Science.gov

Sample records for seawater

  1. Nature/culture/seawater.

    PubMed

    Helmreich, Stefan

    2011-01-01

    Seawater has occupied an ambiguous place in anthropological categories of "nature" and "culture." Seawater as nature appears as potentiality of form and uncontainable flux; it moves faster than culture - with culture frequently figured through land-based metaphors - even as culture seeks to channel water's (nature's) flow. Seawater as culture manifests as a medium of pleasure, sustenance, travel, disaster. I argue that, although seawater's qualities in early anthropology were portrayed impressionistically, today technical, scientific descriptions of water's form prevail. For example, processes of globalization - which may also be called "oceanization" - are often described as "currents," "flows," and "circulations." Examining sea-set ethnography, maritime anthropologies, and contemporary social theory, I propose that seawater has operated as a “theory machine” for generating insights about human cultural organization. I develop this argument with ethnography from the Sargasso Sea and in the Sea Islands. I conclude with a critique of appeals to water's form in social theory. PMID:21560270

  2. Composition of Permian seawater

    SciTech Connect

    Lazar, B.; Friedmann, T.J.; Holland, H.D.

    1985-01-01

    The authors demonstrated that fluid inclusions in Miocene halite can be used to define the composition of contemporary Miocene seawater. During the past year the authors, have extracted inclusion fluids from halite in the Lower Permian Wellington Formation near Lyons, Kansas and from the Upper Permian Salado Formation near Carlsbad, New Mexico to define the composition of Permian seawater. The extracted inclusion fluids were analyzed by ion chromatography. The concentration of Na/sup +/, Cl/sup -/, and Mg/sup +2/ in these fluids along the evaporation path of present-day seawater. Compared to evaporated modern seawater the solutions are slightly enriched with respect to Br/sup -/ and K/sup +/. The excess of these ions is probably due to heir transfer from enclosing halite to the inclusion fluids during recrystallization. The concentration of SO/sub 4//sup -2/ in the inclusion fluids is lower than in evaporated modern seawater. The SO/sub 4//sup -2/ deficit in the fluids from halite in the Wellington Formation is almost certainly due to dolomitization followed by gypsum and/or anhydrite precipitation. No difference between the SO/sub 4//sup -2/ concentration of lower Permian and present-day seawater is required to explain the SO/sub 4//sup -2/ deficit in these fluids. This explanation does not account for the SO/sub 4//sup -2/ deficit in the inclusion fluids from the Salado Formation. The concentration of Li/sup +/ in the inclusion fluids is higher by a factor of ca. 4 than the concentration to be expected from the evaporation of modern seawater. With this exception, the composition of Permian seawater appears to have been remarkably similar to that of modern seawater.

  3. SRB seawater corrosion project

    NASA Technical Reports Server (NTRS)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  4. Uranium from seawater

    SciTech Connect

    Gregg, D.; Folkendt, M.

    1982-09-21

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10/sup 5/, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10/sup 3/ in seawater instead of the reported values of 10/sup 5/. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10/sup 5/ in fresh water. However, the system was not tested in seawater.

  5. Seawater Chemistry Package

    Energy Science and Technology Software Center (ESTSC)

    2005-11-23

    SeaChem Seawater Chemistry package provides routines to calculate pH, carbonate chemistry, density, and other quantities for seawater, based on the latest community standards. The chemistry is adapted from fortran routines provided by the OCMIP3/NOCES project, details of which are available at http://www.ipsl.jussieu.fr/OCMIP/. The SeaChem package can generate Fortran subroutines as well as Python wrappers for those routines. Thus the same code can be used by Python or Fortran analysis packages and Fortran ocean models alike.

  6. The composition of Permian seawater.

    PubMed

    Horita, J; Friedman, T J; Lazar, B; Holland, H D

    1991-01-01

    Forty-nine brine inclusions in marine halite from the Ochoan Salado Formation in the Delaware Basin and fifteen inclusions in halite from the Leonardian Wellington Formation in the Kansas Basin were extracted, and their chemical compositions were determined. The brines are of the Na-K-Mg-Cl-SO4 type; their compositions resemble those of evaporated modern seawater. The values of (mCl(-) - mNa+)/mBr- and (mMg(2+) + mCa(2+) - mSO4(2-) - 1/2mHCO3-)/mBr- of the inclusion brine from the two formations are equal to or slightly higher than those of modern seawater. The original mNa+/mBr- and mCl-/mBr- ratios of the inclusion brines were probably equal to or slightly larger than those of modern seawater. The values of mMg2+/mBr- of the inclusion brines from the Salado Formation are very close to that of modern seawater; the ratios of inclusion brines from the Wellington Formation are slightly lower, probably due to the formation of dolomite/magnesite. The mMg2+/mBr- ratio in the initial seawater was probably close to the parent seawater of the Salado brines. The values of (mSO4(2-) - mCa(2+) + 1/2mHCO3-)/mBr- of the inclusion brines appear to be reduced by the formation of dolomite/magnesite, and the value of this ratio in Permian seawater was probably similar to that of modern seawater. The mK+/mBr- ratios of the inclusion brines are variable, but the original ratios are probably close to or slightly larger than that of modern seawater. If the Br- concentration of Permian seawater was equal to that of modern seawater, the composition of Permian seawater can be narrowly constrained; in mmol/kg H2O, 460 < or = mNa+ < 630, 550 < or = mCl- < 730, mMg2+ = 54 +/- 6, mK+ approximately equal to 11, (mSO4(2-) - mCa(2+) + 1/2mHCO3-) > or = 17, 20 < mSO4(2-) < 45, 5 < mCa2+ < 20, and 0.15 < mHCO3- < 5. The composition of Permian seawater was therefore quite similar to that of modern seawater. PMID:11537200

  7. Neodymium isotopic variations in seawater

    NASA Technical Reports Server (NTRS)

    Piepgras, D. J.; Wasserburg, G. J.

    1980-01-01

    Direct measurement of the isotopic composition of Nd in the Atlantic agree with the Nd content in ferromanganese sediments and differ from the observed amounts in the Pacific samples. These data indicate the existence of distinctive differences in the isotopic composition of Nd in the waters of major oceans; the average values determined from seawater and ferromanganese sediments are considerably lower than in sources with oceanic mantle affinities showing that the REE in the oceans is dominated by continental sources. The Nd isotopic variations in seawater are applied to relate the residence time of Nd and mixing rates between the oceans.

