levels over the next century. Sea level rise has affected much of the coast of California, including the Southern California coast, the Central California open coast, and the San Francisco Bay and upper estuary. These trends, quantified from a small set of California tide gages, have ranged from 10–20 centimeters (cm) (3.9–7.9 inches) per century, quite similar to that estimated for global mean sea level. So far, there is little evidence that the rate of rise has accelerated, and the rate of rise at California tide gages has actually flattened since 1980, but projections suggest substantial sea level rise may occur over the next century. Climate change simulations project a substantial rate of global sea level rise over the next century due to thermal expansion as the oceans warm and runoff from melting land-based snow and ice accelerates. Sea level rise projected from the models increases with the amount of warming. Relative to sea levels in 2000, by the 2070–2099 period, sea level rise projections range from 11–54 cm (4.3–21 in) for simulations following the lower (B1) greenhouse gas (GHG) emissions scenario, from 14–61 cm (5.5–24 in) for the middle-upper (A2) emission scenario, and from 17–72 cm (6.7–28 in) for the highest (A1fi) scenario. In addition to relatively steady secular trends, sea levels along the California coast undergo shorter period variability above or below predicted tide levels and changes associated with long-term trends. These variations are caused by weather events and by seasonal to decadal climate fluctuations over the Pacific Ocean that in turn affect the Pacific coast. Highest coastal sea levels have occurred when winter storms and Pacific climate disturbances, such as El Niño, have coincided with high astronomical tides. This study considers a range of projected future

  4. Dtection of Sea Level Rise within the Arabian Gulf Using Space Based GNSS Measurements and Insitu Tide Gauge data

    NASA Astrophysics Data System (ADS)

    Alothman, Abdulaziz; Ayhan, Mehmet

    In the 21st century, sea level rise is expected to be about 30 cm or even more (up to 60 cm). Saudi Arabia has very long coasts of about 3400 km and hundreds of islands. Therefore, sea level monitoring may be important in particular along coastal low lands on Red Sea and Arabian Gulf coasts. Arabian Gulf is connected to Indian Ocean and lying along a parallel course in the south-west of the Zagros Trust Belt. We expect vertical land motion within the area due to both tectonic structures of the Arabian Peninsula and oil production activities. Global Navigation Satellite System (GNSS) Continues observations were used to estimate the vertical crustal motion. Bahrain International GPS Service (IGS-GPS) station is the only continuous GPS station accessible in the region, and it is close to the Mina Sulman tide gauge station in Bahrain. The weekly GPS time series of vertical component at Bahrain IGS-GPS station referring to the ITRF97 from 1999.2 to 2008.6 are used in the computation. We fitted a linear trend with an annual signal and a break to the GPS vertical time series and found a vertical land motion rate of 0.46 0.11 mm/yr. To investigate sea level variation within the west of Arabian Gulf, monthly means of sea level at 13 tide gauges along the coast of Saudi Arabia and Bahrain, available in the database of the Permanent Service for Mean Sea Level (PSMSL), are studied. We analyzed separately the monthly mean sea level measurements at each station, and estimated secular sea level rate by a robust linear trend fitting. We computed the average relative sea level rise rate of 1.96 0.21 mm/yr within the west of Arabian Gulf based on 4 stations spanning longer than 19 years. Sea level rates at the stations are first corrected for vertical land motion contamination using the ICE-5G v1.2 VM4 Glacial Isostatic Adjustment (GIA) model, and the average sea level rate is found 2.27 0.21 mm/yr. Assuming the vertical rate at Bahrain IGS-GPS station represents the vertical rate

  5. Rising Seas: Threat to Coastal Areas, A General Study about the Sea Level Rises on Coastal Areas of Earth, its Consequences and Preventive Measures.

    NASA Astrophysics Data System (ADS)

    Kataria, A.

    2015-12-01

    Scientific research indicates that sea levels worldwide have been rising at a rate of 3 millimeters per year since the early 1990s (IPCC), which is much higher than the previous century. The recent measurements (march 2015; NASA) tells us that the present rise of sea level is 64.4 mm. Most recent satellite measurements and tide gauge readings (NASA) tell us that present rate sea level rise is 3.20 mm per year. A recent study says we can expect the oceans to rise between 2.5 and 6.5 feet (0.8 and 2 meters) by 2100. The two main causes of rising seas are thermal expansion and glacier melting which further corresponds to the root cause of sea level rise: Green House effect. For every degree Celsius that global average temperature rises, we can expect 2.3 meters of sea-level rise sometime over the ensuing 2,000 years. The main consequence of Sea level rise is increase in oceanic acidity as it releases the entrapped carbon dioxide in between the glaciers. The problem goes from bad to worse when we take into consideration that one third of the world population lives in a 60 km range from the coast. In the event of a flood, this massive population would have to move away from the coasts. The main objective of research is to find all the most vulnerable areas, to make people aware about the consequences and to take proper measurements to fight with such natural calamities. The rise in sea level would inevitably cause massive migration like never seen before. Over 25% of the world population could disappear if sea levels continues to rise with same or faster rate as present. The oceans, sea life and life of people at coastal areas will get extremely effected unless there are considerable cuts in the carbon dioxide emissions. What we need to do is just to apply all the methods and measurements in our daily life that can help reduce the green house gases emissions. Also we need to plan that how to prevent all these cities in case of such natural hazards.

  6. High-Level Clouds and Relation to Sea Surface Temperature as Inferred from Japan's GMS Measurements

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lindzen, Richard S.; Lee, Kyu-Tae; Einaudi, Franco (Technical Monitor)

    2000-01-01

    High-level clouds have a significant impact on the radiation energy budgets and, hence, the climate of the Earth. Convective cloud systems, which are controlled by large-scale thermal and dynamical conditions, propagate rapidly within days. At this time scale, changes of sea surface temperature (SST) are small. Radiances measured by Japan's Geostationary Meteorological Satellite (GMS) are used to study the relation between high-level clouds and SST in the tropical western and central Pacific (30 S-30 N; 130 E-170 W), where the ocean is warm and deep convection is intensive. Twenty months (January 1998 - August, 1999) of GMS data are used, which cover the second half of the strong 1997-1998 El Nino. Brightness temperature at the 11-micron channel is used to identify high-level clouds. The core of convection is identified based on the difference in the brightness temperatures of the 11- and 12-micron channels. Because of the rapid movement of clouds, there is little correlation between clouds six hours apart. When most of deep convection moves to regions of high SST, the domain averaged high-level cloud amount decreases. A +2C change of SST in cloudy regions results in a relative change of -30% in high-level cloud amount. This large change in cloud amount is due to clouds moving from cool regions to warm regions but not the change in SST itself. A reduction in high-level cloud amount in the equatorial region implies an expanded dry upper troposphere in the off-equatorial region, and the greenhouse warming of high clouds and water vapor is reduced through enhanced longwave cooling to space. The results are important for understanding the physical processes relating SST, convection, and water vapor in the tropics. They are also important for validating climate simulations using global general circulation models.

  7. The effects of artificially impounded water on tide gauge measurements of sea level over the last century

    NASA Astrophysics Data System (ADS)

    Haberling, S.; Zhang, Y.; Rothacher, M.; Geiger, A.; Clinton, J. F.

    2011-12-01

    Tide gauge measurements spanning the last century reveal global scale and regionally varying changes in sea level. These changes are comprised of signals from a number of natural and anthropogenically forced processes, including ongoing glacial isostatic adjustment, mass flux from polar ice sheets and glaciers, thermosteric effects, and variability in patterns of ocean circulation. We present a new analysis of sea-level changes arising from the impoundment over the last century of more than 6,100 km3 of water (plus estimates of seepage into surrounding soils) in ~6,800 reservoirs around the globe (Chao et al., Science, 2008; Fiedler & Conrad, Geophys. Res. Lett., 2010). In particular, we extend the analysis of Fiedler & Conrad (2010) by adopting a database that includes an additional ~30% of water impoundment. Our calculations are based on a gravitationally self-consistent theory that incorporates the full suite of gravitational, rotational and (elastic) deformational effects on sea level (Kendall et al., Geophys. J. Int., 2005). The signal associated with impoundment at each reservoir is characterized by a sea level fall that is ~30% higher than the globally averaged (eustatic) value of the impoundment. In contrast, in the near field, sea level rises in response to both deformational and gravitational effects with an amplitude that is roughly an order of magnitude greater than the eustatic amplitude. We present global maps of the total sea-level change associated with the reservoirs, and report on an effort to detect the impoundment signal at individual tide gauges.

  8. Caribbean Sea Level Network

    NASA Astrophysics Data System (ADS)

    von Hillebrandt-Andrade, C.; Crespo Jones, H.

    2012-12-01

    Over the past 500 years almost 100 tsunamis have been observed in the Caribbean and Western Atlantic, with at least 3510 people having lost their lives to this hazard since 1842. Furthermore, with the dramatic increase in population and infrastructure along the Caribbean coasts, today, millions of coastal residents, workers and visitors are vulnerable to tsunamis. The UNESCO IOC Intergovernmental Coordination Group for Tsunamis and other Coastal Hazards for the Caribbean and Adjacent Regions (CARIBE EWS) was established in 2005 to coordinate and advance the regional tsunami warning system. The CARIBE EWS focuses on four areas/working groups: (1) Monitoring and Warning, (2) Hazard and Risk Assessment, (3) Communication and (4) Education, Preparedness and Readiness. The sea level monitoring component is under Working Group 1. Although in the current system, it's the seismic data and information that generate the initial tsunami bulletins, it is the data from deep ocean buoys (DARTS) and the coastal sea level gauges that are critical for the actual detection and forecasting of tsunamis impact. Despite multiple efforts and investments in the installation of sea level stations in the region, in 2004 there were only a handful of sea level stations operational in the region (Puerto Rico, US Virgin Islands, Bermuda, Bahamas). Over the past 5 years there has been a steady increase in the number of stations operating in the Caribbean region. As of mid 2012 there were 7 DARTS and 37 coastal gauges with additional ones being installed or funded. In order to reach the goal of 100 operational coastal sea level stations in the Caribbean, the CARIBE EWS recognizes also the importance of maintaining the current stations. For this, a trained workforce in the region for the installation, operation and data analysis and quality control is considered to be critical. Since 2008, three training courses have been offered to the sea level station operators and data analysts. Other

  9. Sea Level Rise in Tuvalu

    NASA Astrophysics Data System (ADS)

    Lin, C. C.; Ho, C. R.; Cheng, Y. H.

    2012-04-01

    Most people, especially for Pacific Islanders, are aware of the sea level change which may caused by many factors, but no of them has deeper sensation of flooding than Tuvaluan. Tuvalu, a coral country, consists of nine low-lying islands in the central Pacific between the latitudes of 5 and 10 degrees south, has the average elevation of 2 meters (South Pacific Sea Level and Climate Monitoring Project, SPSLCMP report, 2006) up to sea level. Meanwhile, the maximum sea level recorded was 3.44m on February 28th 2006 that damaged Tuvaluan's property badly. Local people called the flooding water oozes up out of the ground "King Tide", that happened almost once or twice a year, which destroyed the plant, polluted their fresh water, and forced them to colonize to some other countries. The predictable but uncontrollable king tide had been observed for a long time by SPSLCMP, but some of the uncertainties which intensify the sea level rise need to be analyzed furthermore. In this study, a span of 18 years of tide gauge data accessed from Sea Level Fine Resolution Acoustic Measuring Equipment (SEAFRAME) are compared with the satellite altimeter data accessed from Archiving Validation and Interpretation of Satellite Data in Oceanography (AVISO). All above are processed under the limitation of same time and spatial range. The outcome revealed a 9.26cm difference between both. After the tide gauge data shifted to the same base as altimeter data, the results showed the unknown residuals are always positive under the circumstances of the sea level rise above 3.2m. Apart from uncertainties in observing, the residual reflected unknown contributions. Among the total case number of sea level rise above 3.2m is 23 times, 22 of which were recorded with oceanic warm eddy happened simultaneously. The unknown residual seems precisely matched with oceanic warm eddies and illustrates a clear future approach for Tuvaluan to care for.

  10. The actual measurements at the tide gauges do not support strongly accelerating twentieth-century sea-level rise reconstructions

    NASA Astrophysics Data System (ADS)

    Parker, A.

    2016-03-01

    Contrary to what is claimed by reconstructions of the Global Mean Sea Level (GMSL) indicating accelerating sea level rates of rise over the twentieth-century, the actual measurements at the tide gauges show the sea levels have not risen nor accelerated that much. The most recent estimation by Hay et al [1] of the twentieth-century global mean sea level (GMSL) rise is the last attempt to give exact reconstructions without having enough information of the state of the world oceans over a century where unfortunately the good measurements were not that many. The information on relative rates of rise at the tide gauges and land subsidence of global positioning system (GPS) domes suggest the relative rate of rise is about 0.25mm/year, without any detectable acceleration. [The naïve average of all the world tide gauges of sufficient quality and length of the Permanent Service to Mean Sea Level (PSMSL) data base], Both the relative rates of rise at the tide gauges and the land vertical velocity of GPS domes of the Système d'Observation du Niveau des Eaux Littorales (SONEL) data base are strongly variable in space and time to make a nonsense the GMSL estimation.

  11. The actual measurements at the tide gauges do not support strongly accelerating twentieth-century sea-level rise reconstructions

    NASA Astrophysics Data System (ADS)

    Parker, A.

    2016-03-01

    Contrary to what is claimed by reconstructions of the Global Mean Sea Level (GMSL) indicating accelerating sea level rates of rise over the twentieth-century, the actual measurements at the tide gauges show the sea levels have not risen nor accelerated that much. The most recent estimation by Hay et al of the twentieth-century global mean sea level (GMSL) rise is the last attempt to give exact reconstructions without having enough information of the state of the world oceans over a century where unfortunately the good measurements were not that many. The information on relative rates of rise at the tide gauges and land subsidence of global positioning system (GPS) domes suggest the relative rate of rise is about 0.25mm/year, without any detectable acceleration. [The naïve average of all the world tide gauges of sufficient quality and length of the Permanent Service to Mean Sea Level (PSMSL) data base], Both the relative rates of rise at the tide gauges and the land vertical velocity of GPS domes of the Système d'Observation du Niveau des Eaux Littorales (SONEL) data base are strongly variable in space and time to make a nonsense the GMSL estimation.

  12. Baseline Measurements of Trace Gases at High Mountain and Sea-level Stations in Taiwan

    NASA Astrophysics Data System (ADS)

    Ou-Yang, C.; Wang, J.; Lin, N.; Lee, C.; Sheu, G.; Hsieh, H.; Liu, W.

    2012-12-01

    High mountains in Taiwan may serve as ideal locations to monitor seasonal alternation of air masses from Asian continental outflow from mainland China, biomass burning from Southeast Asia, and oceanic influences from the Pacific. The operation of Lulin Atmospheric Background Station (LABS, 23.51°N, 120.92°E, 2862 m a.s.l.) started in April 2006, aiming at studying the regional baseline conditions and its coupling with local air quality. Based on six-year's measurements, the springtime maximum of CO and O3 is likely caused by the long-range transport of air masses from Southeast Asia with biomass burning signature. In contrast, the Pacific oceanic air masses cause the summertime minimum. Diurnal variations of CO and O3 at LABS were found to be different from those at the surface. CO show maximum levels in late afternoon, and minima at night. O3 however shows a nearly opposite cycle to CO with minima at noon. Intriguingly, this O3 diurnal pattern repeated for five years, but changed since May 2011 for reasons that remain to be unraveled. Ozone depleting substance such as CFCs and Halons, and GHGs such as CO2 and CH4 were observed continuously at LABS since December 2007 and March 2011, respectively. Years after the implementation of the Montreal Protocols for the A5 countries, the ODS are expected to decline over time. Based on the measurements of seven halocarbons at LABS, most of the species are found to be either leveling off or decreasing during this period. For CO2 and CH4 measurements, a cavity ring-down spectroscopy was used and their seasonal variations were found to be similar to those at other sites in the East Asia. The results of flask samples analyzed by NOAA/ESRL/GMD were also discussed in this study. In addition to LABS, baseline observation was also conducted on a small island - Dongsha (20.70°N, 116.73°E), which is situated between Taiwan and the Philippines, serving as an ideal representative of the northern South China Sea. Both GHGs and O3

  13. Changing Sea Levels

    NASA Astrophysics Data System (ADS)

    Pugh, David

    2004-04-01

    Flooding of coastal communities is one of the major causes of environmental disasters world-wide. This textbook explains how sea levels are affected by astronomical tides, weather effects, ocean circulation and climate trends. Based on courses taught by the author in the U.K. and the U.S., it is aimed at undergraduate students at all levels, with non-basic mathematics being confined to Appendices and a website http://publishing.cambridge.org/resources/0521532183/.

  14. Dynamics of sea level variations in the coastal Red Sea

    NASA Astrophysics Data System (ADS)

    Churchill, James; Abulnaja, Yasser; Nellayaputhenpeedika, Mohammedali; Limeburner, Richard; Lentz, Steven

    2016-04-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. While considerable scientific work has been directed at tidal and seasonal variations of Red Sea water level, very little attention has been given to elevation changes in an 'intermediate' frequency band, with periods of 2-30 d, even though motions in this band account for roughly half of the sea level variance in central Red Sea. We examined the sea level signal in this band using AVISO sea level anomaly (SLA) data, COARDAS wind data and measurements from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters. Empirical orthogonal function analysis of the SLA data indicates that longer-period (10-30 d) sea level variations in the intermediate band are dominated by coherent motions in a single mode that extends over most of the Red Sea axis. Idealized model results indicate that this large-scale mode of sea level motion is principally due to variations in the large-scale gradient of the along-axis wind. Our analysis indicates that coastal sea level motions at shorter periods (2-10 d) are principally generated by a combination of direct forcing by the local wind stress and forcing associated with large-scale wind stress gradients. However, also contributing to coastal sea level variations in the intermediate frequency band are mesoscale eddies, which are prevalent throughout the Red Sea basin, have a sea level signal of 10's of cm and produce relatively small-scale (order 50 km) changes in coastal sea level.

  15. Sea level measurements using multi-frequency GPS and GLONASS observations

    NASA Astrophysics Data System (ADS)

    Löfgren, Johan S.; Haas, Rüdiger

    2014-12-01

    Global Positioning System (GPS) tide gauges have been realized in different configurations, e.g., with one zenith-looking antenna, using the multipath interference pattern for signal-to-noise ratio (SNR) analysis, or with one zenith- and one nadir-looking antenna, analyzing the difference in phase delay, to estimate the sea level height. In this study, for the first time, we use a true Global Navigation Satellite System (GNSS) tide gauge, installed at the Onsala Space Observatory. This GNSS tide gauge is recording both GPS and Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) signals and makes it possible to use both the one- and two-antenna analysis approach. Both the SNR analysis and the phase delay analysis were evaluated using dual-frequency GPS and GLONASS signals, i.e., frequencies in the L-band, during a 1-month-long campaign. The GNSS-derived sea level results were compared to independent sea level observations from a co-located pressure tide gauge and show a high correlation for both systems and frequency bands, with correlation coefficients of 0.86 to 0.97. The phase delay results show a better agreement with the tide gauge sea level than the SNR results, with root-mean-square differences of 3.5 cm (GPS L1 and L2) and 3.3/3.2 cm (GLONASS L1/L2 bands) compared to 4.0/9.0 cm (GPS L1/L2) and 4.7/8.9 cm (GLONASS L1/L2 bands). GPS and GLONASS show similar performance in the comparison, and the results prove that for the phase delay analysis, it is possible to use both frequencies, whereas for the SNR analysis, the L2 band should be avoided if other signals are available. Note that standard geodetic receivers using code-based tracking, i.e., tracking the un-encrypted C/A-code on L1 and using the manufacturers' proprietary tracking method for L2, were used. Signals with the new C/A-code on L2, the so-called L2 C , were not tracked. Using wind speed as an indicator for sea surface roughness, we find that the SNR analysis performs better in rough sea

  16. Analysis of sea level and sea surface temperature changes in the Black Sea

    NASA Astrophysics Data System (ADS)

    Betul Avsar, Nevin; Jin, Shuanggen; Kutoglu, Hakan; Erol, Bihter

    2016-07-01

    The Black Sea is a nearly closed sea with limited interaction with the Mediterranean Sea through the Turkish Straits. Measurement of sea level change will provide constraints on the water mass balance and thermal expansion of seawaters in response to climate change. In this paper, sea level changes in the Black Sea are investigated between January 1993 and December 2014 using multi-mission satellite altimetry data and sea surface temperature (SST) data. Here, the daily Maps of Sea Level Anomaly (MSLA) gridded with a 1/8°x1/8° spatial resolution from AVISO and the NOAA 1/4° daily Optimum Interpolation Sea Surface Temperature (OISST) Anomaly data set are used. The annual cycles of sea level and sea surface temperature changes reach the maximum values in November and January, respectively. The trend is 3.16±0.77 mm/yr for sea level change and -0.06±0.01°C/yr for sea surface temperature during the same 22-year period. The observed sea level rise is highly correlated with sea surface warming for the same time periods. In addition, the geographical distribution of the rates of the Black Sea level and SST changes between January 1993 and December 2014 are further analyzed, showing a good agreement in the eastern Black Sea. The rates of sea level rise and sea surface warming are larger in the eastern part than in the western part except in the northwestern Black Sea. Finally, the temporal correlation between sea level and SST time series are presented based on the Empirical Orthogonal Function (EOF) analysis.

  17. Sea level anomalies exacerbate beach erosion

    NASA Astrophysics Data System (ADS)

    Theuerkauf, Ethan J.; Rodriguez, Antonio B.; Fegley, Stephen R.; Luettich, Richard A.

    2014-07-01

    Sea level anomalies are intra-seasonal increases in water level forced by meteorological and oceanographic processes unrelated to storms. The effects of sea level anomalies on beach morphology are unknown but important to constrain because these events have been recognized over large stretches of continental margins. Here, we present beach erosion measurements along Onslow Beach, a barrier island on the U.S. East Coast, in response to a year with frequent sea level anomalies and no major storms. The anomalies enabled extensive erosion, which was similar and in most places greater than the erosion that occurred during a year with a hurricane. These results highlight the importance of sea level anomalies in facilitating coastal erosion and advocate for their inclusion in beach-erosion models and management plans. Sea level anomalies amplify the erosive effects of accelerated sea level rise and changes in storminess associated with global climate change.

  18. Sonmicat: Sea Level Observation System of Catalonia

    NASA Astrophysics Data System (ADS)

    Martinez-Benjamin, J. J.; Termens, A.; Ruiz, A.; Gonzalez Lopez, S.

    2014-12-01

    SONMICAT is the integrated sea level observation system of Catalonia. SONMICAT aims at providing high-quality continous measurements of sea- and land levels at the Catalan coast from tide gauges (relative sea levels) and from modern geodetic techniques (vertical land motion and absolute sea levels) for studies on long-term sea level trends, but also the calibration of satellite altimeters, for instance. This synergy is indeed the only way to get a clear and unambigous picture of what is actually going on at the coast of Catalonia. SONMICAT aims to be: - an integrated sea level monitoring system (different types of data, sources, time and space scales), - a sea level information system handling the data measured by different observation networks, - a local/regional component of international sea level observing systems (GLOSS, ESEAS, etc.), and - a local/regional interface for related European and Global projects and databases (PSML, TIGA, etc.) There is a gap of sea level data (GLOSS, PSML, TIGA) in the coast of Catalonia, although several groups and institutions have started to do some work. SONMICAT will fill it. Up to now, the system has started at l'Estartit and Barcelona harbours. A description of the actual SONMICAT infraestructure and campaigns - especially at Barcelona harbour - are presented. In June 2014, an airborne LiDAR campaign has been carrying on in Barcelona following two ICESat tracks. First results of the airborne survey will also be presented.

  19. A Study on Sea Level Variations of the Korean Peninsula and Surrounding Areas Based on Tide Gauge, GPS and Satellite Altimeter Measurements

    NASA Astrophysics Data System (ADS)

    Kim, K.; Park, K.; Won, J.

    2010-12-01

    Sea level variations of the Korean peninsula and surrounding areas in the ranges of 20-40 °N and 110-145 °E were investigated for the purpose of understanding the regional characteristics of the abnormal sea level rise near the Jeju island located in the southern edge of the Korean peninsula. For this study, we used tide gauge (TG) data, Global Positioning System (GPS) observations, and satellite altimeter measurements taken in the study area. We used the data at 194 TG stations. We obtained the TG data from 38 stations operated by Korea Hydrographic and Oceanographic Administration (KHOA) in Korea. We also collected monthly mean sea level observations from 139 and 17 TG stations of Japan and China, respectively. The data of Japan and China are from Global Sea Level Observing System (GLOSS) and Permanent Service for Mean Sea Level (PSMSL) services. We computed sea level rates using monthly mean sea level measurements, and analyzed spatial-temporal correlation through the Empirical Orthogonal Function (EOF) and Fast Fourier Transform (FFT) analysis. As the second part of our study, we derived absolute sea level rise rates by correcting the TG data for crustal deformation rates. To obtain the uplift rates in the area, we used continuous measurements at permanent GPS stations located at the TG site. For GPS data processing high-precision GPS data processing program GIPSY-OASIS II was used. To analyze local signatures of crustal deformation, we subtracted the primary EOF mode signal from the GPS height time series. Furthermore, we compared the obtained absolute sea level rates with satellite altimeter measurements. We obtained and analyzed TOPEX/Poseidon, Jason-1, and Jason-2 satellite altimeter data provided by AVISO from 1993 to 2010. We found that the absolute sea level rates from geodetic measurements are generally in good agreement with radar altimeter rates.

  20. Two Sea-Level Challenges

    NASA Astrophysics Data System (ADS)

    Galvin, C.

    2008-12-01

    "No place on the sandy ocean shores of the world has been shown to be eroding because of sea level rise." This statement appeared nearly 19 years ago in bold print at the top of the page in a brief article published in Shore and Beach (Galvin,1990). The term "sea level rise" was defined in 1990 as follows: "In this statement, "sea level rise" has the meaning that the average person on the street usually attaches to that term. That is, sea level is rising; not, as in some places like the Mississippi River delta, land level is sinking." While still a subject of controversy, it is now (2008) increasingly plausible (Tornqvist et al,2008) that damage from Hurricane Katrina was significantly worse on the Mississippi River delta because floodwaters exploited wetlands and levees whose elevations had been lowered by decades of compaction in the underlying soil. (1) "Sea level" commonly appears in the literature as "relative sea level rise", occurring that way in 711 publications between 1980 and 2009 (GeoRef database on 8 Sep 08). "Relative sea level rise" does not appear in the 2005 AGI Glossary. The nearest Glossary term is "relative change in sea level", but that term occurs in only 12 publications between 1980 and 2009. The Glossary defines this term in a sequence stratigraphy sense, which infers that "relative sea level rise" is the sum of bottom subsidence and eustatic sea level rise. In plain English, "relative sea level rise" means "water depth increase". For present day coastal environments, "relative sea level rise" is commonly used where eustatic sea level rise is less than subsidence, that is, where the magnitude of actual sea level rise is smaller than the magnitude of subsidence. In that situation, "relative sea level rise" misleads both the average person and the scientist who is not a coastal geologist. Thus, the first challenge is to abandon "relative sea level rise" in favor of "water depth increase", in order that the words accurately descibe what happens

  1. Uncertainties in Measuring Populations Potentially Impacted by Sea Level Rise and Coastal Flooding

    PubMed Central

    Mondal, Pinki; Tatem, Andrew J.

    2012-01-01

    A better understanding of the impact of global climate change requires information on the locations and characteristics of populations affected. For instance, with global sea level predicted to rise and coastal flooding set to become more frequent and intense, high-resolution spatial population datasets are increasingly being used to estimate the size of vulnerable coastal populations. Many previous studies have undertaken this by quantifying the size of populations residing in low elevation coastal zones using one of two global spatial population datasets available – LandScan and the Global Rural Urban Mapping Project (GRUMP). This has been undertaken without consideration of the effects of this choice, which are a function of the quality of input datasets and differences in methods used to construct each spatial population dataset. Here we calculate estimated low elevation coastal zone resident population sizes from LandScan and GRUMP using previously adopted approaches, and quantify the absolute and relative differences achieved through switching datasets. Our findings suggest that the choice of one particular dataset over another can translate to a difference of more than 7.5 million vulnerable people for countries with extensive coastal populations, such as Indonesia and Japan. Our findings also show variations in estimates of proportions of national populations at risk range from <0.1% to 45% differences when switching between datasets, with large differences predominantly for countries where coarse and outdated input data were used in the construction of the spatial population datasets. The results highlight the need for the construction of spatial population datasets built on accurate, contemporary and detailed census data for use in climate change impact studies and the importance of acknowledging uncertainties inherent in existing spatial population datasets when estimating the demographic impacts of climate change. PMID:23110208

  2. Uncertainties in measuring populations potentially impacted by sea level rise and coastal flooding.

    PubMed

    Mondal, Pinki; Tatem, Andrew J

    2012-01-01

    A better understanding of the impact of global climate change requires information on the locations and characteristics of populations affected. For instance, with global sea level predicted to rise and coastal flooding set to become more frequent and intense, high-resolution spatial population datasets are increasingly being used to estimate the size of vulnerable coastal populations. Many previous studies have undertaken this by quantifying the size of populations residing in low elevation coastal zones using one of two global spatial population datasets available - LandScan and the Global Rural Urban Mapping Project (GRUMP). This has been undertaken without consideration of the effects of this choice, which are a function of the quality of input datasets and differences in methods used to construct each spatial population dataset. Here we calculate estimated low elevation coastal zone resident population sizes from LandScan and GRUMP using previously adopted approaches, and quantify the absolute and relative differences achieved through switching datasets. Our findings suggest that the choice of one particular dataset over another can translate to a difference of more than 7.5 million vulnerable people for countries with extensive coastal populations, such as Indonesia and Japan. Our findings also show variations in estimates of proportions of national populations at risk range from <0.1% to 45% differences when switching between datasets, with large differences predominantly for countries where coarse and outdated input data were used in the construction of the spatial population datasets. The results highlight the need for the construction of spatial population datasets built on accurate, contemporary and detailed census data for use in climate change impact studies and the importance of acknowledging uncertainties inherent in existing spatial population datasets when estimating the demographic impacts of climate change. PMID:23110208

  3. Long Term Sea Level Change in the Black Sea

    NASA Astrophysics Data System (ADS)

    Cokacar, Tulay; Emin, Özsoy

    2016-04-01

    Since 1992, altimeter missions have dramatically improved our knowledge and understanding of the oceans.This study investigates the long term sea level change during 1992-2015 in the Black Sea. The satellite altimeter data of the Topex-Poseidon, ERS-1 ands ERS-2 missions and sea level variations of 25 tide gauge stations and temperature/salinity data of 25 Argo float observed in the Black Sea are used for the analysis. The altimeter data are assessed and compared with the data from tide gauges and Argo floats in the Black Sea. First ARGO T/S profiles are used to assess the discrepancies observed between the altimeters. Then in situ measurements are compared with multiple altimeter data to detect in situ measurement anomalies and the corrections applied to improve the consistency of the data sets.

  4. Probability of sea level rise

    SciTech Connect

    Titus, J.G.; Narayanan, V.K.

    1995-10-01

    The report develops probability-based projections that can be added to local tide-gage trends to estimate future sea level at particular locations. It uses the same models employed by previous assessments of sea level rise. The key coefficients in those models are based on subjective probability distributions supplied by a cross-section of climatologists, oceanographers, and glaciologists.

  5. Contribution of vertical land motions to coastal sea level variations: a global synthesis of multisatellite altimetry, tide gauge and GPS measurements

    NASA Astrophysics Data System (ADS)

    Pfeffer, Julia; Allemand, Pascal

    2016-04-01

    Coastal sea level variations result from a complex mix of climatic, oceanic and geodynamical processes driven by natural and anthropogenic constraints. Combining data from multiple sources is one solution to identify particular processes and progress towards a better understanding of the sea level variations and the assessment of their impacts at coast. Here, we present a global database merging multisatellite altimetry with tide gauges and Global Positioning System (GPS) measurements. Vertical land motions and sea level variations are estimated simultaneously for a network of 886 ground stations with median errors lower than 1 mm/yr. The contribution of vertical land motions to relative sea level variations is explored to better understand the natural hazards associated with sea level rise in coastal areas. Worldwide, vertical land motions dominate 30 % of observed coastal trends. The role of the crust is highly heterogeneous: it can amplify, restrict or counter the effects of climate-induced sea level change. A set of 182 potential vulnerable localities are identified by large coastal subsidence which increases by several times the effects of sea level rise. Though regional behaviours exist, principally caused by GIA (Glacial Isostatic Adjustment), the local variability in vertical land motion prevails. An accurate determination of the vertical motions observed at the coast is fundamental to understand the local processes which contribute to sea level rise, to appraise its impacts on coastal populations and make future predictions.

  6. Measurement of integrated flux of cosmic ray muons at sea level using the INO-ICAL prototype detector

    SciTech Connect

    Pal, S.; Acharya, B.S.; Majumder, G.; Mondal, N.K.; Samuel, D.; Satyanarayana, B. E-mail: acharya@tifr.res.in E-mail: nkm@tifr.res.in E-mail: bsn@tifr.res.in

    2012-07-01

    The India-based Neutrino Observatory (INO) collaboration is planning to set-up a magnetized Iron-CALorimeter (ICAL) to study atmospheric neutrino oscillations with precise measurements of oscillations parameters. The ICAL uses 50 kton iron as target mass and about 28800 Resistive Plate Chambers (RPC) of 2 m × 2 m in area as active detector elements. As part of its R and D program, a prototype detector stack comprising 12 layers of RPCs of 1 m × 1 m in area has been set-up at Tata Institute of Fundamental Research (TIFR) to study the detector parameters using cosmic ray muons. We present here a study of muon flux measurement at sea level and lower latitude. (Site latitude: 18°54'N, longitude: 72°48'E.)

  7. Measurement of integrated flux of cosmic ray muons at sea level using the INO-ICAL prototype detector

    NASA Astrophysics Data System (ADS)

    Pal, S.; Acharya, B. S.; Majumder, G.; Mondal, N. K.; Samuel, D.; Satyanarayana, B.

    2012-07-01

    The India-based Neutrino Observatory (INO) collaboration is planning to set-up a magnetized Iron-CALorimeter (ICAL) to study atmospheric neutrino oscillations with precise measurements of oscillations parameters. The ICAL uses 50 kton iron as target mass and about 28800 Resistive Plate Chambers (RPC) of 2 m × 2 m in area as active detector elements. As part of its R&D program, a prototype detector stack comprising 12 layers of RPCs of 1 m × 1 m in area has been set-up at Tata Institute of Fundamental Research (TIFR) to study the detector parameters using cosmic ray muons. We present here a study of muon flux measurement at sea level and lower latitude. (Site latitude: 18°54'N, longitude: 72°48'E.)

