Science.gov

Sample records for seasonal thermal energy

  1. Seasonal thermal energy storage

    SciTech Connect

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  2. Seasonal thermal energy storage

    NASA Astrophysics Data System (ADS)

    Allen, R. D.; Kannberg, L. D.; Raymond, J. R.

    1984-05-01

    Seasonal thermal energy storage (STES) using heat or cold available from surplus, waste, climatic, or cogeneration sources show great promise to reduce peak demand, reduce electric utility load problems, and contribute to establishing favorable economics for district heating and cooling systems. Heated and chilled water can be injected, stored, and recovered from aquifers. Geologic materials are good thermal insulators, and potentially suitable aquifers are distributed throughout the United States. Potential energy sources for use in an aquifer thermal energy storage system include solar heat, power plant cogeneration, winter chill, and industrial waste heat source. Topics covered include: (1) the U.S. Department of Energy seasonal thermal energy storage program; (2) aquifer thermal energy storage technology; (3) alternative STES technology; (4) foreign studies in seasonal thermal energy storage; and (5) economic assessment.

  3. Seasonal Thermal Energy Storage Program

    NASA Technical Reports Server (NTRS)

    Minor, J. E.

    1980-01-01

    The Seasonal Thermal Energy Storage (STES) Program designed to demonstrate the storage and retrieval of energy on a seasonal basis using heat or cold available from waste or other sources during a surplus period is described. Factors considered include reduction of peak period demand and electric utility load problems and establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The initial thrust of the STES Program toward utilization of ground water systems (aquifers) for thermal energy storage is emphasized.

  4. Seasonal Solar Thermal Absorption Energy Storage Development.

    PubMed

    Daguenet-Frick, Xavier; Gantenbein, Paul; Rommel, Mathias; Fumey, Benjamin; Weber, Robert; Gooneseker, Kanishka; Williamson, Tommy

    2015-01-01

    This article describes a thermochemical seasonal storage with emphasis on the development of a reaction zone for an absorption/desorption unit. The heat and mass exchanges are modelled and the design of a suitable reaction zone is explained. A tube bundle concept is retained for the heat and mass exchangers and the units are manufactured and commissioned. Furthermore, experimental results of both absorption and desorption processes are presented and the exchanged power is compared to the results of the simulations. PMID:26842331

  5. Bibliography of the seasonal thermal energy storage library

    SciTech Connect

    Prater, L.S.; Casper, G.; Kawin, R.A.

    1981-08-01

    The Main Listing is arranged alphabetically by the last name of the first author. Each citation includes the author's name, title, publisher, publication date, and where applicable, the National Technical Information Service (NTIS) number or other document number. The number preceding each citation is the identification number for that document in the Seasonal Thermal Energy Storage (STES) Library. Occasionally, one or two alphabetic characters are added to the identification number. These alphabetic characters indicate that the document is contained in a collection of papers, such as the proceedings of a conference. An Author Index and an Identification Number Index are included. (WHK)

  6. Thermochemical seasonal energy storage for solar thermal power

    SciTech Connect

    Barnhart, J.S.

    1984-01-01

    During the many years that thermochemical energy storage has been under investigation, the concept has been plagued with two persistent problems: high capital cost and poor efficiency. Literally hundreds of chemical reactions have also been carried out. For short-term storage, thermochemical systems suffer in comparison with highly efficient sensible storage media such as molten salts. Long-term storage, on the other hand, is not cost-competitive with systems employing fossil backup power. Thermochemical storage will play a significant role in solar thermal electric conversion only under highly select circumstances. The portion of electric demand served by solar plants must be sufficiently high that the balance of the grid cannot fully supplant seasonal storage. High fossil fuel costs must preclude the use of gas turbines for backup power. Significant breakthroughs in the development of one or more chemical reaction systems must occur. Ingeniously integrated systems must be employed to enhance the efficiency and cost-effectiveness of thermochemical storage. A promising integration scheme discussed herein consists of using sensible storage for diurnal cycling in parallel with thermochemical seasonal storage. Under the most favorable circumstances, thermochemical storage can be expected to play a small but perhaps vital role in supplying baseload energy from solar thermal electric conversion plants.

  7. Aquifer thermal energy storage costs with a seasonal chill source

    SciTech Connect

    Brown, D.R.

    1983-01-01

    The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal chill source was investigated. Costs were estimated for point demand and residential development ATES systems using the computer code AQUASTOR. AQUASTOR was developed at PNL specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on the costs of ATES delivered chill were: system size; well flow rate; transmission distance; source temperature; well depth; and cost of capital. The effects of each parameter are discussed. Two primary constraints of ATES chill systems are the extremely low energy density of the storage fluid and the prohibitive costs of lengthy pipelines for delivering chill to residential users. This economic analysis concludes that ATES-delivered chill will not be competitive for residential cooling applications. The otherwise marginal attractiveness of ATES chill systems vanishes under the extremely low load factors characteristic of residential cooling systems. (LCL)

  8. Aquifer thermal energy storage reference manual: seasonal thermal energy storage program

    SciTech Connect

    Prater, L.S.

    1980-01-01

    This is the reference manual of the Seasonal Thermal Energy Storage (STES) Program, and is the primary document for the transfer of technical information of the STES Program. It has been issued in preliminary form and will be updated periodically to include more technical data and results of research. As the program progresses and new technical data become available, sections of the manual will be revised to incorporate these data. This primary document contains summaries of: the TRW, incorporated demonstration project at Behtel, Alaska, Dames and Moore demonstration project at Stony Brook, New York, and the University of Minnesota demonstration project at Minneapolis-St. Paul, Minnesota; the technical support programs including legal/institutional assessment; economic assessment; environmental assessment; field test facilities; a compendia of existing information; numerical simulation; and non-aquifer STES concepts. (LCL)

  9. Seasonal thermal energy storage program. Progress report, January 1980-December 1980

    SciTech Connect

    Minor, J.E.

    1981-05-01

    The objectives of the Seasonal Thermal Energy Storage (STES) Program is to demonstrate the economic storage and retrieval of energy on a seasonal basis, using heat or cold available from waste sources or other sources during a surplus period to reduce peak period demand, reduce electric utilities peaking problems, and contribute to the establishment of favorable economics for district heating and cooling systems for commercialization of the technology. Aquifers, ponds, earth, and lakes have potential for seasonal storage. The initial thrust of the STES Program is toward utilization of ground-water systems (aquifers) for thermal energy storage. Program plans for meeting these objectives, the development of demonstration programs, and progress in assessing the technical, economic, legal, and environmental impacts of thermal energy storage are described. (LCL)

  10. Seasonal thermal energy storage. Program progress report, April 1979-December 1979

    SciTech Connect

    Minor, J.E.

    1980-03-01

    The objective of the Seasonal Thermal Energy Storage (STES) Program is to demonstrate the economic storage and retrieval of thermal energy on a seasonal basis, using heat or cold available from waste sources or other sources during a surplus period to reduce peak period demand, reduce electric utilities peaking problems, and contribute to the establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The initial thrust of the STES Program is toward utilization of ground-water systems (aquifers) for thermal energy storage. The program has the further objective of evaluating other methods of seasonal storage, both from existing literature and by following current work in other countries. The STES Program is divided into an Aquifer Thermal Energy Storage (ATES) Demonstration Task for demonstrating the commercialization potential of aquifer thermal energy storage technology using an integrated system approach to multiple demonstration projects and a parallel Technical Support Task designed to provide support to the overall STES Program, and to reduce technological and institutional barriers to the development of energy storage systems prior to significant investment in demonstration or commercial facilities. During this initial STES program reporting period, program plans were completed, and the Work Breadkdown Structure, budget, schedules, and reporting/review procedures were developed. Responsibility was assumed for existing, ongoing STES contracts and projects.

  11. Preliminary survey and evaluation of nonaquifer thermal energy storage concepts for seasonal storage

    SciTech Connect

    Blahnik, D.E.

    1980-11-01

    Thermal energy storage enables the capture and retention of heat energy (or cold) during one time period for use during another. Seasonal thermal energy storage (STES) involves a period of months between the input and recovery of energy. The purpose of this study was to make a preliminary investigation and evaluation of potential nonaquifer STES systems. Current literature was surveyed to determine the state of the art of thermal energy storage (TES) systems such as hot water pond storage, hot rock storage, cool ice storage, and other more sophisticated concepts which might have potential for future STES programs. The main energy sources for TES principally waste heat, and the main uses of the stored thermal energy, i.e., heating, cooling, and steam generation are described. This report reviews the development of sensible, latent, and thermochemical TES technologies, presents a preliminary evaluation of the TES methods most applicable to seasonal storage uses, outlines preliminary conclusions drawn from the review of current TES literature, and recommends further research based on these conclusions. A bibliography of the nonaquifer STES literature review, and examples of 53 different TES concepts drawn from the literature are provided. (LCL)

  12. Seasonal Thermal Energy Storage Program: Progress summary for the period April 1986 through March 1988

    SciTech Connect

    Kannberg, L.D.

    1988-10-01

    This report discusses recent progress in the DOE program, directed by Pacific Northwest Laboratory, to develop seasonal thermal energy storage (STES). STES has been identified as one method to substantially improve energy efficiency and economics in certain sectors of our economy. It provides a potentially economic means of using waste heat and climatic energy resources to meet a significant portion of our growing energy need for building and industrial process heating and cooling. Environmental benefits accompany the use of STES in many applications. Furthermore, STES can contribute to reduced reliance on premium fuels that are often obtained from foreign sources. Lastly by improving the energy economics of industry, STES can contribute to improved US industrial competitiveness. The report is provided in four sections; the first being this introduction Section 2 of the report describes the program and briefly documents its organization, goals, history, and long-term plans. Section 3 describes the progress during the period from April, 1986, through March, 1988. Section 4 provides a short update on international development of STES. 17 refs., 16 figs., 7 tabs.

  13. Seasonal meridional energy balance and thermal structure of the atmosphere of Uranus - A radiative-convective-dynamical model

    NASA Technical Reports Server (NTRS)

    Friedson, James; Ingersoll, Andrew P.

    1987-01-01

    A model is presented for the thermodynamics of the seasonal meridional energy balance and thermal structure of the Uranian atmosphere. The model considers radiation and small-scale convection, and dynamical heat fluxes due to large-scale baroclinic eddies. Phase oscillations with a period of 0.5 Uranian year are discerned in the total internal power and global enthalpy storage. The variations in the identity of the main transport agent with the magnitude of the internal heat source are discussed. It is shown that meridional heat transport in the atmosphere is sufficient to lower seasonal horizontal temperature contrasts below those predicted with radiative-convection models.

  14. Seasonal storage of thermal energy in unsaturated soils: Modeling, simulation, and field validation

    SciTech Connect

    Doughty, C.; Tsang, C.F ); Korin, E.; Nir, A. )

    1991-02-01

    Most investigations on seasonal storage of thermal energy have concentrated mainly on cold and moderate climatic regions, and have emphasized aquifer storage. In warm, arid climatic zones, where the use of groundwater aquifers for this purpose is not feasible, unsaturated soil has been identified as one of the most suitable media. Our previous research programs used mathematical modeling to investigate both general concepts and a specific configuration for a storage facility in unsaturated soil. In the present project, a reduced-scale field experiment was performed in order to: (a) validate the mathematical models of the storage system and study the relevant heat transfer processes in unsaturated soils; (b) test the proposed technologies for the construction of the storage facility, including heat-exchanger emplacement and operational control; and (c) provide cost estimates of the implementation of this method. The transfer of heat to the soil is achieved through a heat exchanger constructed of 0.03-m-diameter polybutylene pipe in a helical configuration 1 m in diameter and 6 m in length, which is inserted into a 10-m-deep well. A detailed description of the experimental procedures and technological developments are given in a companion paper (Bar-On et al., 1991), while the present paper emphasizes model development and validation. Two experimental storage cycles were performed and modeled, and a satisfactory match was obtained between the observed and predicted temperatures throughout the storage volume. The sensitivity to parameter estimates, modeling approximations, and parameter nonlinearity was also studied. On the basis of the accumulated knowledge and experience from this project, a pilot-scale experiment appears feasible. 11 refs., 7 figs.

  15. Modeling surface energy fluxes and thermal dynamics of a seasonally ice-covered hydroelectric reservoir.

    PubMed

    Wang, Weifeng; Roulet, Nigel T; Strachan, Ian B; Tremblay, Alain

    2016-04-15

    The thermal dynamics of human created northern reservoirs (e.g., water temperatures and ice cover dynamics) influence carbon processing and air-water gas exchange. Here, we developed a process-based one-dimensional model (Snow, Ice, WAater, and Sediment: SIWAS) to simulate a full year's surface energy fluxes and thermal dynamics for a moderately large (>500km(2)) boreal hydroelectric reservoir in northern Quebec, Canada. There is a lack of climate and weather data for most of the Canadian boreal so we designed SIWAS with a minimum of inputs and with a daily time step. The modeled surface energy fluxes were consistent with six years of observations from eddy covariance measurements taken in the middle of the reservoir. The simulated water temperature profiles agreed well with observations from over 100 sites across the reservoir. The model successfully captured the observed annual trend of ice cover timing, although the model overestimated the length of ice cover period (15days). Sensitivity analysis revealed that air temperature significantly affects the ice cover duration, water and sediment temperatures, but that dissolved organic carbon concentrations have little effect on the heat fluxes, and water and sediment temperatures. We conclude that the SIWAS model is capable of simulating surface energy fluxes and thermal dynamics for boreal reservoirs in regions where high temporal resolution climate data are not available. SIWAS is suitable for integration into biogeochemical models for simulating a reservoir's carbon cycle. PMID:26849343

  16. Thermal Energy Storage: Fourth Annual Review Meeting

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The development of low cost thermal energy storage technologies is discussed in terms of near term oil savings, solar energy applications, and dispersed energy systems for energy conservation policies. Program definition and assessment and research and technology development are considered along with industrial storage, solar thermal power storage, building heating and cooling, and seasonal thermal storage. A bibliography on seasonal thermal energy storage emphasizing aquifer thermal energy is included.

  17. Aquifer thermal energy storage program

    NASA Technical Reports Server (NTRS)

    Fox, K.

    1980-01-01

    The purpose of the Aquifer Thermal Energy Storage Demonstration Program is to stimulate the interest of industry by demonstrating the feasibility of using a geological formation for seasonal thermal energy storage, thereby, reducing crude oil consumption, minimizing thermal pollution, and significantly reducing utility capital investments required to account for peak power requirements. This purpose will be served if several diverse projects can be operated which will demonstrate the technical, economic, environmental, and institutional feasibility of aquifer thermal energy storage systems.

  18. Model-based assessment of the potential of seasonal aquifer thermal energy storage and recovery as a groundwater ecosystem service for the Brussels-Capital Region

    NASA Astrophysics Data System (ADS)

    Anibas, Christian; Huysmans, Marijke

    2015-04-01

    Urban areas are characterized by their concentrated demand of energy, applying a high pressure on urban ecosystems including atmosphere, soils and groundwater. In the light of global warming, urbanization and an evolving energy system, it is important to know how urbanized areas can contribute to their own energy demands. One option is to use the possibilities aquifers offer as an ecosystem service (BONTE et al., 2011). If used effectively an improvement in air and groundwater quality is achieved. Additionally, the more efficient distribution of the used energy may also lead to a decrease in primary energy consumption (ZUURBIER, 2013). Therefore, investigations of the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is being conducted. The potential of ATES systems are of special interest for energy demands in high density urban areas because of such infrastructure as office buildings, schools, hospitals and shopping malls. In an open water circuit ATES systems consist of two or more groundwater wells, where in seasonal cycles one subtracts and the other recharges water to the aquifer. Heat pumps use the heat capacity of water for heating or cooling a building. An important limitation of the methodology is the quality of the groundwater used (i.e. precipitation of Fe- or Mn-oxides can decrease the yield). However, ATES systems on the other hand can also improve groundwater quality and groundwater ecosystems. The current knowledge of the potential for ATES systems in the Brussels-Capital Region is based on geological assessments from VITO (2007). The Brussels-Capital Region is divided into a western and eastern section with respect to geology. While the western part has less favorable conditions for ATES, the eastern is composed of the Brussels Sand formation, which is a 20-40 m thick aquifer layer that has the highest potential for ATES systems in the region. By applying groundwater flow and heat

  19. The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: Modeling of spreading and degradation

    NASA Astrophysics Data System (ADS)

    Zuurbier, Koen G.; Hartog, Niels; Valstar, Johan; Post, Vincent E. A.; van Breukelen, Boris M.

    2013-04-01

    Groundwater systems are increasingly used for seasonal aquifer thermal energy storage (SATES) for periodic heating and cooling of buildings. Its use is hampered in contaminated aquifers because of the potential environmental risks associated with the spreading of contaminated groundwater, but positive side effects, such as enhanced contaminant remediation, might also occur. A first reactive transport study is presented to assess the effect of SATES on the fate of chlorinated solvents by means of scenario modeling, with emphasis on the effects of transient SATES pumping and applicable kinetic degradation regime. Temperature effects on physical, chemical, and biological reactions were excluded as calculations and initial simulations showed that the small temperature range commonly involved (ΔT < 15 °C) only caused minor effects. The results show that a significant decrease of the contaminant mass and (eventually) plume volume occurs when degradation is described as sediment-limited with a constant rate in space and time, provided that dense non-aqueous phase liquid (DNAPL) is absent. However, in the presence of DNAPL dissolution, particularly when the dissolved contaminant reaches SATES wells, a considerably larger contaminant plume is created, depending on the balance between DNAPL dissolution and mass removal by degradation. Under conditions where degradation is contaminant-limited and degradation rates depend on contaminant concentrations in the aquifer, a SATES system does not result in enhanced remediation of a contaminant plume. Although field data are lacking and existing regulatory constraints do not yet permit the application of SATES in contaminated aquifers, reactive transport modeling provides a means of assessing the risks of SATES application in contaminated aquifers. The results from this study are considered to be a first step in identifying the subsurface conditions under which SATES can be applied in a safe or even beneficial manner.

  20. Optimum utilization of site energy sources for all-season thermal comfort in new residential construction for single-family attached (rowhouse/townhouse) designs

    SciTech Connect

    Not Available

    1981-02-26

    A proposed design analysis is presented of a passive solar energy efficient system for a typical three-level, three bedroom, two story, garage-under townhouse. The design incorporates the best, most performance-proven and cost effective products, materials, processes, technologies, and sub-systems which are available today. Seven distinct categories recognized for analysis are identified as: the exterior environment; the interior environment; conservation of energy; natural energy utilization; auxiliary energy utilization; control and distribution systems; and occupant adaptation. Preliminary design features, fenestration sysems, the plenum-supply system, the thermal-storage party-fire walls, direct gain storage, the radiant comfort system, and direct passive cooling systems are briefly described. Features of the design under analysis and on which conclusions have not yet been formulated are: the energy reclamation system, auxiliary energy back-up systems, the distribution system and operating modes, the control systems, and non-comfort energy systems and inputs. (MCW)

  1. Thermal energy storage

    SciTech Connect

    Tomlinson, J.J. ); Kannberg, L.D. )

    1990-09-01

    This paper discusses how thermal energy storage (TES) can aid in the efficient use and provision of thermal energy, wherever there is a mismatch between energy generation and use. Three fundamental types of thermal energy storage processes (sensible, latent, and thermochemical) can be used, and many different media are available within each type. Various subsets of these processes are being researched and developed to accelerate TES implementation, focusing on applications in building heating and cooling, industrial energy efficiency, and utility and space power systems. TES can contribute significantly to meeting society's needs for more efficient, environmentally benign energy use in these and other sectors.

  2. HEATS: Thermal Energy Storage

    SciTech Connect

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  3. Thermal energy transformer

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M.; Thiele, C. L. (Inventor)

    1979-01-01

    For use in combination with a heat engine, a thermal energy transformer is presented. It is comprised of a flux receiver having a first wall defining therein a radiation absorption cavity for converting solar flux to thermal energy, and a second wall defining an energy transfer wall for the heat engine. There is a heat pipe chamber interposed between the first and second walls having a working fluid disposed within the chamber and a wick lining the chamber for conducting the working fluid from the second wall to the first wall. Thermal energy is transferred from the radiation absorption cavity to the heat engine.

  4. Understanding seasonal variations in thermal inertia on Mars

    NASA Astrophysics Data System (ADS)

    Fergason, R. L.

    2013-12-01

    Thermal inertia is the key material property controlling the diurnal and seasonal temperature variations on Mars, and provides information about the physical characteristics and the cohesive nature of the surface and near subsurface. The derivation of accurate surface temperature and thermophysical properties, with well quantified uncertainties, has proven essential for selecting scientifically interesting and safe landing site locations and to understand past and present martian geologic processes thru the definitive identification of bedrock, and the recognition of indurated surfaces, unconsolidated fines, and dust. Most thermal inertia values reported for Mars are derived using a 1-layer thermal model, and often correlate reasonably well with surface textures and morphology observed in visible images. However, layered surfaces and mixtures materials of different grain sizes and degrees of cohesiveness are observed in visible images globally. Therefore, Mars is geologically complex and common 1-layer models are not a true representation of the surface and subsurface properties. In addition, thermal inertia values derived using 1-layer thermal models commonly produce variations in thermal inertia as large as 300 J m-2 s-1/2 K-1 that are often seasonally repeatable. These variations can lead to ambiguous interpretations of the surface and negatively impacts our ability to confidently interpret the surface properties of Mars. These differences also indicate that the current 1-layer models are often not adequately representing the physical properties of the martain surface. Although these seasonal variations are often interpreted as indicating the presence of subsurface layers, there are many potential causes of seasonal variations in thermal inertia that must be considered. Some of these potential causes include: 1) subsurface layering; 2) atmospheric variations; and 4) the omission of critical physics in the thermal models themselves. Subsurface layers of differing

  5. Thermal energy storage program description

    SciTech Connect

    Reimers, E.

    1989-03-01

    The U.S. Department of Energy (DOE) has sponsored applied research, development, and demonstration of technologies aimed at reducing energy consumption and encouraging replacement of premium fuels (notably oil) with renewable or abundant indigenous fuels. One of the technologies identified as being able to contribute to these goals is thermal energy storage (TES). Based on the potential for TES to contribute to the historic mission of the DOE and to address emerging energy issues related to the environment, a program to develop specific TES technologies for diurnal, industrial, and seasonal applications is underway. Currently, the program is directed toward three major application targets: (1) TES development for efficient off-peak building heating and cooling, (2) development of advanced TES building materials, and (3) TES development to reduce industrial energy consumption.

  6. Thermal energy storage

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Picklesimer, E. A.

    1978-01-01

    The general scope of study on thermal energy storage development includes: (1) survey and review possible concepts for storing thermal energy; (2) evaluate the potentials of the surveyed concepts for practical applications in the low and high temperature ranges for thermal control and storage, with particular emphasis on the low temperature range, and designate the most promising concepts; and (3) determine the nature of further studies required to expeditiously convert the most promising concept(s) to practical applications. Cryogenic temperature control by means of energy storage materials was also included.

  7. Thermal energy storage for cogeneration applications

    NASA Astrophysics Data System (ADS)

    Drost, M. K.; Antoniak, Z. I.

    1992-04-01

    Cogeneration is playing an increasingly important role in providing energy efficient power generation and thermal energy for space heating and industrial process heat applications. However, the range of applications for cogeneration could be further increased if the generation of electricity could be decoupled from the generation of process heat. Thermal energy storage (TES) can decouple power generation from the production of process heat, allowing the production of dispatchable power while fully utilizing the thermal energy available from the prime mover. The Pacific Northwest Laboratory (PNL) leads the US Department of Energy's Thermal Energy Storage Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility applications (utility thermal energy storage (UTES)). Several of these technologies can be used in a cogeneration facility. This paper discusses TES concepts relevant to cogeneration and describes the current status of these TES systems.

  8. Thermal diffusivity of seasonal snow determined from temperature profiles

    NASA Astrophysics Data System (ADS)

    Oldroyd, H. J.; Higgins, C. W.; Huwald, H.; Selker, J. S.; Parlange, M. B.

    2013-05-01

    Thermal diffusivity of snow is an important thermodynamic property associated with key hydrological phenomena such as snow melt and heat and water vapor exchange with the atmosphere. Direct determination of snow thermal diffusivity requires coupled point measurements of thermal conductivity and density, which continually change due to snow metamorphism. Traditional methods for determining these two quantities are generally limited by temporal resolution. In this study we present a method to determine the thermal diffusivity of snow with high temporal resolution using snow temperature profile measurements. High resolution (between 2.5 and 10 cm at 1 min) temperature measurements from the seasonal snow pack at the Plaine-Morte glacier in Switzerland are used as initial conditions and Neumann (heat flux) boundary conditions to numerically solve the one-dimensional heat equation and iteratively optimize for thermal diffusivity. The implementation of Neumann boundary conditions and a t-test, ensuring statistical significance between solutions of varied thermal diffusivity, are important to help constrain thermal diffusivity such that spurious high and low values as seen with Dirichlet (temperature) boundary conditions are reduced. The results show that time resolved thermal diffusivity can be determined from temperature measurements of seasonal snow and support density-based empirical parameterizations for thermal conductivity.

  9. Thermal energy storage

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The planning and implementation of activities associated with lead center management role and the technical accomplishments pertaining to high temperature thermal energy storage subsystems are described. Major elements reported are: (1) program definition and assessment; (2) research and technology development; (3) industrial storage applications; (4) solar thermal power storage applications; and (5) building heating and cooling applications.

  10. Ocean Thermal Energy.

    ERIC Educational Resources Information Center

    Berkovsky, Boris

    1987-01-01

    Describes Ocean Thermal Energy Conservation (OTEC) as a method for exploiting the temperature difference between warm surface waters of the sea and its cold depths. Argues for full-scale demonstrations of the technique for producing energy for coastal regions. (TW)

  11. Thermal energy storage material

    DOEpatents

    Leifer, Leslie

    1976-01-01

    A thermal energy storage material which is stable at atmospheric temperature and pressure and has a melting point higher than 32.degree.F. is prepared by dissolving a specific class of clathrate forming compounds, such as tetra n-propyl or tetra n-butyl ammonium fluoride, in water to form a substantially solid clathrate. The resultant thermal energy storage material is capable of absorbing heat from or releasing heat to a given region as it transforms between solid and liquid states in response to temperature changes in the region above and below its melting point.

  12. Cost effective seasonal storage of wind energy

    SciTech Connect

    Cavallo, A.J.; Keck, M.B.

    1995-09-01

    Seasonal variation of the wind electric potential on the Great Plains could be a significant obstacle to the large scale utilization of wind generated electricity. Wind power densities usually are greatest during the spring, and decrease by at least 30 percent relative to the annual average in many areas during the summer months, when demand is highest. This problem can be overcome by using an oversized wind farm and a compressed air energy storage system (a baseload wind energy system). A minimum volume storage reservoir is needed to transform intermittent wind energy to baseload power, while a larger reservoir can be used to store excess power produced during the spring for either peak power or baseload output during the summer. The yearly average cost of energy increases by about 3 percent for the largest storage reservoir, indicating the seasonal storage of wind energy is economically as well as technically feasible.

  13. Solar thermal energy receiver

    NASA Technical Reports Server (NTRS)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  14. Article for thermal energy storage

    DOEpatents

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  15. Titan's Seasonal Changes Observed in the Thermal Infrared (Invited)

    NASA Astrophysics Data System (ADS)

    Jennings, D. E.; Anderson, C. M.; Nixon, C. A.; Bjoraker, G. L.; Achterberg, R. K.; Flasar, F.; Cottini, V.; Coustenis, A.; Vinatier, S.; Teanby, N. A.; Bampasidis, G.

    2013-12-01

    A central goal of the Cassini Mission is the detection and tracking of seasonal variations on Titan. Cassini arrived in the Saturn system in late northern winter and has so far observed for almost four Titan months, enough time to see significant changes as solar warming has moved northward. In the thermal infrared the shift has been apparent both in emission from the atmosphere and temperatures at the surface. Gases, clouds and aerosols in the atmosphere warm and cool with the seasons, accumulate and dissipate, and undergo transport on a global scale. Warming of the surface helps drive the exchange of heat and volatiles with the atmosphere, which contributes to weather. Seasonal activity in the north can be expected to be repeated in the south over the course of a year, so that it may be possible by the end of the Cassini Mission to combine winter-spring data from the north and summer-autumn data from the south to build up a picture that covers almost a full annual cycle. The Composite Infrared Spectrometer (CIRS) on Cassini records thermal infrared spectra in the 7-1000 micron range. CIRS has found that surface temperatures at Titan's poles are about 2.5 K lower than near the equator and that the temperatures moved from peaking south of the equator in 2005 to being approximately centered at the equator in 2011. As Titan passed through equinox in 2009, CIRS watched as atmospheric patterns that had been associated with northern winter began to emerge in the south. Emission from stratospheric gases and condensates varied dramatically as temperatures, chemistry and transport configurations adjusted to the season. Complex nitriles that had only been present at high northern latitudes began to appear near the South Pole while a polar ice cloud, originally identified in the north by its spectral emission, made an abrupt debut in the south. We expect much more evidence of seasonal evolution in the thermal infrared as CIRS continues to study Titan through the remainder of

  16. Aquifer thermal energy (heat and chill) storage

    SciTech Connect

    Jenne, E.A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  17. Thermal Energy Conversion Branch

    NASA Technical Reports Server (NTRS)

    Bielozer, Matthew C.; Schreiber, Jeffrey, G.; Wilson, Scott D.

    2004-01-01

    The Thermal Energy Conversion Branch (5490) leads the way in designing, conducting, and implementing research for the newest thermal systems used in space applications at the NASA Glenn Research Center. Specifically some of the most advanced technologies developed in this branch can be broken down into four main areas: Dynamic Power Systems, Primary Solar Concentrators, Secondary Solar Concentrators, and Thermal Management. Work was performed in the Dynamic Power Systems area, specifically the Stirling Engine subdivision. Today, the main focus of the 5490 branch is free-piston Stirling cycle converters, Brayton cycle nuclear reactors, and heat rejection systems for long duration mission spacecraft. All space exploring devices need electricity to operate. In most space applications, heat energy from radioisotopes is converted to electrical power. The Radioisotope Thermoelectric Generator (RTG) already supplies electricity for missions such as the Cassini Spacecraft. The focus of today's Stirling research at GRC is aimed at creating an engine that can replace the RTG. The primary appeal of the Stirling engine is its high system efficiency. Because it is so efficient, the Stirling engine will significantly reduce the plutonium fuel mission requirements compared to the RTG. Stirling is also being considered for missions such as the lunar/Mars bases and rovers. This project has focused largely on Stirling Engines of all types, particularly the fluidyne liquid piston engine. The fluidyne was developed by Colin D. West. This engine uses the same concepts found in any type of Stirling engine, with the exception of missing mechanical components. All the working components are fluid. One goal was to develop and demonstrate a working Stirling Fluidyne Engine at the 2nd Annual International Energy Conversion Engineering Conference in Providence, Rhode Island.

  18. Thermal energy test apparatus

    NASA Astrophysics Data System (ADS)

    Audet, N. F.

    1991-10-01

    The Navy Clothing and Textile Research Facility (NCTRF) designed and fabricated a thermal energy test apparatus to permit evaluation of the heat protection provided by crash crew firefighter's proximity clothing materials against radiant and convective heat loads, similar to those found outside the flame zone of aircraft fuel fires. The apparatus employs electrically operated quartz lamp radiant heaters and a hot air convective heater assembly to produce the heat load conditions the materials to be subjected to, and is equipped with heat flux sensors of different sensitivities to measure the incident heat flux on the sample material as well as the heat flux transmitted by the sample. Tests of the apparatus have shown that it can produce radiant heat flux levels equivalent to those estimated to be possible in close proximity to large aircraft fuel fires, and can produce convective heat fluxes equivalent to those measured in close proximity to aircraft fuel fires at upwind and sidewind locations. Work was performed in 1974.

  19. Thermal energy storage test facility

    NASA Technical Reports Server (NTRS)

    Ternes, M. P.

    1980-01-01

    The thermal behavior of prototype thermal energy storage units (TES) in both heating and cooling modes is determined. Improved and advanced storage systems are developed and performance standards are proposed. The design and construction of a thermal cycling facility for determining the thermal behavior of full scale TES units is described. The facility has the capability for testing with both liquid and air heat transport, at variable heat input/extraction rates, over a temperature range of 0 to 280 F.

  20. Thermal energy storage apparatus

    SciTech Connect

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  1. Seasonal Contrasts in the Surface Energy Balance of the Sahel

    SciTech Connect

    Miller, Ron; Slingo, A.; Barnard, James C.; Kassianov, Evgueni I.

    2009-03-14

    Over most of the world ocean, heating of the surface by sunlight is balanced predominately by evaporative cooling. Even over land, moisture for evaporation is available from vegetation or the soil reservoir. However, at the ARM Mobile Facility in Niamey, Niger, soil moisture is so depleted that evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the soil reservoir. Using observations at the Mobile Facility from late 2005 to early 2007, we describe how the surface balances radiative forcing. How the surface compensates time-averaged solar heating varies with seasonal changes in atmospheric water vapor, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of the West African summer monsoon, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity at these wavelengths. After the monsoon onset, but prior to significant rainfall, solar heating is compensated mainly by the sensible heat flux. During the rainy season, the magnitude of evaporation is initially controlled by the supply of moisture from precipitation. However, by the height of the rainy season, sufficient precipitation has accumulated at the surface that evaporation is related to the flux demanded by solar radiation, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Radiative forcing of the surface also varies on a subseasonal time scale due to fluctuations in water vapor, clouds, and aerosol concentration. Except at the height of the rainy season, subseasonal forcing is balanced mainly by sensible heating and longwave anomalies. The efficacy of the sensible heat flux

  2. Ocean Thermal Extractable Energy Visualization

    SciTech Connect

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  3. Seasonal storage of energy in solar heating

    NASA Astrophysics Data System (ADS)

    Braun, J. E.; Klein, S. A.; Mitchell, J. W.

    1981-01-01

    This paper focuses on several aspects of seasonal storage for space heating using water as the storage medium. The interrelationships between collector area, storage volume, and system performance are investigated using the transient simulation program TRNSYS. The situations for which seasonal storage is most promising are presented. Particular emphasis is placed upon design of seasonal storage systems. A design method is presented which is applicable for storage capacities ranging from a few days to seasonal storage. This design method, coupled with cost information, should be useful in assessing the economic viability of seasonal storage systems. Also investigated are the importance of the load heat exchanger size, tank insulation, collector slope, and year-to-year weather variations in system design.

  4. Ocean Thermal Energy Conversion (OTEC)

    NASA Technical Reports Server (NTRS)

    Lavi, A.

    1977-01-01

    Energy Research and Development Administration research progress in Ocean Thermal Energy Conversion (OTEC) is outlined. The development program is being focused on cost effective heat exchangers; ammonia is generally used as the heat exchange fluid. Projected costs for energy production by OTEC vary between $1000 to $1700 per kW.

  5. Lih thermal energy storage device

    DOEpatents

    Olszewski, Mitchell; Morris, David G.

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  6. Seasonal and Radial Trends in Saturn's Thermal Plasma Between the Main Rings and Enceladus

    NASA Astrophysics Data System (ADS)

    Elrod, M. K.; Tseng, W. L.; Johnson, R. E.; Woodson, A.

    2014-12-01

    A goal of Cassini's extended mission is to examine the seasonal variations of Saturn's magnetosphere, moons, and rings. Recently we showed that the thermal plasma between the main rings and Enceladus exhibited a time dependence that we attributed to a seasonally variable source of oxygen from the main rings (Elrod et al., 2012). Such a temporal variation was subsequently seen in the energetic ion composition (Christon et al., 2013; 2014). Here we incorporate the most recent measurements by the Cassini Plasma Spectrometer (CAPS) into our earlier analysis (Elrod et al., 2012) and our modeling (Tseng et al., 2013a) of the thermal plasma in the region between the main rings and the orbit of Enceladus. Data taken in 2012, well past equinox for which the northern side of the main rings were illuminated, appear consistent with a seasonal variation. Although the thermal plasma in this region comes from two sources that have very different radial and temporal trends, the extended ring atmosphere and the Enceladus torus, the heavy ion density is found to exhibit a steep radial dependence that is similar for the years examined. Using our chemical model, we show that this dependence requires either a radial dependence for Enceladus torus that differs significantly from recent models or, as we suggest here, enhanced heavy ion quenching/neutralization with decreasing distance from the edge of the main rings. We examine the possible physical processes and suggest that the presence of small grains and the precipitation of the inward diffusing high-energy background radiation onto the edge of the main rings play important roles.

  7. Influence of the seasonal snow cover on the ground thermal regime: An overview

    NASA Astrophysics Data System (ADS)

    Zhang, Tingjun

    2005-12-01

    The presence of seasonal snow cover during the cold season of the annual air temperature cycle has significant influence on the ground thermal regime in cold regions. Snow has high albedo and emissivity that cool the snow surface, high absorptivity that tends to warm the snow surface, low thermal conductivity so that a snow layer acts as an insulator, and high latent heat due to snowmelt that is a heat sink. The overall impact of snow cover on the ground thermal regime depends on the timing, duration, accumulation, and melting processes of seasonal snow cover; density, structure, and thickness of seasonal snow cover; and interactions of snow cover with micrometeorological conditions, local microrelief, vegetation, and the geographical locations. Over different timescales either the cooling or warming impact of seasonal snow cover may dominate. In the continuous permafrost regions, impact of seasonal snow cover can result in an increase of the mean annual ground and permafrost surface temperature by several degrees, whereas in discontinuous and sporadic permafrost regions the absence of seasonal snow cover may be a key factor for permafrost development. In seasonally frozen ground regions, snow cover can substantially reduce the seasonal freezing depth. However, the influence of seasonal snow cover on seasonally frozen ground has received relatively little attention, and further study is needed. Ground surface temperatures, reconstructed from deep borehole temperature gradients, have increased by up to 4°C in the past centuries and have been widely used as evidence of paleoclimate change. However, changes in air temperature alone cannot account for the changes in ground temperatures. Changes in seasonal snow conditions might have significantly contributed to the ground surface temperature increase. The influence of seasonal snow cover on soil temperature, soil freezing and thawing processes, and permafrost has considerable impact on carbon exchange between the

  8. Intersexual differences in energy expenditure of Anolis carolinensis lizards during breeding and postbreeding seasons.

    PubMed

    Orrell, K S; Congdon, J D; Jenssen, T A; Michener, R H; Kunz, T H

    2004-01-01

    Although the amount of energy that males and females invest in reproduction is an integral component of theories explaining the evolution of particular mating strategies, few studies have actually determined the amount of energy that each sex allocates to reproduction. We compared how energy is expended by male and female Anolis carolinensis lizards during both the breeding and postbreeding seasons. We used laboratory respirometry to determine resting metabolic rates (RMRs) of inactive, freshly captured lizards and the doubly labeled water technique to determine field metabolic rates (FMRs) of free-ranging lizards. Both RMRs and FMRs were influenced by body mass but not by sex. Season did not influence FMRs; however, RMRs of both sexes increased approximately 40% from the breeding to the postbreeding season. The seasonal increase in RMRs was attributed to a postreproductive increase in feeding rate and specific dynamic action. We used RMRs, FMRs, and thermal profiles of lizards to calculate energy budgets for breeding and postbreeding seasons. Energy budgets partitioned daily field energy (DFE; calculated from FMRs) into daily activity energy (DAE) and daily resting energy (DRE; calculated from RMRs). Energy expended for reproduction was estimated as DAE during the breeding season plus egg production (for females). Despite males having 40% greater body mass, females expended 46% more energy for reproduction than did males (906 and 619 J/d, respectively). Total metabolizable energy (TME=DFE+egg production for females) expended during the breeding season was similar for males and females (1,280 and 1,365 J/d, respectively). Although TME of females decreased 44% from the breeding to the postbreeding season (1,365 vs. 766 J/d), TME of males was similar during both seasons (1,280 vs. 1,245 J/d). There were both seasonal and sexual differences in DRE and DAE. Compared with most lizards from semiarid/desert habitats, A. carolinensis in a temperate habitat expends more

  9. Thermal energy storage and transport

    NASA Technical Reports Server (NTRS)

    Hausz, W.

    1980-01-01

    The extraction of thermal energy from large LWR and coal fired plants for long distance transport to industrial and residential/commercial users is analyzed. Transport of thermal energy as high temperature water is shown to be considerably cheaper than transport as steam, hot oil, or molten salt over a wide temperature range. The delivered heat is competitive with user-generated heat from oil, coal, or electrode boilers at distances well over 50 km when the pipeline operates at high capacity factor. Results indicate that thermal energy storage makes meeting of even very low capacity factor heat demands economic and feasible and gives the utility flexibility to meet coincident electricity and heat demands effectively.

  10. A thermal model for the seasonal nitrogen cycle on Triton

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Paige, David A.

    1992-01-01

    The seasonal N2-cycle model presently used to characterize such observed phenomena on Triton as atmospheric pressure and surface albedo features at the time of the Voyager encounter incorporates diurnal and seasonal subsurface heat conduction, and can account for the heat capacity of N2 frost deposits. The results obtained by this model differ from those of previous studies in that they do not predict the seasonal freezing-out of the Triton atmosphere; even for a wide range of input parameters, the bright southern polar cap is seen as rather unlikely to be N2. The results support the microphysical arguments for the presence of either dark or smooth translucent N2 frosts on the Triton surface.

  11. CALORSTOCK 1994: Thermal energy storage. Better economy, environment, technology

    NASA Astrophysics Data System (ADS)

    Kangas, M. T.; Lund, P. D.

    This publication is the second volume of the Proceedings of CALORSTOCK'94, the Sixth International Conference on Thermal Energy Storage held in Espoo, Finland on 22-25 Aug. 1994. This volume contains 51 presentations from the following six sessions: Chemical storage; Heat storage and environment; Central solar heating plants with seasonal storage; Water storage pits and tanks; Cooling; and National activities.

  12. Length and terms of occurrence of thermal seasons in Poland - are any changes observed?

    NASA Astrophysics Data System (ADS)

    Choryński, Adam; Graczyk, Dariusz; Szwed, Małgorzata

    2014-05-01

    While thinking of seasons, one mostly has in mind astronomical seasons which are very often mentioned by media. These are set using Sun's position above the equator and the tropics. Seasons defined by these manners very frequently do not match with prevailing climatic conditions in Poland. Therefore, especially in scientific research, different ways of setting the beginning and ending of seasons in Poland are employed. Climatic seasons are used very broadly. They divide the year into four parts of almost equal duration. Nevertheless, for Poland, this method is also not fully representative, because it does not take into account regional differentiation of climatic conditions. More objective criteria are used in phenological seasons, where their duration is set by, for example the terms of florescence and maturation of plants. In this research, thermal criterion is applied for setting the duration of seasons - terms of persistent exceedances of characteristic thresholds of mean daily air temperature (5 degrees C for autumn and spring, 0 degrees C for winter and 15 degrees C for summer). The climate of Poland is characterised by large long-term variability of thermal conditions. It results in the possibility of evident differences in the length and terms of seasons beginning and ending between years. The winter season 2012/2013 in Poland was exceptionally long, and very low temperatures occurred during the whole March, even in the first decade of April in some parts of the country. At the same year at the end of April temperatures exceeded 20 degrees C (summer conditions). It resulted in another wide discussion on evident changes of length or even fading of some seasons in the media. Based on meteorological data from 10 Polish meteorological stations, that represent different regions of the country, authors are researching how the length of thermal seasons changed between years 1951 and 2013 in Poland. The length of seasons in three multiannual periods (1951

  13. Seasonal changes in humidity impact drought resistance in tropical Drosophila leontia: testing developmental effects of thermal versus humidity changes.

    PubMed

    Parkash, Ravi; Ranga, Poonam

    2014-03-01

    Drosophila leontia is native to highly humid equatorial tropical habitats but its desiccation sensitivity (~10h) is not consistent with its abundance during the drier autumn season in the subtropical regions. We have tested the effects of developmental acclimation on desiccation resistance and water balance related traits of D. leontia collected during rainy and autumn seasons. The isofemale lines of seasonal populations were reared under ecologically relevant growth temperatures (18 or 26 °C) or humidity conditions (35 or 85% RH) but tested at different times under identical experimental conditions. The larvae as well as flies reared under two thermal conditions (18 or 26 °C) showed no effect on desiccation related traits as well as storage and utilization of energy metabolites. In contrast, for D. leontia reared under low humidity (35% RH), significant changes at larval as well adult stages include increase in the desiccation resistance as well as cuticular lipid quantity, reduced levels of rate of body water loss, higher storage of carbohydrates but lower rate of utilization of carbohydrates as compared with flies reared at high humidity (85% RH). D. leontia has responded to rearing under low humidity conditions by increasing its desiccation resistance but not due to changes in the growth temperatures. These laboratory observations on seasonal populations highlight differences due to rearing conditions but not due to seasons. Further, direct analysis of wild-caught seasonal populations has shown trends similar to developmental acclimation effects. For wild caught flies, there are significant seasonal differences i.e. higher desiccation resistance as well as cuticular lipid quantity but reduced rate of water loss for autumn than rainy season flies. Thus, our laboratory observations are relevant for understanding seasonal adaptations of natural populations of tropical D. leontia to wet-dry conditions in the wild. PMID:24345458

  14. Effect of seasonal variation of windspeed on energy output

    SciTech Connect

    Jagadeesh, A.

    1983-12-01

    In India the cropping seasons are broadly classified as Kharif (July to October), Rabi (November to February) and Hot Season (March to June). In this paper an attempt is made to know the variation of windspeed and hence the energy output at 10 places based on IMD data (1958-63). This will enable the farmer to chalk out the cropping pattern to reap maximum benefits from the installed windmill.

  15. Seasonal modulations of the underground cosmic-ray muon energy

    SciTech Connect

    Malgin, A. S.

    2015-08-15

    The parameters of the seasonal modulations in the intensity of muons and cosmogenic neutrons generated by them at a mean muon energy of 280 GeV have been determined in the LVD (Large Volume Detector) experiment. The modulations of muons and neutrons are caused by a temperature effect, the seasonal temperature and density variations of the upper atmospheric layers. The analysis performed here leads to the conclusion that the variations in the mean energy of the muon flux are the main source of underground cosmogenic neutron variations, because the energy of muons is more sensitive to the temperature effect than their intensity. The parameters of the seasonal modulations in the mean energy of muons and the flux of cosmogenic neutrons at the LVD depth have been determined from the data obtained over seven years of LVD operation.

  16. Seasonal energy and evapotranspiration partitioning in a desert vineyard

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The challenge of partitioning energy and evapotranspiration (ET) components was addressed over a season (bud break till harvest) in a wine grape vineyard located in an extreme arid region. A below canopy energy balance approach was applied to continuously estimate evaporation from the soil (E) while...

  17. Training Migrant and Seasonal Farmworkers for Energy-Related Occupations.

    ERIC Educational Resources Information Center

    Weseman, Marcus

    The United States Departments of Energy (DOE) and Labor (DOL) have cosponsored a number of demonstration programs to train economically disadvantaged migrant and seasonal farmworkers for energy-related technical and skilled occupations. A descriptive study of the first DOE/DOL demonstration was made to determine the impact of training on…

  18. Seasonal and radial trends in Saturn’s thermal plasma between the main rings and Enceladus

    NASA Astrophysics Data System (ADS)

    Elrod, M. K.; Tseng, W.-L.; Woodson, A. K.; Johnson, R. E.

    2014-11-01

    A goal of Cassini's extended mission is to examine the seasonal variations of Saturn's magnetosphere, moons, and rings. Recently we showed that the thermal plasma between the main rings and Enceladus exhibited a time dependence that we attributed to a seasonally variable source of oxygen from the main rings (Elrod, M.K., Tseng, W.-L., Wilson, R.J., Johnson, R.E. [2012]. J. Geophys. Res. 117, A03207. http://dx.doi.org/10.1029/2011JA017332). Such a temporal variation was subsequently seen in the energetic ion composition (Christon, S.P., Hamilton, D.C., DiFabio, R.D., Mitchel, D.G., Krimigis, S.M., Jontof-Hutter, D.S. [2013]. J. Geophys. Res. 28. http://dx.doi.org/10.1002/jgra.50383; Christon, S.P., Hamilton, D.C., Mitchell, D.G., DiFabio, R.D., Krimigis, S.M. [2014]. J. Geophys. Res., submitted for publication). Here we incorporate the most recent measurements by the Cassini Plasma Spectrometer (CAPS) into our earlier analysis (Elrod, M.K., Tseng, W.-L., Wilson, R.J., Johnson, R.E. [2012]. J. Geophys. Res. 117, A03207. http://dx.doi.org/10.1029/2011JA017332) and our modeling (Tseng, W.-L., Johnson, R.E., Elrod, M.K. [2013a]. Planet. Space Sci. 77, 126-135) of the thermal plasma in the region between the main rings and the orbit of Enceladus. Data taken in 2012, well past equinox for which the northern side of the main rings were illuminated, appear consistent with a seasonal variation. Although the thermal plasma in this region comes from two sources that have very different radial and temporal trends, the extended ring atmosphere and the Enceladus torus, the heavy ion density is found to exhibit a steep radial dependence that is similar for the years examined. Using our chemical model, we show that this dependence requires either a radial dependence for Enceladus torus that differs significantly from recent models or, as we suggest here, enhanced heavy ion quenching/neutralization with decreasing distance from the edge of the main rings. We examine the possible

  19. THERMAL COTTON DEFOLIATION: IMPACT ON LATE-SEASON WHITEFLIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential upper thermal limits of the silverleaf whitefly were evaluated in the laboratory. Leaves infested with whitefly nymphs and pupae were collected from the field and exposed to a series of increasing temperatures in a drying oven. Heat treatments began at ~158°F (~70°C) and increased at...

  20. Microwavable thermal energy storage material

    DOEpatents

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  1. Microwavable thermal energy storage material

    DOEpatents

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  2. More Efficient Solar Thermal-Energy Receiver

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  3. Effects of seasonal and climate variations on calves' thermal comfort and behaviour

    NASA Astrophysics Data System (ADS)

    Tripon, Iulian; Cziszter, Ludovic Toma; Bura, Marian; Sossidou, Evangelia N.

    2014-09-01

    The aim of this study was to measure the effect of season and climate variations on thermal comfort and behaviour of 6-month-old dairy calves housed in a semi-opened shelter to develop animal-based indicators for assessing animal thermal comfort. The ultimate purpose was to further exploit the use of those indicators to prevent thermal stress by providing appropriate care to the animals. Measurements were taken for winter and summer seasons. Results showed that season significantly influenced ( P ≤ 0.01) the lying down behaviour of calves by reducing the time spent lying, from 679.9 min in winter to 554.1 min in summer. Moreover, season had a significant influence ( P ≤ 0.01) on feeding behaviour. In detail, the total length of feeding periods was shorter in winter, 442.1 min in comparison to 543.5 min in summer. Time spent drinking increased significantly ( P ≤ 0.001), from 11.9 min in winter to 26.9 min in summer. Furthermore, season had a significant influence ( P ≤ 0.001) on self grooming behaviour which was 5.5 times longer in duration in winter than in summer (1,336 s vs 244 s). It was concluded that calves' thermal comfort is affected by seasonal and climate variations and that this can be assessed by measuring behaviour with animal-based indicators, such as lying down, resting, standing up, feeding, rumination, drinking and self grooming. The indicators developed may be a useful tool to prevent animal thermal stress by providing appropriate housing and handling to calves under seasonal and climate challenge.

  4. Thermal energy storage flight experiments

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1989-01-01

    Consideration is given to the development of an experimental program to study heat transfer, energy storage, fluid movement, and void location under microgravity. Plans for experimental flight packages containing Thermal Energy Storage (TES) material applicable for advanced solar heat receivers are discussed. Candidate materials for TES include fluoride salts, salt eutectics, silicides, and metals. The development of a three-dimensional computer program to describe TES material behavior undergoing melting and freezing under microgravity is also discussed. The TES experiment concept and plans for ground and flight tests are outlined.

  5. Thermal to Electric Energy Conversion

    NASA Astrophysics Data System (ADS)

    Hagelstein, Peter L.

    2005-12-01

    As research in the area of excess power production moves forward, issues associated with thermal to electric conversion become increasingly important. This paper provides a brief tutorial on basic issues, including the Carnot limit, entropy, and thermoelectric conversion. Practical thermal to electric conversion is possible well below the Carnot limit, and this leads to a high threshold for self-sustaining operation in Pons-Fleischmann type experiments. Excess power production at elevated temperatures will become increasingly important as we move toward self-sustaining devices and energy production for applications. Excess power production in heat-producing systems that do not require electrical input have an enormous advantage over electrochemical systems. Such systems should be considered seriously within our community in the coming years.

  6. Thermal imaging of Uranus: Upper-tropospheric temperatures one season after Voyager

    NASA Astrophysics Data System (ADS)

    Orton, Glenn S.; Fletcher, Leigh N.; Encrenaz, Therese; Leyrat, Cedric; Roe, Henry G.; Fujiyoshi, Takuya; Pantin, Eric

    2015-11-01

    We report on 18-25 μm thermal imaging of Uranus that took place between 2003 and 2011, a time span roughly one season after the thermal maps made by the Voyager-2 IRIS experiment in 1986. We re-derived meridional variations of temperature and para-H2 fraction from the Voyager experiment and compared these with the thermal images, which are sensitive to temperatures in the upper troposphere of Uranus around the 70-400 mbar atmospheric pressure range. The thermal images display a maximum of 3 K of equivalent temperature changes across the disk, and they are consistent with the temperature distribution measured by the Voyager IRIS experiment. This implies that there has been no detectable change of the meridional distribution of upper-tropospheric/lower-stratospheric temperatures over a season. This is inconsistent with seasonally dependent radiative-convective-dynamical models and full global climate models that predict some variability with season if the effective temperature is meridionally constant. We posit that the effective temperature of Uranus could be meridionally variable, with the additional possibility that even the small temperature variations predicted by the GCMs are overestimated.

  7. Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona

    NASA Astrophysics Data System (ADS)

    Middel, Ariane; Selover, Nancy; Hagen, Björn; Chhetri, Nalini

    2016-05-01

    Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

  8. Smart Building: Decision Making Architecture for Thermal Energy Management

    PubMed Central

    Hernández Uribe, Oscar; San Martin, Juan Pablo; Garcia-Alegre, María C.; Santos, Matilde; Guinea, Domingo

    2015-01-01

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction. PMID:26528978

  9. Smart Building: Decision Making Architecture for Thermal Energy Management.

    PubMed

    Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo

    2015-01-01

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction. PMID:26528978

  10. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  11. Application and verification of ECMWF seasonal forecast for wind energy

    NASA Astrophysics Data System (ADS)

    Žagar, Mark; Marić, Tomislav; Qvist, Martin; Gulstad, Line

    2015-04-01

    A good understanding of long-term annual energy production (AEP) is crucial when assessing the business case of investing in green energy like wind power. The art of wind-resource assessment has emerged into a scientific discipline on its own, which has advanced at high pace over the last decade. This has resulted in continuous improvement of the AEP accuracy and, therefore, increase in business case certainty. Harvesting the full potential output of a wind farm or a portfolio of wind farms depends heavily on optimizing operation and management strategy. The necessary information for short-term planning (up to 14 days) is provided by standard weather and power forecasting services, and the long-term plans are based on climatology. However, the wind-power industry is lacking quality information on intermediate scales of the expected variability in seasonal and intra-annual variations and their geographical distribution. The seasonal power forecast presented here is designed to bridge this gap. The seasonal power production forecast is based on the ECMWF seasonal weather forecast and the Vestas' high-resolution, mesoscale weather library. The seasonal weather forecast is enriched through a layer of statistical post-processing added to relate large-scale wind speed anomalies to mesoscale climatology. The resulting predicted energy production anomalies, thus, include mesoscale effects not captured by the global forecasting systems. The turbine power output is non-linearly related to the wind speed, which has important implications for the wind power forecast. In theory, the wind power is proportional to the cube of wind speed. However, due to the nature of turbine design, this exponent is close to 3 only at low wind speeds, becomes smaller as the wind speed increases, and above 11-13 m/s the power output remains constant, called the rated power. The non-linear relationship between wind speed and the power output generally increases sensitivity of the forecasted power

  12. Solar energy thermalization and storage device

    DOEpatents

    McClelland, John F.