  8. Gases in Seawater

    NASA Astrophysics Data System (ADS)

    Nightingale, P. D.; Liss, P. S.

    2003-12-01

    production and consumption, photochemistry, air-sea exchange, and vertical mixing. We will not discuss the effect of vertical mixing on gases in seawater and instead refer the reader to Chapter 6.08. Nor will we consider the deeper oceans as this region is discussed in chapters on benthic fluxes and early diagenesis (Chapter 6.11), the biological pump (Chapter 6.04), and the oceanic calcium carbonate cycle (Chapter 6.19) all in this volume. We will discuss the cycling of gases in surface oceans, including the thermocline, and in particular concentrate on the exchange of various volatile compounds across the air-sea interface.As we will show, while much is known about the cycling of gases such as CO2 and DMS in the water column, frustratingly little is known about many of the chemical species for which the ocean is believed to be a significant source to the atmosphere. We suspect the passage of time will reveal that the cycling of volatile compounds containing selenium and iodine may well prove as complex as that of DMS. Early studies of DMS assumed that it was produced from a precursor compound, dimethylsulfoniopropionate (DMSP), known to be present in some species of phytoplankton, and that the main sink in the water column was exchange across the air-sea interface. We now know that DMSP and DMS are both rapidly cycled in water column by a complex interaction between phytoplankton, microzooplankton, bacteria, and viruses (see Figure 1). Some detailed process experiments have revealed that only ˜10% of the total DMS produced (and less than 1.3% of the DMSP produced) is transferred to the atmosphere, with the bulk of the DMS and DMSP, either being recycled in the water column or photo-oxidized (Archer et al., 2002b).

  9. Faraday's Law and Seawater Motion

    ERIC Educational Resources Information Center

    De Luca, R.

    2010-01-01

    Using Faraday's law, one can illustrate how an electromotive force generator, directly utilizing seawater motion, works. The conceptual device proposed is rather simple in its components and can be built in any high school or college laboratory. The description of the way in which the device generates an electromotive force can be instructive not…

  10. Isotopic composition of Silurian seawater

    SciTech Connect

    Knauth, L.P.; Kealy, S.; Larimer, S.

    1985-01-01

    Direct isotopic analyses of 21 samples of the Silurian hydrosphere preserved as fluid inclusions in Silurian halite deposits in the Michigan Basin Salina Group yield delta/sup 18/O, deltaD ranging from 0.2 to +5.9 and -26 to -73, respectively. delta/sup 18/O has the same range as observed for modern halite facies evaporite waters and is a few per thousand higher than 100 analyses of fluid inclusions in Permian halite. deltaD is about 20 to 30 per thousand lower than modern and Permian examples. The trajectory of evaporating seawater on a deltaD-delta/sup 18/O diagram initially has a positive slope of 3-6, but hooks strongly downward to negative values, the shape of the hook depending upon humidity. Halite begins to precipitate at delta values similar to those observed for the most /sup 18/O rich fluid inclusions. Subsequent evaporation yields progressively more negative delta values as observed for the fluid inclusions. The fluid inclusion data can be readily explained in terms of evaporating seawater and are consistent with the degree of evaporation deduced from measured bromide profiles. These data are strongly inconsistent with arguments that Silurian seawater was 5.5 per thousand depleted in /sup 18/O. delta/sup 18/O for evaporite waters is systematically related to that of seawater, and does not show a -5.5 per thousand shift in the Silurian, even allowing for variables which affect the isotope evaporation trajectory. The lower deltaD may indicate a component of gypsum dehydration waters or may suggest a D-depleted Silurian hydrosphere.

  11. The seawater Sr isotopic evolution

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. B.; Gorokhov, I. M.; Semikhatov, M. A.; Maslov, A. V.; Krupenin, M. T.; Melnikov, N. N.

    2003-04-01

    Progress toward a reconstruction of the 87Sr/86Sr variations in Proterozoic seawater is still deficient compared to the Phanerozoic. There is no universally recognized curve, and some of its versions are in conflict. The construction of a reference curve should be based on: (1) the study of several thick carbonate-bearing successions within single paleobasin, (2) the reliable isotope dating of these successions, (3) the geochemical screening of least-altered carbonate samples, (4) a selective dissolution of samples to enrich them in primary carbonate generations. This approach was applied to study Late Proterozoic marine carbonate successions of the South Urals and East Siberia. Three comprehensive fragments of 87Sr/86Sr seawater curve were obtained: (1) the descending trend from 0.70562-0.70596 to 0.70519-0.70523 at 1050-1000 Ma, (2) the ascending trend from 0.70525-0.70535 to 0.70611-70625 at 850-750 Ma, and (3) the area of minor fluctuations from 0.70540 to 0.70610 at 680-660 Ma. The Sr- and C-isotope data for the South Urals allow us to revise the current stratigraphic correlations and impose some constraints on the age of the classic Upper Proterozoic successions of North Canada (Shaler Gr) and Svalbard (Akademikerbreen Gr): (1) the carbonate formations in middle part of the Shaler Gr appear to have been deposited after 800 Ma, (2) the rate of sedimentation of the Akademikerbreen succession was likely to be higher than it was proposed. The data from East Siberia postulate predominance of the low 87Sr/86Sr ratio during culmination stage of the Grenville orogenic cycle and decrease in this ratio in post-Grenvillian ocean. This fact markedly distinguishes the Grenville orogeny from the Pan-African orogeny which resulted in rise of seawater 87Sr/86Sr ratio up to 0.7085. The following factors were responsible for the low 87Sr/86Sr ratio in Grenvillian and post-Grenvillian oceans: a high role of mantle rocks in the exhumed orogens, a sea-level rise and partial

  12. Dealloying of cupronickels in stagnant seawater

    SciTech Connect

    Martin, J.R.; Heidersbach, R.H.; Lenard, D.R.

    1999-11-01

    This report discusses the dealloying (denickelification) of 70-30 cupronickel (UNS C 71500) heat exchanger tubing in stagnant seawater. Heat exchanger tubing exposed to stagnant seawater was examined. The results include metallographic, scanning electron microscope, and X-ray spectrographic analyses supporting the conclusion that the dealloying occurred by a dissolution followed by redeposition of copper process.