  8. Accurately measuring sea level change from space: an ESA Climate Change Initiative for MSL closure budget studies

    NASA Astrophysics Data System (ADS)

    Legeais, JeanFrancois; Cazenave, Anny; Ablain, Michael; Larnicol, Gilles; Benveniste, Jerome; Johannessen, Johnny; Timms, Gary; Andersen, Ole; Cipollini, Paolo; Roca, Monica; Rudenko, Sergei; Fernandes, Joana; Balmaseda, Magdalena; Quartly, Graham; Fenoglio-Marc, Luciana; Meyssignac, Benoit; Scharffenberg, Martin

    2016-04-01

    Sea level is a very sensitive index of climate change and variability. Sea level integrates the ocean warming, mountain glaciers and ice sheet melting. Understanding the sea level variability and changes implies an accurate monitoring of the sea level variable at climate scales, in addition to understanding the ocean variability and the exchanges between ocean, land, cryosphere, and atmosphere. That is why Sea Level is one of the Essential Climate Variables (ECV) selected in the frame of the ESA Climate Change Initiative (CCI) program. It aims at providing long-term monitoring of the sea level ECV with regular updates, as required for climate studies. The program is now in its second phase of 3 year (following phase I during 2011-2013). The objectives are firstly to involve the climate research community, to refine their needs and collect their feedbacks on product quality. And secondly to develop, test and select the best algorithms and standards to generate an updated climate time series and to produce and validate the Sea Level ECV product. This will better answer the climate user needs by improving the quality of the Sea Level products and maintain a sustain service for an up-to-date production. This has led to the production of the Sea Level ECV which has benefited from yearly extensions and now covers the period 1993-2014. We will firstly present the main achievements of the ESA CCI Sea Level Project. On the one hand, the major steps required to produce the 22 years climate time series are briefly described: collect and refine the user requirements, development of adapted algorithms for climate applications and specification of the production system. On the other hand, the product characteristics are described as well as the results from product validation, performed by several groups of the ocean and climate modeling community. At last, new altimeter standards have been developed and the best one have been recently selected in order to produce a full

  9. Accurately measuring sea level change from space: an ESA climate change initiative for MSL closure budget studies

    NASA Astrophysics Data System (ADS)

    Legeais, JeanFrancois; Benveniste, Jérôme

    2016-07-01

    Sea level is a very sensitive index of climate change and variability. Sea level integrates the ocean warming, mountain glaciers and ice sheet melting. Understanding the sea level variability and changes implies an accurate monitoring of the sea level variable at climate scales, in addition to understanding the ocean variability and the exchanges between ocean, land, cryosphere, and atmosphere. That is why Sea Level is one of the Essential Climate Variables (ECV) selected in the frame of the ESA Climate Change Initiative (CCI) program. It aims at providing long-term monitoring of the sea level ECV with regular updates, as required for climate studies. The program is now in its second phase of 3 year (following phase I during 2011-2013). The objectives are firstly to involve the climate research community, to refine their needs and collect their feedbacks on product quality. And secondly to develop, test and select the best algorithms and standards to generate an updated climate time series and to produce and validate the Sea Level ECV product. This will better answer the climate user needs by improving the quality of the Sea Level products and maintain a sustain service for an up-to-date production. This has led to the production of a first version of the Sea Level ECV which has benefited from yearly extensions and now covers the period 1993-2014. Within phase II, new altimeter standards have been developed and tested in order to reprocess the dataset with the best standards for climate studies. The reprocessed ECV will be released in summer 2016. We will present the main achievements of the ESA CCI Sea Level Project. On the one hand, the major steps required to produce the 22 years climate time series are briefly described: collect and refine the user requirements, development of adapted algorithms for climate applications and specification of the production system. On the other hand, the product characteristics are described as well as the results from product

  10. Rapid sea-level rise

    NASA Astrophysics Data System (ADS)

    Cronin, Thomas M.

    2012-11-01

    Several global and regional factors contribute to observed sea-level change along any particular coast. Global processes include changes in ocean mass (glacio-eustasy from ice melt), ocean volume (steric effects), viscoelastic land movements (glacioisostatic adjustment GIA), and changes in terrestrial water storage. Regional processes, often connected to steric and glacial changes, include changes in ocean circulation (Meridional Overturning Circulation [MOC]), glacial melting, local GIA, regional subsidence and others. Paleoclimate, instrumental and modeling studies show that combinations of these factors can cause relatively rapid rates of sea-level rise exceeding 3 mm yr-1 over various timescales along particular coasts. This paper discusses patterns and causes of sea-level rise with emphasis on paleoclimatological records. It then addresses the hypothesis of late Holocene (pre-20th century) sea-level stability in light of paleoclimatic evidence, notably from reconstructions of sea-surface temperature and glacial activity, for significant climate and sea-level variability during this time. The practical difficulties of assessing regional sea-level (SL) patterns at submillennial timescales will be discussed using an example from the eastern United States.

  11. Assimilation of TOPEX Sea Level Measurements with a Reduced-Gravity, Shallow Water Model of the Tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Fukumori, Ichiro

    1995-01-01

    Sea surface height variability measured by TOPEX is analyzed in the tropical Pacific Ocean by way of assimilation into a wind-driven, reduced-gravity, shallow water model using an approximate Kalman filter and smoother. The analysis results in an optimal fit of the dynamic model to the observations, providing it dynamically consistent interpolation of sea level and estimation of the circulation. Nearly 80% of the expected signal variance is accounted for by the model within 20 deg of the equator, and estimation uncertainty is substantially reduced by the voluminous observation. Notable features resolved by the analysis include seasonal changes associated with the North Equatorial Countercurrent and equatorial Kelvin and Rossby waves. Significant discrepancies are also found between the estimate and TOPEX measurements, especially near the eastern boundary. Improvements in the estimate made by the assimilation are validated by comparisons with independent tide gauge and current meter observations. The employed filter and smoother are based on approximately computed estimation error covariance matrices, utilizing a spatial transformation and an symptotic approximation. The analysis demonstrates the practical utility of a quasi-optimal filter and smoother.

  12. Intermittent sea-level acceleration

    NASA Astrophysics Data System (ADS)

    Olivieri, M.; Spada, G.

    2013-10-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea-level acceleration for the last ~ 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, confirm the existence of a global sea-level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0.01 mm/yr2. However, differently from previous studies, we discuss how change points or abrupt inflections in individual sea-level time series have contributed to the GSLA. Our analysis, based on methods borrowed from econometrics, suggests the existence of two distinct driving mechanisms for the GSLA, both involving a minority of tide gauges globally. The first effectively implies a gradual increase in the rate of sea-level rise at individual tide gauges, while the second is manifest through a sequence of catastrophic variations of the sea-level trend. These occurred intermittently since the end of the 19th century and became more frequent during the last four decades.

  13. Future high sea levels in south Sweden

    SciTech Connect

    Blomgren, S.H.; Hanson, H.

    1997-12-31

    An estimation of future mean high water levels in Oeresund and the southwest Baltic Sea is presented together with a discussion of probable consequences for Falsterbo Peninsula, a trumpet-shaped sandy formation of some 25 km{sup 2} size situated in the very southwest corner of Sweden. A literature review coupled with sea-level measurements and observations made in the area every four hours since October 1945 are given and comprise the base for the present analysis.

  14. ESA Sea Level Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Larnicol, Gilles; Cazenave, Anny; Faugere, Yannice; Ablain, Michael; Johannessen, Johnny; Stammer, Detlef; Timms, Gary; Knudsen, Per; Cipollini, Paolo; Roca, Monica; Rudenko, Sergei; Fernandes, Joana; Balmaseda, Magdalena; Guinle, Thierry; Benveniste, Jerome

    2013-04-01

    Sea level is a very sensitive index of climate change and variability. As the ocean warms in response to global warming, sea waters expand and, as a result, sea level rises. When mountain glaciers melt in response to increasing air temperature, sea level rises because more freshwater glacial runoff discharges into the oceans. Similarly, ice mass loss from the ice sheets causes sea-level rise. Therefore, understanding the sea level variability and changes implies in addition to the understanding of the ocean variability and the exchanges between ocean, land, cryosphere, and atmosphere, an accurate monitoring of the sea level variable at climate scales. That is why Sea Level is one of the variables selected in the frame of the ESA Climate change Initiative (CCI) program initiated by ESA in July 2010. In overall, this program aims to provide an adequate, comprehensive, and timely response to the extremely challenging set of requirements for highly stable, long-term satellite-based products for climate, that have been addressed to Space Agencies via the Global Climate Observing System (GCOS) and the Committee on Earth Observation Satellites (CEOS). In order to achieve this global objective, the specific objectives of the sea level CCI project are: to involve the climate research community to collect their needs and feedbacks on product quality, to develop, test and select the best algorithms and standards to generate a climate time series (so called SL ECV products), and to provide a complete specification of the production system. After two of projects the first two objectives have been completed. Hereafter, we aim to provide an overview and the current status of the Sea Level project of the ESA Climate Change Initiative (CCI) that has started in july 2010. The main objective of this project is to produce and validate the Sea Level Essential Climate Variable (ECV) product. Two years after the project kick-off, the 20 Years of Progress in Radar Altimetry Symposium was

  15. Tritium level along Romanian Black Sea Coast

    SciTech Connect

    Varlam, C.; Stefanescu, I.; Popescu, I.; Faurescu, I.

    2008-07-15

    Establishing the tritium level along the Romanian Black Sea Coast, after 10 years of exploitation of the nuclear power plant from Cernavoda, is a first step in evaluating its impact on the Black Sea ecosystem. The monitoring program consists of tritium activity concentration measurement in sea water and precipitation from Black Sea Coast between April 2005 and April 2006. The sampling points were spread over the Danube-Black Sea Canal - before the locks Agigea and Navodari, and Black Sea along the coast to the Bulgarian border. The average tritium concentration in sea water collected from the sampling locations had the value of 11.1 {+-} 2.1 TU, close to tritium concentration in precipitation. Although an operating nuclear power plant exists in the monitored area, the values of tritium concentration in two locations are slightly higher than those recorded elsewhere. To conclude, it could be emphasized that until now, Cernavoda NPP did not had any influence on the tritium concentration of the Black Sea Shore. (authors)

  16. Changes in extreme sea levels in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Dieterich, Christian; Gröger, Matthias; Andersson, Helén; Nerheim, Signild; Jönsson, Anette

    2016-04-01

    A newly developed shallow water model for the Baltic Sea and North Sea is presented. The model is validated by means of a comparison with hindcast simulations with observational data sets. The aim of the development is to provide and apply a modelling tool to model extreme sea levels in the Baltic Sea, Kattegat and Skagerrak. The model approach will support the direct analysis of extreme sea level observations in the past and provide the possibility to extend the statistical data base by producing very long time series or very large ensembles of coastal sea levels. This effort is intended to contribute to an assessment of risks due to storm surges and coastal flooding in the 21st century along the coast of Sweden. By using different RCP climate scenarios downscaled with a regional, coupled climate model atmospheric forcing is available to project possible changes in extreme sea levels into the future. Projected sea level rise, changes in dynamical sea level in the North East Atlantic and tidal forcing in the northern North Sea are applied as boundary condition which allows to investigate their impact on the dynamics of regional sea level variability. Initial experiments focus on the impact of model resolution, resolution in the atmospheric forcing and the amount of details necessary in the bathymetry to faithfully model coastal sea level in the Baltic Sea and North Sea.

  17. Regional sea level variability in the Bohai Sea, Yellow Sea, and East China Sea

    NASA Astrophysics Data System (ADS)

    Cheng, Yongcun; Plag, Hans-Peter; Hamlington, Benjamin D.; Xu, Qing; He, Yijun

    2015-12-01

    The regional sea level variability in the Bohai Sea (BS), Yellow Sea (YS) and East China Sea (ECS) is investigated based on tide gauge, satellite altimeter data and an independent oceanic general circulation model for the Earth Simulator (OFES) model outputs. It is found that atmospheric forcing significantly affects local sea level variability in the BS and YS and local sea level variability at the Southern ECS is highly correlated with along-shore currents. Particularly, the annual sea level fluctuations potentially change inundation risk and the frequency and magnitude of flooding in regions with high annual sea level. Hence, the cyclostationary empirical orthogonal function (CSEOF) analysis is carried out to investigate the variations of annual sea level cycle amplitude. Similar spatial distribution characteristics of annual sea level amplitude fluctuations are presented from satellite altimeter data and model outputs. The variability of annual sea level amplitude estimated from the satellite altimeter data agrees well with that from the tide gauge data, and positively (negatively) correlates with Southern Oscillation Index (Pacific Decadal Oscillation). The OFES model, however, underestimates the fluctuation of the annual cycle. After removing the annual signal, the low-passed (i.e., 13-month running mean) tide gauge data shows high correlations with SOI and PDO on time scales over 8 years in the BS and ECS.

  18. Solution notches, earthquakes, and sea level, Haiti

    NASA Astrophysics Data System (ADS)

    Schiffman, C. R.; Mildor, B. S.; Bilham, R. G.

    2010-12-01

    Shortly after the 12 January 2010 Haiti earthquake, we installed an array of five tide gauges to determine sea level and its variability in the region of uplifted corals on the coast SW of Leogane, Haiti, that had been uplift ≤30 cm during the earthquake. Each gauge consists of a pressure transducer bolted 50-80 cm below mean sea level, which samples the difference between atmospheric pressure and sea pressure every 10 minutes. The data are transmitted via the Iridium satellite and are publically available with a latency of 10 minutes to 2 hours. The measurements reveal a maximum tidal range of ≈50 cm with 2-4 week oscillations in mean sea level of several cm. Sea slope, revealed by differences between adjacent gauges, varies 2-5 cm per 10 km at periods of 2-5 weeks, which imposes a disappointing limit to the utility of the gauges in estimating post seismic vertical motions. A parallel study of the form and elevation of coastal notches and mushroom rocks (rocks notched on all sides, hence forming a mushroom shape), along the coast west of Petit Goave suggests that these notches may provide an uplift history of the region over the past several hundreds of years. Notch sections in two areas were contoured, digitized, and compared to mean sea level. The notches mimic the histogram of sea level, suggesting that they are formed by dissolution by acidic surface waters. Notches formed two distinct levels, one approximately 58 cm above mean sea level, and the other approximately 157 cm above mean sea level. Several landslide blocks fell into the sea during the 2010 earthquake, and we anticipate these are destined for conversion to future mushroom rocks. Surfaces have been prepared on these blocks to study the rate of notch formation in situ, and samples are being subjected to acid corrosion in laboratory conditions, with the hope that the depth of notches may provide an estimate of the time of fall of previous rocks to help constrain the earthquake history of this area

  19. Sea-level fluctuations and deep-sea sedimentation rates.

    PubMed

    Worsley, T R; Davies, T A

    1979-02-01

    Sediment accumulation rate curves from 95 drilled cores from the Pacific basin and sea-level curves derived from continental margin seismic stratigraphy show that high biogenous sediment accumulation rates correspond to low eustatic sea levels for at least the last 48 million years. This relationship fits a simple model of high sea levels producing lower land/sea ratios and hence slower chemical erosion of the continents, and vice versa. PMID:17734144

  20. A Late Pleistocene sea level stack

    NASA Astrophysics Data System (ADS)

    Spratt, Rachel M.; Lisiecki, Lorraine E.

    2016-04-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0 to 430 ka and five records from 0 to 798 ka. The first principal component, which we use as the stack, describes ˜ 80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). Bootstrapping and random sampling yield mean uncertainty estimates of 9-12 m (1σ) for the scaled stack. Sea level change accounts for about 45 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.

  1. An approach to investigate new particle formation in the vertical direction on the basis of high time-resolution measurements at ground level and sea level

    NASA Astrophysics Data System (ADS)

    Meng, He; Zhu, Yujiao; Evans, Greg J.; Yao, Xiaohong

    2015-02-01

    In this study, we investigated new particle formation (NPF) in the vertical direction using high time-resolution (1 s) measurements made by Fast Mobility Particle Sizers at ground level and at sea level. The coefficient of variation (CV), i.e., the ratio of standard deviation to mean value for <100-nm particle number concentration (N100) in every 30 s, is introduced as a metric to distinguish horizontal and vertical transport of atmospheric particles. We first examined the CV metric using the data collected at a semi-urban site in Toronto during the summer of 2007. The 50th and 95th percentiles of CVs associated with horizontal transport were 1-13 times smaller than those during strong vertical transport. We then compared the N100, GMD55 (geometric mean diameter of <55-nm particles) and GMD100 corresponding to the 0-5th percentiles of CVs with those corresponding to the 95-100th percentiles of CVs in five NPF events. The comparative results are discussed in terms of different formation and growth rates in the vertical direction. The similar analysis was also conducted in various marine atmospheres. We found that the CV metric can improve our understanding of NPF in the vertical direction.

  2. 3000 Years of Sea Level Change.

    NASA Astrophysics Data System (ADS)

    Tanner, William F.

    1992-03-01

    Sea level change is generally taken to indicate climate change, and may be more nearly global than what we perceive to be climate change. Close to the beach, even a small sea level change (such as 1-3 m) produces important changes in local depositional conditions. This effect can be deduced from a study of properly selected beach deposits.Various measures of beach-sand grain size indicate conditions of deposition. The best of these parameters is the kurtosis; it is a reliable indicator of surf-zone wave energy density. An abrupt energy-level shift, after centuries with little change, indicates sea level rise or drop. Kurtosis, within stated limits, shows this.Beach ridge systems (successive, distinct old beach deposits) span the last several thousand years. A sequence of sand samples across such a deposit provides grain-size evidence for alternating high and low sea level. Changes were 1 to 3 m vertically, and took place at rates of about 1 ern yr1. There were at least seven such events in the last 3000 years.The two most recent changes were the drop and subsequent rise that marked the Little Ice Age (starting about 1200 A.D.). One cannot say, from these data, that the planet has come fully out of the Little ice Age. Predictions about what sea level will do in the near future should be based on the many small changes (1 to 3 m) in the last few thousand years, rather than on the arbitrary, fictitious, and unrealistic absolute sea level that appears to underlie various popular forecasts.

  3. Sea-Level Projections from the SeaRISE Initiative

    NASA Technical Reports Server (NTRS)

    Nowicki, Sophie; Bindschadler, Robert

    2011-01-01

    SeaRISE (Sea-level Response to Ice Sheet Evolution) is a community organized modeling effort, whose goal is to inform the fifth IPCC of the potential sea-level contribution from the Greenland and Antarctic ice sheets in the 21st and 22nd century. SeaRISE seeks to determine the most likely ice sheet response to imposed climatic forcing by initializing an ensemble of models with common datasets and applying the same forcing to each model. Sensitivity experiments were designed to quantify the sea-level rise associated with a change in: 1) surface mass balance, 2) basal lubrication, and 3) ocean induced basal melt. The range of responses, resulting from the multi-model approach, is interpreted as a proxy of uncertainty in our sea-level projections. http://websrv.cs .umt.edu/isis/index.php/SeaRISE_Assessment.

  4. Late Cretaceous sea level from a paleoshoreline

    SciTech Connect

    McDonough, K.J.; Cross, T.A. )

    1991-04-10

    The contemporary elevation of a Late Cenomanian ({approx}93 Ma) shoreline was determined at five localities along the tectonically stable, eastern margin of the Cretaceous Western Interior Seaway, North America. This shoreline, represented by marine-to-nonmarine facies transitions in strata of the Greenhorn sequence (UZA-2 cycle of Haq et al. (1987)), was identified from outcrop and borehole data. Biostratigraphic zonations constrained the geologic age at each locality. Sequence stratigraphic correlations, based on identifying discrete progradational units and the surfaces that separate them, were used to refine age correlations to better than 100 kyr between localities. A single Cenomanian shoreline was correlated within a single progradational unit, and its elevation was determined at five localities. This paleostrandline occurs 265-286m above present-day sea level, at an average elevation of 276 m. Isostatic and flexural corrections were applied to remove the effects of postdepositional vertical movement, including sediment compaction by loading, uplift due to erosion, and glacial loading and rebound. Errors inherent in each measurement and each correction were estimated. Corrections and their cumulative error estimates yield a Late Cenomanian elevation of 269{plus minus}87 m above present sea level. The corrected elevation approximates sea level at 93 Ma and provides a measure of Late Cenomanian eustasy prior to the Early Turonian highstand. Establishing the absolute value for eustasy at a single point in geologic time provides a frame of reference for calibrating relative sea level curves, as well as constraining the magnitudes of tectonic subsidence, sediment flux, and other variables that controlled water depth and relative sea level.

  5. The future for the Global Sea Level Observing System (GLOSS) Sea Level Data Rescue

    NASA Astrophysics Data System (ADS)

    Bradshaw, Elizabeth; Matthews, Andrew; Rickards, Lesley; Aarup, Thorkild

    2016-04-01

    Historical sea level data are rare and unrepeatable measurements with a number of applications in climate studies (sea level rise), oceanography (ocean currents, tides, surges), geodesy (national datum), geophysics and geology (coastal land movements) and other disciplines. However, long-term time series are concentrated in the northern hemisphere and there are no records at the Permanent Service for Mean Sea Level (PSMSL) global data bank longer than 100 years in the Arctic, Africa, South America or Antarctica. Data archaeology activities will help fill in the gaps in the global dataset and improve global sea level reconstruction. The Global Sea Level Observing System (GLOSS) is an international programme conducted under the auspices of the WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology. It was set up in 1985 to collect long-term tide gauge observations and to develop systems and standards "for ocean monitoring and flood warning purposes". At the GLOSS-GE-XIV Meeting in 2015, GLOSS agreed on a number of action items to be developed in the next two years. These were: 1. To explore mareogram digitisation applications, including NUNIEAU (more information available at: http://www.mediterranee.cerema.fr/logiciel-de-numerisation-des-enregistrements-r57.html) and other recent developments in scanning/digitisation software, such as IEDRO's Weather Wizards program, to see if they could be used via a browser. 2. To publicise sea level data archaeology and rescue by: • maintaining and regularly updating the Sea Level Data Archaeology page on the GLOSS website • strengthening links to the GLOSS data centres and data rescue organisations e.g. linking to IEDRO, ACRE, RDA • restarting the sea level data rescue blog with monthly posts. 3. Investigate sources of funding for data archaeology and rescue projects. 4. Propose "Guidelines" for rescuing sea level data. These action items will aid the discovery, scanning, digitising and quality control

  6. Sea Level Change, A Fundamental Process When Interpreting Coastal Geology and Geography.

    ERIC Educational Resources Information Center

    Zeigler, John M.

    1985-01-01

    Discusses the meaning of sea level change and identifies the major factors responsible for this occurrence. Elaborates on the theory and processes involved in indirect measurement of changes in sea volume. Also explains how crustal movement affects sea level. (ML)

  7. Benchmarking and testing the "Sea Level Equation

    NASA Astrophysics Data System (ADS)

    Spada, G.; Barletta, V. R.; Klemann, V.; van der Wal, W.; James, T. S.; Simon, K.; Riva, R. E. M.; Martinec, Z.; Gasperini, P.; Lund, B.; Wolf, D.; Vermeersen, L. L. A.; King, M. A.

    2012-04-01

    The study of the process of Glacial Isostatic Adjustment (GIA) and of the consequent sea level variations is gaining an increasingly important role within the geophysical community. Understanding the response of the Earth to the waxing and waning ice sheets is crucial in various contexts, ranging from the interpretation of modern satellite geodetic measurements to the projections of future sea level trends in response to climate change. All the processes accompanying GIA can be described solving the so-called Sea Level Equation (SLE), an integral equation that accounts for the interactions between the ice sheets, the solid Earth, and the oceans. Modern approaches to the SLE are based on various techniques that range from purely analytical formulations to fully numerical methods. Despite various teams independently investigating GIA, we do not have a suitably large set of agreed numerical results through which the methods may be validated. Following the example of the mantle convection community and our recent successful Benchmark for Post Glacial Rebound codes (Spada et al., 2011, doi: 10.1111/j.1365-246X.2011.04952.x), here we present the results of a benchmark study of independently developed codes designed to solve the SLE. This study has taken place within a collaboration facilitated through the European Cooperation in Science and Technology (COST) Action ES0701. The tests involve predictions of past and current sea level variations, and 3D deformations of the Earth surface. In spite of the signi?cant differences in the numerical methods employed, the test computations performed so far show a satisfactory agreement between the results provided by the participants. The differences found, which can be often attributed to the different numerical algorithms employed within the community, help to constrain the intrinsic errors in model predictions. These are of fundamental importance for a correct interpretation of the geodetic variations observed today, and

  8. Understanding Sea-Level Rise and Variability

    NASA Astrophysics Data System (ADS)

    Anderson, John

    2011-05-01

    The debate about climate change lingers, fueled by the complexity of weather patterns around the Earth. The oceans filter spatial and temporal changes in temperature, yielding an undisputable record of warming and expansion that manifests as accelerated sea level rise. The rate of rise in historical time is nearly 6 times the average rate for the past 4000 years. Documentation of this accelerated rise, discussion of its causes and impacts, and descriptions of the methods used to measure sea level rise are provided in this compilation of 12 papers authored by some of the leading experts in the field. The book reads more like a textbook than an edited volume, a strategy seldom achieved in edited volumes.

  9. Long Term Sea Level Changes in the Falkland Islands

    NASA Astrophysics Data System (ADS)

    Woodworth, P. L.; Pugh, D. T.

    2009-04-01

    In 1842, James Clark Ross measured sea levels at Port Louis, 30 km NW of Port Stanley in the Falkland Islands, over a period of 8 months. The benchmarks with respect to which the levels were measured have been perfectly preserved, and in 2009 a new series of sea level measurements was made at the same site. In addition, a set of GPS measurements was made at Port Louis and Port Stanley, where there is a permanent modern tide gauge. The collected measurements enable us to estimate the average rate of sea level change in the area since 1842 with an accuracy of approximately 0.4 mm/year. This is one of the few estimates of long term sea level change in the southern hemisphere. This poster will describe how the measurements were made and will present some of the first results.

  10. The social values at risk from sea-level rise

    SciTech Connect

    Graham, Sonia; Barnett, Jon; Fincher, Ruth; Hurlimann, Anna; Mortreux, Colette; Waters, Elissa

    2013-07-15

    Analysis of the risks of sea-level rise favours conventionally measured metrics such as the area of land that may be subsumed, the numbers of properties at risk, and the capital values of assets at risk. Despite this, it is clear that there exist many less material but no less important values at risk from sea-level rise. This paper re-theorises these multifarious social values at risk from sea-level rise, by explaining their diverse nature, and grounding them in the everyday practices of people living in coastal places. It is informed by a review and analysis of research on social values from within the fields of social impact assessment, human geography, psychology, decision analysis, and climate change adaptation. From this we propose that it is the ‘lived values’ of coastal places that are most at risk from sea-level rise. We then offer a framework that groups these lived values into five types: those that are physiological in nature, and those that relate to issues of security, belonging, esteem, and self-actualisation. This framework of lived values at risk from sea-level rise can guide empirical research investigating the social impacts of sea-level rise, as well as the impacts of actions to adapt to sea-level rise. It also offers a basis for identifying the distribution of related social outcomes across populations exposed to sea-level rise or sea-level rise policies.

  11. Measuring the mass balance and contribution to sea level rise of North American glaciers using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Vanlooy, Jeffrey Adam

    Volume and surface elevation changes were calculated for six icefields throughout Alaska and British Columbia by differencing Digital Elevation Models (DEMs) that represent glacial elevations from different time periods. For the Harding Icefield on the Kenai Peninsula in southcentral Alaska, United States Geological Survey (USGS) DEMs from the 1950s were differenced with Shuttle Radar Topographic Mission (SRTM) DEMs from 2000 (effective 1999 elevations). Results indicated that the icefield had a volume loss of -72.1 +/-15.0 km3, which equates to 0.0033 +/- 0.0006 mm y-1 of sea level rise contribution. Along with these results, Light Detecting and Ranging (Lidar) elevation data of 13 Harding Icefield glaciers from the mid-1990s provided a third elevation data set for comparison with the USGS and SRTM DEMs. The results from these surface elevation change calculations indicated that surface elevation change rates increased by 1.5 times from the mid-1990s to 1999 (-0.72 +/- 0.13 m y-1) as compared to the 1950s to the mid-1900s (-0.47 +/- 0.01 m y-1). In southwest British Columbia, five icefields were studied: Monarch, Ha-Iltzuk, Mt. Waddington area, Homathko, and Lillooet. Terrain Resource Information Management (TRIM) DEMs from the mid-1980s were differenced from the SRTM DEMs to calculate the volume and surface elevation change of the five icefields. Results from these calculations indicate that between the mid-1980s and 1999 the total volume change of the five icefields was a loss of -47.72 +/- 14.62 km3, which equates to a potential sea level rise contribution of 0.0077 +/-0.0021 mm y-1. A DEM of a third time period was produced by kriging elevation points derived from 1970s topographic maps, and used to calculate volume and surface elevation changes of Ha-Iltzuk Icefield for the time period of 1970 to the mid-1980s. The results of this analysis indicate that Ha-Iltzuk Icefield had a volume loss of -5.87 +/- 2.89 km3 and a surface elevation change rate of -0

  12. The key role of vertical land motions in coastal sea level variations: A global synthesis of multisatellite altimetry, tide gauge data and GPS measurements

    NASA Astrophysics Data System (ADS)

    Pfeffer, Julia; Allemand, Pascal

    2016-04-01

    This study aims to quantify the vertical motions driving the decadal coastline mobility and their uncertainty at global scale. Multisatellite altimetry is combined with tide gauges and Global Positioning System (GPS) observations to evaluate the marine and crustal components of relative sea level variations. Vertical land motions and sea level variations are estimated simultaneously over the past 20 years for a network of 886 ground stations, with accuracies better than 1.7 mm/yr. The ALTIGAPS database present significant interest both by its technical characteristics (global coverage, larger number of sites, longer period of observation, improved accuracy) and by the novelty of the applications empowered. ALTIGAPS offers the opportunity to look independently into the recent dynamic processes affecting the ocean and the interior of the Earth. Here, the role of vertical land motions in relative sea level variations is explored to better understand the natural hazards associated with sea level rise in coastal areas. Global evidence for the local variability in vertical land motions is provided, which may either amplify or attenuate the apparent rise of the sea at the coast. A set of 182 potential vulnerable localities are identified by large coastal subsidence (>1.5 mm/yr) which increases by several times the effects of climate-induced sea level rise. For coastal management purposes, both marine (absolute sea level variations) and crustal (vertical land motions) components of vertical coastal motions (relative sea level variations) should therefore be accounted for.

  13. The thickness history of the northern sector of the Laurentide Ice Sheet: an assessment of glacial isostatic adjustment models, sea-level measurements, and vertical land motion rates

    NASA Astrophysics Data System (ADS)

    Simon, K. M.; James, T. S.; Henton, J. A.; Dyke, A.

    2014-12-01

    The fit of glacial isostatic adjustment (GIA) model predictions to 24 relative sea-level histories and an additional 18 present-day GPS-measured vertical land motion rates constrains the thickness and volume history of the central and northern Laurentide Ice Sheet. The predictions of the best-fit GIA model indicate respective peak ice thicknesses west and east of Hudson Bay of 3.4-3.6 km and approximately 4 km. These values represent, respectively, a large decrease, and a moderate increase, to the load thickness compared to ICE-5G. This result is generally consistent with other GIA studies focussing on space-geodetic constraints. The large reduction to the ice load west of Hudson Bay also reduces the vertical mantle response along the margins of the load centre, which improves the fit to relative sea-level data from the southern Canadian Arctic Archipelago. The fit of GIA model predictions to relative sea-level data from the Baffin Sector of the Laurentide Ice Sheet indicate peak ice thicknesses there of 1.2-1.3 km, a modest reduction compared to ICE-5G. On Baffin Island, the modelled elastic crustal response of the Earth to present-day ice mass changes is large. Accounting for this effect improves the agreement between GPS measurements of vertical crustal motion and the GIA model predictions. However, work is needed to incorporate more detailed observations and modelling of present-day changes to glaciers and ice caps. Overall, the fit to the data is most strongly improved in the region west of Hudson Bay (the χ2 RSL misfit is reduced by a factor of ~4) although the entire revised reconstruction for the central and northern Laurentide Ice Sheet provides an improved fit to both the regional RSL data (the cumulative χ2 misfit is reduced by a factor of >2) and the GPS data (the RMS misfit is reduced by a factor of 9).

  14. Monitoring coastal sea level using reflected GNSS signals

    NASA Astrophysics Data System (ADS)

    Löfgren, Johan S.; Haas, Rüdiger; Johansson, Jan M.

    2011-01-01

    A continuous monitoring of coastal sea level changes is important for human society since it is predicted that up to 332 million people in coastal and low-lying areas will be directly affected by flooding from sea level rise by the end of the 21st century. The traditional way to observe sea level is using tide gauges that give measurements relative to the Earth’s crust. However, in order to improve the understanding of the sea level change processes it is necessary to separate the measurements into land surface height changes and sea surface height changes. These measurements should then be relative to a global reference frame. This can be done with satellite techniques, and thus a GNSS-based tide gauge is proposed. The GNSS-based tide gauge makes use of both GNSS signals that are directly received and GNSS signals that are reflected from the sea surface. An experimental installation at the Onsala Space Observatory (OSO) shows that the reflected GNSS signals have only about 3 dB less signal-to-noise-ratio than the directly received GNSS signals. Furthermore, a comparison of local sea level observations from the GNSS-based tide gauge with two stilling well gauges, located approximately 18 and 33 km away from OSO, gives a pairwise root-mean-square agreement on the order of 4 cm. This indicates that the GNSS-based tide gauge gives valuable results for sea level monitoring.

  15. Sea Level Variability in the Central Region of the Red Sea

    NASA Astrophysics Data System (ADS)

    Abualnaja, Yasser O.; Limeburner, Richard; Farrar, J. Thomas; Beardsley, Robert

    2013-04-01

    An array of three bottom pressure/temperature/conductivity (PTC) instruments was deployed along the Saudi Arabian coast of the eastern Red Sea since 2008. These locations, represent the central region of the Red Sea; Al-Lieth (100km south of Jeddah), Thuwal (KAUST) and Arriyas (100km north of Rabigh). Surface sea level/height was calculated from the bottom pressure measurements using the hydrostatic equation. The data analysis displayed the sea level variability into three different scales: 1) On daily time scales: the data showed the most energetic component of sea level variability was the diurnal and semidiurnal tides dominated by the M2, N2, K1 and O1 tidal constituents. 2) On weekly time scales (~10 days): the sea level variability was wind driven with setup and set down up to 40 cm due to the local wind stress. 3) On yearly time scales: the sea level varied approximately 50 cm and was highest in winter (January-February) and lowest in summer (July-August). Barometric pressure also had an annual cycle of approximately 10mb and was highest in January, thus attenuating the amplitude of the annual sea level variability. The data analysis postulate that the only mechanism behind the higher sea level in the central Red Sea during winter months was due to a response to the convergent in the large-scale Red Sea wind stress associated with the Indian Monsoon, which is consisting of NNW winds in the northern part of the Red Sea and SSE winds in the southern part. The amplitude of the principal tidal and sub-tidal sea level variability was coherent at the three sites, but the direction of phase propagation could not be resolved with confidence.