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  13. Solar energy thermalization and storage device

    DOEpatents

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  14. Solar energy system performance evaluation: Seasonal report for fern, Tunkhannock, Pennsylvania

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of a variety of solar systems installed in operational test sites are described. The analysis is based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system is reported, and technical contributions to the definition of techniques and requirements for solar energy system design are made. The solar energy system was designed to supply space heating and domestic hot water for single-family residences. The system consists of air flat plate collectors, storage tank, pumps, heat exchangers, associated plumbing, and controls.

  15. Solar energy system performance evaluation: Seasonal report for SEMCO, Loxahatchee, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of a variety of solar systems installed in operational test sites are described. The analysis used is based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system and the technical contributions to the definition of techniques and requirements solar energy system design are analyzed. The solar energy system was designed to supply domestic hot water for a family of four, single-family residences. It consists of two liquid flat plate collectors, single tank, controls, and transport lines.

  16. Thermal modeling and optimization of a thermally matched energy harvester

    NASA Astrophysics Data System (ADS)

    Boughaleb, J.; Arnaud, A.; Cottinet, P. J.; Monfray, S.; Gelenne, P.; Kermel, P.; Quenard, S.; Boeuf, F.; Guyomar, D.; Skotnicki, T.

    2015-08-01

    The interest in energy harvesting devices has grown with the development of wireless sensors requiring small amounts of energy to function. The present article addresses the thermal investigation of a coupled piezoelectric and bimetal-based heat engine. The thermal energy harvester in question converts low-grade heat flows into electrical charges by achieving a two-step conversion mechanism for which the key point is the ability to maintain a significant thermal gradient without any heat sink. Many studies have previously focused on the electrical properties of this innovative device for energy harvesting but until now, no thermal modeling has been able to describe the device specificities or improve its thermal performances. The research reported in this paper focuses on the modeling of the harvester using an equivalent electrical circuit approach. It is shown that the knowledge of the thermal properties inside the device and a good comprehension of its heat exchange with the surrounding play a key role in the optimization procedure. To validate the thermal modeling, finite element analyses as well as experimental measurements on a hot plate were carried out and the techniques were compared. The proposed model provided a practical guideline for improving the generator design to obtain a thermally matched energy harvester that can function over a wide range of hot source temperatures for the same bimetal. A direct application of this study has been implemented on scaled structures to maintain an important temperature difference between the cold surface and the hot reservoir. Using the equations of the thermal model, predictions of the thermal properties were evaluated depending on the scaling factor and solutions for future thermal improvements are presented.

  17. Thermal energy management process experiment

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.

    1984-01-01

    The thermal energy management processes experiment (TEMP) will demonstrate that through the use of two-phase flow technology, thermal systems can be significantly enhanced by increasing heat transport capabilities at reduced power consumption while operating within narrow temperature limits. It has been noted that such phenomena as excess fluid puddling, priming, stratification, and surface tension effects all tend to mask the performance of two-phase flow systems in a 1-g field. The flight experiment approach would be to attack the experiment to an appropriate mounting surface with a 15 to 20 meter effective length and provide a heat input and output station in the form of heaters and a radiator. Using environmental data, the size, location, and orientation of the experiment can be optimized. The approach would be to provide a self-contained panel and mount it to the STEP through a frame. A small electronics package would be developed to interface with the STEP avionics for command and data handling. During the flight, heaters on the evaporator will be exercised to determine performance. Flight data will be evaluated against the ground tests to determine any anomalous behavior.

  18. Thermal Energy Harvesting from Wildlife

    NASA Astrophysics Data System (ADS)

    Woias, P.; Schule, F.; Bäumke, E.; Mehne, P.; Kroener, M.

    2014-11-01

    In this paper we present the measurement of temperature differences between the ambient air and the body temperature of a sheep (Heidschnucke) and its applicability for thermoelectric energy harvesting from livestock, demonstrated via the test of a specially tailored TEG system in a real-life experiment. In three measurement campaigns average temperature differences were found between 2.5 K and 3.5 K. Analytical models and FEM simulations were carried out to determine the actual thermal resistance of the sheep's fur from comparisons with the temperature measurements. With these data a thermoelectric (TEG) generator was built in a thermally optimized housing with adapted heats sink. The whole TEG system was mounted to a collar, including a data logger for recording temperature and TEG voltage. First measurements at the neck of a sheep were accomplished, with a calculated maximal average power output of 173 μW at the TEG. Taking the necessity of a low-voltage step-up converter into account, an electric output power of 54 μW is available which comes close to the power consumption of a low-power VHF tracking system.

  19. Phase change thermal energy storage material

    SciTech Connect

    Benson, D.K.; Burrows, R.W.

    1987-10-27

    A thermal energy storage tank is described comprising a containment vessel arranged for exposure to thermal energy, and a thermal energy storage composition disposed within the vessel and comprising a non-chloride hydrate having a phase change transition temperature in the range of 70/sup 0/-95/sup 0/F and a latent heat of transformation of greater than about 35 calories/gram. The non-chloride hydrate comprises trimethyol ethane hydrate.

  20. The Value of Seasonal Climate Forecasts in Managing Energy Resources.

    NASA Astrophysics Data System (ADS)

    Brown Weiss, Edith

    1982-04-01

    Research and interviews with officials of the United States energy industry and a systems analysis of decision making in a natural gas utility lead to the conclusion that seasonal climate forecasts would only have limited value in fine tuning the management of energy supply, even if the forecasts were more reliable and detailed than at present.On the other hand, reliable forecasts could be useful to state and local governments both as a signal to adopt long-term measures to increase the efficiency of energy use and to initiate short-term measures to reduce energy demand in anticipation of a weather-induced energy crisis.To be useful for these purposes, state governments would need better data on energy demand patterns and available energy supplies, staff competent to interpret climate forecasts, and greater incentive to conserve. The use of seasonal climate forecasts is not likely to be constrained by fear of legal action by those claiming to be injured by a possible incorrect forecast.

  1. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    DOEpatents

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  2. Modeling Seasonal Thermal Radiance Cycles for Change Detection at Volcanic / Geothermal Areas

    NASA Astrophysics Data System (ADS)

    Vaughan, R.; Beuttel, B. S.

    2013-12-01

    Remote sensing observations of thermal features associated with (and often preceding) volcanic activity have been used for decades to detect and monitor volcanism. However, anomalous thermal precursors to volcanic eruptions are usually only recognized retrospectively. One of the reasons for this is that precursor thermal activity is often too subtle in magnitude (spatially, temporally, or in absolute temperature) to be unambiguously detected in time to issue warnings or forecasts. Part of the reason for this is the trade-off between high spatial and high temporal resolution associated with satellite imaging systems. Thus, the goal of this work has been to develop some techniques for using high-temporal-resolution, coarse-spatial-resolution imagery to try to detect subtle thermal anomalies. To identify anomalies, background thermal activity must first be characterized. Every active, or potentially active, volcano has a unique thermal history that provides information about normal background thermal activity due to seasonal or diurnal variations. Understanding these normal variations allows recognition of anomalous activity that may be due to volcanic / hydrothermal processes - ultimately with a lead time that may be sufficient to issue eruption warnings or forecasts. Archived MODIS data, acquired ~daily from 2000 to 2012, were used to investigate seasonal thermal cycles at three volcanic areas with different types of thermal features: Mount St. Helens, which had a dacite dome-building eruption from 2004-2008; Mount Ruapehu, which has a 500-m diameter active summit crater lake; and Yellowstone, which is a large active geothermal system that has hundreds of hot springs and fumarole fields spread out over a very large area. The focus has been on using MODIS 1-km sensor radiance data in the MIR and TIR wavelength regions that are sensitive to thermal emission from features that range in temperature from hundreds of °C, down to tens of °C (below the boiling temperature

  3. Seasonal thermal ecology of adult walleye (Sander vitreus) in Lake Huron and Lake Erie.

    PubMed

    Peat, Tyler B; Hayden, Todd A; Gutowsky, Lee F G; Vandergoot, Christopher S; Fielder, David G; Madenjian, Charles P; Murchie, Karen J; Dettmers, John M; Krueger, Charles C; Cooke, Steven J

    2015-10-01

    The purpose of this study was to characterize thermal patterns and generate occupancy models for adult walleye from lakes Erie and Huron with internally implanted biologgers coupled with a telemetry study to assess the effects of sex, fish size, diel periods, and lake. Sex, size, and diel periods had no effect on thermal occupancy of adult walleye in either lake. Thermal occupancy differed between lakes and seasons. Walleye from Lake Erie generally experienced higher temperatures throughout the spring and summer months than did walleye in Lake Huron, due to limnological differences between the lakes. Tagged walleye that remained in Saginaw Bay, Lake Huron (i.e., adjacent to the release location), as opposed to those migrating to the main basin of Lake Huron, experienced higher temperatures, and thus accumulated more thermal units (the amount of temperature units amassed over time) throughout the year. Walleye that migrated toward the southern end of Lake Huron occupied higher temperatures than those that moved toward the north. Consequently, walleye that emigrated from Saginaw Bay experienced thermal environments that were more favorable for growth as they spent more time within their thermal optimas than those that remained in Saginaw Bay. Results presented in this paper provide information on the thermal experience of wild fish in a large lake, and could be used to refine sex- and lake-specific bioenergetics models of walleye in the Great Lakes to enable the testing of ecological hypotheses. PMID:26590461

  4. Thermal energy and the origin of life.

    PubMed

    Muller, Anthonie W J; Schulze-Makuch, Dirk

    2006-04-01

    Life has evolved on Earth with electromagnetic radiation (light), fermentable organic molecules, and oxidizable chemicals as sources of energy. Biological use of thermal energy has not been observed although heat, and the thermal gradients required to convert it into free energy, are ubiquitous and were even more abundant at the time of the origin of life on Earth. Nevertheless, Earth-organisms sense thermal energy, and in suitable environments may have gained the capability to use it as energy source. It has been proposed that the first organisms obtained their energy by a first protein named pF(1) that worked on a thermal variation of the binding change mechanism of today's ATP sythase enzyme. Organisms using thermosynthesis may still live where light or chemical energy sources are not available. Possible suitable examples are subsurface environments on Earth and in the outer Solar System, in particular the subsurface oceans of the icy satellites of Jupiter and Saturn. PMID:16642267

  5. Seasonal energy storage using bioenergy production from abandoned croplands

    NASA Astrophysics Data System (ADS)

    Campbell, J. Elliott; Lobell, David B.; Genova, Robert C.; Zumkehr, Andrew; Field, Christopher B.

    2013-09-01

    Bioenergy has the unique potential to provide a dispatchable and carbon-negative component to renewable energy portfolios. However, the sustainability, spatial distribution, and capacity for bioenergy are critically dependent on highly uncertain land-use impacts of biomass agriculture. Biomass cultivation on abandoned agriculture lands is thought to reduce land-use impacts relative to biomass production on currently used croplands. While coarse global estimates of abandoned agriculture lands have been used for large-scale bioenergy assessments, more practical technological and policy applications will require regional, high-resolution information on land availability. Here, we present US county-level estimates of the magnitude and distribution of abandoned cropland and potential bioenergy production on this land using remote sensing data, agriculture inventories, and land-use modeling. These abandoned land estimates are 61% larger than previous estimates for the US, mainly due to the coarse resolution of data applied in previous studies. We apply the land availability results to consider the capacity of biomass electricity to meet the seasonal energy storage requirement in a national energy system that is dominated by wind and solar electricity production. Bioenergy from abandoned croplands can supply most of the seasonal storage needs for a range of energy production scenarios, regions, and biomass yield estimates. These data provide the basis for further down-scaling using models of spatially gridded land-use areas as well as a range of applications for the exploration of bioenergy sustainability.

  6. Time Resolved Thermal Diffusivity of Seasonal Snow Determined from Inexpensive, Easily-Implemented Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Oldroyd, H. J.; Higgins, C. W.; Huwald, H.; Selker, J. S.; Parlange, M. B.

    2011-12-01

    Thermal diffusivity of snow is an important physical property associated with key hydrological phenomena such as snow melt and heat and water vapor exchange with the atmosphere. These phenomena have broad implications in studies of climate and heat and water budgets on many scales. However, direct measurements of snow thermal diffusivity require coupled point measurements of thermal conductivity and density, which are nonstationary due to snow metamorphism. Furthermore, thermal conductivity measurements are typically obtained with specialized heating probes or plates and snow density measurements require digging snow pits. Therefore, direct measurements are difficult to obtain with high enough temporal resolution such that direct comparisons with atmospheric conditions can be made. This study uses highly resolved (7.5 to 10 cm for depth and 1min for time) temperature measurements from the Plaine Morte glacier in Switzerland as initial and boundary conditions to numerically solve the 1D heat equation and iteratively optimize for thermal diffusivity. The method uses flux boundary conditions to constrain thermal diffusivity such that spuriously high values in thermal diffusivity are eliminated. Additionally, a t-test ensuring statistical significance between solutions of varied thermal diffusivity result in further constraints on thermal diffusivity that eliminate spuriously low values. The results show that time resolved (1 minute) thermal diffusivity can be determined from easily implemented and inexpensive temperature measurements of seasonal snow with good agreement to widely used parameterizations based on snow density. This high time resolution further affords the ability to explore possible turbulence-induced enhancements to heat and mass transfer in the snow.

  7. Energy and environmental issues of aquifer thermal energy storage

    SciTech Connect

    Kannberg, L.D.

    1988-08-01

    Aquifer thermal energy storage (ATES) has the potential to provide storage for large-scale industrial and building heating and cooling at many sites in the US. However, implementation requires careful attention to site geohydraulic and geochemical characteristics. Field tests in the US have shown that over 60% of the heat injected at temperatures over 100/degree/C can be recovered on a seasonal cycle. Similarly, aquifer storage of chilled groundwater can provide building cooling with a reduction of over 50% in annual cooling electrical energy consumption and a factor of 20 reduction in summer cooling peak electrical demand. Heat ATES will require water treatment at most sites to prevent precipitation of calcium and magnesium carbonates and silica (depending upon the temperature regime). Environmental concerns create a need for detailed geochemical and water treatment analysis using models and laboratory studies. At some sites microbiological issues must also be resolved. In some instances bacteria can cause extensive corrosion or clogging of the well screen and surrounding porous media. At other sites effects on indigenous beneficial microbiota and the potential for augmenting growth and release of pathogenic organisms are of concern. Laboratory research as well as field testing is being conducted to extend and augment experience in related technologies. Results from field testing and environmental monitoring have not revealed dramatic environmental impacts. Rather, they have revealed the strong potential for geochemical and geohydraulic factors to influence successful ATES operations. 12 refs., 3 figs., 2 tabs.

  8. Thermal energy scavenger (flow control)

    SciTech Connect

    Hochstein, P.A.; Milton, H.W.; Pringle, W.L.

    1981-12-22

    A thermal energy scavenger assembly is described including a plurality of temperature-sensitive wires made of material which exhibits shape memory due to a thermoelastic, martensitic phase transformation. The wires are placed in tension between fixed and movable plates which are, in turn, supported by a pair of wheels which are rotatably supported by a housing for rotation about a central axis. A pair of upper and lower cams are fixed to the housing and cam followers react with the respective cams. Each cam transmits forces through a pair of hydraulic pistons. One of the pistons is connected to a movable plate to which one end of the wires are connected whereby a stress is applied to the wires to strain the wires during a first phase and whereby the cam responds to the unstraining of the wires during a second phase. A housing defines fluid compartments through which hot and cold fluid passes and flows radially through the wires whereby the wires become unstrained and shorten in length when subjected to the hot fluid for causing a reaction between the cam followers and the cams to effect rotation of the wheels about the central axis of the assembly, which rotation of the wheels is extracted through beveled gearing. The wires are grouped into a plurality of independent modules with each module having a movable plate, a fixed plate and the associated hydraulic pistons and cam follower. The hydraulic pistons and cam follower of a module are disposed at ends of the wires opposite from the ends of the wires at which the same components of the next adjacent modules are disposed so that the cam followers of alternate modules react with one of the cams and the remaining cam followers of the remaining modules react with the other cam. There is also including stress limiting means in the form of coil springs associated with alternate ends of the wires for limiting the stress or strain in the wires.

  9. Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone

    USGS Publications Warehouse

    Milly, P.C.D.

    1996-01-01

    The response of water in the unsaturated zone to seasonal changes of temperature (T) is determined analytically using the theory of nonisothermal water transport in porous media, and the solutions are tested against field observations of moisture potential and bomb fallout isotopic (36Cl and3H) concentrations. Seasonally varying land surface temperatures and the resulting subsurface temperature gradients induce thermal vapor diffusion. The annual mean vertical temperature gradient is close to zero: however, the annual mean thermal vapor flux is downward, because the temperature-dependent vapor diffusion coefficient is larger, on average, during downward diffusion (occurring at high T) than during upward diffusion (low T). The annual mean thermal vapor flux is shown to decay exponentially with depth; the depth (about 1 m) at which it decays to ??-1 of its surface value is one half of the corresponding decay depth for the amplitude of seasonal temperature changes. This depth-dependent annual mean flux is effectively a source of water, which must be balanced by a flux divergence associated with other transport processes. In a relatively humid environment the liquid fluxes greatly exceed the thermal vapor fluxes, so such a balance is readily achieved without measurable effect on the dynamics of water in the unsaturated zone. However, if the mean vertical water flux through the unsaturated zone is very small (<1 mm y-1), as it may be at many locations in a desert landscape, the thermal vapor flux must be balanced mostly by a matric-potential-induced upward flux of water. This return flux may include both vapor and liquid components. Below any near-surface zone of weather- related fluctuations of matric potential, maintenance of this upward flux requires an increase with depth in the annual mean matric potential; this theoretical prediction is supported by long-term field measurements in the Chihuahuan Desert. The analysis also makes predictions, confirmed by the field

  10. Hybrid energy harvesting using active thermal backplane

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Wook; Lee, Dong-Gun

    2016-04-01

    In this study, we demonstrate the concept of a new hybrid energy harvesting system by combing solar cells with magneto-thermoelectric generator (MTG, i.e., thermal energy harvesting). The silicon solar cell can easily reach high temperature under normal operating conditions. Thus the heated solar cell becomes rapidly less efficient as the temperature of solar cell rises. To increase the efficiency of the solar cell, air or water-based cooling system is used. To surpass conventional cooling devices requiring additional power as well as large working space for air/water collectors, we develop a new technology of pairing an active thermal backplane (ATB) to solar cell. The ATB design is based on MTG technology utilizing the physics of the 2nd order phase transition of active ferromagnetic materials. The MTG is cost-effective conversion of thermal energy to electrical energy and is fundamentally different from Seebeck TEG devices. The ATB (MTG) is in addition to being an energy conversion system, a very good conveyor of heat through both conduction and convection. Therefore, the ATB can provide dual-mode for the proposed hybrid energy harvesting. One is active convective and conductive cooling for heated solar cell. Another is active thermal energy harvesting from heat of solar cell. These novel hybrid energy harvesting device have potentially simultaneous energy conversion capability of solar and thermal energy into electricity. The results presented can be used for better understanding of hybrid energy harvesting system that can be integrated into commercial applications.

  11. Overview of the Thermal Energy Storage (TES) Program

    NASA Astrophysics Data System (ADS)

    Gurevich, M.

    1981-03-01

    The program promotes energy savings and fuel substitution by developing and helping to commercialize technologies for storing heat or cold, with shot investment payback periods as a cost goal. The sources of energy include industrial and utility waste heat as well as primary sources such as solar, geothermal, nuclear and fossil fuels. The primary source of "cold" for seasonal storage is winter chilled air. The program emphasizes near-term (1980's) approaches to energy conservation and displacement of natural gas and oil. It also provides for development of technologies which will allow use of renewable resources such as solar-thermal energy during the mid-term (1990's) and advanced energy storage and transport techniques for the far-term (beyond 2000).

  12. Global Seasonal Forecasting of Thermal Stress Conducive to Mass Coral Bleaching Events

    NASA Astrophysics Data System (ADS)

    Liu, G.; Eakin, C.; Matrosova, L.; Penland, M. C.; Webb, R. S.; Pulwarty, R. S.; Lynds, S.; Christensen, T.; Heron, S. F.; Morgan, J.; Parker, B. A.; Skirving, W. J.; Strong, A. E.

    2009-12-01

    As a consequence of climate change, coral bleaching on global and regional scales has been increasing in both frequency and severity over the past decades. In July 2008, NOAA Coral Reef Watch launched a new seasonal prediction tool for coral bleaching conditions to augment its real-time satellite monitoring. A model predicting thermal stress from two weeks to three months in the future was developed collaboratively by our team to provide outlooks of the risk of coral bleaching well in advance of such events. Our predictive system is built on sea surface temperature forecasts provided by NOAA’s Linear Inverse Model (LIM) that has successfully produced experimental predictions of tropical Pacific and Atlantic sea surface temperature anomalies for decades. The outlook worked well for the 2008 boreal bleaching season and the 2009 austral bleaching season. The outlook for 2009 boreal bleaching season showed a potential for significant bleaching in the eastern Caribbean region and its evaluation will be conducted as in-situ observations become available. Natural resource managers in the Caribbean have felt sufficient confidence in the outlook that they have taken steps to prepare for the possible bleaching event in 2009. Next steps for improving the outlook system include developing a similar outlook product based on the NOAA National Center for Environmental Predictions’ Climate Forecast System (CFS) operational model, collaborating with Australian colleagues to implement a similar system with the Bureau of Meteorology’s Predictive Ocean Atmosphere Model for Australia (POAMA), and then potentially do the same for other climate models. Such forecasting tools provide critical and timely decision support for coral reef managers and scientists worldwide. Preliminary results indicate the forecast compares favorably with satellite observations of actual thermal stress and is thus useful for coral reef management.

  13. Energy conservation, using remote thermal scanning

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Jack, J. R.

    1978-01-01

    Airborne thermal infrared scans and thermal maps utilized in NASA's energy conservation program have proven to be efficient cost-effective method for identifying heat losses from building roofs and heating system distribution lines. Method employs commercially available equipment in highly developed way.

  14. Thermal Comfort and Strategies for Energy Conservation.

    ERIC Educational Resources Information Center

    Rohles, Frederick H., Jr.

    1981-01-01

    Discusses studies in thermal comfort which served as the basis for the comfort standard. Examines seven variables in the human response to the thermal environment in terms of the ways in which they can be modified to conserve energy. (Author/MK)

  15. Thermal energy storage effort at JPL

    NASA Technical Reports Server (NTRS)

    Young, D. L.

    1980-01-01

    The technical, operational, and economic readiness of parabolic dish systems for electric and thermal applications was investigated. A parabolic dish system was then developed to the point at which subsequent commercialization activities can lead to successful market penetration. The immediate possible applications of the dish system to thermal energy storage are discussed.

  16. U.S. Department of Energy thermal energy storage research activities review: 1989 Proceedings

    SciTech Connect

    Hoffman, H.W.; Tomlinson, J.J.

    1989-03-01

    Thermal Energy Storage (TES) offers the opportunity for the recovery and re-use of heat currently rejected to the ambient environment. Further, through the ability of TES to match an energy supply with a thermal energy demand, TES increases efficiencies of energy systems and improves capacity factors of power plants. The US Department of Energy has been the leader in TES research, development, and demonstration since recognition in 1976 of the need for fostering energy conservation as a component of the national energy budget. The federal program on TES R and D is the responsibility of the Office of Energy Storage and Distribution within the US Department of Energy (DOE). The overall program is organized into three program areas: diurnal--relating primarily to lower temperature heat for use in residential and commercial buildings on a daily cycle; industrial--relating primarily to higher temperature heat for use in industrial and utility processes on an hourly to daily cycle; seasonal--relating primarily to lower temperature heat or chill for use in residential complexes (central supply as for apartments or housing developments), commercial (light manufacturing, processing, or retail), and industrial (space conditioning) on a seasonal to annual cycle. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. TES (Thermal Energy Storage) Video News Release

    NASA Technical Reports Server (NTRS)

    1994-01-01

    TES is an in-space technology experiment that flew on STS-62. Its intent is to investigate the behavior of two different thermal energy storage materials as they undergo repeated melting and freezing in the microgravity environment.

  18. Survey of sensible and latent heat thermal energy storage projects

    NASA Astrophysics Data System (ADS)

    Baylin, F.; Merino, M.

    1981-05-01

    Ongoing and completed research projects on sensible and latent heat thermal enegy storage for low, intermediate, and high temperature applications are reviewed. Projects in the United States and abroad are included. Several research efforts are in the index although the project descriptions are absent. Project lists are organized into four sections: short term sensible heat storage; seasonal sensible heat storage; latent heat storage; and models, economic analysis, and support studies. The organization of the Department of Energy programs managing many of these projects is also outlined. Projects are presented in a standard format that includes laboratory; funding level and period; status; project description; technical and economic parameters; and applications.

  19. Enhancing radiative energy transfer through thermal extraction

    NASA Astrophysics Data System (ADS)

    Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu

    2016-06-01

    Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal

  20. Ocean Thermal Energy Conversion: An overview

    SciTech Connect

    Not Available

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

  1. Evaluation of New Thermally Conductive Geopolymer in Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Černý, Matěj; Uhlík, Jan; Nosek, Jaroslav; Lachman, Vladimír; Hladký, Radim; Franěk, Jan; Brož, Milan

    This paper describes an evaluation of a newly developed thermally conductive geopolymer (TCG), consisting of a mixture of sodium silicate and carbon micro-particles. The TCG is intended to be used as a component of high temperature energy storage (HTTES) to improve its thermal diffusivity. Energy storage is crucial for both ecological and economical sustainability. HTTES plays a vital role in solar energy technologies and in waste heat recovery. The most advanced HTTES technologies are based on phase change materials or molten salts, but suffer with economic and technological limitations. Rock or concrete HTTES are cheaper, but they have low thermal conductivity without incorporation of TCG. It was observed that TCG is stable up to 400 °C. The thermal conductivity was measured in range of 20-23 W m-1 K-1. The effect of TCG was tested by heating a granite block with an artificial fissure. One half of the fissure was filled with TCG and the other with ballotini. 28 thermometers, 5 dilatometers and strain sensors were installed on the block. The heat transport experiment was evaluated with COMSOL Multiphysics software.

  2. The seasonal cycle of water vapour on Mars from assimilation of Thermal Emission Spectrometer data

    NASA Astrophysics Data System (ADS)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, François; Smith, Michael D.

    2014-07-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr μm depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around LS=240-260°. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  3. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  4. Seasonal Evolution of Thermal Stratification of Two High Mountain Tropical Reservoirs

    NASA Astrophysics Data System (ADS)

    Arbelaez, A. C.; Román-Botero, R.; Gómez-Giraldo, A.; Toro, M.

    2014-12-01

    A research was conducted to identify the dominant basin scale and season evolution of the physical processes in Riogrande II and La Fe, two high mountain Andean tropical reservoirs (>2000 masl), of different size and form, located in the northwestern of Colombia, Southamerica. Eight field campaigns were conducted in each reservoir between 2010 and 2012. Temperature, conductivity and turbidity profiles were measured along the longitudinal axes with a CTD and inflow temperature was recorded continuously with thermistors. In addition, thermistor chains were deployed on the deepest zone of each reservoir, in 2011 in La Fe and in 2013 in Riogrande II. The heat surface fluxes were calculated based on weather measurements, using heat bulk-formulations. It was found that the seasonal variability of the thermal structure in both reservoirs was dominated mainly by changes in the inflows temperature, related to the hydrological cycle, and not by the solar radiation variability. The atmospheric net heat flux revealed low seasonal changes, with the larger variability due to cloud cover and wind speed variability associated to the passage of the Intertropical Convergence Zone. The effect of the net atmospheric flux was confined to the surface mixed layer, which thickness varied between 2 and 4 m by the effect of short wave radiation heating during the day and strong heat loss starting at mid afternoon and remaining through the night. The inflow temperature was inversely correlated to the discharge, so large inflows are also colder and denser than small inflows. The plumes from small inflows are intrusive and create an intermediate layer of young water while those of large inflows remain attached to the bottom and fill the reservoir from the bottom. This resulted in the thermal structure of both reservoirs developing a bimodal annual cycle that follows the bimodal distribution of the rainfall and river discharge. Due to the discharge related changing level of the intrusion of the

  5. Seasonal and Non-Seasonal Variations of Jupiter's Atmosphere from Observations of Thermal Emission, 1994-2011

    NASA Technical Reports Server (NTRS)

    Orton, G.; Fletcher, L.; Yanamandra-Fisher, P.; Greathouse, T.; Fisher, B.; Greco, J.; Wakefield, L.; Snead, E.; Boydstun, K.; Simon-Miller, A.; Arzumanyan, G.; Christian, J.

    2012-01-01

    We analyzed mid-infrared images of Jupiter's thermal emission, covering approx.1.5 Jovian years, acquired in discrete filters between 7.8 and 24.5 microns. The behavior of stratospheric (approx.10-mbar) and tropospheric (approx.100-400 mbar) temperatures is generally consistent with predictions of seasonal variability, with differences between 100-mbar temperatures +/-50-60deg from the equator on the order of +/-2. Removing this effect, there appear to be long-term quasi-periodic variability of tropospheric temperatures, whose amplitude, phase and period depend on latitude. The behavior of temperatures in the Equatorial Zone (EZ) suggests a approx.4-6-year period with amplitude of about +/-1-1.5 K in temperature. At mid-latitudes, the periodicity is more distinct with amplitudes around +/-1.5-2.5 K and 4-8 year periods. The 4.2-year variation of stratospheric temperatures known as the quasiquadrennial oscillation or "QQO" (Leovy et al. 1991, Nature 354, 380) continued during this period. There were no variations of zonal mean temperatures associated with any of the "global upheaval" events that have produced dramatic changes of jupiter's visible appearance and cloud cover, although there are colder discrete regions associated with updrafts, e.g. the early stages of the re-darkening ("revival") of the South Equatorial Belt (SEB) in late 2010. On the other hand increases in the visible albedos ("fades") of belts are accompanied by increases in the thickness of a 700-mbar cloud layer (most likely NH3 ice) and clouds at higher pressures, together with the mixing ratio of NH3 gas near 400 mbar (above its condensation level). These quantities decrease during re-darkening ("revival") episodes, during which we note discrete features that are exceptions to the general correlation between dark albedos and minimal cloudiness. In contrast to all these changes, the meridional distribution of the 240-mbar para-H2 fraction appears to be invariant in time.

  6. Thermal Energy Storage Flight Experiment in Microgravity

    NASA Technical Reports Server (NTRS)

    Namkoong, David

    1992-01-01

    The Thermal Energy Storage Flight Experiment was designed to characterize void shape and location in LiF-based phase change materials in different energy storage configurations representative of advanced solar dynamic systems. Experiment goals and payload design are described in outline and graphic form.

  7. Thermal energy storage chiller management

    SciTech Connect

    Williams, C.D.

    1996-11-01

    This paper addresses chiller applications that are designed to get the maximum benefit form a chiller plant every day of the year. It treats all chillers as variable-capacity devices and applies them in thermal storage system configurations that efficiently take advantage of that capability. It also recognizes that a chiller operating temperature differential is always a variable to which a chiller must always adjust. All the applications addressed vary the flow and in some situations the operating temperature differential to maximize or optimize each chiller`s capacity. It is done in such a manner that the safety and reliability of the chiller are improved rather than jeopardized.

  8. French work on ocean thermal energy conversion

    NASA Astrophysics Data System (ADS)

    Marchand, P.

    The ocean is discussed as a world-wide potential source of renewable energy, with special attention given to the 'deposit' of ocean thermal energy, which is determined by the temperature difference existing between surface water and that at a depth of 1000 m. A brief history of work done in France is presented, and mention is made of the work of d'Arsonval (1881), Claude and Boucherot (1926), and of projects, such as those at Abidjan and Guadeloupe. Attention is given to the French ocean thermal energy sites, to the Empain-Schneider closed-cycle studies, and the open-cycle floating ocean thermal energy station, with a discussion of thermodynamic considerations and cold water pipes. Problems and prospects are reviewed.

  9. Phase-Change Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    1989-11-01

    The goal of this program is to advance the engineering and scientific understanding of solar thermal technology and to establish the technology base from which private industry can develop solar thermal power production options for introduction into the competitive energy market. Solar thermal technology concentrates the solar flux using tracking mirrors or lenses onto a receiver where the solar energy is absorbed as heat and converted into electricity or incorporated into products as process heat. The two primary solar thermal technologies, central receivers and distributed receivers, employ various point and line-focus optics to concentrate sunlight. Current central receiver systems use fields of heliostats (two-axes tracking mirrors) to focus the sun's radiant energy onto a single, tower-mounted receiver. Point focus concentrators up to 17 meters in diameter track the sun in two axes and use parabolic dish mirrors or Fresnel lenses to focus radiant energy onto a receiver. Troughs and bowls are line-focus tracking reflectors that concentrate sunlight onto receiver tubes along their focal lines. Concentrating collector modules can be used alone or in a multimodule system. The concentrated radiant energy absorbed by the solar thermal receiver is transported to the conversion process by a circulating working fluid. Receiver temperatures range from 100 C in low-temperature troughs to over 1500 C in dish and central receiver systems.

  10. Molten Salt Thermal Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Maru, H. C.; Dullea, J. F.; Kardas, A.; Paul, L.; Marianowski, L. G.; Ong, E.; Sampath, V.; Huang, V. M.; Wolak, J. C.

    1978-01-01

    The feasibility of storing thermal energy at temperatures of 450 C to 535 C in the form of latent heat of fusion was examined for over 30 inorganic salts and salt mixtures. Alkali carbonate mixtures were chosen as phase-change storage materials in this temperature range because of their relatively high storage capacity and thermal conductivity, moderate cost, low volumetric expansion upon melting, low corrosivity, and good chemical stability. Means of improving heat conduction through the solid salt were explored.

  11. Training migrant and seasonal farmworkers for energy-related occupations

    SciTech Connect

    Weseman, M.

    1980-07-01

    The US Department of Energy (DOE) and US Department of Labor (DOL) have cosponsored a number of demonstration programs to train economically disadvantaged migrant and seasonal farmworkers for energy-related technical and skilled occupations. This descriptive study examines the first DOE/DOL demonstration to determine the impact of training on participants' subsequent labor-force activity and the effectiveness of the program in meeting the needs of this target group. Analysis of participants' employment and wage rates before and after training indicates favorable outcomes as wages and the number employed increased significantly. All selected subgroups experienced substantial employment-status gains with women reporting the largest increases. Post-training wages of all subgroups were approximately double those before training with women, nonwhites, and high-school graduates reporting the largest increases. Data on farmworkers were compared to those of other clients enrolled in the same program under the Comprehensive Employment and Training Act (CETA), and a national sample of CETA participants enrolled in vocational-training programs. In general, the farmworkers reported employment-status gains similar to the national CETA sample but lower than the other CETA participants enrolled in the same program. The farmworkers' wage gains were significantly greater than those reported by the two comparison groups. Apparent key factors contributing to the success of the program include the farmworkers' desire to leave agricultural labor, their willingness to relocate to accept employment, the existing network of employers developed by the training program, and the program's ability to provide needed supportive services.

  12. LiH thermal energy storage device

    DOEpatents

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  13. Thermal energy storage composition comprising peat moss

    SciTech Connect

    Rueffel, P.G.

    1980-11-04

    Peat moss is used in a thermal energy storage composition to provide a network in which to trap an incongruently melting salt hydrate capable of storing thermal energy as latent heat of phase change. The peat moss network is effective in preventing the segregation of a dehydrated form of the salt between heating and cooling cycles. In a preferred embodiment that salt hydrate is the decahydrate of sodium sulphate. A nucleating agent such as sodium tetraborate decahydrate is included to prevent supercooling in the composition, and promote crystallization of the decahydrate of sodium sulphate.

  14. Spacecraft thermal energy accommodation from atomic recombination

    NASA Technical Reports Server (NTRS)

    Carleton, Karen L.; Marinelli, William J.

    1991-01-01

    Measurements of atomic recombination probabilities important in determining energy release to reusable spacecraft thermal protection surfaces during reentry are presented. An experimental apparatus constructed to examine recombination of atomic oxygen from thermal protection and reference materials at reentry temperatures is described. The materials are examined under ultrahigh vacuum conditions to develop and maintain well characterized surface conditions that are free of contamination. When compared with stagnation point heat transfer measurements performed in arc jet facilities, these measurements indicate that a significant fraction of the excess energy available from atom recombination is removed from the surface as metastable O2.

  15. Aquifer thermal energy storage. International symposium: Proceedings

    SciTech Connect

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  16. Seasonal variation of radiance variances from satellite observations Implication of seasonal variation of available potential energy in the stratosphere

    NASA Technical Reports Server (NTRS)

    Chen, T.-C.; Stanford, J. L.

    1980-01-01

    Nimbus 5 satellite radiances for the period 1973-74 are used to examine the seasonal variation of available potential energy in the stratosphere in order to provide a further observational basis for a long-term numerical simulation of stratospheric circulation. The maximum value of stratospheric zonal available potential energy, A(Z), in the upper and middle stratosphere shows pronounced variations between winter and summer, while little variation occurs in the lower stratospheric A(Z). The aperiodic occurrence of sudden warmings complicates the seasonal variation of A(Z) and A(E) (eddy available potential energy) in the stratosphere, making the energetics irregular. Time-Fourier analysis reveals that the primary variation of A(Z) and A(E) in the stratosphere is annual and semiannual, respectively.

  17. Seasonal changes of apparent thermal diffusivity of different kinds of soils

    NASA Astrophysics Data System (ADS)

    Dedecek, Petr; Safanda, Jan; Correia, Antonio; Rajver, Dusan; Cermak, Vladimir; Kresl, Milan

    2013-04-01

    The paper addresses the problem of seasonal changes of apparent thermal diffusivity (ATD) in different types of soils in different climatic conditions. The long-term (several years) temperature series recorded at observatories in Czechia, Slovenia and Portugal were processed using a program based on the error function solution of the heat conduction equation for a semi-infinite solid. The program simulates penetration of temperature changes represented by the observed time-temperature series in differently wide time floating intervals, and in different depth levels of the soil profile. Synthetic temperature series for different values of thermal diffusivity (with a step of 1E-8 m2/s) are automatically compared with measured temperature time series in a given depth. The ATD value minimizing the standard deviation of difference between the measured and computed temperature series is considered as the best approximation of reality. The method has been applied to the temperature series from (i) observatory in Prague, where the temperature monitoring in different kinds of soil (sand, bare clayey soil, grassy soil) and asphalt is running from 2002, (ii) Evora - Portugal (gravelly sand, running from 2005), and finally (iii) Malence - Slovenia (grassy clayey soil, running from 2003). The soil temperature is measured at the depths of 2, 5, 10, 20 and 50 cm at each of the observatories. Results have shown a gradual increase of the ATD with depth caused by the soil density gradient in case of Malence and Prague (excluding asphalt). The ATD of the upper part of sand (2 - 5 cm), contrary to grassy surface, is quite sensitive to weather pattern (e.g. periods of rain or drought), when the strong convective heat transport in soil can occur. The ATD values in Evora show an annual run connected with a long dry summer season. The seasonal pattern is characterized, especially in the upper part of soil, by a rapid decrease from 7*E-7 to 4*E-7 m2/s in June and a return to higher values

  18. Applications and challenges for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Kannberg, L. D.; Tomlinson, J. T.

    1991-04-01

    New thermal energy storage (TES) technologies are being developed and applied as society strives to relieve increasing energy and environmental stresses. Applications for these new technologies range from residential and district heating and cooling using waste and solar energy, to high-temperature energy storage for power production and industrial processes. In the last two decades there has been great interest and development of heat storage systems, primarily for residential and commercial buildings. While development has continued, the rate of advancement has slowed with current technology considered adequate for electrically charged heat storage furnaces. Use of chill storage for building diurnal cooling has received substantial development.

  19. Alternative biomass sources for thermal energy generation

    NASA Astrophysics Data System (ADS)

    Steensen, Torge; Müller, Sönke; Dresen, Boris; Büscher, Olaf

    2015-04-01

    Traditionally, renewable biomass energy sources comprise forests, agriculture and other large vegetation units. With the increasing demand on those landscape elements, including conflicts of interest to nature conservation and food production, the research focus should also incorporate smaller vegetation entities. In this study, we highlight the availability of small-scale features like roadside vegetation or hedges, which are rarely featured in maps. Roadside vegetation, however, is well known and regularly trimmed to allow the passing of traffic but the cut material is rarely harvested. Here, we combine a remote-sensing-based approach to quantify the seasonal biomass harvests with a GIS-based method to outline optimal transportation routes to, and the location of, storage units and power plants. Our main data source will be ESA's upcoming Sentinel-2 optical satellite. Spatial resolution of 10 meters in the visible and near infrared requires the use of spectral unmixing to derive end member spectra of the targeted biomass objects. Additional stereo-matching and LIDAR measurements allow the accompanying height estimate to derive the biomass volume and its changes over time. GIS data bases from the target areas allow the discrimination between traditional, large features (e.g. forests and agriculture) as well as previously unaccounted for, smaller vegetation units. With the mapped biomass occurrence and additional, GIS-based infrastructure information, we can outline transport routes that take into account local restrictions like nature reserve areas, height or weight limitations as well as transport costs in relation to potential gains. This information can then be processed to outline optimal places for power plants. To simulate the upcoming Sentinel-2 data sets, we use airborne data from the AISA Eagle, spatially and spectrally down-sampled to match Sentinel 2's resolution. Our test scenario is an area in western Germany, the Kirchheller Heide, close to the city

  20. Seasonal differences in the subjective assessment of outdoor thermal conditions and the impact of analysis techniques on the obtained results

    NASA Astrophysics Data System (ADS)

    Kántor, Noémi; Kovács, Attila; Takács, Ágnes

    2016-03-01

    Wide research attention has been paid in the last two decades to the thermal comfort conditions of different outdoor and semi-outdoor urban spaces. Field studies were conducted in a wide range of geographical regions in order to investigate the relationship between the thermal sensation of people and thermal comfort indices. Researchers found that the original threshold values of these indices did not describe precisely the actual thermal sensation patterns of subjects, and they reported neutral temperatures that vary among nations and with time of the year. For that reason, thresholds of some objective indices were rescaled and new thermal comfort categories were defined. This research investigates the outdoor thermal perception patterns of Hungarians regarding the Physiologically Equivalent Temperature (PET) index, based on more than 5800 questionnaires. The surveys were conducted in the city of Szeged on 78 days in spring, summer, and autumn. Various, frequently applied analysis approaches (simple descriptive technique, regression analysis, and probit models) were adopted to reveal seasonal differences in the thermal assessment of people. Thermal sensitivity and neutral temperatures were found to be significantly different, especially between summer and the two transient seasons. Challenges of international comparison are also emphasized, since the results prove that neutral temperatures obtained through different analysis techniques may be considerably different. The outcomes of this study underline the importance of the development of standard measurement and analysis methodologies in order to make future studies comprehensible, hereby facilitating the broadening of the common scientific knowledge about outdoor thermal comfort.

  1. The role of thermal energy storage in industrial energy conservation

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1979-01-01

    Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems is shown to be extremely beneficial for several applications. Recent system studies resulting from contracts awarded by the Department of Energy (DOE) identified four especially significant industries where TES appears attractive - food processing, paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near term TES systems for these industries is over 9,000,000 bbl of oil. This savings is due to recuperation and storage in the food processing industry, direct fuel substitution in the paper and pulp industry and reduction in electric utility peak fuel use through inplant production of electricity from utilization of reject heat in the steel and cement industries.

  2. Thermal Insulation Strips Conserve Energy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Launching the space shuttle involves an interesting paradox: While the temperatures inside the shuttle s main engines climb higher than 6,000 F hot enough to boil iron for fuel, the engines use liquid hydrogen, the second coldest liquid on Earth after liquid helium. Maintained below 20 K (-423 F), the liquid hydrogen is contained in the shuttle s rust-colored external tank. The external tank also contains liquid oxygen (kept below a somewhat less chilly 90 K or -297 F) that combines with the hydrogen to create an explosive mixture that along with the shuttle s two, powdered aluminum-fueled solid rocket boosters allows the shuttle to escape Earth s gravity. The cryogenic temperatures of the main engines liquid fuel can cause ice, frost, or liquefied air to build up on the external tank and other parts of the numerous launch fueling systems, posing a possible debris risk when the ice breaks off during launch and causing difficulties in the transfer and control of these cryogenic liquid propellants. Keeping the fuel at the necessary ultra-cold temperatures while minimizing ice buildup and other safety hazards, as well as reducing the operational maintenance costs, has required NASA to explore innovative ways for providing superior thermal insulation systems. To address the challenge, the Agency turned to an insulating technology so effective that, even though it is mostly air, a thin sheet can prevent a blowtorch from igniting a match. Aerogels were invented in 1931 and demonstrate properties that make them the most extraordinary insulating materials known; a 1-inch-thick piece of aerogel provides the same insulation as layering 15 panes of glass with air pockets in between. Derived from silica, aluminum oxide, or carbon gels using a supercritical drying process - resulting in a composition of almost 99-percent air - aerogels are the world s lightest solid (among 15 other titles they hold in the Guinness World Records), can float indefinitely on water if treated to be

  3. Seasonal changes of thermal diffusivity and their effect on heat transfer in soils

    NASA Astrophysics Data System (ADS)

    Dedecek, Petr; Correia, Antonio; Safanda, Jan; Cermak, Vladimir; Rajver, Dusan; Pechacova, Blanka

    2016-04-01

    The aim of the work is to describe the effects of seasonal changes of thermal diffusivity (TD) on the thermal regime in shallow subsurface soils. The long term temperature series from observatories at Prague (Czechia), Evora (Portugal) and Malence (Slovenia) were processed by newly improved code which enables a detailed calculation of time changes of TD of the soils. To determine the effect of climate warming of the recent years and to describe the possible effect of TD changes on the temperature-depth profiles, time dependent numerical models were computed. In the case of Evora, the effect of the TD changes on mean annual temperatures was confirmed. This observatory is located on bare sandy surface and TD in the upper soil layer significantly decreases (up to 50%) in summer months. It is due to local climate, which is typical by alternating winter/wet and summer/dry periods. The negative temperature gradient in the depth of 2-5 cm increases with TD decreasing, the coefficient of determination is 0.6 (2012). The TD decreasing during the summer months substitutes the effect of vegetation and controls the heat transfer to the subsurface. The climate in Prague and Malence is typical by rainy/snowy periods during the whole year and effect of TD changes in bare sandy soils is only short-term, or even insignificant under grassy surfaces.

  4. Phase change thermal energy storage material

    DOEpatents

    Benson, David K.; Burrows, Richard W.

    1987-01-01

    A thermal energy storge composition is disclosed. The composition comprises a non-chloride hydrate having a phase change transition temperature in the range of 70.degree.-95.degree. F. and a latent heat of transformation of at least about 35 calories/gram.

  5. Applications of cogeneration with thermal energy storage technologies

    SciTech Connect

    Somasundaram, S.; Katipamula, S.; Williams, H.R.

    1995-03-01

    The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.

  6. Solar energy system performance evaluation: Seasonal report for Decade 80 House, Tucson, Arizona

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of the Decade 80 solar energy system is described. The system was designed by Cooper Development Association, Inc. with space heating and space cooling to a one-story, single family residence located in Tucson, Arizona. The Decade 80 House was designed and built in the mid-70's to be a showplace/workshop for solar energy utilization. Superior construction techniques, the use of quality materials and a full time maintenance staff have served to make the entire system an outstanding example of the application of solar energy for residential purposes. The luxury of a full time, on-site maintenance person is perhaps the single most important aspect of this program. While most installations cannot support this level of maintenance, it was very useful in keeping all subsystems operating in top form and allowing for a full season data collection to be obtained. Several conclusions were drawn from the long term monitoring effort, among which are: (1) flat plate collectors will support cooling; (2) definite energy savings can be realized; and (3) more frequent periodic maintenance may be required on solar energy systems that are not custom built.

  7. Making `Internal Thermal Energy' Visible

    NASA Astrophysics Data System (ADS)

    Zou, Xueli

    2004-09-01

    In a 1992 paper published in this journal, Uri Ganiel described a pair of model carts used to demonstrate elastic and inelastic collisions. The wooden carts had low-friction wheels and a steel-strip bumper on one end. On one of the carts, a number of brass washers were rigidly mounted in vertical stacks to a wooden framework. The other cart was similar except that the washers were tied to rubber bands that were stretched horizontally and diagonally across the framework. When the first cart was rolled into a wall it bounced off with only a small reduction in speed ("elastic" collision). The second cart, on the other hand, was found to come nearly to a complete stop upon colliding with the wall ("inelastic" collision). Following the instructions given in Ganiel's paper, I built a pair of carts and demonstrated them to introductory-level physics students at a large public university. It was interesting to find that many students were distracted by the different-looking structures of the two model carts.2 They thought the different distributions of washers between the carts resulted in the rubber-band cart bouncing back a significantly shorter distance than the rigid-rod one after they both collided with a wall at the same initial speed. Apparently, the students had difficulties in understanding the collisions and used surface features to reason about them. To avoid this superficial distraction and to help students visualize easily "where the kinetic energy goes in an inelastic collision," I modified the rigid-rod cart to have washers fixed on hollow aluminum rods mounted at four different levels horizontally and diagonally (see Fig. 1). The new pair of the model carts look very similar to each other: They have the same bumpers, same wheels, same distributions of washers, and same masses.

  8. Seasonal thermal fronts on the northern South China Sea shelf: Satellite measurements and three repeated field surveys

    NASA Astrophysics Data System (ADS)

    Jing, Zhiyou; Qi, Yiquan; Fox-Kemper, Baylor; Du, Yan; Lian, Shumin

    2016-03-01

    Seasonal thermal fronts associated with wind-driven coastal downwelling/upwelling in the northern South China Sea are investigated using satellite measurements and three repeated fine-resolution mapping surveys in winter, spring, and summer. The results show that vigorous thermal fronts develop over the broad shelf with variable widths and intensities in different seasons, which tend to be approximately aligned with the 20-100 m isobaths. Driven by the prevailing winter/summer monsoon, the band-shaped fronts were observed with a magnitude exceeding 0.1°C/km in the subsurface, and accompanied by energetic coastal downwelling/upwelling due to shoreward/offshore Ekman transport. The downward/upward tilting of seasonal thermoclines across the shelf exceeds 20 m, significantly contributing to the development of thermal fronts over the shelf. In addition, the diagnostic analysis of Potential Vorticity (PV) suggests that the summer frontal activities induced by the coastal upwelling are more stable to convection and symmetric instabilities in comparison to the winter fronts associated with downwelling-favorable monsoon forcing. This is primarily due to their essential differences in the upper ocean stratification and horizontal buoyancy gradients arising from wind forcing. At the same time, the coastal currents are substantially regulated by the seasonal winds. An expected lag correlation between the velocity from mooring measurements and alongshore wind stress is detected near the frontal region. These results indicate that seasonal wind forcing plays an important role in the frontal activities and coastal water transport over the shelf.

  9. Alternative energy sources session ocean thermal energy conversion: Technology development

    NASA Astrophysics Data System (ADS)

    Richards, W. E.; Vadus, J. R.

    1980-03-01

    Four ocean-energy technologies with significant promise are explored: ocean thermal energy conversion; wave power; ocean currents; and salinity gradients. The major funding emphasis has been in OTEC. Technical developments, accomplishments and major findings, remaining problems, and proposed plans for the future are discussed.

  10. Mixing in thermally stratified energy stores

    SciTech Connect

    Berkle, J. van

    1996-10-01

    Two important aspects of short-term thermally stratified energy storage, thermocline mixing and thermocline thickness, are studied analytically, experimentally and numerically. The storage detrimental aspects are investigated for a simplified configuration, i.e., an adiabatic box containing a quasi-stationary thermocline. Numerical finite difference/volume simulations agree well with experiments. The dissipation-free 1D analytical model shows a large discrepancy. It appears that mixing inside thermally stratified stores is a two-state process. First fluid is withdrawn from the thermocline by viscous drag. Subsequent mixing takes place by stretching and folding of fluid particles, thereby enabling diffusion to become active. 17 refs., 10 figs., 2 tabs.

  11. Estimation and mapping of wintertime increase in water ice content of the Martian surface soil based on seasonal Thermal Emission Spectrometer thermal inertia variations

    NASA Astrophysics Data System (ADS)

    Kuzmin, R. O.; Zabalueva, E. V.; Christensen, P. R.

    2009-04-01

    Results of the Mars Global Surveyor Thermal Emission Spectrometer (TES) thermal inertia seasonal variations analysis show significant increase of the thermal inertia during autumn-winter periods in the middle latitudes. This observed increase occurred with regular repetition during each of the three Mars years of the TES observations. Two climatic factors (atmospheric dust loading and water ice (frost) formation in the soil) might lead to the real and/or apparent seasonal increase in thermal inertia. We compare maps of summertime and wintertime thermal inertia at similarly low atmospheric dust opacity within the latitude belt ±50°, outside of the seasonal CO2 ice cover. On the basis of the results of such comparison we developed a new method for estimating and mapping the wintertime increase of the water ice within the surface soil layer corresponding to the daily thermal skin depth of 2-10 cm. We use both the nomograms of relation between the thermal inertia for dry and icy soil compiled for different water ice content and an analytical approach. Comparison of the mapped wintertime TES thermal inertia values with computed values of the parameter for icy soil at different ice amounts shows that the wintertime thermal inertia values in the latitude ranges 40°-50°N and 40°-50°S are consistent with the presence of the water ice amount in the soil from 4 up to 17 vol % (locally), whereas at lower latitudes the ice amount is mainly less than 1 vol %. Mapping results show that the zone with a soil water ice amount of >3 vol % is much more in the northern hemisphere than in the southern one.