  13. Rapid determination of actinides in seawater samples

    DOE PAGESBeta

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used tomore » separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.« less

  14. Chemical effect on ozone deposition over seawater

    EPA Science Inventory

    Surface layer resistance plays an important role in determining ozone deposition velocity over seawater. Recent studies suggest that surface layer resistance over sea-water is influenced by wind-speed and chemical interaction at the air-water interface. Here, we investigate the e...

  15. Rapid determination of actinides in seawater samples

    SciTech Connect

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used to separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.

  16. Automated nutrient analyses in seawater

    SciTech Connect

    Whitledge, T.E.; Malloy, S.C.; Patton, C.J.; Wirick, C.D.

    1981-02-01

    This manual was assembled for use as a guide for analyzing the nutrient content of seawater samples collected in the marine coastal zone of the Northeast United States and the Bering Sea. Some modifications (changes in dilution or sample pump tube sizes) may be necessary to achieve optimum measurements in very pronounced oligotrophic, eutrophic or brackish areas. Information is presented under the following section headings: theory and mechanics of automated analysis; continuous flow system description; operation of autoanalyzer system; cookbook of current nutrient methods; automated analyzer and data analysis software; computer interfacing and hardware modifications; and trouble shooting. The three appendixes are entitled: references and additional reading; manifold components and chemicals; and software listings. (JGB)

  17. Tidal Boundary Conditions in SEAWAT

    USGS Publications Warehouse

    Mulligan, Ann E.; Langevin, Christian; Post, Vincent E.A.

    2011-01-01

    SEAWAT, a U.S. Geological Survey groundwater flow and transport code, is increasingly used to model the effects of tidal motion on coastal aquifers. Different options are available to simulate tidal boundaries but no guidelines exist nor have comparisons been made to identify the most effective approach. We test seven methods to simulate a sloping beach and a tidal flat. The ocean is represented in one of the three ways: directly using a high hydraulic conductivity (high-K) zone and indirect simulation via specified head boundaries using either the General Head Boundary (GHB) or the new Periodic Boundary Condition (PBC) package. All beach models simulate similar water fluxes across the upland boundary and across the sediment-water interface although the ratio of intertidal to subtidal flow is different at low tide. Simulating a seepage face results in larger intertidal fluxes and influences near-shore heads and salinity. Major differences in flow occur in the tidal flat simulations. Because SEAWAT does not simulate unsaturated flow the water table only rises via flow through the saturated zone. This results in delayed propagation of the rising tidal signal inland. Inundation of the tidal flat is delayed as is flow into the aquifer across the flat. This is severe in the high-K and PBC models but mild in the GHB models. Results indicate that any of the tidal boundary options are fine if the ocean-aquifer interface is steep. However, as the slope of that interface decreases, the high-K and PBC approaches perform poorly and the GHB boundary is preferable.

  18. Occurrence of seawater intrusion overshoot

    NASA Astrophysics Data System (ADS)

    Morgan, Leanne K.; Bakker, Mark; Werner, Adrian D.

    2015-04-01

    A number of numerical modeling studies of transient sea level rise (SLR) and seawater intrusion (SI) in flux-controlled aquifer systems have reported an overshoot phenomenon, whereby the freshwater-saltwater interface temporarily extends further inland than the eventual steady state position. Recently, physical sand-tank modeling has shown overshoot to be a physical process. In this paper, we have carried out numerical modeling of SLR-SI to demonstrate that overshoot can occur at the field scale within unconfined aquifers. This result is contrary to previous conclusions drawn from a restricted number of cases. In addition, we show that SI overshoot is plausible under scenarios of gradual sea level rise that are consistent with conditions predicted by the Intergovernmental Panel for Climate Change. Overshoot was found to be largest in flux-controlled unconfined aquifers characterized by low freshwater flux, high specific yield, and large inland extent. These conditions result in longer timeframes for the aquifer to reach new steady state conditions following SLR, and the extended period prior to reequilibration of the groundwater flow field produces more extensive overshoot.

  19. Synthetic seawater as stress-corrosion test medium

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    Seawater minimizes pitting corrosion of aluminum-alloy test samples. Of three corrosion-inhibiting methods evaluated using (a) chromate inhibitors in saltwater, (b) surface treating sample via anodizing or alodine treatment, and (c) synthetic seawater, synthetic seawater was most effective test medium, since it is more uniform than fresh seawater.

  20. The Geologic History of Seawater

    NASA Astrophysics Data System (ADS)

    Holland, H. D.

    2003-12-01

    Aristotle proposed that the saltness of the sea was due to the effect of sunlight on water. Robert Boyle took strong exception to this view and - in the manner of the Royal Society - laid out a program of research in the opening paragraph of his Observations and Experiments about the Saltness of the Sea (1674) (Figure 1): (20K)Figure 1. Title page of Robert Boyle's Tracts consisting of Observations about the Saltness of the Sea and other essays (1674). The Cause of the Saltness of the Sea appears by Aristotle's Writings to have busied the Curiosity of Naturalists before his time; since which, his Authority, perhaps much more than his Reasons, did for divers Ages make the Schools and the generality of Naturalists of his Opinion, till towards the end of the last Century, and the beginning of ours, some Learned Men took the boldness to question the common Opinion; since when the Controversie has been kept on foot, and, for ought I know, will be so, as long as ‘tis argued on both sides but by Dialectical Arguments, which may be probable on both sides, but are not convincing on either. Wherefore I shall here briefly deliver some particulars about the Saltness of the Sea, obtained by my own trials, where I was able; and where I was not, by the best Relations I could procure, especially from Navigators.Boyle measured and compiled a considerable set of data for variations in the saltness of surface seawater. He also designed an improved piece of equipment for sampling seawater at depth, but the depths at which it was used were modest: 30 m with his own instrument, 80 m with another, similar sampler. However, the younger John Winthrop (1606-1676), an early member of the Royal Society, an important Governor of Connecticut, and a benefactor of Harvard College, was asked to collect seawater from the bottom of the Atlantic Ocean during his crossing from England to New England in the spring of 1663. The minutes of the Royal Society's meeting on July 20, 1663, give the

  1. USCGC Healy science seawater system latency

    NASA Astrophysics Data System (ADS)

    Roberts, S. D.; Chayes, D. N.; Hiller, S. M.