  16. Wave transformation across coral reefs under changing sea levels

    NASA Astrophysics Data System (ADS)

    Harris, Daniel; Power, Hannah; Vila-Conejo, Ana; Webster, Jody

    2015-04-01

    The transformation of swell waves from deep water across reef flats is the primary process regulating energy regimes in coral reef systems. Coral reefs are effective barriers removing up to 99% of wave energy during breaking and propagation across reef flats. Consequently back-reef environments are often considered low energy with only limited sediment transport and geomorphic change during modal conditions. Coral reefs, and specifically reef flats, therefore provide important protection to tropical coastlines from coastal erosion and recession. However, changes in sea level could lead to significant changes in the dissipation of swell wave energy in coral reef systems with wave heights dependent on the depth over the reef flat. This suggests that a rise in sea level would also lead to significantly higher energy conditions exacerbating the transgressive effects of sea level rise on tropical beaches and reef islands. This study examines the potential implications of different sea level scenarios on the transformation of waves across the windward reef flats of One Tree Reef, southern Great Barrier Reef. Waves were measured on the reef flats and back-reef sand apron of One Tree Reef. A one-dimensional wave model was calibrated and used to investigate wave processes on the reef flats under different mean sea level (MSL) scenarios (present MSL, +1 m MSL, and +2 m MSL). These scenarios represent both potential future sea level states and also the paleo sea level of the late Holocene in the southern Great Barrier Reef. Wave heights were shown to increase under sea level rise, with greater wave induced orbital velocities affecting the bed under higher sea levels. In general waves were more likely to entrain and transport sediment both on the reef flat and in the back reef environment under higher sea levels which has implications for not only forecasted climate change scenarios but also for interpreting geological changes during the late Holocene when sea levels were 1

  17. Using Sea Level Change as a Climate Indicator

    NASA Astrophysics Data System (ADS)

    Masters, D. S.; Nerem, R. S.

    2014-12-01

    Sea level rise is one the more important risks due to climate change. Multiple satellite altimeters flying on the same repeating ground track have allowed estimation of global and regional sea level for the past 20 years, and the time series has yielded information about how sea level is responding to climate change. Due to the duration, consistency, and inter-calibration of the altimeter measurements, the time series is now considered a climate data record. The time series has also shown the strong dependence of sea level on interannual signals such as the ENSO and PDO. Global mean sea level change as estimated by the altimeters is arguably one of the most sensitive indicators of climate change because it varies almost entirely due to thermal expansion/contraction and the exchange of water between the land and oceans. Contributions to the latter include melting land ice and changes in the hydrologic cycle. While thermal expansion does not vary greatly on interannual time-scales, variations in the global hydrologic cycle and land ice melt can contribute to large variations in the sea level record. Isolating and understanding the causes and scales of these variations is important in interpreting the observed global and regional sea level change, especially for decision-makers assessing risk and planning for adaptation and/or mitigation. Since 1992, satellite altimeter measurements from the TOPEX/Poseidon and Jason missions, have been providing precise estimates of sea level change between ±66° latitude every 10 days. We have been using these measurements to monitor both global average and regional sea level change. The GRACE mission has provided monthly estimates of the time-varying gravity field for the last 10 years. These measurements can estimate variations in global ocean mass, mass changes in the polar ice sheets and mountain glaciers, as well as changes in the land surface water storage. These data sets can be used to inform us about the sea level change

  18. Sea level change: a philosophical approach

    NASA Astrophysics Data System (ADS)

    Leinfelder, R.; Seyfried, H.

    1993-07-01

    The present Cenozoic era is an ‘icehouse’ episode characterized by a low sea level. Since the beginning of the industrial revolution, the human race has been emitting greenhouse gases, increasing the global atmospheric temperature, and causing a rise in sea level. If emissions continue to increase at the present rate, average global temperatures may rise by 1.5°C by the year 2050, accompanied by a rise of about 30 cm in sea level. However, the prediction of future climatic conditions and sea level is hampered by the difficulty in modelling the interactions between the lithosphere, kryosphere, biosphere and atmosphere; in addition, the buffering capacity of our planet is still poorly understood. As scientists cannot offer unambiguous answers to simple questions, sorcerer's apprentices fill in the gaps, presenting plans to save planet without inconveniencing us. The geological record can help us to learn about the regulation mechanisms of our planet, many of which are connected with or expressed as sea level changes. Global changes in sea level are either tectono-eustatic or glacioeustatic. Plate tectonic processes strongly control sea levels and climate in the long term. There is a strong feed-back mechanism between sea level and climate; both can influence and determine each other. Although high sea levels are a powerful climatic buffer, falling sea levels accelerate climatic accentuation, the growth of the polar ice caps and will hence amplify the drop in sea level. Important sources of fossil greenhouse gases are botanic CO2 production, CO2 released by volcanic activity, and water vapour. The latter is particularly important when the surface area of the sea increases during a rise in sea level (‘maritime greenhouse effect’). A ‘volcanogenic greenhouse effect’ (release of volcanogenic CO2) is possibly not equally important, as intense volcanic activity may take place both during icehouse episodes as well as during greenhouse episodes. The hydrosphere

  19. Sea level oscillations over minute timescales: a global perspective

    NASA Astrophysics Data System (ADS)

    Vilibic, Ivica; Sepic, Jadranka

    2016-04-01

    Sea level oscillations occurring over minutes to a few hours are an important contributor to sea level extremes, and a knowledge on their behaviour is essential for proper quantification of coastal marine hazards. Tsunamis, meteotsunamis, infra-gravity waves and harbour oscillations may even dominate sea level extremes in certain areas and thus pose a great danger for humans and coastal infrastructure. Aside for tsunamis, which are, due to their enormous impact to the coastlines, a well-researched phenomena, the importance of other high-frequency oscillations to the sea level extremes is still underrated, as no systematic long-term measurements have been carried out at a minute timescales. Recently, Intergovernmental Oceanographic Commission (IOC) established Sea Level Monitoring Facility portal (http://www.ioc-sealevelmonitoring.org), making 1-min sea level data publicly available for several hundred tide gauge sites in the World Ocean. Thereafter, a global assessment of oscillations over tsunami timescales become possible; however, the portal contains raw sea level data only, being unchecked for spikes, shifts, drifts and other malfunctions of instruments. We present a quality assessment of these data, estimates of sea level variances and contributions of high-frequency processes to the extremes throughout the World Ocean. This is accompanied with assessment of atmospheric conditions and processes which generate intense high-frequency oscillations.

  20. Common Era Sea-Level Change

    NASA Astrophysics Data System (ADS)

    Horton, B.; Kemp, A.; Kopp, R. E., III

    2014-12-01

    The Atlantic coast of North America provides a sedimentary record of Common Era sea levels with the resolution to identify the mechanisms that cause spatial variability in sea-level rise. This coast has a small tidal range, improving the precision of sea-level reconstructions. Coastal subsidence (from glacial isostatic adjustment, GIA) creates accommodation space that is filled by salt-marsh peat and preserves accurate and precise sea-level indicators and abundant material for radiocarbon dating. In addition, the western North Atlantic Ocean is sensitive to spatial variability in sea-level change, because of static equilibrium effects from melting of the Greenland Ice Sheet, ocean circulation and wind-driven variability in the Gulf Stream and GIA induced land-level change from ongoing collapse of Laurentide forbuldge. We reveal three distinct patters in sea-level during the Common Era along the North American Atlantic coast, likely linked to wind-driven changes in the Gulf Stream: (1) Florida, sea level is essentially flat, with the record dominated by long-term geological processes; (2) North Carolina, sea level falls to a minimum near the beginning of the second millennium, climbing to an early Little Ice Age maximum in the fifteenth century, and then declining through most of the nineteenth century; and (3) New Jersey, a sea-level maximum around 900 CE, a sea-level minimum around 1500 CE, and a long-term sea-level rise through the second half of the second millennium. We combine the salt-marsh data from North American Atlantic coast with tide-gauge records and lower resolution proxies from the northern and southern hemispheres. We apply a noisy-input Gaussian process spatio-temporal modeling framework, which identifies a long-term falling global mean sea-level (GMSL), interrupted in the middle of the 19th century by an acceleration yielding a 20th century rate of rise extremely likely (probability P = 0:95) faster than any previous century in the Common Era.

  1. Sea level forecasts using neural networks

    NASA Astrophysics Data System (ADS)

    Röske, Frank

    1997-03-01

    In this paper, a new method for predicting the sea level employing a neural network approach is introduced. It was designed to improve the prediction of the sea level along the German North Sea Coast under standard conditions. The sea level at any given time depends upon the tides as well as meteorological and oceanographic factors, such as the winds and external surges induced by air pressure. Since tidal predictions are already sufficiently accurate, they have been subtracted from the observed sea levels. The differences will be predicted up to 18 hours in advance. In this paper, the differences are called anomalies. The prediction of the sea level each hour is distinguished from its predictions at the times of high and low tide. For this study, Cuxhaven was selected as a reference site. The predictions made using neural networks were compared for accuracy with the prognoses prepared using six models: two hydrodynamic models, a statistical model, a nearest neighbor model, which is based on analogies, the persistence model, and the verbal forecasts that are broadcast and kept on record by the Sea Level Forecast Service of the Federal Maritime and Hydrography Agency (BSH) in Hamburg. Predictions were calculated for the year 1993 and compared with the actual levels measured. Artificial neural networks are capable of learning. By applying them to the prediction of sea levels, learning from past events has been attempted. It was also attempted to make the experiences of expert forecasters objective. Instead of using the wide-spread back-propagation networks, the self-organizing feature map of Kohonen, or “Kohonen network”, was applied. The fundamental principle of this network is the transformation of the signal similarity into the neighborhood of the neurons while preserving the topology of the signal space. The self-organization procedure of Kohonen networks can be visualized. To make predictions, these networks have been subdivided into a part describing the

  2. Satellite Altimeter Observations of Black Sea Level Variations

    NASA Technical Reports Server (NTRS)

    Korotaev, G. K.; Saenko, O. A.; Koblinsky, C. J.

    1998-01-01

    Satellite altimeter data from TOPEX/POSEIDON and ERS-1 are used to examine seasonal and mesoscale variability of the Black Sea level. Consistent processing procedures of the altimeter measurements make it possible to determine the dynamical Black Sea level with an rms accuracy about 3 cm. It is shown that the Black Sea circulation intensifies in the winter-spring seasons and attenuates in summer-autumn. The seasonal variability of sea level is accompanied by a radiation of Rossby waves from the eastern coast of the basin. Mesoscale oscillations of the dynamical sea level are found to vary spatially and temporarily. Usually, strong eddy intensity is associated with instabilities of the Rim Current. Away from this circulation feature, in the deep basin, mesoscale variability is much smaller. Mesoscale variability has a strong seasonal signal, which is out of phase with the strength of the Rim Current.

  3. Impact of sea-level rise assessed

    NASA Astrophysics Data System (ADS)

    Coastal erosion, flooding of low-lying coastal areas, disruption of ecosystems, probable population relocation, and economic loss are some consequences of projected relative sea-level rise. The term includes both the rise anticipated to result from global warming and other factors, and the rise from local tectonic subsidence. Some specific sites were discussed at the annual meeting of the American Association for the Advancement of Science, held in Washington, D.C., February 14-19.In comparing the New York City and eastern Mediterranean coasts, Victor Goldsmith of Hunter College, New York, presented a case for stabilization versus retreat of coastal areas, dependent on the geologic terrane and on the degree of development. The 578-mile New York City coastline is considered “hard,” meaning some sort of cement structure, such as roads, jetties, or piers, separates the water from the coast. It is also an area of many beaches that are not natural, but that have been built up and maintained by the process of sand nourishment over the past 50 years. The Rockaway peninsula, for example, has received more than 12 million cubic yards of sand between 1926 and 1962 in response to the measured sea-level rise of 30 cm in the last 100 years from downwarping of the wide continental shelf, said Goldsmith. Because land is highly developed and expensive in this area, retreat is not a practical option. Goldsmith suggests that the effects of on-going sea-level rise, at rates of about 1 foot per century, can be offset by continued hardening of the New York City coastline and beach nourishment where necessary.

  4. Impact of sea-level rise assessed

    NASA Astrophysics Data System (ADS)

    Coastal erosion, flooding of low-lying coastal areas, disruption of ecosystems, probable population relocation, and economic loss are some consequences of projected relative sea-level rise. The term includes both the rise anticipated to result from global warming and other factors, and the rise from local tectonic subsidence. Some specific sites were discussed at the annual meeting of the American Association for the Advancement of Science, held in Washington, D.C., February 14-19.In comparing the New York City and eastern Mediterranean coasts, Victor Goldsmith of Hunter College, New York, presented a case for stabilization versus retreat of coastal areas, dependent on the geologic terrane and on the degree of development. The 578-mile New York City coastline is considered "hard," meaning some sort of cement structure, such as roads, jetties, or piers, separates the water from the coast. It is also an area of many beaches that are not natural, but that have been built up and maintained by the process of sand nourishment over the past 50 years. The Rockaway peninsula, for example, has received more than 12 million cubic yards of sand between 1926 and 1962 in response to the measured sea-level rise of 30 cm in the last 100 years from downwarping of the wide continental shelf, said Goldsmith. Because land is highly developed and expensive in this area, retreat is not a practical option. Goldsmith suggests that the effects of on-going sea-level rise, at rates of about 1 foot per century, can be offset by continued hardening of the New York City coastline and beach nourishment where necessary.

  5. A Glacial Isostatic Adjustment Model for the Central and Northern Laurentide Ice Sheet based on Relative Sea-level and GPS Measurements

    NASA Astrophysics Data System (ADS)

    Simon, K. M.; James, T. S.; Henton, J. A.; Dyke, A. S.

    2016-03-01

    The thickness and equivalent global sea-level contribution of an improved model of the central and northern Laurentide Ice Sheet is constrained by 24 relative sea-level histories and 18 present-day GPS-measured vertical land motion rates. The final model, termed Laur16, is derived from the ICE-5 G model by holding the timing history constant and iteratively adjusting the thickness history, in four regions of northern Canada. In the final model, the last glacial maximum (LGM) thickness of the Laurentide Ice Sheet west of Hudson Bay was ˜3.4-3.6 km. Conversely, east of Hudson Bay, peak ice thicknesses reached ˜4 km. The ice model thicknesses inferred for these two regions represent, respectively, a ˜30% decrease and an average ˜20-25% increase to the load thickness relative to the ICE-5 G reconstruction, which is generally consistent with other recent studies that have focussed on Laurentide Ice Sheet history. The final model also features peak ice thicknesses of 1.2-1.3 km in the Baffin Island region, a modest reduction relative to ICE-5 G, and unchanged thicknesses for a region in the central Canadian Arctic Archipelago west of Baffin Island. Vertical land motion predictions of the final model fit observed crustal uplift rates well, after an adjustment is made for the elastic crustal response to present-day ice mass changes of regional ice cover. The new Laur16 model provides more than a factor of two improvement of the fit to the RSL data (χ2 measure of misfit) and a factor of nine improvement to the fit of the GPS data (mean squared error measure of fit), compared to the ICE-5 G starting model. Laur16 also fits the regional RSL data better by a factor of two and gives a slightly better fit to GPS uplift rates than the recent ICE-6 G model. The volume history of the Laur16 reconstruction corresponds to an up to 8 m reduction in global sea-level equivalent compared to ICE-5 G at LGM.

  6. A glacial isostatic adjustment model for the central and northern Laurentide Ice Sheet based on relative sea level and GPS measurements

    NASA Astrophysics Data System (ADS)

    Simon, K. M.; James, T. S.; Henton, J. A.; Dyke, A. S.

    2016-06-01

    The thickness and equivalent global sea level contribution of an improved model of the central and northern Laurentide Ice Sheet is constrained by 24 relative sea level histories and 18 present-day GPS-measured vertical land motion rates. The final model, termed Laur16, is derived from the ICE-5G model by holding the timing history constant and iteratively adjusting the thickness history, in four regions of northern Canada. In the final model, the last glacial maximum (LGM) thickness of the Laurentide Ice Sheet west of Hudson Bay was ˜3.4-3.6 km. Conversely, east of Hudson Bay, peak ice thicknesses reached ˜4 km. The ice model thicknesses inferred for these two regions represent, respectively, a ˜30 per cent decrease and an average ˜20-25 per cent increase to the load thickness relative to the ICE-5G reconstruction, which is generally consistent with other recent studies that have focussed on Laurentide Ice Sheet history. The final model also features peak ice thicknesses of 1.2-1.3 km in the Baffin Island region, a modest reduction relative to ICE-5G and unchanged thicknesses for a region in the central Canadian Arctic Archipelago west of Baffin Island. Vertical land motion predictions of the final model fit observed crustal uplift rates well, after an adjustment is made for the elastic crustal response to present-day ice mass changes of regional ice cover. The new Laur16 model provides more than a factor of two improvement of the fit to the RSL data (χ2 measure of misfit) and a factor of nine improvement to the fit of the GPS data (mean squared error measure of fit), compared to the ICE-5G starting model. Laur16 also fits the regional RSL data better by a factor of two and gives a slightly better fit to GPS uplift rates than the recent ICE-6G model. The volume history of the Laur16 reconstruction corresponds to an up to 8 m reduction in global sea level equivalent compared to ICE-5G at LGM.

  7. The influence of uncertainty in past sea level reconstructions on 21st century mean sea level projections

    NASA Astrophysics Data System (ADS)

    Phillips, T. P.; Hamlington, B. D.; Nerem, R.; Leben, R. R.

    2010-12-01

    range of projection using the Church and White dataset. We therefore suggest investigating the currently available datasets by comparing each reconstruction and projections to the 1992-2010 TOPEX/Jason-1&-2 altimetry measurements. The semi-empirical model used in this study to estimate possible sea-level projections on a decadal as well as century level is sensitive to the initial sea-level reconstruction used to train the model. It is therefore essential that we get a better understanding of sensitivity in the current observations in order to select the most realistic initial condition.

  8. Global sea level linked to global temperature

    PubMed Central

    Vermeer, Martin; Rahmstorf, Stefan

    2009-01-01

    We propose a simple relationship linking global sea-level variations on time scales of decades to centuries to global mean temperature. This relationship is tested on synthetic data from a global climate model for the past millennium and the next century. When applied to observed data of sea level and temperature for 1880–2000, and taking into account known anthropogenic hydrologic contributions to sea level, the correlation is >0.99, explaining 98% of the variance. For future global temperature scenarios of the Intergovernmental Panel on Climate Change's Fourth Assessment Report, the relationship projects a sea-level rise ranging from 75 to 190 cm for the period 1990–2100. PMID:19995972

  9. Differences between mean tide level and mean sea level

    NASA Astrophysics Data System (ADS)

    Woodworth, P. L.

    2016-07-01

    This paper discusses the differences between mean tide level (MTL) and mean sea level (MSL) as demonstrated using information from a global tide gauge data set. The roles of the two main contributors to differences between MTL and MSL (the M4 harmonic of the M2 semidiurnal tide, and the combination of the diurnal tides K1 and O1) are described, with a particular focus on the spatial scales of variation in MTL-MSL due to each contributor. Findings from the tide gauge data set are contrasted with those from a state-of-the-art global tide model. The study is of interest within tidal science, but also has practical importance regarding the type of mean level used to define land survey datums. In addition, an appreciation of MTL-MSL difference is important in the use of the historical sea level data used in climate change research, with implications for some of the data stored in international databanks. Particular studies are made of how MTL and MSL might differ through the year, and if MTL is measured in daylight hours only, as has been the practice of some national geodetic agencies on occasions in the past.

  10. Local Sea Level Derived from Reflected GNSS Signals

    NASA Astrophysics Data System (ADS)

    Löfgren, J. S.; Haas, R.; Scherneck, H.; Bos, M. S.

    2011-12-01

    The traditional way to observe sea level is to use tide gauges, resulting in measurements relative to the Earth's crust. However, in order to measure the sea-level change due to changes in ocean water volume and/or other oceanographic phenomena, all types of crustal motion at the measurement site need to be known. We present a remote sensing technique for measuring local sea level using standard geodetic-type Global Navigation Satellite System (GNSS) receivers. The installation consists of a zenith-looking Right Hand Circular Polarized (RHCP) antenna, receiving the direct signals, and a nadir-looking Left Hand Circular Polarized antenna, receiving the signals reflected of the sea surface. Each antenna is connected to a receiver and the antenna pair is deployed back-to-back at a coastal site. Estimating the vertical baseline between the two antennas, using standard geodetic analysis, the local sea level and its temporal variations can be determined. The advantage of this technique is that it allows to measure both sea surface height changes with relative positioning and land surface height changes, e.g., by precise point positioning of the RHCP antenna. Furthermore, the combined measurements of local sea level are automatically corrected for land motion, meaning that this installation could provide continuously reliable sea-level estimates in tectonic active regions. This GNSS-based tide gauge has been operating continuously at the Onsala Space Observatory (OSO) on the west coast of Sweden since September 2010. We present results from several months of operations and compare them to sea-level measurements from two stilling well gauges about 18 km south and 33 km north of OSO. We find a high degree of agreement between the time series with correlation coefficients of larger than 0.95. The root-mean-square differences between the GNSS-derived sea level and the stilling well gauge measurements are 5.9 cm and 5.5 cm, which is lower than between the two stilling well (6

  11. An assessment of the genotoxic impact of the Sea Empress oil spill by the measurement of DNA adduct levels in selected invertebrate and vertebrate species.

    PubMed

    Harvey, J S; Lyons, B P; Page, T S; Stewart, C; Parry, J M

    1999-04-26

    The grounding of the Sea Empress oil tanker resulted in the release of 72,000 tonnes of crude oil into Milford Haven, Wales, UK. Our initial studies indicated that this contamination resulted in elevated levels of DNA adducts in one of the area's native marine species Lipophrys pholis [B.P. Lyons, J.S. Harvey, J.M. Parry, An initial assessment of the genotoxic impact of the Sea Empress oil spill by the measurement of DNA adduct levels in the intertidal teleost Lipophrys pholis, Mutat. Res. 390 (1997) 263-268]. These original studies were extended and the genotoxic impact of the oil contamination was investigated in the invertebrates Halichondria panicea and Mytilus edulis, along with the vertebrate fish species L. pholis, Pleuronectes platessa and Limanda limanda. DNA adduct levels were assessed in these species over a period of 2-17 months after the incident. The studies indicate differences in the impact of acute oil contamination upon vertebrate and invertebrate species. The oil contamination did not induce any detectable elevations in adduct levels in the invertebrate species H. panicea and M. edulis. In contrast, the oil contamination did appear to induce adducts in the vertebrate teleost species L. pholis, P. platessa and Lim. limanda. Despite some difficulties in sampling, the data obtained 12-17 months after the spill suggested that the affected species recovered from the oil contamination. While the studies indicate that the genetic impact of the oil contamination was less severe than might have been expected, it remains possible that the DNA adducts detected in the teleosts could lead to genetic changes in these species in the future. PMID:10224327

  12. Lower bounds to future sea-level rise

    NASA Astrophysics Data System (ADS)

    Zecca, Antonio; Chiari, Luca

    2012-12-01

    Sea-level rise is among the most important changes expected as a consequence of anthropogenic global warming. Climate model-based projections made until the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) yield a 21st century rise spanning nearly 20-60 cm. However, it is known that current climate models are likely to underestimate sea-level change in response to rapid climatic variations. Recent alternative semi-empirical approaches predict a much higher sea-level rise than the IPCC AR4 projections. Nevertheless, the underway depletion of conventional fossil fuels might, at least in principle, constrain future fossil CO2 emissions and, in turn, affect also the extent of sea-level rise. Here we project 2000-2200 sea-level rise with a semi-empirical method coupled to a simple climate model that is run under a range of fossil-fuel exhaustion scenarios. We find that, in spite of fossil-fuel depletion, sea level is predicted to rise by at least ~ 80 cm at the end of this century and is expected to continue rising for at least the next two hundred years. The present results support the need for prompt and substantial emission cuts in order to slow down future sea-level rise and implement adaptation measures.

  13. Variability In The Solomon Sea From Altimetric Sea Level Data

    NASA Astrophysics Data System (ADS)

    Melet, A.; Gourdeau, L.; Kessler, W.; Verron, J.

    2007-12-01

    In the southwest tropical Pacific, subtropical waters from the SEC flow in the Solomon Sea, mainly through the western boundary New Guinea Coastal Undercurrent, and join the equatorial western Pacific by three narrow straits. The NGCU transports part of the spiciness anomalies generated in the South East Pacific and subducted in the thermocline. Because the NGCU is a primary source of the EUC, variations of its characteristics are expected to play a role in the equatorial thermocline features and more generally on decadal climate variability. Therefore, the study of the Solomon Sea is a key issue of the SPICE program. In this study, we focus on the variability of the Solomon Sea in term of sea level. The Solomon Sea is semi closed with a complex topography and numerous islands. Thus, the use of classical gridded altimetric products is inadequate. Consequently, this work is based on original along track Topex/Poseidon data. New data processing (CTOH/LEGOS) has been applied to recover proper data and to gain more information on the altimetric signal in this region. A track-by-track specific and customized post processing has been used to finalize the dataset. These new altimetric data have been assessed against tide gauge data. The analysis of the resulting sea level anomalies exhibits the highest variability observed in the tropical Pacific in an area centred near 8°S and expanding from each side of the Solomon Islands, outside of the WBC. Sea level variability presents a wide temporal spectrum, from intraseasonal to interannual ranges with the notable influence of the monsoon and of ENSO. In the Solomon Sea, three frequencies emerge : 60, 365 and 2000 days. The 60-days frequency seems particularly important in the Solomon Sea compared with the surrounding waters and an EOF analysis is used to understand its features. We also depict the signature of the New Guinea Coastal Current (NGCC), the western boundary current flowing north along the eastern coast of Papua

  14. Developing a Coastal Risk Indicator for Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Masters, D. S.; Nerem, R.

    2012-12-01

    Coastal sea level rise is one the most important potential environmental risks. Multiple satellite altimeters flying on the same repeat orbit track have allowed estimation of global mean sea level for the past 20 years, and the time series has yielded information about the average rate of sea level increase over that time. Due to the duration, consistency, and inter-calibration of the altimeter measurements, the time series is now considered a climate record. The time series has also shown the strong dependence of sea level on interannual signals such as the ENSO and the NAO. But the most important sea level effects of climate change will be felt on the regional and local scales. At these smaller scales, local effects due to topography, tides, earth deformation (glacial isostatic adjustment (GIA), subsidence, etc.), and storm surges must also be considered when estimating the risks of sea level change to coastal communities. Recently, work has begun to understand the methods applicable to estimating the risks of expected sea level change to coastal communities (Strauss et al., 2012; Tebaldi et al., 2012). Tebaldi et al (2012) merged the expected global mean sea level increase from the semi-empirical model of Vermeer and Rahmstorf (2009) with historical local tide gauges to predict increases in storm surge risk posed by increasing sea level. In this work, we will further explore the currently available data and tools that can potentially be used to provide a sea level climate change indicator and local risk assessment along US coasts. These include global and regional sea level trends from the satellite altimetry climate record, in situ tide gauge measurements and the historical extremes at each location, local tide and storm surge models, topographic surveys of vulnerable coastlines, GIA models, and measurements of local subsidence and crustal deformation rates. We will also evaluate methods to estimate the increased risk to communities from sea level change

  15. Nonlinear trends and multiyear cycles in sea level records

    NASA Astrophysics Data System (ADS)

    Jevrejeva, S.; Grinsted, A.; Moore, J. C.; Holgate, S.

    2006-09-01

    We analyze the Permanent Service for Mean Sea Level (PSMSL) database of sea level time series using a method based on Monte Carlo Singular Spectrum Analysis (MC-SSA). We remove 2-30 year quasi-periodic oscillations and determine the nonlinear long-term trends for 12 large ocean regions. Our global sea level trend estimate of 2.4 ± 1.0 mm/yr for the period from 1993 to 2000 is comparable with the 2.6 ± 0.7 mm/yr sea level rise calculated from TOPEX/Poseidon altimeter measurements. However, we show that over the last 100 years the rate of 2.5 ± 1.0 mm/yr occurred between 1920 and 1945, is likely to be as large as the 1990s, and resulted in a mean sea level rise of 48 mm. We evaluate errors in sea level using two independent approaches, the robust bi-weight mean and variance, and a novel "virtual station" approach that utilizes geographic locations of stations. Results suggest that a region cannot be adequately represented by a simple mean curve with standard error, assuming all stations are independent, as multiyear cycles within regions are very significant. Additionally, much of the between-region mismatch errors are due to multiyear cycles in the global sea level that limit the ability of simple means to capture sea level accurately. We demonstrate that variability in sea level records over periods 2-30 years has increased during the past 50 years in most ocean basins.

  16. Post-Cromerian rise in sea level

    SciTech Connect

    Olausson, E.

    1992-03-01

    The intensified cooling in the northern hemisphere during the Elsterian-Saalian ice ages (isotopic stages 22-6) resulted in a reduction of the Antarctic ice sheet by 10-15 x 106 km3, equal to a rise in sea level by about 40 m. This rise in sea level changed the hydrography of the Black Sea during the late Pleistocene warmer times, caused anoxic conditions in the eastern Mediterranean during the corresponding warming-up phases, and enhanced water transport of less saline water from the Pacific into the Arctic Ocean (the present sill depth of the Bering Strait is about 50 m). The increased supply of less saline water strengthened the halocline in the Arctic Ocean, increasing the sea ice there and, by higher albedo, its cooling effect on the adjacent continents.

  17. Obstacles to adaptation decisions in the developing world: A case study of coastal protection measures and sea-level rise in Kiribati

    NASA Astrophysics Data System (ADS)

    Donner, S. D.; Webber, S.

    2014-12-01

    International aid is increasingly focused on adaptation to climate change. At recent meetings of the parties to the United Nations Framework Convention on Climate Change, the developed world agreed to rapidly increase international assistance to help the developing world respond to the impacts of climate change. Here, we examine the decision-making challenges facing internationally supported climate change adaptation projects given the large uncertainty in future climate predictions, using the example of efforts to implement coastal protection measures (e.g. sea walls, mangrove planting) in Kiribati. The central equatorial Pacific country is home to the Kiribati Adaptation Project, the first national-level climate change adaptation project supported by the World Bank. Drawing on interview and document research conducted over an 8-year period, we trace the forces influencing decisions about coastal protection measures, starting from the variability and uncertainty in climate change projections, through the trade-offs between different measures, to the social, political, and economic context in which decisions are finally made. We then discuss how sub-optimal adaptation measures may be implemented despite years of planning, consultation, and technical studies. This qualitative analysis of the real-world process of climate change adaptation reveals that embracing a culturally appropriate and short-term (~20 years) planning horizon, while not ignoring the longer-term future, may reduce the influence of scientific uncertainty on decisions and provide opportunities to learn from mistakes, reassess the science, and adjust suboptimal investments.

  18. Overestimation of marsh vulnerability to sea level rise

    NASA Astrophysics Data System (ADS)

    Kirwan, Matthew L.; Temmerman, Stijn; Skeehan, Emily E.; Guntenspergen, Glenn R.; Fagherazzi, Sergio

    2016-03-01

    Coastal marshes are considered to be among the most valuable and vulnerable ecosystems on Earth, where the imminent loss of ecosystem services is a feared consequence of sea level rise. However, we show with a meta-analysis that global measurements of marsh elevation change indicate that marshes are generally building at rates similar to or exceeding historical sea level rise, and that process-based models predict survival under a wide range of future sea level scenarios. We argue that marsh vulnerability tends to be overstated because assessment methods often fail to consider biophysical feedback processes known to accelerate soil building with sea level rise, and the potential for marshes to migrate inland.

  19. Overestimation of marsh vulnerability to sea level rise

    USGS Publications Warehouse

    Kirwan, Matthew L.; Temmerman, Stijn; Skeehan, Emily E.; Guntenspergen, Glenn R.; Fagherazzi, Sergio

    2016-01-01

    Coastal marshes are considered to be among the most valuable and vulnerable ecosystems on Earth, where the imminent loss of ecosystem services is a feared consequence of sea level rise. However, we show with a meta-analysis that global measurements of marsh elevation change indicate that marshes are generally building at rates similar to or exceeding historical sea level rise, and that process-based models predict survival under a wide range of future sea level scenarios. We argue that marsh vulnerability tends to be overstated because assessment methods often fail to consider biophysical feedback processes known to accelerate soil building with sea level rise, and the potential for marshes to migrate inland.

  20. Future sea-level rise in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Galassi, Gaia; Spada, Giorgio

    2014-05-01

    Secular sea level variations in the Mediterranean Sea are the result of a number of processes characterized by distinct time scales and spatial patterns. Here we predict the future sea level variations in the Mediterranean Sea to year 2050 combining the contributions from terrestrial ice melt (TIM), glacial isostatic adjustment (GIA), and the ocean response (OR) that includes the thermal expansion and the ocean circulation contributions. The three contributions are characterized by comparable magnitudes but distinctly different sea-level fingerprints across the Mediterranean basin. The TIM component of future sea-level rise is taken from Spada et al. (2013) and it is mainly driven by the melt of small glaciers and ice caps and by the dynamic ice loss from Antarctica. The sea-level fingerprint associated with GIA is studied using two distinct models available from the literature: ICE-5G(VM2) (Peltier, 2004) and the ice model progressively developed at the Research School of Earth Sciences (RSES) of the National Australian University (KL05) (see Fleming and Lambeck, 2004 and references therein). Both the GIA and the TIM sea-level predictions have been obtained with the aid of the SELEN program (Spada and Stocchi, 2007). The spatially-averaged OR component, which includes thermosteric and halosteric sea-level variations, recently obtained using a regional coupled ocean-atmosphere model (Carillo et al., 2012), vary between 2 and 7 cm according to scenarios adopted (EA1B and EA1B2, see Meehl at al., 2007). Since the sea-level variations associated with TIM mainly result from the gravitational interactions between the cryosphere components, the oceans and the solid Earth, and long-wavelength rotational variations, they are characterized by a very smooth global pattern and by a marked zonal symmetry reflecting the dipole geometry of the ice sources. Since the Mediterranean Sea is located in the intermediate far-field of major ice sources, TIM sea-level changes have sub

  1. Sea level trend and variability around Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Luu, Q. H.; Tkalich, P.; Tay, T. W.

    2015-08-01

    are estimated at 4.4±3.1 and 4.6±2.5 mm yr-1. The geocentric rates are about 25 % faster than those measured at tide gauges around the peninsula; however, the level of uncertainty associated with VLM data is relatively high. For the common period between 1993 and 2009, geocentric sea level rise values along the Malaysian coast are similar from tide gauge records and satellite altimetry (3.1 and 2.7 mm yr-1, respectively), and arguably correspond to the global trend.