  12. Comparison of total energy expenditure between the farming season and off farming season and accuracy assessment of estimated energy requirement prediction equation of Korean farmers

    PubMed Central

    Yeon, Seo-Eun; Lee, Sun-Hee; Choe, Jeong-Sook

    2015-01-01

    BACKGROUND/OBJECTIVES The purposes of this study were to compare total energy expenditure (including PAL and RMR) of Korean farmers between the farming season and off farming season and to assess the accuracy of estimated energy requirement (EER) prediction equation reported in KDRIs. SUBJECTS/METHODS Subjects were 72 Korean farmers (males 23, females 49) aged 30-64 years. Total energy expenditure was calculated by multiplying measured RMR by PAL. EER was calculated by using the prediction equation suggested in KDRIs 2010. RESULTS The physical activity level (PAL) was significantly higher (P < 0.05) in the farming season (male 1.77 ± 0.22, female 1.69 ± 0.24) than the off farming season (male 1.53 ± 0.32, female 1.52 ± 0.19). But resting metabolic rate was significantly higher (P < 0.05) in the off farming season (male 1,890 ± 233 kcal/day, female 1,446 ± 140 kcal/day) compared to the farming season (male 1,727 ± 163 kcal/day, female 1,356 ± 164 kcal/day). TEE (2,304 ± 497 kcal/day) of females was significantly higher in the farming season than that (2,183 ± 389 kcal/day) of the off farming season, but in males, there was no significant difference between two seasons in TEE. On the other hand, EER of male and female (2,825 ± 354 kcal/day and 2,115 ± 293 kcal/day) of the farming season was significantly higher (P < 0.05) than those (2,562 ± 339 kcal/day and 1,994 ± 224 kcal/day) of the off farming season. CONCLUSIONS This study indicates that there is a significant difference in PAL and TEE of farmers between farming and off farming seasons. And EER prediction equation proposed by KDRI 2010 underestimated TEE, thus EER prediction equation for farmers should be reviewed. PMID:25671071

  13. Changes in energy availability across the season in Division I female soccer players.

    PubMed

    Reed, Jennifer L; De Souza, Mary Jane; Williams, Nancy I

    2013-01-01

    Low energy availability [(energy intake--exercise expenditure)/kg lean body mass], a component of the Female Athlete Triad, has been associated with menstrual disturbances and low bone mass. No studies have examined the energy availability of athletes across a season. The purpose of this study was to assess the prevalence of, and what contributes to, low energy availability in Division I female soccer players across a season. Nineteen participants aged 18-21 years (mean [Vdot]O(2max): 57.0 ± 1.0 mL · kg(-1) · min(-1)) were studied during the pre, mid, and post season. Mean energy availability was overall lowest at mid season, and lower at mid than post season (35.2 ± 3.7 vs. 44.5 ± 3.7 kcal · kg(-1) lean body mass, P = 0.009). Low energy availability (<30 kcal · kg(-1) lean body mass) was observed in 5/19 (26.3%), 5/15 (33.3%), and 2/17 (11.8%) of participants during the pre, mid, and post season. Dietary energy intake was lower mid (P = 0.008) and post season (P = 0.022) than it was pre season (pre: 2794 ± 233 kcal · day(-1); mid: 2208 ± 156 kcal · day(-1); post: 2161 ± 143 kcal · day(-1)). Exercise energy expenditure decreased significantly (P ≤ 0.001) over time (pre: 819 ± 57 kcal · day(-1); mid: 642 ± 26 kcal · day(-1); post: 159 ± 28 kcal · day(-1)). Low energy availability was due to lower dietary energy intake at lunch during pre season (P = 0.014) and during lunch and dinner during mid season (P ≤ 0.030). Energy availability was inversely related to body dissatisfaction (r = -0.62, P = 0.017) and drive for thinness (r = -0.55, P = 0.041) during mid season. Although most Division I female soccer players are not at risk for low energy availability, a concerning proportion exhibited low energy availability at pre or mid season. Further studies are needed to explore strategies to prevent and monitor low energy availability in these athletes. PMID:23075047

  14. The Effect of Seasonal Thermal Stress on Lipid Mobilisation, Antioxidant Status and Reproductive Performance in Dairy Cows.

    PubMed

    Turk, R; Podpečan, O; Mrkun, J; Flegar-Meštrić, Z; Perkov, S; Zrimšek, P

    2015-08-01

    Heat stress is a major factor contributing to low fertility of dairy cows with a great economic impact in dairy industry. Heat-stressed dairy cows usually have reduced nutrient intake, resulting in a higher degree of negative energy balance (NEB). The aim of this study was to investigate the seasonal thermal effect on lipid metabolism, antioxidant activity and reproductive performance in dairy cows. Thirty-two healthy dairy heifers were included in the study. According to the ambient temperature, animals were divided into two groups: winter (N = 14) and summer season (N = 18). Metabolic parameters, paraoxonase-1 (PON1) activity and total antioxidant status (TAS) were monitored at the time of insemination (basal values) and from 1 week before until 8 weeks after calving. Number of services per conception and calving-to-conception (CC) interval were calculated from the farm recording data. Serum triglyceride, non-esterified fatty acids (NEFA) and beta-hydroxybutyrate (BHB) concentrations were significantly increased after calving in summer compared to winter, indicating higher degree of NEB in cows during summer. PON1 activity was significantly decreased after calving in both summer and winter group. TAS concentration was significantly lower in summer than that in winter. A significantly higher number of services were needed for conception in summer compared to winter, and CC interval was significantly longer in summer than that in winter as well. Additionally, reproductive performance significantly correlated with the severity of NEB, suggesting that lipid mobilization and lower antioxidant status contributed to poor reproduction ability in dairy cows during hot months. PMID:25996438

  15. Thermal Profiling of Residential Energy Use

    SciTech Connect

    Albert, A; Rajagopal, R

    2015-03-01

    This work describes a methodology for informing targeted demand-response (DR) and marketing programs that focus on the temperature-sensitive part of residential electricity demand. Our methodology uses data that is becoming readily available at utility companies-hourly energy consumption readings collected from "smart" electricity meters, as well as hourly temperature readings. To decompose individual consumption into a thermal-sensitive part and a base load (non-thermally-sensitive), we propose a model of temperature response that is based on thermal regimes, i.e., unobserved decisions of consumers to use their heating or cooling appliances. We use this model to extract useful benchmarks that compose thermal profiles of individual users, i.e., terse characterizations of the statistics of these users' temperature-sensitive consumption. We present example profiles generated using our model on real consumers, and show its performance on a large sample of residential users. This knowledge may, in turn, inform the DR program by allowing scarce operational and marketing budgets to be spent on the right users-those whose influencing will yield highest energy reductions-at the right time. We show that such segmentation and targeting of users may offer savings exceeding 100% of a random strategy.

  16. Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels

    SciTech Connect

    2012-01-09

    HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

  17. Operational Experience from Solar Thermal Energy Projects

    NASA Technical Reports Server (NTRS)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  18. Seasonal flows on dark martian slopes, thermal condition for liquescence of salts

    NASA Astrophysics Data System (ADS)

    Kossacki, Konrad J.; Markiewicz, Wojciech J.

    2014-05-01

    RSLs are narrow, dark albedo features on relatively steep slopes that appear during warm seasons and fade in the cold ones. So far they have only been observed in mid-latitudes where surface temperature is too high, periodically exceeding 300 K, for the presence of shallow ground ice. We attempt to determine what conditions are needed for the liquescence of salt to occur exactly when the RSLs are observed. If the eutectic temperature is exceeded, and humidity is high enough, salts may produce liquid brines through absorption of water vapor and liquescence. We calculate regolith temperature as a function of time and depth, for different macroscopic distributions of salt, for two different microphysical models of the distribution of salt on the regolith grains. Model parameters which are varied include surface albedo, thermal inertia of the dry regolith, the depths at which salt is present, and the salt content. We find that it is possible, for liquescence of magnesium perchlorate to occur where and when RSLs have been observed, but only within a very narrow range of parameters.

  19. Seasonal Thermal Dynamics of Three High Elevation Lakes in the Trinity Alps Wilderness, California

    NASA Astrophysics Data System (ADS)

    Barnes, J. M.; Huggett, B. W.

    2012-12-01

    High elevation lakes experience isothermal equilibrium, often called turnover, twice a year: preceding the onset of winter ice cover and following the melt of spring ice cover. The dynamics and evolution of the thermal regime are a function of meteorological forcings (air temperature, wind speed), climate (variable onset of winter and spring), and topographic constraints (access to direct insolation). We have deployed numerous water and air temperature sensors in Emerald, Sapphire and Echo lakes in the Trinity Alps Wilderness of northern California over two hydrologic years in an attempt to determine the onset of turnover events, the duration of turnover and the ice-free season, and to characterize the evolution of the thermocline and its stability over time. Our findings detail thermocline structures in all lakes that vary on hourly to weekly timescales. We also report on our techniques to develop bathymetric maps for each lake and how the use of off-the-shelf technologies and robust GIS analysis can allow the collection of heretofore uncollected baseline data for remote, mountainous regions.

  20. Phytochemical profiles and health-promoting effects of cool-season food legumes as influenced by thermal processing.

    PubMed

    Xu, Baojun; Chang, Sam K C

    2009-11-25

    The effects of four thermal processing methods (conventional boiling, conventional steaming, pressure boiling, and pressure steaming) on phytochemical profiles, antioxidant capacities, and antiproliferation properties of commonly consumed cool-season food legumes, including green pea, yellow pea, chickpea, and lentil, were investigated. Four groups of individual phenolic compounds, including phenolic acids, anthocyanins, and flavan-3-ols, as well as flavonols and flavones were quantified using HPLC, respectively. As compared to the original raw legumes, all processing methods caused significant (p<0.05) reduction in total phenolic content, procyanidin content, total saponin content, phytic acid content, chemical antioxidant capacities in terms of ferric reducing antioxidant power and peroxyl radical scavenging capacity, and cellular antioxidant activity as well as antiproliferation capacities of cool-season food legumes. Different cooking methods have varied effects on reducing total phenolics, saponins, phytic acids, and individual phenolic compounds. For all cool-season food legumes, steaming appeared to be a better cooking method than boiling in retaining antioxidants and phenolic components, whereas boiling appeared to be effective in reducing saponin and phytic acid contents. In the case of lentil, all thermal processing methods (except conventional steaming) caused significant (p<0.05) decreases in gallic, chlorogenic, p-coumaric, sinapic, subtotal benzoic, subtotal cinnamic acid, and total phenolic acid. All thermal processing methods caused significant (p<0.05) decreases in (+)-catechin and flavan-3-ols in each cool-season food legume. PMID:19873971

  1. Analysis of lunar regolith thermal energy storage

    SciTech Connect

    Colozza, A.J.

    1991-11-01

    The concept of using lunar regolith as a thermal energy storage medium was evaluated. The concept was examined by mathematically modeling the absorption and transfer of heat by the lunar regolith. Regolith thermal and physical properties were established through various sources as functions of temperature. Two cases were considered: a semi-infinite, constant temperature, cylindrical heat source embedded in a continuum of lunar regolith and a spherically shaped molten zone of lunar regolith set with an initial temperature profile. The cylindrical analysis was performed in order to examine the amount of energy which can be stored in the regolith during the day. At night, the cylinder acted as a perfect insulator. This cycling was performed until a steady state situation was reached in the surrounding regolith. It was determined that a cycling steady state occurs after approximately 15 day/night cycles. Results were obtained for cylinders of various diameters. The spherical molten zone analysis was performed to establish the amount of thermal energy, within the regolith, necessary to maintain some molten material throughout a nighttime period. This surrounding temperature profile was modeled after the cycling steady state temperature profile established by the cylindrical analysis. It was determined that a molten sphere diameter of 4.76 m is needed to maintain a core temperature near the low end of the melting temperature range throughout one nighttime period.

  2. Analysis of lunar regolith thermal energy storage

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1991-01-01

    The concept of using lunar regolith as a thermal energy storage medium was evaluated. The concept was examined by mathematically modeling the absorption and transfer of heat by the lunar regolith. Regolith thermal and physical properties were established through various sources as functions of temperature. Two cases were considered: a semi-infinite, constant temperature, cylindrical heat source embedded in a continuum of lunar regolith and a spherically shaped molten zone of lunar regolith set with an initial temperature profile. The cylindrical analysis was performed in order to examine the amount of energy which can be stored in the regolith during the day. At night, the cylinder acted as a perfect insulator. This cycling was performed until a steady state situation was reached in the surrounding regolith. It was determined that a cycling steady state occurs after approximately 15 day/night cycles. Results were obtained for cylinders of various diameters. The spherical molten zone analysis was performed to establish the amount of thermal energy, within the regolith, necessary to maintain some molten material throughout a nighttime period. This surrounding temperature profile was modeled after the cycling steady state temperature profile established by the cylindrical analysis. It was determined that a molten sphere diameter of 4.76 m is needed to maintain a core temperature near the low end of the melting temperature range throughout one nighttime period.

  3. Mass and thermal energy balance of potato processing operations

    SciTech Connect

    Chadbourne, D.L.; Heldman, D.R.

    1981-01-01

    A mass and thermal energy analysis was conducted for a potato peeling operation. Results provide insight into opportunities for process modifications leading to increased recovery of product components and thermal energy.

  4. Do season and distribution affect thermal energetics of a hibernating bat endemic to the tropics and subtropics?

    PubMed

    Stawski, Clare; Geiser, Fritz

    2011-08-01

    Although many tropical and subtropical areas experience pronounced seasonal changes in weather and food availability, few studies have examined and none have compared the thermal physiology and energetics of a hibernating mammal that is restricted to these regions. We quantified thermal energetics of northern long-eared bats (Nyctophilus bifax; body mass ∼10 g) during summer, winter, and spring from a subtropical habitat, and also during winter from a tropical habitat, to determine how N. bifax cope with climate and seasonal changes in weather. We captured bats in the wild and measured metabolic rates via open-flow respirometry. The basal metabolic rate of subtropical bats at an ambient temperature (T(a)) of 32.6 ± 0.7°C was 1.28 ± 0.06 ml O(2)·g(-1)·h(-1) during both summer and winter, similar to other species of Nyctophilus. Resting metabolic rates below the thermoneutral zone increased similarly with decreasing T(a) during all seasons and in both regions. All individuals showed a high proclivity to enter torpor at T(a) values below the thermoneutral zone. Metabolic rates in torpid thermoconforming bats fell with T(a) and body temperature, and mean minimum metabolic rates during torpor were similar during all seasons and in both regions and as predicted from body mass in temperate zone hibernators. At very low T(a), torpid N. bifax thermoregulated, and this threshold T(a) differed significantly between subtropical (T(a) = 3.5 ± 0.3°C) and tropical (T(a) = 6.7 ± 0.7°C) individuals, but not between seasons. Our data show that thermal energetics of N. bifax do not vary seasonally and in many aspects are similar in tropical and subtropical bats; however, torpid individuals from the subtropics allow body temperature to fall to significantly lower values than those from the tropics. PMID:21632847

  5. The Influence of Seasonal Frugivory on Nutrient and Energy Intake in Wild Western Gorillas

    PubMed Central

    Masi, Shelly; Mundry, Roger; Ortmann, Sylvia; Cipolletta, Chloé; Boitani, Luigi; Robbins, Martha M.

    2015-01-01

    The daily energy requirements of animals are determined by a combination of physical and physiological factors, but food availability may challenge the capacity to meet nutritional needs. Western gorillas (Gorilla gorilla) are an interesting model for investigating this topic because they are folivore-frugivores that adjust their diet and activities to seasonal variation in fruit availability. Observations of one habituated group of western gorillas in Bai-Hokou, Central African Republic (December 2004-December 2005) were used to examine seasonal variation in diet quality and nutritional intake. We tested if during the high fruit season the food consumed by western gorillas was higher in quality (higher in energy, sugar, fat but lower in fibre and antifeedants) than during the low fruit season. Food consumed during the high fruit season was higher in digestible energy, but not any other macronutrients. Second, we investigated whether the gorillas increased their daily intake of carbohydrates, metabolizable energy (KCal/g OM), or other nutrients during the high fruit season. Intake of dry matter, fibers, fat, protein and the majority of minerals and phenols decreased with increased frugivory and there was some indication of seasonal variation in intake of energy (KCal/g OM), tannins, protein/fiber ratio, and iron. Intake of non-structural carbohydrates and sugars was not influenced by fruit availability. Gorillas are probably able to extract large quantities of energy via fermentation since they rely on proteinaceous leaves during the low fruit season. Macronutrients and micronutrients, but not digestible energy, may be limited for them during times of low fruit availability because they are hind-gut fermenters. We discuss the advantages of seasonal frugivores having large dietary breath and flexibility, significant characteristics to consider in the conservation strategies of endangered species. PMID:26154509

  6. The Importance of Thermal Dispersivity in Predicting Water Movement Through Coarse-grained Alluvial Aquifers by Analysis of Seasonal Temperature Signals

    NASA Astrophysics Data System (ADS)

    Amerson, B. E.; Poole, G. C.; O'Daniel, S. J.; Lambert, M. B.

    2014-12-01

    In the last decade, there has been a surge in research on the use of time-varying temperature records (e.g. diel temperature) to estimate seepage velocity of water across stream channel boundaries into or out of the hyporheic zone. The hallmark of this research is the use temperature signals measured over length scales of a few meters to determine the properties of interest. Application of the methods at the river reach scale (e.g. tens of meters) using seasonal temperatures signals has not been explored. For instance, research in the Umatilla River basin in north central Oregon USA shows that seasonal temperature records from the hyporheic zone exhibit characteristic phase lagging and amplitude damping that closely matches similar characteristics observed in diel temperature signals typically used to estimate streambed seepage velocity. We demonstrate that at these larger scales, aquifer thermal dynamics are controlled by mechanical dispersion rather than thermal conduction. The trade-off between conduction and dispersion is apparent in plots of the ratio (r) of dispersive to conductive forces verses the thermal Peclet number (Pe). Plotting a range of analytical solutions for r and Pe over a range of hydraulic conductivities and dispersivities allows visual comparison of of their relative position in a spreading-transport domain. We show that when dispersivity and velocity are large, dispersion governs both spreading and transport processes of thermal energy in contrast to conduction. This finding is analogous to well-known findings from solute transport theory that show a trade off from conductive forces to dispersive forces as both scale and velocity increase. Furthermore, we demonstrate that when reasonable values for dispersion are not included in analytical temperature solutions using seasonal temperature records, unrealistic minimal amplitude damping results. Our results suggest that incorporating dispersion into analytical and modeling solutions is key to

  7. Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

  8. Attenuation of Scattered Thermal Energy Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Seroka, Katelyn T.; McPhate, Jason B.; Miller, Sharon K.

    2011-01-01

    The attenuation of scattered thermal energy atomic oxygen is relevant to the potential damage that can occur within a spacecraft which sweeps through atomic oxygen in low Earth orbit (LEO). Although there can be significant oxidation and resulting degradation of polymers and some metals on the external surfaces of spacecraft, there are often openings on a spacecraft such as telescope apertures, vents, and microwave cavities that can allow atomic oxygen to enter and scatter internally to the spacecraft. Atomic oxygen that enters a spacecraft can thermally accommodate and scatter to ultimately react or recombine on surfaces. The atomic oxygen that does enter a spacecraft can be scavenged by use of high erosion yield polymers to reduce its reaction on critical surfaces and materials. Polyoxymethylene and polyethylene can be used as effective atomic oxygen scavenging polymers.

  9. Simple energy balance model resolving the seasons and the continents - Application to the astronomical theory of the ice ages

    NASA Technical Reports Server (NTRS)

    North, G. R.; Short, D. A.; Mengel, J. G.

    1983-01-01

    An analysis is undertaken of the properties of a one-level seasonal energy balance climate model having explicit, two-dimensional land-sea geography, where land and sea surfaces are strictly distinguished by the local thermal inertia employed and transport is governed by a smooth, latitude-dependent diffusion mechanism. Solutions of the seasonal cycle for the cases of both ice feedback exclusion and inclusion yield good agreements with real data, using minimal turning of the adjustable parameters. Discontinuous icecap growth is noted for both a solar constant that is lower by a few percent and a change of orbital elements to favor cool Northern Hemisphere summers. This discontinuous sensitivity is discussed in the context of the Milankovitch theory of the ice ages, and the associated branch structure is shown to be analogous to the 'small ice cap' instability of simpler models.

  10. Thermal energy in dry snow avalanches

    NASA Astrophysics Data System (ADS)

    Steinkogler, W.; Sovilla, B.; Lehning, M.

    2015-09-01

    Avalanches can exhibit many different flow regimes from powder clouds to slush flows. Flow regimes are largely controlled by the properties of the snow released and entrained along the path. Recent investigations showed the temperature of the moving snow to be one of the most important factors controlling the mobility of the flow. The temperature of an avalanche is determined by the temperature of the released and entrained snow but also increases by frictional processes with time. For three artificially released avalanches, we conducted snow profiles along the avalanche track and in the deposition area, which allowed quantifying the temperature of the eroded snow layers. This data set allowed to calculate the thermal balance, from release to deposition, and to discuss the magnitudes of different sources of thermal energy of the avalanches. For the investigated dry avalanches, the thermal energy increase due to friction was mainly depending on the effective elevation drop of the mass of the avalanche with a warming of approximately 0.3 °C per 100 vertical metres. Contrarily, the temperature change due to entrainment varied for the individual avalanches, from -0.08 to 0.3 °C, and depended on the temperature of the snow along the path and the erosion depth. Infrared radiation thermography (IRT) was used to assess the surface temperature before, during and just after the avalanche with high spatial resolution. This data set allowed to identify the warmest temperatures to be located in the deposits of the dense core. Future research directions, especially for the application of IRT, in the field of thermal investigations in avalanche dynamics are discussed.

  11. Nanowires for thermal energy conversion and management

    NASA Astrophysics Data System (ADS)

    Chen, Renkun

    This dissertation presents the application of nanowires in two aspects of thermal energy conversion and management: (i) silicon (Si) nanowires as efficient and scalable thermoelectric materials due to the reduced thermal conductivity (k), and (ii) Si and copper (Cu) nanowire arrays for enhanced phase change heat transfer including boiling and evaporation and their applications in thermal management of microelectronics. In the first half of the thesis (chapter 2 and 3), we describe thermal and thermoelectric measurements of individual Si nanowires for studying phonon transport properties and their potential application in thermoelectrics. A theoretical model based on coherent phonon scattering was developed to explain the experiemental data, which suggests that phonon-boundary scattering is highly frequency dependent. For low frequency (long wavelength) phonons, the transport is nearly ballistic, whereas high frequency or short wavelength phonons scatter diffusively at nanowire boundary. The competition between the two phonon transmission regimes results in the unusual linear behavior of the thermal conductance of thin VLS Si nanowires at low temperature. Next, the thermal conductivity of EE Si nanowires, which have much rougher surface compared to VLS nanowires, was measured and found to be five-eight times lower than that of VLS counterparts with similar diameters. The substantial reduction in k is presumably due to the higher surface roughness, since both types of nanowires have single crystalline cores. In particular, for ˜ 50 nm EE Si nanowires etched from 0.1 O-cm B-doped p-Si <111> (˜2 x 1017 cm-3 dopant concentration), the k is around 1.6 Wm-1K-1 and the kL is ˜1.2 Wm-1 K-1 at room temperature, approaching that of amorphous Si. The single nanowire measurements show the great promise of using Si nanowire arrays as high-performance, scalable thermoelectric materials. As the second focus of the thesis (chapter 4 and 5), nanowire arrays were used for enhanced

  12. Composite Transport Coefficient for Electron Thermal Energy

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Daughton, W.

    1996-11-01

    A series of experiments by the Alcator C-Mod machine over a range of heating conditions (ohmic to strongly r.f. heated) has led to the construction of a composite transport coefficient for the electron thermal energy. This is represented by the difference of two terms: one corresponding to an outflow of thermal energy and the other one corresponding to an inflow. There are theoretical arguments(B. Coppi and F. Pegoraro, Phys. Fluids B) 3 p. 2582 (1991) in support of a composite transport coefficient involving the elements of a transport matrix with an inflow term related for instance to the features of the current density profile relative to those of the electron temperature. In deriving the transport coefficient D_e^th that has been used to simulate the Alcator C-Mod plasmas, we have assumed that the driving factor of the underlying modes is the plasma pressure gradient. Thus D_e^th ∝ D_e^o [β_p* - C] where β_p* = (8π p* / B_p^2), p* ≡ -r(dp/dr) is evaluated at the point of maximum pressure gradient, C ≈ 3/16 is a positive numerical coefficient and D_e^o ∝ I_p/(nT)^5/6 is basically the Coppi-Mazzucato-Gruber diffusion coefficient introduced earlier to reproduce the results of experiments with ohmic heating. Supported in part by the U.S. Department of Energy

  13. High temperature underground thermal energy storage system for solar energy

    NASA Technical Reports Server (NTRS)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  14. Thermal Emission from Saturn's B Ring: Evidence for Mechanical Transport of Thermal Energy

    NASA Astrophysics Data System (ADS)

    Pilorz, S.; Altobelli, N.; Showalter, M.

    2012-12-01

    During the Cassini mission and extended mission, from July 2004 to the present, Cassini's Composite Infra Red Spectrometer (CIRS) instrument has acquired well over a million thermal spectra of Saturn's main rings. These spectra have a spatial sampling that covers most locations on the rings, and are viewed from a nearly complete sample of the directional geometries permitted by Cassini's orbital trajectory. Analyses of them have already revealed that the thermal emission from the rings has a rich and complex directional and temporal variation. The largest signal in the rings' thermal emission by far is the variation of flux emitted in response to the change in Solar elevation above the rings, seasonally, throughout the Saturn year. The Cassini mission has viewed just over a single season to date, with the solar elevation angle on the rings having moved from 25 degrees South to 6 degrees North latitude, passing through 0 degrees at Saturn Equinox, on August 11, 2009. Examination of the flux emitted from both sides of the optically thick B ring during this period shows that, as expected, the ring appears to emit nearly at equilibrium with with the incident Solar, Saturn-reflected, and Saturn thermal flux. We present evidence that the throughput of energy from the lit side to the unlit side of the ring varies with radial location, and that between locations the amount of throughput varies inversely with the local optical thickness of the ring. Unsurprisingly, simple models indicate that it is not possible to achieve the observed degree of throughput merely by radiative penetration or by a combination of radiative transport and thermal waves, but that heat energy must be carried from the lit side of the B ring to the unlit side mechanically, by vertical motion of ring particles. The temporal coverage of observations near Equinox itself is too sparse to reveal any asymmetries that might have occurred in the heating and cooling of the rings on timescales within days of

  15. Boosting CSP Production with Thermal Energy Storage

    SciTech Connect

    Denholm, P.; Mehos, M.

    2012-06-01

    Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high

  16. Design of a high temperature subsurface thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Zheng, Qi

    Solar thermal energy is taking up increasing proportions of future power generation worldwide. Thermal energy storage technology is a key method for compensating for the inherent intermittency of solar resources and solving the time mismatch between solar energy supply and electricity demand. However, there is currently no cost-effective high-capacity compact storage technology available (Bakker et al., 2008). The goal of this work is to propose a high temperature subsurface thermal energy storage (HSTES) technology and demonstrate its potential energy storage capability by developing a solar-HSTES-electricity generation system. In this work, main elements of the proposed system and their related state-of-art technologies are reviewed. A conceptual model is built to illustrate the concept, design, operating procedure and application of such a system. A numerical base model is built within the TOUGH2-EOS1 multiphase flow simulator for the evaluation of system performance. Additional models are constructed and simulations are done to identify the effect of different operational and geological influential factors on the system performance. Our work shows that when the base model is run with ten years operation of alternate injection and production processes - each for a month - with a thermal power input of 10.85 MW, about 83% of the injected thermal energy could be recovered within each working cycle from a stabilized HSTES system. After the final conversion into electrical energy, a relative (compared with the direct use of hot water) electricity generation efficiency of 73% is obtained. In a typical daily storage scenario, the simulated thermal storage efficiency could exceed 78% and the relative electricity generation efficiency is over 66% in the long run. In a seasonal storage scenario, these two efficiencies reach 69% and 53% respectively by the end of the simulation period of 10 years. Additional simulations reveal a thinner storage aquifer with a higher

  17. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect

    Sands, M. Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  18. Ocean thermal energy conversion: Perspective and status

    NASA Astrophysics Data System (ADS)

    Thomas, Anthony; Hillis, David L.

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully by George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250 to 400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed cycle concept. Cost effective heat exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat transfer augmentation techniques were identified, which promised a reduction on heat exchanger size and cost. Fresh water was produced by an OTEC open cycle flash evaporator, using the heat energy in the seawater itself. The current R and D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open cycle process. The 10 MW shore-based, closed cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power; both valuable commodities on many tropical islands. The open cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources.

  19. Commercialization of aquifer thermal energy storage technology

    SciTech Connect

    Hattrup, M.P.; Weijo, R.O.

    1989-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

  20. Seasonal thermal signatures of heat transfer by water exchange in an underground vault

    NASA Astrophysics Data System (ADS)

    Perrier, Frédéric; Morat, Pierre; Yoshino, Toshio; Sano, Osam; Utada, Hisashi; Gensane, Olivier; Le Mouël, Jean-Louis

    2004-07-01

    The temperature of a 10-point vertical profile at the rock-atmosphere interface has been monitored since 2000 September in an underground vault at Aburatsubo, Japan, where resistivity variations have been reported in association with earthquakes. The non-ventilated vault is characterized by an annual temperature variation of about 1.2 °C peak to peak, compatible with thermal diffusion in the surrounding tuff rock, and by a long-term temperature increase of about 0.1 °C per year, possibly due to a local or global climate change. Owing to a careful relative calibration of the 10 thermistors used in this experiment, these data establish that the ceiling temperature is higher than the floor temperature by 0.04 to 0.28 °C. Transient temperature variations are observed in association with human presence or with typhoons, with a characteristic spatial pattern revealing structural heterogeneity. Variations with periods ranging from 1 day to 1 week, with an amplitude two time larger and a phase advance on the floor with respect to the ceiling, are observed from November to May. Variations with periods larger than 1 week, with an amplitude two times smaller and a phase lag on the floor with respect to the ceiling, are observed from June to October. These cycles are linked to the sign of the seasonal heat flux. We propose an interpretation in which heat transfer in the cavity is dominated by diffusion of water vapour from June to October (heat flux downwards, summer regime) and by convective water transport from November to May (heat flux upwards, winter regime). The water flow inferred from this model can be used to predict the water saturation of the rock as a function of time. Because of a permanent radiative heat flux from top to bottom, the upward water flow in the winter regime is larger than the downward water flow in the summer regime, resulting in a slow depletion of water from the rock below the cavity. This unbalanced water flow could contribute to an observed

  1. Development of thermal energy storage units for spacecraft cryogenic coolers

    NASA Technical Reports Server (NTRS)

    Richter, R.; Mahefkey, E. T.

    1980-01-01

    Thermal Energy Storage Units were developed for storing thermal energy required for operating Vuilleumier cryogenic space coolers. In the course of the development work the thermal characteristics of thermal energy storage material was investigated. By three distinctly different methods it was established that ternary salts did not release fusion energy as determined by ideality at the melting point of the eutectic salt. Phase change energy was released over a relatively wide range of temperature with a large change in volume. This strongly affects the amount of thermal energy that is available to the Vuilleumier cryogenic cooler at its operating temperature range and the amount of thermal energy that can be stored and released during a single storage cycle.

  2. Heat pipe solar receiver with thermal energy storage

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  3. Seasonal variation of the atmospheric energy budget on Mars

    NASA Astrophysics Data System (ADS)

    Tabataba-Vakili, F.; Read, P. L.; Lewis, S. R.; Montabone, L.; Ruan, T.; Valeanu, A.; Wang, Y.; Young, R. M. B.

    2014-04-01

    We compute a detailed Lorenz energy budget [1] to improve our understanding of the dynamical circulation of the martian atmosphere. Results suggest that the circulation of the martian atmosphere is is governed mostly by baroclinic instability, except during a 2 to 3 month long period around the northern hemisphere winter solstice when barotropic and baroclinic instabilites coincide. The difference between diurnally averaged quantities and the full energy budget also indicate a major role for diurnal tides in enabling a direct transfer of energy from diurnal heating to eddy potential and kinetic energy.

  4. Analysis and clustering of natural gas consumption data for thermal energy use forecasting

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro; Fantozzi, Fabio

    2015-11-01

    In this paper, after a brief analysis of the connections between the uses of natural gas and thermal energy use, the natural gas consumption data related to Italian market are analyzed and opportunely clustered in order to compute the typical consumption profile in different days of the week in different seasons and for the different class of users: residential, tertiary and industrial. The analysis of the data shows that natural gas consumption profile is mainly related to seasonality pattern and to the weather conditions (outside temperature, humidity and wind chiller). There is also an important daily pattern related to industrial and civil sector that, at a lower degree than the previous one, does affect the consumption profile and have to be taken into account for defining an effective short and mid term thermal energy forecasting method. A possible mathematical structure of the natural gas consumption profile is provided. Due to the strong link between thermal energy use and natural gas consumption, this analysis could be considered the first step for the development of a model for thermal energy forecasting.

  5. Seasonal Variability in Calorimetric Energy Content of Two Caribbean Mesophotic Corals.

    PubMed

    Brandtneris, Viktor W; Brandt, Marilyn E; Glynn, Peter W; Gyory, Joanna; Smith, Tyler B

    2016-01-01

    Energetic responses of zooxanthellate reef corals along depth gradients have relevance to the refugia potential of mesophotic coral ecosystems (MCEs). Previous observations suggested that MCEs in the Caribbean are thermally buffered during the warmest parts of the year and occur within or just below the chlorophyll maximum, suggesting abundant trophic resources. However, it is not known if mesophotic corals can maintain constant energy needs throughout the year with changing environmental and biological conditions. The energetic content of tissues from the stony coral species Orbicella faveolata and Agaricia lamarcki was measured on the southern insular shelf of St. Thomas, US Virgin Islands (USVI), using micro-bomb calorimetry. Three sites for each species, at depths of 6m, 25m, 38m and 63m, were selected to capture energetic differences across the major vertical range extent of both species in the USVI-and sampled over five periods from April 2013 to April 2014. Mesophotic colonies of O. faveolata exhibited a significant reduction in energetic content during the month of September 2013 compared to mid-depth and shallow colonies (p = 0.032), whereas A. lamarcki experienced similar energetic variability, but with a significant reduction in energy content that occurred in July 2013 for colonies at sites deeper than 25m (p = 0.014). The results of calorimetric analyses indicate that O. faveolata may be at risk during late summer stress events, possibly due to the timing of reproductive activities. The low-point of A. lamarcki energy content, which may also coincide with reproduction, occurs prior to seasonal stress events, indicating contrasting, species-specific responses to environmental variability on MCEs. PMID:27050430

  6. Seasonal Variability in Calorimetric Energy Content of Two Caribbean Mesophotic Corals

    PubMed Central

    Brandtneris, Viktor W.; Brandt, Marilyn E.; Glynn, Peter W.; Gyory, Joanna; Smith, Tyler B.

    2016-01-01

    Energetic responses of zooxanthellate reef corals along depth gradients have relevance to the refugia potential of mesophotic coral ecosystems (MCEs). Previous observations suggested that MCEs in the Caribbean are thermally buffered during the warmest parts of the year and occur within or just below the chlorophyll maximum, suggesting abundant trophic resources. However, it is not known if mesophotic corals can maintain constant energy needs throughout the year with changing environmental and biological conditions. The energetic content of tissues from the stony coral species Orbicella faveolata and Agaricia lamarcki was measured on the southern insular shelf of St. Thomas, US Virgin Islands (USVI), using micro-bomb calorimetry. Three sites for each species, at depths of 6m, 25m, 38m and 63m, were selected to capture energetic differences across the major vertical range extent of both species in the USVI—and sampled over five periods from April 2013 to April 2014. Mesophotic colonies of O. faveolata exhibited a significant reduction in energetic content during the month of September 2013 compared to mid-depth and shallow colonies (p = 0.032), whereas A. lamarcki experienced similar energetic variability, but with a significant reduction in energy content that occurred in July 2013 for colonies at sites deeper than 25m (p = 0.014). The results of calorimetric analyses indicate that O. faveolata may be at risk during late summer stress events, possibly due to the timing of reproductive activities. The low-point of A. lamarcki energy content, which may also coincide with reproduction, occurs prior to seasonal stress events, indicating contrasting, species-specific responses to environmental variability on MCEs. PMID:27050430

  7. An evaluation of thermal energy storage options for precooling gas turbine inlet air

    SciTech Connect

    Antoniak, Z.I.; Brown, D.R.; Drost, M.K.

    1992-12-01

    Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage for gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20% cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20% more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5% when compared to larger gas turbines.

  8. Advanced Thermal Energy Storage: Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage

    SciTech Connect

    2011-12-01

    HEATS Project: NAVITASMAX is developing a novel thermal energy storage solution. This innovative technology is based on simple and complex supercritical fluids— substances where distinct liquid and gas phases do not exist, and tuning the properties of these fluid systems to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX’s system during the day and released at night—when the sun is not shining—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX’s system at night and released to produce electricity during daytime peak-demand hours.

  9. Development of MEMS based pyroelectric thermal energy harvesters

    NASA Astrophysics Data System (ADS)

    Hunter, Scott R.; Lavrik, Nickolay V.; Bannuru, Thirumalesh; Mostafa, Salwa; Rajic, Slo; Datskos, Panos G.

    2011-06-01

    The efficient conversion of waste thermal energy into electrical energy is of considerable interest due to the huge sources of low-grade thermal energy available in technologically advanced societies. Our group at the Oak Ridge National Laboratory (ORNL) is developing a new type of high efficiency thermal waste heat energy converter that can be used to actively cool electronic devices, concentrated photovoltaic solar cells, computers and large waste heat producing systems, while generating electricity that can be used to power remote monitoring sensor systems, or recycled to provide electrical power. The energy harvester is a temperature cycled pyroelectric thermal-to-electrical energy harvester that can be used to generate electrical energy from thermal waste streams with temperature gradients of only a few degrees. The approach uses a resonantly driven pyroelectric capacitive bimorph cantilever structure that potentially has energy conversion efficiencies several times those of any previously demonstrated pyroelectric or thermoelectric thermal energy harvesters. The goals of this effort are to demonstrate the feasibility of fabricating high conversion efficiency MEMS based pyroelectric energy converters that can be fabricated into scalable arrays using well known microscale fabrication techniques and materials. These fabrication efforts are supported by detailed modeling studies of the pyroelectric energy converter structures to demonstrate the energy conversion efficiencies and electrical energy generation capabilities of these energy converters. This paper reports on the modeling, fabrication and testing of test structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy harvesters.

  10. A Didactic Model of the Seasonal Cycle in Energy Fluxes and Climate

    NASA Astrophysics Data System (ADS)

    Donohoe, A.; Battisti, D.

    2009-12-01

    In the annual mean, the polar regions receive a deficit of solar insolation relative to the global average. The local energy budget is balanced primarily by atmospheric heat transport into the region, with smaller contributions from ocean heat transport and anomalously low outgoing longwave radiation (relative to the global average). In contrast, the annual cycle features large seasonal anomalies (departures from the local annual average) in solar insolation in the polar regions that are primarily balanced by ocean heat storage anomalies; changes in meridional heat transport, emitted long wave radiation, and atmospheric heat storage play a decreasingly important role in the seasonal energy balance. Land-ocean contrasts also have a large impact on the seasonal energetics of the polar climate system. Over the ocean, zonal heat transport from the land domain is maximized during the summer, and the sum of the insolation and zonal heat transport anomalies is balanced by ocean heat storage. In contrast, over the land, the primary summertime balance is excess solar insolation balanced by an enhanced zonal heat export. In this study we examine the global scale climate and the aforementioned seasonal cycle of energy fluxes using an aquaplanet atmospheric general circulation model coupled to a slab ocean and a simplified energy balance model that interacts with the underlying ocean. The gross climate and seasonal energetics in both models are highly sensitive to the specification of ocean mixed layer depth. The observed seasonal cycle of energy fluxes and the land and ocean temperatures are also replicated in a simplified energy balance model that includes land-ocean contrast and the hemispheric differences in fractional land area. The sensitivity of the seasonal cycle in climate (atmosphere and ocean temperatures) - and in the gross partitioning of the mix of energy flux processes that determine the climate - to the fractional land area is further explored in an ensemble of

  11. The influence of thermal inertia on Mars' seasonal pressure variation and the effect of the weather component

    NASA Technical Reports Server (NTRS)

    Wood, S. E.; Paige, D. A.

    1993-01-01

    Using a Leighton-Murray type diurnal and seasonal Mars thermal model, we found that it is possible to reproduce the seasonal variation in daily-averaged pressures (approximately 680-890 Pa) measured by Viking Lander 1 (VL1), during years without global dust storms, with a standard deviation of less than 5 Pa. In this simple model, surface CO2, frost condensation, and sublimation rates at each latitude are determined by the net effects of radiation, latent heat, and heat conduction in subsurface soil layers. An inherent assumption of our model is that the seasonal pressure variation is due entirely to the exchange of mass between the atmosphere and polar caps. However, the results of recent Mars GCM modeling have made it clear that there is a significant dynamical contribution to the seasonal pressure variation. This 'weather' component is primarily due to large-scale changes in atmospheric circulation, and its magnitude depends somewhat on the dust content of the atmosphere. The overall form of the theoretical weather component at the location of VL1, as calculated by the AMES GCM, remains the same over the typical range of Mars dust opacities.

  12. Seasonal eddy kinetic energy modulations along the North Equatorial Countercurrent in the western Pacific

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Qiu, Bo; Chen, Shuiming; Qi, Yiquan; Du, Yan

    2015-09-01

    Seasonal eddy kinetic energy (EKE) variability and its associated eddy energy conversion processes in the western tropical Pacific are investigated using satellite altimeter observations and a global, eddy-resolving, ocean general circulation model (OGCM). Both the altimeter-observed sea surface height anomalies and the OGCM simulation show an area with enhanced EKE east of the Mindanao Island centered around 133°E and 5°N. This enhanced EKE area corresponds to the location of the quasi-stationary meander of the North Equatorial Countercurrent (NECC) and is bordered to the south by the Halmahera Eddy. The mesoscale EKE in this area exhibits a clear seasonality, strong in summer (July-August) and weak in winter (November-January), and much of this seasonality is confined to the upper 200 m layer. An investigation into the upper ocean eddy energetics based on the OGCM simulation reveals that the areal barotropic eddy energy conversion rate has an annual cycle similar to the EKE variations, while the areal baroclinic eddy energy conversion is found to be much smaller that the barotropic conversion rate and exhibits no clear seasonal changes. This indicates that the EKE variations are largely controlled by barotropic conversion of the seasonally varying regional circulation. By examining the seasonal background circulation changes, we find that the amplification of the barotropic eddy energy conversion rate in July-August is related to the seasonal evolution of the Mindanao Current and the New Guinea Coastal Current that amplifies the curvature and amplitude of the quasi-stationary meander of the NECC and results in an elevated EKE level through increased regional barotropic conversion.

  13. MEMS based pyroelectric thermal energy harvester

    SciTech Connect

    Hunter, Scott R; Datskos, Panagiotis G

    2013-08-27

    A pyroelectric thermal energy harvesting apparatus for generating an electric current includes a cantilevered layered pyroelectric capacitor extending between a first surface and a second surface, where the first surface includes a temperature difference from the second surface. The layered pyroelectric capacitor includes a conductive, bimetal top electrode layer, an intermediate pyroelectric dielectric layer and a conductive bottom electrode layer. In addition, a pair of proof masses is affixed at a distal end of the layered pyroelectric capacitor to face the first surface and the second surface, wherein the proof masses oscillate between the first surface and the second surface such that a pyroelectric current is generated in the pyroelectric capacitor due to temperature cycling when the proof masses alternately contact the first surface and the second surface.

  14. Ocean Thermal Energy Conversion Act of 1980

    SciTech Connect

    Not Available

    1980-01-01

    A legislative proposal to develop ocean thermal energy conversion (OTEC) facilities for power generation was the subject of hearings held on April 10 and May 1, 1980. Following the test of S. 2492 are the statements of 20 witnesses and additional materials submitted for consideration. The need for a large-scale demonstration of OTEC and the need for a Federal regulatory, siting, and financial-assistance framework are the major commercialization issues. S. 2492 provides one-stop licensing by treating the facilities as vessels and making them eligible for loan guarantees. The bill complements S. 1430, which deals with the demonstration program. OTEC development in Hawaii has progressed to a second pilot project. (DCK)

  15. Aquifer Thermal Energy Storage in the US

    NASA Astrophysics Data System (ADS)

    Kannberg, L. D.

    1985-06-01

    DOE has funded investigation of Aquifer Thermal Energy Storage (ATES) since 1975. The scope of the ATES investigation has encompassed numerical modeling, field testing, economic analyses, and evaluation of institutional issues. ATES has received the bulk of the attention because of its widespread potential in the US. US efforts are now concentrated on a high temperature (up to 150C) ATES field test on the St. Paul campus of the University of Minnesota. Four short-term test cycles and the first of two long-term test cycles have been completed at this site. Utilization of chill ATES to meet summer air conditioning demands has been monitored at two operating sites in Tuscaloosa, Alabama. The systems utilize a cooling tower to directly chill groundwater pumped from a water table aquifer for storage in the same aquifer. The first of the two systems has exhibited relatively poor performance. More comprehensive monitoring has recently been undertaken at another site.

  16. Nonimaging concentrators for solar thermal energy. Final report

    SciTech Connect

    Winston, R.

    1980-03-21

    A small experimental solar collector test facility has been established on the campus of the University of Chicago. This capability has been used to explore applications of nonimaging optics for solar thermal concentration in three substantially different configurations: (1) a single stage system with moderate concentration on an evacuated absorber (a 5.25X evacuated tube Compound Parabolic Concentrator or CPC), (2) a two stage system with high concentration and a non-evacuated absorber (a 16X Fresnel lens/CPC type mirror) and (3) moderate concentration single stage systems with non-evacuated absorbers for lower temperature (a 3X and a 6.5X CPC). Prototypes of each of these systems have been designed, built and tested. The performance characteristics are presented. In addition a 73 m/sup 2/ experimental array of 3X non-evacuated CPC's has been installed in a school heating system on the Navajo Indian Reservation in New Mexico. The full array has a peak noon time efficiency of approx. 50% at ..delta..T = 50/sup 0/C above ambient and has supplied about half the school's heat load for the past two heating seasons. Several theoretical features of nonimaging concentration have been investigated including their long term energy collecting behavior. The measured performance of the different systems shows clearly that non-tracking concentrators can provide solar thermal energy from moderately high low temperature regimes (> 50/sup 0/C above ambient) up into the mid-temperature region (well above 200/sup 0/C above ambient). The measured efficiency at 220/sup 0/C for the 5.25X CPC was as high or higher than that for any of the commercial tracking systems tested.

  17. Effect of effluents of a thermal power plant complex on reproductive processs of a winter season weed

    SciTech Connect

    Khan, F.A.; Iqbal, M.; Ghouse, A.K.M. )

    1990-05-01

    The Kasimpur Thermal Power Plant Complex (located in the District Aligarh, Uttar Pradesh, India) runs on a low grade, sulphur rich, bituminous type of coal with a daily average consumption rte of about 3,192 metric tons during winter season. Its effluents, mainly consisting of oxides of sulphur, nitrogen and carbon as well as particulate matters, were noted to affect the reproductive behavior of Melilotus indica-a winter season weed growing wild as a component of a grassland community. The samples consisting of 10 plants were collected at monthly intervals from 5 sites located about 0.5, 2, 6, 12 and 20 km leaward from the Complex. Emergence of inflorescence was delayed at the polluted sites. However, fruit formation started simultaneously (in March) at all the five sites. The pollution induced senescence of floral buds, flowers and fruits, but did not alter markedly weight of seed and fruit.

  18. Development of a wind energy climate service based on seasonal climate prediction

    NASA Astrophysics Data System (ADS)

    Torralba, Veronica; Doblas-Reyes, Francisco J.; Cortesi, Nicola; Christel, Isadora; González-Reviriego, Nube; Turco, Marco; Soret, Albert

    2016-04-01

    Climate predictions tailored to the wind energy sector represent an innovation to better understand the future variability of wind energy resources. At seasonal time scales current energy practices employ a simple approach based on a retrospective climatology. Instead, probabilistic climate forecasting can better address specific decisions that affect energy demand and supply, as well as decisions relative to the planning of maintenance work. Here we illustrate the advantages that seasonal climate predictions might offer to a wide range of users and discuss the best way to provide them with this information. We use the predictions of 10-meter wind speed from the ECMWF seasonal forecast System 4 (S4). S4, as every operational seasonal forecast system, is affected by a range of biases. Hence, to produce usable climate information from the predictions, different bias-adjustment techniques and downscaling methods should be applied, their choice depending on the user requirements. An ensemble of post-processing methods is described, and their relative merit evaluated as a function of their impact of the characteristics of the forecast error and the usability of the resulting forecasts. Both reanalyses (ERA-Interim, JRA-55, MERRA) and in-situ observations are used as observational references. As an illustration of the downstream impact of the forecasts as a source of climate information, the post-processed seasonal predictions of wind speed will be used as input in a transfer model that translates climate information into generated power at different spatial scales.

  19. Effect of thermal environment on the temporal, spatial and seasonal occurrence of measles in Ondo state, Nigeria

    NASA Astrophysics Data System (ADS)

    Omonijo, Akinyemi Gabriel; Matzarakis, Andreas; Oguntoke, Olusegun; Adeofun, Clement Olabinjo

    2012-09-01

    We investigated the temporal and spatial dynamics, as well as the seasonal occurrence of measles in Ondo state, Nigeria, to better understand the role of the thermal environment in the occurrence of the childhood killer disease measles, which ranks among the top ten leading causes of child deaths worldwide. The linkages between measles and atmospheric environmental factors were examined by correlating human-biometeorological parameters in the study area with reported clinical cases of measles for the period 1998-2008. We also applied stepwise regression analysis in order to determine the human-biometeorological parameters that lead to statistical changes in reported clinical cases of measles. We found that high reported cases of measles are associated with the least populated areas, where rearing and cohabitation of livestock/domestic animals within human communities are common. There was a significant correlation ( P < 0.01) between monthly cases of measles and human-biometeorological parameters except wind speed and vapour pressure. High transmission of measles occurred in the months of January to May during the dry season when human thermal comfort indices are very high. This highlights the importance of the thermal environment in disease demographics since it accounted for more than 40% variation in measles transmission within the study period.

  20. Effect of thermal environment on the temporal, spatial and seasonal occurrence of measles in Ondo state, Nigeria.

    PubMed

    Omonijo, Akinyemi Gabriel; Matzarakis, Andreas; Oguntoke, Olusegun; Adeofun, Clement Olabinjo

    2012-09-01

    We investigated the temporal and spatial dynamics, as well as the seasonal occurrence of measles in Ondo state, Nigeria, to better understand the role of the thermal environment in the occurrence of the childhood killer disease measles, which ranks among the top ten leading causes of child deaths worldwide. The linkages between measles and atmospheric environmental factors were examined by correlating human-biometeorological parameters in the study area with reported clinical cases of measles for the period 1998-2008. We also applied stepwise regression analysis in order to determine the human-biometeorological parameters that lead to statistical changes in reported clinical cases of measles. We found that high reported cases of measles are associated with the least populated areas, where rearing and cohabitation of livestock/domestic animals within human communities are common. There was a significant correlation (P < 0.01) between monthly cases of measles and human-biometeorological parameters except wind speed and vapour pressure. High transmission of measles occurred in the months of January to May during the dry season when human thermal comfort indices are very high. This highlights the importance of the thermal environment in disease demographics since it accounted for more than 40% variation in measles transmission within the study period. PMID:21928098

  1. Hydrogeochemical and isotopic tracers for identification of seasonal and long-term over-exploitation of the Pleistocene thermal waters.

    PubMed

    Rman, Nina

    2016-04-01

    The aim of the study was to develop and test an optimal and cost-effective regional quality monitoring system in depleted transboundary low-temperature Neogene geothermal aquifers in the west Pannonian basin. Potential tracers for identification of seasonal and long-term quality changes of the Pleistocene thermal waters were investigated at four multiple-screened wells some 720 to 1570 m deep in Slovenia. These thermal waters are of great balneological value owing to their curative effects and were sampled monthly between February 2014 and January 2015. Linear correlation and regression analyses, ANOVA and Kolmogorov-Smirnov two-sample test for two independent samples were used to determine their seasonal and long-term differences. Temperature, pH, electrical conductivity, redox potential and dissolved oxygen did not identify varying inflow conditions; however, they provided sufficient information to distinguish between the four end-members. Characteristic (sodium) and conservative (chloride) tracers outlined long-term trends in changes in quality but could not differentiate between the seasons. Stable isotopes of δ (18)O and δ (2)H were used to identify sequential monthly and long-term trends, and origin and mixing of waters, but failed to distinguish the difference between the seasons. A new local paleo-meteoric water line (δ (2)H = 9.2*δ (18)O + 26.3) was outlined for the active regional groundwater flow system in the Pannonian to Pliocene loose sandstone and gravel. A new regression line (δ (2)H = 2.3*δ (18)O-45.2) was calculated for thermomineral water from the more isolated Badenian to Lower Pannonian turbiditic sandstone, indicating dilution of formation water. Water composition was generally stable over the 1-year period, but long-term trends indicate that changes in quality occur, implying deterioration of the aquifers status. PMID:27007290

  2. Solar-thermal conversion and thermal energy storage of graphene foam-based composites

    NASA Astrophysics Data System (ADS)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-07-01

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a

  3. District Energy Corporation SW 40th Street Thermal Energy Plant

    SciTech Connect

    Davlin, Thomas

    2014-06-06

    The overall deliverable from the project is the design, construction and commissioning of a detention facility heating and cooling system that minimizes ownership costs and maximizes efficiency (and therefore minimizes environmental impact). The primary deliverables were the proof of concept for the application of geothermal systems for an institutional facility and the ongoing, quarterly system operating data downloads to the Department of Energy . The primary advantage of geothermal based heat pump systems is the higher efficiency of the system compared to a conventional chiller, boiler, cooling tower based system. The higher efficiency results in a smaller environmental foot print and lower energy costs for the detention facility owner, Lancaster County. The higher efficiency for building cooling is primarily due to a more constant compressor condensing temperature with the geothermal well field acting as a thermal “sink” (in place of the conventional system’s cooling tower). In the heating mode, Ground Couple Heat Pump (GCHP) systems benefits from the advantage of a heat pump Coefficient of Performance (COP) of approximately 3.6, significantly better than a conventional gas boiler. The geothermal well field acting as a thermal “source” allows the heat pumps to operate efficiently in the heating mode regardless of ambient temperatures. The well field is partially located in a wetland with a high water table so, over time, the project will be able to identify the thermal loading characteristics of a well field located in a high water table location. The project demonstrated how a large geothermal well field can be installed in a wetland area in an economical and environmentally sound manner. Finally, the SW 40th Street Thermal Energy Plant project demonstrates the benefits of providing domestic hot water energy, as well as space heating, to help balance well filed thermal loading in a cooling dominated application. During the period of August 2012 thru

  4. Potential energy savings from aquifer thermal energy storage

    SciTech Connect

    Anderson, M.R.; Weijo, R.O.

    1988-07-01

    Pacific Northwest Laboratory researchers developed an aggregate-level model to estimate the short- and long-term potential energy savings from using aquifer thermal storage (ATES) in the United States. The objectives of this effort were to (1) develop a basis from which to recommend whether heat or chill ATES should receive future research focus and (2) determine which market sector (residential, commercial, or industrial) offers the largest potential energy savings from ATES. Information was collected on the proportion of US land area suitable for ATES applications. The economic feasibility of ATES applications was then evaluated. The potential energy savings from ATES applications was calculated. Characteristic energy use in the residential, commercial, and industrial sectors was examined, as was the relationship between waste heat production and consumption by industrial end-users. These analyses provided the basis for two main conclusions: heat ATES applications offer higher potential for energy savings than do chill ATES applications; and the industrial sector can achieve the highest potential energy savings for the large consumption markets. Based on these findings, it is recommended that future ATES research and development efforts be directed toward heat ATES applications in the industrial sector. 11 refs., 6 figs., 9 tabs.

  5. Mathematical modeling of moving boundary problems in thermal energy storage

    NASA Technical Reports Server (NTRS)

    Solomon, A. D.

    1980-01-01

    The capability for predicting the performance of thermal energy storage (RES) subsystems and components using PCM's based on mathematical and physical models is developed. Mathematical models of the dynamic thermal behavior of (TES) subsystems using PCM's based on solutions of the moving boundary thermal conduction problem and on heat and mass transfer engineering correlations are also discussed.

  6. Seasonal variation of tidal prism and energy in the Changjiang River estuary: a numerical study

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Townend, Ian Howard; Cai, Huayang; Zhou, Yunxuan

    2016-01-01

    Tidal rivers are intrinsically complex because tidal propagation is influenced by river discharge. This study aims to examine the seasonal variation of tidal prism and energy variance in the tidal river of the Changjiang (Yangtze) River estuary in China. In order to quantify the behaviour of river and tide, we use numerical modelling that has been validated using measured data. We conduct our analysis by quantifying the discharge and energy variance in separate components for both the river and the tide, during wet and dry seasons. We note various definitions of tidal prism and explore the difference between tidal discharge on the flood and ebb and tidal storage volume. The results show that the river discharge attenuates the tidal motion and reduces the tidal flood discharge but the tidal storage volume is approximately constant with different riverine discharge since part of the fresh water discharge is intercepted and captured in the estuary due to the backwater effect. It appears that the tidal discharge adjusts according to the variation of river discharge to keep a constant tidal storage volume. An analysis of the hydraulics shows that the transition from tidal dominance (at the mouth) to river dominance (upstream) depends on the location of tidal current reversal which varies from wet season to dry season. Duringthe wet season, the Changjiang River estuary is totally dominated by energy from fresh water discharge.