    2008-12-01

    The U.S. Arctic research icebreaker USCGC Healy was delivered with the science seawater intake located near the bow. The sensors in the flow through science seawater system are located in the Biochem Lab about 128 meters aft with approximately 100 meters of pipe between the intake and the lab. This original intake and its plumbing were very prone to freezing up even in light ice conditions and was not designed to provide enough seawater to cool incubators. A new science seawater system was installed during the 2003- 2004 drydock. The intake for this system is located near Frame 95, approximately 85 meters aft of the bow and 8 meters below the water line. There are about 30 meters of pipe between the intake and the Biochem Lab. The new system incorporated a number of features including a centrifugal separator and slush stripping pumps which significantly improved the performance of the system in the presence of ice and substantially increased flow capability and included new plumbing to provide seawater on the bow for incubators. Using the time difference between the thermal features observed by an SBE 3 temperature sensor near the intake and the temperature from the SBE Thermosalinograph (SBE 21 and SBE 45) in the Biochem lab, we define a very broad range of time latencies that range from approximately 10 minutes to as much as 40 minutes when the system is not ingesting ice chips. The observed latency is correlated with changes in pumping rates, system pressure and episodic use of seawater for incubators and sample washing. Comparison of measured parameters between lowered CTDs and the Thermosalinograph indicate that while underway, flow around the hull causes surface water to reach the level of the intake. A modification to the existing flow through seawater system has been proposed that will substantially reduce the delay and improve reliability of the measured parameters when operating in ice. Technical support for science on the Healy is supported by the U

  2. Technical note: Examining ozone deposition over seawater

    NASA Astrophysics Data System (ADS)

    Sarwar, Golam; Kang, Daiwen; Foley, Kristen; Schwede, Donna; Gantt, Brett; Mathur, Rohit

    2016-09-01

    Surface layer resistance plays an important role in determining ozone deposition velocity over sea-water and can be influenced by chemical interactions at the air-water interface. Here, we examine the effect of chemical interactions of iodide, dimethylsulfide, dissolved organic carbon, and bromide in seawater on ozone deposition. We perform a series of simulations using the hemispheric Community Multiscale Air Quality model for summer months in the Northern Hemisphere. Our results suggest that each chemical interaction enhances the ozone deposition velocity and decreases the atmospheric ozone mixing ratio over seawater. Iodide enhances the median deposition velocity over seawater by 0.023 cm s-1, dissolved organic carbon by 0.021 cm s-1, dimethylsulfide by 0.002 cm s-1, and bromide by ∼0.0006 cm s-1. Consequently, iodide decreases the median atmospheric ozone mixing ratio over seawater by 0.7 ppb, dissolved organic carbon by 0.8 ppb, dimethylsulfide by 0.1 ppb, and bromide by 0.02 ppb. In a separate model simulation, we account for the effect of dissolved salts in seawater on the Henry's law constant for ozone and find that it reduces the median deposition velocity by 0.007 cm s-1 and increases surface ozone mixing ratio by 0.2 ppb. The combined effect of these processes increases the median ozone deposition velocity over seawater by 0.040 cm s-1, lowers the atmospheric ozone mixing ratio by 5%, and slightly improves model performance relative to observations.

  3. Chinese Primary Standard Seawater: Stability checks and comparisons with IAPSO Standard Seawater

    NASA Astrophysics Data System (ADS)

    Li, Yanan; Luo, Yan; Kang, Ying; Yu, Tao; Wang, Aijun; Zhang, Chuan

    2016-07-01

    The authors give a brief introduction to the Chinese Primary Standard Seawater, with a description of its preparation procedures. IAPSO Standard Seawater (IAPSO SSW), was taken as a stable reference in the stability check of Chinese Primary Standard Seawater (CP SSW), and linear regression model as well as hypothesis testing were introduced into the analysis of check results; a demonstration check of CP SSW (batch number P8) achieved a positive conclusion. In comparisons of several batches of these two kinds of standard seawater on Practical Salinity, identical seawater samples from a homogeneous source were measured repeatedly. To evaluate the comparison results, performance criteria referred to as En numbers were adopted, the maximum of which was 0.42, indicating that no significant differences lay between these two kinds of SSWs when used to determine Practical Salinity. Measures taken to assure the reliability of measurement results are presented.

  4. RAPID DETERMINATION OF RADIOSTRONTIUM IN SEAWATER SAMPLES

    SciTech Connect

    Maxwell, S.

    2013-01-16

    A new method for the determination of radiostrontium in seawater samples has been developed at the Savannah River National Laboratory (SRNL) that allows rapid preconcentration and separation of strontium and yttrium isotopes in seawater samples for measurement. The new SRNL method employs a novel and effective pre-concentration step that utilizes a blend of calcium phosphate with iron hydroxide to collect both strontium and yttrium rapidly from the seawater matrix with enhanced chemical yields. The pre-concentration steps, in combination with rapid Sr Resin and DGA Resin cartridge separation options using vacuum box technology, allow seawater samples up to 10 liters to be analyzed. The total {sup 89}Sr + {sup 90}Sr activity may be determined by gas flow proportional counting and recounted after ingrowth of {sup 90}Y to differentiate {sup 89}Sr from {sup 90}Sr. Gas flow proportional counting provides a lower method detection limit than liquid scintillation or Cerenkov counting and allows simultaneous counting of samples. Simultaneous counting allows for longer count times and lower method detection limits without handling very large aliquots of seawater. Seawater samples up to 6 liters may be analyzed using Sr Resin for {sup 89}Sr and {sup 90}Sr with a Minimum Detectable Activity (MDA) of 1-10 mBq/L, depending on count times. Seawater samples up to 10 liters may be analyzed for {sup 90}Sr using a DGA Resin method via collection and purification of {sup 90}Y only. If {sup 89}Sr and other fission products are present, then {sup 91}Y (beta energy 1.55 MeV, 58.5 day half-life) is also likely to be present. {sup 91}Y interferes with attempts to collect {sup 90}Y directly from the seawater sample without initial purification of Sr isotopes first and {sup 90}Y ingrowth. The DGA Resin option can be used to determine {sup 90}Sr, and if {sup 91}Y is also present, an ingrowth option with using DGA Resin again to collect {sup 90}Y can be performed. An MDA for {sup 90}Sr of <1 m

  5. Photochemical reactions of anthropogenic chemicals in seawater

    SciTech Connect

    Toole, A.P.; Crosby, D.G. )