  2. Upper Limit for Regional Sea Level Projections

    NASA Astrophysics Data System (ADS)

    Jevrejeva, Svetlana; Jackson, Luke; Riva, Riccardo; Grinsted, Aslak; Moore, John

    2016-04-01

    With more than 150 million people living within 1 m of high tide future sea level rise is one of the most damaging aspects of warming climate. The latest Intergovernmental Panel on Climate Change report (AR5 IPCC) noted that a 0.5 m rise in mean sea level will result in a dramatic increase the frequency of high water extremes - by an order of magnitude, or more in some regions. Thus the flood threat to the rapidly growing urban populations and associated infrastructure in coastal areas are major concerns for society. Hence, impact assessment, risk management, adaptation strategy and long-term decision making in coastal areas depend on projections of mean sea level and crucially its low probability, high impact, upper range. With probabilistic approach we produce regional sea level projections taking into account large uncertainties associated with Greenland and Antarctica ice sheets contribution. We calculate the upper limit (as 95%) for regional sea level projections by 2100 with RCP8.5 scenario, suggesting that for the most coastlines upper limit will exceed the global upper limit of 1.8 m.

  3. A new perspective on global mean sea level (GMSL) acceleration

    NASA Astrophysics Data System (ADS)

    Watson, Phil J.

    2016-06-01

    The vast body of contemporary climate change science is largely underpinned by the premise of a measured acceleration from anthropogenic forcings evident in key climate change proxies -- greenhouse gas emissions, temperature, and mean sea level. By virtue, over recent years, the issue of whether or not there is a measurable acceleration in global mean sea level has resulted in fierce, widespread professional, social, and political debate. Attempts to measure acceleration in global mean sea level (GMSL) have often used comparatively crude analysis techniques providing little temporal instruction on these key questions. This work proposes improved techniques to measure real-time velocity and acceleration based on five GMSL reconstructions spanning the time frame from 1807 to 2014 with substantially improved temporal resolution. While this analysis highlights key differences between the respective reconstructions, there is now more robust, convincing evidence of recent acceleration in the trend of GMSL.

  4. Extended Late Pleistocene Sea Level Record

    NASA Astrophysics Data System (ADS)

    Fairbanks, R. G.; Cao, L.; Mortlock, R. A.

    2006-12-01

    Several hundred new closed system 230Th/234U and radiocarbon dates and the addition of more cores and coral samples from the islands of Barbados, Kiritimati and Araki contribute to an enhanced sea level record for the late Pleistocene ranging from the present to 240,000 yrs BP. Application of more rigorous sample screening criteria, including redundant 231Pa/235U dates have resulted in more closed system ages and better sea level resolution. In addition, a multibeam survey has mapped an extensive glacial lowstand reef on a ridge south of Barbados that is capped by a set of pinnacle reefs that grew during the early deglaciation. Among our new observations, the more detailed Barbados sea level record now resolves a Younger Dryas still- stand and a sea level drop between 16,140 and 14,690, overlapping the timing of H1 by some age estimates. The coral ages bracketing melt water pulse 1A have been further refined to 14,082 +/- 28 yrs BP and 13,632 +/- 32 yrs BP (2-sigma). The Isotope Stage 3 interstadial ended with sea level near 87.5 meters below present at 29,500 years ago before dropping to full glacial levels. The last glacial sea level lowstand began as early as 26,000 yrs BP. Extensive dating of Marine Isotope Stage 3 interstadial reefs on the islands of Araki and Barbados have added considerable resolution to this time interval and reliably bracket lowstand intervals separating the interstadials. A new diagenesis model has improved our prospecting success for closed system ages from older reefs and added some critical dates to the sparse closed-system data set for MIS-5 and MIS-7 high stand reefs..

  5. Low frequency Sea Level Variability: correlation between altimetry and tide gauges in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Bonaduce, A.; Pinardi, N.

    2012-04-01

    Sea level variability in the Mediterranean Sea over the decadal time scale is studied using a combination of sea level and in-situ observations. A method to decompose the different sea level signals for tide gauges and altimetry is proposed, so that a coherent comparison between the two measurements is possible. The steric component and the atmospheric pressure contribution (inverse barometer) are filtered in order to look at sea level changes over decadal time scales. Low frequency sea level from tide gauges data is found to be representative of a large scale signal and results to be comparable, along all the basin, with satellite altimetry data. In particular the two signals are better correlated in the areas where the continental shelf is extended, such as the northern Adriatic. The same occurs in the case where the tide gauge station is located on an island, such as Malta, where the station is representative of the open ocean sea level signal. Moving towards the Levantin basin, the shelves extension generally decrease and the two data sets tend to be less correlated even if still correlated positively with a root mean square error lower than 5 cm (Hadera, Israel). Looking at the sea level trend, a positive trend of 2.15 ± 0.7 mm yr -1 is observed in the Mediterranean basin considering satellite altimetry during the period from 1993 to 2010 . Glacial Isostatic Adjustment (GIA) has been considered correcting sea level data with ICE-5G model data. This value represent just and index of the sea level changes occurring at basin scale. The basin presents a marked trend spatial variability, mainly characterized by strong positive trends in the shelves areas and negative trends in the Ionian sea, due to a strong change in the circulation in this basin. The variability of the trend values as a function of the number of years considered is such that at least 15 years of data are needed in order to obtain a significant and stable positive trend. The total lack of in

  6. Analysis of the sea levels in Kiribati A Rising Sea of Misrepresentation Sinks Kiribati

    NASA Astrophysics Data System (ADS)

    Parker, Albert

    2016-03-01

    The sea levels of Kiribati have been stable over the last few decades, as elsewhere in the world. The Australian government funded Pacific Sea Level Monitoring (PSLM) project has adjusted sea level records to produce an unrealistic rising trend. Some information has been hidden or neglected, especially from sources of different management. The measured monthly average mean sea levels suffer from subsidence or manipulation resulting in a tilting from the about 0 (zero) mm/year of nearby tide gauges to 4 (four) mm/year over the same short time window. Real environmental problems are driven by the increasing local population leading to troubles including scarcity of water, localized sinking and localised erosion.

  7. Climate And Sea Level: It's In Our Hands Now

    NASA Astrophysics Data System (ADS)

    Turrin, M.; Bell, R. E.; Ryan, W. B. F.

    2014-12-01

    Changes in sea level are measurable on both a local and a global scale providing an accessible way to connect climate to education, yet engaging teachers and students with the complex science that is behind the change in sea level can be a challenge. Deciding how much should be included and just how it should be introduced in any single classroom subject area can be an obstacle for a teacher. The Sea Level Rise Polar Explorer App developed through the PoLAR CCEP grant offers a guided tour through the many layers of science that impact sea level rise. This map-based data-rich app is framed around a series of questions that move the user through map layers with just the level of complexity they chose to explore. For a quick look teachers and students can review a 3 or 4 sentence introduction on how the given map links to sea level and then launch straight into the interactive touchable map. For a little more in depth look they can listen to (or read) a one-minute recorded background on the data displayed in the map prior to launching in. For those who want more in depth understanding they can click to a one page background piece on the topic with links to further visualizations, videos and data. Regardless of the level of complexity selected each map is composed of clickable data allowing the user to fully explore the science. The different options for diving in allow teachers to differentiate the learning for either the subject being taught or the user level of the student group. The map layers also include a range of complexities. Basic questions like "What is sea level?" talk about shorelines, past sea levels and elevations beneath the sea. Questions like "Why does sea level change?" includes slightly more complex issues like the role of ocean temperature, and how that differs from ocean heat content. And what is the role of the warming atmosphere in sea level change? Questions about "What about sea level in the past?" can bring challenges for students who have

  8. Sea Level Rise in Santa Clara County

    NASA Technical Reports Server (NTRS)

    Milesi, Cristina

    2005-01-01

    Presentation by Cristina Milesi, First Author, NASA Ames Research Center, Moffett Field, CA at the "Meeting the Challenge of Sea Level Rise in Santa Clara County" on June 19, 2005 Santa Clara County, bordering with the southern portion of the San Francisco Bay, is highly vulnerable to flooding and to sea level rise (SLR). In this presentation, the latest sea level rise projections for the San Francisco Bay will be discussed in the context of extreme water height frequency and extent of flooding vulnerability. I will also present preliminary estimations of levee requirements and possible mitigation through tidal restoration of existing salt ponds. The examples will draw mainly from the work done by the NASA Climate Adaptation Science Investigators at NASA Ames.

  9. Visualizing Sea Level Rise with Augmented Reality

    NASA Astrophysics Data System (ADS)

    Kintisch, E. S.

    2013-12-01

    Looking Glass is an application on the iPhone that visualizes in 3-D future scenarios of sea level rise, overlaid on live camera imagery in situ. Using a technology known as augmented reality, the app allows a layperson user to explore various scenarios of sea level rise using a visual interface. Then the user can see, in an immersive, dynamic way, how those scenarios would affect a real place. The first part of the experience activates users' cognitive, quantitative thinking process, teaching them how global sea level rise, tides and storm surge contribute to flooding; the second allows an emotional response to a striking visual depiction of possible future catastrophe. This project represents a partnership between a science journalist, MIT, and the Rhode Island School of Design, and the talk will touch on lessons this projects provides on structuring and executing such multidisciplinary efforts on future design projects.

  10. Twentieth century sea level: An enigma

    PubMed Central

    Munk, Walter

    2002-01-01

    Changes in sea level (relative to the moving crust) are associated with changes in ocean volume (mostly thermal expansion) and in ocean mass (melting and continental storage): ζ(t) = ζsteric(t) + ζeustatic(t). Recent compilations of global ocean temperatures by Levitus and coworkers are in accord with coupled ocean/atmosphere modeling of greenhouse warming; they yield an increase in 20th century ocean heat content by 2 × 1023 J (compared to 0.1 × 1023 J of atmospheric storage), which corresponds to ζgreenhouse(2000) = 3 cm. The greenhouse-related rate is accelerating, with a present value ζ̇greenhouse(2000) ≈ 6 cm/century. Tide records going back to the 19th century show no measurable acceleration throughout the late 19th and first half of the 20th century; we take ζ̇historic = 18 cm/century. The Intergovernmental Panel on Climate Change attributes about 6 cm/century to melting and other eustatic processes, leaving a residual of 12 cm of 20th century rise to be accounted for. The Levitus compilation has virtually foreclosed the attribution of the residual rise to ocean warming (notwithstanding our ignorance of the abyssal and Southern Oceans): the historic rise started too early, has too linear a trend, and is too large. Melting of polar ice sheets at the upper limit of the Intergovernmental Panel on Climate Change estimates could close the gap, but severe limits are imposed by the observed perturbations in Earth rotation. Among possible resolutions of the enigma are: a substantial reduction from traditional estimates (including ours) of 1.5–2 mm/y global sea level rise; a substantial increase in the estimates of 20th century ocean heat storage; and a substantial change in the interpretation of the astronomic record. PMID:12011419

  11. The Sea Level Fingerprints of Global Change

    NASA Astrophysics Data System (ADS)

    Mitrovica, J. X.; Hay, C.; Kopp, R. E., III; Morrow, E.

    2014-12-01

    It may be difficult to persuade those living in northern Europe that the sea level changes that their coastal communities face depends less on the total melting of polar ice sheets and glaciers than on the individual contributions to this total. In particular, melting of a specific ice sheet or mountain glacier drives deformational, gravitational and rotational perturbations to the Earth system that are manifest in a unique geometry, or fingerprint, of global sea level change. For example, melting from the Greenland Ice Sheet equivalent to 1 mm/yr of global mean sea level (GMSL) rise will lead to sea level rise of ~0 mm/yr in Dublin, ~0.2 mm/yr in Amsterdam, ~0.4 mm/yr in Boston and ~1.2 mm/yr in Cape Town. In contrast, if the same volume of ice melted from the West Antarctic Ice Sheet, all of the above sites would experience a sea level rise in the range 1.1-1.2 mm/yr. These fingerprints of modern ice melting, together with ocean thermal expansion and dynamic effects, and the ongoing signal from glacial isostatic adjustment in response to the last ice age, combine to produce a sea level field with significant geographic variability. In this talk I will highlight an analysis of global tide gauge records that takes full advantage of this variability to estimate both GMSL and the sources of meltwater over the last century, and to project GMSL to the end of the current century.

  12. Sea level change. Inherited landscapes and sea level change.

    PubMed

    Cloetingh, Sierd; Haq, Bilal U

    2015-01-23

    Enabled by recently gained understanding of deep-seated and surficial Earth processes, a convergence of views between geophysics and sedimentary geology has been quietly taking place over the past several decades. Surface topography resulting from lithospheric memory, retained at various temporal and spatial scales, has become the connective link between these two methodologically diverse geoscience disciplines. Ideas leading to the hypothesis of plate tectonics originated largely with an oceanic focus, where dynamic and mostly horizontal movements of the crust could be envisioned. But when these notions were applied to the landscapes of the supposedly rigid plate interiors, there was less success in explaining the observed anomalies in terrestrial topography. Solid-Earth geophysics has now reached a developmental stage where vertical movements can be measured and modeled at meaningful scales and the deep-seated structures can be imaged with increasing resolution. Concurrently, there have been advances in quantifying mechanical properties of the lithosphere (the solid outer skin of Earth, usually defined to include both the crust and the solid but elastic upper mantle above the asthenosphere). The lithosphere acts as the intermediary that transfers the effects of mantle dynamics to the surface. These developments have allowed us to better understand the previously puzzling topographic features of plate interiors and continental margins. On the sedimentary geology side, new quantitative modeling techniques and holistic approaches to integrating source-to-sink sedimentary systems have led to clearer understanding of basin evolution and sediment budgets that allow the reconstruction of missing sedimentary records and past geological landscapes. PMID:25613899

  13. North Atlantic sea-level variability during the last millennium

    NASA Astrophysics Data System (ADS)

    Gehrels, Roland; Long, Antony; Saher, Margot; Barlow, Natasha; Blaauw, Maarten; Haigh, Ivan; Woodworth, Philip

    2014-05-01

    Climate modelling studies have demonstrated that spatial and temporal sea-level variability observed in North Atlantic tide-gauge records is controlled by a complex array of processes, including ice-ocean mass exchange, freshwater forcing, steric changes, changes in wind fields, and variations in the speed of the Gulf Stream. Longer records of sea-level change, also covering the pre-industrial period, are important as a 'natural' and long-term baseline against which to test model performance and to place recent and future sea-level changes and ice-sheet change into a long-term context. Such records can only be reliably and continuously reconstructed from proxy methods. Salt marshes are capable of recording decimetre-scale sea-level variations with high precision and accuracy. In this paper we present four new high-resolution proxy records of (sub-) decadal sea-level variability reconstructed from salt-marsh sediments in Iceland, Nova Scotia, Maine and Connecticut that span the past 400 to 900 years. Our records, based on more than 100 new radiocarbon analyses, Pb-210 and Cs-137 measurements as well as other biological and geochemical age markers, together with hundreds of new microfossil observations from contemporary and fossil salt marshes, capture not only the rapid 20th century sea-level rise, but also small-scale (decimetre, multi-decadal) sea-level fluctuations during preceding centuries. We show that in Iceland three periods of rapid sea-level rise are synchronous with the three largest positive shifts of the reconstructed North Atlantic Oscillation (NAO) index. Along the North American east coast we compare our data with salt-marsh records from New Jersey, North Carolina and Florida and observe a trend of increased pre-industrial sea-level variability from south to north (Florida to Nova Scotia). Mass changes and freshwater forcing cannot explain this pattern. Based on comparisons with instrumental sea-level data and modelling studies we hypothesise that

  14. Quantitative constraints on the sea-level fall that terminated the Littorina Sea Stage, southern Scandinavia

    NASA Astrophysics Data System (ADS)

    Clemmensen, Lars B.; Murray, Andrew S.; Nielsen, Lars

    2012-04-01

    The island of Anholt in the Kattegat sea (southern Scandinavia) is made up largely of an extensive beach-ridge plain. As a result of post-glacial uplift, the earliest beach-ridge and swale deposits are now raised 8-9 m above present mean sea level. It appears that growth of the plain has been almost uninterrupted over the past 7500 years; here we constrain the evolution of this plain between 6300 and 1300 years ago using optically stimulated luminescence dates. The topography and internal architecture of the fossil shoreline deposits were measured on high-resolution maps and in ground-penetrating radar (GPR) reflection data with a vertical resolution of ˜0.25 m. Shoreline topography shows significant changes with time, and it appears that one of the most striking changes took place between 4300 and 3600 years ago; in the shoreline deposits corresponding to this time interval the surface drops by around 3.5 m suggesting a marked fall in relative sea-level. Assuming a constant uplift rate of 1.2 mm/yr, the corresponding drop in absolute sea-level is estimated to be around 2.6 m. This marked sea-level fall in 700 years took place at the transition from the Middle Holocene Thermal Maximum to the Late Holocene Thermal Decline or at the end of the Littorina Sea stage in the Baltic Sea region.

  15. Sea-Level Anomalies Facilitate Beach Erosion and Increase Barrier Island Vulnerability to Storms and Sea-Level Rise

    NASA Astrophysics Data System (ADS)

    Theuerkauf, E. J.; Rodriguez, A. B.; Fegley, S. R.; Luettich, R. A., Jr.

    2014-12-01

    Sea-level anomalies are intra-seasonal (weeks to months) periods of high water level induced by oceanographic and meteorological processes, such as reduced Gulf Stream transport strength or persistent northeasterly winds. Although flooding associated with sea-level anomalies has been documented along continental coastlines (e.g. U.S. East Coast), these phenomena are not presently included in coastal models and management plans. We present the first measurements of beach erosion after a year with frequent sea-level anomalies. Erosion during this year, which was not impacted by large storms, was similar to a year with a hurricane, indicating that sea-level anomalies are important facilitators of coastal erosion. Beach erosion was measured at Onslow Beach, NC (OB) in a year with frequent sea-level anomalies (2009-2010) and compared to erosion during a year with no major events (2010-2011) and the year with Hurricane Irene (2011-2012). Sea-level anomalies were identified in water level data from a NOAA tide gauge in Wrightsville Beach, NC. From 2009-2010 anomalously high sea level occurred ~40% of the time, compared to ~8% from 2010-2011 and ~10% from 2011-2012. Significant wave heights, measured from an acoustic wave and current profiler and NOAA buoys offshore of OB, were not statistically different among these 3 years. The average backshore, high intertidal, and mid intertidal maximum depth of erosion for all sites along OB in the year with frequent sea-level anomalies were ~25, 50, and 55 cm, respectively. These values are greater than those measured after the year with no major events (~13, 29, and 32 cm) and similar to those measured after the year with Hurricane Irene (~27, 49, and 40 cm). OB has high along-strike variability in barrier island morphology, thus results apply to many beaches and barrier islands. Our results suggest that anomalies are important mechanisms of coastal change and likely amplify erosion in response to accelerated sea-level rise and

  16. Improvements of sea level anomaly maps in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Cheng, Yongcun; Baltazar Andersen, Ole; Knudsen, Per

    2013-04-01

    Obtaining satellite data at high latitude regions is generally very problematic. In the Arctic Ocean (For this investigation defined as 65°N-82°N), the ERS and ENVISAT sun-synchronous satellite altimetry measurements are nearly always affected by the presence of sea ice. Consequently, it is difficult to get accurate altimetric data for oceanography and climatology and this affect i.e., determination of the linear sea level trend over the regions. The objective of our study is to develop a new 3 days sea level anomaly maps in the Arctic Ocean. Multi-satellite (i.e., ERS-1, ERS-2 and ENVISAT) along track sea level anomaly data is extracted by applying adjusted editing criteria. Initially, the removal of orbit errors in sun-synchronous satellite altimetry is performed. A joint crossover with simultaneous TOPEX/Jason satellite altimetry, are used to adjust the long wavelength bias and tilt of the ERS-1, ERS-2 and ENVISAT. Subsequently, the adjusted sea level anomalies are gridded to a normal 0.5°×0.5°grid using collocation with a second-order Markov covariance function using spatial temporal interpolation which takes into account data from nearby periods in case of missing data. The data is then combined with tide gauge data and model outputs, the new data is used to study the sea level variability in Arctic Ocean. The contributors (for example, thermosteric, ice sheets and water mass) to the sea level change in the region are investigated. Moreover, significant decadal signal in sea level variation is found from tide gauge data and its comparison with AO index. The presentation is a contribution to the EU 7th FW supported projects MONARCH-A.

  17. Experiments in Reconstructing Twentieth-Century Sea Levels

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Douglas, Bruce C.

    2011-01-01

    One approach to reconstructing historical sea level from the relatively sparse tide-gauge network is to employ Empirical Orthogonal Functions (EOFs) as interpolatory spatial basis functions. The EOFs are determined from independent global data, generally sea-surface heights from either satellite altimetry or a numerical ocean model. The problem is revisited here for sea level since 1900. A new approach to handling the tide-gauge datum problem by direct solution offers possible advantages over the method of integrating sea-level differences, with the potential of eventually adjusting datums into the global terrestrial reference frame. The resulting time series of global mean sea levels appears fairly insensitive to the adopted set of EOFs. In contrast, charts of regional sea level anomalies and trends are very sensitive to the adopted set of EOFs, especially for the sparser network of gauges in the early 20th century. The reconstructions appear especially suspect before 1950 in the tropical Pacific. While this limits some applications of the sea-level reconstructions, the sensitivity does appear adequately captured by formal uncertainties. All our solutions show regional trends over the past five decades to be fairly uniform throughout the global ocean, in contrast to trends observed over the shorter altimeter era. Consistent with several previous estimates, the global sea-level rise since 1900 is 1.70 +/- 0.26 mm/yr. The global trend since 1995 exceeds 3 mm/yr which is consistent with altimeter measurements, but this large trend was possibly also reached between 1935 and 1950.

  18. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    NASA Astrophysics Data System (ADS)

    Abualnaja, Yasser O.; Churchill, James H.; Nellayaputhenpeedika, Mohammedali; Limeburner, Richard

    2015-04-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an 'intermediate' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  19. Sea Grant Education at the University Level.

    ERIC Educational Resources Information Center

    Fiske, Shirley J.

    1998-01-01

    Sea Grant's investment in university-level education shows a diversity of avenues for supporting students from experience-based internships, merit scholarships, and fellowships to team-based multidisciplinary undergraduate education. Describes such programs as Undergraduate Research Opportunities in ocean engineering, graduate research…

  20. Sea Level Rise National Coastal Property Model

    EPA Science Inventory

    The impact of sea level rise on coastal properties depends critically on the human response to the threat, which in turn depends on several factors, including the immediacy of the risk, the magnitude of property value at risk, options for adapting to the threat and the cost of th...

  1. Sea-Level Changes during the Tertiary.

    ERIC Educational Resources Information Center

    Vail, Peter R.; Hardenbol, Jan

    1979-01-01

    Discussed are research procedures undertaken to determine the magnitude and timing of eustatic sea-level changes during the Tertiary Period. Data now becoming available give scientists a knowledge of conditions that may have been conducive to the formation of petroleum. (BT)

  2. Sea Level Rise Coastal Property Model

    EPA Science Inventory

    The impact of sea level rise on coastal properties depends critically on the human response to the threat, which in turn depends on several factors, including the immediacy of the risk, the magnitude of property value at risk, options for adapting to the threat and the cost of th...

  3. Trends in UK mean sea level revisited

    NASA Astrophysics Data System (ADS)

    Woodworth, P. L.; Teferle, F. N.; Bingley, R. M.; Shennan, I.; Williams, S. D. P.

    2009-01-01

    This paper presents estimates of rates of mean sea level (MSL) change around the UK, based on a larger tide gauge data set and more accurate analysis methods than have been employed so far. The spatial variation of the trend in MSL is found to be similar to that inferred from geological information and from advanced geodetic techniques, which is a similar conclusion to that arrived at in the previous studies. The tide gauge MSL trends for 1901 onwards are estimated to be 1.4 +/- 0.2 mm yr-1 larger than those inferred from geology or geodetic methods, suggesting a regional sea level rise of climate change origin several one-tenths of mm per year lower than global estimates for the 20th century. However, UK MSL change cannot be described in terms of a simple linear increase alone but includes variations on interannual and decadal timescales. The possible sources of variation in a `UK sea level index' are explored. Air pressure is clearly one such possible source but its direct local forcing through the `inverse barometer' accounts for only one-third of the observed variability. A number of larger scale atmospheric and ocean processes must also play important roles, but modelling them satisfactorily and separating the individual contributions present a major challenge. As regards future regional UK sea level changes, we conclude that there is no basis for major modification to existing projections for the 2080s included in the 2002 UK Climate Impacts Programme studies.

  4. Arctic Sea Level Change From a Reprocessed 2 Decade Altimetric Sea Level Record

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Knudsen, P.; Cheng, Y.

    2014-12-01

    For ocean and climate research it is essential to get as accurate long-term altimetric sea level data as possible. However, the accuracy of the altimetric data is frequently degraded in the interior of the Arctic Ocean due to the presence of seasonal or permanent sea ice. We have reprocessed ERS-1/2/Envisat satellite altimetry to develop an improved 20-year sea level dataset for the Arctic Ocean adding in recent retracked Cryosat-2 to bring the record up to 2014 . We have developed both an along-track dataset and 3-day gridded sea level anomaly (SLA) maps from September 1992 to April 2014. A major improvement in data coverage was gained by tailoring the standard altimetric editing criteria to Arctic conditions. The new reprocessed data has significant increased data coverage with between 4 and 10 times the amount of data in regions like the Beaufort Gyre region compared with AVISO and RADS datasets. This allows for a more accurate estimation of sea level changes from satellite altimetry in the Arctic Ocean. The reprocessed dataset exhibit a mean sea level trend of 2.1±1.3 mm/year (without Glacial Isostatic Adjustment correction) covering the Arctic Ocean between 66°N and 82°N with significant higher trend in the Beaufort Gyre region showing an increase in sea level trend at the cm level up to 2011.

  5. Simultaneous estimation of lithospheric uplift rates and absolute sea level change in southwest Scandinavia from inversion of sea level data

    NASA Astrophysics Data System (ADS)

    Nielsen, Lars; Hansen, Jens Morten; Hede, Mikkel Ulfeldt; Clemmensen, Lars B.; Pejrup, Morten; Noe-Nygaard, Nanna

    2014-11-01

    Relative sea level curves contain coupled information about absolute sea level change and vertical lithospheric movement. Such curves may be constructed based on, for example tide gauge data for the most recent times and different types of geological data for ancient times. Correct account for vertical lithospheric movement is essential for estimation of reliable values of absolute sea level change from relative sea level data and vise versa. For modern times, estimates of vertical lithospheric movement may be constrained by data (e.g. GPS-based measurements), which are independent from the relative sea level data. Similar independent data do not exist for ancient times. The purpose of this study is to test two simple inversion approaches for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates for ancient times in areas where a dense coverage of relative sea level data exists and well-constrained average lithospheric movement values are known from, for example glacial isostatic adjustment (GIA) models. The inversion approaches are tested and used for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates in southwest Scandinavia from modern relative sea level data series that cover the period from 1900 to 2000. In both approaches, a priori information is required to solve the inverse problem. A priori information about the average vertical lithospheric movement in the area of interest is critical for the quality of the obtained results. The two tested inversion schemes result in estimated absolute sea level rise of ˜1.2/1.3 mm yr-1 and vertical uplift rates ranging from approximately -1.4/-1.2 mm yr-1 (subsidence) to about 5.0/5.2 mm yr-1 if an a priori value of 1 mm yr-1 is used for the vertical lithospheric movement throughout the study area. In case the studied time interval is broken into two time intervals (before and after 1970), absolute sea level rise values of ˜0.8/1.2 mm yr-1 (before

  6. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    PubMed

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature. PMID:24739960

  7. Changes in Sea Levels around the British Isles Revisited (Invited)

    NASA Astrophysics Data System (ADS)

    Teferle, F. N.; Hansen, D. N.; Bingley, R. M.; Williams, S. D.; Woodworth, P. L.; Gehrels, W. R.; Bradley, S. L.; Stocchi, P.

    2009-12-01

    Recently a number of new and/or updated sources for estimates of vertical land movements for the British Isles have become available allowing the relative and average changes in sea levels for this region to be revisited. The geodetic data set stems from a combination of re-processed continuous Global Positioning System (GPS) measurements from stations in the British Isles and from a global reference frame network, and absolute gravity (AG) measurements from two stations in the British Isles. The geologic data set of late Holocene sea level indicators has recently been updated, now applying corrections for the 20th century sea level rise, syphoning effect and late Holocene global ice melt, and expanded to Northern Ireland and Ireland. Several new model predictions of the glacial isostatic adjustment (GIA) process active in this region form the modelling data set of vertical land movements for the British Isles. Correcting the updated revised local reference (RLR) trends from the Permanent Service for Mean Sea Level (PSMSL) with these vertical land movement data sets, regional and averaged changes in sea levels around the British Isles have been investigated. Special focus is thereby also given to the coastal areas that have recently been identified within the UK Climate Projections 2009.

  8. Inconsistencies in sea level pressure trends between different atmospheric products. Impact on sea level trend estimation

    NASA Astrophysics Data System (ADS)

    Gomis, D.; Jordà, G.

    2012-04-01

    Long term climate datasets are of great importance to understand the processes behind climate variability, to evaluate the performance of climate models and to identify signals of climate change. Among the different atmospheric variables, sea level pressure (SLP) is the basic dynamical variable and is the most widely analyzed quantity. From the ocean perspective, SLP is of crucial importance for a dynamical interpretation of sea level records. In order to isolate the contribution to sea level variability of circulation and heat and freshwater contents, a common practice is to remove the sea level fluctuations induced by SLP. At seasonal and longer time scales, sea level is expected to react as an inverted barometer (IB) to changes in SLP. Therefore, provided that accuracy of available SLP data is high enough, the atmospheric contribution to sea level variability can be isolated and removed from sea level records. This is routinely done for tide gauge records, altimetry or sea level reconstructions. Different atmospheric gridded products spanning the last decades are nowadays available. On the one hand, there are historical SLP datasets where observations from land stations and ocean observations have been interpolated into a regular grid. On the other hand, there are reanalyses where an atmospheric model is run assimilating the historical data. Both kind of products have been extensively used in recent years either directly (i.e. to analyse the SLP evolution) or indirectly (i.e. through the removal of IB effect on sea level records). However, it is well known that the quality of those products may not be homogeneous on time. In this contribution, we compare long term SLP trends from different atmospheric products (reanalysis and gridded historical datasets), and evaluate the uncertainties introduced by them in the sea level trend estimations. The results show that discrepancies between datasets can induce an uncertainty up to 0.5 mm/yr for the period 1958-2001 on

  9. How Much Are Floridians Willing to Pay for Protecting Sea Turtles from Sea Level Rise?

    NASA Astrophysics Data System (ADS)

    Hamed, Ahmed; Madani, Kaveh; Von Holle, Betsy; Wright, James; Milon, J. Walter; Bossick, Matthew

    2016-01-01

    Sea level rise (SLR) is posing a great inundation risk to coastal areas. Some coastal nesting species, including sea turtle species, have experienced diminished habitat from SLR. Contingent valuation method (CVM) was used in an effort to assess the economic loss impacts of SLR on sea turtle nesting habitats for Florida coasts; and to elicit values of willingness to pay (WTP) of Central Florida residents to implement certain mitigation strategies, which would protect Florida's east coast sea turtle nesting areas. Using the open-ended and dichotomous choice CVM, we sampled residents of two Florida communities: Cocoa Beach and Oviedo. We estimated the WTP of households from these two cities to protect sea turtle habitat to be between 42 and 57 per year for 5 years. Additionally, we attempted to assess the impact of the both the respondents' demographics and their perception toward various situations on their WTP value. Findings include a negative correlation between the age of a respondent and the probability of an individual willing to pay the hypothetical WTP amount. We found that WTP of an individual was not dependent on prior knowledge of the effects of SLR on sea turtle habitat. The greatest indicators of whether or not an individual was willing to pay to protect sea turtle habitat were the respondents' perception regarding the trustworthiness and efficiency of the party which will implement the conservation measures and their confidence in the conservation methods used. Respondents who perceive sea turtles having an effect on their life were also more likely to pay.

  10. Understanding sea-level variations in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    de Juan, J.; Davis, J. L.; Hill, E. M.; Tamisiea, M. E.; Ponte, R. M.; Vinogradova, N. T.

    2012-12-01

    Sea level is affected by a wide range of processes, resulting in a response that varies on seasonal, interannual, and decadal time scales, and that has clear regional variations. Understanding such variability is important in order to quantify and interpret global trends in long-term sea level. One cause of this variability, of many, is the seasonal exchange of water between the continents and the ocean, which induces changes in the shape and gravity field of the Earth. This so-called 'self-attraction and loading' (SAL) causes a spatial and temporal variation of sea level, with an annual amplitude that ranges from ~2 mm to >18 mm. Previous studies show that the effect of SAL on the annual cycle of sea level is larger in the Bay of Bengal than anywhere else on Earth. In addition, tide-gauge measurements of the annual cycle in sea level show among the largest disagreements with ocean model predictions and near-coastal altimeter measurements in this region. The study of sea level in the Bay of Bengal is important, both socially and scientifically. Three rivers converge in Bangladesh, with one of the world's highest annual discharge, of ~1300 GT/yr. The large delta covers the highly populated regions of southern Bangladesh and West Bengal. River flow is highly seasonal, with almost all discharge taking place during the summer monsoon. These conditions result in widespread flooding over Bangladesh every summer, with ~100 GT of water stored within Bangladesh during these events, as observed with GRACE and in-situ measurements. This large hydrological load is the cause for the observed large annual SAL effect in this region, and may account for at least part of the discrepancy between tide-gauge measurements and ocean-model predictions. Furthermore, comparison with measurements suggests that the hydrology models used to estimate the global SAL effect on the annual sea-level cycle may be underestimating the water load over this region. The problem is compounded by the fact

  11. Late Holocene land- and sea-level changes in the British Isles: implications for future sea-level predictions

    NASA Astrophysics Data System (ADS)

    Gehrels, W. Roland

    2010-07-01

    Four decades of palaeosea-level research in the British Isles have produced a large dataset of age-altitude curves of postglacial sea-level changes. Patterns of late Holocene relative sea-level change reveal the persistent influence of the British/Irish Ice Sheet and the larger Scandinavian Ice Sheet on contemporary rates of vertical land movements. The Shennan and Horton (2002) map of late Holocene relative land movements has been used in future sea-level rise predictions by the United Kingdom Climate Impact Programme in their 2002 assessment (UKCIP02), but has been mistaken for a map of absolute land movements. In this paper, land-motion data for Britain are extracted from the Shennan and Horton (2002) relative sea-level data, and a new map of crustal land movements is presented which also includes Ireland. This procedure takes into account the regional 20th century sea-level rise (˜0.14 m) and the process of ocean syphoning ( i.e. a global fall in sea level of ˜0.3 mm/yr due to GIA induced ocean-floor lowering and re-distribution of ocean mass). The calculated land-motion rates also depend on the global late Holocene ice-equivalent sea-level change, given by the Intergovernmental Panel on Climate Change as 0.0-0.2 mm/yr. Accounting for these processes reduces the misfit between geological observations of vertical land motion and those independently derived from gravity-aligned Global Positioning System (AG GPS) measurements and shows that UKCIP02 has underestimated land subsidence in southern Britain and over-estimated land uplift in Scotland, both by 0.1-0.2 mm/yr. A best fit between GPS and geological estimates of land movements in Britain is achieved for a global long-term eustatic sea-level fall of ca 0.2 mm/yr, suggesting some global ice expansion in the late Holocene, rather than melt. If this is correct, uplift rates in Scotland would be lower and subsidence rates in southern Britain would be faster (by 0.4-0.5 mm/yr) than estimated by UKCIP02. More

  12. New constraints on Quaternary sea level oscillations provided by U-series measurements of a submerged speleothem from the Italian coastline

    NASA Astrophysics Data System (ADS)

    Dutton, A.; Esat, T. M.; Desmarchelier, J. M.; Antonioli, F.; Lambeck, K.; McCulloch, M. T.