  7. Composite materials for thermal energy storage: enhancing performance through microstructures.

    PubMed

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  8. Optimizing Ice Thermal Storage to Reduce Energy Cost

    NASA Astrophysics Data System (ADS)

    Hall, Christopher L.

    Energy cost for buildings is an issue of concern for owners across the U.S. The bigger the building, the greater the concern. A part of this is due to the energy required to cool the building and the way in which charges are set when paying for energy consumed during different times of the day. This study will prove that designing ice thermal storage properly will minimize energy cost in buildings. The effectiveness of ice thermal storage as a means to reduce energy costs lies within transferring the time of most energy consumption from on-peak to off-peak periods. Multiple variables go into the equation of finding the optimal use of ice thermal storage and they are all judged with the final objective of minimizing monthly energy costs. This research discusses the optimal design of ice thermal storage and its impact on energy consumption, energy demand, and the total energy cost. A tool for optimal design of ice thermal storage is developed, considering variables such as chiller and ice storage sizes and charging and discharge times. The simulations take place in a four-story building and investigate the potential of Ice Thermal Storage as a resource in reducing and minimizing energy cost for cooling. The simulations test the effectiveness of Ice Thermal Storage implemented into the four-story building in ten locations across the United States.

  9. Minimum daily core body temperature in western grey kangaroos decreases as summer advances: a seasonal pattern, or a direct response to water, heat or energy supply?

    PubMed

    Maloney, Shane K; Fuller, Andrea; Meyer, Leith C R; Kamerman, Peter R; Mitchell, Graham; Mitchell, Duncan

    2011-06-01

    Using implanted temperature loggers, we measured core body temperature in nine western grey kangaroos every 5 min for 24 to 98 days in spring and summer. Body temperature was highest at night and decreased rapidly early in the morning, reaching a nadir at 10:00 h, after ambient temperature and solar radiation had begun to increase. On hotter days, the minimum morning body temperature was lower than on cooler days, decreasing from a mean of 36.2°C in the spring to 34.0°C in the summer. This effect correlated better with the time of the year than with proximate thermal stressors, suggesting that either season itself or some factor correlated with season, such as food availability, caused the change. Water saving has been proposed as a selective advantage of heterothermy in other large mammals, but in kangaroos the water savings would have been small and not required in a reserve with permanent standing water. We calculate that the lower core temperature could provide energy savings of nearly 7%. It is likely that the heterothermy that we observed on hot days results either from decreased energy intake during the dry season or from a seasonal pattern entrained in the kangaroos that presumably has been selected for because of decreased energy availability during the dry season. PMID:21562167

  10. Anisotropy Enhancement of Thermal Energy Transport in Supported Black Phosphorene.

    PubMed

    Chen, Jige; Chen, Shunda; Gao, Yi

    2016-07-01

    Thermal anisotropy along the basal plane of materials possesses both theoretical importance and application value in thermal transport and thermoelectricity. Though common two-dimensional materials may exhibit in-plane thermal anisotropy when suspended, thermal anisotropy would often disappear when supported on a substrate. In this Letter, we find a strong anisotropy enhancement of thermal energy transport in supported black phosphorene. The chiral preference of energy transport in the zigzag rather than the armchair direction is greatly enhanced by coupling to the substrate, up to a factor of approximately 2-fold compared to the suspended one. The enhancement originates from its puckered lattice structure, where the nonplanar armchair energy transport relies on the out-of-plane corrugation and thus would be hindered by the flexural suppression due to the substrate, while the planar zigzag energy transport is not. As a result, thermal conductivity of supported black phosphorene shows a consistent anisotropy enhancement under different temperatures and substrate coupling strengths. PMID:27320775

  11. Intercomparison of the seasonal cycle in 200 hPa kinetic energy in AMIP GCM simulations

    SciTech Connect

    Boyle, J.S.

    1996-10-01

    The 200 hPa kinetic energy is represented by means of the spherical harmonic components for the Atmospheric Model Intercomparison Project (AMIP) simulations, the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and the European Centre for Medium Range Weather Forecast Reanalysis (ERA). The data used are the monthly mean wind fields from 1979 to 1988. The kinetic energy is decomposed into the divergent (DKE) and rotational (RKE) components and emphasis is placed on examining the former. The two reanalysis data sets show reasonable agreement that is best for the rotational kinetic energy. The largest difference in the divergent kinetic energy occurs during the northern summer. As might be expected, the two analyses are closet in regions where there are sufficient observations such that the effect of the model used in the assimilation cycle are minimized. The observed RKE show only a slight seasonal cycle with a maximum occuring during the northern winter. The DKE, on the other hand, has a very pronounced seasonal cycle with maxima at the solsticial seasons and minima during the equinoctial seasons. The model results show a very large spread in the magnitudes of the RKE and DKE although the models all evince a seasonal variation in phase with that observed. The median values of the seasonal cycle of RKE and DKE for the models are usually superior to those of any individual model. Results are also presented for simulation following the AMIP protocol but using updated versions of the original AMIP entries. In most cases these new integrations show better agreement with the observations.

  12. Seasonal carcass composition and energy balance of female black ducks in Maine

    USGS Publications Warehouse

    Reinecke, K.J.; Stone, T.L.; Owen, R.B.

    1982-01-01

    Female Black Ducks (Anas rubripes) collected in Maine during the summer, fall, and winter of 1974-1976 showed significant seasonal variation in body weight, nonfat dry weight, gizzard and pectoral muscle weight, and fat, moisture, and protein content. Variation of body weight within and among seasons was correlated more strongly with carcass protein content, and with fat content during seasons of heavy lipid deposition, than with three structural size variables (culmen, tarsus, and sternum). Regression equations including fat and protein as independent variables accounted for 80-90% of the annual and seasonal variation in body weight; structural size variables alone accounted for less than 30%. Immature females averaged 54 and 99 g lighter, and carried 54 and 59 g less fat than adults during the fall and winter. Ducks of both age classes lost weight in December and January. Adult and immature females metabolized 59 and 64 g of fat and 17 and 25 g of protein in winter compared with 46 g of fat during the nesting season. Nutrient reserves are thus equally as important for the winter survival of these birds as for successfurl eproduction. Seasonal changes in carcass composition suggest that (1) fat deposited in late fall provides an energy reserve during winter, (2) a reduction in lean weight during winter may lower daily energy requirements and increase the effective amount of energy reserves, and (3) declining body weights during late winter may be an endogenous rhythm that reflects a shift in the expected benefits of an energy reserve compared to the costs of carrying additional weight,

  13. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    PubMed

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy. PMID:27430282

  14. Flight experiment of thermal energy storage

    NASA Technical Reports Server (NTRS)

    Namkoong, David

    1989-01-01

    Thermal energy storage (TES) enables a solar dynamic system to deliver constant electric power through periods of sun and shade. Brayton and Stirling power systems under current considerations for missions in the near future require working fluid temperatures in the 1100 to 1300+ K range. TES materials that meet these requirements fall into the fluoride family of salts. These salts store energy as a heat of fusion, thereby transferring heat to the fluid at constant temperature during shade. The principal feature of fluorides that must be taken into account is the change in volume that occurs with melting and freezing. Salts shrink as they solidify, a change reaching 30 percent for some salts. The location of voids that form as result of the shrinkage is critical when the solar dynamic system reemerges into the sun. Hot spots can develop in the TES container or the container can become distorted if the melting salt cannot expand elsewhere. Analysis of the transient, two-phase phenomenon is being incorporated into a three-dimensional computer code. The code is capable of analysis under microgravity as well as 1 g. The objective of the flight program is to verify the predictions of the code, particularly of the void location and its effect on containment temperature. The four experimental packages comprising the program will be the first tests of melting and freezing conducted under microgravity. Each test package will be installed in a Getaway Special container to be carried by the shuttle. The package will be self-contained and independent of shuttle operations other than the initial opening of the container lid and the final closing of the lid. Upon the return of the test package from flight, the TES container will be radiographed and finally partitioned to examine the exact location and shape of the void. Visual inspection of the void and the temperature data during flight will constitute the bases for code verification.

  15. Integrating seasonal optical and thermal infrared spectra to characterize urban impervious surfaces with extreme spectral complexity: a Shanghai case study

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yao, Xinfeng; Ji, Minhe

    2016-01-01

    Despite recent rapid advancement in remote sensing technology, accurate mapping of the urban landscape in China still faces a great challenge due to unusually high spectral complexity in many big cities. Much of this complication comes from severe spectral confusion of impervious surfaces with polluted water bodies and bright bare soils. This paper proposes a two-step land cover decomposition method, which combines optical and thermal spectra from different seasons to cope with the issue of urban spectral complexity. First, a linear spectral mixture analysis was employed to generate fraction images for three preliminary endmembers (high albedo, low albedo, and vegetation). Seasonal change analysis on land surface temperature induced from thermal infrared spectra and coarse component fractions obtained from the first step was then used to reduce the confusion between impervious surfaces and nonimpervious materials. This method was tested with two-date Landsat multispectral data in Shanghai, one of China's megacities. The results showed that the method was capable of consistently estimating impervious surfaces in highly complex urban environments with an accuracy of R2 greater than 0.70 and both root mean square error and mean average error less than 0.20 for all test sites. This strategy seemed very promising for landscape mapping of complex urban areas.

  16. Feasibility studies of aquifer thermal energy storage

    SciTech Connect

    Hall, S. H.

    1993-01-01

    Determining the feasibility of using aquifer thermal energy storage (ATES) for a particular heating or cooling application is an interdisciplinary effort, requiring (at a minimum) expertise in engineering and hydrology. The feasibility study should proceed in two distinct stages. The first stage, which is limited in scope and detail, is intended to show if an ATES system is technically and economically suited to the application. Focus of this preliminary investigation is on revealing the existence of factors that might weigh heavily against the use of ATES methods, and, in the absence of such factors, on choosing a suitable scale for the ATES plant and well field. The results of the preliminary investigation are used to determine if more detailed investigation--including field studies--are justified, and to facilitate comparing the advantages of ATES to those of other means of providing heating or cooling. The second stage of the feasibility study focuses on detailed aquifer characterization, refinement of engineering design and cost estimates, and economic and environmental risk analysis. The results of this investigation, if favorable, will be used to justify the expense of constructing the ATES system.

  17. Composite materials for thermal energy storage

    DOEpatents

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  18. Composite materials for thermal energy storage

    DOEpatents

    Benson, David K.; Burrows, Richard W.; Shinton, Yvonne D.

    1986-01-01

    The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  19. Open cycle ocean thermal energy conversion system

    SciTech Connect

    Wittig, J.M.

    1980-02-19

    An improved open cycle ocean thermal energy conversion system is described including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirtconduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a tranversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure.

  20. Ocean thermal energy conversion: a review

    SciTech Connect

    Yuen, P.C.

    1981-10-01

    The OTEC principle is discussed along with general system and cycle types, specific OTEC designs, OTEC applications, and the ocean thermal resource. The historic development of OTEC is briefly reviewed, and the status of French, Japanese, EUROCEAN, and US programs is assessed. US efforts are detailed and DOE's strategy outlined with OTEC-1 and Mini-OTEC information. Power system components of the more technically advanced closed-cycle OTEC concept are discussed. These include: heat exchangers, corrosion and biofouling countermeasures, working fluids, ammonia power systems, and on-platform seawater systems. Several open-cycle features are also discussed. A critical review is presented of the ocean engineering aspects of OTEC power systems. Major subsystems such as platform, cold water pipe, mooring system, dynamic positioning system, power transmission cable system are assessed for their relationships with the ocean environment and with each other. Nine available studies of OTEC costs are reviewed. Tentative comparisons are made between OTEC and traditional fuel costs, and OTEC products and markets are considered. Possible environmental and social effects of OTEC development are discussed. International, national, and local laws regulating OTEC plants and OTEC energy products are reviewed. Tax incentives, attitudes of the utilities, and additional legislative needs are considered. (LEW)

  1. Composite materials for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Benson, D. K.; Burrows, R. W.; Shinton, Y. D.

    1985-01-01

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations are discussed. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  2. Method and apparatus for thermal energy storage. [Patent application

    DOEpatents

    Gruen, D.M.

    1975-08-19

    A method and apparatus for storing energy by converting thermal energy to potential chemically bound energy in which a first metal hydride is heated to dissociation temperature, liberating hydrogen gas which is compressed and reacted with a second metal to form a second metal hydride while releasing thermal energy. Cooling the first metal while warming the second metal hydride to dissociation temperature will reverse the flow of hydrogen gas back to the first metal, releasing additional thermal energy. The method and apparatus are particularly useful for the storage and conversion of thermal energy from solar heat sources and for the utilization of this energy for space heating purposes, such as for homes or offices.

  3. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage

    SciTech Connect

    Durgun, E; Grossman, JC

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  4. Thermal energy and charge currents in multi-terminal nanorings

    NASA Astrophysics Data System (ADS)

    Kramer, Tobias; Kreisbeck, Christoph; Riha, Christian; Chiatti, Olivio; Buchholz, Sven S.; Wieck, Andreas D.; Reuter, Dirk; Fischer, Saskia F.

    2016-06-01

    We study in experiment and theory thermal energy and charge transfer close to the quantum limit in a ballistic nanodevice, consisting of multiply connected one-dimensional electron waveguides. The fabricated device is based on an AlGaAs/GaAs heterostructure and is covered by a global top-gate to steer the thermal energy and charge transfer in the presence of a temperature gradient, which is established by a heating current. The estimate of the heat transfer by means of thermal noise measurements shows the device acting as a switch for charge and thermal energy transfer. The wave-packet simulations are based on the multi-terminal Landauer-Büttiker approach and confirm the experimental finding of a mode-dependent redistribution of the thermal energy current, if a scatterer breaks the device symmetry.

  5. Building heating and cooling applications thermal energy storage program overview

    NASA Technical Reports Server (NTRS)

    Eissenberg, D. M.

    1980-01-01

    Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.

  6. Open cycle ocean thermal energy conversion system

    DOEpatents

    Wittig, J. Michael

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  7. Thermal energy scavenger (rotating wire modules)

    SciTech Connect

    Hochstein, P.A.; Milton, H.W.; Pringle, W.L.

    1980-11-04

    A thermal energy scavenger assembly is is described including a plurality of temperature-sensitive wires made of material which exhibits shape memory due to a thermoelastic, martensitic phase transformation. The wires are placed in tension between fixed and movable plates which are, in turn, supported by a pair of wheels which are rotatably supported by a housing for rotation about a central axis. A pair of upper and lower cams are fixed to the housing and cam followers react with the respective cams. Each cam transmits forces through a pair of hydraulic pistons. One of the pistons is connected to a movable plate to which one end of the wires are connected whereby a stress is applied to the wires to strain the wires during a first phase and whereby the cam responds to the unstraining of the wires during a second phase. A housing defines fluid compartments through which hot and cold fluid passes and flows radially through the wires whereby the wires become unstrained and shorten in length when subjected to the hot fluid for causing a reaction between the cam followers and the cams to effect rotation of the wheels about the central axis of the assembly, which rotation of the wheels is extracted through beveled gearing. The wires are grouped into a plurality of independent modules with each module having a movable plate, a fixed plate and the associated hydraulic pistons and cam follower. The hydraulic pistons and cam follower of a module are disposed at ends of the wires opposite from the ends of the wires at which the same components of the next adjacent modules are disposed so that the cam followers of alternate modules react with one of the cams and the remaining cam followers of the remaining modules react with the other cam. There is also included stress limiting means in the form of coil springs associated with alternate ends of the wires for limiting the stress or strain in the wires.

  8. Open cycle ocean thermal energy conversion system

    SciTech Connect

    Wittig, J.M.

    1980-02-19

    An improved open cycle ocean thermal energy conversion system includes a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flow path of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flow path and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support there for and impart a desired flow direction to the steam. 10 figs.

  9. Seasonal variation in thermal tolerance, oxygen consumption, antioxidative enzymes and non-specific immune indices of Indian hill trout, Barilius bendelisis (Hamilton, 1807) from central Himalaya, India.

    PubMed

    Sharma, Neeraj Kumar; Akhtar, M S; Pandey, Nityanand; Singh, Ravindra; Singh, Atul Kumar

    2015-08-01

    We studied the season dependent thermal tolerance, oxygen consumption, respiratory burst response and antioxidative enzyme activities in juveniles of Barilius bendelisis. The critical thermal maximum (CTmax), lethal thermal maximum (LTmax), critical thermal minimum (CTmin) and lethal thermal minimum (LTmin) were significantly different at five different seasons viz. winter (10.64°C), spring (16.25°C), summer (22.11°C), rainy (20.87°C) and autumn (17.77°C). The highest CTmax was registered in summer (36.02°C), and lowest CTmin was recorded during winter (2.77°C). Water temperature, dissolved oxygen and pH were strongly related to CTmax, LTmax, CTmin and LTmin suggesting seasonal acclimatization of B. bendelisis. The thermal tolerance polygon area of the B. bendelisis juveniles within the range of seasonal temperature (10.64-22.11°C) was calculated as 470.92°C(2). Oxygen consumption rate was significantly different (p<0.05) between seasons with maximum value during summer (57.66mgO2/kg/h) and lowest in winter (32.60mgO2/kg/h). Total white blood cell count including neutrophil and monocytes also showed significant difference (p<0.05) between seasons with maximum value during summer and minimum number in winter and were found correlated to temperature, dissolved oxygen, pH and respiratory burst activity. Respiratory burst activity of blood phagocytes significantly differed (p<0.05) among seasons with higher value during summer (0.163 OD540nm) and minimum in winter season (0.054 OD540nm). The activity of superoxide dismutase, catalase and glutathione-s-transferase both in liver and gill, also varied significantly (p<0.05) during different seasons. Overall results of this study suggest that multiple environmental factors play a role in seasonal acclimation in B. bendelisis, which modulate the thermal tolerance, oxygen consumption, respiratory burst activity and status of anti-oxidative potential in wild environment. PMID:26267511

  10. Seasonal energy storage system based on hydrogen for self sufficient living

    NASA Astrophysics Data System (ADS)

    Bielmann, M.; Vogt, U. F.; Zimmermann, M.; Züttel, A.

    SELF is a resource independent living and working environment. By on-board renewable electricity generation and storage, it accounts for all aspects of living, such as space heating and cooking as well as providing a purified rainwater supply and wastewater treatment, excluding food supply. Uninterrupted, on-demand energy and water supply are the key challenges. Off-grid renewable power supply fluctuations on daily and seasonal time scales impose production gaps that have to be served by local storage, a function normally fulfilled by the grid. While daily variations only obligate a small storage capacity, requirements for seasonal storage are substantial. The energy supply for SELF is reviewed based on real meteorological data and demand patterns for Zurich, Switzerland. A battery system with propane for cooking serves as a reference for battery-only and hybrid battery/hydrogen systems. In the latter, hydrogen is used for cooking and electricity generation. The analysis shows that hydrogen is ideal for long term bulk energy storage on a seasonal timescale, while batteries are best suited for short term energy storage. Although the efficiency penalty from hydrogen generation is substantial, in off-grid systems, this parameter is tolerable since the harvesting ratio of photovoltaic energy is limited by storage capacity.

  11. Seasonal and clonal variations in technological and thermal properties of raw Hevea natural rubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was undertaken over a ten-month period, under the environmental conditions within the state of Mato Grosso, Brazil, to evaluate the causes of variation in technological and thermal properties of raw natural rubber from different clones of Hevea brasiliensis (GT 1, PR 255, FX 3864 and RRIM...

  12. Seasonal patterns in energy partitioning of two freshwater marsh ecosystems in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Malone, Sparkle L.; Staudhammer, Christina L.; Loescher, Henry W.; Olivas, Paulo; Oberbauer, Steven F.; Ryan, Michael G.; Schedlbauer, Jessica; Starr, Gregory

    2014-08-01

    We analyzed energy partitioning in short- and long-hydroperiod freshwater marsh ecosystems in the Florida Everglades by examining energy balance components (eddy covariance derived latent energy (LE) and sensible heat (H) flux). The study period included several wet and dry seasons and variable water levels, allowing us to gain better mechanistic information about the control of and changes in marsh hydroperiods. The annual length of inundation is ~5 months at the short-hydroperiod site (25°26'16.5″N, 80°35'40.68″W), whereas the long-hydroperiod site (25°33'6.72″N, 80°46'57.36″W) is inundated for ~12 months annually due to differences in elevation and exposure to surface flow. In the Everglades, surface fluxes feed back to wet season precipitation and affect the magnitude of seasonal change in water levels through water loss as LE (evapotranspiration (ET)). At both sites, annual precipitation was higher than ET (1304 versus 1008 at the short-hydroperiod site and 1207 versus 1115 mm yr-1 at the long-hydroperiod site), though there were seasonal differences in the ratio of ET:precipitation. Results also show that energy balance closure was within the range found at other wetland sites (60 to 80%) and was lower when sites were inundated (60 to 70%). Patterns in energy partitioning covaried with hydroperiods and climate, suggesting that shifts in any of these components could disrupt current water and biogeochemical cycles throughout the Everglades region. These results suggest that the complex relationships between hydroperiods, energy exchange, and climate are important for creating conditions sufficient to maintain Everglades ecosystems.

  13. Effects of seasonal changes in dietary energy on body weight of captive Japanese macaques (Macaca fuscata).

    PubMed

    Aoki, Kouhei; Mitsutsuka, Syuuhei; Yamazaki, Ato; Nagai, Kazumi; Tezuka, Atsuko; Tsuji, Yamato

    2015-01-01

    Food availability varies seasonally for wild animals, and body weight fluctuates accordingly in the wild. In contrast, controlling availability of diet under captive condition is difficult from keepers' standpoint, and monotonous diet often causes health problems in captive animals. We evaluated the effects of a seasonally controlled diet on body weight of captive Japanese macaques (Macaca fuscata) in an outside enclosure at Ueno Zoo, Tokyo, Japan. We fed a high-energy diet in spring and fall, and a more restricted diet in summer and winter for 3 years (2011-2013). Seasonal changes in body weight were similar to those that occur in wild macaques: for both sexes, body weight was higher in spring and fall and lower in winter. A decrease in body weight between fall and winter occurred only in adults, which implied that reducing dietary intake in winter had a more severe effect on adults than on juveniles. Different from wild populations, the body weight of captive macaques did not decrease between spring and summer, which we attributed to a lack of movement within the enclosure and to excess energy intake in summer. In addition to controlling dietary composition, providing large enclosure with complex structure and making efforts of giving unpredictability in feeding are necessary to motivate the captive animals to be more active, which would cause the macaques to show seasonal change in body weight, which is found in wild. PMID:25823966

  14. Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort

    SciTech Connect

    Regnier, Cindy

    2012-08-31

    Historically thermal comfort in buildings has been controlled by simple dry bulb temperature settings. As we move into more sophisticated low energy building systems that make use of alternate systems such as natural ventilation, mixed mode system and radiant thermal conditioning strategies, a more complete understanding of human comfort is needed for both design and control. This guide will support building designers, owners, operators and other stakeholders in defining quantifiable thermal comfort parameters?these can be used to support design, energy analysis and the evaluation of the thermal comfort benefits of design strategies. This guide also contains information that building owners and operators will find helpful for understanding the core concepts of thermal comfort. Whether for one building, or for a portfolio of buildings, this guide will also assist owners and designers in how to identify the mechanisms of thermal comfort and space conditioning strategies most important for their building and climate, and provide guidance towards low energy design options and operations that can successfully address thermal comfort. An example of low energy design options for thermal comfort is presented in some detail for cooling, while the fundamentals to follow a similar approach for heating are presented.

  15. Buffer thermal energy storage for an air Brayton solar engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  16. Environmental assessment of the potential effects of aquifer thermal energy storage systems on microorganisms in groundwater

    SciTech Connect

    Hicks, R.J.; Stewart, D.L.

    1988-03-01

    The primary objective of this study was to evaluate the potential environmental effects (both adverse and beneficials) of aquifer thermal energy storage (ATES) technology pertaining to microbial communities indigenous to subsurface environments (i.e., aquifers) and the propagation, movement, and potential release of pathogenic microorganisms (specifically, Legionella) within ATES systems. Seasonal storage of thermal energy in aquifers shows great promise to reduce peak demand; reduce electric utility load problems; contribute to establishing favorable economics for district heating and cooling systems; and reduce pollution from extraction, refining, and combustion of fossil fuels. However, concerns that the widespread implementation of this technology may have adverse effects on biological systems indigeneous to aquifers, as well as help to propagate and release pathogenic organisms that enter thee environments need to be resolved. 101 refs., 2 tabs.

  17. Seasonal Variations in the CO Line Profile and the Retrieved Thermal/Pressure Structures in the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Khayat, Alain; Villanueva, G. L.; Mumma, M. J.; Riesen, T. E.; Tokunaga, A. T.

    2013-10-01

    We report retrievals of temperature vertical profiles up to 100 km over Tharsis and Syrtis regions on Mars obtained by inverting the strong rotational (3-2) line of carbon monoxide (CO) at 346 GHz. Observations of CO were made from mid Northern Spring to early Northern Summer on Mars (Ls= 36°-108°, 23 Nov, 2011 - 13 May, 2012) using the Caltech Submillimeter Observatory's (CSO) high-resolution heterodyne receiver (Barney) on top of Mauna Kea, Hawai'i. The temperature profiles were derived using our radiative transfer model that considers the latest spectroscopic constants for CO collisionally broadened by CO2. We observe notable changes of the line profile for different dates, which are directly related to seasonal variations in the thermal/pressure structure of the atmosphere. The seasonal variability of the martian CO line profile, the extracted temperature profiles, and comparisons with modeled profiles from the Mars Climate Database (Lewis et al, 1999) will be presented. We gratefully acknowledge support from the NASA Planetary Astronomy Program , NASA Astrobiology Institute, Planetary Atmospheres programs. This material is based upon work at the Caltech Submillimeter Observatory, which is operated by the California Institute of Technology under cooperative agreement with the National Science Foundation, grant number AST-0838261.

  18. Seasonal ecology and thermal constraints of Telenomus spp. (Hymenoptera: Scelionidae), egg parasitoids of the hemlock looper (Lepidoptera: Geometridae).

    PubMed

    Legault, Simon; Hébert, Christian; Blais, Julie; Berthiaume, Richard; Bauce, Eric; Brodeur, Jacques

    2012-12-01

    We describe seasonal patterns of parasitism by Telenomus coloradensis Crawford, Telenomus droozi Muesebeck, Telenomus flavotibiae Pelletier (Hymenoptera: Scelionidae), and Trichogramma spp. (Hymenoptera: Trichogrammatidae), egg parasitoids of the hemlock looper, Lambdina fiscellaria (Guenée) (Lepidoptera: Geometridae), after a 3-yr survey of defoliated stands in the lower St. Lawrence region (Quebec, Canada). Results from sentinel trap sampling indicate that T. coloradensis and T. droozi are the most common species, whereas parasitism by T. flavotibiae and Trichogramma spp. is rare. Telenomus coloradensis and T. droozi show similar seasonal periods of parasitism, both species being active in early spring (late April) at temperatures as low as 4°C. Using thermal threshold (T(0)) and thermal constant (K) for immature development of T. coloradensis males and females from egg to adult emergence, we estimated that the spring progeny emerges in the middle of the summer while hemlock looper eggs are absent from the forest environment. Parasitoid females would then mate and remain in the environment to 1) exploit alternate host species, 2) enter into quiescence and later parasitize eggs laid by hemlock looper females in the fall, 3) enter into a reproductive diapause and parasitize hemlock looper eggs only the next spring, or all of these. Although previous studies have shown that T. coloradensis can overwinter in its immature form within the host egg, our field and laboratory results indicate that in the lower St. Lawrence region, this species principally enters diapause as fertilized females, with a mean supercooling point of -30.6°C in the fall. PMID:23321076

  19. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  20. Thermal-energy conversion: Under pressure

    NASA Astrophysics Data System (ADS)

    Phillip, William A.

    2016-07-01

    The conversion of low-grade waste heat into electrical energy is an attractive opportunity to harvest a sustainable energy resource. A thermo-osmotic energy conversion process that uses Earth-abundant materials has now been shown to convert waste heat into electrical energy from sources at temperatures as low as 40 °C.

  1. Influence of gender and season on reduced glutathione concentration and energy reserves of Gammarus roeseli.

    PubMed

    Gismondi, Eric; Beisel, Jean-Nicolas; Cossu-Leguille, Carole

    2012-10-01

    As biomarkers are known to be influenced by biotic and abiotic factors (e.g. gender, temperature), we investigated over a one-year long sampling period, the influence of season and gender on reduced glutathione concentrations and its synthesis in the crustacean amphipod Gammarus roeseli. At the same time, we assessed energy reserves and malondialdehyde levels as toxic biomarker. Results have shown that, in both genders, reduced glutathione concentrations were inversely correlated to water temperature, and higher in females than in males whatever the season. Total lipid and glycogen contents were higher in females than in males, allowing females to have enough energy to assume the reproductive period and maintain high GSH concentrations for detoxification processes. Conversely, females have lower cell damages than males. These differences between genders could induce differential sensitivity in a contamination context, and thus affect the population. Females could resist better than males in contaminated environments, especially in spring when reduced glutathione concentration is the highest. PMID:22769238

  2. Solar photovoltaic/thermal (hybrid) energy project

    NASA Astrophysics Data System (ADS)

    Sheldon, D. B.

    1981-09-01

    Development of photovoltaic/thermal (PV/T) collectors and residential heat pump systems is reported. Candidate collector and residential heat pump systems were evaluated using the TRNSYS computer program. It is found that combined heat pump and PV array is a promising method for achieving economical solar cooling. Where the cooling load is dominant, exclusively PV collectors rather than PV/T collectors are preferred. Where the heating load is dominant, the thermal component of PV/T collectors makes a significant contribution to heating a residence. PV/T collectors were developed whose combined efficiency approaches the efficiency of a double glazed, exclusively thermal collector. The design and operational problems of air source heat pumps are reviewed. Possible effects of compressor startup transients on PV power system operation are discussed.

  3. Solar thermal energy utilization: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Bibliographic series, which is periodically updated, cites documents published since 1957 relating to practical thermal utilization of solar energy. Bibliography is indexed by author, corporate source, title, and keywords.

  4. Energy consumption in buildings and female thermal demand

    NASA Astrophysics Data System (ADS)

    Kingma, Boris; van Marken Lichtenbelt, Wouter

    2015-12-01

    Energy consumption of residential buildings and offices adds up to about 30% of total carbon dioxide emissions; and occupant behaviour contributes to 80% of the variation in energy consumption. Indoor climate regulations are based on an empirical thermal comfort model that was developed in the 1960s (ref. ). Standard values for one of its primary variables--metabolic rate--are based on an average male, and may overestimate female metabolic rate by up to 35% (ref. ). This may cause buildings to be intrinsically non-energy-efficient in providing comfort to females. Therefore, we make a case to use actual metabolic rates. Moreover, with a biophysical analysis we illustrate the effect of miscalculating metabolic rate on female thermal demand. The approach is fundamentally different from current empirical thermal comfort models and builds up predictions from the physical and physiological constraints, rather than statistical association to thermal comfort. It provides a substantiation of the thermal comfort standard on the population level and adds flexibility to predict thermal demand of subpopulations and individuals. Ultimately, an accurate representation of thermal demand of all occupants leads to actual energy consumption predictions and real energy savings of buildings that are designed and operated by the buildings services community.

  5. Applications of thermal energy storage in the cement industry

    NASA Technical Reports Server (NTRS)

    Jaeger, F. A.; Beshore, D. G.; Miller, F. M.; Gartner, E. M.

    1978-01-01

    In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development.

  6. Solar Thermal Energy Storage in a Photochromic Macrocycle.

    PubMed

    Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2016-07-25

    The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release. PMID:27253462

  7. Central unresolved issues in thermal energy storage for building heating and cooling

    SciTech Connect

    Swet, C.J.; Baylin, F.

    1980-07-01

    This document explores the frontier of the rapidly expanding field of thermal energy storage, investigates unresolved issues, outlines research aimed at finding solutions, and suggests avenues meriting future research. Issues related to applications include value-based ranking of storage concepts, temperature constraints, consistency of assumptions, nomenclature and taxonomy, and screening criteria for materials. Issues related to technologies include assessing seasonal storage concepts, diurnal coolness storage, selection of hot-side storage concepts for cooling-only systems, phase-change storage in building materials, freeze protection for solar water heating systems, and justification of phase-change storage for active solar space heating.

  8. Laser-assisted manufacturing of thermal energy devices

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Tewolde, Mahder; Kim, Ki-Hoon; Seo, Dong-Min; Longtin, Jon P.; Hwang, David J.

    2016-03-01

    In this study, we will present recent progress in the laser-assisted manufacturing of thermal energy devices that require suppressed thermal transport characteristics yet maintaining other functionalities such as electronic transport or mechanical strength. Examples of such devices to be demonstrated include thermoelectric generator or insulating materials. To this end, it will be shown that an additive manufacturing approaches can be facilitated and improved by unique processing capabilities of lasers in composite level. In order to tailor thermal characteristics in thermal devices, we will mainly investigate the potential of laser heating, curing, selective removal and sintering processes of material systems in the composite level.

  9. Pulse thermal energy transport/storage system

    DOEpatents

    Weislogel, Mark M.

    1992-07-07

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  10. The Influence of Seasonal Climatic Parameters on the Permafrost Thermal Regime in West Siberia

    NASA Astrophysics Data System (ADS)

    Popova, V. V.; Shmakin, A. B.

    2009-12-01

    Statistical correlations between seasonal air temperatures and snow depths and active layer depths and permafrost temperatures were analyzed for tundra (Marre-Salle) and northern taiga (Nadym) sites in Western Siberia. Interannual variations in active layer depth in the tundra zone correlated with the average air temperature of the current summer, and in peatland and humid tundra, also with summer temperatures of the preceding 1-2 years. In the northern taiga zone, the active layer depth related to current summer air temperature and to a lesser extent, to spring and/or winter air temperatures. Variations in summer permafrost temperatures at 5-10m depth were correlated with spring air temperatures in the current and preceding 1-2 years. The weather regime during the preceding 1-2 years, therefore, reinforced or weakened ground temperature variations in a given year. Overall, the most important factors influencing the permafrost regime were spring and summer air temperatures, and in one case snow depth. However, statistical links between meteorological and permafrost parameters varied between the tundra and northern taiga zones and among landscape types within each zone, emphasizing the importance of analyses at short temporal scales and for individual terrain units.

  11. Seasonal variations in lower stratospheric gravity wave energy above the Falkland Islands

    NASA Astrophysics Data System (ADS)

    Moffat-Griffin, T.; Jarvis, M. J.; Colwell, S. R.; Kavanagh, A. J.; Manney, G. L.; Daffer, W. H.

    2013-10-01

    gravity wavefield in the lower stratosphere (between 15 km and 22 km altitude) above Mount Pleasant Airport (51°49'S, 58°26'W) on the Falkland Islands is studied using over 2100 high-resolution radiosonde soundings from 2002 to 2010. The seasonal variation in vertical direction of propagation shows a small decrease in numbers of upward propagating waves that is related to critical level filtering; however, there is a very large increase in numbers of downward propagating waves between July and September; this is attributed to the proximity of the edge of the polar vortex. There is a seasonal variation in gravity wave energy density, with a large peak during the austral autumn equinox; this is markedly different to results in the literature both from Rothera, on the Antarctic Peninsula, and stations on the main Antarctic continent. This seasonal pattern has been shown to be linked to variations in the sources of upward propagating gravity waves. The seasonal variation in gravity wave characteristics above Mount Pleasant Airport seen in our results suggests that the gravity wavefield in this region is determined by a combination of different gravity wave sources located above and below the lower stratosphere.

  12. Legal and regulatory issues affecting aquifer thermal energy storage

    SciTech Connect

    Hendrickson, P.L.

    1981-10-01

    This document updates and expands the report with a similar title issued in October 1980. This document examines a number of legal and regulatory issues that potentially can affect implementation of the aquifer thermal energy storage (ATES) concept. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

  13. Thermally driven electrokinetic energy conversion with liquid water microjets

    NASA Astrophysics Data System (ADS)

    Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; Saykally, Richard J.

    2015-11-01

    A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.

  14. Modeling 1993-2008 climatology of seasonal general circulation and thermal structure in the Great Lakes using FVCOM

    NASA Astrophysics Data System (ADS)

    Bai, Xuezhi; Wang, Jia; Schwab, David J.; Yang, Yi; Luo, Lin; Leshkevich, George A.; Liu, Songzhi

    2013-05-01

    An unstructured Finite Volume Coastal Ocean Model was applied to all five Great Lakes simultaneously to simulate circulation and thermal structure from 1993 to 2008. Model results are compared to available observations of currents and temperature and previous modeling work. Maps of climatological circulation for all five Great lakes are presented. Winter currents show a two-gyre type circulation in Lakes Ontario and Erie and one large-scale cyclonic circulation in Lakes Michigan, Huron, and Superior. During the summer, a cyclonic circulation remains in Lakes Superior; a primarily cyclonic circulation dominates upper and central Lake Huron; Lake Ontario has a single cyclonic circulation, while circulation in the central basin of Lake Erie remains two-gyre type; Lake Michigan has a cyclonic gyre in the north and an anti-cyclonic one in the south. The temperature profile during the summer is well simulated when a surface wind-wave mixing scheme is included in the model. Main features of the seasonal evolution of water temperature, such as inverse temperature stratification during the winter, the spring and autumn overturn, the thermal bar, and the stratification during summer are well reproduced. The lakes exhibit significant annual and interannual variations in current speed and temperature.

  15. High Density Thermal Energy Storage with Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  16. Thermal energy storage apparatus enabling use of aqueous or corrosive thermal storage media

    SciTech Connect

    James, T.W.

    1993-08-31

    A holdover plate is described for thermal energy storage in refrigeration and air conditioning systems, the holdover plate comprising: a heat exchanger with an adjacent space in close proximity thereto; a plurality of expandable capsules containing a thermal energy storage medium, the capsules substantially filling the adjacent space and the capsules including means to provide for expansion of the thermal energy storage medium without altering outer envelope dimensions of the capsules; a containment means forming an exterior of the holdover plate and surrounding the heat exchanger and the adjacent space filled with the capsules, the containment means further containing a convective coupling fluid which thermally couples and is non-corrosive to the heat exchanger, the capsules, and the containment means; and wherein the convective coupling fluid transfers heat primarily through natural convection and conduction and does not freeze at operational temperatures of the heat exchanger.

  17. Solar energy system performance evaluation-seasonal report for Elcam San Diego, San Diego, California

    NASA Astrophysics Data System (ADS)

    1980-05-01

    The solar energy system, Elcam San Diego, was designed to supply domestic hot water heating for a single family residence located in Encinitas, California. System description, performance assessment, operating energy, energy savings, maintenance, and conclusions are presented. The system is a 'Sunspot' two tank cascade type, where solar energy is supplied to either a 66 gallon preheat tank (solar storage) or a 40 gallon domestic hot water tank. Water is pumped directly from one of the two tanks, through the 65 square feet collector array and back into the same tank. Freeze protection is provided by automatically circulating hot water from the hot water tank through the collectors and exposed plumbing when freezing conditions exist. Auxiliary energy is supplied by natural gas. Analysis is based on instrumented system data monitored and collected for one full season of operation.

  18. Solar energy system performance evaluation-seasonal report for Elcam San Diego, San Diego, California

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system, Elcam San Diego, was designed to supply domestic hot water heating for a single family residence located in Encinitas, California. System description, performance assessment, operating energy, energy savings, maintenance, and conclusions are presented. The system is a 'Sunspot' two tank cascade type, where solar energy is supplied to either a 66 gallon preheat tank (solar storage) or a 40 gallon domestic hot water tank. Water is pumped directly from one of the two tanks, through the 65 square feet collector array and back into the same tank. Freeze protection is provided by automatically circulating hot water from the hot water tank through the collectors and exposed plumbing when freezing conditions exist. Auxiliary energy is supplied by natural gas. Analysis is based on instrumented system data monitored and collected for one full season of operation.

  19. Seasonal and inter-annual variability of energy exchange above a boreal Scots pine forest

    NASA Astrophysics Data System (ADS)

    Launiainen, S.

    2010-12-01

    Twelve-years of eddy-covariance measurements conducted above a boreal Scots pine forest in Hyytiälä, Southern Finland, were analyzed to assess the seasonal and inter-annual variability of surface conductance (gs) and energy partitioning. The gs had distinct annual course, driven by the seasonal cycle of the Scots pine. Low gs (2-3 mm s-1 in April) cause the sensible heat flux to peak in May-June while evapotranspiration takes over later in July-August when gs is typically 5-7 mm s-1. Hence, during normal years Bowen ratio decreases from 4-6 in April to 0.7-0.9 in August. Sensitivity of gs to ambient vapor pressure deficit (D) was relatively constant but the reference value at D = 1 kPa varied seasonally and between years. Only two drought episodes when volumetric soil moisture content in upper mineral soil decreased below 0.15 m3 m-3 occurred during the period. Below this threshold value, transpiration was strongly reduced, which promoted sensible heat exchange increasing Bowen ratio to 3-4. Annual evapotranspiration varied between 218 and 361 mm and accounted between 50% and 90% of equilibrium evaporation. The forest floor contributed between 16 and 25% of the total evapotranspiration on annual scale. The fraction stayed similar over the observed range of environmental conditions including drought periods. The inter-annual variability of evapotranspiration could not be linked to any mean climate variable while the summertime sensible heat flux and net radiation were well explained by global radiation. The energy balance closure varied annually between 0.66 and 0.95 and had a distinct seasonal cycle with worse closure in spring when a large proportion of available energy is partitioned into sensible heat.

  20. Seasonal and inter annual variability of energy exchange above a boreal Scots pine forest

    NASA Astrophysics Data System (ADS)

    Launiainen, S.

    2010-08-01

    Twelve-years of eddy-covariance measurements conducted above a boreal Scots pine forest in Hyytiälä, Southern Finland, were analyzed to assess the seasonal and inter-annual variability of surface conductance (gs) and energy partitioning. The gs had distinct annual course, driven by the seasonal cycle of the Scots pine. Low gs (2-3 mm s-1 in April) restricted transpiration in springtime and caused the sensible heat flux to peak in May-June while evapotranspiration takes over later in July-August when gs is typically 5-7 mm s-1. Hence, during normal years Bowen ratio decreases from 4-6 in April to 0.7-0.9 in August. Sensitivity of gs to ambient vapor pressure deficit (D) was relatively constant but the reference value at D=1 kPa varied seasonally and between years. Only two drought episodes when volumetric soil moisture content in upper mineral soil decreased below 0.15 m3 m-3 occurred during the period. Below this threshold value transpiration was strongly reduced, which promoted sensible heat exchange increasing Bowen ratio to 3-4. Annual evapotranspiration varied between 218 and 361 mm and accounted between 50% and 90% of equilibrium evaporation. The forest floor contributed between 16 and 25% of the total evapotranspiration on annual scale. The fraction stayed similar over the observed range of environmental conditions including drought. The inter-annual variability of evapotranspiration could not be linked to any mean climate parameter while the summertime sensible heat flux and net radiation were well explained by global radiation. The energy balance closure varied annually between 0.66 and 0.95 and had a distinct seasonal cycle with worse closure in spring when large proportion of available energy is partitioned into sensible heat.

  1. The satellite-determined thermal structure of heat low during Indian south-west monsoon season

    NASA Astrophysics Data System (ADS)

    Joshi, Prakash C.; Desai, Pranav S.

    One of the important climatic features of the south-west (SW) monsoon period in the Indian subcontinent is the appearance of a shallow heat low centred around Pakistan region. The details of this system are not easy to observe, as the region lies mostly over a desert area. However, satellite soundings provide a frequent and synoptic view of the system. We have undertaken a study of the properties of this system through lower level and upper level thermal structure around the region using NOAA temperature soundings. The results for the months of April, May and June in the year 1982 are presented here. The temperature changes in the region are studied in relation to the date of the onset of SW-monsoon and its activity in the Indian sub-continent.

  2. Thermal energy transport in a surface phonon-polariton crystal

    NASA Astrophysics Data System (ADS)

    Ordonez-Miranda, Jose; Tranchant, Laurent; Joulain, Karl; Ezzahri, Younes; Drevillon, Jérémie; Volz, Sebastian

    2016-01-01

    We demonstrate that the energy transport of surface phonon polaritons can efficiently be observed in a crystal made up of a three-dimensional assembly of spheroidal nanoparticles of silicon carbide. The ultralow phonon thermal conductivity of this nanostructure, along with its high surface area-to-volume ratio, allows the predominance of the polariton energy over that generated by phonons. The polariton dispersion relation, propagation length, and thermal conductance are numerically determined as functions of the size, shape, and temperature of the nanoparticles. It is shown that the thermal conductance of a crystal with prolate nanoparticles at 500 K and a minor (major) axis of 50 nm (5 μ m ) is 0.5 nW K-1 , which is comparable to the quantum of thermal conductance of polar nanowires. We also show that a nanoparticle size dispersion of up to 200 nm does not change significantly the polariton energy, which supports the technological feasibility of the proposed crystal.

  3. Rapid Charging of Thermal Energy Storage Materials through Plasmonic Heating

    PubMed Central

    Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao

    2014-01-01

    Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites. PMID:25175717

  4. The concrete columns as a sensible thermal energy storage medium and a heater

    NASA Astrophysics Data System (ADS)

    Ünalan, Sebahattin; Özrahat, Evrim

    2014-08-01

    This study investigated storage possibility of sensible thermal energy in the concrete columns of multi-storey buildings and the heating performance of the indoors with the stored energy. In the suggested system, the dry air heated in an energy center will be circulated in stainless steel pipes through columns. The sensible thermal energy would firstly be stored by means of forced convection in column medium. Then, the stored thermal energy will transfer by natural convection and radiation from the column surfaces to indoor spaces. The transient thermal calculations are realized for a flat of the 11-storey building in Kayseri city of Turkey. The thermal energy requirement of the flat is nearby 5.3 kW as an average of a winter season. The simplified transient calculations were carried out over a concrete hollow cylindrical column having outer radius of 0.31 m and inner radius of 0.05 m corresponding an averaged column section in the sample flat. The flow temperature was selected between T = 350 and 500 K, which are considerably lower than the temperature of 573 K assumed as a limit for thermal strength of the concrete in the literature. The flow velocity ranges were selected between V = 1.0 and 5.0 m/s. The initial temperature was assumed as 293 K. After the first energy charging process of 23 h, for T = 350 K and V = 1.0 m/s, the total heat flux from the column surfaces into indoors are nearby 5.5 kW. The first charging time required to reach the energy requirement of 5.3 kW is decreased by increasing the flow velocity and temperature. Also for 5.0 m/s-350 K and 5.0 m/s-450 K, this time can decrease to 10 and 4.5 h, respectively. In addition, with 4.0 m/s-360 K or 2.0 m/s-400 K, after the energy charging of 8 h, the energy requirement of 5.3 kW can be provided by the energy discharging of 16 h and the energy charging of 8 h during 7 days. The results are very attractive in terms of the building heating systems of the future.

  5. Modelling the Variability of the Wind Energy Resource on Monthly and Seasonal Timescales

    NASA Astrophysics Data System (ADS)

    Alonzo, Bastien; Ringkjøb, Hans-Kristian; Jourdier, Benedicte; Drobinski, Philippe; Plougonven, Riwal; Tankov, Peter

    2016-04-01

    We study the variability of the wind energy resource in France on monthly to seasonal timescales. On such long-term timescales, the variability of the surface wind speed is strongly influenced by the large-scale situation of the atmosphere. As an example variations in the position of the storm track west of France directly impact surface wind in the North of France in autumn and winter. We investigate the relationship between the large scale circulation and the surface wind speed, summarizing the former by a principal component analysis, so that the large-scale mass distribution is described by a small set of coefficients. We then apply a multi polynomial relationship to model the monthly and seasonal distribution of surface wind speeds given the knowledge of these few coefficients. Different methods for this reconstruction are assessed. While the first attempts to reconstruct the wind with a daily resolution, the three others directly aim at reconstructing the distribution of the wind, assuming it is well described as a Weibull distribution : One is based on the reconstruction of 3 moments of this theoretical distribution, another is based on the reconstruction of two percentiles, and the last one is based on the direct reconstruction of the shape and scale parameter of the Weibull distribution. The last two methods show good performance and better skills to reproduce the monthly and seasonal distribution of the wind speed with respect to the climatology. We then apply those methods to seasonal forecasts from the European Center for Medium-range Weather Forecasts (ECMWF) in an attempt of forecasting the monthly and seasonal distribution of the surface wind speed. For one month time-horizon, the forecasting performance is superior to climatology.

  6. A RESEARCH PLAN FOR THE USE OF THERMAL AVHRR IMAGERY TO STUDY ANNUAL AND SEASONAL MEAN SURFACE TEMPERATURES FOR LARGE LAKES IN NORTH AMERICA

    EPA Science Inventory

    Surface and vertical temperature data will be obtained from several large lakes With surface areas large enough to be effectively sampled with AVHRR imagery. Yearly and seasonal patterns of surface and whole water column thermal values will be compared to estimates of surface tem...

  7. Thermal conductor for high-energy electrochemical cells

    DOEpatents

    Hoffman, Joseph A.; Domroese, Michael K.; Lindeman, David D.; Radewald, Vern E.; Rouillard, Roger; Trice, Jennifer L.

    2000-01-01

    A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

  8. Aroma composition changes in early season grapefruit juice produced from thermal concentration.

    PubMed

    Lin, Jianming; Rouseff, Russell L; Barros, Sandy; Naim, Michael

    2002-02-13

    Differences in aroma components and total volatiles between a single unpasteurized Marsh grapefruit juice and its 65 Brix concentrate reconstituted to 10 Brix were examined using GC-olfactometry (GC-O) and GC-FID. Total volatiles (FID) in the reconstituted concentrate were reduced to less than 5% of initial values, but 57% of total aroma (GC-O) remained. Forty-one aroma-active compounds were observed in unpasteurized single strength juice, whereas 27 components were found in the unflavored reconstituted concentrate. Aroma-active compounds were classified into grapefruit/sulfury, sweet/fruity, fresh/citrusy, green/fatty/metallic, and cooked/meaty groups. Five of six components in the sweet/fruity and 14 of 18 green/fatty/metallic components survived thermal concentration. However, only 4-mercapto-4-methyl-2-pentanone in the grapefruit/sulfury group, and linalool and nootkatone from the fresh/citrusy group, were found in the reconstituted concentrate. Methional was the only aroma compound in the cooked/meaty category found in both juice types. beta-Damascenone and 1-p-menthen-8-thiol were found only in the reconstituted concentrate. 4-Mercapto-4-methyl-2-pentanol was found for the first time in grapefruit juice. PMID:11829649

  9. Magneto-Thermo-Triboelectric Generator (MTTG) for thermal energy harvesting

    NASA Astrophysics Data System (ADS)

    Jang, Kwang Yeop; Lee, James; Lee, Dong-Gun

    2016-04-01

    We present a novel thermal energy harvesting system using triboelectric effect. Recently, there has been intensive research efforts on energy harvesting using triboelectric effect, which can produce surprising amount of electric power (when compared to piezoelectric materials) by rubbing or touching (i.e, electric charge by contact and separation) two different materials together. Numerous studies have shown the possibility as an attractive alternative with good transparency, flexibility and low cost abilities for its use in wearable device and smart phone applications markets. However, its application has been limited to only vibration source, which can produce sustained oscillation with maintaining contact and separation states repeatedly for triboelectric effect. Thus, there has been no attempt toward thermal energy source. The proposed approach can convert thermal energy into electricity by pairing triboelectric effect and active ferromagnetic materials The objective of the research is to develop a new manufacturing process of design, fabrication, and testing of a Magneto-Thermo-Triboelectric Generator (MTTG). The results obtained from the approach show that MTTG devices have a feasible power energy conversion capability from thermal energy sources. The tunable design of the device is such that it has efficient thermal capture over a wide range of operation temperature in waste heat.

  10. Engineering evaluation of a sodium hydroxide thermal energy storage module

    NASA Technical Reports Server (NTRS)

    Perdue, D. G.; Gordon, L. H.

    1980-01-01

    An engineering evaluation of thermal energy storage prototypes was performed in order to assess the development status of latent heat storage media. The testing and the evaluation of a prototype sodium hydroxide module is described. This module stored off-peak electrical energy as heat for later conversion to domestic hot water needs.

  11. SURVEY OF EPA FACILITIES FOR SOLAR THERMAL ENERGY APPLICATIONS

    EPA Science Inventory

    A study was done to assess the feasibility of applying solar thermal energy systems to EPA facilities. A survey was conducted to determine those EPA facilities where solar energy could best be used. These systems were optimized for each specific application and the system/facilit...

  12. Modeling Thermal and Environmental Effects of Prototype Scale Ocean Thermal Energy Conversion

    NASA Astrophysics Data System (ADS)

    Hamrick, J. M.

    2010-12-01

    Ocean thermal energy conversion (OTEC) utilizes the temperature difference between the mix lay and deep water electricity generation. The small temperature difference compared to other thermal-electric generation devises, typically between 20 and 25 C, requires the substantial volumetric flows on the order of hundreds of cubic meters per second to generate net energy and recover capital investments. This presentation described the use of a high resolution three-dimensional EFDC model with an embedded jet-plume model to simulate the thermal and environmental impacts of a number of prototype OTEC configurations on the southwest coast of Oahu, Hawaii. The EFDC model is one-way nested into a larger scale ROMS model to allow for realistic incorporation of region processes including external and internal tides and sub-tidal circulation. Impacts on local thermal structure and the potential for nutrient enrichment of the mixed layer are addressed with model and presented.

  13. Composition, seasonal change, and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission

    NASA Astrophysics Data System (ADS)

    Le Gall, A.; Malaska, M. J.; Lorenz, R. D.; Janssen, M. A.; Tokano, T.; Hayes, A. G.; Mastrogiuseppe, M.; Lunine, J. I.; Veyssière, G.; Encrenaz, P.; Karatekin, O.

    2016-02-01

    For the last decade, the passive radiometer incorporated in the Cassini RADAR has recorded the 2.2 cm wavelength thermal emission from Titan's seas. In this paper, we analyze the radiometry observations collected from February 2007 to January 2015 over one of these seas, Ligeia Mare, with the goal of providing constraints on its composition, bathymetry, and dynamics. In light of the depth profile obtained by Mastrogiuseppe et al. (2014) and of a two-layer model, we find that the dielectric constant of the sea liquid is <1.8, and its loss tangent is <3.6-2.1+4.3×10-5. Both results point to a composition dominated by liquid methane rather than ethane. A high methane concentration suggests that Ligeia Mare is primarily fed by methane-rich precipitation and/or ethane has been removed from it (e.g., by crustal interaction). Our result on the dielectric constant of the seafloor is less constraining (<2.9-0.9+0.9), but we favor a scenario where the floor of Ligeia Mare is covered by a sludge of compacted and possibly nitrile-rich organic material formed by the deposition of photochemical haze or by rain washing of the nearby shores. We use these results to produce a low-resolution bathymetry map of the sea. We also estimate the temperature variation of the bulk sea between February 2007 and July 2013 to be <2 K, which provides a constraint on its net evaporative cooling currently being explored in ocean circulation models. Lastly, we suggest a lag in the summer warming of the northern polar terrains.