    1988-09-01

    Sunlight-driven, photochemical reactions can be a major degradative force for anthropogenic organic compounds in the aquatic environment. Chlorinated phenols, various classes of pesticides, and polycyclic aromatic hydrocarbons are among some examples of the compounds shown to be degraded by sunlight. Most environmental photochemistry has been studied in fresh water, despite the fact that the oceans cover more than 70% of the earths surface and receive large inputs of anthropogenic chemicals via atmospheric transport, runoff, and coastal outfalls. This fact, along with increasing pressure for ocean waste disposal as land options dwindle, present a need for information on the photochemical reactions of anthropogenic organic chemicals in seawater. Several probable seawater pollutants were selected as probes for studying photochemical reactions including, 2-nitrotoluene, 4-nitrotoluene, styrene, 4,5-dichloroguaiacol, 4,5,6-trichloroguaiacol and tetrachloroguaiacol. Dilute solutions of each probe were prepared in buffered (pH 8), distilled water (DW), synthetic seawater (SSW) and natural seawater (NSW), then irradiated in a temperature-controlled photoreactor fitted with a General Electric F40BL fluorescent lamp to simulate sunlight. Samples were taken at regular intervals, concentrated using solid phase extraction techniques and analyzed by gas chromatography. Photolysis rates were determined assuming first, or pseudo-first, order kinetics. Photoproducts were identified by gas chromatography;mass spectrometry and confirmed by comparison to standards when available. By determining rates in DW containing selected components of SSW, at SSW concentrations, the inorganic compounds mediating the photochemical reactions in seawater could be determined.

  6. Catalytic seawater flue gas desulfurization model.

    PubMed

    Vidal Barrero, F; Ollero, P; Villanueva Perales, A L; Gómez-Barea, A

    2009-12-15

    A model of a seawater flue gas desulfurization process (SFGD) where oxidation of the absorbed SO(2) is catalyzed by activated carbon is presented. The modeled SFGD process is comprised of two main units, an absorption packed scrubber, where SO(2) absorption takes place, and an oxidation basin, where the absorbed SO(2) is catalytically oxidized to sulfate, a natural component of seawater. The model takes into account the complex physical-chemical features of the process, combining mass-transfer, kinetics and equilibrium equations, and considering the electrolyte nature of the liquid phase. The model was validated with data from a SFGD pilot plant and a sensitivity analysis was performed, showing its predictive capability. The model is a useful tool for designing industrial desulfurization units with seawater. PMID:20000534

  7. Environmental impact of seawater desalination plants.

    PubMed

    Al-Mutaz, I S

    1991-01-01

    Enormous amounts of seawater are desalted everyday worldwide. The total world production of fresh water from the sea is about 2621 mgd (9.92 million m(3) day(-1) 1985 figures). Desalting processes are normally associated with the rejection of high concentration waste brine from the plant itself or from the pretreatment units as well as during the cleaning period. In thermal processes, mainly multistage flash (MSF) thermal pollution occurs. These pollutants increase the seawater temperature, salinity, water current and turbidity. They also harm the marine environment, causing fish to migrate while enhancing the presence of algae, nematods and tiny molluscus. Sometimes micro-elements and toxic materials appear in the discharged brine.This paper will discuss the impact of the effluents from the desalination plants on the seawater environment with particular reference to the Saudi desalination plants, since they account for about 50% of the world desalination capacity. PMID:24241776

  8. Seawater chemistry and the advent of biocalcification

    NASA Astrophysics Data System (ADS)

    Brennan, Sean T.; Lowenstein, Tim K.; Horita, Juske

    2004-06-01

    Major ion compositions of primary fluid inclusions from terminal Proterozoic (ca. 544 Ma) and Early Cambrian (ca. 515 Ma) marine halites indicate that seawater Ca2+ concentrations increased approximately threefold during the Early Cambrian. The timing of this shift in seawater chemistry broadly coincides with the “Cambrian explosion,” a brief drop in marine 87Sr/86Sr values, and an increase in tectonic activity, suggesting a link between the advent of biocalcification, hydrothermal mid-ocean-ridge brine production, and the composition of seawater. The Early Cambrian surge in oceanic [Ca2+] was likely the first such increase following the rise of metazoans and may have spurred evolutionary changes in marine biota.

  9. Seawater Chemistry and the Advent of Biocalcification

    SciTech Connect

    Brennan, S. T.; Lowenstein, T K.; Horita, Juske

    2004-01-01

    Major ion compositions of primary fluid inclusions from terminal Proterozoic (ca. 544 Ma) and Early Cambrian (ca. 515 Ma) marine halites indicate that seawater Ca{sup 2+} concentrations increased approximately threefold during the Early Cambrian. The timing of this shift in seawater chemistry broadly coincides with the 'Cambrian explosion,' a brief drop in marine {sup 87}Sr/{sup 86}Sr values, and an increase in tectonic activity, suggesting a link between the advent of biocalcification, hydrothermal mid-ocean-ridge brine production, and the composition of seawater. The Early Cambrian surge in oceanic [Ca{sup 2+}] was likely the first such increase following the rise of metazoans and may have spurred evolutionary changes in marine biota.

  10. Seawater chemistry and the advent of biocalcification

    USGS Publications Warehouse

    Brennan, S.T.; Lowenstein, T.K.; Horita, J.

    2004-01-01

    Major ion compositions of primary fluid inclusions from terminal Proterozoic (ca. 544 Ma) and Early Cambrian (ca. 515 Ma) marine halites indicate that seawater Ca2+ concentrations increased approximately threefold during the Early Cambrian. The timing of this shift in seawater chemistry broadly coincides with the "Cambrian explosion," a brief drop in marine 87Sr/86Sr values, and an increase in tectonic activity, suggesting a link between the advent of biocalcification, hydrothermal mid-ocean-ridge brine production, and the composition of seawater. The Early Cambrian surge in oceanic [Ca2+] was likely the first such increase following the rise of metazoans and may have spurred evolutionary changes in marine biota. ?? 2004 Geological Society of America.