    2004-12-01

    Speleothems have become increasingly important as tools to place long paleoenvironmental records into a temporal context through the use of U-Th dating, which is one of the most precise and accurate geochronometers available for the late Quaternary. This investigation was designed to provide U-series ages for a stalagmite collected from a submerged cave on Argentarola Island to constrain the timing, duration, and magnitude of Quaternary sea-level highstands. Argentarola cave has been alternately submerged and subaerially exposed as evinced by the presence of marine encrustations of Serpulid calcite that alternate with dense, microcrystalline speleothem calcite that forms during subaerial exposure. As such, speleothems from Argentarola cave provide a unique archive of the relative height of Quaternary sea level oscillations along a portion of the Italian coastline that appears to have been tectonically stable on the time scales considered here. Moreover, the application of U-series dating to these speleothems can provide an estimate of the absolute timing and relative duration of Quaternary marine transgressions. We have studied a stalagmite that was collected 18 meters below present sea level. Preliminary results indicate speleothem growth during stage 8, in addition to stages 2, 6 and 7.2 that have previously been identified, and define marine layers that correspond to the Holocene transgression and highstands associated with marine isotope stages (MIS) 5, 7.1, and 7.3. Because few relative sea level (RSL) indicators exist for glacial cycles prior to the last interglacial, data from Argentarola speleothems provide important benchmarks for future RSL models and also provide an important test for existing models. Our data are generally in good agreement with RSL curves for this time period and indicate that the correlation between RSL and foraminiferal \\delta18O over the last glacial cycle is a robust predictive tool for RSL estimates extending back to the

  13. Sea level changes in the Holocene

    SciTech Connect

    Tanner, W.F. )

    1993-03-01

    Beach ridge data provide much information on the history of sea level changes through all of Holocene time. Two data sets start at about 12,000 B.P., one of them essentially continuous to now with data every 40--50 yrs. Another starting at 7,600 B.P. is continuous to the present. Others span the last 3,200 years. These records agree reasonably closely, and show the Little Ice Age (since 1,200 A.D.). The sea level changes in these data include the following: (a) Early Holocene crisis, about 8,000 B.P. The Swedish (Baltic Sea) record ends about this time, the Hudson Bay record starts at roughly this time, and the Danish record has a 300--500-year gap at about this time. From the latter, it appears that sea level rose sharply, shortly before 8,000 B.P., and fell again shortly after 8,000 B.P. These were the largest changes in Holocene time. The vertical change may have been as much as 12--18 meters, and the rate of change as much as 5--8 cm/yr, perhaps the maximum possible. In stable areas, evidence for these changes are now 25--30 meters below sea level. (b) Early Holocene general rise, up to about 8,000 B.P. Evidence for this is now known only on uplifted coasts. (c) Middle Holocene high, 2 m above present MSL 7,000--5,500 B.P. (d) Middle Holocene low, 3--4 m below present MSL 5,000--3,500 B.P. (e) Several changes up to 2 meters, especially since 3,000 B.P. In general, rates of change have been close to 1 cm/yr (major exceptions noted above). The only persistent interval was that between beach ridges; each ridge and its associated swale seem to have been built by a sea-level rise-and-fall couplet, having dimensions so small (perhaps 5--30 cm) that they could be overlooked easily on tide-gauge records. The average apparent time interval was 35--50 years.

  14. Comparisons of various sea level reconstructions and sea level from data synthesis products: 1960-2012

    NASA Astrophysics Data System (ADS)

    Carson, Mark; Stammer, Detlef; Köhl, Armin; Meyssignac, Benoit; Church, John; Schröter, Jens; Wenzel, Manfred

    2016-04-01

    We investigate sea level trends and variability as reconstructed from tide gauge data and ocean data assimilations (ODA) over the last 60 years. Tide gauge reconstructions (TGR) are mostly based on statistical approaches using selected EOFs, or trained from variability patterns, from altimetric sea level and tide gauge data to extrapolate regional sea level evolution backward in time. Reconstructions also exist from dynamical ocean modeling approaches with and without data assimilation. We intercompare all results and provide ensemble mean and ensemble spreads to describe estimates of past regional sea level changes and their uncertainties. While tide gauge reconstructions match tide gauge data better than ODA, they exhibit less variability in the open ocean. TGRs match the trends and variability better during the satellite-altimetry era than for the entire period from 1960-2012, whereas the ODAs mostly do not. An average of all products produces the best statistics for comparing to the set of tide gauges. The results are mixed. The TGRs and ODAs can be useful in some respects, such as calculating a global sea-level signal, and matching altimetric data, and each other, well in the Pacific. But the regional open-ocean sea-level change and variability found from altimetric data are not well reproduced over substantial portions of the ocean. Over periods earlier than the satellite era, these reconstructed regional patterns may not be trustworthy, nor can they be verified.

  15. A sea-level recorder for tectonic studies

    NASA Technical Reports Server (NTRS)

    Bilham, R.

    1977-01-01

    In the past tide gauges have provided valuable information concerning the vertical ground deformation associated with major earthquakes. Although tide-gauge data contains numerous sources of noise, a spacing of less than 40 km between gauges is indicated for a useful study of dilatant behavior, and a spacing of less than 80 km may be adequate for the study of crustal downwarping in island arcs. An inexpensive tide gauge which is designed to provide a continuous record of sea level with a measurement precision of 1 mm is described. Hydraulic filtering is incorporated into the instrument to attenuate daily tides relative to longer period variations of sea level. The instrument is designed to operate from flashlight batteries for a year unattended and to withstand temporary submersion as might be caused by tsunamis. Several of these sea-level recorders have been installed in seismic gaps in the Aleutians and in the Caribbean.

  16. Hurricanes, sea level rise, and coastal change

    USGS Publications Warehouse

    Sallenger,, Asbury H., Jr.

    2011-01-01

    Sixteen hurricanes have made landfall along the U.S. east and Gulf coasts over the past decade. For most of these storms, the USGS with our partners in NASA and the U.S. Army Corps of Engineers have flown before and after lidar missions to detect changes in beaches and dunes. The most dramatic changes occurred when the coasts were completely submerged in an inundation regime. Where this occurred locally, a new breach was cut, like during Hurricane Isabel in North Carolina. Where surge inundated an entire island, the sand was stripped off leaving marshy outcrops behind, like during Hurricane Katrina in Louisiana. Sea level rise together with sand starvation and repeated hurricane impacts could increase the probabilities of inundation and degrade coasts more than sea level rise alone.

  17. Coastal subsidence and relative sea level rise

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Galloway, Devin L.

    2014-01-01

    Subsurface fluid-pressure declines caused by pumping of groundwater or hydrocarbons can lead to aquifer-system compaction and consequent land subsidence. This subsidence can be rapid, as much as 30 cm per year in some instances, and large, totaling more than 13 m in extreme examples. Thus anthropogenic subsidence may be the dominant contributor to relative sea-level rise in coastal environments where subsurface fluids are heavily exploited. Maximum observed rates of human-induced subsidence greatly exceed the rates of natural subsidence of unconsolidated sediments (~0.1–1 cm yr−1) and the estimated rates of ongoing global sea-level rise (~0.3 cm yr−1).

  18. Rising Sea Levels: Truth or Scare?

    ERIC Educational Resources Information Center

    Peacock, Alan

    2007-01-01

    When "ITV News" ran an item that shocked the author, about rising sea levels that will have caused the entire evacuation of the islands by the end of this year, he began to wonder whether the Pacific Ocean is really rising as fast as this. The media reporting of such things can be a double-edged sword. On the one hand, it brought to the author's…

  19. Internal and external forcing of sea level variability in the Black Sea

    NASA Astrophysics Data System (ADS)

    Volkov, Denis L.; Landerer, Felix W.

    2015-11-01

    The variability of sea level in the Black Sea is forced by a combination of internal and external processes of atmospheric, oceanic, and terrestrial origin. We use a combination of satellite altimetry and gravity, tide gauge, river discharge, and atmospheric re-analysis data to provide a comprehensive up-to-date analysis of sea level variability in the Black Sea and to quantify the role of different environmental factors that force the variability. The Black Sea is part of a large-scale climatic system that includes the Mediterranean and the North Atlantic. The seasonal sea level budget shows similar contributions of fresh water fluxes (precipitation, evaporation, and river discharge) and the Black Sea outflow, while the impact of the net surface heat flux is smaller although not negligible. We find that the nonseasonal sea level time series in the Black and Aegean seas are significantly correlated, the latter leading by 1 month. This lag is attributed to the adjustment of sea level in the Black Sea to externally forced changes of sea level in the Aegean Sea and to the impact of river discharge. The nonseasonal sea level budget in the Black Sea is dominated by precipitation and evaporation over the sea itself, but external processes such as river discharge and changes in the outflow can also cause some large synoptic-scale sea level anomalies. Sea level is strongly coupled to terrestrial water storage over the Black Sea drainage basin, which is modulated by the North Atlantic Oscillation (NAO). We show that during the low/high NAO southwesterly/northeasterly winds near the Strait of Gibraltar and southerly/northerly winds over the Aegean Sea are able to dynamically increase/decrease sea level in the Mediterranean and Black seas, respectively.

  20. On the effect of the sampling frequency of sea level measurements on return period estimate of extremes—Southern European examples

    NASA Astrophysics Data System (ADS)

    Tsimplis, M. N.; Marcos, M.; Pérez, B.; Challenor, P.; Garcia-Fernandez, M. J.; Raicich, F.

    2009-10-01

    Estimates of extreme sea levels and return periods have been based mainly on hourly sampling rates. Technological development has enabled the sampling rates to increase and sampling rates of 5-10 min are becoming increasingly common. In this paper we explore the relationship between extreme sea levels and estimated return periods based on hourly and shorter sampling periods in three tide-gauges one at the Atlantic coasts of Spain (Coruña), one in the western Mediterranean (Malaga) and one in the N. Adriatic (Trieste). Significant differences of several centimetres are found in the hourly and 5 min extremes. These reflect in significant underestimation of the 50-year return levels which in Trieste reach 38 cm. A theoretical relationship between the high and the low sampling rate of extremes is also tested. Thus updated 50-year return levels for the Mediterranean and the coasts of the Iberian peninsula are produced assuming that the differences identified in the various stations generalise to other tide-gauge (hourly) records for which hourly values have been analysed earlier.

  1. History of coral reefs and sea level

    SciTech Connect

    Fairbridge, R.W.

    1985-01-01

    Charles Darwin proposed crustal subsidence for atoll growth, on the Beagle, between England and Brazil, before even seeing a coral reef, on the basis of charts and discussions with Captain Fitzroy. Relative change of sea level due to crustal movements was then well-accepted from evidence of raised strandlines in Scandinavia and Scotland and sunken forests in England. Darwin added global change of sea level (tectonoeustasy) caused by remote tectonic activity, as explained by Robert Chambers (1848, p. 319). The glacioeustasy concept was mooted soon afterwards, though the term itself came later. When Suess in 1888 proposed eustatic change, he had in mind Archimedian displacement of water by sediment or lava accumulation on the sea floor. Integrated ideas of reef development also came in the 20th century. The powerful arguments against Darwin were led by Murray with his solution hypothesis, which can not be judged as good observation but from a narrow viewpoint. The Royal Society reef borings at Funafuti were heroic but at the same time misread. Subsequently came isotopic geochemistry, absolute dating, the Milankovitch insolation theory, and plate tectonics. And much more field work. The result is an integrated reef growth theory.

  2. Tracking multidecadal trends in sea level using coral microatolls

    NASA Astrophysics Data System (ADS)

    Majewski, Jedrzej; Pham, Dat; Meltzner, Aron; Switzer, Adam; Horton, Benjamin; Heng, Shu Yun; Warrick, David

    2015-04-01

    Tracking multidecadal trends in sea level using coral microatolls Jędrzej M. Majewski 1, Dat T. Pham1, Aron J. Meltzner 1, Adam D. Switzer 1, Benjamin P. Horton2, Shu Yun Heng1, David Warrick3, 1 Earth Observatory of Singapore, Nanyang Technological University, Singapore 2 Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA 3 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA Coral microatolls can be used to study relative sea-level change at multidecadal timescales associated with vertical land movements, climate induced sea-level rise and other oceanographic phenomena such as the El Niño/Southern Oscillation (ENSO) or Indian Ocean Dipole (IOD) with the assumption that the highest level of survival (HLS) of coral microatolls track sea level over the course of their lifetimes. In this study we compare microatoll records covering from as early as 1883 through 2013, from two sites in Indonesia, with long records (>20 years) from proximal tide gauges, satellite altimetry, and other sea-level reconstructions. We compared the HLS time series derived from open-ocean and moated (or ponded) microatolls on tectonically stable Belitung Island and a potentially tectonically active setting in Mapur Island, with sea-level reconstructions for 1950-2011. The sea-level reconstructions are based on ground and satellite measurements, combining a tide model with the Estimating the Circulation and Climate of the Ocean (ECCO) model. Our results confirm that open-ocean microatolls do track low water levels at multi decadal time scales and can be used as a proxy for relative sea level (RSL) over time. However, microatolls that are even partially moated are unsuitable and do not track RSL; rather, their growth patterns likely reflect changes in the elevation of the sill of the local pond, as reported by earlier authors. Our ongoing efforts will include an attempt to recognize similarities in moated

  3. The partition of regional sea level variability

    NASA Astrophysics Data System (ADS)

    Forget, Gaël; Ponte, Rui M.

    2015-09-01

    The existing altimetric record offers an unprecedented view of sea level (ζ) variability on a global scale for more than 2 decades. Optimal inference from the data involves appropriate partition of signal and noise, in terms of relevant scales, physical processes and forcing mechanisms. Such partition is achieved here through fitting a general circulation model to altimeter and other datasets to produce a "best" estimate of ζ variability directly forced by the atmosphere-the signal of primary interest here. In this context noise comes primarily from instrument errors and meso-scale eddies, as expected, but spatial smoothing effectively reduces this noise. A separate constraint is thus formulated to measure the fit to monthly, large-scale altimetric variability that unlike the daily, pointwise constraint shows a high signal-to-noise ratio. The estimate is explored to gain insight into dynamics, forcing, and other factors controlling ζ variability. Contributions from thermo-steric, halo-steric and bottom pressure terms are all important depending on region, but slopes of steric spectra (red) and bottom pressure spectra (white) are nearly invariant with latitude. Much ζ variability can be represented by a seasonal cycle and linear trend, plus a few EOFs that can be associated with known modes of climate variability and/or with topographic controls. Both wind and buoyancy forcing are important. The response is primarily basin-bound in nature, but uneven patterns of propagation across basin boundaries are clearly present, with the Pacific being able to affect large portions of the Indian and Atlantic basins, but the Atlantic affecting mostly the Arctic.

  4. Monitoring Sea Level At L'Estartit, Spain

    NASA Astrophysics Data System (ADS)

    Martinez-Benjamin, J.; Ortiz Castellon, M.; Martinez-Garcia, M.; Talaya, J.; Rodriguez Velasco, G.; Perez, B.

    2007-12-01

    Sea level is an environmental variable which is widely recognised as being important in many scientific disciplines as a control parameter for coastal dynamical processes or climate processes in the coupled atmosphere-ocean systems, as well as engineering applications. A major source of sea-level data are the national networks of coastal tide gauges, in Spain belonging to different institutions as the Instituto Geográfico Nacional (IGN), Puertos del Estado (PE), Instituto Hidrográfico de la Marina (IHM), Ports de la Generalitat, etc. Three Begur Cape experiences on radar altimeter calibration and marine geoid mapping made on 1999, 2000 and 2002 are overviewed. The marine geoid has been used to relate the coastal tide gauge data from l'Estartit harbour to off-shore altimetric data. The necessity to validate and calibrate the satellite's altimeter due to increasing needs in accuracy and long term integrity implies establishing calibration sites with enhanced ground based methods for sea level monitoring. A technical Spanish contribution to the calibration experience has been the design of GPS buoys and GPS catamaran taking in account the University of Colorado at Boulder and Senetosa/Capraia designs. Altimeter calibration is essential to obtain an absolute measure of sea level, as are knowing the instrument's drifts and bias. Specially designed tidegauges are necessary to improve the quality of altimetric data, preferably near the satellite track. Further, due to systematic differences a month instruments onboard different satellites, several in-situ calibrations are essentials to tie their systematic differences. L'Estartit tide gauge is a classical floating tide gauge set up in l'Estartit harbour (NE Spain) in 1990. It provides good quality information about the changes in the sea heights at centimetre level, that is the magnitude of the common tides in theMediterranean. In the framework of a Spanish Space Project, ref:ESP2001- 4534-PE, the instrumentation of sea

  5. Attribution of Annual Maximum Sea Levels to Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Khouakhi, A.; Villarini, G.

    2015-12-01

    Tropical cyclones (TCs) can cause catastrophic storm surges with major social, economic, and ecological impacts in coastal areas. Understanding the contribution of TCs to extreme sea levels is therefore essential. In this work we examine the contribution of TCs to annual maximum sea levels at the global scale, including potential climate controls and temporal changes. Complete global coverage (1842-2014) of historical 6-hour best track TC records are obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) data set. Hourly tide gauge data are obtained from the Joint Archive for Sea Level Research Quality Data Set. There are 177 tide gauge stations with at least 25 complete years of data between 1970 and 2014 (a complete year is defined as having more than 90% of all the hourly measurements in a year). We associate an annual maximum sea level at a given station with a TC if the center of circulation of the storm passed within a certain distance from the station within a given time window. Spatial and temporal sensitivity analyses are performed with varying time windows (6h, 12h) and buffer zones (200km and 500km) around the tide gauge stations. Results highlight large regional differences, with some locations experiencing almost ¾ of their annual maxima during the passage of a TC. The attribution of annual maximum sea level to TCs is particularly high along the coastal areas of the eastern United States, the Gulf of Mexico, China, Japan, Taiwan and Western Australia. Further analyses will examine the role played by El Niño - Southern Oscillation and the potential temporal changes in TC contributions to annual maximum sea levels.

  6. Global sea level record from satellite altimetry: accomplishments and challenges

    NASA Astrophysics Data System (ADS)

    Fu, L.

    2013-12-01

    The trend of sea level change and its geographic pattern present a powerful indicator of the overall extent of climate change as well as pose a long-term threat to the world's heavily populated coastal zones. The global and direct measurement of sea level from satellite altimetry over the past two decades, as a key part of a global observing system, has enabled quantitative determination of sea level change and its relation to natural and human-induced causes. Major results from the data record will be reviewed to highlight the challenges in distinguishing between natural variability and long-term trends from human activities. As long-term climate data records from satellite observations are inevitably to be built from successive missions with progressively changing technologies, a major challenge is concerted effort in cross-calibration to ensure consistency between new measurements with existing records. As the desire of increasing spatial resolution to resolve energetic small-scale variability dictates the development of high-resolution wide-swath altimeter, the need for thoughtful design of a system that is able to demonstrate proper transition of technologies in terms of providing consistent global sea level data record will be discussed.

  7. Interannual and Interdecadal Variability in Sea Level.

    NASA Astrophysics Data System (ADS)

    Unal, Yurdanur Sezginer

    The observational data set archived by the Permanent Service for Mean Sea Level (PSMSL) consists of monthly means of sea-level heights at 846 stations. 213 of them are suitable for our purposes. We identified two dominant time scales of El Nino-Southern Oscillation (ENSO) signal, as quasi-biennial and low-frequency (LF) at almost all stations, with the highest amplitudes in the equatorial Pacific and along the west coast of North America. Global sea-level rise, after post-glacial rebound corrections, are 1.620.38 mm/yr. Propagation features of the interannual variability are studied along the coastal sea level stations in five regions: eastern, western, and equatorial Pacific; eastern and western Atlantic. Throughout the Pacific, three dominant spatio-temporal oscillatory patterns are found in the time scales of ENSO variability. In the eastern Pacific, the biennial mode and the 6-yr low-frequency mode propagate poleward. In the western Pacific, interannual oscillation propagates southward in the northern hemisphere but no clear propagation is observed in the southern hemisphere. Equatorward propagation of the biennial signal is very clear in each hemisphere. In the equatorial Pacific, both the quasi -quadrannial and quasi-biennial modes at 10^ circN propagate westward. Strong and weak El Nino years are evident in RSLH reconstructed from the biennial and low-frequency modes. Interannual variability with periods of 3 and 4-8 years is detected in the Atlantic RSLH data. In the eastern Atlantic region, we have found slow propagation of both modes northward and southward, away from 40-45^circN. Sufficiently long and continuous RSLH at 81 stations show interdecadal oscillations with the periods of 9-13 and 18 years. 11.6 and 12.8 years of oscillations are found in the eastern and western Atlantic ocean at latitudes 40^circN-70^ circN and 10^circN -50^circN, respectively. The aforementioned features are simulated with a wind driven ocean model for the periods of 1950 and

  8. The role of Argo steric sea level within the global sea level budget

    NASA Astrophysics Data System (ADS)

    von Schuckmann, K.; Sallée, J.-B.; Cabanes, C.; Le Traon, P.-Y.; Gaillard, F.; Speich, S.; Hamon, M.

    2012-04-01

    Precise estimations of global ocean indicators (GOIs) such as global ocean heat content (GOHC) and global steric sea level (GSSL) are necessary to observe the ocean's role in the Earth's climate system. To improve accuracy of these estimations, our knowledge of deep ocean and regional contributions to GOIs needs to be quantified. Data from the global Argo array are used here to analyze these contributionsduring the period 2005 to 2010. GOHC/GMSH rise increases by 25% /35% for the upper 2000m depth compared to the upper ocean 700m depth. A comparison of Argo steric sea level to total sea level from satellite altimetry (AVISO) and ocean mass (GRACE) is performed during this period. We could close the global and regional sea level budgets for 2005 to 2010 in terms of 6-year trends. Results show that largest correlation of global GSSL, ocean mass and global total sea level can be observed in the global tropical basin. Differences of the 6-year trend between global mean total sea level and GSSL in this basin are mostly explained by Argo sampling issues, especially in the - by Argo under sampled - Indonesian Archipelago. The differences of the 6-year trend in the Southern Ocean can be attributed to mass changes and deep ocean steric changes, whereas in the Northern Ocean mass changes clearly dominate decadal and longer-term variability. The results are only valid under the assumption that no systematic errors remain in either one of the global observing systems, although the comparison of all three observing systems indicates that these errors appear to be small during the years 2005 to 2010.

  9. Investigating the influence of sea level oscillations in the Danish Straits on the Baltic Sea dynamics

    NASA Astrophysics Data System (ADS)

    Tikhonova, Natalia; Gusev, Anatoly; Diansky, Nikolay; Zakharchuk, Evgeny

    2016-04-01

    related to the distance between the measurement point and open boundary. For example, in the Gulfs of Finland and Riga, the 36hr harmonic has an amplitude substantially higher than in the open sea, and in the Stockholm area, this harmonic is at the noise level. The 40dy and 121dy harmonics have slightly lower amplitudes than the original prescribed signal, but they are almost unchanged while propagating further into the sea, and in all the investigated locations have almost identical peaks of spectral density. The 3dy and 6dy harmonics significantly lost their amplitude in all parts of the sea, and spectral density peaks are at the noise level. The simulation results showed us that the Danish straits do not filter 121dy and 40dy oscillations, and their amplitude does not decrease much. The 13dy, 6dy and 3dy oscillations significantly lose in amplitude and have no significant peaks of the spectral density. The 1.5dy harmonic propagates to the Gulfs of Finland and Riga, and increases in amplitude due to resonance at the natural frequency of the basin. It is suggested that, while Danish straits do not filter or transform frequency characteristics of oscillations propagated from the North Sea, but the Baltic Sea configuration may affect the magnitude and propagation extent of these oscillations. Thus, the fluctuations in the North Sea and the Danish Straits can significantly contribute to the Baltic Sea dynamics in the low-frequency range of the spectrum, and the periods of natural oscillations of the basin. The research was supported by the Russian Foundation for Basic Research (grant № 16-05-00534) and Saint-Petersburg State University (grant №18.37.140.2014)

  10. Mechanisms of long-term mean sea level variability in the North Sea

    NASA Astrophysics Data System (ADS)

    Dangendorf, Sönke; Calafat, Francisco; Øie Nilsen, Jan Even; Richter, Kristin; Jensen, Jürgen

    2015-04-01

    We examine mean sea level (MSL) variations in the North Sea on timescales ranging from months to decades under the consideration of different forcing factors since the late 19th century. We use multiple linear regression models, which are validated for the second half of the 20th century against the output of a state-of-the-art tide+surge model (HAMSOM), to determine the barotropic response of the ocean to fluctuations in atmospheric forcing. We demonstrate that local atmospheric forcing mainly triggers MSL variability on timescales up to a few years, with the inverted barometric effect dominating the variability along the UK and Norwegian coastlines and wind (piling up the water along the coast) controlling the MSL variability in the south from Belgium up to Denmark. However, in addition to the large inter-annual sea level variability there is also a considerable fraction of decadal scale variability. We show that on decadal timescales MSL variability in the North Sea mainly reflects steric changes, which are mostly remotely forced. A spatial correlation analysis of altimetry observations and baroclinic ocean model outputs suggests evidence for a coherent signal extending from the Norwegian shelf down to the Canary Islands. This supports the theory of longshore wind forcing along the eastern boundary of the North Atlantic causing coastally trapped waves to propagate along the continental slope. With a combination of oceanographic and meteorological measurements we demonstrate that ~80% of the decadal sea level variability in the North Sea can be explained as response of the ocean to longshore wind forcing, including boundary wave propagation in the Northeast Atlantic. These findings have important implications for (i) detecting significant accelerations in North Sea MSL, (ii) the conceptual set up of regional ocean models in terms of resolution and boundary conditions, and (iii) the development of adequate and realistic regional climate change projections.

  11. A possible connection of Caspian Sea level fluctuations with meteorological factors and seismicity

    NASA Astrophysics Data System (ADS)

    Ozyavas, Aziz; Khan, Shuhab D.; Casey, John F.

    2010-10-01

    The Caspian Sea has exhibited significant, wide-range fluctuations that have been traditionally attributed to variations in climatic agents. The objective of this research is to estimate the hydrologic budget and sea surface heights of the Caspian Sea from 1998 to 2005 to assess the contribution of meteorological and geological process to the Caspian Sea level variations. The water budget of the Caspian Sea from 1998 to 2005 was calculated using the state-of-the-art remote sensing techniques and ground-truth data. The Sea Surface heights of the Caspian Sea were constructed from the refined Topex/Poseidon altimetry data. The National Centers for Environmental Prediction/Department of Energy Reanalysis 2 meteorological data provided all the variables necessary for the Penman method to estimate evaporation over the Caspian Sea. The data of the Tropical Rainfall Measuring Mission were utilized to estimate precipitation onto the Caspian Sea. A strong agreement between the water budget residuals and Caspian Sea level variations signifies that Caspian Sea level oscillations for this time window are essentially controlled by climate-related factors. On the other hand, the relatively larger gaps between the water balance residuals and Caspian Sea level heights during 2000 and 2001 may indicate an impact of seismicity on Caspian Sea level oscillations as a result of two major earthquakes on November 25, 2000.

  12. Long-term sea level trends: Natural or anthropogenic?

    NASA Astrophysics Data System (ADS)

    Becker, M.; Karpytchev, M.; Lennartz-Sassinek, S.

    2014-08-01

    Detection and attribution of human influence on sea level rise are important topics that have not yet been explored in depth. We question whether the sea level changes (SLC) over the past century were natural in origin. SLC exhibit power law long-term correlations. By estimating Hurst exponent through Detrended Fluctuation Analysis and by applying statistics of Lennartz and Bunde, we search the lower bounds of statistically significant external sea level trends in longest tidal records worldwide. We provide statistical evidences that the observed SLC, at global and regional scales, is beyond its natural internal variability. The minimum anthropogenic sea level trend (MASLT) contributes to the observed sea level rise more than 50% in New York, Baltimore, San Diego, Marseille, and Mumbai. A MASLT is about 1 mm/yr in global sea level reconstructions that is more than half of the total observed sea level trend during the XXth century.

  13. Long term variations in global sea level extremes

    NASA Astrophysics Data System (ADS)

    Marcos, Marta; Calafat, Francisco M.; Berihuete, Ángel; Dangendorf, Sönke

    2016-04-01

    Decadal to multi-decadal variations in sea level extremes unrelated to mean sea level changes have been investigated using long tide gauge records distributed worldwide. A state space approach has been applied that provides robust solutions and uncertainties of the time evolving characteristics of extremes, allowing for data gaps and uneven sampling, both common features of historical sea level time series. Two different models have been formulated for the intensity and for the occurrence of extreme sea level events and have been applied independently to each tide gauge record. Our results reveal two key findings: first, the intensity and the frequency of occurrence of extreme sea levels unrelated to mean sea level vary coherently on decadal scales in most of the sites examined and, second, extreme sea level changes are regionally consistent, thus pointing towards a common large scale forcing. This variability of extremes associated with climate drivers should be considered in the framework of climate change studies.

  14. Long-term variations in global sea level extremes

    NASA Astrophysics Data System (ADS)

    Marcos, Marta; Calafat, Francisco M.; Berihuete, Ángel; Dangendorf, Sönke

    2015-12-01

    Decadal to multidecadal variations in sea level extremes unrelated to mean sea level changes have been investigated using long tide gauge records distributed worldwide. A state space approach has been applied that provides robust solutions and uncertainties of the time evolving characteristics of extremes, allowing for data gaps and uneven sampling, both common features of historical sea level time series. Two different models have been formulated for the intensity and for the occurrence of extreme sea level events and have been applied independently to each tide gauge record. Our results reveal two key findings: first, the intensity and the frequency of occurrence of extreme sea levels unrelated to mean sea level vary coherently on decadal scales in most of the sites examined (63 out of 77) and, second, extreme sea level changes are regionally consistent, thus pointing toward a common large-scale forcing. This variability of extremes associated with climate drivers should be considered in the framework of climate change studies.

  15. Mid-Pliocene (~3 Ma) relative sea level markers around the world: searching for eustasy.

    NASA Astrophysics Data System (ADS)

    Rovere, Alessio; Raymo, Maureen; Hearty, Paul; MItrovica, Jerry; Austermann, Jacqueline; O'Leary, Michael; Sandstrom, Michael

    2014-05-01

    PLIOMAX (PLIOcene MAXimum sea level) is a five-year research project that aims to increase the accuracy of global sea level estimates for the mid-Pliocene warm period. To achieve its goals, PLIOMAX has organized several field expeditions to identify, measure and date relative sea level markers of mid-Pliocene age from around the globe, and built a network of collaborators expert in different geographic areas and disciplines. In this work we present field data obtained from South Africa, Australia, Italy, Argentina and the US East Coast. In these areas we sampled, measured and dated geological facies related to mid-Pliocene sea level. Most areas yield information on 3 Ma sea levels with an accuracy of few decimeters. In presenting our dataset, we will show how we address the following questions, including: how can we obtain accurate measurements in the field? What is the accuracy of the markers we measure in indicating past relative sea levels? To which point can we trust older literature data? We then show how the elevations of relative sea level markers obtained in the field must be corrected to obtain an estimate of eustatic sea level. These corrections use models of glacial isostatic adjustment and dynamic topography. We discuss uncertainties linked to these models as well as the main issues that are still separating us from obtaining a robust estimate of maximum eustatic sea level during the mid-Pliocene warm period.

  16. Saharan dust aerosol over the central Mediterranean Sea: optical columnar measurements vs. aerosol load, chemical composition and marker solubility at ground level

    NASA Astrophysics Data System (ADS)

    Marconi, M.; Sferlazzo, D. M.; Becagli, S.; Bommarito, C.; Calzolai, G.; Chiari, M.; di Sarra, A.; Ghedini, C.; Gómez-Amo, J. L.; Lucarelli, F.; Meloni, D.; Monteleone, F.; Nava, S.; Pace, G.; Piacentino, S.; Rugi, F.; Severi, M.; Traversi, R.; Udisti, R.

    2013-08-01

    This study aims at the determination of the mineral contribution to PM10 in the central Mediterranean Sea on the basis of 7 yr of PM10 chemical composition daily measurements made on the island of Lampedusa (35.5° N, 12.6° E). Aerosol optical depth measurements are carried out in parallel while sampling with a multi-stage impactor, and observations with an optical particle counter were performed in selected periods. Based on daily samples, the total content and soluble fraction of selected metals are used to identify and characterize the dust events. The total contribution is determined by PIXE (particle-induced X-ray emission) while the composition of the soluble fraction by ICP-AES (inductively coupled plasma atomic emission spectroscopy) after extraction with HNO3 at pH 1.5. The average PM10 concentration at Lampedusa calculated over the period June 2004-December 2010 is 31.5 μg m-3, with low interannual variability. The annual means are below the EU annual standard for PM10, but 9.9% of the total number of daily data exceed the daily threshold value established by the European Commission for PM (50 μg m-3, European Community, EC/30/1999). The Saharan dust contribution to PM10 was derived by calculating the contribution of Al, Si, Fe, Ti, non-sea-salt (nss) Ca, nssNa, and nssK oxides in samples in which PIXE data were available. Cases with crustal content exceeding the 75th percentile of the crustal oxide content distribution were identified as dust events. Using this threshold we identify 175 events; 31.6% of them (55 events) present PM10 higher than 50 μg m-3, with dust contributing by 33% on average. The annual average crustal contribution to PM10 is 5.42 μg m-3, reaching a value as high as 67.9 μg m-3, 49% of PM10, during an intense Saharan dust event. The crustal aerosol amount and contribution to PM10 shows a very small seasonal dependence; conversely, the dust columnar burden displays an evident annual cycle, with a strong summer maximum (monthly

  17. How Much Are Floridians Willing to Pay for Protecting Sea Turtles from Sea Level Rise?

    PubMed

    Hamed, Ahmed; Madani, Kaveh; Von Holle, Betsy; Wright, James; Milon, J Walter; Bossick, Matthew

    2016-01-01

    Sea level rise (SLR) is posing a great inundation risk to coastal areas. Some coastal nesting species, including sea turtle species, have experienced diminished habitat from SLR. Contingent valuation method (CVM) was used in an effort to assess the economic loss impacts of SLR on sea turtle nesting habitats for Florida coasts; and to elicit values of willingness to pay (WTP) of Central Florida residents to implement certain mitigation strategies, which would protect Florida's east coast sea turtle nesting areas. Using the open-ended and dichotomous choice CVM, we sampled residents of two Florida communities: Cocoa Beach and Oviedo. We estimated the WTP of households from these two cities to protect sea turtle habitat to be between $42 and $57 per year for 5 years. Additionally, we attempted to assess the impact of the both the respondents' demographics and their perception toward various situations on their WTP value. Findings include a negative correlation between the age of a respondent and the probability of an individual willing to pay the hypothetical WTP amount. We found that WTP of an individual was not dependent on prior knowledge of the effects of SLR on sea turtle habitat. The greatest indicators of whether or not an individual was willing to pay to protect sea turtle habitat were the respondents' perception regarding the trustworthiness and efficiency of the party which will implement the conservation measures and their confidence in the conservation methods used. Respondents who perceive sea turtles having an effect on their life were also more likely to pay. PMID:26319030

  18. Sound level measurements

    NASA Astrophysics Data System (ADS)

    1981-07-01

    This report describes procedures for measuring the sound levels of developmental and production materiel as a means of evaluating personnel safety, recognition and community annoyance (by a drive-by test). It covers tests for steady-state noise from military vehicles and general equipment, and impulse noise from weapon systems and explosive ordnance material.