  14. Micro rectennas: Brownian ratchets for thermal-energy harvesting

    SciTech Connect

    Pan, Y.; Powell, C. V.; Balocco, C.; Song, A. M.

    2014-12-22

    We experimentally demonstrated the operation of a rectenna for harvesting thermal (blackbody) radiation and converting it into dc electric power. The device integrates an ultrafast rectifier, the self-switching nanodiode, with a wideband log-periodic spiral microantenna. The radiation from the thermal source drives the rectenna out of thermal equilibrium, permitting the rectification of the excess thermal fluctuations from the antenna. The power conversion efficiency increases with the source temperatures up to 0.02% at 973 K. The low efficiency is attributed mainly to the impedance mismatch between antenna and rectifier, and partially to the large field of view of the antenna. Our device not only opens a potential solution for harvesting thermal energy but also provides a platform for experimenting with Brownian ratchets.

  15. Metal hydrides for concentrating solar thermal power energy storage

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  16. Using the shield for thermal energy storage in PULSAR

    NASA Astrophysics Data System (ADS)

    Sager, G. T.; Wong, C. P. C.; Sze, D.-K.; Bathe, C. G.; Blanchard, J. P.; Brimer, C.; Cheng, E. T.; El-Guebaly, L. A.; Hasan, M. Z.; Najmabadi, F.

    1994-04-01

    The PULSAR pulsed tokamak power plant design utilizes the outboard shield for thermal energy storage to maintain full 1000 MW(e) output during the dwell period of 200 s. Thermal energy resulting from direct nuclear heating is accumulated in the shield during the 7200 s fusion power production phase. The maximum shield temperature may be much higher than that for the blanket because radiation damage is significantly reduced. During the dwell period, thermal power discharged from the shield and coolant temperature are simultaneously regulated by controlling the coolant mass flow rate at the shield inlet. This is facilitated by throttled coolant bypass. Design concepts using helium and lithium coolant have been developed. Two-dimensional, time-dependent thermal hydraulic calculations were performed to confirm performance capabilities required of the design concepts. The results indicate that the system design and performance can accommodate uncertainties in material limits or the length of the dwell period.

  17. Conversion of broadband to narrowband thermal emission through energy recycling

    NASA Astrophysics Data System (ADS)

    de Zoysa, Menaka; Asano, Takashi; Mochizuki, Keita; Oskooi, Ardavan; Inoue, Takuya; Noda, Susumu

    2012-08-01

    Converting from a broadband to a narrowband thermal emission spectrum with minimal loss of energy is important in the creation of efficient environmental sensors and biosensors as well as thermo-photovoltaic power generation systems. Here, we demonstrate such thermal emission control by manipulating photonic modes with photonic crystals as well as material absorption with quantum-well intersubband transitions. We show that the emission peak intensity for our device can be more than four times greater than that of a blackbody sample under the same input power and thermal management conditions due to an increase in the temperature compared to the blackbody reference, and the emission bandwidth and angular spread are narrowed by a factor of 30 and 8, respectively. These results indicate that the energy saved by thermal emission control can be recycled and concentrated to enhance the narrow peak emission intensity.

  18. Study of thermal energy storage using fluidized bed heat exchangers

    NASA Technical Reports Server (NTRS)

    Weast, T. E.; Shannon, L. J.; Ananth, K. P.

    1980-01-01

    The technical and economic feasibility of fluid bed heat exchangers (FBHX) for thermal energy storage (TES) in waste heat recovery applications is assessed by analysis of two selected conceptual systems, the rotary cement kiln and the electric arc furnace. It is shown that the inclusion of TES in the energy recovery system requires that the difference in off-peak and on-peak energy rates be large enough so that the value of the recovered energy exceeds the value of the stored energy by a wide enough margin to offset parasitic power and thermal losses. Escalation of on-peak energy rates due to fuel shortages could make the FBHX/TES applications economically attractive in the future.

  19. Geothermal energy enhancement by thermal fracture. [REX (Rock Energy Extraction)

    SciTech Connect

    Demuth, R.B.; Harlow, F.H.

    1980-12-01

    A large, vertical, circular fracture created deep within hot rock is connected to the surface through two holes. The inlet provides a source of cold water and the outlet extracts heated water. Cooling of the rock produces thermal stresses that fracture the rock adjacent to the primary crack, thereby enhancing the heat extraction rate by means of convective transport. The properties of the thermal fracture network vary with position and time. The REX code for high-speed computer was written and used to study the coupled processes of primary-crack flow and lateral thermal fracture heat transport. Calculations for elapsed times of 100 y show that thermal fracture enhancement can double the heat extraction rate over the results from conduction alone. Long-term enhancement predictions depend on data from rock-mechanics studies, which the REX code is prepared to accept as they become available.

  20. Ocean thermal energy conversion: A review

    NASA Astrophysics Data System (ADS)

    Yuen, P. C.

    1981-10-01

    The OTEC principle along with general system and cycle, types, specific OTEC designs, OTEC applications, and the ocean thermal resource are discussed. The historic development of OTEC is reviewed, and the status of French, Japanese, EUROCEAN, and US programs is assessed. Power system components of the more technically advanced closed cycle OTEC concept are examined. These include: heat exchangers, corrosion and biofouling countermeasures, working fluids, ammonia power systems, and on platform seawater systems. Several open cycle features are also discussed. The ocean engineering aspects of OTEC power systems are reviewed. Major subsystems such as platform, cold water pipe, mooring system, dynamic positioning system, power transmission cable system are assessed for their relationships with the ocean environment and with each other. Possible environmental and social effects of OTEC development are discussed.

  1. Buffer thermal energy storage for a solar Brayton engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.

  2. Seasonal variability of antioxidant biomarkers and energy reserves in the freshwater gammarid Gammarus roeseli.

    PubMed

    Sroda, Sophie; Cossu-Leguille, Carole

    2011-04-01

    In gammarids, behavioural and biochemical biomarkers are commonly used in ecotoxicological studies. In our study, we have investigated seasonal variations of several biochemical biomarkers in Gammarus roeseli, a freshwater species. Organisms were sampled monthly over a 1-year period. Gender was distinguished to measure antioxidant enzyme activities like total glutathione peroxidase (GPxtot), selenium-dependent glutathione peroxidase (SeGPx) and catalase enzymes, lipoperoxidation end-product (malondialdehyde, MDA), and energy reserves with protein and lipid contents. In the same time, usual water physico-chemical parameters were measured at the sampling site. A based-gender difference was observed for parameters related to oxidative stress. Females showed higher antioxidant enzyme activities and lower MDA level than males. Parameters related to oxidative stress and energy reserves appeared correlated with temperature and physiological status of organisms. Females GPx activities were lower in autumn and winter when no breeding occurred. In both gender, MDA levels were correlated with temperature with an increase of lipoperoxidation in summer. Lipid contents were the lowest in summer and the highest in winter, probably due to the reproductive status of organisms and their feeding behaviour. Gender-based differences of biochemical parameters suggest a specific sensitivity of males and females in ecotoxicological experiments. Moreover, organisms could be more vulnerable in summer when MDA levels are high and energy reserves low. Deleterious effect of xenobiotics would be different with gender and season. PMID:21215985

  3. Solar thermal parabolic dish energy applications

    NASA Technical Reports Server (NTRS)

    Pijawka, W.

    1981-01-01

    Vu-graphs are presented that show that applications are a viable distributed renewable power generation option. Quality energy can be produced in the form of electricity and high temperature heat. Modular systems are described that can be distributed to new or existing plants and that are mass producible with the associated economies of production.

  4. Electromagnetic thermal corrections to Casimir energy

    NASA Astrophysics Data System (ADS)

    Nazari, Borzoo

    2016-07-01

    In [B. Nazari, Mod. Phys. Lett. A 31, 1650007 (2016)], we calculated finite temperature corrections to the energy of the Casimir effect of two conducting parallel plates in a general weak gravitational field. The calculations was done for the case a scalar field was present between the plates. Here we find the same results in the presence of an electromagnetic field.

  5. Chemical energy storage system for SEGS solar thermal power plant

    NASA Astrophysics Data System (ADS)

    Brown, D. R.; Lamarche, J. L.; Spanner, G. E.

    1991-09-01

    In October 1988, a symposium was held in Helendale, California, to discuss thermal energy storage (TES) concepts applicable to medium temperature (200 to 400 C) solar thermal electric power plants, in general, and the solar electric generating system (SEGS) plants developed by Luz International, in particular. Chemical reaction energy storage based on the reversible reaction between metal oxides and metal hydroxides was identified as a leading candidate for meeting Luz International's cost and performance requirements. The principal objectives of this study were to identify the design conditions, requirements, and potential feasibility for a chemical energy storage system applied to a SEGS solar thermal power plant. The remaining sections of this report begin by providing an overview of the chemical reaction energy storage concept and a SEGS solar thermal power plant. Subsequent sections describe the initial screening of alternative evaporation energy sources and the more detailed evaluation of design alternatives considered for the preferred evaporation energy source. The final sections summarize the results, conclusions, and recommendations.

  6. Pyroelectric energy harvesting using liquid-based switchable thermal interfaces

    SciTech Connect

    Cha, G; Ju, YS

    2013-01-15

    The pyroelectric effect offers an intriguing solid-state approach for harvesting ambient thermal energy to power distributed networks of sensors and actuators that are remotely located or otherwise difficult to access. There have been, however, few device-level demonstrations due to challenges in converting spatial temperature gradients into temporal temperature oscillations necessary for pyroelectric energy harvesting. We demonstrate the feasibility of a device concept that uses liquid-based thermal interfaces for rapid switching of the thermal conductance between a pyroelectric material and a heat source/sink and can thereby deliver high output power density. Using a thin film of a pyroelectric co-polymer together with a macroscale mechanical actuator, we operate pyroelectric thermal energy harvesting cycles at frequencies close to 1 Hz. Film-level power densities as high as 110 mW/cm(3) were achieved, limited by slow heat diffusion across a glass substrate. When combined with a laterally interdigitated electrode array and a MEMS actuator, the present design offers an attractive option for compact high-power density thermal energy harvesters. (C) 2012 Elsevier B.V. All rights reserved.

  7. Descriptive analysis of aquifer thermal energy storage systems

    SciTech Connect

    Reilly, R.W.

    1980-06-01

    The technical and economic feasibility of large-scale aquifer thermal energy storage (ATES) was examined. A key to ATESs attractiveness is its simplicity of design and construction. The storage device consists of two ordinary water wells drilled into an aquifer, connected at the surface by piping and a heat exchanger. During the storage cycle water is pumped out of the aquifer, through the heat exchanger to absorb thermal energy, and then back down into the aquifer through the second well. The thermal storage remains in the aquifer storage bubble until required for use, when it is recovered by reversing the storage operation. For many applications the installation can probably be designed and constructed using existing site-specific information and modern well-drilling techniques. The potential for cost-effective implementation of ATES was investigated in the Twin Cities District Heating-Cogeneration Study in Minnesota. In the study, ATES demonstrated a net energy saving of 32% over the nonstorage scenario, with an annual energy cost saving of $31 million. Discounting these savings over the life of the project, the authors found that the break-even capital cost for ATES construction was $76/kW thermal, far above the estimated ATES development cost of $23 to 50/kW thermal. It appears tht ATES can be highly cost effective as well as achieve substantial fuel savings. ATES would be environmentally beneficial and could be used in many parts of the USA. The existing body of information on ATES indicates that it is a cost-effective, fuel-conserving technique for providing thermal energy for residential, commercial, and industrial users. The negative aspects are minor and highly site-specific, and do not seem to pose a threat to widespread commercialization. With a suitable institutional framework, ATES promises to supply a substantial portion of the nation's future energy needs. (LCL)

  8. Thermal energy storage technical progress report, April 1992--March 1993

    SciTech Connect

    Olszewski, M.

    1993-05-01

    The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under the Oak Ridge National Laboratory`s TES program from April 1992 to March 1993 is reported and covers research in the areas of low temperature sorption, thermal energy storage water heater, latent heat storage wallboard and latent/sensible heat regenerator technology development.

  9. Nanoengineered Surfaces for Thermal Energy Conversion

    NASA Astrophysics Data System (ADS)

    Bhatia, Bikram; Preston, Daniel J.; Bierman, David M.; Miljkovic, Nenad; Lenert, Andrej; Enright, Ryan; Nam, Youngsuk; Lopez, Ken; Dou, Nicholas; Sack, Jean; Chan, Walker R.; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N.

    2015-12-01

    We provide an overview of the impact of using nanostructured surfaces to improve the performance of solar thermophotovoltaic (STPV) energy conversion and condensation systems. We demonstrated STPV system efficiencies of up to 3.2%, compared to ≤1% reported in the literature, made possible by nanophotonic engineering of the absorber and emitter. For condensation systems, we showed enhanced performance by using scalable superhydrophobic nanostructures via jumping-droplet condensation. Furthermore, we observed that these jumping droplets carry a residual charge which causes the droplets to repel each other mid-flight. Based on this finding of droplet residual charge, we demonstrated electric-field-enhanced condensation and jumping-droplet electrostatic energy harvesting.

  10. Alcan's ocean thermal energy conversion (OTEC) program

    SciTech Connect

    Hron, V.; Fitzpatrick, N.P. ); Hay, E. ); Johnson, F.A. )

    1991-01-01

    Since 1985 Alcan has been operating equipment at a test site at the National Energy Laboratory of Hawaii at Keahole Point near Kona in Hawaii. Segments of aluminum heat exchangers are exposed to surface sea water at 27{degrees} C and to water from 2000 ft down coming in at 7{degrees} C. Progress was such that in 1988 Alcan contracted GEC to design a 250 kW pilot facility. The cold deep water, suitable for air conditioning, is rich in nutrients and the hierarchy of mariculture products one might select is outlined. This paper reports that closed-cycle OTEC may be economical, practical and capable of having a significant impact upon world energy needs. It can be implemented on a small scale using revenues derived from fresh water production and mariculture.

  11. Alkali metal/halide thermal energy storage systems performance evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1986-01-01

    A pseudoheat-pipe heat transfer mechanism has been demonstrated effective in terms of both total heat removal efficiency and rate, on the one hand, and system isothermal characteristics, on the other, for solar thermal energy storage systems of the kind being contemplated for spacecraft. The selection of appropriate salt and alkali metal substances for the system renders it applicable to a wide temperature range. The rapid heat transfer rate obtainable makes possible the placing of the thermal energy storage system around the solar receiver canister, and the immersing of heat transfer fluid tubes in the phase change salt to obtain an isothermal heat source.

  12. Phase change thermal storage for a solar total energy system

    NASA Technical Reports Server (NTRS)

    Rice, R. E.; Cohen, B. M.

    1978-01-01

    An analytical and experimental program is being conducted on a one-tenth scale model of a high-temperature (584 K) phase-change thermal energy storage system for installation in a solar total energy test facility at Albuquerque, New Mexico, U.S.A. The thermal storage medium is anhydrous sodium hydroxide with 8% sodium nitrate. The program will produce data on the dynamic response of the system to repeated cycles of charging and discharging simulating those of the test facility. Data will be correlated with a mathematical model which will then be used in the design of the full-scale system.

  13. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  14. Energy conservation in dissipative processes: Teacher expectations and strategies associated with imperceptible thermal energy

    NASA Astrophysics Data System (ADS)

    Daane, Abigail R.; McKagan, Sarah B.; Vokos, Stamatis; Scherr, Rachel E.

    2015-06-01

    Research has demonstrated that many students and some teachers do not consistently apply the conservation of energy principle when analyzing mechanical scenarios. In observing elementary and secondary teachers engaged in learning activities that require tracking and conserving energy, we find that challenges to energy conservation often arise in dissipative scenarios in which kinetic energy transforms into thermal energy (e.g., a ball rolls to a stop). We find that teachers expect that when they can see the motion associated with kinetic energy, they should be able to perceive the warmth associated with thermal energy. Their expectations are violated when the warmth produced is imperceptible. In these cases, teachers reject the idea that the kinetic energy transforms to thermal energy. Our observations suggest that apparent difficulties with energy conservation may have their roots in a strong and appropriate association between forms of energy and their perceptible indicators. We see teachers resolve these challenges by relating the original scenario to an exaggerated version in which the dissipated thermal energy is associated with perceptible warmth. Using these exaggerations, teachers infer that thermal energy is present to a lesser degree in the original scenario. They use this exaggeration strategy to track and conserve energy in dissipative scenarios.

  15. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures.

    PubMed

    Zhang, Fang; LaBarge, Nicole; Yang, Wulin; Liu, Jia; Logan, Bruce E

    2015-03-01

    A thermally regenerative ammonia battery (TRAB) is a new approach for converting low-grade thermal energy into electricity by using an ammonia electrolyte and copper electrodes. TRAB operation at 72 °C produced a power density of 236 ± 8 Wm(-2), with a linear decrease in power to 95 ± 5 Wm(-2) at 23 °C. The improved power at higher temperatures was due to reduced electrode overpotentials and more favorable thermodynamics for the anode reaction (copper oxidation). The energy density varied with temperature and discharge rates, with a maximum of 650 Wh m(-3) at a discharge energy efficiency of 54% and a temperature of 37 °C. The energy efficiency calculated with chemical process simulation software indicated a Carnot-based efficiency of up to 13% and an overall thermal energy recovery of 0.5%. It should be possible to substantially improve these energy recoveries through optimization of electrolyte concentrations and by using improved ion-selective membranes and energy recovery systems such as heat exchangers. PMID:25684619

  16. Climatic warming above the Arctic Circle: are there trends in timing and length of the thermal growing season in Murmansk Region (Russia) between 1951 and 2012?

    NASA Astrophysics Data System (ADS)

    Blinova, Ilona; Chmielewski, Frank-Michael

    2015-06-01

    Anomalies in the timing of the thermal growing season have become obvious in the NE part of Fennoscandia since 2000. They are in accordance with climatic changes reported for Europe and Fennoscandia. The actual length of the growing season reached 120 days on average, onset on 30 May and ending on 27 September (1981-2010). Shifts in the timing of the growing season and its mean prolongation by 18.5 days/62a are demonstrated for Murmansk Region (1951-2012). In this period, the onset of the growing season advanced by 7.1 days/62a, while the end was extended by 11.4 days/62a. The delay in the end of the growing season is similar to the entire Fennoscandian pattern but it has not been detected in the rest of Europe. The regional pattern of climatic regimes in Murmansk Region remained stable in comparison with earlier climatic maps (1971). However, the actual shifts in the timing of the growing season were more pronounced in colder (oceanic and mountainous) parts. Recent climatic trends could influence the retreat of the tundra zone and changes in the forest line. Losses of tundra biodiversity and enrichment of the northern taiga by southern species could be expected from present climatic trends.

  17. Climatic warming above the Arctic Circle: are there trends in timing and length of the thermal growing season in Murmansk Region (Russia) between 1951 and 2012?

    PubMed

    Blinova, Ilona; Chmielewski, Frank-Michael

    2015-06-01

    Anomalies in the timing of the thermal growing season have become obvious in the NE part of Fennoscandia since 2000. They are in accordance with climatic changes reported for Europe and Fennoscandia. The actual length of the growing season reached 120 days on average, onset on 30 May and ending on 27 September (1981-2010). Shifts in the timing of the growing season and its mean prolongation by 18.5 days/62a are demonstrated for Murmansk Region (1951-2012). In this period, the onset of the growing season advanced by 7.1 days/62a, while the end was extended by 11.4 days/62a. The delay in the end of the growing season is similar to the entire Fennoscandian pattern but it has not been detected in the rest of Europe. The regional pattern of climatic regimes in Murmansk Region remained stable in comparison with earlier climatic maps (1971). However, the actual shifts in the timing of the growing season were more pronounced in colder (oceanic and mountainous) parts. Recent climatic trends could influence the retreat of the tundra zone and changes in the forest line. Losses of tundra biodiversity and enrichment of the northern taiga by southern species could be expected from present climatic trends. PMID:25155187

  18. Advanced concepts in ground thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Woods, Kevin David

    In recent years, ground thermal energy storage has become a topic of interest in the energy community for solar thermal energy storage systems, ground sourced heat pump systems, and data center thermal management systems due to an increase in the energy efficiency of such systems utilizing the ground as a thermal reservoir. The most common method for transferring thermal energy to the ground formation is the geothermal borehole. This dissertation presents the state of the art in geothermal borehole modeling and derives novel analytical functions to model advanced concepts concerning their operation. The novel solutions derived allow a geothermal borehole designer to better understand and design ground energy storage systems. The state of the art in geothermal borehole modeling is the stationary line source solution which is limited to boreholes operating without groundwater flow. Novel solutions for modeling a geothermal borehole with groundwater advection are presented through derivation of a transient moving line source solution as well as a transient moving cylindrical surface source solution. These solutions are applied to model a specific type of open loop geothermal borehole called a standing column well with groundwater advection and are compared to empirical and numerical data for validation. The dissertation then moves into derivation of a property determination method for geothermal boreholes with groundwater advection. The traditional property determination method used to obtain ground formation properties is based on the stationary transient line source method and fails in the presence of groundwater flow. The proposed novel property determination method calculates the thermal conductivity, thermal diffusivity, and superficial flow velocity of groundwater within a ground formation. These methods and solutions are novel tools allowing for geothermal borehole designers to grasp a better understanding of the systems they are designing as well as open other

  19. Water, energy and CO2 exchange over a seasonally flooded forest in the Sahel.

    NASA Astrophysics Data System (ADS)

    Kergoat, L.; Le Dantec, V.; Timouk, F.; Hiernaux, P.; Mougin, E.; Manuela, G.; Diawara, M.

    2014-12-01

    In semi-arid areas like the Sahel, perennial water bodies and temporary-flooded lowlands are critical for a number of activities. In some cases, their existence is simply a necessary condition for human societies to establish. They also play an important role in the water and carbon cycle and have strong ecological values. As a result of the strong multi-decadal drought that impacted the Sahel in the 70' to 90', a paradoxical increase of ponds and surface runoff has been observed ("Less rain, more water in the ponds", Gardelle 2010). In spite of this, there are excessively few data documenting the consequence of such a paradox on the water and carbon cycle. Here we present 2 years of eddy covariance data collected over the Kelma flooded Acacia forest in the Sahel (15.50 °N), in the frame of the AMMA project. The flooded forest is compared to the other major component of this Sahelian landscape: a grassland and a rocky outcrop sites. All sites are involved in the ALMIP2 data/LSM model comparison. The seasonal cycle of the flooded forest strongly departs from the surroundings grassland and bare soil sites. Before the rain season, the forest displays the strongest net radiation and sensible heat flux. Air temperature within the canopy reaches extremely high values. During the flood, it turns to the lowest sensible heat flux. In fact, due to an oasis effect, this flux is negative during the late flood. Water fluxes turn from almost zero in the dry season to strong evaporation during the flood, since it uses additional energy provided by negative sensible heat flux. The eddy covariance fluxes are consistent with sap flow data, showing that the flood greatly increases the length of the growing season. CO2 fluxes over the forest were twice as large as over the grassland, and the growing season was also longer, giving a much larger annual photosynthesis. In view of these data and data over surroundings grasslands and bare soil, as well as data from a long-term ecological

  20. Urinary C-peptide tracks seasonal and individual variation in energy balance in wild chimpanzees.

    PubMed

    Emery Thompson, Melissa; Muller, Martin N; Wrangham, Richard W; Lwanga, Jeremiah S; Potts, Kevin B

    2009-02-01

    C-peptide of insulin presents a promising new tool for behavioral ecologists that allows for regular, non-invasive assessment of energetic condition in wild animals. C-peptide is produced on an equimolar basis with insulin, thus is indicative of the body's response to available glucose and, with repeated measurement, provides a biomarker of energy balance. As yet, few studies have validated the efficacy of C-peptide for monitoring energy balance in wild animals. Here, we assess seasonal and interindividual variation in urinary C-peptide concentrations of East African chimpanzees (Pan troglodytes schweinfurthii). We assayed 519 urine samples from 13 adult male chimpanzees in the Kanyawara community of Kibale National Park, Uganda. C-peptide levels were significantly predicted by the total amount of fruit and the amount of preferred fruit in the diet. However, chimpanzees had very low C-peptide titers during an epidemic of severe respiratory illness, despite highly favorable feeding conditions. Kanyawara males had significantly lower C-peptide levels than males at Ngogo, a nearby chimpanzee community occupying a more productive habitat. Among Kanyawara males, low-ranking males had consistently higher C-peptide levels than dominant males. While counterintuitive, this result supports previous findings of costs associated with dominance in male chimpanzees. Our preliminary investigations demonstrate that C-peptide has wide applications in field research, providing an accessible tool for evaluating seasonal and individual variation in energetic condition, as well as the costs of processes such as immune function and reproduction. PMID:19084530

  1. Improved Water and Energy Management Utilizing Seasonal to Interannual Hydroclimatic Forecasts

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Lall, U.

    2014-12-01

    Seasonal to interannual climate forecasts provide valuable information for improving water and energy management. Given that the climatic attributes over these time periods are typically expressed as probabilistic information, we propose an adaptive water and energy management framework that uses probabilistic inflow forecasts to allocate water for uses with pre-specified reliabilities. To ensure that the system needs are not compromised due to forecast uncertainty, we propose uncertainty reduction using model combination and based on a probabilistic constraint in meeting the target storage. The talk will present findings from recent studies from various basins that include (a) role of multimodel combination in reducing the uncertainty in allocation (b) relevant system characteristics that improve the utility of forecasts, (c) significance of streamflow forecasts in promoting interbasin transfers and (d) scope for developing power demand forecasts utilizing temperature forecasts. Potential for developing seasonal nutrient forecasts using climate forecasts for supporting water quality trading will also be presented. Findings and synthesis from the panel discussion from the recently concluded AGU chapman conference on "Seaonal to Interannual Hydroclimatic Forecasts and Water Management" will also be summarized.

  2. Semi-transparent solar energy thermal storage device

    DOEpatents

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  3. Semi-transparent solar energy thermal storage device

    DOEpatents

    McClelland, John F.

    1986-04-08

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  4. Efficient thermal energy harvesting using nanoscale magnetoelectric heterostructures

    NASA Astrophysics Data System (ADS)

    Etesami, S. R.; Berakdar, J.

    2016-02-01

    Thermomechanical cycles with a ferroelectric working substance convert heat to electrical energy. As shown here, magnetoelectrically coupled ferroelectric/ferromagnetic composites (also called multiferroics) allow for an efficient thermal energy harvesting at room temperature by exploiting the pyroelectric effect. By virtue of the magnetoelectric coupling, external electric and magnetic fields can steer the operation of these heat engines. Our theoretical predictions are based on a combination of Landau-Khalatnikov-Tani approach (with a Ginzburg-Landau-Devonshire potential) to simulate the ferroelectric dynamics coupled to the magnetic dynamics. The latter is treated via the electric-polarization-dependent Landau-Lifshitz-Gilbert equation. By performing an adapted Olsen cycle we show that a multiferroic working substance is potentially much more superior to the sole ferroelectrics, as far as the thermal energy harvesting using pyroelectric effect is concerned. Our proposal holds promise not only for low-energy consuming devices but also for cooling technology.

  5. Regolith thermal energy storage for lunar nighttime power

    NASA Technical Reports Server (NTRS)

    Tillotson, Brian

    1992-01-01

    A scheme for providing nighttime electric power to a lunar base is described. This scheme stores thermal energy in a pile of regolith. Any such scheme must somehow improve on the poor thermal conductivity of lunar regolith in vacuum. Two previous schemes accomplish this by casting or melting the regolith. The scheme described here wraps the regolith in a gas-tight bag and introduces a light gas to enhance thermal conductivity. This allows the system to be assembled with less energy and equipment than schemes which require melting of regolith. A point design based on the new scheme is presented. Its mass from Earth compares favorably with the mass of a regenerative fuel cell of equal capacity.

  6. Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…

  7. Fuels and chemicals from biomass using solar thermal energy

    NASA Astrophysics Data System (ADS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-05-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  8. Thermal energy storage subsystems. A collection of quarterly reports

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design, development, and progress toward the delivery of three subsystems is discussed. The subsystem used a salt hydrate mixture for thermal energy storage. The program schedules, technical data, and other program activities from October 1, 1976, through December 31, 1977 are presented.

  9. Fuels and chemicals from biomass using solar thermal energy

    NASA Technical Reports Server (NTRS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  10. TECHNOLOGY ASSESSMENT OF SOLAR THERMAL ENERGY APPLICATIONS IN WASTEWATER TREATMENT

    EPA Science Inventory

    Three major areas were identified for which solar thermal energy usage has potential applicability in Publicly Owned Treatment Works. These areas include space and domestic water heating, anaerobic digester heating, and sludge drying. The report contains a detailed analysis of so...

  11. Advanced Coupled Simulation of Borehole Thermal Energy Storage Systems and Above Ground Installations

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storage in borehole heat exchanger arrays is a promising technology to reduce primary energy consumption and carbon dioxide emissions. These systems usually consist of several subsystems like the heat source (e.g. solarthermics or a combined heat and power plant), the heat consumer (e.g. a heating system), diurnal storages (i.e. water tanks), the borehole thermal energy storage, additional heat sources for peak load coverage (e.g. a heat pump or a gas boiler) and the distribution network. For the design of an integrated system, numerical simulations of all subsystems are imperative. A separate simulation of the borehole energy storage is well-established but represents a simplification. In reality, the subsystems interact with each other. The fluid temperatures of the heat generation system, the heating system and the underground storage are interdependent and affect the performance of each subsystem. To take into account these interdependencies, we coupled a software for the simulation of the above ground facilities with a finite element software for the modeling of the heat flow in the subsurface and the borehole heat exchangers. This allows for a more realistic view on the entire system. Consequently, a finer adjustment of the system components and a more precise prognosis of the system's performance can be ensured.

  12. Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage

    SciTech Connect

    2012-01-01

    HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

  13. Ocean Thermal Energy Conversion Program Management Plan

    SciTech Connect

    Combs, R E

    1980-01-01

    The Office of the Associate Laboratory Director for Energy and Environmental Technology has established the OTEC Program Management Office to be responsible for the ANL-assigned tasks of the OTEC Program under DOE's Chicago Operations and Regional Office (DOE/CORO). The ANL OTEC Program Management Plan is essentially a management-by-objective plan. The principal objective of the program is to provide lead technical support to CORO in its capacity as manager of the DOE power-system program. The Argonne OTEC Program is divided into three components: the first deals with development of heat exchangers and other components of OTEC power systems, the second with development of biofouling counter-measures and corrosion-resistant materials for these components in seawater service, and the third with environmental and climatic impacts of OTEC power-system operation. The essential points of the Management Plan are summarized, and the OTEC Program is described. The organization of the OTEC Program at ANL is described including the functions, responsibilities, and authorities of the organizational groupings. The system and policies necessary for the support and control functions within the organization are discussed. These functions cross organizational lines, in that they are common to all of the organization groups. Also included are requirements for internal and external reports.

  14. Sensitivity Analysis on the Performance of Medium Deep Borehole Thermal Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storages using arrays of medium deep (400 m - 1500 m) borehole heat exchangers (BHE) have two main advantages over near surface (< 400 m) BHE storages. Medium deep borehole thermal energy storages (MD-BTES) have a lower thermal impact on shallow groundwater resources and require less surface area. However, the storage performance indicators like the efficiency, the storage capacity and the supplied fluid temperature of MD-BTES are unknown as such system has not been put into practice so far. To study the influence of various design and operation parameters on the storage performance, more than 240 numerical models of different MD-BTES systems were compared in a sensitivity analysis. Most importantly, the BHE length, the number of BHEs, the spacing between the BHEs, the inlet temperatures of the heat transfer fluid into the BHEs and the underground properties were varied. A simplified underground model was used and also a simplified operation procedure was applied for a period of 30 years of storage operation. The results show a strong dependency of the storage performance on the studied design and operation parameters as well as on the underground properties. In the best case, storage efficiency reaches over 80 % in the 30th year of operation, whereas poorly designed storage systems show efficiencies of less than 20 %.

  15. Characterization of Encapsulated Phase Change Materials for Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Zhao, Weihuan

    Solar energy is receiving a lot of attentions at present since it is a kind of clean, renewable and sustainable energy. A major limitation however is that it is available for only about 2,000 hours a year in many places. One way to improve this situation is to use thermal energy storage (TES) system for the off hours. A novel method to store solar energy for large scale energy usage is using high melting temperature encapsulated phase change materials (EPCMs). The present work is a study of thermal energy storage systems with phase change materials (PCMs). It is hoped that this work is to help understand the storage capability and heat transfer processes in the EPCM capsules in order to help design large EPCM based thermoclines. A calorimeter system was built to test the energy stored in EPCM capsules and examine the storage capabilities and potential for storage deterioration in EPCM capsules to determine the types of EPCMs suitable for TES. To accomplish this, the heat transfer performances of the EPCMs are studied in detail. Factors which could affect the heat transfer performance including the properties of materials, the sizes of capsules, the types of heat transfer fluids, the gravity effect of solid PCM, the buoyancy-driven convection in the molten PCM, void space inside the capsule are given attention. Understanding these characteristics for heat transfer process could help build the EPCM based thermoclines to make energy storage economical for solar energy and other applications.

  16. Solar energy system performance evaluaton: Seasonal report for Solaron-Akron, Akron, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of the solar energy system by Solaron Corporation is described. The system was designed to provide an 1940 square foot floor area with space heating and domestic hot water for a dual-level single family residence in Akron, Ohio. The solar energy system uses air as the heat transport medium, has a 546 square foot flat plate collector array subsystem, a 270 cubic foot rock thermal storage bin subsystem, a domestic hot water preheat tank, pumps, controls and transport lines. In general, the performance of the Solaron Akron solar energy system was somewhat difficult to assess for the November 1978 through October 1979 time period. The problems relating to the control systems, various solar energy leakages, air flow correction factors and instrumentation cause a significant amount of subjectivity to be involved in the performance assessment for this solar energy system. Had these problems not been present, it is felt that this system would have exhibited a resonably high level of measured performance.

  17. Solar energy system performance evaluation: seasonal report for IBM System IA, Huntsville, Alabama

    SciTech Connect

    Not Available

    1980-05-01

    The analysis used is based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system is reported. The Solar Energy System, Sims Prototype System 1A, was designed by IBM to provide 50 to 60% of the space heating and domestic hot water (DHW) preheating load to a 2000 square foot floor space single faily residence in the Huntsville area. The load design temperature inside the building was to be maintained at 70 degrees fahrenheit with auxiliary energy for heating supplied by an electric heat pump assisted by an electric resistance strip heater. Auxiliary energy for domestic hot water is from a conventional 20-gallon DHW storage tank. The solar energy system, uses air as the heat transport medium, has a 720 square foot Solar Energy Products Collector Array, a 22-ton rock storage located within the office building, a pump, heat exchanger, air handler, pre-heat tank, fan and associated plumbing. The system has five different modes of operation.

  18. An assessment of the global, seasonal, and interannual spacecraft record of martian climate in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Liu, J.; Richardson, M. I.; Wilson, R. J.

    2002-09-01

    Comprehensive inter-comparison of thermal infrared data collected by Mariner 9, Viking, and Mars Global Surveyor (MGS) is presented, with a specific focus on air temperatures, dust opacities, and water ice opacities. Emphasis is placed upon creating a uniform data set so as to most effectively reduce inter-instrument biases and offsets. We show that the globally-averaged martian atmosphere executes an exceedingly repeatable annual cycle of air temperature, closing in northern spring and summer to within a Kelvin. The annual cycle shows a strong asymmetry about the equinoxes, with northern summer showing relatively low temperatures and essentially no short-term (tens of days) variability. Viking and MGS air temperatures are essentially indistinguishable, suggesting that the Viking and MGS eras are characterized by exactly the same climatic state. Southern summer is characterized by strong dust storm activity, and we note that the period around Ls=225 is characterized by very high dust opacities associated with dust storm development or decay in every year thus far observed by spacecraft. Dust opacity shows a highly repeatable annual cycle, closing to essentially the same values each year in northern spring and summer, with Viking and MGS opacities being very similar. We show that both Viking and MGS data sets show significant (and similar) polar cap edge dust storm activity. The origins of the various major dust storms can be identified in the thermal infrared data from Viking and MGS, including the "flushing" of dust from the northern autumn baroclinic zone into the southern hemisphere tropics, which has also been identified in visible imaging. Water ice opacities have been retrieved from Viking infrared data for the first time. We show that the cloud belt structure and evolution is essentially the same in each of the multiple years observed by Viking and MGS. Relatively subtle spatial features recur in the cloud belt from year-to-year, suggesting the influence of

  19. Solar energy system performance evaluation: seasonal report for Solaron-Akron, Akron, Ohio

    SciTech Connect

    Not Available

    1980-05-01

    The long-term field performance of the installed system and technical contributions to the definition of techniques and requirements for solar energy system design are reported. The Solar Energy System was designed by Solaron Corporation, Denver, Colorado, to provide an 1840 square foot floor area with space heating and domestic hot water (DHW) for a dual-level single family residence in Akron, Ohio. The Solar Energy System uses air as the heat transport medium, has a 546 square foot flat plate collector array subsystem, a 270 cubic foot rock thermal storage bin subsystem, a domestic hot water preheat tank, pumps, controls and transport lines. The auxiliary space heating subsystem is an air to liquid heat pump coupled with a 1000 gallon water storage tank. Electricity provides auxiliary energy for both space heating and DHW subsystems.

  20. High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage

    SciTech Connect

    2011-11-15

    HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today’s EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery—which does not use any hazardous substances—can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak’s converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers—eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

  1. Estimating evaporation with thermal UAV data and two-source energy balance models

    NASA Astrophysics Data System (ADS)

    Hoffmann, H.; Nieto, H.; Jensen, R.; Guzinski, R.; Zarco-Tejada, P.; Friborg, T.

    2016-02-01

    Estimating evaporation is important when managing water resources and cultivating crops. Evaporation can be estimated using land surface heat flux models and remotely sensed land surface temperatures (LST), which have recently become obtainable in very high resolution using lightweight thermal cameras and Unmanned Aerial Vehicles (UAVs). In this study a thermal camera was mounted on a UAV and applied into the field of heat fluxes and hydrology by concatenating thermal images into mosaics of LST and using these as input for the two-source energy balance (TSEB) modelling scheme. Thermal images are obtained with a fixed-wing UAV overflying a barley field in western Denmark during the growing season of 2014 and a spatial resolution of 0.20 m is obtained in final LST mosaics. Two models are used: the original TSEB model (TSEB-PT) and a dual-temperature-difference (DTD) model. In contrast to the TSEB-PT model, the DTD model accounts for the bias that is likely present in remotely sensed LST. TSEB-PT and DTD have already been well tested, however only during sunny weather conditions and with satellite images serving as thermal input. The aim of this study is to assess whether a lightweight thermal camera mounted on a UAV is able to provide data of sufficient quality to constitute as model input and thus attain accurate and high spatial and temporal resolution surface energy heat fluxes, with special focus on latent heat flux (evaporation). Furthermore, this study evaluates the performance of the TSEB scheme during cloudy and overcast weather conditions, which is feasible due to the low data retrieval altitude (due to low UAV flying altitude) compared to satellite thermal data that are only available during clear-sky conditions. TSEB-PT and DTD fluxes are compared and validated against eddy covariance measurements and the comparison shows that both TSEB-PT and DTD simulations are in good agreement with eddy covariance measurements, with DTD obtaining the best results. The

  2. Experimental measurements of thermal properties of high-temperature refractory materials used for thermal energy storage

    NASA Astrophysics Data System (ADS)

    El-Leathy, Abdelrahman; Jeter, Sheldon; Al-Ansary, Hany; Abdel-Khalik, Said; Golob, Matthew; Danish, Syed Noman; Saeed, Rageh; Djajadiwinata, Eldwin; Al-Suhaibani, Zeyad

    2016-05-01

    This paper builds on studies conducted on thermal energy storage (TES) systems that were built as a part of the work performed for a DOE-funded SunShot project titled "High Temperature Falling Particle Receiver". In previous studies, two small-scale TES systems were constructed for measuring heat loss at high temperatures that are compatible with the falling particle receiver concept, both of which had shown very limited heat loss. Through the course of those studies, it became evident that there was a lack of information about the thermal performance of some of the insulating refractory materials used in the experiments at high temperatures, especially insulating firebrick and perlite concrete. This work focuses on determining the thermal conductivities of those materials at high temperatures. The apparatus consists of a prototype cylindrical TES bin built with the same wall construction used in previous studies. An electric heater is placed along the centerline of the bin, and thermocouples are used to measure temperature at the interfaces between all layers. Heat loss is measured across one of the layers whose thermal conductivity had already been well established using laboratory experiments. This value is used to deduce the thermal conductivity of other layers. Three interior temperature levels were considered; namely, 300°C, 500°C, and 700°C. Results show that the thermal conductivity of insulating firebrick remains low (approximately 0.22 W/m.K) at an average layer temperature as high as 640°C, but it was evident that the addition of mortar had an impact on its effective thermal conductivity. Results also show that the thermal conductivity of perlite concrete is very low, approximately 0.15 W/m.K at an average layer temperature of 360°C. This is evident by the large temperature drop that occurs across the perlite concrete layer. These results should be useful for future studies, especially those that focus on numerical modeling of TES bins.

  3. Thermal modeling with solid/liquid phase change of the thermal energy storage experiment

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee

    1991-01-01

    A thermal model which simulates combined conduction and phase change characteristics of thermal energy storage (TES) materials is presented. Both the model and results are presented for the purpose of benchmarking the conduction and phase change capabilities of recently developed and unvalidated microgravity TES computer programs. Specifically, operation of TES-1 is simulated. A two-dimensional SINDA85 model of the TES experiment in cylindrical coordinates was constructed. The phase change model accounts for latent heat stored in, or released from, a node undergoing melting and freezing.

  4. High-temperature molten salt thermal energy storage systems

    NASA Technical Reports Server (NTRS)

    Petri, R. J.; Claar, T. D.; Tison, R. R.; Marianowski, L. G.

    1980-01-01

    The results of comparative screening studies of candidate molten carbonate salts as phase change materials (PCM) for advanced solar thermal energy storage applications at 540 to 870 C (1004 to 1600 F) and steam Rankine electric generation at 400 to 540 C (752 to 1004 F) are presented. Alkali carbonates are attractive as latent heat storage materials because of their relatively high storage capacity and thermal conductivity, low corrosivity, moderate cost, and safe and simple handling requirements. Salts were tested in 0.1 kWhr lab scale modules and evaluated on the basis of discharge heat flux, solidification temperature range, thermal cycling stability, and compatibility with containment materials. The feasibility of using a distributed network of high conductivity material to increase the heat flux through the layer of solidified salt was evaluated. The thermal performance of an 8 kWhr thermal energy storage (TES) module containing LiKCO3 remained very stable throughout 5650 hours and 130 charge/discharge cycles at 480 to 535 C (896 to 995 F). A TES utilization concept of an electrical generation peaking subsystem composed of a multistage condensing steam turbine and a TES subsystem with a separate power conversion loop was defined. Conceptual designs for a 100 MW sub e TES peaking system providing steam at 316 C, 427 C, and 454 C (600 F, 800 F, and 850 F) at 3.79 million Pa (550 psia) were developed and evaluated. Areas requiring further investigation have also been identified.

  5. Seasonal lipid dynamics in dominant Antarctic copepods: Energy for overwintering or reproduction?

    NASA Astrophysics Data System (ADS)

    Hagen, Wilhelm; Schnack-Schiel, Sigrid B.

    1996-02-01

    Copepodite stages V and females of four dominant Antarctic species of calanoid copepods were collected during various expeditions to the eastern Weddell Sea in mid-winter, late winter to early spring, summer and autumn. Analyses of total lipid content and sexual maturity showed some general similarities between species concerning the seasonal cycle of energy reserves and gonad maturation, but also revealed important interspecific differences in the life histories of these copepods. Calanus propinquus and Metridia gerlachei exhibited a seasonal lipid pattern with maxima in autumn and lipid minima during spring. Lipid decrease in the females usually coincided with gonad maturation, which proceeded well before the onset of phytoplankton production. This basic pattern was not as clearly discernible in the females of Calanoides acutus and Rhincalanus gigas. In the Weddell Sea, C. propinquus and C. acutus reached much higher lipid levels and seemed to rely more on internal energy depots than did M. gerlachei and R. gigas. The specific timing of reproduction in the Weddell Sea also differed among the species. M. gerlachei had the longest reproductive period, probably extending from September to March, followed by C. propinquus (October-February) and C. acutus (November-March). In contrast, R. gigas seemed to reproduce only from late December to February in the eastern Weddell Sea. Our findings emphasize the importance of lipid reserves for fueling reproductive processes before the spring phytoplankton bloom becomes available. Only a smaller portion of the accumulated energy stores appears to be utilized for metabolic maintenance during the food-limited winter period.

  6. Ultra high energy neutrinos: absorption, thermal effects and signatures

    SciTech Connect

    Lunardini, Cecilia; Sabancilar, Eray; Yang, Lili E-mail: Eray.Sabancilar@asu.edu

    2013-08-01

    We study absorption of ultra high energy neutrinos by the cosmic neutrino background, with full inclusion of the effect of the thermal distribution of the background on the resonant annihilation channel. For a hierarchical neutrino mass spectrum (with at least one neutrino with mass below ∼ 10{sup −2} eV), thermal effects are important for ultra high energy neutrino sources at z∼>16. The neutrino transmission probability shows no more than two separate suppression dips since the two lightest mass eigenstates contribute as a single species when thermal effects are included. Results are applied to a number of models of ultra high energy neutrino emission. Suppression effects are strong for sources that extend beyond z ∼ 10, which can be realized for certain top down scenarios, such as superheavy dark matter decays, cosmic strings and cosmic necklaces. For these, a broad suppression valley should affect the neutrino spectrum at least in the energy interval 10{sup 12}−10{sup 13} GeV — which therefore is disfavored for ultra high energy neutrino searches — with only a mild dependence on the neutrino mass spectrum and hierarchy. The observation of absorption effects would indicate a population of sources beyond z ∼ 10, and favor top-down mechanisms; it would also be an interesting probe of the physics of the relic neutrino background in the unexplored redshift interval z ∼ 10–100.

  7. Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) results analyzed in seasonal quadrants

    NASA Astrophysics Data System (ADS)

    Conley, Carolynn Lee

    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Small Explorer Mission was launched on Feb. 5, 2002. RHESSI was designed to collect solar flare and coronal mass ejection data. In addition, for over a decade, RHESSI has also observed lightening generated energetic eruptive events. These were named Terrestrial Gamma Ray Flashes (TGFs) and have been observed since 2002. Data collected shows a distribution of TGFs randomly spread in the latitudes and longitudes that satellites observed. This study investigates the seasonal variation in the RHESSI data. RHESSI TGF data is available since the start of data collection in 2002 to 2012. Observation of this data suggests that a distribution of activity may be observed. The TGF weekly rates are compared at the four seasons, spring, summer, fall, and winter, in the northern and southern hemispheres. The TGF rate may be a function of the relative position of the earth to the sun and relative to the earth's geographic and magnetic poles. The spectra of original interest to RHESSI and other investigations produced by the heliosphere environment are being distinguished from TGFs in the Earth's atmosphere. This analysis of the RHESSI data was performed in preparation for collaborative research with a Space Test Program hosted FireStation experiment operating on the International Space Station.

  8. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect

    Sioshansi, R.; Denholm, P.

    2010-02-01

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  9. Overview of the US industrial thermal energy storage program

    NASA Astrophysics Data System (ADS)

    Olszewski, M.

    1981-02-01

    Thermal energy storage can contribute to industrial conservation efforts directed at saving premium (gas and oil) fuels, which is a priority national need. This can be done by using storage to allow the recycling of industrial reject heat to reduce primary energy consumption or to allow alternate fuels to replace gas and oil. Industrial thermal energy storage efforts include three major areas: in-plant reuse of industrial reject heat; external reuse of industrial reject heat for applications in the industrial or buildings sector; and use of alternate fuels to replace gas and oil. The program currently includes engineering field tests in the brick and aluminum industries. In addition, technology transfer activities are underway in the pulp and paper industry.

  10. Experimental investigation of a packed bed thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Cascetta, Mario; Cau, Giorgio; Puddu, Pierpaolo; Serra, Fabio

    2015-11-01

    In this work experimental investigations on a thermal energy storage system with a solid material as storage media and air as heat transfer fluid will be presented. The experimental test rig, installed at the DIMCM of the University of Cagliari, consists of a carbon steel tank filled with freely poured alumina beads that allows investigations of heat transfer phenomena in packed beds. The aim of this work is to show the influence of the operating conditions and physical parameters on thermocline formation and, in particular, the thermal behaviour of the thermal energy storage for repeated charging and discharging cycles. Better charging efficiency is obtained for lower values of mass flow rate and maximum air temperature and for increasing aspect ratio. A decreasing influence of the metal wall with continuous operation is also highlighted. In conclusion, the analysis focuses on the thermal hysteresis phenomenon, which causes degradation of the thermocline and the reduction of the energy that can be stored by the accumulator as the repeated number of cycles increases.

  11. Simulation and evaluation of latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Sigmon, T. W.

    1980-01-01

    The relative value of thermal energy storage (TES) for heat pump storage (heating and cooling) as a function of storage temperature, mode of storage (hotside or coldside), geographic locations, and utility time of use rate structures were derived. Computer models used to simulate the performance of a number of TES/heat pump configurations are described. The models are based on existing performance data of heat pump components, available building thermal load computational procedures, and generalized TES subsystem design. Life cycle costs computed for each site, configuration, and rate structure are discussed.

  12. Nanoparticles for heat transfer and thermal energy storage

    DOEpatents

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  13. Solar thermal energy contract list, fiscal year 1990

    SciTech Connect

    Not Available

    1991-09-01

    The federal government has conducted the national Solar Thermal Technology Program since 1975. Its purpose is to provide focus, direction, and funding for the development of solar thermal technology as an energy option for the United States. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory projects are listed alphabetically by project area and then by subcontractor name. Amount of funding milestones are listed.

  14. Government-sponsored research in thermal energy storage

    SciTech Connect

    Tomlinson, J.J.

    1990-01-01

    Responding to energy supply disruptions during the last decade, the US Government began a program to research and develop thermal energy storage (TES) media and systems that could used to shift fuel use from imported oil and gas to other indigenous energy resources including renewables. Due to its flexibility in matching time-varying energy supplies with demand and capturing low availability waste heat, TES offers a means of increasing the efficiency of many heating and cooling systems for the industrial and commercial sectors. Today, a Federal presence in TES research and development is continuing to help resolve national and global issues such as energy-related environmental problems, growing reliance on imported oil, a projected electrical capacity shortfall, and flagging US competitiveness in international markets. This Federal role in TES research is described; results of research, development, and evaluation of TES technologies that reduce energy consumption and facilitate electric load management are also presented. 7 refs., 2 figs.

  15. Information-to-free-energy conversion: Utilizing thermal fluctuations

    PubMed Central

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Maxwell’s demon is a hypothetical creature that can convert information to free energy. A debate that has lasted for more than 100 years has revealed that the demon’s operation does not contradict the laws of thermodynamics; hence, the demon can be realized physically. We briefly review the first experimental demonstration of Maxwell’s demon of Szilard’s engine type that converts information to free energy. We pump heat from an isothermal environment by using the information about the thermal fluctuations of a Brownian particle and increase the particle’s free energy. PMID:27493548

  16. Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems

    USGS Publications Warehouse

    Euskirchen, E.S.; McGuire, A.D.; Kicklighter, D.W.; Zhuang, Q.; Clein, J.S.; Dargaville, R.J.; Dye, D.G.; Kimball, J.S.; McDonald, K.C.; Melillo, J.M.; Romanovsky, V.E.; Smith, N.V.

    2006-01-01

    In terrestrial high-latitude regions, observations indicate recent changes in snow cover, permafrost, and soil freeze-thaw transitions due to climate change. These modifications may result in temporal shifts in the growing season and the associated rates of terrestrial productivity. Changes in productivity will influence the ability of these ecosystems to sequester atmospheric CO2. We use the terrestrial ecosystem model (TEM), which simulates the soil thermal regime, in addition to terrestrial carbon (C), nitrogen and water dynamics, to explore these issues over the years 1960-2100 in extratropical regions (30-90??N). Our model simulations show decreases in snow cover and permafrost stability from 1960 to 2100. Decreases in snow cover agree well with National Oceanic and Atmospheric Administration satellite observations collected between the years 1972 and 2000, with Pearson rank correlation coefficients between 0.58 and 0.65. Model analyses also indicate a trend towards an earlier thaw date of frozen soils and the onset of the growing season in the spring by approximately 2-4 days from 1988 to 2000. Between 1988 and 2000, satellite records yield a slightly stronger trend in thaw and the onset of the growing season, averaging between 5 and 8 days earlier. In both, the TEM simulations and satellite records, trends in day of freeze in the autumn are weaker, such that overall increases in growing season length are due primarily to earlier thaw. Although regions with the longest snow cover duration displayed the greatest increase in growing season length, these regions maintained smaller increases in productivity and heterotrophic respiration than those regions with shorter duration of snow cover and less of an increase in growing season length. Concurrent with increases in growing season length, we found a reduction in soil C and increases in vegetation C, with greatest losses of soil C occurring in those areas with more vegetation, but simulations also suggest that

  17. Electrical characterization of a buckling thermal energy harvester

    NASA Astrophysics Data System (ADS)

    Trioux, E.; Rufer, L.; Monfray, S.; Skotnicki, T.; Muralt, P.; Basrour, S.

    2015-12-01

    This paper presents the electrical characterizations of a novel concept for thermal energy harvesting at micro scale. The devices presented here are based on a two-step transduction combining thermo-mechanical and piezoelectric conversion. The piezoelectric layer is directly integrated into a buckling bilayer plate made of aluminium and aluminium nitride. For the first time, we have characterized the structures electrically and we have investigated their output power during the buckling. Firstly, we have used an insulating tip to make the plate buckle in order to have an estimation of the output power due to piezoelectric contribution only, and to eliminate any pyroelectric contribution that might be present during the thermal actuation. Then, we heated up the structure and we collected the output signal with an instrumentation amplifier in order to measure the voltage generated during the buckling. The output power during the mechanical and the thermal buckling is compared in the paper.

  18. Thermal Energy in Carbon Nanotube and Graphene Composite Materials

    NASA Astrophysics Data System (ADS)

    Schiffres, Scott N.

    Low-dimensional materials, like carbon nanotubes (CNTs) and graphene, possess extraordinary properties---higher thermal conductivity than any bulk material, mechanical strength 10-100 times greater than steel on a mass basis, and electrical current capacity 1000 times greater than copper. While composites incorporating these low-dimensional materials promise solutions to global sustainability challenges, significant transport barriers exist at the matrix interface that influence the composite properties. My PhD research sought to address this knowledge gap. I've experimentally explored how CNTs and graphene impact thermal conductivity when added in small volume fractions to gases, liquids and solids through the study of CNT aerogels (ultra lightweight, 8 kg/m3, 99.6% void space), and phase change nanocomposites (hexadecane-graphene). I measured the thermal conductivity of the CNT aerogel with various filling gases versus pressure using a novel technique that targeted ultralow thermal conductivity materials, called metal-coated 3o. I observed amplified energy transport length scales resulting from low gas accommodation, which is a general feature of carbon based nanoporous materials. Our evidence also shows that despite the high thermal conductivity of CNTs, thermal conduction through the CNT network is limited by the high thermal boundary resistance at van der Waals bonded CNT junctions. In the second system, I studied thermal and electrical conductivity of hexadecane- multi-layered-graphene (MLG) phase change nanocomposites to understand how morphology of the MLG network impacts transport. By adjusting the freezing rate, the electrical conductivity in the solid phase can be tuned between 1 and 5 orders-of-magnitude and the solid-liquid thermal conductivity ratio can be varied between 2.6 to 3.0. This research has yielded interesting insights into the tunability of nanocomposites and the physics underlying it, including evidence to indicate that the presence of

  19. Thermal transport measurements in high-energy-density matter

    NASA Astrophysics Data System (ADS)

    Ping, Yuan

    2015-11-01

    Thermal conductivity is one of the most fundamental physical properties of matter. It determines the heat transport rate and has an enormous impact on a variety of mechanical, electrical, chemical, and nuclear systems. Thermal conduction is important in high energy density (HED) matter such as laboratory fusion plasmas, planetary cores, compact stars, and other celestial objects. Examples are in the ablation and instability growth in inertial confinement fusion (ICF) capsules, in energy loss from ICF hot spot, and in the evolution of Earth's core-mantle boundary. Despite the importance of thermal conductivity in HED systems, experimental measurements under relevant conditions are scarce and challenging. We have developed a method of differential heating for thermal conductivity measurements. In this talk, experimental designs will be described for four different platforms: optical laser heating, proton heating, laser-generated x-ray heating and XFEL heating. Data from various facilities will be presented and comparison with models will be discussed. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.