  11. Seawater bicarbonate removal during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  12. Nucleation from seawater emissions during mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Rose, Clémence; Culot, Anais; Pey, Jorge; Schwier, Allison; Mas, Sébastien; Charriere, Bruno; Sempéré, Richard; Marchand, Nicolas; D'Anna, Barbara; Sellegri, Karine

    2015-04-01

    Nucleation and new particle formation in the marine atmosphere is usually associated to the presence of macroalgea emerged at low tides in coastal areas, while these processes were very rarely detected away from coastlines. In the present study, we evidence the formation of new particles from the 1 nm size above the seawater surface in the absence of any macroalgea population. Within the SAM project (Sources of marine Aerosol in the Mediterranean),seawater mesocosms experiments were deployed in May 2013 at the STARESO in western Corsica, with the goal of investigating the relationship between marine aerosol emissions and the seawater biogeochemical properties. Three mesocosms imprisoned 3,3 m3 of seawater each and their emerged part was flushed with aerosol-filtered natural air. One of these mesocosms was left unchanged as control and the two others were enriched by addition of nitrates and phosphates respecting Redfield ratio (N:P = 16) in order to create different levels of phytoplanctonic activities. We followed both water and air characteristics of three mesocosms during a period of three weeks by using online water and atmospheric probes as well as seawater daily samples for chemical and biological analysis. Secondary new particle formation was followed on-line in the emerged parts of the mesocosms, using a SMPS for the size distribution above 6 nm and a Particle Size Magnifyer (PSM) for the number of cluster particles between 1 and 6 nm. We will present how the cluster formation rates and early growth rates relate to the gaz-phase emissions from the seawater and to its biogeochemical properties. Aknowledgemnts: The authors want to acknowledge the financial support of the ANR "Source of marine Aerosol in the Mediterranean" (SAM), and the support of MISTRAL CHARMEX and MERMEX programs.

  13. New Application of Seawater and Electrolyzed Seawater in Air Pollution Control of Marine Diesel Engine

    NASA Astrophysics Data System (ADS)

    An, Sukheon; Nishida, Osami

    It is the purpose of this paper to introduce the usage of seawater and its electrolysis for the exhaust emission control in marine diesel engines. First, with using only seawater that is naturally alkaline (pH typically around 8.1), the SO2 and SO3 are absorbed by relatively high solubility compared to other components of exhaust pollutants, and PMs (Particulate Matter) are removed through direct contact with the sprayed seawater droplets. Besides, the electrolyzed alkaline seawater by electrolysis, which contains mainly NaOH together with alkali metal ions (i. e. Na+, Mg2+, Ca2+), is used as the absorption medium of NOx and CO2. Conditionally, before the NOx absorption treatment with using the alkaline seawater, nitric oxide (NO) must be adequately oxidized to nitrogen dioxide (NO2) by the acidic seawater in order to increase NOx absorption rate into the alkaline seawater. Because NOx absorption is the most suited to conditions when both volume fractions (NO: NO2 ratio) are of equal portions. Finally, this research would also plan to treat the effluent by applying electro-dialysis and electro-flotation techniques in the future. The way to reduce emissions from the marine diesel engines is to make it attractive from an operating perspective, as well as an environmental perspective.

  14. Rare earth element scavenging in seawater

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Kim, Ki-Hyun

    1990-10-01

    Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.

  15. Technical note: Examining ozone deposition over seawater

    EPA Science Inventory

    Surface layer resistance plays an important role in determining ozone deposition velocity over sea-water and can be influenced by chemical interactions at the air-water interface. Here, we examine the effect of chemical interactions of iodide, dimethylsulfide, dissolved organic c...

  16. The sound speed anomaly of Baltic Seawater

    NASA Astrophysics Data System (ADS)

    von Rohden, C.; Weinreben, S.; Fehres, F.

    2015-11-01

    The effect of the anomalous chemical composition of Baltic seawater on the speed of sound relative to seawater with quasi-standard composition was quantified at atmospheric pressure and temperatures of 1 to 46 °C. Three modern oceanographic time-of-flight sensors were applied in a laboratory setup for measuring the speed-of-sound difference δ w in a pure water diluted sample of North Atlantic seawater and a sample of Baltic seawater of the same conductivity, i.e. the same Practical Salinity (SP=7.766). The average δ w amounts to 0.069 ± 0.014 m s-1, significantly larger than the resolution and reproducibility of the sensors and independent of temperature. This magnitude for the anomaly effect was verified with offshore measurements conducted at different sites in the Baltic Sea using one of the sensors. The results from both measurements show values up to one order of magnitude smaller than existing predictions based on chemical models.

  17. The sound speed anomaly of Baltic seawater

    NASA Astrophysics Data System (ADS)

    von Rohden, C.; Weinreben, S.; Fehres, F.

    2016-02-01

    The effect of the anomalous chemical composition of Baltic seawater on the speed of sound relative to seawater with quasi-standard composition was quantified at atmospheric pressure and temperatures of 1 to 46 °C. Three modern oceanographic time-of-flight sensors were applied in a laboratory setup for measuring the speed-of-sound difference δw in a pure water diluted sample of North Atlantic seawater and a sample of Baltic seawater of the same conductivity, i.e., the same practical salinity (SP = 7.766). The average δw amounts to 0.069 ± 0.014 m s-1, which is significantly larger than the resolution and reproducibility of the sensors and independent of temperature. This magnitude for the anomaly effect was verified with offshore measurements conducted at different sites in the Baltic Sea using one of the sensors. The results from both measurements show values up to 1 order of magnitude smaller than existing predictions based on chemical models.

  18. Secular decline of seawater calcium increases seawater buffering and pH

    NASA Astrophysics Data System (ADS)

    Hain, M.; Sigman, D. M.; Higgins, J. A.; Haug, G. H.

    2015-12-01

    Reconstructed changes in seawater calcium and magnesium concentration ([Ca2+], [Mg2+]) predictably affect the ocean's acid/base and carbon chemistry. Yet inaccurate formulations of chemical equilibrium "constants" are currently in use to account for these changes. Here we develop an efficient implementation of the MIAMI Ionic Interaction Model (Millero and Pierrot, 1998) to predict all chemical equilibrium constants required for carbon chemistry calculations under variable [Ca2+] and [Mg2+] (Hain et al., 2015). We investigate the impact of [Ca2+] and [Mg2+] on the relationships among the ocean's pH, CO2, dissolved inorganic carbon (DIC), saturation state of CaCO3 (Ω), and buffer capacity. Increasing [Ca2+] and/or [Mg2+] enhances "ion pairing," which increases seawater buffering by increasing the concentration ratio of total to "free" (uncomplexed) carbonate ion. An increase in [Ca2+], however, also causes a decline in carbonate ion to maintain a given Ω, thereby overwhelming the ion pairing effect and decreasing seawater buffering. Given the reconstructions of Eocene [Ca2+] and [Mg2+] ([Ca2+]~20mM; [Mg2+]~30 mM), Eocene seawater would have required essentially the same DIC as today to simultaneously explain a similar-to-modern Ω and the estimated Eocene atmospheric CO2 of ~1000 ppm. During the Cretaceous, at ~4 times modern [Ca2+], ocean buffering would have been at a minimum. Overall, during times of high seawater [Ca2+], CaCO3 saturation, pH, and atmospheric CO2 were more susceptible to perturbations of the global carbon cycle. For example, given both Eocene and Cretaceous seawater [Ca2+] and [Mg2+], a doubling of atmospheric CO2 would require less carbon addition to the ocean/atmosphere system than under modern seawater composition. Moreover, increase in seawater buffering since the Cretaceous may have been a driver of evolution by raising energetic demands of biologically controlled calcification and CO2 concentration mechanisms that aid photosynthesis.