  19. Updating Maryland's sea-level rise projections

    USGS Publications Warehouse

    Boesch, Donald F.; Atkinson, Larry P.; Boicourt, William C.; Boon, John D.; Cahoon, Donald R.; Dalrymple, Robert A.; Ezer, Tal; Horton, Benjamin P.; Johnson, Zoe P.; Kopp, Robert E.; Li, Ming; Moss, Richard H.; Parris, Adam; Sommerfield, Christopher K.

    2013-01-01

    With its 3,100 miles of tidal shoreline and low-lying rural and urban lands, “The Free State” is one of the most vulnerable to sea-level rise. Historically, Marylanders have long had to contend with rising water levels along its Chesapeake Bay and Atlantic Ocean and coastal bay shores. Shorelines eroded and low-relief lands and islands, some previously inhabited, were inundated. Prior to the 20th century, this was largely due to the slow sinking of the land since Earth’s crust is still adjusting to the melting of large masses of ice following the last glacial period. Over the 20th century, however, the rate of rise of the average level of tidal waters with respect to land, or relative sea-level rise, has increased, at least partially as a result of global warming. Moreover, the scientific evidence is compelling that Earth’s climate will continue to warm and its oceans will rise even more rapidly. Recognizing the scientific consensus around global climate change, the contribution of human activities to it, and the vulnerability of Maryland’s people, property, public investments, and natural resources, Governor Martin O’Malley established the Maryland Commission on Climate Change on April 20, 2007. The Commission produced a Plan of Action that included a comprehensive climate change impact assessment, a greenhouse gas reduction strategy, and strategies for reducing Maryland’s vulnerability to climate change. The Plan has led to landmark legislation to reduce the state’s greenhouse gas emissions and a variety of state policies designed to reduce energy consumption and promote adaptation to climate change.

  20. Geodetic infrastructure at the Barcelona harbour for sea level monitoring

    NASA Astrophysics Data System (ADS)

    Martinez-Benjamin, Juan Jose; Gili, Josep; Lopez, Rogelio; Tapia, Ana; Pros, Francesc; Palau, Vicenc; Perez, Begona

    2015-04-01

    The presentation is directed to the description of the actual geodetic infrastructure of Barcelona harbour with three tide gauges of different technologies for sea level determination and contribution to regional sea level rise and understanding past and present sea level rise in the Barcelona harbour. It is intended that the overall system will constitute a CGPS Station of the ESEAS (European Sea Level) and TIGA (GPS Tide Gauge Benchmark Monitoring) networks. At Barcelona harbour there is a MIROS radar tide gauge belonging to Puertos del Estado (Spanish Harbours).The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. The information includes wave forescast (mean period, significant wave height, sea level, etc.This sensor also measures agitation and sends wave parameters each 20 min. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna AX 1202 GG. The Control Tower of the Port of Barcelona is situated in the North dike of the so-called Energy Pier in the Barcelona harbor (Spain). This tower has different kind of antennas for navigation monitoring and a GNSS permanent station. As the tower is founded in reclaimed land, and because its metallic structure, the 50 m building is subjected to diverse movements, including periodic fluctuations due to temperature changes. In this contribution the 2009, 2011, 2012, 2013 and 2014 the necessary monitoring campaigns are described. In the framework of a Spanish Space Project, the instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge Datamar 2000C from Geonica S.L. in June 2014 near an acoustic tide gauge from the Barcelona Harbour installed in 2013. Precision levelling has been made several times in the last two years because the tower is founded in reclaimed land and

  1. Mean Tide Level Data in the PSMSL Mean Sea Level Dataset

    NASA Astrophysics Data System (ADS)

    Matthews, Andrew; Bradshaw, Elizabeth; Gordon, Kathy; Jevrejeva, Svetlana; Rickards, Lesley; Tamisiea, Mark; Williams, Simon; Woodworth, Philip

    2016-04-01

    The Permanent Service for Mean Sea Level (PSMSL) is the internationally recognised global sea level data bank for long term sea level change information from tide gauges. Established in 1933, the PSMSL continues to be responsible for the collection, publication, analysis and interpretation of sea level data. The PSMSL operates under the auspices of the International Council for Science (ICSU), is a regular member of the ICSU World Data System and is associated with the International Association for the Physical Sciences of the Oceans (IAPSO) and the International Association of Geodesy (IAG). The PSMSL continues to work closely with other members of the sea level community through the Intergovernmental Oceanographic Commission's Global Sea Level Observing System (GLOSS). Currently, the PSMSL data bank holds over 67,000 station-years of monthly and annual mean sea level data from over 2250 tide gauge stations. Data from each site are quality controlled and, wherever possible, reduced to a common datum, whose stability is monitored through a network of geodetic benchmarks. PSMSL also distributes a data bank of measurements taken from in-situ ocean bottom pressure recorders. Most of the records in the main PSMSL dataset indicate mean sea level (MSL), derived from high-frequency tide gauge data, with sampling typically once per hour or higher. However, some of the older data is based on mean tide level (MTL), which is obtained from measurements taken at high and low tide only. While usually very close, MSL and MTL can occasionally differ by many centimetres, particularly in shallow water locations. As a result, care must be taken when using long sea level records that contain periods of MTL data. Previously, periods during which the values indicated MTL rather than MSL were noted in the documentation, and sometimes suggested corrections were supplied. However, these comments were easy to miss, particularly in large scale studies that used multiple stations from across

  2. On how climate variability influences regional sea level change

    NASA Astrophysics Data System (ADS)

    Brunnabend, Sandra-Esther; Kusche, Jürgen; Rietbroek, Roelof; Forootan, Ehsan

    2016-04-01

    Regional trends in sea level change are strongly influenced by climate variations, such as ENSO (El-Nino Southern Oscillation), the IOD (Indian Ocean Dipole), or the PDO (Pacific Decadal Oscillation). Hence, before computing long term regional sea level change, these sea level variations need to be taken into account as they lead to strong dependencies of computed regional sea level trends on the time period of the investigation. In this study, sea level change during the years 1993 to 2013 is analysed to identify the dominant modes of sea level change caused by climate variations. Here, two different gridded altimetry products are analysed, namely ESA's combined CCI SeaLevel v1.1 ECV product (doi: 10.5270/esa-sea_level_cci-1993_2013-v_1.1-201412), and absolute dynamic topography produced by Ssalto/Duacs and distributed by Aviso, with support from Cnes (http://www.aviso.altimetry.fr/duacs/). Reconstructions using the different decomposition techniques including the standard principle component analysis (PCA), rotated empirical orthogonal functions (REOF) and independent component analysis (ICA) method are analysed. They are compared with sea level change modelled with the global finite-element sea-ice ocean model (FESOM). The results indicate that from the applied methods, ICA is most suitable to separate the individual climate variability signals in independent modes of sea level change. This especially holds for extracting the ENSO contribution in sea level changes, which was better separated by applying ICA, from both altimetry and modelled sea level products. In addition, it is presented how modelled sea level change reflects climate variations compared to that identified in the altimetry products.

  3. Influence of sea level rise on the dynamics of salt inflows in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hordoir, Robinson; Axell, Lars; Löptien, Ulrike; Dietze, Heiner; Kuznetsov, Ivan

    2015-10-01

    The Baltic Sea is a marginal sea, located in a highly industrialized region in Central Northern Europe. Saltwater inflows from the North Sea and associated ventilation of the deep exert crucial control on the entire Baltic Sea ecosystem. This study explores the impact of anticipated sea level changes on the dynamics of those inflows. We use a numerical oceanic general circulation model covering both the Baltic and the North Sea. The model successfully retraces the essential ventilation dynamics throughout the period 1961-2007. A suite of idealized experiments suggests that rising sea level is associated with intensified ventilation as saltwater inflows become stronger, longer, and more frequent. Expressed quantitatively as a salinity increase in the deep central Baltic Sea, we find that a sea level rise of 1 m triggers a saltening of more than 1 PSU. This substantial increase in ventilation is the consequence of the increasing cross section in the Danish Straits amplified by a reduction of vertical mixing.

  4. Measurement of light scattering in deep sea

    NASA Astrophysics Data System (ADS)

    Maragos, N.; Balasi, K.; Domvoglou, T.; Kiskiras, I.; Lenis, D.; Maniatis, M.; Stavropoulos, G.

    2016-04-01

    The deep-sea neutrino telescope in the Mediterranean Sea, being prepared by the KM3NET collaboration, will contain thousands of optical sensors to readout. The accurate knowledge of the optical properties of deep-sea water is of great importance for the neutrino event reconstruction process. In this study we describe our progress in designing an experimental setup and studying a method to measure the parameters describing the absorption and scattering characteristics of deep-sea water. Three PMTs will be used to measure in situ the scattered light emitted from six laser diodes in three different wavelengths covering the Cherenkov radiation spectrum. The technique for the evaluation of the parameters is based on Monte Carlo simulations and our results show that we are able to determine these parameters with satisfying precision.

  5. Sea level trends for all sections of the Baltic Sea coastline

    NASA Astrophysics Data System (ADS)

    Madsen, Kristine S.; Høyer, Jacob L.; Suursaar, Ülo; Knudsen, Per; She, Jun

    2016-04-01

    To better understand influence of sea level rise on societal vulnerability and coastal erosion processes, it is important to know the sea level trend. The coastline of the Baltic Sea is not uniformly exposed, and therefore we will determine the sea level trend of the last 10, 50 and 100 years for all sections of the coastline. The observational record of sea level in the Baltic Sea is quite unique with several records of more than 100 years of data. However, the information is confined to the tide gauge locations. Here, we utilize a statistical method based on least squares regression and originally developed for short term sea level variability (Madsen et al. 2015, JGR, doi:10.1002/2015JC011070) to spread out the sea level information from selected tide gauges to all sections of the Baltic Sea coast. Monthly mean tide gauge observations are retrieved from PSMSL and supplemented with Estonian observations. The spatial distribution of the sea level is obtained from model reanalysis from the Copernicus Marine Service and satellite altimetry observations and land rise information is taken into account. Results are validated against independent tide gauges, providing a consistent record of 20th century sea level trends and variability, including uncertainties, for the entire Baltic Sea coastline. This work is sponsored by the EMODnet project Baltic Checkpoint.

  6. Sea-level rise and coastal wetlands.

    PubMed

    Blankespoor, Brian; Dasgupta, Susmita; Laplante, Benoit

    2014-12-01

    This paper seeks to quantify the impact of a1-m sea-level rise on coastal wetlands in 86 developing countries and territories. It is found that approximately 68 % of coastal wetlands in these countries are at risk. A large percentage of this estimated loss is found in Europe and Central Asia, East Asia, and the Pacific, as well as in the Middle East and North Africa. A small number of countries will be severely affected. China and Vietnam(in East Asia and the Pacific), Libya and Egypt (in the Middle East and North Africa), and Romania and Ukraine (in Europe and Central Asia) will bear most losses. In economic terms, the loss of coastal wetlands is likely to exceed $703 million per year in 2000 US dollars. PMID:24659473

  7. Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Richter, A.; Groh, A.; Dietrich, R.

    Based on tide gauge observations spanning almost 200 years, homogeneous time series of the mean relative sea level were derived for nine sites at the southern coast of the Baltic Sea. Our regionally concentrated data were complemented by long-term relative sea-level records retrieved from the data base of the Permanent Service for Mean Sea Level (PSMSL). From these records relative sea-level change rates were derived at 51 tide gauge stations for the period between 1908 and 2007. A minimum observation time of 60 years is required for the determination of reliable sea-level rates. At present, no anthropogenic acceleration in sea-level rise is detected in the tide gauge observations in the southern Baltic. The spatial variation of the relative sea-level rates reflects the fingerprint of GIA-induced crustal uplift. Time series of extreme sea levels were also inferred from the tide gauge records. They were complemented by water level information from historic storm surge marks preserved along the German Baltic coast. Based on this combined dataset the incidence and spatial variation of extreme sea levels induced by storm surges were analysed yielding important information for hazard assessments. Permanent GPS observations were used to determine recent crustal deformation rates for 44 stations in the Baltic Sea region. The GPS derived height change rates were applied to reduce the relative sea-level changes observed by tide gauges yielding an estimate for the eustatic sea-level change. For 13 tide gauge-GPS colocation sites a mean eustatic sea-level trend of 1.3 mm/a was derived for the last 100 years.

  8. NASA Now: Climate Change: Sea Level Rise

    NASA Video Gallery

    Dr. Josh Willis discusses the connection between oceans and global climate change. Learn why NASA measures greenhouse gases and how we detect ocean levels from space. These are crucial vital signs ...

  9. The impact of groundwater depletion on spatial variations in sea level change during the past century

    NASA Astrophysics Data System (ADS)

    Veit, Emeline; Conrad, Clinton P.

    2016-04-01

    Continental groundwater loss during the past century has elevated sea level by up to ~25 mm. The mass unloading associated with this depletion locally uplifts Earth's solid surface and depresses the geoid, leading to slower relative sea level rise near areas of significant groundwater loss. We computed spatial variations in sea level using a model of the solid Earth's response to estimates of groundwater depletion during the past century and find large negative deviations of ~0.4 mm/yr along the coastlines of western North America and southern Asia. This approximately corresponds to the difference between rates of sea level rise measured by tide gauges in these regions since 1930 and average rates inferred from global reconstructions. Groundwater-induced regional variations in sea level can be larger than those due to postglacial rebound and interseismic deformation and should become increasingly important in the future as both groundwater depletion and sea level rise accelerate.

  10. Sea-level responses to erosion and deposition of sediment in the Indus River basin and the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Ferrier, Ken L.; Mitrovica, Jerry X.; Giosan, Liviu; Clift, Peter D.

    2015-04-01

    Changes in sea level are of wide interest because they shape the sedimentary geologic record, modulate flood-related hazards, and reflect Earth's climate. One driver of sea-level change is the erosion and deposition of sediment, which induces changes in sea level by perturbing Earth's crust, gravity field, and rotation axis. Here we use a gravitationally self-consistent global model to explore how sediment erosion and deposition affected sea level during the most recent glacial-interglacial cycle in the northeastern Arabian Sea and the Indus River basin, where fluvial sediment fluxes are among the highest on Earth. We drive the model with a widely used reconstruction of ice mass variations over the last glacial cycle and a sediment loading history that we constructed from published erosion and deposition rate measurements. Our modeling suggests that sediment fluxes from the Indus River are large enough to produce meter-scale changes in sea level near the Indus delta in as little as a few thousand years. These sea-level perturbations are largest closest to the center of the Indus delta, and they grow larger over time as sediment deposition increases. This implies that the elevation of sea-level markers near the Indus delta will be significantly altered by sediment transfer over millennial timescales, and that such deformation should be accounted for in studies that use paleo-sea-level markers to infer past ice sheet volume or explore local processes such as sediment compaction. Our analysis highlights the role that massive fluvial sediment fluxes play in driving sea-level changes over >1000-yr timescales from the Indus River, and, by implication, from other rivers with large sediment fluxes.

  11. An initial assessment of the genotoxic impact of the Sea Empress oil spill by the measurement of DNA adduct levels in the intertidal teleost Lipophrys pholis.

    PubMed

    Lyons, B P; Harvey, J S; Parry, J M

    1997-05-23

    The Sea Empress oil spill resulted in the release of vast quantities of potentially genotoxic contaminants into the coastal environment of the county of Pembrokeshire (UK). We are at present attempting to determine the potential genotoxic impact of the incident upon the native marine species of the area. Here we describe the levels of DNA adducts in specimens of the intertidal teleost, Lipophrys pholis, exposed to extensive oil extensive oil contamination as an indication of exposure to potential genotoxins. We detected elevated levels of adducts in L. pholis specimens from an area that underwent heavy oil contamination as compared to specimens from a clean reference area devoid of oil contamination. These preliminary studies indicated that the oil contamination induced DNA adducts in the L. pholis specimens, which could potentially cause genetic damage in this native marine species. Further studies are now required to assess the full extent of the genotoxic impact of the oil spill upon the Pembrokeshire area's native marine life. PMID:9186576

  12. Modeling future high-resolution dynamic sea level change

    NASA Astrophysics Data System (ADS)

    Brunnabend, Sandra-Esther; Dijkstra, Henk A.; Kliphuis, Michael A.; van Werkhoven, Ben; Bal, Henri E.; van Meersbergen, Maarten; Seinstra, Frank; Maassen, Jason

    2015-04-01

    Different studies have shown that resolving ocean eddies and representing boundary currents are of major importance when simulating changes in dynamic sea level on regional scale. Therefore, we use the strongly eddying global model version of the Parallel Ocean Program to simulate high-resolution future (up to the year 2100) sea surface height variations (SSH) under the SRES-A1B atmospheric forcing scenario. Results show dynamic sea level changes in the Southern Ocean that are caused by the southward shift in the westerly winds. The warming ocean (global mean sea surface temperature rises by about 2°C over the period 2000-2100) leads to a strong reduction of the Atlantic Meridional Overturning Circulation (AMOC). The magnitude of this reduction is affected by a feedback involving the heat transport to the sub-polar gyre region and evaporation over the North Atlantic region. The ocean circulation changes cause regional deviations from global mean sea level change in the North Atlantic. At coastal regions of eastern North America, dynamic sea level change leads to a positive deviation from global mean sea level change in the order of several decimeters. In the sub-polar gyre region a negative deviation from global mean sea level occurs. In the western North Atlantic, not only mean regional sea level is changed but also its variability, caused by shifted eddy pathways. This leads to a change in the frequency distribution of SSH anomalies, which has important consequences for regional sea level extremes.

  13. Anthropometric Measures of 9- to 10-Year-Old Native Tibetan Children Living at 3700 and 4300 m Above Sea Level and Han Chinese Living at 3700 m.

    PubMed

    Bianba, Bianba; Yangzong, Yangzong; Gonggalanzi, Gonggalanzi; Berntsen, Sveinung; Andersen, Lars Bo; Stigum, Hein; Nafstad, Per; Bjertness, Espen

    2015-10-01

    A high residential altitude impacts on the growth of children, and it has been suggested that linear growth (height) is more affected than body mass. The aim of the present study was to estimate the prevalence of obesity, overweight, underweight, and stunting in groups of native Tibetan children living at different residential altitudes (3700 vs 4300 m above sea level) and across ancestry (native Tibetan vs Han Chinese children living at the same altitude of 3700 m), as well as to examine the total effect of residential altitude and ancestry with stunting.Two cross-sectional studies of 1207 school children aged 9 to 10 years were conducted in Lhasa in 2005 and Tingri in 2007. Conventional age- and sex-specific cutoff values were used for defining underweight, normal weight, overweight, or obesity, whereas stunting was defined from sex-specific height-for-age z-scores (≤-2.0).The prevalence of underweight was high at 36.7% among Tingri Tibetan girls and 31.1% in Tingri Tibetan boys. The prevalence was statistically significant lower in Lhasa Tibetan girls (20.2%) than in both Tingri Tibetan girls and Han Chinese girls (33.7%), with a similar trend seen among boys. Severe and moderate stunting were found in 14.6% and 35.7%, respectively, of Tingri children, and near null among Han Chinese and native Tibetans in Lhasa. In logistic regression analyses, socioeconomic status and diet did not substantially change the observed crude association (total effect) (odds ratio [OR] = 3.3; 95% confidence interval [CI] 1.1-10.3) between ancestry and stunting. Similarly, adjustment for diet did not alter the crude association (direct effect) (OR = 101.3; 95% CI 37.1-276.4) between residential altitude and stunting.The prevalence estimates of stunting and underweight were high, and clearly higher among native Tibetan children living at a higher residential altitude (Tingri) than the lower residential altitude (Lhasa), in addition to being higher among Han Chinese children than

  14. Understanding processes contributing to regional sea level change

    NASA Astrophysics Data System (ADS)

    Stammer, Detlef; Gregory, Jonathan

    2011-09-01

    WCRP/IOC Workshop on Regional Sea-Level Change; Paris, France, 7-9 February 2011 . A joint World Climate Research Programme (WCRP)/Intergovernmental Oceanographic Commission (IOC) workshop was held to discuss regional changes of sea level. The workshop was attended by 41 experts from the world over who compared observed regional sea level changes with those inferred from numerical simulations and compared future predictions and their analyses in terms of processes. Satellite altimetry observations continue to be essential in revealing that sea level is changing prominently on a regional scale. However, existing climate models are largely in disagreement about patterns and magnitudes of observed sea level variability, and it is unclear how accurate they may be in predicting regional sea level.

  15. Timescales for detecting a significant acceleration in sea level rise

    NASA Astrophysics Data System (ADS)

    Haigh, Ivan D.; Wahl, Thomas; Rohling, Eelco J.; Price, René M.; Pattiaratchi, Charitha B.; Calafat, Francisco M.; Dangendorf, Sönke

    2014-04-01

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records.

  16. Timescales for detecting a significant acceleration in sea level rise.

    PubMed

    Haigh, Ivan D; Wahl, Thomas; Rohling, Eelco J; Price, René M; Pattiaratchi, Charitha B; Calafat, Francisco M; Dangendorf, Sönke

    2014-01-01

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records. PMID:24728012

  17. Timescales for detecting a significant acceleration in sea level rise

    PubMed Central

    Haigh, Ivan D.; Wahl, Thomas; Rohling, Eelco J.; Price, René M.; Pattiaratchi, Charitha B.; Calafat, Francisco M.; Dangendorf, Sönke

    2014-01-01

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records. PMID:24728012

  18. The Future of GLOSS Sea Level Data Archaeology

    NASA Astrophysics Data System (ADS)

    Jevrejeva, S.; Bradshaw, E.; Tamisiea, M. E.; Aarup, T.

    2014-12-01

    Long term climate records are rare, consisting of unique and unrepeatable measurements. However, data do exist in analogue form in archives, libraries and other repositories around the world. The Global Sea Level Observing System (GLOSS) Group of Experts aims to provide advice on locating hidden tide gauge data, scanning and digitising records and quality controlling the resulting data. Long sea level data time series are used in Intergovernmental Panel on Climate Change (IPCC) assessment reports and climate studies, in oceanography to study changes in ocean currents, tides and storm surges, in geodesy to establish national datum and in geography and geology to monitor coastal land movement. GLOSS has carried out a number of data archaeology activities over the past decade, which have mainly involved sending member organisations questionnaires on their repositories. The Group of Experts is now looking at future developments in sea level data archaeology and how new technologies coming on line could be used by member organisations to make data digitisation and transcription more efficient. Analogue tide data comes in two forms charts, which record the continuous measurements made by an instrument, usually via a pen trace on paper ledgers containing written values of observations The GLOSS data archaeology web pages will provide a list of software that member organisations have reported to be suitable for the automatic digitisation of tide gauge charts. Transcribing of ledgers has so far proved more labour intensive and is usually conducted by people entering numbers by hand. GLOSS is exploring using Citizen Science techniques, such as those employed by the Old Weather project, to improve the efficiency of transcribing ledgers. The Group of Experts is also looking at recent advances in Handwritten Text Recognition (HTR) technology, which mainly relies on patterns in the written word, but could be adapted to work with the patterns inherent in sea level data.

  19. Probabilistic surface reconstruction of relative sea-level rise

    NASA Astrophysics Data System (ADS)

    Choblet, Gael; Husson, Laurent; Bodin, Thomas; Capdeville, Yann

    2013-04-01

    Relative sea level is shaped by multiple processes (mantle dynamic topography, plate tectonics, glacio-isostatic adjustment, present day melting of continental ice, anthropogenic causes…), most of which induce spatial gradients in relative sea level fluctuations. The evaluation of the global mean sea level rise is a also a key variable to decipher sea level evolution. Tide gauges represent the only mean to monitor sea-level rise on the scale of the 20th century, while the high quality satellite altimetry era is too short to be immune from short-term fluctuations. Tide gauge data compiled by the Permanent Service for the Mean Sea Level (PSMSL) converts into local estimates of sea level rise. Classically, these in situ observations are averaged spatially in order to infer the global mean sea level trend. However, the strongly heterogeneous distribution of tide gauges (e.g. very sparse in the Southern hemisphere) makes this approach relatively prone to uncertainties, given that sea level rise strongly varies geographically. Last, the societal consequences for coastal communities raise the prominent need for local (rather than global) sea level estimates. An alternative is therefore to provide a global surface reconstruction of relative sea level leading to both local variations and a better constrained global average. Here, we propose such a model from tide gauge records using a probabilistic scheme based on the reversible jump Markov chain Monte Carlo algorithm (as described by Bodin et al., JGR, 2012 for the example of the Australian Moho). This method allows to infer both model and parameter space so that not only the functions within the model but also the number of functions itself are free to vary. This is particulalry relevant to the case of tide gauges that are unevenly distributed on the surface of the Earth and whose record lengths are strongly variable. In addition, Bayesian statistics leads to a probabilistic representation (rather than a best fitting

  20. Background neutron spectrum at 2420 m above sea level

    NASA Astrophysics Data System (ADS)

    Vega-Carrillo, Hector Rene; Manzanares-Acuña, Eduardo

    2004-05-01

    The ambient neutron spectrum was measured in-doors at ground level in Zacatecas Mexico at 2420 m above sea level. A Bonner sphere spectrometer with a 6LiI(Eu) scintillator was used to obtain the neutron spectrum. With the spectrum the ambient dose equivalent was calculated using the ICRP 74 neutron fluence-to-dose conversion factors. The neutron fluence rate was 65±3 cm -2 h -1, producing 13.7±0.6 nSv h -1 due to ambient dose equivalent.

  1. Monitoring sea level fluctuation in South Aegean

    NASA Astrophysics Data System (ADS)

    Zacharis, Vangelis; Paradissis, Demitris; Drakatos, George; Marinou, Aggeliki; Melis, Nicolaos; Anastasiou, Demitris; Alatza, Stavroula; Papanikolaou, Xanthos

    2015-04-01

    The complexity of the geological setting of the South Aegean is well-known, among the scientific community. The subduction zone coupled with the latest unrest of the Santorini volcano, as well as the particular morphology of the earth's surface and seabed pose a poorly understood source of tsunami hazard. A sparse network of tide gauges that operate in the area for varying periods of time is strengthened by the establishment of new sensors at carefully selected locations, by the Institute of Geodynamics of the National Observatory of Athens, and the Dionyssos Satellite Observatory and the Laboratory of Higher Geodesy of the National Technical University of Athens. These new instruments, aided by a rather dense network of GNSS receivers, provide a more concrete basis for the development, testing and evaluation of a near real-time model of the sea level changes in the area. Moreover, integration with various other sensors allows to understand and assess the level of tsunami risk in the area.

  2. The Sensitivity of Coastal Cliffs to Changes in Sea Level

    NASA Astrophysics Data System (ADS)

    Rosser, N.; Lim, M.; Petley, D.

    2007-12-01

    The impact of waves upon coastal cliffs is a significant control on erosion and subsequent cliff retreat. It is widely anticipated that climatically-driven sea-level rise will result in an increase in the rate of erosion, and thus the retreat, of coastal cliffs. Quantifying the changes in the rate of coastal erosion remains problematic, primarily due to the difficulty of collecting high-precision and high-frequency monitoring data on both cliff change and the variations in environmental conditions at the coast. In the UK, local authorities now have to produce a "Shoreline Management Plan" (SMP), indicating how the coastline will be managed for the future. This requires the estimation of rates of coastal retreat over the next century, making the impact of sea-level change a critical consideration. This study presents the results from a three year monitoring survey of a section of near-vertical coastal cliffs in north-east England. Data have been collected using a high-resolution terrestrial laser scanner to obtain cliff surfaces. Analysis of successive 3D cliff models is used to derive sequential change, from which the precise nature, geometry and rate of retreat can be measured. In parallel, data has been collected on the micro-seismic impact of waves onto the cliff to gain a direct measure of the delivery of energy at any given sea-level, rather than using a function of wave and tide gauge records. The coastline studied has a significant tidal range, in excess of 6 m, in addition to a large seasonal variability in mean tide heights, allowing a range of sea-level conditions to be assessed. For comparison weather, tide and wave monitoring has been undertaken. The results suggest a close link between the magnitude and frequency of wave impact and the loss of material from the cliff face. Marked changes in wave impact are apparent as the tide level fluctuates on an inter-monthly and inter-annual basis. Thresholds are identified which appear to reflect discrete changes

  3. Demographic responses to sea level rise in California

    SciTech Connect

    Constable, A. |; Van Arsdol, M.D. Jr.; Sherman, D.J.; Wang, J.; McMullin-Messier, P.A.; Rollin, L.

    1996-12-31

    Human consequences of sea level rise in California coastal counties reflect increasing population densities. Populations of coastal counties potentially affected by sea level rise are projected to increase from 26.2 million persons in 1990 to 63.3 million persons in 2040. Urbanization dominates Los Angeles and the South Coast and San Francisco Bay and Delta regions. California shoreline populations subject to potential disruption impacts of sea level rise are increasing rapidly. Enhanced risk zones for sea level rise are specified for the Oxnard Plain of Ventura County on the south coast of California. Four separate sea level rise scenarios are considered: (1) low (sea level rise only); (2) moderate (adding erosion); (3) high (adding erosion and storm surges); and (4) a maximum case, a 3 m enhanced risk zone. Population impacts are outlined for the 3 m zone. More serious impacts from storm surges are expected than from sea level rise and erosion. Stakeholders who support or oppose policies which may expose populations to sea level rise include energy, commercial, financial, industrial, public agency, private interest and governmental organizations. These organizations respond to extreme events from differing positions. Vested interests determine the degree of mitigation employed by stakeholders to defer impacts of sea level rise.

  4. Evolution of a Coupled Marine Ice Sheet - Sea Level Model

    NASA Astrophysics Data System (ADS)

    Gomez, N.; Pollard, D.; Mitrovica, J. X.; Huybers, P.; Clark, P. U.

    2012-04-01

    An instability mechanism is widely predicted for marine ice sheets resting upon reversed bed slopes whereby ice-sheet thinning or rising sea level is thought to lead to irreversible retreat of the grounding line. Previous analyses of marine ice-sheet stability have considered the influence of a sea-level perturbation on ice-sheet stability by assuming a geographically uniform, or eustatic, change in sea level. However, gravitational, deformational and rotational effects associated with changes in the volume of grounded ice lead to markedly non-uniform spatial patterns of sea-level change. In particular, a gravitationally self-consistent sea-level theory predicts a sea-level fall in the vicinity of a shrinking ice sheet that is an order of magnitude greater amplitude than the sea-level rise that would be predicted assuming eustasy. We highlight the stabilizing influence of local sea-level changes on marine ice sheets by incorporating gravitationally self-consistent sea-level changes into a steady state model of ice sheet stability (Gomez et. al., Nature Geoscience, 2010). In addition, we develop a dynamic coupled ice sheet - sea level model to consider the impact of this stabilizing mechanism on the timescale of ice sheet retreat. The coupled system combines a sea-level model valid for a self-gravitating, viscoelastically deforming Earth to a 1D, dynamic marine ice sheet-shelf model. The evolution of the coupled model is explored for a suite of simulations in which we vary the bed slope and the forcing that initiates retreat. We find that the sea-level fall at the grounding line associated with a retreating ice sheet acts to slow the retreat; in simulations with shallow reversed bed slopes and/or small initial forcing, the drop in sea level can be sufficient to halt the retreat. The rate of sea-level change at the grounding line has an elastic component due to ongoing changes in ice-sheet geometry, and a viscous component due to past ice and ocean load changes. When

  5. 50 CFR 648.143 - Black sea bass Accountability Measures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Black sea bass Accountability Measures... Management Measures for the Black Sea Bass Fishery § 648.143 Black sea bass Accountability Measures. (a... based on dealer reports, state data, and other available information. All black sea bass landed for...

  6. 50 CFR 648.143 - Black sea bass Accountability Measures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Black sea bass Accountability Measures... Management Measures for the Black Sea Bass Fishery § 648.143 Black sea bass Accountability Measures. (a... based on dealer reports, state data, and other available information. All black sea bass landed for...

  7. 50 CFR 648.143 - Black sea bass Accountability Measures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Black sea bass Accountability Measures... Management Measures for the Black Sea Bass Fishery § 648.143 Black sea bass Accountability Measures. (a... based on dealer reports, state data, and other available information. All black sea bass landed for...

  8. Mangrove Sedimentation and Response to Relative Sea-Level Rise.

    PubMed

    Woodroffe, C D; Rogers, K; McKee, K L; Lovelock, C E; Mendelssohn, I A; Saintilan, N

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions, related primarily to elevation and hydroperiod, influence mangrove distributions; this review considers how these distributions change over time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks, and tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas measurements made using surface elevation tables and marker horizons provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in a continuing decline in their extent throughout the tropics. PMID:26407146

  9. Mangrove Sedimentation and Response to Relative Sea-Level Rise

    NASA Astrophysics Data System (ADS)

    Woodroffe, C. D.; Rogers, K.; McKee, K. L.; Lovelock, C. E.; Mendelssohn, I. A.; Saintilan, N.

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions, related primarily to elevation and hydroperiod, influence mangrove distributions; this review considers how these distributions change over time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks, and tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas measurements made using surface elevation tables and marker horizons provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in a continuing decline in their extent throughout the tropics. *

  10. Mangrove sedimentation and response to relative sea-level rise

    USGS Publications Warehouse

    Woodroffe, CD; Rogers, K.; Mckee, Karen L.; Lovelock, CE; Mendelssohn, IA; Saintilan, N.

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions influence mangrove distributions, primarily related to elevation and hydroperiod; this review considers how these adjust through time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks; tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon, but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas Surface Elevation Table-Marker Horizon measurements (SET-MH) provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in continuing decline in their extent throughout the tropics.