  20. High temperature thermal energy storage in steel and sand

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1979-01-01

    The technical and economic potential for high temperature (343 C, 650 F) thermal energy storage in hollow steel ingots, pipes embedded in concrete, and for pipes buried in sand was evaluated. Because it was determined that concrete would separate from pipes due to thermal stresses, concrete was replaced by sand, which is free from thermal stresses. Variations of the steel ingot concept were not cost effective compared to the sand-pipe approach, therefore, the sand-pipe thermal storage unit (TSU) was evaluated in depth to assess the approximate tube spacing requirements consistent with different system performance characteristics and also attendant system costs. For large TSUs which do not require fast response times, the sand-pipe approach offers attractive possibilities. A pipe diameter about 9 cm (3.5 in) and pipe spacing of approximately 25 cm (10 in), with sand filling the interspaces, appears appropriate. Such a TSU system designed for 8 hours charge/discharge cycle has an energy unit storage cost (CE) of $2.63/kWhr-t and a power unit storage cost (Cp) of $42/kW-t (in 1977 dollars).

  1. On thermal properties of hard rocks as a host environment of an underground thermal energy storage

    NASA Astrophysics Data System (ADS)

    Novakova, L.; Hladky, R.; Broz, M.; Novak, P.; Lachman, V.; Sosna, K.; Zaruba, J.; Metelkova, Z.; Najser, J.

    2013-12-01

    With increasing focus on environmentally friendly technologies waste heat recycling became an important issue. Under certain circumstances subsurface environment could be utilized to accommodate relatively large quantity of heat. Industrial waste heat produced during warm months can be stored in an underground thermal energy storage (UTES) and used when needed. It is however a complex task to set up a sustainable UTES for industrial scale. Number of parameters has to be studied and evaluated by means of thermohydromechanical and chemical coupling (THMC) before any UTES construction. Thermal characteristics of various rocks and its stability under thermal loading are amongst the most essential. In the Czech Republic study two complementary projects THMC processes during an UTES operation. The RESEN project (www.resen.cz) employs laboratory tests and experiments to characterise thermal properties of hard rocks in the Bohemian Massif. Aim of the project is to point out the most suitable rock environment in the Bohemian Massif for moderate to ultra-high temperature UTES construction (Sanyal, 2005). The VITA project (www.geology.cz/mokrsko) studies THM coupling in non-electrical temperature UTES using long term in-situ experiment. In both projects thermal properties of rocks were studied. Thermal conductivity and capacity were measured on rock samples. In addition an influence of increasing temperature and moisture content was considered. Ten hard rocks were investigated. The set included two sandstones, two ignibrites, a melaphyr, a syenite, two granites, a gneiss and a serpentinite. For each rock there were measured thermal conductivity and capacity of at least 54 dried samples. Subsequently, the samples were heated up to 380°C in 8 hours and left to cool down. Thermal characteristics were measured during the heating period and after the sample reached room temperature. Heating and cooling cycle was repeated 7 to 10 times to evaluate possible UTES-like degradation of

  2. An assessment methodology for thermal energy storage evaluation

    NASA Astrophysics Data System (ADS)

    Brown, D. R.; Dirks, J. A.; Drost, M. K.; Spanner, G. E.; Williams, T. A.

    1987-11-01

    This report documents an assessment methodology for evaluating the cost, performance, and overall economic feasibility of thermal energy storage (TES) concepts. The methodology was developed by Thermal Energy Storage Evaluation Program personnel at Pacific Northwest Laboratory (PNL) for use by PNL and other TES concept evaluators. The methodology is generically applicable to all TES concepts; however, specific analyses may require additional or more detailed definition of the ground rules, assumptions, and analytical approach. The overall objective of the assessment methodology is to assist in preparing equitable and proper evaluations of TES concepts that will allow developers and end-users to make valid decisions about research and development (R and D) and implementation. The methodology meets this objective by establishing standard approaches, ground rules, assumptions, and definitions that are analytically correct and can be consistently applied by concept evaluators.

  3. An assessment methodology for thermal energy storage evaluation

    SciTech Connect

    Brown, D.R.; Dirks, J.A.; Drost, M.K.; Spanner, G.E.; Williams, T.A.

    1987-11-01

    This report documents an assessment methodology for evaluating the cost, performance, and overall economic feasibility of thermal energy storage (TES) concepts. The methodology was developed by Thermal Energy Storage Evaluation Program personnel at Pacific Northwest Laboratory (PNL) for use by PNL and other TES concept evaluators. The methodology is generically applicable to all TES concepts; however, specific analyses may require additional or more detailed definition of the ground rules, assumptions, and analytical approach. The overall objective of the assessment methodology is to assist in preparing equitable and proper evaluations of TES concepts that will allow developers and end-users to make valid decisions about research and development (R and D) and implementation. The methodology meets this objective by establishing standard approaches, ground rules, assumptions, and definitions that are analytically correct and can be consistently applied by concept evaluators. 15 refs., 4 figs., 13 tabs.

  4. Site-specific investigations on aquifer thermal energy storage for space and process cooling

    NASA Astrophysics Data System (ADS)

    Brown, D. R.

    1991-08-01

    The Pacific Northwest Laboratory (PNL) has completed three preliminary site-specific feasibility studies that investigated aquifer thermal energy storage (ATES) for reducing space and process cooling costs. Chilled water stored in an ATES system could be used to meet all or part of the process and/or space cooling loads at the three facilities investigated. Seasonal or diurnal chill ATES systems could be significantly less expensive than a conventional electrically-driven, load-following chiller system at one of the three sites, depending on the cooling water loop return temperature and presumed future electricity escalation rate. For the other two sites investigated, a chill ATES system would be economically competitive with conventional chillers if onsite aquifer characteristics were improved. Well flow rates at one of the sites were adequate, but the expected thermal recovery efficiency was too low. The reverse of this situation was found at the other site, where the thermal recovery efficiency was expected to be adequate, but well flow rates were too low.

  5. How storms modify baroclinic energy fluxes in a seasonally stratified shelf sea: inertial-tidal interaction

    NASA Astrophysics Data System (ADS)

    Hopkins, Jo; Stephenson, Gordon, Jr.; Green, Mattias; Inall, Mark; Palmer, Matthew

    2015-04-01

    The oceans' rich internal wave field is an essential link in the energy cascade from large to small scale motions and is a major source of energy available for vertical mixing. In shallow shelf seas, vertical mixing across the thermocline maintains elevated summer time production, helping continental shelves to make a disproportionally large contribution to total ocean primary production relative to their surface area. Temperate shelf seas are therefore a significant CO2 sink and a critical link in the ocean-earth-atmosphere system. The two most energetic parts of the global internal wave spectrum are near-inertial waves with frequencies ω ˜f, and the lunar semi-diurnal frequency, M2. Using data from a mooring array, we demonstrate how wind generated near-inertial oscillations can modify baroclinic internal wave energy fluxes in the Celtic Sea, a seasonally stratified shelf. Linear fluxes of baroclinic energy are dominated by the semi-diurnal tide that outside of the complex generation zone drives a modest 28-48 W m-1 directly on-shelf. Given the complex 3-dimensional nature of the generation and propagation however spatial variability is high and net flux vectors may differ by 90° or more within an internal tidal wavelength. Horizontal energy fluxes driven independently by near-inertial motions are an order of magnitude weaker, but non-linear interaction between the vertical shear of inertial-oscillations and the vertical velocity associated with the M2 internal tide is a significant source of energy at the sum of their frequencies (M2+f). The phase relationship between M2 and f determines whether this non-linear interaction constructively enhances or destructively dampens the linear tidal component of the flux, a phasing that introduces a 2-2.3 day counter-clockwise beating to the energy transport. Relative to the M2 contribution, this beating and increase in flux magnitude explains an additional 10% of the variability of the full flux time series. Over

  6. Dish concentrators for solar thermal energy: Status and technology development

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1982-01-01

    Point-focusing concentrators under consideration for solar thermal energy use are reviewed. These concentrators differ in such characteristics as optical configuration, optical materials, structure for support of the optical elements and of the receiver, mount, foundation, drive, controls and enclosure. Concentrator performance and cost are considered. Technology development is outlined, including wind loads and aerodynamics; precipitation, sand, and seismic considerations; and maintenance and cleaning.

  7. Conversion of ocean thermal energy with the salt cycle

    SciTech Connect

    Saikia, S.

    1997-07-01

    A temperature gradient exists between the top and the depths of oceans, the Salt Cycle is targeted at converting this thermal energy. The phases of certain solutions (liquid-liquid or solid-liquid) separate out at lower temperatures enabling the separation of the solute. By placing the solute behind a semipermeable membrane, at a higher temperature, an osmotic pressure can be developed. The pressure released into a turbine can generate power or may be put to other uses like desalination.

  8. An assessment of the global, seasonal, and interannual spacecraft record of Martian climate in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Liu, Junjun; Richardson, Mark I.; Wilson, R. J.

    2003-08-01

    Intercomparison of thermal infrared data collected by Mariner 9, Viking, and Mars Global Surveyor (MGS) is presented with a specific focus on air temperatures, dust opacities, and water ice opacities. Emphasis is placed on creating a uniform data set to most effectively reduce interinstrument biases and offsets. The annual cycle consistently shows a strong asymmetry about the equinoxes, with northern spring and summer exhibiting relatively low temperatures, very high year-to-year repeatability, and essentially no short-term (tens of days) variability. The globally averaged Martian nighttime air temperatures close annually to within a Kelvin during northern spring and summer. Daytime temperatures show more variability (3-6 K). The difference in repeatability of daytime versus nighttime temperatures is not understood. Viking and MGS air temperatures are essentially indistinguishable for this period, suggesting that the Viking and MGS eras are characterized by essentially the same climatic state. Southern summer is characterized by strong dust storm activity and hence strong year-to-year air temperature variability. Dust opacity shows a remarkable degree of interannual variability in southern spring and summer, associated with the intermittent activity of regional and planet-encircling dust storms, but exhibits high year-to-year repeatability in northern spring and summer. Specifically, late northern spring and early northern summer dust opacities appear to be completely insensitive to the occurrence (or not) of major dust storms in the previous southern spring or summer. We show that both Viking and MGS data sets exhibit significant (and similar) polar cap edge dust storm activity. The origins of the various major dust storms can be identified in the thermal infrared data from Viking and MGS, including the transport of dust from the northern autumn baroclinic zone into the southern hemisphere tropics, which has also been identified in visible imaging. We also note

  9. Long-term measurement of indoor thermal environment and energy performance in a detached wooden house with passive solar systems

    SciTech Connect

    Ishikawa, Yoshimi; Yoshino, Hiroshi; Sasaki, Chikashi

    1998-07-01

    The indoor thermal environment, energy performance and energy consumption for a detached wooden house equipped with two passive solar systems, were investigated over a period of three years. The house with a floor area of 188 m{sup 2} was constructed in the autumn of 1993 in Sendai, Japan; and was well insulated and very airtight compared with other houses in Japan. There are six occupants. Heating equipment is comprises of a thermal storage space heater using night-time electricity and a vented firewood furnace on the first floor. Each room is ventilated all day by a central ventilation system. Two passive solar systems were incorporated: a concrete floor in the southern perimeter of the living room as a direct gain system, and an earth tube embedded around the circumference of the house to supply fresh air. The principal results obtained are as follows: (1) The indoor environment during the heating season was more thermally comfortable, compared with that or ordinary houses in Japan. (2) The concrete floor played a role of thermal storage, which absorbed and released heat for decreasing the fluctuation of room temperature. (3) The earth tube supplied air with lower temperature in the summer and higher temperature in the winter to the room, that the outdoor air temperature. This thermal performance did not decrease in spite of the long-term use. (4) The annual amount of energy consumption of this house was less than that of ordinary houses in the northern part of Japan.

  10. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.

    PubMed

    Yang, Ya; Zhang, Hulin; Zhu, Guang; Lee, Sangmin; Lin, Zong-Hong; Wang, Zhong Lin

    2013-01-22

    We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs). PMID:23199138

  11. Environmental risk assessment for aquifer thermal energy storage

    SciTech Connect

    Hall, S.H.

    1993-01-01

    This report has been prepared by Pacific Northwest Laboratory at the request of the International Energy Agency (IEA). The US Department of Energy represents the United States in the IEA for Annex IV, the IEA task for research and development in aquifer thermal energy storage (ATES). Installation and operation of an ATES system is necessarily intrusive to ground-water resources. Therefore, governmental authorities usually require an environmental risk assessment to be performed before permission to construct an ATES system is granted. Writing an accurate statement of risk presupposes a knowledge of aquifer and ground-water characteristics and that an engineering feasibility study has taken place. Effective and logical presentation of the results of the risk assessment can expedite the grant of approval. Introductory remarks should address questions regarding why the ATES project has been proposed, what it is expected to accomplish, and what the expected benefits are. Next, the system configuration, including the aquifer, ATES plant, and well field, should be described in terms of size and location, design components, and thermal and hydraulic capacity. The final element of system design, the predicted annual operating cycle, needs to be described in sufficient detail to allow the reviewer to appreciate the net hydraulic, thermal, and hydrochemical effects imposed on the aquifer. Risks may be environmental or legal. Only after a reviewer has been introduced to the proposed system`s design, operation, and scale can risk issues can be identified and weighed against the benefits of the proposed ATES system.

  12. Environmental risk assessment for aquifer thermal energy storage

    SciTech Connect

    Hall, S.H.

    1993-01-01

    This report has been prepared by Pacific Northwest Laboratory at the request of the International Energy Agency (IEA). The US Department of Energy represents the United States in the IEA for Annex IV, the IEA task for research and development in aquifer thermal energy storage (ATES). Installation and operation of an ATES system is necessarily intrusive to ground-water resources. Therefore, governmental authorities usually require an environmental risk assessment to be performed before permission to construct an ATES system is granted. Writing an accurate statement of risk presupposes a knowledge of aquifer and ground-water characteristics and that an engineering feasibility study has taken place. Effective and logical presentation of the results of the risk assessment can expedite the grant of approval. Introductory remarks should address questions regarding why the ATES project has been proposed, what it is expected to accomplish, and what the expected benefits are. Next, the system configuration, including the aquifer, ATES plant, and well field, should be described in terms of size and location, design components, and thermal and hydraulic capacity. The final element of system design, the predicted annual operating cycle, needs to be described in sufficient detail to allow the reviewer to appreciate the net hydraulic, thermal, and hydrochemical effects imposed on the aquifer. Risks may be environmental or legal. Only after a reviewer has been introduced to the proposed system's design, operation, and scale can risk issues can be identified and weighed against the benefits of the proposed ATES system.

  13. Thermal energy conversion by coupled shape memory and piezoelectric effects

    NASA Astrophysics Data System (ADS)

    Zakharov, Dmitry; Lebedev, Gor; Cugat, Orphee; Delamare, Jerome; Viala, Bernard; Lafont, Thomas; Gimeno, Leticia; Shelyakov, Alexander

    2012-09-01

    This work gives experimental evidence of a promising method of thermal-to-electric energy conversion by coupling shape memory effect (SME) and direct piezoelectric effect (DPE) for harvesting quasi-static ambient temperature variations. Two original prototypes of thermal energy harvesters have been fabricated and tested experimentally. The first is a hybrid laminated composite consisting of TiNiCu shape memory alloy (SMA) and macro fiber composite piezoelectric. This composite comprises 0.1 cm3 of active materials and harvests 75 µJ of energy for each temperature variation of 60 °C. The second prototype is a SME/DPE ‘machine’ which uses the thermally induced linear strains of the SMA to bend a bulk PZT ceramic plate through a specially designed mechanical structure. The SME/DPE ‘machine’ with 0.2 cm3 of active material harvests 90 µJ over a temperature increase of 35 °C (60 µJ when cooling). In contrast to pyroelectric materials, such harvesters are also compatible with both small and slow temperature variations.

  14. Product suitable for the storage and conveyance of thermal energy

    SciTech Connect

    Babin, L.; Clausse, D.

    1981-09-01

    This invention concerns the storage and conveyance of thermal energy at low temperature, by using the latent heat produced by a substance during changes of state. This substance consists of a salt producing considerable latent heat during change of state, such as NA/sub 2/SO/sub 4/, 10 H/sub 2/O, combined closely with a nucleating agent such as borax and dispersed in an oil to which an emulsifying agent has been added. This product is particularly suitable for storage of solar energy at low temperature and for heating of enclosed areas.

  15. United States Department of Energy Thermally Activated Heat Pump Program

    SciTech Connect

    Fiskum, R.J.; Adcock, P.W.; DeVault, R.C.

    1996-06-01

    The US Department of Energy (DOE) is working with partners from the gas heating and cooling industry to improve energy efficiency using advance absorption technologies, to eliminate chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), to reduce global warming through more efficient combustion of natural gas, and to impact electric peak demand of air conditioning. To assist industry in developing these gas heating and cooling absorption technologies, the US DOE sponsors the Thermally Activated Heat Pump Program. It is divided into five key activities, addressing residential gas absorption heat pumps, large commercial chillers, advanced absorption fluids, computer-aided design, and advanced ``Hi-Cool`` heat pumps.

  16. The upgrading of the energy of biomass by thermal methods

    SciTech Connect

    Deglise, X.; Lede, J.

    1982-10-01

    A survey is given of various thermal processes for upgrading biomass as a source of energy or chemical raw materials. Estimates are made of the quantity of biomass available and the types best suited to the various processes. The reactions and their yields are discussed. The different types of reactors and means of supplying heat are reviewed for the case of gasification, with special attention to the advantages of concentrated solar energy. Uses are proposed for the products and recommendations are made for future research.

  17. Energy storage and thermal control system design status

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N.; Willhoite, Bryan C.; Vanommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for and the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation and storage is described.

  18. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  19. Long-term effect of a seasonal thermal storage on the subsurface: a case study from the Upper Muschelkalk, SW Germany

    NASA Astrophysics Data System (ADS)

    Mielke, Philipp; Bauer, Dan; Homuth, Sebastian; Koller, Bruno; Wicke, Hanna; Götz, Annette E.; Sass, Ingo

    2010-05-01

    The thermal effect on the subsurface of a solar-coupled district heating system with a borehole heat exchanger system as a seasonal thermal storage has been simulated over a time span of 30 years using a FEFLOW model. The thermal storage system consists of 80 borehole heat exchangers arranged in squared raster model within a circle of 30 m in diameter. The borehole heat exchangers have a depth of 55 m and are located predominantly in Middle Triassic carbonates (Upper Muschelkalk). The thermal storage is loaded from April to September and discharged from October to March. The model is based on three 80 m core sections (GWM1-3) drilled at the project site. Each core has been analysed in detail with respect to lithology, facies and stratigraphy. The thermal conductivity, specific heat capacity, and permeability have been measured on 76 representative samples from well GWM3 using pointwise measurement techniques. Additionally, the main joint directions have been recorded in two reference outcrop sections and have been incorporated into the model. The results contribute to a detailed prognosis of possible thermal changes in the surrounding subsurface.

  20. Solar energy system performance evaluation: Seasonal report for Contemporary-Manchester, Manchester, New Hampshire

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of the solar energy system, Contemporary-Manchester, is described. The system was designed by Contemporary Systems Incorporated to provide space heating and domestic hot water preheating for a three story dwelling located on the New Hampshire Vocational Technical College campus, Manchester, New Hampshire. The net fossil energy savings for the period from March, 1979 to February, 1980 was 14.52 million Btu. However, the performance of the system must be degraded due to the fact that the building was unoccupied throughout the data assessment and analysis period. The unoccupied status prevented the normal adjustment of heating and ventilating controls for maintenance of comfort levels within the building. This lack of occupancy also prevented the typical family hot water usage, which would have allowed for more realistic evaluation of the hot water subsystem.

  1. THERMAL-ENERGY STORAGE IN A DEEP SANDSTONE AQUIFER IN MINNESOTA: FIELD OBSERVATIONS AND THERMAL ENERGY-TRANSPORT MODELING.

    USGS Publications Warehouse

    Miller, R.T.

    1986-01-01

    A study of the feasibility of storing heated water in a deep sandstone aquifer in Minnesota is described. The aquifer consists of four hydraulic zones that are areally anisotropic and have average hydraulic conductivities that range from 0. 03 to 1. 2 meters per day. A preliminary axially symmetric, nonisothermal, isotropic, single-phase, radial-flow, thermal-energy-transport model was constructed to investigate the sensitivity of model simulation to various hydraulic and thermal properties of the aquifer. A three-dimensional flow and thermal-energy transport model was constructed to incorporate the areal anisotropy of the aquifer. Analytical solutions of equations describing areally anisotropic groundwater flow around a doublet-well system were used to specify model boundary conditions for simulation of heat injection. The entire heat-injection-testing period of approximately 400 days was simulated. Model-computed temperatures compared favorably with field-recorded temperatures, with differences of no more than plus or minus 8 degree C. For each test cycle, model-computed aquifer thermal efficiency, defined as total heat withdrawn divided by total heat injected, was within plus or minus 2% of the field-calculated values.

  2. Optical and thermal energy discharge from tritiated solid hydrogen

    SciTech Connect

    Magnotta, F.; Mapoles, E.R.; Collins, G.W.; Souers, P.C.

    1991-04-02

    The authors are investigating mechanisms of energy storage and release in tritiated solid hydrogens, by a variety of techniques including ESR, NMR and thermal and optical emission. The nuclear decay of a triton in solid hydrogen initiates the conversion of nuclear energy into stored chemical energy by producing unpaired hydrogen atoms which are trapped within the molecular lattice. The ability to store large quantities of atoms in this manner has been demonstrated and can serve as a basis for new forms of high energy density materials. This paper presents preliminary results of a study of the optical emission from solid hydrogen containing tritium over the visible and near infrared (NIR) spectral regions. Specifically, they have studied optical emission from DT and T{sub 2} using CCD, silicon diode and germanium diode arrays. 8 refs., 6 figs.

  3. Numerical Modeling of a Shallow Borehole Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Catolico, N.; Ge, S.; Lu, N.; McCartney, J. S.

    2014-12-01

    Borehole thermal energy storage (BTES) combined with solar thermal energy harvesting is an economic technological system to garner and store energy as well as an environmentally-sustainable alternative for the heating of buildings. The first community-scale BTES system in North America was installed in 2007 in the Drake Landing Solar Community (DLSC), about 35 miles south of Calgary, Canada. The BTES system involves direct circulation of water heated from solar thermal panels in the summer into a storage tank, after which it is circulate within an array of 144 closed-loop geothermal heat exchangers having a depth of 35 m and a spacing of 2.5 m. In the winter the circulation direction is reversed to supply heat to houses. Data collection over a six year period indicates that this system can supply more than 90% of the winter heating energy needs for 52 houses in the community. One major challenge facing the BTES system technology is the relatively low annual efficiency, i.e., the ratio of energy input and output is in the range of 15% to 40% for the system in Drake Landing. To better understand the working principles of BTES and to improve BTES performance for future applications at larger scales, a three-dimensional transient coupled fluid and heat transfer model is established using TOUGH2. The time-dependent injection temperatures and circulation rate measured over the six years of monitoring are used as model input. The simulations are calibrated using soil temperature data measured at different locations over time. The time-dependent temperature distributions within the borehole region agree well with the measured temperatures for soil with an intrinsic permeability of 10e-19 m2, an apparent thermal conductivity of 2.03 W/m°C, and a volumetric heat capacity of 2.31 MJ/m-3°C. The calibrated model serves as the basis for a sensitivity analysis of soil and operational parameters on BTES system efficiency preformed with TOUGH2. Preliminary results suggest 1) BTES

  4. Applying an energy balance model of a debris covered glacier through the Himalayan seasons - insights from the field and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Steiner, Jakob; Pellicciotti, Francesca; Buri, Pascal; Brock, Ben

    2016-04-01

    Although some recent studies have attempted to model melt below debris cover in the Himalaya as well as the European Alps, field measurements remain rare and uncertainties of a number of parameters are difficult to constrain. The difficulty of accurately measuring sub-debris melt at one location over a longer period of time with stakes adds to the challenge of calibrating models adequately, as moving debris tends to tilt stakes. Based on measurements of sub-debris melt with stakes as well as air and surface temperature at the same location during three years from 2012 to 2014 at Lirung Glacier in the Nepalese Himalaya, we investigate results with the help of an earlier developed energy balance model. We compare stake readings to cumulative melt as well as observed to modelled surface temperatures. With timeseries stretching through the pre-Monsoon, Monsoon and post-Monsoon of different years we can show the difference of sensitive parameters during these seasons. Using radiation measurements from the AWS we can use a temporarily variable time series of albedo. A thorough analysis of thermistor data showing the stratigraphy of the temperature through the debris layer allows a detailed discussion of the variability as well as the uncertainty range of thermal conductivity. Distributed wind data as well as results from a distributed surface roughness assessment allows to constrain variability of turbulent fluxes between the different locations of the stakes. We show that model results are especially sensitive to thermal conductivity, a value that changes substantially between the seasons. Values obtained from the field are compared to earlier studies, which shows large differences within locations in the Himalaya. We also show that wind varies with more than a factor two between depressions and on debris mounds which has a significant influence on turbulent fluxes. Albedo decreases from the dry to the wet season and likely has some spatial variability that is

  5. Seasonally-Dynamic Presence-Only Species Distribution Models for a Cryptic Migratory Bat Impacted by Wind Energy Development.

    PubMed

    Hayes, Mark A; Cryan, Paul M; Wunder, Michael B

    2015-01-01

    Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus), a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs) from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn-the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as 'risk from turbines is highest in habitats between hoary bat summering and wintering grounds'. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution. PMID:26208098

  6. Seasonally-dynamic presence-only species distribution models for a cryptic migratory bat impacted by wind energy development

    USGS Publications Warehouse

    Hayes, Mark A.; Cryan, Paul M.; Wunder, Michael B.

    2015-01-01

    Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus), a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs) from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn—the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as ‘risk from turbines is highest in habitats between hoary bat summering and wintering grounds’. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution.

  7. Seasonally-Dynamic Presence-Only Species Distribution Models for a Cryptic Migratory Bat Impacted by Wind Energy Development

    PubMed Central

    Hayes, Mark A.; Cryan, Paul M.; Wunder, Michael B.

    2015-01-01

    Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus), a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs) from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn—the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as ‘risk from turbines is highest in habitats between hoary bat summering and wintering grounds’. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution. PMID:26208098

  8. Numerical modeling of Thermal Response Tests in Energy Piles

    NASA Astrophysics Data System (ADS)

    Franco, A.; Toledo, M.; Moffat, R.; Herrera, P. A.

    2013-05-01

    Nowadays, thermal response tests (TRT) are used as the main tools for the evaluation of low enthalpy geothermal systems such as heat exchangers. The results of TRT are used for estimating thermal conductivity and thermal resistance values of those systems. We present results of synthetic TRT simulations that model the behavior observed in an experimental energy pile system, which was installed at the new building of the Faculty of Engineering of Universidad de Chile. Moreover, we also present a parametric study to identify the most influent parameters in the performance of this type of tests. The modeling was developed using the finite element software COMSOL Multiphysics, which allows the incorporation of flow and heat transport processes. The modeled system consists on a concrete pile with 1 m diameter and 28 m deep, which contains a 28 mm diameter PEX pipe arranged in a closed circuit. Three configurations were analyzed: a U pipe, a triple U and a helicoid shape implemented at the experimental site. All simulations were run considering transient response in a three-dimensional domain. The simulation results provided the temperature distribution on the pile for a set of different geometry and physical properties of the materials. These results were compared with analytical solutions which are commonly used to interpret TRT data. This analysis demonstrated that there are several parameters that affect the system response in a synthetic TRT. For example, the diameter of the simulated pile affects the estimated effective thermal conductivity of the system. Moreover, the simulation results show that the estimated thermal conductivity for a 1 m diameter pile did not stabilize even after 100 hours since the beginning of the test, when it reached a value 30% below value used to set up the material properties in the simulation. Furthermore, we observed different behaviors depending on the thermal properties of concrete and soil. According to the simulations, the thermal

  9. Thermal cracking of CO2 slab ice as the main driving force for albedo increase of the martian seasonal polar caps

    NASA Astrophysics Data System (ADS)

    Philippe, S.; Schmitt, B.; Beck, P.; Brissaud, O.

    2015-10-01

    Understanding the microphysical processes occuring on the Martian seasonal cap is critical since their radiative properties can affect the martian climate. A well documented phenomenom is the albedo increase of the Martian seasonal caps during spring, Fig.1. There are a lot of hypotheses that have been proposed as an explanation for this observation : the decrease of the CO2 grain size [2], a cleaning process of the CO2 slab that would imply either the sinking or the ejection of the dust contained in its volume ([1], [2], [5]), a water-layer accumulation on the top of the slab [5], the role played by aerosols [2] etc ... So far, no experimental simulations have been realized to discriminate between these processes. We designed an experiment to investigate the hypothesis of CO2 ice grain size decrease through thermal cracking as well as that of dust segregation as the possible reasons for albedo increase.

  10. Thermal management in inertial fusion energy slab amplifiers

    NASA Astrophysics Data System (ADS)

    Sutton, Steven B.; Albrecht, George F.

    1995-12-01

    As the technology associated with the development of solid-state drivers for inertial fusion energy (IFE) has evolved, increased emphasis has been placed on the development of an efficient approach for managing the waste heat generated in the laser media. This paper addresses the technical issues associated with the gas cooling of large aperture slabs, where the laser beam propagates through the cooling fluid. It is shown that the major consequence of proper thermal management is the introduction of simple wedge, or beam steering, into the system. Achieving proper thermal management requires careful consideration of the geometry, cooling fluid characteristics, cooling flow characteristics, as well as the thermal/mechanical/optical characteristics of the laser media. Particularly important are the effects of cooling rate variation and turbulent scattering on the system optical performance. Helium is shown to have an overwhelming advantage with respect to turbulent scattering losses. To mitigate cooling rate variations, we introduce the concept of flow conditioning. Finally, optical path length variations across the aperture are calculated. A comparison of two laser materials (S-FAP and YAG) shows the benefit of a nearly a-thermal material on optical variations in the system.

  11. Review of pyroelectric thermal energy harvesting and new MEMs-based resonant energy conversion techniques

    NASA Astrophysics Data System (ADS)

    Hunter, Scott R.; Lavrik, Nickolay V.; Mostafa, Salwa; Rajic, Slo; Datskos, Panos G.

    2012-06-01

    Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal

  12. Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques

    SciTech Connect

    Hunter, Scott Robert; Lavrik, Nickolay V; Mostafa, Salwa; Rajic, Slobodan; Datskos, Panos G

    2012-01-01

    Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal

  13. Characterization of an energy storage capacitor in abnormal thermal environments

    SciTech Connect

    Edwards, L.R.; Chen, K.C.; Baron, R.V.

    2000-01-05

    There are applications of high-voltage, energy-storage, capacitors where it is desirable that the energy storage capability can be reliably and predictably negated in abnormal environments such as fire. This property serves as a safety feature to prevent events of unintended consequence. The present paper describes studies of the thermal response characteristics of a cylindrically wound, discrete Mylar film/foil capacitor design. The experimental setups that simulate fires will be presented. Three different heat input geometries were employed: uniform radial input, spot radial input, and axial input. Heat input was controlled via feedback system to maintain specific temperature ramp rates. Both capacitor voltage and current were monitored during the thermal excursion to ascertain the failure temperature, i.e. when the capacitor permanently shorts. Temperature of failure data is presented for the three heat input cases along with a statistical analysis of the results and application implications. The physics of failure will be described in terms of the thermal/mechanical properties of the Mylar.

  14. Sodium-based hydrides for thermal energy applications

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  15. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  16. Equilibrium statistical-thermal models in high-energy physics

    NASA Astrophysics Data System (ADS)

    Tawfik, Abdel Nasser

    2014-05-01

    We review some recent highlights from the applications of statistical-thermal models to different experimental measurements and lattice QCD thermodynamics that have been made during the last decade. We start with a short review of the historical milestones on the path of constructing statistical-thermal models for heavy-ion physics. We discovered that Heinz Koppe formulated in 1948, an almost complete recipe for the statistical-thermal models. In 1950, Enrico Fermi generalized this statistical approach, in which he started with a general cross-section formula and inserted into it, the simplifying assumptions about the matrix element of the interaction process that likely reflects many features of the high-energy reactions dominated by density in the phase space of final states. In 1964, Hagedorn systematically analyzed the high-energy phenomena using all tools of statistical physics and introduced the concept of limiting temperature based on the statistical bootstrap model. It turns to be quite often that many-particle systems can be studied with the help of statistical-thermal methods. The analysis of yield multiplicities in high-energy collisions gives an overwhelming evidence for the chemical equilibrium in the final state. The strange particles might be an exception, as they are suppressed at lower beam energies. However, their relative yields fulfill statistical equilibrium, as well. We review the equilibrium statistical-thermal models for particle production, fluctuations and collective flow in heavy-ion experiments. We also review their reproduction of the lattice QCD thermodynamics at vanishing and finite chemical potential. During the last decade, five conditions have been suggested to describe the universal behavior of the chemical freeze-out parameters. The higher order moments of multiplicity have been discussed. They offer deep insights about particle production and to critical fluctuations. Therefore, we use them to describe the freeze-out parameters

  17. Transitions in the surface energy balance during the life cycle of a monsoon season

    NASA Astrophysics Data System (ADS)

    Krishnamurti, T. N.; Biswas, Mrinal K.

    2006-04-01

    In this observational/diagnostic study, we illustrate the time history of some important parameters of the surface energy balance during the life cycle of a single monsoon season. This chronology of the surface energy balance portrays the differential equilibrium state from the preonset phase to the withdrawal phase. This includes an analysis of the time history of base variables such as soil moisture, ground temperature, cloud cover, precipitation and humidity. This is followed by an analysis of the components of the surface energy balance where we note subtle changes in the overall balances as we proceed from one epoch of the monsoon to the next. Of interest here is the transition sequence: preonset, onset, break, revival, break, revival and withdrawal during the year 2001. Computations are all illustrated for a box over central India where the coastal effects were small, data coverage was not sparse and where the semi-arid land mass changes drastically to a lush green area. This region exhibited large changes in the components of surface energy balance. The principal results pertain to what balances the difference among the incoming short wave radiation (at the earth’s surface) and the long wave radiation exhibited by the ground. That difference is balanced by a dominant sensible heat flux and the reflected short wave radiation in the preonset stage. A sudden change in the Bowen ratio going from>1 to <1 is noted soon after the onset of monsoon. Thereafter the latent heat flux from the land surface takes an important role and the sensible heat flux acquires a diminishing role. We also examine the subtle changes that occur in the components of surface energy balance between the break and the active phases. The break phases are seen to be quite different from the preonset phases. This study is aimed to illustrate the major importance of moisture and clouds in the radiative transfer computations that are central to the surface energy balance during each epoch

  18. Spatial differences in seasonal variation of the upper-tropospheric jet stream in the Northern Hemisphere and its thermal dynamic mechanism

    NASA Astrophysics Data System (ADS)

    Kuang, Xueyuan; Zhang, Yaocun; Huang, Ying; Huang, Danqing

    2014-07-01

    NCEP/NCAR reanalysis daily data from 1951 to 2008 are used in this study to reveal the spatial-asymmetric features in the seasonal variation of the upper-tropospheric jet stream (UTJS) and its thermal dynamic forcing mechanism. The jet occurrence percentage distribution of the UTJS demonstrates a spiral-like pattern in winter, but it is quasi-annular in summer. The jet occurrence percentage in the Eastern Hemisphere is larger than that in the Western Hemisphere, and its maximum area is located further south. The polar front jet stream (PJS) and subtropical jet stream (SJS) can be distinguished over the Northern Africa and Asian regions, whereas only one jet stream can be observed over the Western Pacific and Atlantic Ocean. Furthermore, a single peak pattern is found in the seasonal variation of the SJS occurrence frequency with the highest jet occurrence appearing in winter and the lowest in summer, while a double peak pattern is observed in the seasonal variation of the PJS occurrence, i.e., the jet occurrence reaches its peaks in autumn and spring for the PJS. Based on the thermal wind theory, air temperature gradient and atmospheric baroclinicity are calculated and compared with the jet occurrence variation to explore the thermal dynamic forcing mechanism for the UTJS variation. In addition, synoptic-scale transports of eddy heat and momentum are also calculated. The results indicate that the SJS variation is primarily determined by the air temperature gradient and atmospheric baroclinicity, while the PJS variation is under great influence of the transport of eddy heat and momentum over Northern Africa and East Asia. The UTJS variation over the area from 140E to 70W cannot be well individually explained by the air temperature gradient and atmospheric baroclinicity. Further analysis indicates that UTJS variation over this area is largely under control of combined effect of the transport of eddy heat and momentum as well as the atmospheric baroclinicity.

  19. Development of thermal energy storage materials for biomedical applications.

    PubMed

    Shukla, A; Sharma, Atul; Shukla, Manjari; Chen, C R

    2015-01-01

    The phase change materials (PCMs) have been utilized widely for solar thermal energy storage (TES) devices. The quality of these materials to remain at a particular temperature during solid-liquid, liquid-solid phase transition can also be utilized for many biomedical applications as well and has been explored in recent past already. This study reports some novel PCMs developed by them, along with some existing PCMs, to be used for such biomedical applications. Interestingly, it was observed that the heating/cooling properties of these PCMs enhance the quality of a variety of biomedical applications with many advantages (non-electric, no risk of electric shock, easy to handle, easy to recharge thermally, long life, cheap and easily available, reusable) over existing applications. Results of the present study are quite interesting and exciting, opening a plethora of opportunities for more work on the subject, which require overlapping expertise of material scientists, biochemists and medical experts for broader social benefits. PMID:26103988

  20. A survey of manufacturers of solar thermal energy systems

    NASA Technical Reports Server (NTRS)

    Levine, N.; Slonski, M. L.

    1982-01-01

    Sixty-seven firms that had received funding for development of solar thermal energy systems (STES) were surveyed. The effect of the solar thermal technology systems program in accelerating (STES) were assessed. The 54 firms still developing STES were grouped into a production typology comparing the three major technologies with three basic functions. It was discovered that large and small firms were developing primarily central receiver systems, but also typically worked on more than one technology. Most medium-sized firms worked only on distributed systems. Federal support of STES was perceived as necessary to allow producers to take otherwise unacceptable risks. Approximately half of the respondents would drop out of STES if support were terminated, including a disproportionate number of medium-sized firms. A differentiated view of the technology, taking into account differing firm sizes and the various stages of technology development, was suggested for policy and planning purposes.

  1. Thermal energy storage. [by means of chemical reactions

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.

    1975-01-01

    The principles involved in thermal energy storage by sensible heat, chemical potential energy, and latent heat of fusion are examined for the purpose of evolving selection criteria for material candidates in the low ( 0 C) and high ( 100 C) temperature ranges. The examination identifies some unresolved theoretical considerations and permits a preliminary formulation of an energy storage theory. A number of candidates in the low and high temperature ranges are presented along with a rating of candidates or potential candidates. A few interesting candidates in the 0 to 100 C region are also included. It is concluded that storage by means of reactions whose reversibility can be controlled either by product removal or by catalytic means appear to offer appreciable advantages over storage with reactions whose reversability cannot be controlled. Among such advantages are listed higher heat storage capacities and more favorable options regarding temperatures of collection, storage, and delivery. Among the disadvantages are lower storage efficiencies.

  2. The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection

    SciTech Connect

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui

    2013-06-15

    By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

  3. Home in the heat: dramatic seasonal variation in home range of desert golden eagles informs management for renewable energy development

    USGS Publications Warehouse

    Braham, Melissa; Miller, Tricia A.; Duerr, Adam E.; Lanzone, Michael; Fesnock, Amy; LaPre, Larry; Driscoll, Daniel; Katzner, Todd Eli

    2015-01-01

    Renewable energy is expanding quickly with sometimes dramatic impacts to species and ecosystems. To understand the degree to which sensitive species may be impacted by renewable energy projects, it is informative to know how much space individuals use and how that space may overlap with planned development. We used global positioning system–global system for mobile communications (GPS-GSM) telemetry to measure year-round movements of golden eagles (Aquila chrysaetos) from the Mojave Desert of California, USA. We estimated monthly space use with adaptive local convex hulls to identify the temporal and spatial scales at which eagles may encounter renewable energy projects in the Desert Renewable Energy Conservation Plan area. Mean size of home ranges was lowest and least variable from November through January and greatest in February–March and May–August. These monthly home range patterns coincided with seasonal variation in breeding ecology, habitat associations, and temperature. The expanded home ranges in hot summer months included movements to cooler, prey-dense, mountainous areas characterized by forest, grasslands, and scrublands. Breeding-season home ranges (October–May) included more lowland semi-desert and rock vegetation. Overlap of eagle home ranges and focus areas for renewable energy development was greatest when eagle home ranges were smallest, during the breeding season. Golden eagles in the Mojave Desert used more space and a wider range of habitat types than expected and renewable energy projects could affect a larger section of the regional population than was previously thought.

  4. Thlaspi arvense (Pennycress): An off-season energy crop within the corn-soybean rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...

  5. US Department of Energy Solar Thermal Energy Systems Program. An overview presentation, August 1979

    SciTech Connect

    Braun, G W

    1980-06-01

    Intended as both a position paper and a progress report to industry, this document provides a comprehensive overview of the US Department of Energy's Solar Thermal Program. Cost goals, systems design parameters, applications considerations, and the potential for industry involvement in solar thermal development and commercialization are described in detail. Decentralized management of R and D functions is linked to priorities and strategies of the evolving program.

  6. Conceptual design of thermal energy storage systems for near-term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.

    1980-01-01

    Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.

  7. Solar energy system performance evaluation: Seasonal report for IBM system 1A, Huntsville, Alabama

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of the solar energy system, Sims Prototype System 1A, is described. The system was designed by IBM to provide 50 to 60 percent of the space heating and domestic hot water preheating load to a 2,000 square foot floor space single family residence in the Huntsville area. The load design temperature inside the building was to be maintained at 70 degrees fahrenheit with auxiliary energy for heating supplied by an electric heat pump assisted by an electric resistance strip heater. In general the disappointing operation of this system is attributed to the manner in which it was used. The system was designed for residential application and used to satisfy the demands of an office environment. The differences were: (1) inside temperature was not maintained at 70 F as expected; and (2) hot water usage was much lower than expected. The conclusion is that the solar energy system must be designed for the type of application in which it is used. Misapplication usually will have an adverse affect on system performance.

  8. Thermal Energy Corporation Combined Heat and Power Project

    SciTech Connect

    Turner, E. Bruce; Brown, Tim; Mardiat, Ed

    2011-12-31

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nation's best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission providing top quality medical care and instruction without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power

  9. Composition, seasonal change and bathymetry of Ligeia Mare, Titan, derived from its 2.2-cm thermal emission

    NASA Astrophysics Data System (ADS)

    Le Gall, A.; Lorenz, R. D.; Malaska, M. J.; Tokano, T.; Hayes, A. G.; Mastrogiuseppe, M.; Veyssière, G.

    2015-10-01

    Ligeia Mare is the second largest sea of Saturn's moon Titan. It is also the first extraterritorial sea for which a bathymetry profile was obtained. In this paper, we analyze all data acquired up to July 2013 in the passive mode of the RADAR (i.e., radiometry mode) on board the Cassini probe in order to constrain its composition, seasonal change and bathymetry.

  10. Feasibility study of thermal energy harvesting using lead free pyroelectrics

    NASA Astrophysics Data System (ADS)

    Karim, Hasanul; Sarker, Md Rashedul H.; Shahriar, Shaimum; Arif Ishtiaque Shuvo, Mohammad; Delfin, Diego; Hodges, Deidra; (Bill Tseng, Tzu-Liang; Roberson, David; Love, Norman; Lin, Yirong

    2016-05-01

    Energy harvesting has significant potential for applications in energizing wireless sensors and charging energy storage devices. To date, one of the most widely investigated materials for mechanical and thermal energy harvesting is lead zirconate titanate (PZT). However, lead has detrimental effects on the environment and on health. Hence, alternative materials are required for this purpose. In this paper, a lead free material, lithium niobate (LNB) is investigated as a potential material for pyroelectric energy harvesting. Although its theoretical pyroelectric properties are lower compared to PZT, it has better properties than other lead free alternatives such as ZnO. In addition, LNB has a high Curie temperature of about 1142 °C, which makes it applicable for high temperature energy harvesting, where other pyroelectric ceramics are not suitable. Herein, an energy harvesting and storage system composed of a single crystal LNB and a porous carbon-based super-capacitor was investigated. It is found that with controlled heating and cooling, a single wafer of LNB (75 mm diameter and 0.5 mm thickness) could generate 437.72 nW cm–3 of power and it could be used to charge a super-capacitor with a charging rate of 2.63 mV (h cm3)–1.

  11. Evaluation of diurnal thermal energy storage combined with cogeneration systems

    NASA Astrophysics Data System (ADS)

    Somasundaram, S.; Brown, D. R.; Drost, M. K.

    1992-11-01

    This report describes the results of an evaluation of thermal energy storage (TES) integrated with simple gas turbine cogeneration systems. The TES system captures and stores thermal energy from the gas turbine exhaust for immediate or future generation of process heat. Integrating thermal energy storage with conventional cogeneration equipment increases the initial cost of the combined system; but, by decoupling electric power and process heat production, the system offers the following significant advantages: (1) electric power can be generated on demand, irrespective of the process heat load profile, thus increasing the value of the power produced; (2) although supplementary firing could be used to serve independently varying electric and process heat loads, this approach is inefficient. Integrating TES with cogeneration can serve the two independent loads while firing all fuel in the gas turbine. The study evaluated the cost of power produced by cogeneration and cogeneration/TES systems designed to serve a fixed process steam load. The value of the process steam was set at the levelized cost estimated for the steam from a conventional stand-alone boiler. Power costs for combustion turbine and combined-cycle power plants were also calculated for comparison. The results indicated that peak power production costs for the cogeneration/TES systems were between 25 and 40 percent lower than peak power costs estimated for a combustion turbine and between 15 and 35 percent lower than peak power costs estimated for a combined-cycle plant. The ranges reflect differences in the daily power production schedule and process steam pressure/temperature assumptions for the cases evaluated. Further cost reductions may result from optimization of current cogeneration/TES system designs and improvement in TES technology through future research and development.

  12. Seasonal Evolution and Interannual Variability of the Local Solar Energy Absorbed by the Arctic Sea Ice-Ocean System

    NASA Technical Reports Server (NTRS)

    Perovich, Donald K.; Nghiem, Son V.; Markus, Thorsten; Schwieger, Axel

    2007-01-01

    The melt season of the Arctic sea ice cover is greatly affected by the partitioning of the incident solar radiation between reflection to the atmosphere and absorption in the ice and ocean. This partitioning exhibits a strong seasonal cycle and significant interannual variability. Data in the period 1998, 2000-2004 were analyzed in this study. Observations made during the 1997-1998 SHEBA (Surface HEat Budget of the Arctic Ocean) field experiment showed a strong seasonal dependence of the partitioning, dominated by a five-phase albedo evolution. QuikSCAT scatterometer data from the SHEBA region in 1999-2004 were used to further investigate solar partitioning in summer. The time series of scatterometer data were used to determine the onset of melt and the beginning of freezeup. This information was combined with SSM/I-derived ice concentration, TOVS-based estimates of incident solar irradiance, and SHEBA results to estimate the amount of solar energy absorbed in the ice-ocean system for these years. The average total solar energy absorbed in the ice-ocean system from April through September was 900 MJ m(sup -2). There was considerable interannual variability, with a range of 826 to 1044 MJ m(sup -2). The total amount of solar energy absorbed by the ice and ocean was strongly related to the date of melt onset, but only weakly related to the total duration of the melt season or the onset of freezeup. The timing of melt onset is significant because the incident solar energy is large and a change at this time propagates through the entire melt season, affecting the albedo every day throughout melt and freezeup.

  13. Analysis of dynamic effects in solar thermal energy conversion systems

    NASA Technical Reports Server (NTRS)

    Hamilton, C. L.

    1978-01-01

    The paper examines a study the purpose of which is to assess the performance of solar thermal power systems insofar as it depends on the dynamic character of system components and the solar radiation which drives them. Using a dynamic model, the daily operation of two conceptual solar conversion systems was simulated under varying operating strategies and several different time-dependent radiation intensity functions. These curves ranged from smoothly varying input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours.

  14. Thermal energy storage systems using fluidized bed heat exchangers

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Weast, T. E.; Ananth, K. P.

    1980-01-01

    The viability of using fluidized bed heat exchangers (FBHX) for thermal energy storage (TES) in applications with potential for waste heat recovery was investigated. Of the candidate applications screened, cement plant rotary kilns and steel plant electric arc furnaces were identified, via the chosen selection criteria, as having the best potential for successful use of FBHX/TES system. A computer model of the FBHX/TES systems was developed and the technical feasibility of the two selected applications was verified. Economic and tradeoff evaluations in progress for final optimization of the systems and selection of the most promising system for further concept validation are described.

  15. Solar-thermal-energy collection/storage-pond system

    DOEpatents

    Blahnik, D.E.

    1982-03-25

    A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

  16. Heat transfer research for ocean thermal energy conversion

    NASA Astrophysics Data System (ADS)

    Kreith, F.; Bharathan, D.

    1987-03-01

    In this lecture an overview of the heat- and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open- and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems are briefly discussed.

  17. Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles

    SciTech Connect

    Green, H.J. ); Guenther, P.R. )

    1990-09-01

    This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

  18. Electrochemical energy storage systems for solar thermal applications

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  19. Thermal energy harvesters with piezoelectric or electrostatic transducer

    NASA Astrophysics Data System (ADS)

    Prokaryn, Piotr; Domański, Krzysztof; Marchewka, Michał; Tomaszewski, Daniel; Grabiec, Piotr; Puscasu, Onoriu; Monfray, Stéphane; Skotnicki, Thomas

    2014-08-01

    This paper describes the idea of the energy harvester which converts thermal gradient present in environment into electricity. Two kinds of such devices are proposed and their prototypes are shown and discussed. The main parts of harvesters are bimetallic spring, piezoelectric transducer or electrostatic transducer with electret. The applied piezomembrane was commercial available product but electrets was made by authors. In the paper a fabrication procedure of electrets formed by the corona discharge process is described. Devices were compared in terms of generated power, charging current, and the voltage across a storage capacitor.

  20. Impacts of convection on high-temperature aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Beyer, Christof; Hintze, Meike; Bauer, Sebastian

    2016-04-01

    Seasonal subsurface heat storage is increasingly used in order to overcome the temporal disparities between heat production from renewable sources like solar thermal installations or from industrial surplus heat and the heat demand for building climatisation or hot water supply. In this context, high-temperature aquifer thermal energy storage (ATES) is a technology to efficiently store and retrieve large amounts of heat using groundwater wells in an aquifer to inject or withdraw hot or cold water. Depending on the local hydrogeology and temperature amplitudes during high-temperature ATES, density differences between the injected hot water and the ambient groundwater may induce significant convective flow components in the groundwater flow field. As a consequence, stored heat may accumulate at the top of the storage aquifer which reduces the heat recovery efficiency of the ATES system. Also, an accumulation of heat at the aquifer top will induce increased emissions of heat to overlying formations with potential impacts on groundwater quality outside of the storage. This work investigates the impacts of convective heat transport on the storage efficiency of a hypothetical high-temperature ATES system for seasonal heat storage as well as heat emissions to neighboring formations by numerical scenario simulations. The coupled groundwater flow and heat transport code OpenGeoSys is used to simulate a medium scale ATES system operating in a sandy aquifer of 20 m thickness with an average groundwater temperature of 10°C and confining aquicludes at top and bottom. Seasonal heat storage by a well doublet (i.e. one fully screened "hot" and "cold" well, respectively) is simulated over a period of 10 years with biannual injection / withdrawal cycles at pumping rates of 15 m³/h and for different scenarios of the temperature of the injected water (20, 35, 60 and 90 °C). Simulation results show, that for the simulated system significant convective heat transport sets in when

  1. A system for measuring thermal activation energy levels in silicon by thermally stimulated capacitance

    NASA Technical Reports Server (NTRS)

    Cockrum, R. H.

    1982-01-01

    One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.

  2. Thermal energy storage for cooling of commercial buildings

    SciTech Connect

    Akbari, H. ); Mertol, A. )

    1988-07-01

    The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

  3. Estimation of the energy release and thermal properties of ejected clasts from explosive eruptions using a thermal imaging camera

    NASA Astrophysics Data System (ADS)

    De la Cruz-Reyna, S.; Cárdenas-Sánchez, E.

    2012-04-01

    Thermal images were obtained at Popocatépetl, central Mexico, during the period of high lava-dome destruction activity between 1998 and 2002. Similarly, thermal cameras have operated at Colima volcano, western Mexico during episodes of similar explosive activity in 2005 and 2007. We have developed a method to estimate the relative thermal energy release among explosions, and the degree of conversion into mechanical energy spent in the fragmentation of the ejecta, based on the cooling rate inferred from successive thermal images obtained immediately after each explosion. The thermal imaging cameras were located at about 11 km from the crater at Popocatépetl, and at about 6 km from the crater at Colima. The selected explosions threw significant amounts of hot debris on the volcano flanks. The cooling rate was then measured on selected pixels of the thermal images, and compared with different possible distributions of fragment sizes considering weighted averages of fragments in the pixels. The optimal fitting of fragment distributions reveals the degree of fragmentation of individual explosions, and along with a model for the cooling process, permitted to estimate the relative thermal energy release on the area covered by the image. Additionally, the results indicate that the radiative thermal conductivity plays a significant role on the outer shell of the fragments, suggesting a free mean path of thermal infrared photons that may reach several millimeters or even a few centimeters.

  4. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    PubMed

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-01

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency. PMID:27537862

  5. High-temperature thermal destruction of poultry derived wastes for energy recovery in Australia.

    PubMed

    Florin, N H; Maddocks, A R; Wood, S; Harris, A T

    2009-04-01

    The high-temperature thermal destruction of poultry derived wastes (e.g., manure and bedding) for energy recovery is viable in Australia when considering resource availability and equivalent commercial-scale experience in the UK. In this work, we identified and examined the opportunities and risks associated with common thermal destruction techniques, including: volume of waste, costs, technological risks and environmental impacts. Typical poultry waste streams were characterised based on compositional analysis, thermodynamic equilibrium modelling and non-isothermal thermogravimetric analysis coupled with mass spectrometry (TG-MS). Poultry waste is highly variable but otherwise comparable with other biomass fuels. The major technical and operating challenges are associated with this variability in terms of: moisture content, presence of inorganic species and type of litter. This variability is subject to a range of parameters including: type and age of bird, and geographical and seasonal inconsistencies. There are environmental and health considerations associated with combustion and gasification due to the formation of: NO(X), SO(X), H(2)S and HCl gas. Mitigation of these emissions is achievable through correct plant design and operation, however, with significant economic penalty. Based on our analysis and literature data, we present cost estimates for generic poultry-waste-fired power plants with throughputs of 2 and 8 tonnes/h. PMID:19046863

  6. Surface Energy Exchange in a Tropical Montane Cloud Forest Environment: Flux Partitioning, and Seasonal and Land Cover-Related Variations

    NASA Astrophysics Data System (ADS)

    Holwerda, F.; Alvarado-Barrientos, M. S.; González-Martínez, T.