  19. Toxicological Investigation of Radioactive Uranium in Seawater

    PubMed Central

    Bae, Jeong Mi; Kim, Jin

    2012-01-01

    Trace uranium detection measurement was performed using DNA immobilized on a graphite pencil electrode (DGE). The developed probe was connected to the portable handheld voltammetric systems used for seawater analysis. The sensitive voltammogram was obtained within only 30 s accumulation time, and the anodic stripping working range was attained at 100~800 μg/l U and 10~50 μg/l. The statistic relative standard deviation of 30.0 mg/l with the 15th stripping was 0.2115. Here, toxicological and analytical application was performed in the seawater survey in a contaminated power plant controlling water. The results were found to be applicable for real-time toxicological assay for trace control. PMID:24278591

  20. Projected world market for seawater desalination equipment

    SciTech Connect

    Not Available

    1984-10-01

    A forecast is presented of the market for seawater desalination plants. The conclusions presented herein are based on a number of sources of information, of which the most important are: responses to questionnaires mailed to 300 cognizant water agencies in 61 countries; the published market growth trend over the period 1971 to 1983; and an analysis of the geography, rainfall, population, industrial growth, and energy availability in the respective countries. Analysis suggests the possibility that financing, although currently a major stumbling block to the purchase of desalting plants, may be effected by an exchange program in which the purchaser of plants will offer some exportable product(s) in exchange. The forecast suggests the likelihood that the seawater desalination market is becoming saturated. A plateau is expected to develop in new plant sales of additional capacity in the immediate future, followed by a downturn by the end of the century. This report, however, emphasizes the importance of the replacement market, which will involve substantial sales to replace worn-out and obsolescent equipment. The combined new-plus-replacement annual sales can be expected to reach 1.25 million m/sup 3//d (330 Mgd) by the year 2000. Seawater reverse osmosis (SWRO) is expected to represent 270,000 m/sup 3//d (70 Mgd) by the end of the century because of technological improvements in membrane systems and components.

  1. Constructing a Neoproterozoic Seawater Strontium Isotope Curve

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Shields-Zhou, G. A.; Manning, C. J.; Thirlwall, M.; Thurow, J. W.; Zhu, M.; Ling, H.

    2014-12-01

    The strontium isotopic composition of seawater has varied throughout Earth history in response to the balance between Sr isotopic exchange with ocean crust and input of riverine Sr derived from continental weathering. Because of this, seawater 87Sr/86Sr highs are interpreted to reflect erosion events, related to mountain building, while 87Sr/86Sr lows are considered to result from low weathering rates or increased seafloor spreading. Seawater 87Sr/86Sr also responds to changes in the isotopic composition of material undergoing weathering. The largest ever increase in seawater 87Sr/86Sr took place sometime from approximately 900 Ma to 500 Ma, and was associated with a permanent step shift in baseline 87Sr/86Sr composition. The unprecedented size of this increase, its timing and causation remains unconstrained. This study attempts firstly to reconstruct global seawater 87Sr/86Sr trends through this increase, using well-preserved carbonate rock samples from the North China craton, calibrated against additional 87Sr/86Sr and δ13C data from Neoproterozoic samples collected from other sections around the world. Sample preparation techniques for bulk carbonate Sr isotope stratigraphy are being honed during the course of this study. Other stable isotope systems (δ13C and δ18O) and trace elements, including REE have been investigated on the same samples to identify pristine samples for Sr isotope analysis and help in interpretation. The newly obtained data from this study (mainly Huaibei group of Huaibei area), using the excellently preserved early marine calcite cements and some bulk rock samples, confirm that the carbonate strata across the Jiao-Liao-Xu-Huai stratigraphic realm of the North China Craton exhibit the moderately positive δ13C values and low 87Sr/86Sr values that are characteristic of the early Neoproterozoic (Tonian).The results help to recreate the global curve by linking negative excursions in the Shijia (Xuzhou) (Xiao et al., 2014, Precambr. Res., 246

  2. Buffer capacity, ecosystem feedbacks, and seawater chemistry under global change

    NASA Astrophysics Data System (ADS)

    Jury, C. P.; Thomas, F. I.; Atkinson, M. J.; Jokiel, P. L.; Onuma, M. A.; Kaku, N.; Toonen, R. J.

    2013-12-01

    Ocean acidification (OA) results in reduced seawater pH and aragonite saturation state (Ωarag), but also reduced seawater buffer capacity. As buffer capacity decreases, diel variation in seawater chemistry increases. However, a variety of ecosystem feedbacks can modulate changes in both average seawater chemistry and diel seawater chemistry variation. Here we model these effects for a coastal, reef flat ecosystem. We show that an increase in offshore pCO2 and temperature (to 900 μatm and +3°C) can increase diel pH variation by as much as a factor of 2.5 and can increase diel pCO2 variation by a factor of 4.6, depending on ecosystem feedbacks and seawater residence time. Importantly, these effects are different between day and night. With increasing seawater residence time and increasing feedback intensity, daytime seawater chemistry becomes more similar to present-day conditions while nighttime seawater chemistry becomes less similar to present-day conditions. Better constraining ecosystem feedbacks under global change will improve projections of coastal water chemistry, but this study shows the importance of considering changes in both average carbonate chemistry and diel chemistry variation for organisms and ecosystems. Further, we will discuss our recent work examining the effects of diel seawater chemistry variation on coral calcification rates.