  11. Sea-level fluctuations during the last glacial cycle.

    PubMed

    Siddall, M; Rohling, E J; Almogi-Labin, A; Hemleben, Ch; Meischner, D; Schmelzer, I; Smeed, D A

    2003-06-19

    The last glacial cycle was characterized by substantial millennial-scale climate fluctuations, but the extent of any associated changes in global sea level (or, equivalently, ice volume) remains elusive. Highstands of sea level can be reconstructed from dated fossil coral reef terraces, and these data are complemented by a compilation of global sea-level estimates based on deep-sea oxygen isotope ratios at millennial-scale resolution or higher. Records based on oxygen isotopes, however, contain uncertainties in the range of +/-30 m, or +/-1 degrees C in deep sea temperature. Here we analyse oxygen isotope records from Red Sea sediment cores to reconstruct the history of water residence times in the Red Sea. We then use a hydraulic model of the water exchange between the Red Sea and the world ocean to derive the sill depth-and hence global sea level-over the past 470,000 years (470 kyr). Our reconstruction is accurate to within +/-12 m, and gives a centennial-scale resolution from 70 to 25 kyr before present. We find that sea-level changes of up to 35 m, at rates of up to 2 cm yr(-1), occurred, coincident with abrupt changes in climate. PMID:12815427

  12. Detecting anthropogenic footprints in sea level rise

    PubMed Central

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Riva, Riccardo; Berk, Kevin; Jensen, Jürgen

    2015-01-01

    While there is scientific consensus that global and local mean sea level (GMSL and LMSL) has risen since the late nineteenth century, the relative contribution of natural and anthropogenic forcing remains unclear. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn, determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL into two components: a slowly varying volumetric component and a more rapidly changing atmospheric component. We find that the persistence of slow natural volumetric changes is underestimated in records where transient atmospheric processes dominate the spectrum. This leads to a local underestimation of possible natural trends of up to ∼1 mm per year erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin. PMID:26220773

  13. Stochastic secular trends in sea level rise

    NASA Astrophysics Data System (ADS)

    Ocaña, Victor; Zorita, Eduardo; Heimbach, Patrick

    2016-04-01

    Global mean sea level (GMSL) has been rising since (at least) the nineteenth century and the rate of rise may be increasing. Several studies that attempt to explain the long-term trend of GMSL during the instrumental record share the common assumption that this trend is deterministic in nature and different from natural variations. Here we show that the trend can alternatively be explained, at least in part, as being caused by random variations within the coupled ocean-atmosphere-cryosphere system, and hence not having a deterministic origin. These random trends, which add to externally forced changes (e.g., through anthropogenic climate change), are a consequence of the integrated character of GMSL, which is the cumulative addition of temporal contributions that exhibit random character, and whose integration results in GMSL variations with persistence on decadal-centennial time scales. The generation of trends by integration of random stationary noise (i.e., even in a constant climate) is a robust and fundamental feature of stochastically forced systems with memory. The integrated character of GMSL results in an intrinsic difficulty in distinguishing internal from externally forced trends.

  14. Detecting anthropogenic footprints in sea level rise.

    PubMed

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Riva, Riccardo; Berk, Kevin; Jensen, Jürgen

    2015-01-01

    While there is scientific consensus that global and local mean sea level (GMSL and LMSL) has risen since the late nineteenth century, the relative contribution of natural and anthropogenic forcing remains unclear. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn, determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL into two components: a slowly varying volumetric component and a more rapidly changing atmospheric component. We find that the persistence of slow natural volumetric changes is underestimated in records where transient atmospheric processes dominate the spectrum. This leads to a local underestimation of possible natural trends of up to ∼1 mm per year erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin. PMID:26220773

  15. Detecting anthropogenic footprints in sea level rise

    NASA Astrophysics Data System (ADS)

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Riva, Riccardo; Berk, Kevin; Jensen, Jürgen

    2015-07-01

    While there is scientific consensus that global and local mean sea level (GMSL and LMSL) has risen since the late nineteenth century, the relative contribution of natural and anthropogenic forcing remains unclear. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn, determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL into two components: a slowly varying volumetric component and a more rapidly changing atmospheric component. We find that the persistence of slow natural volumetric changes is underestimated in records where transient atmospheric processes dominate the spectrum. This leads to a local underestimation of possible natural trends of up to ~1 mm per year erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin.

  16. Numerical study of the Azov Sea level seiche oscillations

    NASA Astrophysics Data System (ADS)

    Matishov, G. G.; Inzhebeikin, Yu. I.

    2009-08-01

    Seiche oscillations of the Azov Sea level are studied on the basis of the developed two-dimensional numerical hydrodynamic model grounded on the shallow water theory and recent data on the morphometric characteristics of the Sea of Azov. Frequency and spatial characteristics of the first five modes corresponding to seiche oscillations of the Azov Sea level are computed. It is shown that the frequency and spatial characteristics of the first five modes obtained for the Sea of Azov level changes correspond to seiche oscillations. The calculated parameters are compared with the field observations, which show their realistic character.

  17. Portrait of a Warming Ocean and Rising Sea Levels: Trend of Sea Level Change 1993-2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    trend also reveals a significant area of rising sea levels in the North Atlantic where sea levels are usually low. This large pool of rapidly rising warm water is evidence of a major change in ocean circulation. It signals a slow down in the sub-polar gyre, a counter-clockwise system of currents that loop between Ireland, Greenland and Newfoundland.

    Such a change could have an impact on climate since the sub-polar gyre may be connected in some way to the nearby global thermohaline circulation, commonly known as the global conveyor belt. This is the slow-moving circulation in which water sinks in the North Atlantic at different locations around the sub-polar gyre, spreads south, travels around the globe, and slowly up-wells to the surface before returning around the southern tip of Africa. Then it winds its way through the surface currents in the Atlantic and eventually comes back to the North Atlantic.

    It is unclear if the weakening of the North Atlantic sub-polar gyre is part of a natural cycle or related to global warming.

    This image was made possible by the detailed record of sea surface height measurements begun by Topex/Poseidon and continued by Jason-1. The recently launched Ocean Surface Topography Mission on the Jason-2 satellite (OSTM/Jason-2) will soon take over this responsibility from Jason-1. The older satellite will move alongside OSTM/Jason-2 and continue to measure sea surface height on an adjacent ground track for as long as it is in good health.

    Topex/Poseidon and Jason-1 are joint missions of NASA and the French space agency, CNES. OSTM/Jason-2 is collaboration between NASA; the National Oceanic and Atmospheric Administration; CNES; and the European Organisation for the Exploitation of Meteorological Satellites. JPL manages the U.S. portion of the missions for NASA's Science Mission Directorate, Washington, D.C.

  18. A search for scale in sea-level studies

    USGS Publications Warehouse

    Larsen, C.E.; Clark, I.

    2006-01-01

    Many researchers assume a proportional relationship among the atmospheric CO2 concentration, temperature, and sea level. Thus, the rate of sea-level rise should increase in concert with the documented exponential increase in CO2. Although sea surface temperature has increased in places over the past century and short-term sea level rose abruptly during the 1990s, it is difficult to demonstrate a proportional relationship using existing geologic or historic records. Tide gauge records in the United States cover too short a time interval to verify acceleration in the rate of sea-level rise, although multicentury tide gauge and staff records from the Netherlands and Sweden suggest a mid-19th-century acceleration in sea-level rise. Reconstructions of sea-level changes for the past 1000 years derived using benthic foraminifer data from salt marshes along the East Coast of the United States suggest an increased rate of relative sea-level rise beginning in the 1600s. Geologic records of relative sea-level rise for the past 6000 years are available for several sites along the US East Coast from 14C-dated basal peat below salt marshes and estuarine sediments. When these three scales of sea-level variation are integrated, adjusted for postglacial isostatic movement, and replotted, the range of variation in sea level suggested by basal peat ages is within ??1 meter of the long-term trend. The reconstruction from Long Island Sound data shows a linear rise in sea level beginning in the mid-1600s at a rate consistent with the historic record of mean high water. Long-term tide gauge records from Europe and North America show similar trends since the mid-19th century. There is no clear proportional exponential increase in the rate of sea-level rise. If proportionality exists among sea level, atmospheric CO2, and temperature, there may be a significant time lag before an anthropogenic increase in the rate of sea-level rise occurs.

  19. Sea-level variability in the Mediterranean Sea from altimetry and tide gauges

    NASA Astrophysics Data System (ADS)

    Bonaduce, A.; Pinardi, N.; Oddo, P.; Spada, G.; Larnicol, G.

    2016-02-01

    Sea-level variability in the Mediterranean Sea was investigated by means of in-situ (tide-gauge) and satellite altimetry data over a period spanning two decades (from 1993 to 2012). The paper details the sea-level variations during this time period retrieved from the two data sets. Mean sea-level (MSL) estimates obtained from tide-gauge data showed root mean square differences (RMSDs) in the order of 40-50 % of the variance of the MSL signal estimated from satellite altimetry data, with a dependency on the number and quality of the in-situ data considered. Considering the individual time-series, the results showed that coastal tide-gauge and satellite sea-level signals are comparable, with RMSDs that range between 2.5 and 5 cm and correlation coefficients up to the order of 0.8. A coherence analysis and power spectra comparison showed that two signals have a very similar energetic content at semi-annual temporal scales and below, while a phase drift was observed at higher frequencies. Positive sea-level linear trends for the analysis period were estimated for both the mean sea-level and the coastal stations. From 1993 to 2012, the mean sea-level trend (2.44± 0.5 mm year^{-1} ) was found to be affected by the positive anomalies of 2010 and 2011, which were observed in all the cases analysed and were mainly distributed in the eastern part of the basin. Ensemble empirical mode decomposition showed that these events were related to the processes that have dominant periodicities of ˜ 10 years, and positive residual sea-level trend were generally observed in both data-sets. In terms of mean sea-level trends, a significant positive sea-level trend (> 95 %) in the Mediterranean Sea was found on the basis of at least 15 years of data.

  20. Late Holocene sea-level change in Arctic Norway

    NASA Astrophysics Data System (ADS)

    Barnett, Robert L.; Gehrels, W. Roland; Charman, Dan J.; Saher, Margot H.; Marshall, William A.

    2015-01-01

    Relative sea-level data from the pre-industrial era are required for validating geophysical models of glacio-isostatic adjustment as well as for testing models used to make sea-level predictions based on future climate change scenarios. We present the first late Holocene (past ˜3300 years) relative sea-level reconstruction for northwestern Norway based on investigations in South Hinnøya in the Vesterålen - Lofoton archipelago. Sea-level changes are reconstructed from analyses of salt-marsh and estuarine sediments and the micro-organisms (foraminifera and testate amoebae) preserved within. The 'indicative meaning' of the microfauna is established from their modern distributions. Records are dated by radiocarbon, 201Pb, 137Cs and chemostratigraphical analyses. Our results show a continuous relative sea-level decline of 0.7-0.9 mm yr-1 for South Hinnøya during the late Holocene. The reconstruction extends the relative sea-level trend recorded by local tide gauge data which is only available for the past ˜25 years. Our reconstruction demonstrates that existing models of shoreline elevations and GIA overpredict sea-level positions during the late Holocene. We suggest that models might be adjusted in order to reconcile modelled and reconstructed sea-level changes and ultimately improve understanding of GIA in Fennoscandia.

  1. Does Sea Level Change when a Floating Iceberg Melts?

    ERIC Educational Resources Information Center

    Lan, Boon Leong

    2010-01-01

    On the answer page to a recent "Figuring Physics" question, the cute mouse asks another question: "Does the [sea] water level change if the iceberg melts?" The conventional answer is "no." However, in this paper I will show through a simple analysis involving Archimedes' principle that the sea level will rise. The analysis shows the wrong…

  2. Upper limit for sea level projections by 2100

    NASA Astrophysics Data System (ADS)

    Jevrejeva, S.; Grinsted, A.; Moore, J. C.

    2014-10-01

    We construct the probability density function of global sea level at 2100, estimating that sea level rises larger than 180 cm are less than 5% probable. An upper limit for global sea level rise of 190 cm is assembled by summing the highest estimates of individual sea level rise components simulated by process based models with the RCP8.5 scenario. The agreement between the methods may suggest more confidence than is warranted since large uncertainties remain due to the lack of scenario-dependent projections from ice sheet dynamical models, particularly for mass loss from marine-based fast flowing outlet glaciers in Antarctica. This leads to an intrinsically hard to quantify fat tail in the probability distribution for global mean sea level rise. Thus our low probability upper limit of sea level projections cannot be considered definitive. Nevertheless, our upper limit of 180 cm for sea level rise by 2100 is based on both expert opinion and process studies and hence indicates that other lines of evidence are needed to justify a larger sea level rise this century.

  3. Future extreme sea level seesaws in the tropical Pacific.

    PubMed

    Widlansky, Matthew J; Timmermann, Axel; Cai, Wenju

    2015-09-01

    Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño-Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño-related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise. PMID:26601272

  4. Estuaries May Face Increased Parasitism as Sea Levels Rise

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-12-01

    Invertebrates in estuaries could be at a greater risk of parasitism as climate change causes sea levels to rise. A new paper published 8 December in Proceedings of the National Academy of Sciences of the United States of America (doi:10.1073/pnas.1416747111) describes how rapid sea level rise in the Holocene affected the population of parasitic flatworms called trematodes.

  5. Future extreme sea level seesaws in the tropical Pacific

    PubMed Central

    Widlansky, Matthew J.; Timmermann, Axel; Cai, Wenju

    2015-01-01

    Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño–Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño–related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise. PMID:26601272

  6. Evolution of a Coupled Marine Ice Sheet - Sea Level Model

    NASA Astrophysics Data System (ADS)

    Gomez, N.; Pollard, D.; Mitrovica, J. X.; Huybers, P.; Clark, P. U.

    2011-12-01

    An instability mechanism is widely predicted for marine ice sheets resting upon reversed bed slopes. In this case, ice-sheet thinning or rising sea level is thought to lead to irreversible retreat of the grounding line. Previous analyses of marine ice-sheet stability have considered the influence of a sea-level perturbation on ice-sheet stability by assuming a geographically uniform, or eustatic, change in sea level. However, gravitational and deformational effects associated with changes in the volume of grounded ice lead to markedly non-uniform spatial patterns of sea-level change. In particular, a gravitationally self-consistent sea-level theory predicts a near-field sea-level change of opposite sign, and an order of magnitude greater amplitude, than would be predicted assuming eustasy. In recent work (Gomez et. al., Nature Geoscience, 2010), we highlighted the potential importance of this stabilizing sea-level mechanism by incorporating gravitationally self-consistent sea-level changes into a steady state ice sheet model. We extend this earlier analysis to investigate the influence of this stabilization mechanism on the timescale of ice-sheet retreat by coupling a sea-level model valid for a self-gravitating, viscoelastically deforming Earth to a 1D, dynamic marine ice sheet-shelf model. The evolution of the coupled model is explored for a suite of simulations in which we vary the bed slope and the forcing that initiates retreat. We find that the sea-level fall at the grounding line associated with a retreating ice sheet acts to slow the retreat; in simulations with shallow reversed bed slopes and/or small initial forcing, the drop in sea level can be sufficient to halt the retreat. The rate of sea-level change at the grounding line has an elastic component due to ongoing changes in ice-sheet geometry, and a viscous component due to past ice and ocean load changes. When the ice-sheet model is forced from steady state, on short timescales (< ~500 years), viscous

  7. A 6,700 years sea-level record based on French Polynesian coral reefs

    NASA Astrophysics Data System (ADS)

    Hallmann, Nadine; Camoin, Gilbert; Eisenhauer, Anton; Vella, Claude; Samankassou, Elias; Botella, Albéric; Milne, Glenn; Fietzke, Jan; Dussouillez, Philippe

    2015-04-01

    Sea-level change during the Mid- to Late Holocene has a similar amplitude to the sea-level rise that is likely to occur before the end of the 21st century providing a unique opportunity to study the coastal response to sea-level change and to reveal an important baseline of natural climate variability prior to the industrial revolution. Mid- to Late Holocene relative sea-level change in French Polynesia was reconstructed using coral reef records from ten islands, which represent ideal settings for accurate sea-level studies because: 1) they can be regarded as tectonically stable during the relevant period (slow subsidence), 2) they are located far from former ice sheets (far-field), 3) they are characterized by a low tidal amplitude, and 4) they cover a wide range of latitudes which produces significantly improved constraints on GIA (Glacial Isostatic Adjustment) model parameters. Absolute U/Th dating of in situ coral colonies and their accurate positioning via GPS RTK (Real Time Kinematic) measurements is crucial for an accurate reconstruction of sea-level change. We focus mainly on the analysis of coral microatolls, which are sensitive low-tide recorders, as their vertical accretion is limited by the mean low water springs level. Growth pattern analysis allows the reconstruction of low-amplitude, high-frequency sea-level changes on centennial to sub-decadal time scales. A sea-level rise of less than 1 m is recorded between 6 and 3-3.5 ka, and is followed by a gradual fall in sea level that started around 2.5 ka and persisted until the past few centuries. The reconstructed sea-level curve therefore extends the Tahiti sea-level curve [Deschamps et al., 2012, Nature, 483, 559-564], and is in good agreement with a geophysical model tuned to fit far-field deglacial records [Bassett et al., 2005, Science, 309, 925-928].

  8. Sea level data and techniques for detecting vertical crustal movements

    NASA Technical Reports Server (NTRS)

    Lennon, G. W.

    1978-01-01

    An attempt is made to survey problems, requirements, and the outlook for the future in the study of sea level time series so as to determine the relative movement of land and sea levels. The basic aim is to eliminate from the record the contributions from whatever marine dynamic phenomena respond to treatment, allowing the secular element to be identified with optimum clarity. Nevertheless the concept of sea level perturbation varies according to regional experience. The recent work of the Permanent Service for Mean Sea Level helps to eliminate geodetic noise from the series and makes it possible, perhaps, to treat the global mean sea level data bank so as to define eustatic changes in ocean volume which, in the present context, may be regarded as the final goal, allowing the identification of vertical crustal motion itself.

  9. Eustatic sea level fluctuations induced by polar wander

    NASA Technical Reports Server (NTRS)

    Sabadini, Roberto; Doglioni, Carlo; Yuen, David A.

    1990-01-01

    It is shown here that polar wander of a viscoelastic, stratified earth can induce global sea level fluctuations comparable to the short-term component in eustatic sea-level curves. The sign of these fluctuations, which are very sensitive to the rheological stratification, depends on the geographical location of the observation point; rises and falls in sea level can thus be coeval in different parts of the world. This finding is a distinct contrast to the main assumption underlying the reconstruction of eustatic curves, namely that global sea-level events produce the same depositional sequence everywhere. It is proposed that polar wander should be added to the list of geophysical mechanisms that can control the third-order cycles in sea level.

  10. The Impact of Groundwater Depletion on Spatial Variations in Sea Level Change During the Past Century

    NASA Astrophysics Data System (ADS)

    Conrad, C. P.; Veit, E.; Natarov, S.

    2015-12-01

    The loss of continental groundwater to the oceans during the past century has elevated sea level by ~25(±5) mm, and has caused ~0.7mm/yr of sea level rise since 2005. The mass unloading associated with this groundwater depletion induces elastic uplift of Earth's solid surface and depresses the gravitational equipotential surface that defines sea level. Together, these deflections should cause slower relative sea level rise near areas of continental groundwater loss. We estimated these variations in sea level change using a model of the solid Earth's response to estimates of groundwater depletion during the past century. We find large negative deviations in relative sea level near California, Western India, the western Yellow Sea and the eastern Mediterranean Sea. Relative sea level measured by tide gauges in these areas show slower sea level rise rates compared to global averages. For example, on the western coast of India (e.g., Karachi), groundwater-induced deviations from global average sea level rise can exceed -40 mm, and our model predicts ~1 mm/yr of sea level drop since 2005. Correcting tide gauge records for groundwater depletion using our model improves their fit to the global trend estimated by Church & White (2011), and further reduces the variation of rise rates observed among regional groups of stations. We reconstructed Global Mean Sea Level (GMSL) between 1930 and 2009 taking in account groundwater depletion corrections determined from our model. We found that including groundwater depletion increases our estimate of the global rate of change of GMSL from 1.81 to 1.88 mm/yr during this time period because the observed rise at some key stations is slowed by nearby groundwater depletion. For the past 20 years, including groundwater depletion increases GMSL from 3.32mm/yr to 3.46mm/yr. Quantifying the spatial variability of sea level associated with groundwater depletion is important for understanding the variety of factors that affect sea level, and

  11. Holocene sea level variations on the basis of integration of independent data sets

    SciTech Connect

    Sahagian, D.; Berkman, P. . Dept. of Geological Sciences and Byrd Polar Research Center)

    1992-01-01

    Variations in sea level through earth history have occurred at a wide variety of time scales. Sea level researchers have attacked the problem of measuring these sea level changes through a variety of approaches, each relevant only to the time scale in question, and usually only relevant to the specific locality from which a specific type of data are derived. There is a plethora of different data types that can and have been used (locally) for the measurement of Holocene sea level variations. The problem of merging different data sets for the purpose of constructing a global eustatic sea level curve for the Holocene has not previously been adequately addressed. The authors direct the efforts to that end. Numerous studies have been published regarding Holocene sea level changes. These have involved exposed fossil reef elevations, elevation of tidal deltas, elevation of depth of intertidal peat deposits, caves, tree rings, ice cores, moraines, eolian dune ridges, marine-cut terrace elevations, marine carbonate species, tide gauges, and lake level variations. Each of these data sets is based on particular set of assumptions, and is valid for a specific set of environments. In order to obtain the most accurate possible sea level curve for the Holocene, these data sets must be merged so that local and other influences can be filtered out of each data set. Since each data set involves very different measurements, each is scaled in order to define the sensitivity of the proxy measurement parameter to sea level, including error bounds. This effectively determines the temporal and spatial resolution of each data set. The level of independence of data sets is also quantified, in order to rule out the possibility of a common non-eustatic factor affecting more than one variety of data. The Holocene sea level curve is considered to be independent of other factors affecting the proxy data, and is taken to represent the relation between global ocean water and basin volumes.

  12. Inter-annual sea level variability in the southern South China Sea

    NASA Astrophysics Data System (ADS)

    Soumya, M.; Vethamony, P.; Tkalich, P.

    2015-10-01

    The South China Sea (SCS) is the largest marginal sea in the western Pacific Basin. Sea level anomalies (SLAs) in the southern South China Sea (SSCS) are assumed to be governed by various phenomena associated with the adjacent parts of the Indian Ocean and the Pacific Ocean. We have used monthly sea level anomalies obtained from 12 tide gauge stations of PSMSL and UHSLC and merged and gridded AVISO products of SLAs (sea level anomalies) derived from satellite altimeter. We find that IOD-influenced inter-annual variations are found only in the southwestern and southeastern coastal regions of SSCS. Our analysis reveals that inter-annual regional sea level drops are associated with positive phase of the IOD, and the rises with negative phase of the IOD. SLA variations at decadal scale in the southeastern and northern Gulf of Thailand correlate with Pacific Decadal Oscillations (PDO). Multiple linear regression analysis of inter-annual SLAs and climate indices shows that IOD induced inter-annual variations dominate in the southwestern SCS and it contributes to about ~ 40% of inter-annual sea level variation. Meanwhile, ENSO contributes to around ~ 30% variation in sea level in the southwestern and ~ 40% variation in the southeastern SSCS. The present study also suggests that inter-annual SLA variations in the SSCS can occur by ENSO and IOD induced changes in wind stress curl and volume transport variations.

  13. Blending of satellite and tide gauge sea level observations and its assimilation in a storm surge model of the North Sea and Baltic Sea

    NASA Astrophysics Data System (ADS)

    Madsen, Kristine S.; Høyer, Jacob L.; Fu, Weiwei; Donlon, Craig

    2015-09-01

    Coastal storm surge forecasts are typically derived from dedicated hydrodynamic model systems, relying on Numerical Weather Prediction (NWP) inputs. Uncertainty in the NWP wind field affects both the preconditioning and the forecast of sea level. Traditionally, tide gauge data have been used to limit preconditioning errors, providing point information. Here we utilize coastal satellite altimetry sea level observations. Careful processing techniques allow data to be retrieved up to 3 km from the coast, combining 1 Hz and 20 Hz data. The use of satellite altimetry directly is limited to times when the satellite passes over the area of interest. Instead, we use a stationary blending method developed by Madsen et al. (2007) to relate the coastal satellite altimetry with corresponding tide gauge measurements, allowing generation of sea level maps whenever tide gauge data are available. We apply the method in the North Sea and Baltic Sea, including the coastal zone, and test it for operational nowcasting and hindcasting of the sea level. The feasibility to assimilate the blended product into a hydrodynamic model is assessed, using the ensemble optimal interpolation method. A 2 year test simulation shows decreased sea level root mean square error of 7-43% and improved correlation by 1-23% in all modeled areas, when validated against independent tide gauges, indicating the feasibility to limit preconditioning errors for storm surge forecasting, using a relatively cost effective assimilation scheme.

  14. Sea Level Trend and Variability in the Straits of Singapore and Malacca

    NASA Astrophysics Data System (ADS)

    Luu, Q.; Tkalich, P.

    2013-12-01

    The Straits of Singapore and Malacca (SSM) connect the Andaman Sea located northeast of the Indian Ocean to the South China Sea, the largest marginal sea situated in the tropical Pacific Ocean. Consequently, sea level in the SSM is assumed to be governed by various regional phenomena associated with the adjacent parts of Indian and Pacific Oceans. At annual scale sea level variability is dominant by the Asian monsoon. Interannual sea level signals are modulated by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). In the long term, regional sea level is driven by the global climate change. However, relative impacts of these multi-scale phenomena on regional sea level in the SSM are yet to be quantified. In present study, publicly available tide gauge records and satellite altimetry data are used to derive long-term sea level trend and variability in SSM. We used the data from research-quality stations, including four located in the Singapore Strait (Tanjong Pagar, Raffles Lighthouse, Sultan Shoal and Sembawang) and seven situated in the Malacca Strait (Kelang, Keling, Kukup, Langkawji, Lumut, Penang and Ko Taphao Noi), each one having 25-39 year data up to the year 2011. Harmonic analysis is performed to filter out astronomic tides from the tide gauge records when necessary; and missing data are reconstructed using identified relationships between sea level and the governing phenomena. The obtained sea level anomalies (SLAs) and reconstructed mean sea level are then validated against satellite altimetry data from AVISO. At multi-decadal scale, annual measured sea level in the SSM is varying with global mean sea level, rising for the period 1984-2009 at the rate 1.8-2.3 mm/year in the Singapore Strait and 1.1-2.8 mm/year in the Malacca Strait. Interannual regional sea level drops are associated with El Niño events, while the rises are correlated with La Niña episodes; both variations are in the range of ×5 cm with correlation coefficient

  15. Links between Sea Level in the northern Adriatic sea and large scale patterns

    NASA Astrophysics Data System (ADS)

    Scarascia, L.; Lionello, P.

    2012-04-01

    The study analyzes the link between Northern Adriatic sea level (SL) and three variables: sea level pressure over European and North-Atlantic area (SLP), Mediterranean sea surface temperature (SST) and Mediterranean sea surface salinity (SSS). Sea level data are provided by monthly values recorded at 7 tide gauges stations distributed along the north-Italian and Croatian coasts (available at the PSMSL Permanent Service of Mean Sea Level). SLP data are provided by the EMULATE data set. Mediterranean SST and SSS data are extracted from the MEDATLAS/2002 database. The study shows that annual sea level variations at Northern Adriatic stations are very coherent so that the northern Adriatic sea level can be reconstructed since 1905 on the basis of only two stations: Venice and Trieste, whose data cover almost the entire 20th century (whereas Croatian data cover only the second half of the century). The inverse barometric, thermosteric and halosteric effects provide the physical basis for a local relation of SL with SLP, SST, SSS implying, if other effects are absent, a sea level increase for increasing temperature and decreasing atmospheric pressure and salinity. However, the statistical model used to quantify the link between SL and these three forcings shows that they have produced no important trend and they cannot explain the observed trend of Northern Adriatic Sea level during the second half of the 20th century. The observed trend can therefore be interpreted as the superposition of land movement and a remote cause. Using SLP, SST and SSS from climate model simulations, no trend is obtained during the 20th century, as well. The same model simulations, considering their continuations for the 21st century show that local effects (mainly warming of water masses) are likely to produce an increase of about 10cm (with a large uncertainty) at the end of the century. The global signal and the regional land movements have to be added to this result to obtain the actual

  16. Sea level rise and variability around Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Tkalich, Pavel; Luu, Quang-Hung; Tay, Tze-Wei

    2014-05-01

    Peninsular Malaysia is bounded from the west by Malacca Strait and the Andaman Sea, both connected to the Indian Ocean, and from the east by South China Sea being largest marginal sea in the Pacific Basin. As a result, sea level along Peninsular Malaysia coast is assumed to be governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. At annual scale, sea level anomalies (SLAs) are generated by the Asian monsoon; interannual sea level variability is determined by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD); whilst long term sea level trend is coordinated by the global climate change. To quantify the relative impacts of these multi-scale phenomena on sea level trend and variability surrounding the Peninsular Malaysia, long-term tide gauge record and satellite altimetry are used. During 1984-2011, relative sea level rise (SLR) rates in waters of Malacca Strait and eastern Peninsular Malaysia are found to be 2.4 ± 0.8 mm/yr and 2.7 ± 0.6 mm/yr, respectively. Discounting for their vertical land movements (0.8 ± 2.6 mm/yr and 0.9 ± 2.2 mm/yr, respectively), their pure SLR rates are 1.6 ± 3.4 mm/yr and 1.8 ± 2.8 mm/yr, respectively, which are lower than the global tendency. At interannual scale, ENSO affects sea level over the Malaysian east coast in the range of ± 5 cm with very high correlation coefficient. Meanwhile, IOD modulates sea level anomalies in the Malacca Strait in the range of ± 2 cm with high correlation coefficient. Interannual regional sea level drops are associated with El Niño events and positive phases of the IOD index; while the rises are correlated with La Niña episodes and the negative periods of the IOD index. Seasonally, SLAs are mainly monsoon-driven, in the order of 10-25 cm. Geographically, sea level responds differently to the monsoon: two cycles per year are observed in the Malacca Strait, presumably due to South Asian - Indian Monsoon; while single

  17. New developments in spatial interpolation methods of Sea-Level Anomalies in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Troupin, Charles; Barth, Alexander; Beckers, Jean-Marie; Pascual, Ananda

    2014-05-01

    The gridding of along-track Sea-Level Anomalies (SLA) measured by a constellation of satellites has numerous applications in oceanography, such as model validation, data assimilation or eddy tracking. Optimal Interpolation (OI) is often the preferred method for this task, as it leads to the lowest expected error and provides an error field associated to the analysed field. However, the numerical cost of the method may limit its utilization in situations where the number of data points is significant. Furthermore, the separation of non-adjacent regions with OI requires adaptation of the code, leading to a further increase of the numerical cost. To solve these issues, the Data-Interpolating Variational Analysis (DIVA), a technique designed to produce gridded from sparse in situ measurements, is applied on SLA data in the Mediterranean Sea. DIVA and OI have been shown to be equivalent (provided some assumptions on the covariances are made). The main difference lies in the covariance function, which is not explicitly formulated in DIVA. The particular spatial and temporal distributions of measurements required adaptation in the Software tool (data format, parameter determinations, ...). These adaptation are presented in the poster. The daily analysed and error fields obtained with this technique are compared with available products such as the gridded field from the Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO) data server. The comparison reveals an overall good agreement between the products. The time evolution of the mean error field evidences the need of a large number of simultaneous altimetry satellites: in period during which 4 satellites are available, the mean error is on the order of 17.5%, while when only 2 satellites are available, the error exceeds 25%. Finally, we propose the use sea currents to improve the results of the interpolation, especially in the coastal area. These currents can be constructed from the bathymetry

  18. Comprehensive Measurements of Wind Systems at the Dead Sea

    NASA Astrophysics Data System (ADS)

    Metzger, Jutta; Corsmeier, Ulrich; Kalthoff, Norbert; Wieser, Andreas; Alpert, Pinhas; Lati, Joseph

    2016-04-01

    The Dead Sea is a unique place on earth. It is located at the lowest point of the Jordan Rift valley and its water level is currently at -429 m above mean sea level (amsl). To the West the Judean Mountains (up to 1000 m amsl) and to the East the Moab mountains (up to 1300 m amsl) confine the north-south oriented valley. The whole region is located in a transition zone of semi-arid to arid climate conditions and together with the steep orography, this forms a quite complex and unique environment. The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric, hydrological, and lithospheric processes in the changing environment of the Dead Sea. Previous studies showed that the valley's atmosphere is often governed by periodic wind systems (Bitan, 1974), but most of the studies were limited to ground measurements and could therefore not resolve the three dimensional development and evolution of these wind systems. Performed airborne measurements found three distinct layers above the Dead Sea (Levin, 2005). Two layers are directly affected by the Dead Sea and the third is the commonly observed marine boundary layer over Israel. In the framework of DESERVE a field campaign with the mobile observatory KITcube was conducted to study the three dimensional structure of atmospheric processes at the Dead Sea in 2014. The combination of several in-situ and remote sensing instruments allows temporally and spatially high-resolution measurements in an atmospheric volume of about 10x10x10 km3. With this data set, the development and evolution of typical local wind systems, as well as the impact of regional scale wind conditions on the valley's atmosphere could be analyzed. The frequent development of a nocturnal drainage flow with wind velocities of over 10 m s‑1, the typical lake breeze during the day, its onset and vertical extension as well as strong downslope

  19. Holocene sea-level oscillations and environmental changes on the Eastern Black Sea shelf

    USGS Publications Warehouse

    Ivanova, E.V.; Murdmaa, I.O.; Chepalyga, A.L.; Cronin, T. M.; Pasechnik, I.V.; Levchenko, O.V.; Howe, S.S.; Manushkina, A.V.; Platonova, E.A.

    2007-01-01

    A multi-proxy study of four sediment cores from the Eastern (Caucasian) Black Sea shelf revealed five transgressive-regressive cycles overprinted on the general trend of glacioeustatic sea-level rise during the last 11,000??14C yr. These cycles are well represented in micro-and macrofossil assemblages, sedimentation rates, and grain size variations. The oldest recovered sediments were deposited in the Neoeuxinian semi-freshwater basin (??? 10,500-9000??14C yr BP) and contain a Caspian-type mollusk fauna dominated by Dreissena rostriformis. Low ??18O and ??13C values are measured on this species. The first appearance of marine mollusks and ostracodes from the Mediterranean is established in this part of the Black Sea at ??? 8200??14C yr BP, i.e., about 1000-2000??yr later than the appearance of marine microfossils in the deeper part of the sea. The Early Holocene (Bugazian to Vityazevian) condensed section of shell and shelly mud sediments with at least two hiatuses represent a high-energy shelf-edge facies. It contains a transitional assemblage representing a mixture of Caspian and Mediterranean fauna. This pattern suggests a dual-flow regime via the Bosphorus after 8200??14C yr BP. Caspian species disappear and oligohaline species decrease in abundance during the Vityazevian-Prekalamitian cycle. Later, during the Middle to Late Holocene, low sea-level stands are characterized by shell layers, whereas silty mud with various mollusk and ostracode assemblages rapidly accumulated during transgressions. Restricted mud accumulation, as well as benthic faunal composition and abundance, suggest high-energy and well-ventilated bottom water during low sea-level stands. A trend of 18O enrichment in mollusk shells points to an increase in bottom-water salinity during the Vityazevian to Kalamitian transgressions (??? 7000 to 5700??14C yr BP) due to a more open connection with the Mediterranean, while a pronounced increase in polyhaline species abundance is established during

  20. Sea-Level Rise Impacts on Hudson River Marshes

    NASA Astrophysics Data System (ADS)

    Hooks, A.; Nitsche, F. O.