    2015-12-01

    Relationships between seasonal climate, land cover and surface energy exchange in tropical montane cloud forest (TMCF) environments are poorly understood. Yet, understanding these linkages is essential to evaluating the impacts of land use and climate change on the functioning of these unique ecosystems. In central Veracruz, Mexico, TMCF occurs between 1100 and 2500 m asl. The canopy of this forest consists of a mix of deciduous and broadleaved-evergreen tree species, the former of which shed their leaves for a short period during the dry season. The aim of this study was to quantify the surface energy balance, and seasonal variations therein, for TMCF, as well as for shaded coffee (CO) and sugarcane (SU), two important land uses that have replaced TMCF at lower elevations. Sensible (H) and latent heat (LE) fluxes were measured using eddy covariance and sap flow methods. Other measurements included: micrometeorological variables, soil heat flux, soil moisture and vegetation characteristics. Partitioning of available energy (A) into H and LE showed important seasonal changes as well as differences among land covers. During the wet-season month of July, average midday Bowen ratios for sunny days were lowest and least variable among land covers: 0.5 in TMCF and SU versus 0.7 in CO. However, because of higher A, along with lower Bowen ratio with respect to CO, LE over TMCF was ca. 20% higher compared to CO and SU. During the late dry-season months of March and April, average midday Bowen ratios for sunny days were generally much higher and more variable among land covers. The higher Bowen ratios indicated a reduction of LE under the drier conditions prevailing (low soil moisture and high VPD), something rarely observed in TMCFs. Moreover, because some trees were still partially leafless in March, LE over TMCF was about half that over CO and SU, suggesting an important effect of phenology on energy exchange of this TMCF. Observed differences between seasons and land

  7. A novel application of concentrated solar thermal energy in foundries.

    PubMed

    Selvaraj, J; Harikesavan, V; Eshwanth, A

    2016-05-01

    Scrap preheating in foundries is a technology that saves melting energy, leading to economic and environmental benefits. The proposed method in this paper utilizes solar thermal energy for preheating scrap, effected through a parabolic trough concentrator that focuses sunlight onto a receiver which carries the metallic scrap. Scraps of various thicknesses were placed on the receiver to study the heat absorption by them. Experimental results revealed the pattern with which heat is gained by the scrap, the efficiency of the process and how it is affected as the scrap gains heat. The inferences from them gave practical guidelines on handling scraps for best possible energy savings. Based on the experiments conducted, preheat of up to 160 °C and a maximum efficiency of 70 % and a minimum efficiency of 40 % could be achieved across the time elapsed and heat gained by the scrap. Calculations show that this technology has the potential to save around 8 % of the energy consumption in foundries. Cumulative benefits are very encouraging: 180.45 million kWh of energy savings and 203,905 t of carbon emissions cut per year across the globe. This research reveals immense scope for this technology to be adopted by foundries throughout the world. PMID:26208658

  8. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  9. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, David K.; Burrows, Richard W.

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  10. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    SciTech Connect

    Sands, M. Dale

    1980-08-01

    Significant acccrmplishments in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power within this decade with subsequent large scale commercialization following by the turn of the century. Under U.S. Department of Energy funding, the Oceanic Engineering Operations of Interstate Electronics Corporation has prepared several OTEC Environmental Assessments over the past years, in particular, the OTEC Programmatic Environmental Assessment. The Programmatic EA considers several technological designs (open- and closed-cycle), plant configuratlons (land-based, moored, and plant-ship), and power usages (baseload electricity, ammonia and aluminum production). Potential environmental impacts, health and safetv issues and a status update of the institutional issues as they influence OTEC deployments, are included.

  11. Thermal energy storage for the Stirling engine powered automobile

    NASA Technical Reports Server (NTRS)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  12. A thermal approach to waveform-independent energy determination

    NASA Astrophysics Data System (ADS)

    Möhring, Tobias; Spiegel, Thomas; Funck, Torsten

    2014-08-01

    In this paper, a new device for power and rms value measurement is presented. Unlike the commercially available measurement equipment, this device is not limited to special waveforms. As a reaction to the increasing use of energy harvesters, which gather energy from the ambience to power low-power electronics, it is necessary to develop new measurement equipment that is not limited to sinusoidal signals (harvesters generally deliver nonsinusoidal signals). Therefore, a new device is presented based on an isothermal operating mode of a planar multijunction thermal converter (PMJTC). Unlike previous PMJTCs, this one is equipped with an additional gold heater and is operated by a regulating circuit, which is electrically isolated from the input. The output signal of the regulator is recorded and analyzed to determine the power and rms value of the input signal.

  13. Improvement of pyroelectric cells for thermal energy harvesting.

    PubMed

    Hsiao, Chun-Ching; Siao, An-Shen; Ciou, Jing-Chih

    2012-01-01

    This study proposes trenching piezoelectric (PZT) material in a thicker PZT pyroelectric cell to improve the temperature variation rate to enhance the efficiency of thermal energy-harvesting conversion by pyroelectricity. A thicker pyroelectric cell is beneficial in generating electricity pyroelectrically, but it hinders rapid temperature variations. Therefore, the PZT sheet was fabricated to produce deeper trenches to cause lateral temperature gradients induced by the trenched electrode, enhancing the temperature variation rate under homogeneous heat irradiation. When the trenched electrode type with an electrode width of 200 μm and a cutting depth of 150 μm was used to fabricate a PZT pyroelectric cell with a 200 μm thick PZT sheet, the temperature variation rate was improved by about 55%. Therefore, the trenched electrode design did indeed enhance the temperature variation rate and the efficiency of pyroelectric energy converters. PMID:22368484

  14. Improvement of Pyroelectric Cells for Thermal Energy Harvesting

    PubMed Central

    Hsiao, Chun-Ching; Siao, An-Shen; Ciou, Jing-Chih

    2012-01-01

    This study proposes trenching piezoelectric (PZT) material in a thicker PZT pyroelectric cell to improve the temperature variation rate to enhance the efficiency of thermal energy-harvesting conversion by pyroelectricity. A thicker pyroelectric cell is beneficial in generating electricity pyroelectrically, but it hinders rapid temperature variations. Therefore, the PZT sheet was fabricated to produce deeper trenches to cause lateral temperature gradients induced by the trenched electrode, enhancing the temperature variation rate under homogeneous heat irradiation. When the trenched electrode type with an electrode width of 200 μm and a cutting depth of 150 μm was used to fabricate a PZT pyroelectric cell with a 200 μm thick PZT sheet, the temperature variation rate was improved by about 55%. Therefore, the trenched electrode design did indeed enhance the temperature variation rate and the efficiency of pyroelectric energy converters. PMID:22368484

  15. Thermal energy storage for a space solar dynamic power system

    NASA Technical Reports Server (NTRS)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  16. Molten salt thermal energy storage for utility peaking loads

    NASA Technical Reports Server (NTRS)

    Ferrara, A.; Haslett, R.; Joyce, J.

    1977-01-01

    This paper considers the use of thermal energy storage (TES) in molten salts to increase the capacity of power plants. Five existing fossil and nuclear electric utility plants were selected as representative of current technology. A review of system load diagrams indicated that TES to meet loads over 95% of peak was a reasonable goal. Alternate TES heat exchanger locations were evaluated, showing that the stored energy should be used either for feedwater heating or to generate steam for an auxiliary power cycle. Specific salts for each concept are recommended. Design layouts were prepared for one plant, and it was shown that a TES tube/shell heat exchanger system could provide about 7% peaking capability at lower cost than adding steam generation capacity. Promising alternate heat exchanger concepts were also identified.

  17. Preliminary considerations for extraction of thermal energy from magma

    SciTech Connect

    Hickox, C.E.; Dunn, J.C.

    1985-01-01

    Simplified mathematical models are developed to describe the extraction of thermal energy from magma based on the concept of a counterflow heat exchanger inserted into the magma body. Analytical solutions are used to investigate influence of the basic variables on electric power production. Calculations confirm that the proper heat exchanger flow path is down the annulus with hot fluid returning to the surface through the central core. The core must be insulated from the annulus to achieve acceptable wellhead temperatures, but this insulation thickness can be quite small. The insulation is effective in maintaining the colder annular flow below expected formation temperatures so that a net heat gain from the formation above a magma body is predicted. The analyses show that optimum flow rates exist that maximize electric power production. These optimum flow rates are functions of the heat transfer coefficients that describe magma energy extraction. 15 refs., 3 figs.

  18. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect

    Benson, D.K.; Burrows, R.W.

    1992-12-31

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  19. Seasonal gonadal development and age-related maturity patterns of introduced pumpkinseed (Lepomis gibbosus Linnaeus, 1758) in a heated thermal reservoir and an adjacent river reach.

    PubMed

    Valente, E; Masson, G; Maul, A; Fox, M G; Meyer, A; Pihan, J C

    2016-05-01

    Testis and ovarian maturation status, maturity profile and gonado-somatic index (GSI) were assessed in pumpkinseed (Lepomis gibbosus) collected from Mirgenbach, a cooling-water reservoir associated with a nuclear power plant, and from the River Moselle 7km downstream of the reservoir's thermal outflow. Histological investigation indicated that in both sexes, gonadal development of pumpkinseed in the heated reservoir was more advanced than in the cooler Moselle River throughout the breeding season. The histological maturity profile of reservoir males ranked by the advancement of sperm cells was highly correlated with its GSI (rs=0.73, P<0.001). GSI of females in the reservoir increased with the stage at maturity, but GSI was not significantly correlated with total length, age or growth rate of the individual. All sampled individuals of both sexes were mature at age 1 in the heated reservoir, whereas 48% of age 1 males and 57% of age 1 females were not mature in the river. GSI patterns suggest that males in the reservoir adopted one of two reproductive strategies (nesters or cuckolders), whereas no small males with large enough testes to be considered cuckolders were apparent in the river. The warm thermal regime of Mirgenbach Reservoir led to precocial maturity, early season reproduction, and the greater prevalence of apparent cuckolder males than would normally occur in this climatic zone. PMID:27157335

  20. PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE

    SciTech Connect

    Douglas C. Hittle

    2002-10-01

    Passive solar systems integrated into residential structures significantly reduce heating energy consumption. Taking advantage of latent heat storage has further increased energy savings. This is accomplished by the incorporation of phase change materials into building materials used in passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. Increasing the thermal storage of floor tile by the addition of encapsulated paraffin wax is the proposed topic of research. Latent heat storage of a phase change material (PCM) is obtained during a change in phase. Typical materials use the latent heat released when the material changes from a liquid to a solid. Paraffin wax and salt hydrates are examples of such materials. Other PCMs that have been recently investigated undergo a phase transition from one solid form to another. During this process they will release heat. These are known as solid-state phase change materials. All have large latent heats, which makes them ideal for passive solar applications. Easy incorporation into various building materials is must for these materials. This proposal will address the advantages and disadvantages of using these materials in floor tile. Prototype tile will be made from a mixture of quartz, binder and phase change material. The thermal and structural properties of the prototype tiles will be tested fully. It is expected that with the addition of the phase change material the structural properties will be compromised to some extent. The ratio of phase change material in the tile will have to be varied to determine the best mixture to provide significant thermal storage, while maintaining structural properties that meet the industry standards for floor tile.

  1. Utilizing Ocean Thermal Energy in a Submarine Robot

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Chao, Yi

    2009-01-01

    A proposed system would exploit the ocean thermal gradient for recharging the batteries in a battery-powered unmanned underwater vehicle [UUV (essentially, a small exploratory submarine robot)] of a type that has been deployed in large numbers in research pertaining to global warming. A UUV of this type travels between the ocean surface and depths, measuring temperature and salinity. The proposed system is related to, but not the same as, previously reported ocean thermal energy conversion (OTEC) systems that exploit the ocean thermal gradient but consist of stationary apparatuses that span large depth ranges. The system would include a turbine driven by working fluid subjected to a thermodynamic cycle. CO2 has been provisionally chosen as the working fluid because it has the requisite physical properties for use in the range of temperatures expected to be encountered in operation, is not flammable, and is much less toxic than are many other commercially available refrigerant fluids. The system would be housed in a pressurized central compartment in a UUV equipped with a double hull (see figure). The thermodynamic cycle would begin when the UUV was at maximum depth, where some of the CO2 would condense and be stored, at relatively low temperature and pressure, in the annular volume between the inner and outer hulls. The cycle would resume once the UUV had ascended to near the surface, where the ocean temperature is typically greater than or equals 20 C. At this temperature, the CO2 previously stored at depth in the annular volume between the inner and outer hulls would be pressurized to approx. equals 57 bar (5.7 MPa). The pressurized gaseous CO2 would flow through a check valve into a bladder inside the pressurized compartment, thereby storing energy of the relatively warm, pressurized CO2 for subsequent use after the next descent to maximum depth.

  2. Simulation of diurnal thermal energy storage systems: Preliminary results

    NASA Astrophysics Data System (ADS)

    Katipamula, S.; Somasundaram, S.; Williams, H. R.

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system; and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  3. New phase-change thermal energy storage materials for buildings

    SciTech Connect

    Benson, D.K.; Christensen, C.B.; Burrows, R.W.

    1985-10-01

    A new class of phase-change thermal energy storage materials is under development at SERI. These materials are unusual in two ways. They reversibly absorb large amounts of heat during a solid-state, crystal transformation more than 70/sup 0/C below their melting temperatures, and their solid-state transformation temperatures may be adjusted over a range from 7/sup 0/C to 188/sup 0/C by varying the ratios of binary mixtures of the components. Because these storage materials remain solid throughout the range of their service temperatures, unique opportunities exist for incorporating them into building materials. Composites have been made with ordinary, porous construction materials such as wood, gypsum board, and lightweight concrete as the matrix and with the solid-state phase change materials (SS PCM) filling the void space. The thermal storage capacities of such composites are thereby increased by more than 100% without changing the basic nature and workability of the matrix, construction material. Parametric analyses have been conducted to determine what combination of properties would be optimum for certain solar and energy conserving building applications including Trombe wall, direct gain, and distributed cool storage (combined with night ventilation).

  4. Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kelly, Jesse C.

    Electrochemical double layer capacitors (EDLCs), supercapacitors and Li-ion batteries have emerged as premier candidates to meet the rising demands in energy storage; however, such systems are limited by thermal hazards, thermal runaway, fires and explosions, all of which become increasingly more dangerous in large-format devices. To prevent such scenarios, thermally-responsive polymer electrolytes (RPEs) that alter properties in electrochemical energy storage devices were designed and tested. These RPEs will be used to limit or halt device operation when temperatures increase beyond a predetermined threshold, therefore limiting further heating. The development of these responsive systems will offer an inherent safety mechanism in electrochemical energy storage devices, while preserving the performance, lifetimes, and versatility that large-format systems require. Initial work focused on the development of a model system that demonstrated the concept of RPEs in an electrochemical device. Aqueous electrolyte solutions of polymers exhibiting properties that change in response to temperature were developed for applications in EDLCs and supercapacitors. These "smart materials" provide a means to control electrochemical systems where polymer phase separation at high temperatures affects electrolyte properties and inhibits device performance. Aqueous RPEs were synthesized using N-isopropylacrylamide, which governs the thermal properties, and fractions of acrylic acid or vinyl sulfonic acids, which provide ions to the solution. The molecular properties of these aqueous RPEs, specifically the ionic composition, were shown to influence the temperature-dependent electrolyte properties and the extent to which these electrolytes control the energy storage characteristics of a supercapacitor device. Materials with high ionic content provided the highest room temperature conductivity and electrochemical activity; however, RPEs with low ionic content provided the highest "on

  5. Heat recovery/thermal energy storage for energy conservation in food processing

    SciTech Connect

    Combes, R.S.; Boykin, W.B.

    1981-01-01

    Based on energy consumption data compiled for 1974, 59% of the total energy consumed in the US food processing industry was thermal energy. The energy-consuming processes which utilize this thermal energy reject significant quantities of waste heat, usually to the atmosphere or to the wastewater discharged from the plant. Design considerations for waste heat recovery systems in the food processing industry are discussed. A systematic analysis of the waste heat source, in terms of quantity and quality is explored. Other aspects of the waste heat source, such as contamination, are addressed as potential impediments to practical heat recovery. The characteristics of the recipient process which will utilize the recovered waste heat are discussed. Thermal energy storage, which can be used as a means of allowing the waste eat recovery process to operate independent of the subsequent utilization of the recovered energy, is discussed. The project included the design, installation and monitoring of two heat recovery systems in a Gold Kist broiler processing plant. These systems recover waste heat from a poultry scalder overflow (heated wastewater) and from a refrigeration condenser utilizing ammonia as the refrigerant. The performance and economic viability of the heat recovery systems are presented.

  6. Seasonal to interannual morphodynamics along a high-energy dissipative littoral cell

    USGS Publications Warehouse

    Ruggiero, P.; Kaminsky, G.M.; Gelfenbaum, G.; Voigt, B.

    2005-01-01

    A beach morphology monitoring program was initiated during summer 1997 along the Columbia River littoral cell (CRLC) on the coasts of northwest Oregon and southwest Washington, USA. This field program documents the seasonal through interannual morphological variability of these high-energy dissipative beaches over a variety of spatial scales. Following the installation of a dense network of geodetic control monuments, a nested sampling scheme consisting of cross-shore topographic beach profiles, three-dimensional topographic beach surface maps, nearshore bathymetric surveys, and sediment size distribution analyses was initiated. Beach monitoring is being conducted with state-of-the-art real-time kinematic differential global positioning system survey methods that combine both high accuracy and speed of measurement. Sampling methods resolve variability in beach morphology at alongshore length scales of approximately 10 meters to approximately 100 kilometers and cross-shore length scales of approximately 1 meter to approximately 2 kilometers. During the winter of 1997/1998, coastal change in the US Pacific Northwest was greatly influenced by one of the strongest El Nin??o events on record. Steeper than typical southerly wave angles resulted in alongshore sediment transport gradients and shoreline reorientation on a regional scale. The La Nin??a of 1998/1999, dominated by cross-shore processes associated with the largest recorded wave year in the region, resulted in net beach erosion along much of the littoral cell. The monitoring program successfully documented the morphological response to these interannual forcing anomalies as well as the subsequent beach recovery associated with three consecutive moderate wave years. These morphological observations within the CRLC can be generalized to explain overall system patterns; however, distinct differences in large-scale coastal behavior (e.g., foredune ridge morphology, sandbar morphometrics, and nearshore beach slopes

  7. Review of simulation techniques for aquifer thermal energy storage (ATES)

    SciTech Connect

    Mercer, J.W.; Faust, C.R.; Miller, W.J.; Pearson, F.J. Jr.

    1981-03-01

    The storage of thermal energy in aquifers has recently received considerable attention as a means to conserve and more efficiently use energy supplies. The analysis of aquifer thermal energy storage (ATES) systems will rely on the results from mathematical and geochemical models. Therefore, the state-of-the-art models relevant to ATES was reviewed and evaluated. These models describe important processes active in ATES including ground-water flow, heat transport (heat flow), solute transport (movement of contaminants), and geochemical reactions. In general, available models of the saturated ground-water environment are adequate to address most concerns associated with ATES; that is, design, operation, and environmental assessment. In those cases where models are not adequate, development should be preceded by efforts to identify significant physical phenomena and relate model parameters to measurable quantities. Model development can then proceed with the expectation of an adequate data base existing for the model's eventual use. Review of model applications to ATES shows that the major emphasis has been on generic sensitivity analysis and site characterization. Assuming that models are applied appropriately, the primary limitation on model calculations is the data base used to construct the model. Numerical transport models are limited by the uncertainty of subsurface data and the lack of long-term historical data for calibration. Geochemical models are limited by the lack of thermodynamic data for the temperature ranges applicable to ATES. Model applications undertaken with data collection activities on ATES sites should provide the most important contributions to the understanding and utilization of ATES. Therefore, the primary conclusion of this review is that model application to field sites in conjunction with data collection activities is essential to the development of this technology.

  8. Particulate concentrations during on-farm combustion of energy crops of different shapes and harvest seasons

    NASA Astrophysics Data System (ADS)

    Fournel, S.; Palacios, J. H.; Morissette, R.; Villeneuve, J.; Godbout, S.; Heitz, M.; Savoie, P.

    2015-03-01

    The increasing energy costs and environmental concerns of farms have motivated the growing interest of agricultural producers in using farm-grown biomass as a substitute to fossil fuels for heat production. However, the use of non-woody biomass is facing challenges due to variability regarding chemical composition and fuel properties that may induce problems during combustion such as particulate matter (PM). The aim of this work was to measure and compare total PM concentrations during on-farm combustion of wood and four agricultural crops: short-rotation willow, switchgrass, miscanthus and reed canary grass. In order to study the influence of physicochemical properties, different shapes (pellets, chips and chopped grasses) and harvest seasons (fall and spring) were also evaluated. In this context, a representative small-scale (29 kW), multi-fuel boiler for light commercial use was utilized. The boiler was also non-catalytic so that the burning took place in a single combustion chamber. Overall, twelve different biomass fuels were tested and each product was burned three times. Mean PM concentration of wood (416 mg Nm-3 at 7 vol% O2) was lower than that of the four dedicated energy crops (505-1417 mg Nm-3 at 7 vol% O2). However, because of the high variability between the experiments, no statistical significance was observed at P > 0.1 level except in one case. The PM amounts were high compared to literature data and Quebec's environmental regulation mainly because of the boiler system used. Except for willow, pelletized products decreased PM levels by 22-52% compared to chopped materials. Bulky biomass of low density was unable to reach steady-state conditions and produced compounds associated with incomplete combustion including PM. Spring-harvested biomass fuels showed a PM reduction up to 48% compared to fall-harvested crops. This was likely due to a 20-60% decrease of several chemical elements in the biomass, namely S, Cl, K and P which are the main

  9. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia

    NASA Astrophysics Data System (ADS)

    von Randow, C.; Manzi, A. O.; Kruijt, B.; de Oliveira, P. J.; Zanchi, F. B.; Silva, R. L.; Hodnett, M. G.; Gash, J. H. C.; Elbers, J. A.; Waterloo, M. J.; Cardoso, F. L.; Kabat, P.

    Comparative measurements of radiation flux components and turbulent fluxes of energy and CO2 are made at two sites in South West Amazonia: one in a tropical forest reserve and one in a pasture. The data were collected from February 1999 to September 2002, as part of the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). During the dry seasons, although precipitation and specific humidity are greatly reduced, the soil moisture storage profiles down to 3.4m indicate that the forest vegetation continues to withdraw water from deep layers in the soil. For this reason, seasonal changes observed in the energy partition and CO2 fluxes in the forest are small, compared to the large reductions in evaporation and photosynthesis observed in the pasture. For the radiation balance, the reflected short wave radiation increases by about 55% when changing from forest to pasture. Combined with an increase of 4.7% in long wave radiation loss, this causes an average reduction of 13.3% in net radiation in the pasture, compared to the forest. In the wet season, the evaporative fraction (λE/Rn) at the pasture is 17% lower than at the forest. This difference increases to 24% during the dry season. Daytime CO2 fluxes are 20-28% lower (in absolute values) in the pasture compared to the forest. The night-time respiration in the pasture is also reduced compared to the forest, with averages 44% and 57% lower in the wet and dry seasons, respectively. As the reduction in the nocturnal respiration is larger than the reduction in the daytime uptake, the combined effect is a 19-67% higher daily uptake of CO2 in the pasture, compared to the forest. This high uptake of CO2 in the pasture site is not surprising, since the growth of the vegetation is constantly renewed, as the cattle remove the biomass.

  10. Thermal Pollution Mathematical Model. Volume 3: User's Manual for One-Dimensional Numerical Model for the Seasonal Thermocline. [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.

    1980-01-01

    A user's manual for a one dimensional thermal model to predict the temperature profiles of a deep body of water for any number of annual cycles is presented. The model is essentially a set of partial differential equations which are solved by finite difference methods using a high speed digital computer. The model features the effects of area change with depth, nonlinear interaction of wind generated turbulence and buoyancy, adsorption of radiative heat flux below the surface, thermal discharges, and the effects of vertical convection caused by discharge. The main assumption in the formulation is horizontal homogeneity. The environmental impact of thermal discharges from power plants is emphasized. Although the model is applicable to most lakes, a specific site (Lake Keowee, S.C.) application is described in detail. The programs are written in FORTRAN 5.

  11. Equilibrium geochemical modeling of a seasonal thermal energy storage aquifer field test

    NASA Technical Reports Server (NTRS)

    Stottlemyre, J. S.

    1980-01-01

    A geochemical mathematical modeling study designed to investigate the well plugging problems encountered at the Auburn University experimental field tests is summarized. The results, primarily of qualitative interest, include: (1) loss of injectivity was probably due to a combination of native particulate plugging and clay swelling and dispersion; (2) fluid-fluid incompatibilities, hydrothermal reactions, and oxidation reactions were of insignificant magnitude or too slow to have contributed markedly to the plugging; and (3) the potential for and contributions from temperature-induced dissolved gas solubility reductions, capillary boundary layer viscosity increases, and microstructural deformation cannot be deconvolved from the available data.

  12. Seasonal thermal energy storage in aquifers: Mathematical modeling studies in 1979

    NASA Technical Reports Server (NTRS)

    Tsang, C. F.

    1980-01-01

    A numerical model of water and heat flow in geologic media was developed, verified, and tested. The hydraulic parameters (transmittivity and storativity) and the location of a linear hydrologic barrier were simulated and compared with results from field experiments involving two injection-storage-recovery cycles. For both cycles, the initial simulated and observed temperatures agree (55c).

  13. Calibration of seasonal forecasts over Euro-Mediterranean region: improve climate information for the applications in the energy sector

    NASA Astrophysics Data System (ADS)

    De Felice, Matteo; Alessandri, Andrea; Catalano, Franco

    2013-04-01

    Accurate and reliable climate information, calibrated for the specific geographic domain, are critical for an effective planning of operations in industrial sectors, and more in general, for all the human activities. The connection between climate and energy sector became particularly evident in the last decade, due to the diffusion of renewable energy sources and the consequent attention on the socio-economical effects of extreme climate events .The energy sector needs reliable climate information in order to plan effectively power plants operations and forecast energy demand and renewable output. On time-scales longer than two weeks (seasonal), it is of critical importance the optimization of global climate information on the local domains needed by specific applications. An application that is distinctly linked with climate is electricity demand forecast, in fact, especially during cold/hot periods, the electricity usage patterns are influenced by the use of electric heating/cooling equipments which diffusion is steadily increasing worldwide [McNeil & Letschert, 2007]. Following an approach similar to [Navarra & Tribbia, 2005], we find a linear relationship between seasonal forecasts main modes of temperature anomaly and the main modes of reanalysis on Euro-Mediterranean domain. Then, seasonal forecasts are calibrated by means of a cross-validation procedure with the aim of optimize climate information over Italy. Calibrated seasonal forecasts are used as predictor for electricity demand forecast on Italy during the summer (JJA) in the period 1990-2009. Finally, a comparison with the results obtained with not calibrated climate forecasts is performed. The proposed calibration procedure led to an improvements of electricity demand forecast performance with more evident effects on the North of Italy, reducing the overall RMSE of 10% (from 1.09 to 0.98). Furthermore, main principal components are visualized and put in relation with electricity demand patterns in

  14. Role of Acclimatization in Weather-Related Human Mortality During the Transition Seasons of Autumn and Spring in a Thermally Extreme Mid-Latitude Continental Climate

    PubMed Central

    de Freitas, Christopher R.; Grigorieva, Elena A.

    2015-01-01

    Human mortality is closely related to natural climate-determined levels of thermal environmental stress and the resulting thermophysiological strain. Most climate-mortality research has focused on seasonal extremes during winter and summer when mortality is the highest, while relatively little attention has been paid to mortality during the transitional seasons of autumn and spring. The body acclimatizes to heat in the summer and cold in winter and readjusts through acclimatization during the transitions between the two during which time the body experiences the thermophysiological strain of readjustment. To better understand the influences of weather on mortality through the acclimatization process, the aim here is to examine the periods that link very cold and very warms seasons. The study uses the Acclimatization Thermal Strain Index (ATSI), which is a comparative measure of short-term thermophysiological impact on the body. ATSI centers on heat exchange with the body’s core via the respiratory system, which cannot be protected. The analysis is based on data for a major city in the climatic region of the Russian Far East characterized by very hot summers and extremely cold winters. The results show that although mortality peaks in winter (January) and is at its lowest in summer (August), there is not a smooth rise through autumn nor a smooth decline through spring. A secondary peak occurs in autumn (October) with a smaller jump in May. This suggests the acclimatization from warm-to-cold produces more thermophysiological strain than the transition from cold-to-warm. The study shows that ATSI is a useful metric for quantifying the extent to which biophysical adaptation plays a role in increased strain on the body during re-acclimatization and for this reason is a more appropriate climatic indictor than air temperature alone. The work gives useful bioclimatic information on risks involved in transitional seasons in regions characterized by climatic extremes. This

  15. Role of Acclimatization in Weather-Related Human Mortality During the Transition Seasons of Autumn and Spring in a Thermally Extreme Mid-Latitude Continental Climate.

    PubMed

    de Freitas, Christopher R; Grigorieva, Elena A

    2015-12-01

    Human mortality is closely related to natural climate-determined levels of thermal environmental stress and the resulting thermophysiological strain. Most climate-mortality research has focused on seasonal extremes during winter and summer when mortality is the highest, while relatively little attention has been paid to mortality during the transitional seasons of autumn and spring. The body acclimatizes to heat in the summer and cold in winter and readjusts through acclimatization during the transitions between the two during which time the body experiences the thermophysiological strain of readjustment. To better understand the influences of weather on mortality through the acclimatization process, the aim here is to examine the periods that link very cold and very warms seasons. The study uses the Acclimatization Thermal Strain Index (ATSI), which is a comparative measure of short-term thermophysiological impact on the body. ATSI centers on heat exchange with the body’s core via the respiratory system, which cannot be protected. The analysis is based on data for a major city in the climatic region of the Russian Far East characterized by very hot summers and extremely cold winters. The results show that although mortality peaks in winter (January) and is at its lowest in summer (August), there is not a smooth rise through autumn nor a smooth decline through spring. A secondary peak occurs in autumn (October) with a smaller jump in May. This suggests the acclimatization from warm-to-cold produces more thermophysiological strain than the transition from cold-to-warm. The study shows that ATSI is a useful metric for quantifying the extent to which biophysical adaptation plays a role in increased strain on the body during re-acclimatization and for this reason is a more appropriate climatic indictor than air temperature alone. The work gives useful bioclimatic information on risks involved in transitional seasons in regions characterized by climatic extremes. This

  16. Guidelines for conceptual design and evaluation of aquifer thermal energy storage

    SciTech Connect

    Meyer, C.F.; Hauz, W.

    1980-10-01

    Guidelines are presented for use as a tool by those considering application of a new technology, aquifer thermal energy storage (ATES). The guidelines will assist utilities, municipalities, industries, and other entities in the conceptual design and evaluation of systems employing ATES. The potential benefits of ATES are described, an overview is presented of the technology and its applications, and rules of thumb are provided for quickly judging whether a proposed project has sufficient promise to warrant detailed conceptual design and evaluation. The characteristics of sources and end uses of heat and chill which are seasonally mismatched and may benefit from ATES (industrial waste heat, cogeneration, solar heat, and winter chill, for space heating and air conditioning) are discussed. Storage and transport subsystems and their expected performance and cost are described. A 10-step methodology is presented for conceptual design of an ATES system and evaluation of its technical and economic feasibility in terms of energy conservation, cost savings, fuel substitution, improved dependability of supply, and abatement of pollution, with examples, and the methodology is applied to a hypothetical proposed ATES system, to illustrate its use.

  17. Seasonal energy requirements and thermoregulation of growing pouched mice, Saccostomus campestris (Cricetidae)

    NASA Astrophysics Data System (ADS)

    Ellison, G. T. H.; Skinner, J. D.

    1991-06-01

    Pouched mice ( Saccostomus campestris) were born in captivity during January and March and subsequently maintained under long photoperiod (14 h light: 10 h dark) at 25°C. During their first winter (July) and the following summer (January) the pouched mice were exposed to natural photoperiod in an unheated laboratory for 3 weeks prior to measurement. The pouched mice continued to grow during the study, and were significantly heavier after summer exposure than after winter exposure 6 months earlier. Although this increase in body mass would result in a decline in their surface area to volume ratio there was no significant decline in minimal thermal conductance ( C m) and winter-exposed pouched mice had a relatively lower C m than expected. Meanwhile the smaller, winter-exposed animals displayed a significantly higher capacity for non-shivering thermogenesis, together with higher levels of basal metabolism than summer individuals. These differences were not solely attributable to the contrasting body mass of each group and it is therefore clear that S. campestris can increase thermoregulatory heat production, and modify heat loss following exposure to short photoperiod and cold during their first winter. Despite the significant increase in metabolism, the overall energy requirements of small, winter-exposed animals were significantly lower than those for heavier pouched mice following exposure to summer conditions. These results suggest that growing pouched mice can effectively adapt to lower temperature conditions during their first winter, yet accrue considerable overall savings in total energy requirements as a result of their smaller body mass.

  18. Changes in seasonal energy dynamics of alewife (Alosa pseudoharengus) in Lake Michigan after invasion of dreissenid mussels

    USGS Publications Warehouse

    Madenjian, Charles P.; Pothoven, Steven A.; Dettmers, John M.; Holuszko, Jeffrey D.

    2006-01-01

    The dreissenid mussel invasion of Lake Michigan during the 1990s has been linked to a concomitant decrease in the abundance of the amphipod Diporeia. We tracked the seasonal energy dynamics of alewife (Alosa pseudoharengus) in Lake Michigan during 2002–2004 and compared our findings with previously published results for years 1979–1981. Adult alewife energy density exhibited a pronounced seasonal cycle during both the pre-invasion and post-invasion periods, with energy density in October or November nearly twice as high as that in early summer. However, on average, adult alewife energy density was 23% lower during the post-invasion period compared with the pre-invasion period. This significant decline in energy density was attributable to decreased importance of Diporeia in adult alewife diet. In contrast, energy density of juvenile alewives did not significantly differ between the pre-invasion and post-invasion periods. To attain a weight of 8 kg by age 4, bioenergetics modeling indicated that a Chinook salmon (Oncorhynchus tshawytscha) in Lake Michigan would have to consume 22.1% more alewives during the post-invasion period compared with the pre-invasion period.

  19. Expected benefits of federally-funded thermal energy storage research

    NASA Astrophysics Data System (ADS)

    Spanner, G. E.; Daellenbach, K. K.; Hughes, K. R.; Brown, D. R.; Drost, M. K.

    1992-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the Office of Advanced Utility Concepts of the US Department of Energy (DOE). The objective of this study was to develop a series of graphs that depict the long-term benefits of continuing DOE's thermal energy storage (TES) research program in four sectors: building heating, building cooling, utility power production, and transportation. The study was conducted in three steps. The first step was to assess the maximum possible benefits technically achievable in each sector. In some sectors, the maximum benefit was determined by a 'supply side' limitation, and in other sectors, the maximum benefit is determined by a 'demand side' limitation. The second step was to apply economic cost and diffusion models to estimate the benefits that are likely to be achieved by TES under two scenarios: (1) with continuing DOE funding of TES research; and (2) without continued funding. The models all cover the 20-year period from 1990 to 2010. The third step was to prepare graphs that show the maximum technical benefits achievable, the estimated benefits with TES research funding, and the estimated benefits in the absence of TES research funding. The benefits of federally-funded TES research are largely in four areas: displacement of primary energy, displacement of oil and natural gas, reduction in peak electric loads, and emissions reductions.

  20. Waterborne noise due to ocean thermal energy conversion plants

    NASA Astrophysics Data System (ADS)

    Janota, C. P.; Thompson, D. E.

    1982-06-01

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the sea-water pumps is expected to dominate in the frequency range 10 Hz to 1 kHZ. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  1. Waterborne noise due to ocean thermal energy conversion plants

    SciTech Connect

    Janota, C.P.; Thompson, D.E.

    1983-07-01

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the seawater pumps is expected to dominate in the frequency range 10 Hz to 1 kHz. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  2. Expected benefits of federally-funded thermal energy storage research

    SciTech Connect

    Spanner, G E; Daellenbach, K K; Hughes, K R; Brown, D R; Drost, M K

    1992-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the Office of Advanced Utility Concepts of the US Department of Energy (DOE). The objective of this study was to develop a series of graphs that depict the long-term benefits of continuing DOE's thermal energy storage (TES) research program in four sectors: building heating, building cooling, utility power production, and transportation. The study was conducted in three steps- The first step was to assess the maximum possible benefits technically achievable in each sector. In some sectors, the maximum benefit was determined by a supply side'' limitation, and in other sectors, the maximum benefit is determined by a demand side'' limitation. The second step was to apply economic cost and diffusion models to estimate the benefits that are likely to be achieved by TES under two scenarios: (1) with continuing DOE funding of TES research, and (2) without continued funding. The models all cover the 20-year period from 1990 to 2010. The third step was to prepare graphs that show the maximum technical benefits achievable, the estimated benefits with TES research funding, and the estimated benefits in the absence of TES research funding. The benefits of federally-funded TES research are largely in four areas: displacement of primary energy, displacement of oil and natural gas, reduction in peak electric loads, and emissions reductions.

  3. Expected benefits of federally-funded thermal energy storage research

    SciTech Connect

    Spanner, G.E.; Daellenbach, K.K.; Hughes, K.R.; Brown, D.R.; Drost, M.K.

    1992-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the Office of Advanced Utility Concepts of the US Department of Energy (DOE). The objective of this study was to develop a series of graphs that depict the long-term benefits of continuing DOE`s thermal energy storage (TES) research program in four sectors: building heating, building cooling, utility power production, and transportation. The study was conducted in three steps- The first step was to assess the maximum possible benefits technically achievable in each sector. In some sectors, the maximum benefit was determined by a ``supply side`` limitation, and in other sectors, the maximum benefit is determined by a ``demand side`` limitation. The second step was to apply economic cost and diffusion models to estimate the benefits that are likely to be achieved by TES under two scenarios: (1) with continuing DOE funding of TES research, and (2) without continued funding. The models all cover the 20-year period from 1990 to 2010. The third step was to prepare graphs that show the maximum technical benefits achievable, the estimated benefits with TES research funding, and the estimated benefits in the absence of TES research funding. The benefits of federally-funded TES research are largely in four areas: displacement of primary energy, displacement of oil and natural gas, reduction in peak electric loads, and emissions reductions.

  4. Thermal energy storage systems using fluidized bed heat exchangers

    NASA Technical Reports Server (NTRS)

    Weast, T.; Shannon, L.

    1980-01-01

    A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.

  5. Sizing a water softener for aquifer thermal energy storage

    SciTech Connect

    Hall, S.H.; Jenne, E.A.

    1993-03-01

    In aquifer thermal energy storage (ATES) installations, ground water is circulated between an aquifer and heat exchangers via a well field. It is often necessary to soften the water to prevent carbonate scaling in pipes, heat exchangers, and well screens. Most ATES projects requiring water softening will be best served by using synthetic ion-exchange resins. The size of the resin beds, the resin regeneration cycle, and the amount of NaCl brine used in each regeneration depend on several factors. These are (1) the chemistry of the native ground water, (2) allowable residual hardness after softening, (3) the maximum flow rate of water through the ATES plant, and (4) exchange characteristics of the resin. Example calculations are given for a three-bed water softening system.

  6. Flight experiment of thermal energy storage. [for spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Namkoong, David

    1989-01-01

    Thermal energy storage (TES) enables a solar dynamic system to deliver constant electric power through periods of sun and shade. Brayton and Stirling power systems under current considerations for missions in the near future require working fluid temperatures in the 1100 to 1300+ K range. TES materials that meet these requirements fall into the fluoride family of salts. Salts shrink as they solidify, a change reaching 30 percent for some salts. Hot spots can develop in the TES container or the container can become distorted if the melting salt cannot expand elsewhere. Analysis of the transient, two-phase phenomenon is being incorporated into a three-dimensional computer code. The objective of the flight program is to verify the predictions of the code, particularly of the void location and its effect on containment temperature. The four experimental packages comprising the program will be the first tests of melting and freezing conducted under microgravity.

  7. Hexapole magnet system for thermal energy 3He atom manipulation

    NASA Astrophysics Data System (ADS)

    Jardine, A. P.; Fouquet, P.; Ellis, J.; Allison, W.

    2001-10-01

    We present design and construction details for a novel high field, small bore permanent hexapole magnet. The design is intended for focusing atomic beams of 3He at thermal energies. The magnet uses an optimized polepiece design which includes vacuum gaps to enable its use with high intensity atomic and molecular beams. The 0.3 m long, 1 mm internal radius magnet achieves a polepiece tip field of 1.1 T using NdFeB permanent magnets and Permendur 49 polepieces. The polepiece shanks are designed to saturate so that the hexapole properties are determined predominantly by the shape of the polepiece tip. The performance of the hexapole assembly is demonstrated with an 8 meV 3He beam in the beam source of the Cambridge spin echo spectrometer and the measured focused beam results show excellent agreement with theoretical predictions and negligible beam attenuation.

  8. Extended development of a sodium hydroxide thermal energy storage module

    NASA Technical Reports Server (NTRS)

    Rice, R. E.; Rowny, P. E.; Cohen, B. M.

    1980-01-01

    The post-test evaluation of a single heat exchanger sodium hydroxide thermal energy storage module for use in solar electric generation is reported. Chemical analyses of the storage medium used in the experimental model are presented. The experimental verification of the module performance using an alternate heat transfer fluid, Caloria HT-43, is described. Based on these results, a design analysis of a dual heat exchanger concept within the storage module is presented. A computer model and a reference design for the dual system (storage working fluid/power cycle working fluid) were completed. The dual system is estimated to have a capital cost of approximately one half that of the single heat exchanger concept.

  9. Multi-Fluid Geo-Energy Systems for Bulk and Thermal Energy Storage and Dispatchable Renewable and Low-Carbon Electricity

    NASA Astrophysics Data System (ADS)

    Buscheck, T. A.; Randolph, J.; Saar, M. O.; Hao, Y.; Sun, Y.; Bielicki, J. M.

    2014-12-01

    Integrating renewable energy sources into electricity grids requires advances in bulk and thermal energy storage technologies, which are currently expensive and have limited capacity. We present an approach that uses the huge fluid and thermal storage capacity of the subsurface to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources. CO2 captured from fossil-energy systems and N2 separated from air are injected into permeable formations to store pressure, generate artesian flow of brine, and provide additional working fluids. These enable efficient fluid recirculation, heat extraction, and power conversion, while adding operational flexibility. Our approach can also store and dispatch thermal energy, which can be used to levelize concentrating solar power and mitigate variability of wind and solar power. This may allow low-carbon, base-load power to operate at full capacity, with the stored excess energy being available to addresss diurnal and seasonal mismatches between supply and demand. Concentric rings of horizontal injection and production wells are used to create a hydraulic divide to store pressure, CO2, N2, and thermal energy. Such storage can take excess power from the grid and excess thermal energy, and dispatch that energy when it is demanded. The system is pressurized and/or heated when power supply exceeds demand and depressurized when demand exceeds supply. Supercritical CO2 and N2 function as cushion gases to provide enormous pressure-storage capacity. Injecting CO2 and N2 displaces large quantities of brine, reducing the use of fresh water. Geologic CO2 storage is a crucial option for reducing CO2 emissions, but valuable uses for CO2 are needed to justify capture costs. The initial "charging" of our system requires permanently isolating large volumes of CO2 from the atmosphere and thus creates a market for its disposal. Our approach is designed for locations where a permeable

  10. Delineating seasonal porewater displacement on a tidal flat in the Bay of Bengal by thermal signature: Implications for submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Debnath, Palash; Mukherjee, Abhijit; Singh, Hemant Kumar; Mondal, Sourav

    2015-10-01

    Submarine groundwater discharge (SGD) to the Bay of Bengal is an important groundwater discharge process to southern Asia as well as to the global oceans. Water-fluxes in these regions are not very well understood. The present study demonstrates the use of sea-bed porewater temperature as a tracer for delineating seasonal SGD from a shallow coastal aquifer to the Bay of Bengal. Porewater temperature mapping along with chemical profile of porewater column were used to delineate groundwater discharge zones for different seasons in a hydrologic year. While, the temperature profiles were used to evaluate total groundwater discharge (both terrestrial and marine), the salinity and total dissolved solids profiles were used to evaluate the component due to terrestrial (freshwater) discharge. Several springs and seeps were mapped to finger-print the freshwater discharge zones and identify the terrestrial sourced-SGD temperature windows. These zones are also identified to be enriched with algal mats, and hence may indicate the pathways of nutrient-solute discharge that enhance the primary productivity in the marine ecosystem. Assuming vertical flow in the seabed, simulated rates of discharged groundwater provided a good match with measured discharge rates. The porewater fluxes were estimated by applying analytical solutions of the heat conduction-advection equations to the observed vertical temperature profiles. High resolution thermal profiles to identify T-SGD signatures and chemical profiles along mapped transects reveal the nuances of 3-D seasonal hydrodynamics of groundwater-seawater interactions. The calculated vertical porewater fluxes through the seabed ranged from negligible to 2.45 × 10-2 m3/m2/d1 within a zone extending from high tide line to 40 m offshore, and represent the vertical porewater velocity and the average vertical porewater velocity is found as 8.2 × 10-3 m3/m2/d1. Approximations suggest that in present-day condition, total average annual SGD to Bay

  11. Timescale and magnitude of plasma thermal energy loss before and during disruptions in JET

    NASA Astrophysics Data System (ADS)

    Riccardo, V.; Loarte, A.; JET EFDA Contributors

    2005-11-01

    In this paper we analyse and discuss the thermal energy loss dynamics before and during JET disruptions that occurred between 2002 and 2004 in discharges which reached >4.5 MJ of thermal energy. We observe the slow thermal energy transients with diamagnetic loops and the fast ones with electron cyclotron emission and soft x-ray diagnostics. For most disruption types in JET, the plasma thermal energy at the time of the thermal quench is substantially less than that of the full performance plasma, typically in the range of 10-50% depending on plasma conditions and disruption type. The exceptions to this observation are disruptions in plasmas with a strong internal transport barrier (ITB) and in discharges terminating in a pure vertical displacement event, in which the plasma conserves a very high energy content up to the thermal quench. These disruption types are very sudden, leaving little scope for the combined action of soft plasma landing strategies and intrinsic performance degradation, both requiring >500 ms to be effective, to decrease the available thermal energy. The characteristic time for the loss of energy from the main plasma towards the PFCs in the thermal quench of JET disruptions is in the range 0.05-3.0 ms. The shortest timescales are typical of disruptions caused by excessive pressure peaking in ITB discharges. The available thermal energy fraction and thermal quench duration observed in JET can be processed (with due caution) into estimates for the projected PFC lifetime of the ITER target.

  12. Thermal Resistances in the Everest Area derived from Satellite Imagery using a Nonlinear Energy Balance Model

    NASA Astrophysics Data System (ADS)

    Rounce, D.; McKinney, D. C.

    2013-12-01

    ., Diolaiuti, G., Cutler, M., Smiraglia, C. Meteorology and surface energy fluxes in the 2005-2007 ablation seasons at the Miage debris-covered glacier. J. Geoph. Res., 115, 2010 Foster, L., Brock, B., Cutler, M., Diotri, F. A physically based method for estimating supraglacial debris thickness from thermal band remote-sensing data. J. Glaciol. 58(210):677-691, 2012 Nakawo, M., Rana, B. Estimate of Ablation Rate of Glacier Ice Under a Supraglacial Debris Layer. Geografiska Annaler 81(4):695-701, 1999 Nicholson, L. Modelling melt beneath supraglacial debris: implications for the climatic response of debris-covered glaciers. PhD thesis, Univ. of St Andrews, 2004 Nicholson, L., Benn, D. Calculating ice melt beneath a debris layer using meteorological data. J. Glaciol. 52(178):463-470, 2006 Nicholson, L., Benn, D. Properties of Natural Supraglacial Debris in Relation to Modelling Sub-Debris Ice Ablation. Earth Surf. Proc. and Landforms 38(5):490-501, 2012 Reid, T., Brock, B. An Energy-Balance Model for Debris-Covered Glaciers Including Heat Conduction through the Debris Layer. J. Glaciol. 56(199):903-916, 2010 Zhang, Y., Fujita, K., Liu, S., Liu, Q., Nuimura, T. Distribution of Debris Thickness and its Effect on Ice Melt at Hailuogou Glacier. J. Glaciol. 57(206):1147-1157, 2011

  13. Numerical and experimental studies of liquid storage tank thermal stratification for a solar energy system

    SciTech Connect

    Wu, S T; Han, S M

    1980-11-01

    The results of theoretical and experimental studies of thermal stratification in liquid energy storage tanks for the performance of solar energy systems are presented. The investigation was divided into three areas: (1) Justification of the Importance of Thermal Stratification Inside the Energy Storage Tanks, (II) Development of a Simple Mathematical Model which is Compatible with Existing Solar Energy System Simulation Code, and (III) Validation of Mathematical Models by Experimental Data Obtained from Realistic Solar Energy System Operations.

  14. Early Dust Storm Season Thermal State of the Martian Atmosphere - Latest Results from the Horizon Science Experiment

    NASA Astrophysics Data System (ADS)

    Martin, T. Z.; Murphy, J. R.

    1999-09-01

    The Horizon Science Experiment (HORSE) uses the Mars Horizon Sensor Assembly on the MGS orbiter to measure 15 micrometer band thermal emission from the middle Martian atmosphere. Since mapping began in March 1999, data acquisition has been continuous, with 12 orbits/day providing rapid longitudinal coverage. The instrument's four quadrants aligned orthogonally on the Martian limb provide important coverage in local time; two quadrants fore and aft give redundant sampling of the ground track, while the other two sample +/- 1.4 hrs in local time at the equator. Equator crossing is nominally at 3 AM and 3 PM. This coverage of six local times per day for most of the planet means that the MHSA is well suited to detect diurnal temperature variations, including the semidiurnal tidal mode, which is particularly sensitive to the presence of atmospheric dust. We report recent results on the global thermal state; specific dust events; diurnal behavior; and other wavelike phenomena.

  15. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  16. Thermal detoxification of hazardous metal sludge by applied electromagnetic energy.

    PubMed

    Hsieh, Ching-Hong; Lo, Shang-Lien; Hu, Ching-Yao; Shih, Kaimin; Kuan, Wen-Hui; Chen, Ching-Lung

    2008-04-01

    Industrial wastewater sludge was treated by microwave processes to enhance the stabilization of laden copper. The effects of additives, processing time, microwave adsorbents, moisture content, reaction atmosphere, and cooling gas were investigated. The stabilization results were significantly enhanced by metal powder additives, prolonged microwave processing time, proper moisture content, the addition of carbonaceous materials, and a reaction environment with inert gas. It was also found that the moisture content would increase the homogeneity of applied microwave energy, and thus achieve a better overall efficiency between stabilizing agents and copper. The added metal powders may reduce Cu(II) to Cu(0) in the sludge or TCLP. The resulting thermal energy of microwave radiation, and microarcing process and the oxidation heat of Al powder may also assist the transformation of Cu(II) into CuO and CuAl2O4 phases. Part of the sludge was vitrified within inert gas environment when the processing time was longer than 18 min and active carbon dosage was more than 3g. Reduction reactions also occurred in the hybrid microwave processes, leading to the reduction of sulfates and metal ions, and the formation of Cu2S and FeS. Moreover, the microwave radiation can also enhance the feasibility of co-treating of inorganic and organic solid waste. PMID:18280536

  17. Ocean thermal energy conversion: Historical highlights, status, and forecast

    SciTech Connect

    Dugger, G.L.; Avery, W.H.; Francis, E.J.; Richards, D.

    1983-07-01

    In 1881, d'Arsonval conceived the closed-Rankine-cycle ocean thermal energy conversion (OTEC) system in which a working fluid is vaporized by heat exchange with cold water drawn from a 700-1200 m depth. In 1930, Claude demonstrated an open-cycle process in Cuba. Surface water was flash-vaporized at 3 kPa to drive a turbine directly (no secondary working fluid) and then was condensed by direct contact with water drawn from a 700-m depth through a 1.6m-diam, 1.75-km-long cold-water pipe (CWP). From a delta T of 14/sup 0/C his undersized turbine generated 22 kW. In 1956 a French team designed a 3.5-MW (net) open-cycle plant for installation off Abidjan on the Ivory Coast of Africa and demonstrated the necessary CWP deployment. The at-sea demonstrations by Mini-OTEC and OTEC-1 and other recent advances in OTEC technology summarized herein represent great progress. All of the types of plants proposed for the DOE's PON program may be worthy of development; certainly work on a grazing plant is needed. Our estimates indicate that the U.S. goals established by Public Law 96-310 leading to 10 GW of OTEC power and energy product equivalents by 1999 are achievable, provided that adequate federal financial incentives are retained to assure the building of the first few plants.

  18. Thermal energy storage program for the 1990's

    SciTech Connect

    Fiorino, D.P. )

    1992-01-01

    Texas Instruments has chilled water thermal energy storage systems in operation at two of its major defense electronics manufacturing facilities in North Texas. The first system was commissioned in August 1990 at a 10-year-old, 1.1 million sq ft Electro-Optics manufacturing facility in Dallas, Texas. Its capacity is 2,900 kW/2.7 million gal/24,500 ton-hours. The second system was commissioned in June 1992 at an eight-year-old, 1.2 million sq ft Avionics manufacturing facility in McKinney. Its capacity is 3,200 kW/3.1 million gas/28,800 ton-hours. This paper will discuss the objectives, strategy, method, design, operation, schedule, cost, return, and performance of the first system within the context of the energy cost outlook in North Texas as well as existing conditions at the retrofitted facility. In addition, this paper will describe improvements in operation of the first system as well as advancements in design of the second system.

  19. Enhanced photovoltaic energy conversion using thermally based spectral shaping

    NASA Astrophysics Data System (ADS)

    Bierman, David M.; Lenert, Andrej; Chan, Walker R.; Bhatia, Bikram; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N.

    2016-06-01

    Solar thermophotovoltaic devices have the potential to enhance the performance of solar energy harvesting by converting broadband sunlight to narrow-band thermal radiation tuned for a photovoltaic cell. A direct comparison of the operation of a photovoltaic with and without a spectral converter is the most critical indicator of the promise of this technology. Here, we demonstrate enhanced device performance through the suppression of 80% of unconvertible photons by pairing a one-dimensional photonic crystal selective emitter with a tandem plasma–interference optical filter. We measured a solar-to-electrical conversion rate of 6.8%, exceeding the performance of the photovoltaic cell alone. The device operates more efficiently while reducing the heat generation rates in the photovoltaic cell by a factor of two at matching output power densities. We determined the theoretical limits, and discuss the implications of surpassing the Shockley–Queisser limit. Improving the performance of an unaltered photovoltaic cell provides an important framework for the design of high-efficiency solar energy converters.

  20. Slurry ice thermal energy storage for cheese process cooling

    SciTech Connect

    Gladis, S.P.

    1997-12-31

    Many industrial processes require a large load to be cooled in a relatively short period. These loads often utilize supply chilled-water temperatures in the range of 34 F (1.1 C) to 36 F (2.2 C). The low water temperatures can be supplied from conventional on-demand chillers, such as falling film water chillers or shell-and-tube chillers using a brine solution. The low water temperatures can also be supplied from thermal energy storage (TES) systems, such as static ice builders, or dynamic ice systems, such as an ice harvester or slurry ice maker. The benefits of using a TES system in industrial processes, versus an on-demand chiller, include smaller refrigeration equipment, reserve cooling capacity, lower electrical capacity requirements, and lower energy costs. This paper outlines a unique type of dynamic slurry ice system applied to a cheese processing plant. Dynamic ice systems separate the manufacture of ice from the storage of ice. These systems are capable of satisfying very large loads of short duration by rapidly melting stored ice. Rapid melting of ice is achievable with dynamic ice-type TES systems because the warm water returning from the load comes in direct contact with the ice in storage.

  1. Design and installation manual for thermal energy storage

    SciTech Connect

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

    1980-01-01

    The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  2. Environmental programs for ocean thermal energy conversion (OTEC)

    SciTech Connect

    Wilde, P.

    1981-07-01

    The environmental research effort in support of the US Department of Energy's Ocean Thermal Energy Conversion (OTEC) program has the goal of providing documented information on the effect of proposed operations on the ocean and the effect of oceanic conditions on the plant. The associated environment program consists of archival studies in potential areas serial oceanographic cruises to sites or regions of interest, studies from various fixed platforms at sites, and compilation of such information for appropriate legal compliance and permit requirements and for use in progressive design of OTEC plants. Site/regions investigated are south of Mobile and west of Tampa, Gulf of Mexico; Punta Tuna, Puerto Rico; St. Croix, Virgin Islands; Kahe Point, Oahu and Keahole Point, Hawaii, Hawaiian Islands; and off the Brazilian south Equatorial Coast. Four classes of environmental concerns identified are: redistribution of oceanic properties (ocean water mixing, impingement/entrainment etc.); chemical pollution (biocides, working fluid leaks, etc.); structural effects (artificial reef, aggregation, nesting/migration, etc.); socio-legal-economic (worker safety, enviromaritime law, etc.).

  3. Development of approximate method to analyze the characteristics of latent heat thermal energy storage system

    SciTech Connect

    Saitoh, T.S.; Hoshi, Akira

    1999-07-01

    Third Conference of the Parties to the U.N. Framework Convention on Climate Change (COP3) held in last December in Kyoto urged the industrialized nation to reduce carbon dioxide (CO{sub 2}) emissions by 5.2 percent (on the average) below 1990 level until the period between 2008 and 2012 (Kyoto protocol). This implies that even for the most advanced countries like the US, Japan, and EU implementation of drastic policies and overcoming many barriers in market should be necessary. One idea which leads to a path of low carbon intensity is to adopt an energy storage concept. One of the reasons that the efficiency of the conventional energy systems has been relatively low is ascribed to lacking of energy storage subsystem. Most of the past energy systems, for example, air-conditioning system, do not have energy storage part and the system usually operates with low energy efficiency. Firstly, the effect of reducing CO{sub 2} emissions was also examined if the LHTES subsystems were incorporated in all the residential and building air-conditioning systems. Another field of application of the LHTES is of course transportation. Future vehicle will be electric or hybrid vehicle. However, these vehicles will need considerable energy for air-conditioning. The LHTES system will provide enough energy for this purpose by storing nighttime electricity or rejected heat from the radiator or motor. Melting and solidification of phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season and also reduce carbon dioxide (CO{sub 2}) emissions. Two melting modes are involved in melting in capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid (melt) region. Close-contact melting processes for a single enclosure have been solved using several

  4. Evaluation of thermal energy storage materials for advanced compressed air energy storage systems

    SciTech Connect

    Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

    1983-03-01

    Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

  5. What my dogs forced me to learn about thermal energy transfer

    NASA Astrophysics Data System (ADS)

    Bohren, Craig F.

    2015-05-01

    Some objects feel colder to the touch than others at the same (room) temperature. But explaining why by linear, single-factor reasoning is inadequate because the time-dependent thermal energy transfer at solid interfaces initially at different temperatures is determined by the thermal inertia √{ k ρ c } , a function of three thermophysical properties: thermal conductivity k, density ρ, and specific heat capacity per unit mass c. In time-dependent problems 1 / √{ k ρ c } plays the role of a resistance. As an example, although the thermal conductivity of aluminum is 16 times that of stainless steel, this does not translate into a 16-fold difference in interfacial thermal energy flux densities. Nor does it result in a markedly greater perceived coldness of aluminum; the difference is barely perceptible. Similarly, despite the 600-fold difference in the thermal conductivity of iron relative to that of wood, the ratio of thermal energy flux densities is only about 4.6.

  6. Summer season variability of the north residual cap of Mars as observed by the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES)

    NASA Astrophysics Data System (ADS)

    Calvin, W. M.; Titus, T. N.

    2008-02-01

    Previous observations have noted the change in albedo in a number of North Pole bright outliers and in the distribution of bright ice deposits between Mariner 9, Viking, and Mars Global Surveyor (MGS) data sets. Changes over the summer season as well as between regions at the same season ( Ls) in different years have been observed. We used the bolometric albedo and brightness temperature channels of the Thermal Emission Spectrometer (TES) on the MGS spacecraft to monitor north polar residual ice cap variations between Mars years and within the summer season for three northern Martian summers between July 1999 and April 2003. Large-scale brightness variations are observed in four general areas: (1) the patchy outlying frost deposits from 90 to 270°E, 75 to 80°N; (2) the large "tail" below the Chasma Boreale and its associated plateau from 315 to 45°E, 80 to 85°N, that we call the "Boreale Tongue" and in Hyperboreae Undae; (3) the troughed terrain in the region from 0 to 120°E longitude (the lower right on a polar stereographic projection) we have called "Shackleton's Grooves" and (4) the unit mapped as residual ice in Olympia Planitia. We also note two areas which seem to persist as cool and bright throughout the summer and between Mars years. One is at the "source" of Chasma Boreale (˜15°E, 85°N) dubbed "McMurdo", and the "Cool and Bright Anomaly (CABA)" noted by Kieffer and Titus 2001. TES Mapping of Mars' north seasonal cap. Icarus 154, 162-180] at ˜330°E, 87°N called here "Vostok". Overall defrosting occurs early in the summer as the temperatures rise and then after the peak temperatures are reached ( Ls˜110) higher elevations and outlier bright deposits cold trap and re-accumulate new frost. Persistent bright areas are associated with either higher elevations or higher background albedos suggesting complex feedback mechanisms including cold-trapping of frost due to albedo and elevation effects, as well as influence of mesoscale atmospheric dynamics.

  7. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    Sizing procedures are presented for latent heat thermal energy storage systems that can be used for electric utility off-peak energy storage, solar power plants and other preliminary design applications.

  8. The effect of seasonal hedging on energy futures spreads: A test of market efficiency

    SciTech Connect

    Emerson, M.C.

    1990-01-01

    This dissertation tests the efficiency of selected NYMEX petroleum futures spreads. It is argued that seasonal changes in hedging activity cause seasonal biases in futures price spreads. A multimarket equilibrium model is presented which illustrates the effect of seasonal hedging behavior on spreads. The primary hypothesis is: NYMEX futures markets for No. 2 heating oil, unleaded gasoline, and crude oil are not semi-strong efficient. If futures markets are not semi-strong efficient then all publicly available information is not reflected in contract prices. The secondary hypothesis is: by anticipating seasonal changes in hedger interest in NYMEX NO. 2 heating oil, unleaded gasoline, and crude oil futures markets, a speculator can profit from changing NYMEX future spreads. Nine speculative trading rules are presented to test the two hypotheses. They specify the contracts to spread so the speculator can profit from theorized biases in selected NYMEX future spreads. The number of contracts to spread and the period the spreads are held is clearly specified. The trading rules are tested over five trading years. An econometric model then analyzes the profitability of the spreads over time to determine if trends exist which would indicate spread biases. The empirical results support the primary and secondary hypotheses of this dissertation. Nonseasonal hedging and speculator interest are argued to cause losses occasionally. Nevertheless, the results suggest that a speculator can profit in the long run by trading selected NYMEX spreads. The profitability of some of the rules over time exhibited non-random behavior. These results suggest that spread biases caused profits to steadily increase during several spread periods. This evidence supports the hypothesis that NYMEX futures markets are not semi-strong efficient; it suggests that biases do exist.

  9. Seasonal biomass and energy content in seagrass communities on the west coast of Florida

    SciTech Connect

    Dawes, C.J.; Hall, M.O.; Riechert, R.K.

    1985-01-01

    Seasonal collections were made over a 16 month period in seven seagrass communities on the west coast of Florida. The seagrass component accounted for at least 45% of the total biomass and Thalassia testudinum was the dominant species. The 15 month mean of total biomass at six sites that were dominated year around by T. testudinum from Tampa Bay to Cedar Key, Florida was 385 g dry weight m/sup 2/ or 1.42 tons dry weight/acre. The drift and attached seaweed components showed seasonal fluctuations in terms of species and biomass. Of the six open water sites, only one site, characterized by depressed salinity, showed significant differences in seasonal biomass for T. testudinum using a nested ANOVA and Student-Newman-Keul's test for variance. Available kilocalories ranged from a 16 month low of 344 to a high of 1837 kcal/m/sup 2/ with the highest biomass and caloric values occurring in the late spring and summer.

  10. Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions

    SciTech Connect

    DeForest, Nicolas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2014-04-15

    This paper presents an investigation of the economic benefit of thermal energy storage (TES) for cooling, across a range of economic and climate conditions. Chilled water TES systems are simulated for a large office building in four distinct locations, Miami in the U.S.; Lisbon, Portugal; Shanghai, China; and Mumbai, India. Optimal system size and operating schedules are determined using the optimization model DER-CAM, such that total cost, including electricity and amortized capital costs are minimized. The economic impacts of each optimized TES system is then compared to systems sized using a simple heuristic method, which bases system size as fraction (50percent and 100percent) of total on-peak summer cooling loads. Results indicate that TES systems of all sizes can be effective in reducing annual electricity costs (5percent-15percent) and peak electricity consumption (13percent-33percent). The investigation also indentifies a number of criteria which drive TES investment, including low capital costs, electricity tariffs with high power demand charges and prolonged cooling seasons. In locations where these drivers clearly exist, the heuristically sized systems capture much of the value of optimally sized systems; between 60percent and 100percent in terms of net present value. However, in instances where these drivers are less pronounced, the heuristic tends to oversize systems, and optimization becomes crucial to ensure economically beneficial deployment of TES, increasing the net present value of heuristically sized systems by as much as 10 times in some instances.

  11. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  12. Solar energy system performance evaluation: A seasonal report for SEMCO, Macon, Georgia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system for heating water in a single-family residence for a family of four is described. The system operation, the operating energy, energy savings, maintenance, and performance are analyzed.

  13. Similarity and generalized analysis of efficiencies of thermal energy storage systems

    SciTech Connect

    Peiwen Li; Jon Van Lew; Cholik Chan; Wafaa Karaki; Jake Stephens; J. E. O'Brien

    2012-03-01

    This paper examined the features of three typical thermal storage systems including: (1) direct storage of heat transfer fluid in containers, (2) storage of thermal energy in a packed bed of solid filler material, with energy being carried in/out by a flowing heat transfer fluid which directly contacts the packed bed, and (3) a system in which heat transfer fluid flows through tubes that are imbedded into a thermal storage material which may be solid, liquid, or a mixture of the two. The similarity of the three types of thermal storage systems was discussed, and generalized energy storage governing equations were introduced in both dimensional and dimensionless forms. The temperatures of the heat transfer fluid during energy charge and discharge processes and the overall energy storage efficiencies were studied through solution of the energy storage governing equations. Finally, provided in the paper are a series of generalized charts bearing curves for energy storage effectiveness against four dimensionless parameters grouped up from many of the thermal storage system properties including dimensions, fluid and thermal storage material properties, as well as the operational conditions including mass flow rate of the fluid, and the ratio of energy charge and discharge time periods. Engineers can conveniently look up the charts to design and calibrate the size of thermal storage tanks and operational conditions without doing complicated individual modeling and computations. It is expected that the charts will serve as standard tools for thermal storage system design and calibration.

  14. Assessing District Energy Systems Performance Integrated with Multiple Thermal Energy Storages

    NASA Astrophysics Data System (ADS)

    Rezaie, Behnaz

    The goal of this study is to examine various energy resources in district energy (DE) systems and then DE system performance development by means of multiple thermal energy storages (TES) application. This study sheds light on areas not yet investigated precisely in detail. Throughout the research, major components of the heat plant, energy suppliers of the DE systems, and TES characteristics are separately examined; integration of various configurations of the multiple TESs in the DE system is then analysed. In the first part of the study, various sources of energy are compared, in a consistent manner, financially and environmentally. The TES performance is then assessed from various aspects. Then, TES(s) and DE systems with several sources of energy are integrated, and are investigated as a heat process centre. The most efficient configurations of the multiple TESs integrated with the DE system are investigated. Some of the findings of this study are applied on an actual DE system. The outcomes of this study provide insight for researchers and engineers who work in this field, as well as policy makers and project managers who are decision-makers. The accomplishments of the study are original developments TESs and DE systems. As an original development the Enviro-Economic Function, to balance the economic and environmental aspects of energy resources technologies in DE systems, is developed; various configurations of multiple TESs, including series, parallel, and general grid, are developed. The developed related functions are discharge temperature and energy of the TES, and energy and exergy efficiencies of the TES. The TES charging and discharging behavior of TES instantaneously is also investigated to obtain the charging temperature, the maximum charging temperature, the charging energy flow, maximum heat flow capacity, the discharging temperature, the minimum charging temperature, the discharging energy flow, the maximum heat flow capacity, and performance

  15. An assessment of the global, seasonal, and interannual spacecraft record of martian climate in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Liu, J.; Richardson, M.; Wilson, R.

    A comprehensive inter-comparison of thermal infrared data collected by Mariner 9, Viking, and Mars Global Surveyor (MGS) is presented, with a specific focus on air temperatures, dust opacities, and water ice opacities. Emphasis is placed upon creating a uniform data set so as to most effectively reduce inter-instrument biases and offsets. We show that the globally-averaged martian atmosphere undergoes a repeatable annual cycle of air temperature, closing in northern spring and summer to within a Kelvin. The annual cycle shows a strong asymmetry about the equinoxes, with northern summer showing relatively low temperatures and essentially no short-term (tens of days) variability. Viking and MGS air temperatures are essentially indistinguishable, suggesting that the Viking and MGS eras are characterized by exactly the same climatic state. Southern summer is characterized by strong dust storm activity, with the period around Ls=225 has exhibiting regional or global-scale dust storm events in every year observed by spacecraft. Dust opacity shows a highly repeatable annual cycle, closing to essentially the same values each year in northern spring and summer, with Viking and MGS opacities being very similar. We show that both Viking and MGS data sets have significant and similar polar cap edge dust storm activity. The origins of the various major dust storms can be identified in the thermal infrared data from Viking and MGS, including the "flushing" of dust from the northern autumn baroclinic zone into the southern hemisphere tropics, which has also been identified in visible imaging. Water ice opacities have been retrieved from Viking infrared data for the first time and the tropical cloud belt structure and evolution is essentially the same in each of the multiple years observed by Viking and MGS. Polar hood clouds are observed in the Viking and MGS observations with similar timing and extent.

  16. Olympic Village thermal energy storage experiment. Final report

    SciTech Connect

    Fernandes, R.A.; Saylor, C.M.

    1983-04-01

    Four thermal energy storage (TES) systems were operated in identical dormitory-style buildings of the Raybrook Correctional Facility, formerly the housing for the athletes at the 1980 Winter Olympic Games in Lake Placid, New York. The objectives of the project were to assess the ability of these TES systems to be controlled so as to modify load profiles favorably, and to assess the ability to maintain comfortable indoor conditions under those control strategies. Accordingly, the test was designed to evaluate the effect on load profiles of appropriate control algorithms for the TES systems, collect comprehensive TES operating data, and identify needed research and development to improve the effectiveness of the TES systems. The four similar dormitory buildings were used to compare electric slab heating on grade, ceramic brick storage heating, pressurized-hot-water heating, and heat pumps with hot-water storage. In a fifth similar building, a conventional (non-TES) forced air electric resistance heat system was used. The four buildings with TES systems also had electric resistance heating for backup. A remote computer-based monitoring and control system was used to implement the control algorithms and to collect data from the site. For a 25% TES saturation of electric heat customers on the NMPC system, production costs were reduced by up to $2,235,000 for the New York Power Pool. The winter peak load was reduced by up to 223 MW. The control schedules developed were successful in reducing on-peak energy consumption while maintaining indoor conditions as close to the comfort level as possible considering the test environment.

  17. Optimizing Performance of a Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Subirats Soler, Monica

    In this thesis, the problem of electricity demand shifting for the cooling needs of a large institution using a thermal energy storage (TES) tank is considered. The system is formed by electric chillers, cooling towers and a TES tank that can store energy for the cooling demand of most days, but not for the hottest ones. The goal is to supply all the cooling needed while minimizing the cost. This is done by shifting the cooling demand to night and early morning hours, when electricity is cheaper and due to lower temperatures, the chillers work more efficiently. This is all done with the help of the TES tank, that acts as a buffer storing chilled water. After a series of assumptions and simplifications, the cost function becomes convex and thus a minimum solution exists. However, from previous work only the chillers were considered, omitting the negative effect that other components of the system, such as cooling towers, had on the overall cost of operation. Using data from the operation of the power plant under real conditions, a method to model the whole system is presented in this thesis. In addition, the algorithm relied on the knowledge of an accurate prediction of the cooling demand, which obviously is not known in advance. A method to predict it starting from a forecasting of the temperature is presented. Finally, the algorithm can be easily modified to allow the imposition constraints that limit the maximum power use of chillers, during specific periods, in response to the overall needs of the micro-grid.

  18. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  19. Relationship of regional water quality to aquifer thermal energy storage

    SciTech Connect

    Allen, R.D.

    1983-11-01

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  20. Calibration of sonic flowmeters for Ocean Thermal Energy Conversion (OTEC)

    NASA Astrophysics Data System (ADS)

    Lott, D. F.; Salsman, G. G.; Hodges, C. E.

    1980-12-01

    Scientists at the Naval Coastal Systems Center (NCSC) at Panama City, Florida, have used a commercially available acoustic flowmeter to monitor critical flow conditions during an OTEC (Ocean Thermal Energy Conversion) funded study of the effects of biofouling on the efficiency of a prototype heat transfer system. Flowmeters of this type are particularly useful in applications requiring unimpeded flow; i.e., no sensor projecting into the moving fluid. Unfortunately, sonic flowmeters are somewhat difficult to calibrate and may be subject to drift. A method of calibration devised by NCSC may thus be of some interest to other users. It is the purpose of this report to document the special procedures used by test personnel to calibrate the flowmeters. Briefly, the calibration consisted of pumping sea water through the flowmeter into a tank suspended beneath a special load cell which provided an output voltage proportional to the weight of water in the tank. A programmable desktop calculator system was used to monitor changes in voltage as a function of time and convert these changes into flow rates for direct comparison with values read from the sonic flowmeter's digital display. Calibration checks were made at metered flows of 8, 10, 12, 14, 16, and 18 gallons per minute (gpm). It was found that computed flows were essentially linear but differed from metered values by as much as 9.0 percent.

  1. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    SciTech Connect

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  2. Integrated photovoltaic-thermal solar energy conversion systems

    NASA Technical Reports Server (NTRS)

    Samara, G. A.

    1975-01-01

    A combined photovoltaic/thermal collector has been built and is now being tested. Initial tests have concentrated on evaluating the thermal efficiency of the collector before and after the silicon cells are mounted. With likely improvements in bonding between cells and receiver and in the absorptivity of the cells, thermal efficiencies greater than 50% can be expected for the combined receiver operating at 100 C.

  3. Phase change material in floor tiles for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Lee, Amy Sarah

    Traditional passive solar systems have relied on sensible heat storage for energy savings. Recent research has investigated taking advantage of latent heat storage for additional energy savings. This is accomplished by the incorporation of phase change material into building materials used in traditional passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. This research introduces a new flooring material that incorporates a phase change material ready for commercial manufacture. An agglomerate floor tile containing 20% by mass of encapsulated octadecane has been manufactured. Flexural and compressive strength of 7.4 MPa and 24.5 MPa respectively, were measured for the tile. Peak melting transition temperature was determined to be 27.2°C with a latent heat of 33.9 J/g of tile. Structural and thermal performance of the tile surpassed that of a typical ceramic tile. Each tile was composed of quartz, resin and phase change material. Statistical modeling was performed to analyze the response of flexural and compressive strength on varying amounts of quartz, resin and phase change material. Resulting polynomials described the effect of adding phase change material into the tile. With as little as 10% by mass of phase change material, the strength was reduced to less than 50% of tile without phase change material. It was determined that the maximum phase change material content to attain structural integrity greater than ceramic tile was 20% by mass. The statistical analysis used for this research was based on mixture experiments. A procedure was developed to simplify the selection of data points used in the fit of the polynomials to describe the response of flexural and compressive strengths. Analysis of energy savings using this floor tile containing 20% by mass of phase change material was performed as an addendum to this research. A known static simulation method, SLR (solar load ratio), was adapted to include

  4. Thermal Properties of Refractory Metals for Advanced Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Ozaki, Yo.

    1994-01-01

    The selection of materials for advanced nuclear energy converters is a crucial issue since many of their components must be able to sustain high temperature operation for long periods of time. Prime candidate materials for the converters including W-HfC and refractory metal carbides (TaC, NbC, HfC, ZrC and WC) were investigated in this research. The objectives were to predict the lifetime of the W-HfC alloy, via a thorough investigation of the microstructure evolution, and to obtain an understanding of the high temperature thermal radiative characteristics of the alloy and the carbides, via emissivity measurements. The W-HfC alloy was found to have an extremely high recrystallization temperature. This strong resistance to recrystallization was concluded to be one of the reasons that W-HfC has superior high temperature strength. The coarsening of HfC particles was found to be the precursor for recrystallization and grain growth. The coarsening of finely dispersed HfC particles in W-HfC was investigated and diffusion of Hf in W were measured to determine the diffusion contribution to the coarsening process. The coarsening process appears to be controlled by two energy barriers. One dictated by the diffusion of hafnium and the other by the solubility limit as a function of temperature. From the environmental aspects, the high temperature compatibility of the alloy with either a CVD-W coating or rm UO_2 nuclear fuel were investigated. Neither of these was found to affect the performance of the converters. Using single- and dual -wavelength radiation thermometries the high temperature emissivities of W-HfC, CVD-W and refractory metal carbides were found to be higher than previously reported. The effects of exposure to high temperatures (with and without the presence of hydrogen) on the emissivities of the carbides were also investigated and ZrC and HfC were concluded to be the most suitable materials for the nuclear energy converter application among the carbides tested

  5. Advanced thermal energy management: A thermal test bed and heat pipe simulation

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.

    1986-01-01

    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  6. Preparation, characterization, and thermal properties of starch microencapsulated fatty acids as phase change materials thermal energy storage applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable starch-oil composites can be prepared from renewable resources by excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials. Fatty acids such as stearic acid are promising phase change materials (PCMs) for latent heat thermal energy storage applica...

  7. Seasonal Variations of Water, Energy, and Carbon Fluxes Across a Moisture Gradient in West Africa

    NASA Astrophysics Data System (ADS)

    Smith, D.; Baker, I. T.; Denning, S.; Stockli, R.; Orescanin, B.

    2013-12-01

    While grasslands make up nearly 40% of Earth's land surface, many areas remain understudied and under observed. Particularly, tropical grasslands are generally less researched sites due to the remoteness of their location. Model output and satellite data have become key resources when describing and analyzing the ecological processes occurring in these areas. In this project, the Simple Biosphere Model (SiB) and fluorescence data are used alongside each other to summarize the productivity both seasonally and annually in several grassland sites in West Africa. While SiB interpreted the overall meteorological processes fairly well, the model struggled to accurately describe the variations in leaf indices, including; leaf area index, fraction of photosynthetically active radiation, and fluorescence. Specifically, fluorescence data retrieved by satellite showed variability seasonally, whereas, SiB showed very little. To improve SiB's output, the phenology of each grassland site are examined and altered to create a more realistic description than what had been previously used. The adaption resulted in more accurate modeling of ecological processes in West African grasslands. Comparing the Simple Biosphere Model (SiB) to remotely sensed observations.

  8. Solar energy system performance evaluation. Seasonal report for Wormser, Columbia, South Carolina

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Wormser Solar Energy System's operational performance from April 1979 through March 1980 was evaluated. The space heating subsystem met 42 percent of the measured space heating load and the hot water subsystem met 23 percent of the measured hot water demand. Net electrical energy savings were 4.36 million Btu's or 1277 kwh. Fossil energy savings will increase considerably if the uncontrolled solar energy input to the building is considered.

  9. Influences of snow event on energy balance over temperate meadow in dormant season based on eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Chen, Nina; Guan, Dexin; Jin, Changjie; Wang, Anzhi; Wu, Jiabing; Yuan, Fenghui

    2011-03-01

    SummaryBased on the eddy flux and meteorological measurements, we analyzed variation of the components of energy balance before, during and after the snow coverage in dormant season over temperate meadow. The results showed that the energy balance ratio EBR was 0.76, lowest in the fresh snow phase and positively correlated with friction velocity u∗. Furthermore, the energy balance closure error had a diurnal cycle. The radiation partition and energy balance changed in the presence of the snow cover. The surface albedo was high during snow coverage (maximum in the fresh snow phase) and low in the snow-free period (including pre-snow and snow-melted phases). The ratio of net radiation R n to solar radiation Q was higher in the snow-melted phase, and lower in the fresh snow phase, so did the peaks in diurnal courses of the energy fluxes ( R n, latent heat flux LE, sensible heat flux H, and soil and storage heat flux G + S). The daily-integrated value of H increased followed by R n in the snow-melting phase, LE and G + S increased quickly followed by R n in the snow-melted phase. Daily average Bowen ratio β was large in the snow-melting phase and low in the snow-melted phase, indicating that more energy partitioning of R n into H in the snow-melting phase but LE in the snow-melted phase.

  10. High temperature thermal energy storage, including a discussion of TES integrated into power plants

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1978-01-01

    Storage temperatures of 260 C and above are considered. Basic considerations concerning energy thermal storage are discussed, taking into account general aspects of thermal energy storage, thermal energy storage integrated into power plants, thermal storage techniques and technical considerations, and economic considerations. A description of system concepts is provided, giving attention to a survey of proposed concepts, storage in unpressurized fluids, water storage in pressurized containers, the use of an underground lined cavern for water storage, a submerged thin insulated steel shell under the ocean containing pressurized water, gas passage through solid blocks, a rock bed with liquid heat transport fluid, hollow steel ingots, heat storage in concrete or sand, sand in a fluidized bed, sand poured over pipes, a thermal energy storage heat exchanger, pipes or spheres filled with phase change materials (PCM), macroencapsulated PCM with heat pipe concept for transport fluid, solid PCM removed from heat transfer pipes by moving scrapers, and the direct contact between PCM and transport fluid.

  11. Design and development of integral heat pipe/thermal energy storage devices. [used with spacecraft cryocoolers

    NASA Technical Reports Server (NTRS)

    Mahefkey, E. T.; Richter, R.

    1981-01-01

    The major design and performance test subtasks in the development of small (200 to 1,000 whr) integral heat pipe/thermal energy storage devices for use with thermally driven spacecraft cryo-coolers are described. The design of the integral heat pipe/thermal energy storage device was based on a quasi steady resistance heat transfer, lumped capacitance model. Design considerations for the heat pipe and thermal storage annuli are presented. The thermomechanical stress and insulation system design for the device are reviewed. Experimental correlations are described, as are the plans for the further development of the concept.

  12. Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review

    NASA Astrophysics Data System (ADS)

    Hardwicke, Canan U.; Lau, Yuk-Chiu

    2013-06-01

    Functional coatings are widely used in energy generation equipment in industries such as renewables, oil and gas, propulsion engines, and gas turbines. Intelligent thermal spray processing is vital in many of these areas for efficient manufacturing. Advanced thermal spray coating applications include thermal management, wear, oxidation, corrosion resistance, sealing systems, vibration and sound absorbance, and component repair. This paper reviews the current status of materials, equipment, processing, and properties' aspects for key coatings in the energy industry, especially the developments in large-scale gas turbines. In addition to the most recent industrial advances in thermal spray technologies, future technical needs are also highlighted.

  13. The influence of thermal energy exchange on the activity and energetics of yellow-bellied marmots

    SciTech Connect

    Melcher, J.C.

    1987-01-01

    The energetics of yellow-bellied marmots (Marmota flaviventris), large hibernating ground squirrels were investigated. Marmots typically inhabit montane regions with short growing seasons. Minimization of energy expenditure by hibernation is essential for overwinter survival, whereas maximization of energy intake is important during the active season. Marmots near the Rocky Mountain Biological Laboratory in southwestern Colorado are active for only 4 to 5 months each year. During this time they must reproduce, grow, and store enough fat to survive hibernation. 64 refs., 13 figs., 10 tabs.

  14. Program definition and assessment overview. [for thermal energy storage project management

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1980-01-01

    The implementation of a program level assessment of thermal energy storage technology thrusts for the near and far term to assure overall coherent energy storage program is considered. The identification and definition of potential thermal energy storage applications, definition of technology requirements, and appropriate market sectors are discussed along with the necessary coordination, planning, and preparation associated with program reviews, workshops, multi-year plans and annual operating plans for the major laboratory tasks.

  15. Composition, seasonal change and bathymetry of Ligeia Mare, Titan, derived from its 2.2-cm thermal emission

    NASA Astrophysics Data System (ADS)

    Le Gall, A. A.; Malaska, M.; Lorenz, R. D.; Janssen, M. A.; Tokano, T.; Hayes, A.; Lunine, J. I.; Veyssière, G.; Mastrogiuseppe, M.; Karatekin, O.; Encrenaz, P.

    2015-12-01

    For the last 10 years, the Cassini RADAR has been exploring Saturn's moon Titan, the only planetary body besides Earth whose surface presently exhibits significant accumulations of liquids in the forms of lakes and seas. In particular, the passive Radiometer that is incorporated in this instrument has been recording the 2.2 cm-wavelength thermal emission from Titan's three seas. Radiometry observations provide new information beyond the active radar reflection data. In this paper, we analyze the radiometry observations collected from Feb. 2007 to July 2013 over one of these seas, Ligeia Mare, with the goal of providing constrains on its liquid composition, seafloor nature, bathymetry, and dynamics. In light of the two-layer model we have developed for this analysis, we find that the dielectric constant of the sea liquid is most likely smaller than 1.8, suggesting that the composition of Ligeia Mare is dominated by liquid methane rather than liquid ethane (although a ternary methane-ethane-nitrogen mixture cannot be ruled out). This result is further supported by the value we infer for the liquid loss tangent of 3-5×10-5. This value is in agreement with the one first published by Mastrogiuseppe et al. (2014) based on active radar observation. A high methane concentration suggests that Ligeia Mare is either a sea from which ethane has been removed by crustal interaction, or a sea primarely fed by methane-rich precipitation, or both. For the seafloor, a dielectric constant of 2.6-2.9±0.9 is determined. Though this result is not very constraining, we favor a scenario where the floor of Ligeia Mare is covered by a sludge of compacted and possibly nitrile-rich organic material formed by the deposition of photochemical haze or by rain-washing of the nearby shores. These results are then used to convert the radiometry mosaic of Ligeia Mare into a qualitative low-resolution bathymetry map. Lastly, we establish limits on the physical temperature variation of the sea

  16. Tomorrow`s energy today for cities and counties - keep it cool with thermal energy storage

    SciTech Connect

    1995-07-01

    Cool thermal energy storage (TES) is described as a means for electric utilities to provide electricity from off-peak times, particularly in the summer when air-conditioning accounts for 50% or more of electricity consumption. Cool TES uses off-peak power to provide cooling capacity by extracting heat from a storage medium such as ice or other phase change material. A refrigeration system may may be utilized at night to provide a reservoir of cold material. During the day, the reservoir is tapped to provide cooling capacity. The advantages of TES are discussed.

  17. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites

    NASA Astrophysics Data System (ADS)

    Wilson, Kell B.; Baldocchi, Dennis D.; Aubinet, Marc; Berbigier, Paul; Bernhofer, Christian; Dolman, Han; Falge, Eva; Field, Chris; Goldstein, Allen; Granier, Andre; Grelle, Achim; Halldor, Thorgeirsson; Hollinger, Dave; Katul, Gabriel; Law, B. E.; Lindroth, Anders; Meyers, Tilden; Moncrieff, John; Monson, Russ; Oechel, Walter; Tenhunen, John; Valentini, Riccardo; Verma, Shashi; Vesala, Timo; Wofsy, Steve

    2002-12-01

    The warm season (mid-June through late August) partitioning between sensible (H) and latent (LE) heat flux, or the Bowen ratio (β = H/LE), was investigated at 27 sites over 66 site years within the international network of eddy covariance sites (FLUXNET). Variability in β across ecosystems and climates was analyzed by quantifying general climatic and surface characteristics that control flux partitioning. The climatic control on β was quantified using the climatological resistance (Ri), which is proportional to the ratio of vapor pressure deficit (difference between saturation vapor pressure and atmospheric vapor pressure) to net radiation (large values of Ri decrease β). The control of flux partitioning by the vegetation and underlying surface was quantified by computing the surface resistance to water vapor transport (Rc, with large values tending to increase β). There was a considerable range in flux partitioning characteristics (Rc, Ri and β) among sites, but it was possible to define some general differences between vegetation types and climates. Deciduous forest sites and the agricultural site had the lowest values of Rc and β (0.25-0.50). Coniferous forests typically had a larger Rc and higher β (typically between 0.50 and 1.00 but also much larger). However, there was notable variability in Rc and Ri between coniferous site years, most notably differences between oceanic and continental climates and sites with a distinct dry summer season (Mediterranean climate). Sites with Mediterranean climates generally had the highest net radiation, Rc, Ri, and β. There was considerable variability in β between grassland site years, primarily the result of interannual differences in soil water content and Rc.

  18. Synthesis of research and development in mechanical energy storage technologies

    NASA Astrophysics Data System (ADS)

    Karadi, G. M.

    1980-05-01

    Techniques for underground energy storage are described. These techniques include underground pumped hydro storage, second generation compressed air energy storage, and seasonal aquifer thermal energy storage. An economic assessment for each of the techniques is presented.

  19. Solar energy system performance evaluation. Seasonal report for Fern Lansing, Lansing, Michigan

    SciTech Connect

    Not Available

    1980-06-01

    The Solar Energy System was designed by Fern Engineering Company, Bourne, Massachusetts to provide space heating and domestic hot water preheating for a 1300 square foot single-family residence located in Lansing, Michigan. The Solar Energy System consists of a 278 square foot flat-plate air collector subsystem, a three 120-gallon tank storage subsystem, a 40 gallon domestic hot water tank subsystem, a liquid/air heat exchanger, an energy transport module, pumps, controls and heat transfer medium lines. Natural gas provides the auxiliary energy for the space heating (100,000 Btu/h) and hot water (70,000 Btu/h) subsystems. The system is shown schematically and has five modes of operation. Typical system operation, system operating sequence, performance assessment, system performance, subsystems performance (collector array, storage, hot water, space heating), operating energy, energy savings, and maintenance are discussed. A brief summary of all pertinent parameters is presented.

  20. Thermal to electrical energy converter based on black Si

    NASA Astrophysics Data System (ADS)

    Nishijima, Y.; Balčytis, A.; Komatsu, R.; Yamamura, T.; Seniutinas, G.; Wong, B. T.; Juodkazis, S.

    2015-03-01

    Photo-thermal - to - electrical converter is demonstrated by using a commercial Peltier Bi-Te element with a hot contact made out of nanotextured Si (black-Si). Black-Si with colloidal Au nanoparticles is shown to further increase the efficiency of thermal-to-electrical conversion. Peculiarities of heat harvesting using black-Si with plasmonic Au nanoparticles at different gold densities are analyzed. Solar radiation absorption and electric field enhancement in plain and Au nanoparticle decorated black-Si was simulated using finite difference time domain (FDTD) method. Thermal conduction in nanotextured black-Si was explained using phonon Monte-Carlo simulations at the nanoscale. Strategies for creating larger thermal gradient on Peltier element using nanotextured light absorbers is discussed.

  1. Hydro-capillary thermal to electric energy conversion device

    NASA Astrophysics Data System (ADS)

    Sorokin, A. P.; Egorov, V. S.; Lisitsa, V. G.; Maltsev, V. G.; Olenchenko, O. A.; Portianoy, A. G.; Serdun, E. N.; Trevgoda, M. M.

    1998-01-01

    It's considered a principle of work and estimated technical and economic characteristics of new generation of thermal engines with external supply of heat on the basis of formation interphase surface of the lyophobous liquid-the capillary-porous body.

  2. Quantifying Uncertainties of Seasonal and Regional Evapotranspiration Estimates from Operational Simplified Surface Energy Balance Model in the Contiguous USA

    NASA Astrophysics Data System (ADS)

    Chen, M.; Senay, G. B.; Verdin, J. P.; Bohms, S.

    2015-12-01

    An operational simplified surface energy balance (SSEBop) model can provide site to regional and daily to seasonal evapotranspiration (ET) estimation. Like other ET models, SSEBop model also faces a challenging issue—uncertainty from inevitable input errors, poorly defined parameters, and inadequate model structures. Recent uncertainty assessment at multiple Ameriflux tower sites showed the uncertainties of seasonal ET estimates by the SSEBop model were within a reasonable range (less than 20%). In this study, we further quantified the uncertainties of seasonal SSEBop ET estimates at 1-km pixel resolution for the contiguous U.S.A. (CONUS) from 2001 to 2014. The uncertainty analysis focused on quantifying uncertainties from errors of key parameters (i.e., difference between cold and hot temperature boundaries (dT)) and primary driving forces, including the 8-day composite 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) data, Global Land Data Assimilation System daily air temperature data, and USGS/EROS daily short grass reference ET data. The sensitivity analysis indicated that relative errors of ET estimates from errors of input data and parameters were less than 20% in most areas of CONUS, except for western mountain areas with complex topography, southwestern bare desert areas with high albedo and dry climate conditions, and southeastern areas with high emissivity and humid climate conditions. The relative errors of ET estimates were around 30% in those specific areas where the large ET errors stemmed from errors of input data and parameters, such as LST data with errors over 1.5K, and dT with errors over 2.5K. The uncertainty assessment showed that SSEBop model is a reliable method for wide-area ET calculation. Reduction of errors from input variables (e.g., LST from MODIS) and key parameters (e.g., dT) in topographically complex areas and high albedo and emissivity surfaces can significantly improve the ET calculation

  3. The 1985 Biomass Burning Season in South America: Satellite Remote Sensing of Fires, Smoke, and Regional Radiative Energy Budgets

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Berendes, Todd A.; Welch, Ronald M.; Yang, Shi-Keng

    1998-01-01

    Using satellite imagery, more than five million square kilometers of the forest and cerrado regions over South America are extensively studied to monitor fires and smoke during the 1985 biomass burning season. The results are characterized for four major ecosystems, namely: (1) tropical rain forest, (2) tropical broadleaf seasonal, (3) savannah/grass and seasonal woods (SGW), and (4) mild/warm/hot grass/shrub (MGS). The spatial and temporal distribution of fires are examined from two different methods using the multispectral Advanced Very High Resolution Radiometer Local Area Coverage data. Using collocated measurements from the instantaneous scanner Earth Radiation Budget Experiment data, the direct regional radiative forcing of biomass burning aerosols is computed. The results show that more than 70% of the fires occur in the MGS and SGW ecosystems due to agricultural practices. The smoke generated from biomass burning has negative instantaneous net radiative forcing values for all four major ecosystems within South America. The smoke found directly over the fires has mean net radiative forcing values ranging from -25.6 to -33.9 W m(exp -2). These results confirm that the regional net radiative impact of biomass burning is one of cooling. The spectral and broadband properties for clear-sky and smoke regions are also presented that could be used as input and/or validation for other studies attempting to model the impact of aerosols on the earth-atmosphere system. These results have important applications for future instruments from the Earth Observing System (EOS) program. Specifically, the combination of the Visible Infrared Scanner and Clouds and the Earth's Radiant Energy System (CERES) instruments from the Tropical Rainfall Measuring Mission and the combination of Moderate Resolution Imaging Spectrometer and CERES instruments from the EOS morning crossing mission could provide reliable estimates of the direct radiative forcing of aerosols on a global scale

  4. Modeling void growth and movement with phase change in thermal energy storage canisters

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Namkoong, David; Skarda, J. R. L.

    1993-01-01

    A scheme was developed to model the thermal hydrodynamic behavior of thermal energy storage salts. The model included buoyancy, surface tension, viscosity, phases change with density difference, and void growth and movement. The energy, momentum, and continuity equations were solved using a finite volume formulation. The momentum equation was divided into two pieces. The void growth and void movement are modeled between the two pieces of the momentum equations. Results showed this scheme was able to predict the behavior of thermal energy storage salts.

  5. Thermal energy effects on articular cartilage: a multidisciplinary evaluation

    NASA Astrophysics Data System (ADS)

    Kaplan, Lee D.; Ernsthausen, John; Ionescu, Dan S.; Studer, Rebecca K.; Bradley, James P.; Chu, Constance R.; Fu, Freddie H.; Farkas, Daniel L.

    2002-05-01

    Partial thickness articular cartilage lesions are commonly encountered in orthopedic surgery. These lesions do not have the ability to heal by themselves, due to lack of vascular supply. Several types of treatment have addressed this problem, including mechanical debridement and thermal chondroplasty. The goal of these treatments is to provide a smooth cartilage surface and prevent propagation of the lesions. Early thermal chondroplasty was performed using lasers, and yielded very mixed results, including severe damage to the cartilage, due to poor control of the induced thermal effects. This led to the development (including commercial) of probes using radiofrequency to generate the thermal effects desired for chondroplasty. Similar concerns over the quantitative aspects and control ability of the induced thermal effects in these treatments led us to test the whole range of complex issues and parameters involved. Our investigations are designed to simultaneously evaluate clinical conditions, instrument variables for existing radiofrequency probes (pressure, speed, distance, dose) as well as the associated basic science issues such as damage temperature and controllability (down to the subcellular level), damage geometry, and effects of surrounding conditions (medium, temperature, flow, pressure). The overall goals of this work are (1) to establish whether thermal chondroplasty can be used in a safe and efficacious manner, and (2) provide a prescription for multi-variable optimization of the way treatments are delivered, based on quantitative analysis. The methods used form an interdisciplinary set, to include precise mechanical actuation, high accuracy temperature and temperature gradient control and measurement, advanced imaging approaches and mathematical modeling.

  6. Seasonal and interannual variability in surface energy partitioning and vegetation cover with grazing at shortgrass steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated shortgrass steppe energy budgets based on the Bowen Ratio Energy Balance method for three different grazing intensity treatments at the Central Plains Experimental Range Long-Term Ecological Research (CPER-LTER) site. We tested the correlations between aboveground biomass and surface en...

  7. Wild Skylarks Seasonally Modulate Energy Budgets but Maintain Energetically Costly Inflammatory Immune Responses throughout the Annual Cycle

    PubMed Central

    Hegemann, Arne; Matson, Kevin D.; Versteegh, Maaike A.; Tieleman, B. Irene

    2012-01-01

    A central hypothesis of ecological immunology is that immune defences are traded off against competing physiological and behavioural processes. During energetically demanding periods, birds are predicted to switch from expensive inflammatory responses to less costly immune responses. Acute phase responses (APRs) are a particularly costly form of immune defence, and, hence, seasonal modulations in APRs are expected. Yet, hypotheses about APR modulation remain untested in free-living organisms throughout a complete annual cycle. We studied seasonal modulations in the APRs and in the energy budgets of skylarks Alauda arvensis, a partial migrant bird from temperate zones that experiences substantial ecological changes during its annual cycle. We characterized throughout the annual cycle changes in their energy budgets by measuring basal metabolic rate (BMR) and body mass. We quantified APRs by measuring the effects of a lipopolysaccharide injection on metabolic rate, body mass, body temperature, and concentrations of glucose and ketone. Body mass and BMR were lowest during breeding, highest during winter and intermediate during spring migration, moult and autumn migration. Despite this variation in energy budgets, the magnitude of the APR, as measured by all variables, was similar in all annual cycle stages. Thus, while we find evidence that some annual cycle stages are relatively more energetically constrained, we find no support for the hypothesis that during these annual cycle stages birds compromise an immune defence that is itself energetically costly. We suggest that the ability to mount an APR may be so essential to survival in every annual cycle stage that skylarks do not trade off this costly form of defence with other annual cycle demands. PMID:22570706

  8. Solar energy system performance evaluation: Seasonal report for Elcam Tempe Arizona State University, Tempe, Arizona

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system, Elcam-Tempe, was designed by Elcam Incorporated, Santa Barbara, California, to supply commercial domestic hot water heating systems to the Agriculture Department residence at Arizona State University. The building is a single story residence located at the agriculture experiment farm of the Arizona State University. The energy system's four modes of operation are described. Electrical energy savings at the site was a net of 5.54 million Btu after the 0.17 million Btu of operating energy required to operate collector loop circulating pump were subtracted. The energy savings due to solar was less than the system's potential. On an average, twice as much hot water could have been used with significant solar energy contribution. The system corrosion and deposits caused by using dissimilar metals in the collector loop was the only problem noted with the Elcam-Tempe system.

  9. The Evaluation of Feasibility of Thermal Energy Storage System at Riga TPP-2

    NASA Astrophysics Data System (ADS)

    Ivanova, P.; Linkevics, O.; Cers, A.

    2015-12-01

    The installation of thermal energy storage system (TES) provides the optimisation of energy source, energy security supply, power plant operation and energy production flexibility. The aim of the present research is to evaluate the feasibility of thermal energy system installation at Riga TPP-2. The six modes were investigated: four for non-heating periods and two for heating periods. Different research methods were used: data statistic processing, data analysis, analogy, forecasting, financial method and correlation and regression method. In the end, the best mode was chosen - the increase of cogeneration unit efficiency during the summer.

  10. 40 CFR 74.47 - Transfer of allowances from the replacement of thermal energy-combustion sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and End of Year Compliance § 74.47 Transfer of allowances from the replacement of thermal energy... seeking to transfer allowances based on the replacement of thermal energy. (3) Contents. Each thermal... energy plan, the Administrator will annually transfer allowances to the compliance account of each...

  11. The Uncertainty of Seasonal Snow Energy- and Mass Balance Simulations as a Function of Typical Input Uncertainty (Invited)

    NASA Astrophysics Data System (ADS)

    Lehning, M.; Bavay, M.; Dadic, R.; Mott, R.; Fierz, C. G.

    2013-12-01

    The assessment of water resources and their change in time as well as many other applications from hydrology to meteorology require the successful modelling of the dynamics of the seasonal snow cover. Especially if extrapolation in time, e.g. for climate change scenario assessment, is aimed for, the use of energy balance models has been proven to be more trustworthy than simpler temperature index models. The disadvantage of the energy balance method is the requirement of a variety of input quantities, which are not always but become increasingly accessible. What is missing, however, is an in-depth assessment of the influence of typical errors in the individual input quantities on model performance. This contribution presents a sensitivity study, which compares the influence of typical errors and uncertainties in radiation, wind, temperature and humidity input, both measured and modeled, with errors caused by insufficient knowledge of solid precipitation rates. The analysis is carried out with the widely used SNOWPACK model and focuses on the build-up and melt of a mid-latitude seasonal snow cover. While mass input uncertainties still dominate the overall performance especially at high elevations (alpine zone), errors in wind and radiation can cause very significant effects as well. Wind is considered to be more critical in this context, because its spatial variation is both more pronounced and more difficult to estimate than the spatial variation in short- and longwave radiation. In absence of reliable radiation input, its value can successfully be calculated or parameterized if e.g. cloud information is available. Errors in air temperature input or a failure of a correct assessment of its spatial variability can be locally very important because of the feed-back mechanism via atmospheric stability. For the overall mass balance of a seasonal snow cover, humidity errors are less important. Notable exceptions are applications such as the correct assessment of surface

  12. Design and Fabrication of Photonic Crystals for Thermal Energy Conservation

    SciTech Connect

    Professor John Joannopoulos; Professor Yoel Fink

    2009-09-17

    The vision of intelligent and large-area fabrics capable of signal processing, sensing and energy harvesting has made incorporating electronic devices into flexible fibers an active area of research. Fiber-integrated rectifying junctions in the form of photovoltaic cells and light-emitting diodes (LEDs) have been fabricated on optical fiber substrates. However, the length of these fiber devices has been limited by the processing methods and the lack of a sufficiently conductive and transparent electrode. Their cylindrical device geometry is ideal for single device architectures, like photovoltaics and LEDs, but not amenable to building multiple devices into a single fiber. In contrast, the composite preform-to-fiber approach pioneered in our group addresses the key challenges of device density and fiber length simultaneously. It allows one to construct structured fibers composed of metals, insulators and semiconductors and enables the incorporation of many devices into a single fiber capable of performing complex tasks such as of angle of incidence and color detection. However, until now, devices built by the preform-to-fiber approach have demonstrated only ohmic behavior due to the chalcogenide semiconductor's amorphous nature and defect density. From a processing standpoint, non-crystallinity is necessary to ensure that the preform viscosity during thermal drawing is large enough to extend the time-scale of breakup driven by surface tension effects in the fluids to times much longer than that of the actual drawing. The structured preform cross-section is maintained into the microscopic fiber only when this requirement is met. Unfortunately, the same disorder that is integral to the fabrication process is detrimental to the semiconductors' electronic properties, imparting large resistivities and effectively pinning the Fermi level near mid-gap. Indeed, the defect density within the mobility gap of many chalcogenides has been found to be 1018-1019 cm-3 eV-1

  13. Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage

    SciTech Connect

    Hobson, M. J.

    1981-11-01

    The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

  14. Review of electrochemical energy conversion and storage for ocean thermal and wind energy systems

    NASA Astrophysics Data System (ADS)

    Landgrebe, A. R.; Donley, S. W.

    A literature review on electrochemical storage techniques related to ocean thermal (OTEC) and wind energy conversion systems (WECS) is presented. Battery use for WECS is foreseen because of siting size, variable capacity, quiet operation, and high efficiency; high cost and the necessity for further input voltage regulation is noted, as are prospects for technology transfer from existing programs for photovoltaic panel battery development. Fuel cells, which can run on hydrogen, ammonia, methanol, naphtha, etc., are encouraging because capacity increases are possible by simple addition of more fuel, and high thermal efficiency. Electrolytic use is seen as a cheap replacement source of electricity for metals refining and brine electrolysis. Systems of energy 'bridges' for OTEC plants, to transmit power to users, are reviewed as redox-flow, lithium-water-air, and aluminum batteries, fuel cells, electrolytic hydrogen, methane, and ammonia production, and the use of OTECs as power sources for floating factories. Directions of future research are indicated, noting that WECS will be in commercial production by 1985, while OTEC is far term, around 2025.

  15. Thermal Transmittance and the Embodied Energy of Timber Frame Lightweight Walls Insulated with Straw and Reed

    NASA Astrophysics Data System (ADS)

    Miljan, M.; Miljan, J.

    2015-11-01

    Sustainable energy use has become topical in the whole world. Energy gives us comfort we are used to. EU and national regulations determine energy efficiency of the buildings. This is one side of the problem - energy efficiency of houses during exploitation. But the other side is primary energy content of used materials and more rational use of resources during the whole life cycle of a building. The latter value constitutes about 8 - 20% from the whole energy content. Calculations of energy efficiency of materials lead us to energy efficiency of insulation materials and to comparison of natural and industrial materials taking into account their thermal conductivity as well as their primary energy content. Case study of the test house (built in 2012) insulated with straw bales gave the result that thermal transmittance of investigated straw bale walls was according to the minimum energy efficiency requirements set in Estonia U = 0.12 - 0.22 W/m2K (for walls).

  16. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    NASA Astrophysics Data System (ADS)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  17. Climate warming due to increasing atmospheric CO2: Simulations With a multilayer coupled atmosphere-ocean seasonal energy balance model

    NASA Astrophysics Data System (ADS)

    Peng, Li; Chou, Ming-Dah; Arking, Albert

    1987-05-01

    The multilayer energy balance model of Peng et al. (1982) has been further developed to include a simple two-dimensional advective-diffusive deep ocean and to allow seasonal variation in order to study long-term transient climate response to a CO2 increase as well as its seasonal pattern. Comparisons between the model-simulated present climate and conventional and satellite data show that the model can simulate well the annual cycle of the surface temperature and the radiation budget of the atmosphere. In response to a hypothetical step function doubling of atmospheric CO2, the model reaches within 1/e of the equilibrium response of global mean surface temperature (2.6°C) in 9-35 years for the probable range of vertical heat diffusivity in the ocean. This large range of response time underlies the importance of properly using the heat diffusion coefficient in ocean models. In response to a projected CO2 trend based on estimates by the Carbon Dioxide Assessment Committee (National Research Council 1983), the model's transient response in annually and globally averaged surface temperature is 60-75% of the corresponding equilibrium response. The disequilibrium increases with increasing oceanic heat diffusivity. When the atmospheric CO2 level reaches twice the current level, in about a century, the global mean surface temperature increases by 1.5°-2.0°C, depending on the heat diffusivity of the ocean. Local warming at certain times of the year, however, may be 2-3 times greater than the annual and global average. In the northern high latitudes the response undergoes significant seasonal and latitudinal variations. A maximum occurs in the early winter, and a secondary maximum occurs in the spring. In the southern hemisphere, large responses are confined to a narrow latitude zone bordering Antarctica and occur only in the cold months. The pattern of the seasonal and latitudinal distribution of the transient response remarkably resembles that of the equilibrium

  18. Application of buffer thermal energy storage to an Air Brayton Solar Engine

    NASA Astrophysics Data System (ADS)

    Strumpf, H. J.; Barr, K. P.

    1982-02-01

    The application of latent heat buffer thermal energy (TES) storage to a point focusing solar receiver equipped with an air Brayton engine is discussed. The 85-kw(th) Air Brayton Solar Receiver (ABSR) and Mod "O" engine were used as a baseline system. The operating life of a Brayton engine depends, in general, upon the number of start-stop cycles. The main advantage of buffer thermal energy storage is that it enables the engine to continue running during periods of cloud cover, thus reducing the number of engine shutdowns and increasing engine life. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written for complete transient/steady/state Brayton cycle performance. The solar insolation input was minute by minute data. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. It was also found that the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns. It was also indicated that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life. At low predicted life, thermal storage is economically attractive; for highly reliable, long lived engines, thermal storage is not economical.

  19. Thermal Performance Benchmarking; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Moreno, Gilbert

    2015-06-09

    This project proposes to seek out the SOA power electronics and motor technologies to thermally benchmark their performance. The benchmarking will focus on the thermal aspects of the system. System metrics including the junction-to-coolant thermal resistance and the parasitic power consumption (i.e., coolant flow rates and pressure drop performance) of the heat exchanger will be measured. The type of heat exchanger (i.e., channel flow, brazed, folded-fin) and any enhancement features (i.e., enhanced surfaces) will be identified and evaluated to understand their effect on performance. Additionally, the thermal resistance/conductivity of the power module’s passive stack and motor’s laminations and copper winding bundles will also be measured. The research conducted will allow insight into the various cooling strategies to understand which heat exchangers are most effective in terms of thermal performance and efficiency. Modeling analysis and fluid-flow visualization may also be carried out to better understand the heat transfer and fluid dynamics of the systems.

  20. Solar energy system performance evaluation: Seasonal report for Fern Lansing, Lansing, Michigan

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar space heating and hot water system's operational performance from April 1979 through March 1980 is evaluated. Solar energy satisfied 15 percent of the total measured load (hot water plus space heating). Net savings were approximately 21 million BTUs.