    2015-12-01

    The response of tidal marshes to increasing sea-level rise is uncertain. Tidal marshes can adapt to rising sea levels through vertical accretion and inland migration. Yet tidal marshes are vulnerable to submergence if the rate of sea-level rise exceeds the rate of accretion and if inland migration is limited by natural features or development. We studied how Piermont and Iona Island Marsh, two tidal marshes on the Hudson River, New York, would be affected by sea-level rise of 0.5m, 1m, and 1.5m by 2100. This study was based on the 2011-2012 Coastal New York LiDAR survey. Using GIS we mapped sea-level rise projections accounting for accretion rates and calculated the submerged area of the marsh. Based on the Hudson River National Estuarine Research Reserve Vegetation 2005 dataset, we studied how elevation zones based on vegetation distributions would change. To evaluate the potential for inland migration, we assessed land cover around each marsh using the National Land Cover Database 2011 Land Cover dataset and examined the slope beyond the marsh boundaries. With an accretion rate of 0.29cm/year and 0.5m of sea-level rise by 2100, Piermont Marsh would be mostly unchanged. With 1.5m of sea-level rise, 86% of Piermont Marsh would be flooded. For Iona Island Marsh with an accretion rate of 0.78cm/year, sea-level rise of 0.5m by 2100 would result in a 4% expansion while 1.5m sea-level rise would cause inundation of 17% of the marsh. The results indicate that Piermont and Iona Island Marsh may be able to survive rates of sea-level rise such as 0.5m by 2100 through vertical accretion. At rates of sea-level rise like 1.5m by 2100, vertical accretion cannot match sea-level rise, submerging parts of the marshes. High elevations and steep slopes limit Piermont and Iona Island Marsh's ability to migrate inland. Understanding the impacts of sea-level rise on Piermont and Iona Island Marsh allows for long-term planning and could motivate marsh conservation programs.

  1. Large-scale sea level, thermocline, and wind variations in the Indonesian throughflow region

    NASA Astrophysics Data System (ADS)

    Bray, Nancy A.; Hautala, Susan; Chong, Jackson; Pariwono, John

    1996-05-01

    The Indonesian throughflow is presumed to be driven by a sea level gradient from the Pacific to the Indian Ocean. Deep throughflow transport may also be driven by a steric gradient between the two basins. The sea level gradient, in turn, is thought to be maintained by the differing wind patterns in the two basins: monsoonal in the Indian Ocean and trades in the western equatorial Pacific. In the interaction between sea level, wind stress, and thermocline depth as identified from historical measurements, we find (1) over the Indian, Indonesian, and equatorial Pacific basins and specifically within the throughflow region, sea level, and thermocline seasonal variations are negatively correlated (sea level rise corresponding to thermocline deepening) and sea level and meridional wind stress are also correlated; (2) the expected strong seasonal gradients in sea level through the eastern throughflow region (near the island of Timor) are found, though without an accompanying thermocline depth gradient; (3) seasonal convergence in baroclinic, upper ocean throughflow transport previously identified [Meyers et al., 1995] in the Timor Sea is associated with changes in sea level as well as upper ocean dynamic height at annual period but not at semiannual; (4) interannual variability explains more of the sea level variance in the eastern throughflow region than is explained by seasonal harmonics; however, there does not appear to be a strong interannual signal in the sea level gradient to drive fluctuations in the upper ocean throughflow. We hypothesize that seasonal variability in the upper layer throughflow and interannual variability in the deep throughflow are the predominant results of the complex interaction of forcing mechanisms.

  2. Grain-size based sea-level reconstruction in the south Bohai Sea during the past 135 kyr

    NASA Astrophysics Data System (ADS)

    Yi, Liang; Chen, Yanping

    2013-04-01

    Future anthropogenic sea-level rise and its impact on coastal regions is an important issue facing human civilizations. Due to the short nature of the instrumental record of sea-level change, development of proxies for sea-level change prior to the advent of instrumental records is essential to reconstruct long-term background sea-level changes on local, regional and global scales. Two of the most widely used approaches for past sea-level changes are: (1) exploitation of dated geomorphologic features such as coastal sands (e.g. Mauz and Hassler, 2000), salt marsh (e.g. Madsen et al., 2007), terraces (e.g. Chappell et al., 1996), and other coastal sediments (e.g. Zong et al., 2003); and (2) sea-level transfer functions based on faunal assemblages such as testate amoebae (e.g. Charman et al., 2002), foraminifera (e.g. Chappell and Shackleton, 1986; Horton, 1997), and diatoms (e.g. Horton et al., 2006). While a variety of methods has been developed to reconstruct palaeo-changes in sea level, many regions, including the Bohai Sea, China, still lack detailed relative sea-level curves extending back to the Pleistocene (Yi et al., 2012). For example, coral terraces are absent in the Bohai Sea, and the poor preservation of faunal assemblages makes development of a transfer function for a relative sea-level reconstruction unfeasible. In contrast, frequent alternations between transgression and regression has presumably imprinted sea-level change on the grain size distribution of Bohai Sea sediments, which varies from medium silt to coarse sand during the late Quaternary (IOCAS, 1985). Advantages of grainsize-based relative sea-level transfer function approaches are that they require smaller sample sizes, allowing for replication, faster measurement and higher spatial or temporal resolution at a fraction of the cost of detail micro-palaeontological analysis (Yi et al., 2012). Here, we employ numerical methods to partition sediment grain size using a combined database of

  3. Future sea level rise constrained by observations and long-term commitment

    PubMed Central

    Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda

    2016-01-01

    Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28–56 cm, 37–77 cm, and 57–131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The “constrained extrapolation” approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections. PMID:26903648

  4. Future sea level rise constrained by observations and long-term commitment.

    PubMed

    Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda

    2016-03-01

    Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28-56 cm, 37-77 cm, and 57-131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The "constrained extrapolation" approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections. PMID:26903648

  5. Interannual-to-decadal variability and trends of sea level in the South China Sea

    NASA Astrophysics Data System (ADS)

    Cheng, Xuhua; Xie, Shang-Ping; Du, Yan; Wang, Jing; Chen, Xiao; Wang, Juan

    2016-05-01

    Interannual-to-decadal variability and trends of sea level in the South China Sea (SCS) are studied using altimetric data during 1993-2012 and reconstructed sea level data from 1950-2009. The interannual variability shows a strong seasonality. Surface wind anomalies associated with El Niño-Southern Oscillation explain the sea-level anomaly pattern in the interior SCS, while Rossby waves radiated from the eastern boundary dominate the sea-level variability in the eastern SCS. Decadal variability of sea level in the SCS follows that in the western tropical Pacific, with large variance found west of Luzon Island. Local atmospheric forcing makes a negative contribution to decadal variability in the central SCS, and Rossby waves radiated from the eastern boundary appear to be important. During 1993-2012, decadal sea level averaged in the SCS is significantly correlated with the Pacific Decadal Oscillation (PDO) ( r = -0.96). The decadal variability associated with the PDO accounts for most part of sea-level trends in the SCS in the last two decades.

  6. Recent and projected changes in Dead Sea level and effects on mineral production from the sea

    USGS Publications Warehouse

    Sauer, Stanley P.

    1978-01-01

    Hydrologic data for the Dead Sea area were reviewed to assess the probable magnitude and rate of change of the water level of the Sea. Historical average annual Dead Sea levels range from a minimum of 399.4 meters below sea level in about 1818 to a maximum of 388.6 meters below in 1896. Present levels are rapidly approaching the historical low. There is a close correlation between Dead Sea level and accumulated departure from the mean of long-term rainfall except for the most recent period since 1964. During that period rainfall has been near the long-term average but water levels have continued to decline, in part due to abstractions for irrigation in the Jordan River basin. The dissolved-solids concentration of Dead Sea water presently is approximately 322,000 milligrams per liter and is generally well mixed. The increase in dissolved solids to the present high concentration has resulted in an evaporation rate less than that estimated in previous reports. An average annual inflow to the Sea of 900 cubic hectometers from all sources is required to stabilize the Sea at the present level. (Woodard-USGS)

  7. Sea Level Data Archaeology for the Global Sea Level Observing System (GLOSS)

    NASA Astrophysics Data System (ADS)

    Bradshaw, Elizabeth; Matthews, Andy; Rickards, Lesley; Jevrejeva, Svetlana

    2015-04-01

    The Global Sea Level Observing System (GLOSS) was set up in 1985 to collect long term tide gauge observations and has carried out a number of data archaeology activities over the past decade, including sending member organisations questionnaires to report on their repositories. The GLOSS Group of Experts (GLOSS GE) is looking to future developments in sea level data archaeology and will provide its user community with guidance on finding, digitising, quality controlling and distributing historic records. Many records may not be held in organisational archives and may instead by in national libraries, archives and other collections. GLOSS will promote a Citizen Science approach to discovering long term records by providing tools for volunteers to report data. Tide gauge data come in two different formats, charts and hand-written ledgers. Charts are paper analogue records generated by the mechanical instrument driving a pen trace. Several GLOSS members have developed software to automatically digitise these charts and the various methods were reported in a paper on automated techniques for the digitization of archived mareograms, delivered to the GLOSS GE 13th meeting. GLOSS is creating a repository of software for scanning analogue charts. NUNIEAU is the only publically available software for digitising tide gauge charts but other organisations have developed their own tide gauge digitising software that is available internally. There are several other freely available software packages that convert image data to numerical values. GLOSS could coordinate a comparison study of the various different digitising software programs by: Sending the same charts to each organisation and asking everyone to digitise them using their own procedures Comparing the digitised data Providing recommendations to the GLOSS community The other major form of analogue sea level data is handwritten ledgers, which are usually observations of high and low waters, but sometimes contain higher

  8. Upper Limit for Sea Level Projections by 2100

    NASA Astrophysics Data System (ADS)

    Jevrejeva, Svetlana; Grinsted, Aslak; Moore, John

    2015-04-01

    With more than 150 million people living within 1 m of high tide future sea level rise is one of the most damaging aspects of warming climate. The latest Intergovernmental Panel on Climate Change report (AR5 IPCC) noted that a 0.5 m rise in mean sea level will result in a dramatic increase the frequency of high water extremes - by an order of magnitude, or more in some regions. Thus the flood threat to the rapidly growing urban populations and associated infrastructure in coastal areas are major concerns for society. Hence, impact assessment, risk management, adaptation strategy and long-term decision making in coastal areas depend on projections of mean sea level and crucially its low probability, high impact, upper range. We construct the probability density function of global sea level at 2100, estimating that sea level rises larger than 180 cm are less than 5% probable. An upper limit for global sea level rise of 190 cm is assembled by summing the highest estimates of individual sea level rise components simulated by process based models with the RCP8.5 scenario. The agreement between the methods may suggest more confidence than is warranted since large uncertainties remain due to the lack of scenario-dependent projections from ice sheet dynamical models, particularly for mass loss from marine-based fast flowing outlet glaciers in Antarctica.

  9. Determination and characterization of 20th century global sea level rise

    NASA Astrophysics Data System (ADS)

    Kuo, Chung-Yen

    In this study, we provide a determination of the 20th Century (1900--2002) global sea level rise, the associated error budgets, and the quantifications of the various geophysical sources of the observed sea level rise, using data and geophysical models. We analyzed significant geographical variations of the global sea level including those caused by the steric component (heat and salinity) in the ocean, and the self-gravitational signal as a result of ice sheets melting, including the effects of glacial isostatic adjustment (GIA) since the Pleistocene. In particular, relative sea level data from long-term (longest is 150 year records) and over 600 tide gauge sites globally from PSMSL and other sources, and geocentric sea level data from multiple satellite altimetry (1985--2005) have been used to determine and characterize 20th century global sea level rise. Altimeter and selected tide gauge sea level data have been used for the 20th century sea level determination, accounting for relative biases between the altimeters, effects of sea level corresponding to oceanic thermal expansion, vertical motions affecting tide gauge measurements, self gravitations, and barotropic ocean response. This study is also characterized by the roles of the polar ocean in the global sea level study and addressing the question whether there is a detectable sea level rise acceleration during the last decade. Vertical motions have been estimated by combining geocentric sea level measurements from satellite altimetry (TOPEX/POSEIDON) and long-term relative (crust-fixed) sea level records from global tide gauges using the Gauss-Markov (GM) model with stochastic constraints. The study provided a demonstration of improved vertical motion solutions in semi-enclosed seas and lakes, including Fennoscandia and the Great Lakes region, showing excellent agreement with independent GPS observed radial velocities, or with predictions from GIA models. In general, the estimated uncertainty of the observed

  10. Subsidence and Relative Sea-level Rise in Threatened Deltas

    NASA Astrophysics Data System (ADS)

    Syvitski, J. P.; Higgins, S.

    2014-12-01

    In determining the risk lowland deltaic topography, as threatened by sea level rise and land subsidence, a number of important processes must be evaluated. Sea level rise is a global process but with local manifestations. Asian deltas have been experiencing higher rates of sea level rise due to the steric impact on dynamic (ocean) topography. Other large scale geophysical impacts on relative sea level at the local scale include the isostatic and flexural response to Holocene sea level history, Holocene sediment loads, and in former ice sheet zones --- glacial rebound. Tectonism does play a role on relative sea level rise, particularly in South America where the Eastern coastline, particularly Argentina, is rising relative to regional sea levels. Subsidence is impacted by both natural ground compaction, and accelerated compaction due to, for example, peat oxidation that often has a human driver (e.g. swamp reclammation). Subsidence is also impacted by the extraction of deeper deposits of petroleum and water. Rates of delta subsidence vary widely, depending on the magnitude of the anthropogenic driver, from a few mm/y to 100's of mm/y. Ground water withdrawal is the dominant reason behind much of the world's coastal subsidence, with important exceptions. On average subsidence rates (all causes) now contribute to local sea level innundations at rates four times faster then sea level is rising. New technologies, particularly InSAR and GPS methods, can often pin point the local cause (e.g. water withdrawl for agriculture versus for aquaculture). Subsurface soil or rock heterogeneity, and other very local geological patterns such as historical river pathways, also influence the temporal and spatial patterns associated with delta subsidence.

  11. Evidence for glacial control of rapid sea level changes in the early cretaceous

    SciTech Connect

    Stoll, H.M.; Schrag, D.P.

    1996-06-21

    Lower Cretaceous bulk carbonate from deep sea sediments records sudden inputs of strontium resulting from the exposure of continental shelves. Strontium data from an interval spanning 7 million years in the Berriasian-Valanginian imply that global sea level fluctuated about 50 meters over time scales of 200,000 to 500,000 years, which is in agreement with the Exxon sea level curve. Oxygen isotope measurements indicate that the growth of continental ice sheets caused these rapid sea level changes. If glaciation caused all the rapid sea level changes in the cretaceous that are indicated by the Exxon curve, then an Antarctic ice sheet may have existed despite overall climatic warmth. 30 refs., 1 fig.

  12. Steric Sea Level Trends in the Northeast Pacific Ocean: Possible Evidence of Global Sea Level Rise.

    NASA Astrophysics Data System (ADS)

    Thomson, Richard E.; Tabata, Susumu

    1989-06-01

    Thirty-year time series of hydrographic observations from Ocean Station PAPA and Line P' are used to estimate secular trends in monthly mean steric sea level heights relative to depths of 100 and 1000 decibars in the northeast Pacific Ocean. Linear trends at station P' (50°N, 145°W) indicate that steric heights relative to the 1000 db (approx. 1000 m) level are rising at a rate of 1.1 mm yr1, comparable with the Order 1 mm yr1 global trends suggested by analysis of selected long-term coastal tide gauge records. Approximately 67% of the increase in steric levels is due to thermosteric change at depths below 100 m, the smaller 33% contribution from the halosteric component apeasrs to be confined to the upper 100 m. Steric height trends at fine P' locations are also of order 1 mm yr1 but, in contrast to station P' trends, arise mainly through the halosteric component.Confidence levels for the linear trends an calculated in two ways. (i) using the Student-t test assuming that cub monthly observation is a statistically independent sample; and (ii) using the Student-t test in conjunction with the effective number of degrees of freedom derived from integral time scales. For station P', trends based on (i) are reliable to the 99% confidence level while for line P' only stations on the eastern portion of the fine have significant trends relative to the 1000 db level. Confidence levels obtained from (i) fail to take into consideration the long-term fluctuations in steric level records. To obtain more reliable estimates of the confidence intervals, we use integral time scales to determine the effective number of degrees of freedom for each monthly time series. Subsequent recalculation of trend-line confidence intervals indicates that the total steric height trends at Station P' remain significant at the 90% confidence level. The halosteric trend relative to 100 db is significant at 90% while the thermosteric trend relative to 1000 db is marginally significant at 70 to 80

  13. Integrating space geodesy and coastal sea level observations

    NASA Astrophysics Data System (ADS)

    Löfgren, J. S.; Haas, R.; Larson, K.; Scherneck, H.-G.

    2012-04-01

    The goal of the Global Geodetic Observing System (GGOS) is to monitor the Earth system, in particular with observations of the three fundamental geodetic observables: the Earth's shape, the Earth's gravity field and the Earth's rotational motion. A central part of GGOS is the network of globally distributed fundamental geodetic stations that allow the combination and integration of the different space geodetic techniques. One of these stations is the Onsala Space Observatory (OSO), on the west coast of Sweden, which operates equipment for geodetic Very Long Baseline Interferometry, Global Navigation Satellite System (GNSS), and superconducting gravimetry measurements, and additionally water vapour radiometers. The newest addition to the OSO fundamental geodetic station is a GNSS-based tide gauge (GNSS-TG). This installation integrates space geodesy with remote sensing of the local sea level. The GNSS-TG uses both direct GNSS-signals and GNSS-signals that are reflected off the sea surface. This is done using a zenith-looking Right Hand Circular Polarized (RHCP) and a nadir-looking Left Hand Circular Polarized (LHCP) antenna, respectively. Each of the two antennas is connected to a standard geodetic-type GNSS-receiver. The analysis of the data received with the RHCP-antenna allows one to determine land motion, while the analysis of the data received with the LHCP-antenna allows one to determine the sea surface height. Analysing both data sets together results in local sea level that is automatically corrected for land motion, meaning that the GNSS-TG can provide reliable sea-level estimates even in tectonically active regions. Previous results from the GNSS-TG, using carrier phase data, show a Root-Mean-Square (RMS) agreement of less than 5.9 cm with stilling well gauges located 18 km and 33 km away from OSO (Löfgren et al., 2011). This is lower than the RMS agreement between the two stilling well gauges (6.1 cm). Furthermore, significant ocean tidal signals have

  14. An alternative to reduction of surface pressure to sea level

    NASA Technical Reports Server (NTRS)

    Deardorff, J. W.

    1982-01-01

    The pitfalls of the present method of reducing surface pressure to sea level are reviewed, and an alternative, adjusted pressure, P, is proposed. P is obtained from solution of a Poisson equation over a continental region, using the simplest boundary condition along the perimeter or coastline where P equals the sea level pressure. The use of P would avoid the empiricisms and disadvantages of pressure reduction to sea level, and would produce surface pressure charts which depict the true geostrophic wind at the surface.

  15. Coastal Impact Underestimated From Rapid Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Anderson, John; Milliken, Kristy; Wallace, Davin; Rodriguez, Antonio; Simms, Alexander

    2010-06-01

    A primary effect of global warming is accelerated sea level rise, which will eventually drown low-lying coastal areas, including some of the world's most populated cities. Predictions from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) suggest that sea level may rise by as much as 0.6 meter by 2100 [Solomon et al., 2007]. However, uncertainty remains about how projected melting of the Greenland and Antarctic ice sheets will contribute to sea level rise. Further, considerable variability is introduced to these calculations due to coastal subsidence, especially along the northern Gulf of Mexico (see http://tidesandcurrents.noaa.gov/sltrends/sltrends.shtml).

  16. Explaining trends and variability in coastal relative sea level

    NASA Astrophysics Data System (ADS)

    Frederikse, Thomas; Riva, Riccardo

    2016-04-01

    Comprehensive understanding of trends and variability in coastal mean sea level is vital for protecting shores under a changing climate. To understand the behavior of coastal relative sea level (RSL), it is crucial to identify all relevant processes. We combine data from various geophysical models and observations to determine whether the trends and decadal variability observed in relative sea level at tide gauges can be explained by the sum of all known contributors. A key contributor to RSL is vertical land motion, which is caused by glacial isostatic adjustment (GIA), solid earth response to surface loading, tectonics, and local effects. We explicitly model low-frequency loading effects to correct GPS records, which leads to a more consistent trend than only using GIA models. Secondly, we create sea level fingerprints based on estimates of ice melt and changes in land hydrology, which provide the RSL contribution due to large-scale mass transport. Since coastal areas are often located on shallow continental shelves, steric effects will generally be small, and a large fraction of the decadal sea level variability will have a remote steric origin. Therefore, we determine a relation between coastal sea level and deep sea steric variability. For the period 1950-2012, we find that for many locations, including the European coast, the observed and modeled RSL time series agree well on decadal and secular scales.

  17. Observing Sea Level Change and its Causes with Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Boening, Carmen; Fu, Lee-Lueng; Landerer, Felix; Willis, Josh

    2016-07-01

    Sea level rise as a response to a changing climate is an imminent threat for coastal communities in the near future. Coastal zone management relies on most accurate predictions of sea level change over the coming decades for planning potential mitigation efforts. Hence, it is of high importance to accurately measure changes and understand physical processes behind them in great detail on a variety of time scales. Satellite observations of sea level height from altimetry have provided an unprecedented understanding of global changes and regional patterns for over two decades. With more and more missions providing now also observations of causes such as water mass changes due to ice melt and land hydrology as well as the ocean heat and salinity budget and local and regional wind patterns, we can now get a comprehensive understanding of the physical processes causing the short to long term changes in sea level. Here, we present an overview of sea level observations in combination with a suite of measurements looking at sea level contributions to provide insight into current and future challenges to understand the sea level budget and its impact on the accuracy of future projections.

  18. Sea level trends in the Southern Ocean over the last century from historical data

    NASA Astrophysics Data System (ADS)

    Testut, Laurent; Martin-Miguez, Belén.; Watson, Christopher; Wöppelmann, Guy; Coleman, Richard; Creach, Ronan; Brolsma, Henk; Handsworth, Roger; Pouvreau, Nicolas; Legrésy, Benoit

    2010-05-01

    It is well known that the spatial distribution of sea level measurements throughout the Southern Ocean is sparse and mostly consists of datasets with short records. The PSMSL (Permanent Service for Mean Sea Level) has only a few sea level time series below 45° South and most of them are shorter than twenty years. The lack of observations constrains the ability to determine or reconstruct global estimates of mean sea level change over the past century. For this reason, any available historical information becomes invaluable for deriving long-term estimates of sea level change in this part of the world. The aim of this presentation is to describe the way we have recovered and analysed the available historic sea level observations made in few sites of the Southern Ocean and to propose new reliable long term sea level trend estimates in this region. The first site is Saint-Paul, a small island of the Southern Indian Ocean where historical measurements were done in 1874 and connected to the permanent GLOSS tide gauge. The two other historical observations were recorded by the Australasian Antarctic Expedition lead by Sir Douglas Mawson in 1912 at Maquarie Island and Cap Denison (Antarctica). The last site concerned by this presentation is the Dumont d'Urville (Antarctica) where historical information from the beginning of the 1950's were found and analysed.

  19. The multimillennial sea-level commitment of global warming.

    PubMed

    Levermann, Anders; Clark, Peter U; Marzeion, Ben; Milne, Glenn A; Pollard, David; Radic, Valentina; Robinson, Alexander

    2013-08-20

    Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C(-1) and 1.2 m °C(-1) of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C(-1) within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales. PMID:23858443

  20. The multimillennial sea-level commitment of global warming

    PubMed Central

    Levermann, Anders; Clark, Peter U.; Marzeion, Ben; Milne, Glenn A.; Pollard, David; Radic, Valentina; Robinson, Alexander

    2013-01-01

    Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C−1 and 1.2 m °C−1 of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C−1 within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales. PMID:23858443

  1. Regional Sea Level Variation: California Coastal Subsidence (Invited)

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Hammond, W. C.; Nerem, R.

    2013-12-01

    Satellite altimetry over the last two decades has measured variations in geocentric sea level (GSL), relative to the Earth system center of mass, providing valuable data to test models of physical oceanography and the effects of global climate change. The societal impacts of sea level change however relate to variations in local sea level (LSL), relative to the land at the coast. Therefore, assessing the impacts of sea level change requires coastal measurements of vertical land motion (VLM). Indeed, ΔLSL = ΔGSL - ΔVLM, with subsidence mapping 1:1 into LSL. Measurements of secular coastal VLM also allow tide-gauge data to test models of GSL over the last century in some locations, which cannot be provided by satellite data. Here we use GPS geodetic data within 15 km of the US west coast to infer regional, secular VLM. A total of 89 GPS stations met the criteria that time series span >4.5 yr, and do not have obvious non-linear variation, as may be caused by local instability. VLM rates for the GPS stations are derived in the secular reference frame ITRF2008, which aligns with the Earth system center of mass to ×0.5 mm/yr. We find that regional VLM has different behavior north and south of the Mendocino Triple Junction (MTJ). The California coast has a coherent regional pattern of subsidence averaging 0.5 mm/yr, with an increasing trend to the north. This trend generally matches GIA model predictions. Around San Francisco Bay, the observed coastal subsidence of 1.0 mm/yr coherently decreases moving away from the Pacific Ocean to very small subsidence on the east shores of the bay. This gradient is likely caused by San Andreas-Hayward Fault tectonics, and possibly by differential surface loading across the bay and Sacramento-San Joachim River Delta. Thus in addition to the trend in subsidence from GIA going northward along the California coast, tectonics may also play a role where the plate boundary fault system approaches the coast. In contrast, we find that VLM

  2. Two Decades of Global and Regional Sea Level Observations from the ESA Climate Change Initiative Sea Level Project

    NASA Astrophysics Data System (ADS)

    Legeais, JeanFrancois; Larnicol, Gilles; Cazenave, Anny; Ablain, Michael; Benveniste, Jérôme; Lucas, BrunoManuel; Timms, Gary; Johannessen, Johnny; Knudsen, Per; Cipollini, Paolo; Roca, Monica; Rudenko, Sergei; Fernandes, Joana; Balmaseda, Magdalena; Quartly, Graham; Fenoglio-Marc, Luciana; Scharfennberg, Martin; Meyssignac, Benoit; Guinle, Thierry; Andersen, Ole

    2015-04-01

    Sea level is a very sensitive index of climate change and variability. Sea level integrates the ocean warming, mountain glaciers and ice sheet melting. Understanding the sea level variability and changes implies an accurate monitoring of the sea level variable at climate scales, in addition to understanding the ocean variability and the exchanges between ocean, land, cryosphere, and atmosphere. That is why Sea Level is one of the Essential Climate Variables (ECV) selected in the frame of the ESA Climate Change Initiative (CCI) program. It aims at providing long-term monitoring of the sea level ECV with regular updates, as required for climate studies. After a first phase (2011-2013), the program has started in 2014 a second phase of 3 years. The objectives of this second phase are to involve the climate research community, to refine their needs and collect their feedbacks on product quality, to develop, test and select the best algorithms and standards to generate an updated climate time series and to produce and validate the Sea Level ECV product. This will better answer the climate user needs by improving the quality of the Sea Level products and maintain a sustain service for an up-to-date production. To this extent, the ECV time series has been extended and it now covers the period 1993-2013. We will firstly present the main achievements of the ESA CCI Sea Level Project. On the one hand, the major steps required to produce the 21 years climate time series are briefly described: collect and refine the user requirements, development of adapted algorithms for climate applications and specification of the production system. On the other hand, the product characteristics are described as well as the results from product validation, performed by several groups of the ocean and climate modeling community. At last, the work plan and key challenges of the second phase of the project are described.

  3. Hazard Risk to Near Sea-Level Populations due to Tropical Cyclone Intensification and Sea-Level Rise

    NASA Astrophysics Data System (ADS)

    Montain, J.; Byrne, J. M.; Elsner, J.

    2010-12-01

    Tropical cyclone (TC) intensification has been well documented in the science literature. TC intensification combined with sea-level rise contributes to an enhanced risk to huge populations living near sea level around the world. This study will apply spatial analysis techniques to combine the best available TC intensification data on storm surge, wave height and wind speeds; with digital elevation models and global population density estimates, to provide a first level evaluation of the increasing risk to human life and health.

  4. The importance of sea-level research (Plinius Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Horton, Benjamin

    2016-04-01

    200 million people worldwide live in coastal regions less than 5 meters above sea level. By the end of the 21st century, this figure is estimated to increase to 500 million. These low-lying coastal regions are vulnerable to changes in sea level brought about by climate change, storms or earthquakes. But the historic and instrumental record is too short to fully understand the climate relationships and capture the occurrence of the rare, but most destructive events. The coastal sedimentary record provides a long-term and robust paleo perspective on the rates, magnitudes and spatial variability of sea-level rise and the frequency (recurrence interval) and magnitude of destructive events. Reconstructions of paleo sea level are important for identifying the meltwater contributions, constraining parameters in Earth-Ice models, and estimating past and present rates of spatially variable sea-level change associated glacial isostatic adjustment, sediment compaction and tidal range variability. Sea-level reconstructions capture multiple phases of climate and sea-level behavior for model calibration and provide a pre-anthropogenic background against which to compare recent trends. Pre-historic earthquakes (Mw>8.0) are often associated with abrupt and cyclical patterns of vertical land-motion that are manifest in coastal sedimentary archives as abrupt changes in relative sea level. Geologic evidence of paleoearthquakes elucidates characteristic and repeated pattern of land-level movements associated with the earthquake-deformation cycle. Tsunamis and storms leave behind anomalous and characteristic sediment that is incorporated into the coastal sedimentary record often as evidence of a high-energy event affecting a low-energy, depositional environment. Records of tsunamis developed from the sedimentary deposits they leave behind improve understanding of tsunami processes and frequency by expanding the age range of events available for study. Reconstructions of paleo storms

  5. Characterization of extreme sea level at the European coast

    NASA Astrophysics Data System (ADS)

    Elizalde, Alberto; Jorda, Gabriel; Mathis, Moritz; Mikolajewicz, Uwe

    2015-04-01

    Extreme high sea levels arise as a combination of storm surges and particular high tides events. Future climate simulations not only project changes in the atmospheric circulation, which induces changes in the wind conditions, but also an increase in the global mean sea level by thermal expansion and ice melting. Such changes increase the risk of coastal flooding, which represents a possible hazard for human activities. Therefore, it is important to investigate the pattern of sea level variability and long-term trends at coastal areas. In order to analyze further extreme sea level events at the European coast in the future climate projections, a new setup for the global ocean model MPIOM coupled with the regional atmosphere model REMO is prepared. The MPIOM irregular grid has enhanced resolution in the European region to resolve the North and the Mediterranean Seas (up to 11 x 11 km at the North Sea). The ocean model includes as well the full luni-solar ephemeridic tidal potential for tides simulation. To simulate the air-sea interaction, the regional atmospheric model REMO is interactively coupled to the ocean model over Europe. Such region corresponds to the EuroCORDEX domain with a 50 x 50 km resolution. Besides the standard fluxes of heat, mass (freshwater), momentum and turbulent energy input, the ocean model is also forced with sea level pressure, in order to be able to capture the full variation of sea level. The hydrological budget within the study domain is closed using a hydrological discharge model. With this model, simulations for present climate and future climate scenarios are carried out to study transient changes on the sea level and extreme events. As a first step, two simulations (coupled and uncoupled ocean) driven by reanalysis data (ERA40) have been conducted. They are used as reference runs to evaluate the climate projection simulations. For selected locations at the coast side, time series of sea level are separated on its different

  6. Tectonic subsidence provides insight into possible coral reef futures under rapid sea-level rise

    NASA Astrophysics Data System (ADS)

    Saunders, Megan I.; Albert, Simon; Roelfsema, Chris M.; Leon, Javier X.; Woodroffe, Colin D.; Phinn, Stuart R.; Mumby, Peter J.

    2016-03-01

    Sea-level rise will change environmental conditions on coral reef flats, which comprise extensive habitats in shallow tropical seas and support a wealth of ecosystem services. Rapid relative sea-level rise of 0.6 m over a relatively pristine coral reef in Solomon Islands, caused by a subduction earthquake in April 2007, generated a unique opportunity to examine in situ coral reef response to relative sea-level rise of the magnitude (but not the rate) anticipated by 2100. Extent of live coral was measured from satellite imagery in 2003, 2006, 2009 and 2012. Ecological data were obtained from microatolls and ecological surveys in May 2013. The reef was sampled at 12 locations where dense live hard coral remained absent, remained present or changed from absent to present following subsidence. Ecological data (substratum depth, live coral canopy depth, coral canopy height, substratum suitability, recruitment, diversity and Acropora presence) were measured at each location to identify factors associated with coral response to relative sea-level rise. Vertical and horizontal proliferation of coral occurred following subsidence. Lateral expansion of live coral, accomplished primarily by branching Acropora spp., resulted in lower diversity in regions which changed composition from pavement to dense live coral following subsidence. Of the ecological factors measured, biotic factors were more influential than abiotic factors; species identity was the most important factor in determining which regions of the reef responded to rapid sea-level rise. On relatively pristine reef flats under present climatic conditions, rapid relative sea-level rise generated an opportunity for hard coral to proliferate. However, the species assemblage of the existing reef was important in determining response to sea-level change, by providing previously bare substrate with a source of new coral colonies. Degraded reefs with altered species composition and slower coral growth rates may be less

  7. Chronology of fluctuating sea levels since the triassic

    SciTech Connect

    Haq, B.U.; Hardenbol, J.; Vail, P.R.

    1987-03-06

    Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic framework. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.

  8. Chronology of fluctuating sea levels since the triassic.

    PubMed

    Haq, B U; Hardenbol, J; Vail, P R

    1987-03-01

    Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic framework. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented. PMID:17818978

  9. Chronology of Fluctuating Sea Levels since the Triassic

    NASA Astrophysics Data System (ADS)

    Haq, Bilal U.; Hardenbol, Jan; Vail, Peter R.

    1987-03-01

    Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic frame-work. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.

  10. A global reanalysis of storm surges and extreme sea levels

    NASA Astrophysics Data System (ADS)

    Muis, Sanne; Verlaan, Martin; Winsemius, Hessel C.; Aerts, Jeroen C. J. H.; Ward, Philip J.

    2016-06-01

    Extreme sea levels, caused by storm surges and high tides, can have devastating societal impacts. To effectively protect our coasts, global information on coastal flooding is needed. Here we present the first global reanalysis of storm surges and extreme sea levels (GTSR data set) based on hydrodynamic modelling. GTSR covers the entire world's coastline and consists of time series of tides and surges, and estimates of extreme sea levels. Validation shows that there is good agreement between modelled and observed sea levels, and that the performance of GTSR is similar to that of many regional hydrodynamic models. Due to the limited resolution of the meteorological forcing, extremes are slightly underestimated. This particularly affects tropical cyclones, which requires further research. We foresee applications in assessing flood risk and impacts of climate change. As a first application of GTSR, we estimate that 1.3% of the global population is exposed to a 1 in 100-year flood.