  3. The major-ion composition of Silurian seawater

    USGS Publications Warehouse

    Brennan, S.T.; Lowenstein, T.K.

    2002-01-01

    One-hundred fluid inclusions in Silurian marine halite were analyzed in order to determine the major-ion composition of Silurian seawater. The samples analyzed were from three formations in the Late Silurian Michigan Basin, the A-1, A-2, and B Evaporites of the Salina Group, and one formation in the Early Silurian Canning Basin (Australia), the Mallowa Salt of the Carribuddy Group. The results indicate that the major-ion composition of Silurian seawater was not the same as present-day seawater. The Silurian ocean had lower concentrations of Mg2+, Na+, and SO2-4, and much higher concentrations of Ca2+ relative to the ocean's present-day composition. Furthermore, Silurian seawater had Ca2+ in excess of SO2-4. Evaporation of Silurian seawater of the composition determined in this study produces KC1-type potash minerals that lack the MgSO4-type late stage salts formed during the evaporation of present-day seawater. The relatively low Na+ concentrations in Silurian seawater support the hypothesis that oscillations in the major-ion composition of the oceans are primarily controlled by changes in the flux of mid-ocean ridge brine and riverine inputs and not global or basin-scale, seawater-driven dolomitization. The Mg2+/Ca2+ ratio of Silurian seawater was ~1.4, and the K+/Ca2+ ratio was ~0.3, both of which differ from the present-day counterparts of 5 and 1, respectively. Seawaters with Mg2+/Ca2+ 2 (e.g., modern seawater) facilitate the precipitation of aragonite and high-magnesian calcite. Therefore, the early Paleozoic calcite seas were likely due to the low Mg2+/Ca2+ ratio of seawater, not the pCO2 of the Silurian atmosphere. Copyright ?? 2002 Elsevier Science Ltd.

  4. Water table salinization due to seawater intrusion

    NASA Astrophysics Data System (ADS)

    Badaruddin, Sugiarto; Werner, Adrian D.; Morgan, Leanne K.

    2015-10-01

    Seawater intrusion (SWI) is a significant threat to freshwater resources in coastal aquifers around the world. Previous studies have focused on SWI impacts involving salinization of the lower domain of coastal aquifers. However, under certain conditions, SWI may cause salinization of the entire saturated zone of the aquifer, leading to water table salinization (WTS) in unconfined aquifers by replacing freshwater within the upper region of the saturated zone with seawater, thereby posing a salinity threat to the overlying soil zone. There is presently limited guidance on the extent to which WTS may occur as a secondary impact of SWI. In this study, physical experiments and numerical modeling were used to explore WTS associated with SWI in various nontidal, unconfined coastal aquifer settings. Laboratory experiments and corresponding numerical simulations show that significant WTS can occur under active SWI (i.e., the freshwater hydraulic gradient slopes toward the land) because the cessation of freshwater discharge to the sea and the subsequent landward flow across the entire sea boundary eventually lead to water table salinities approaching seawater concentration. WTS during active SWI is larger under conditions of high hydraulic conductivity, rapid SWI, high dispersivity and for deeper aquifers. Numerical modeling of four published field cases demonstrates that rates of WTS of up to 60 m/yr are plausible. Under passive SWI (i.e., the hydraulic gradient slopes toward the sea), minor WTS may arise as a result of dispersive processes under certain conditions (i.e., high dispersivity and hydraulic conductivity, and low freshwater discharge). Our results show that WTS is probably widespread in coastal aquifers experiencing considerable groundwater decline sustained over several years, although further evidence is needed to identify WTS under field settings.

  5. Effect of Greenhouse Gases Dissolved in Seawater.

    PubMed

    Matsunaga, Shigeki

    2016-01-01

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region. PMID:26729101

  6. Effect of Greenhouse Gases Dissolved in Seawater

    PubMed Central

    Matsunaga, Shigeki

    2015-01-01

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region. PMID:26729101

  7. Seawater drinking restores water balance in dehydrated harp seals.

    PubMed

    How, Ole-Jakob; Nordøy, Erling S

    2007-07-01

    The purpose of this study was to answer the question of whether dehydrated harp seals (Phoca groenlandica) are able to obtain a net gain of water from the intake of seawater. Following 24 h of fasting, three subadult female harp seals were dehydrated by intravenous administration of the osmotic diuretic, mannitol. After another 24 h of fasting, the seals were given 1,000 ml seawater via a stomach tube. Urine and blood were collected for measurement of osmolality and osmolytes, while total body water (TBW) was determined by injections of tritiated water. In all seals, the maximum urinary concentrations of Na(+) and Cl(-) were higher than in seawater, reaching 540 and 620 mM, respectively, compared to 444 and 535 mM in seawater. In another experiment, the seals were given ad lib access to seawater for 48 h after mannitol-induced hyper-osmotic dehydration. In animals without access to seawater, the mean blood osmolality increased from 331 to 363 mOsm kg(-1) during dehydration. In contrast, the blood osmolality, hematocrit and TBW returned to normal when the seals were permitted ad lib access to seawater after dehydration. In conclusion, this study shows that harp seals have the capacity to gain net water from mariposa (voluntarily drinking seawater) and are able to restore water balance after profound dehydration by drinking seawater. PMID:17375309

  8. Physicochemical properties of protein-modified silver nanoparticles in seawater

    NASA Astrophysics Data System (ADS)

    Zhong, Hangyue

    2013-10-01

    This study investigated the physicochemical properties of silver nanoparticles stabilized with casein protein in seawater. UV?vis spectrometry, dynamic light scattering (DLS), and transmission electron microscopy (TEM) were applied to measure the stability of silver nanoparticles in seawater samples. The obtained results show an increased aggregation tendency of silver nanoparticles in seawater, which could be attributed its relatively high cation concentration that could neutralize the negatively charges adsorbed on the surface of silver nanoparticles and reduce the electrostatic repulsion forces between nanoparticles. Similarly, due to the surface charge screening process, the zeta potential of silver nanoparticles in seawater decreased. This observation further supported the aggregation behavior of silver nanoparticles. This study also investigated the dissolution of silver nanoparticles in seawater. Result shows that the silver nanoparticle dissolution in DI water is lower than in seawater, which is attributed to the high Cl? concentration present in seawater. As Cl? can react with silver and form soluble AgCl complex, dissolution of silver nanoparticles was enhanced. Finally, this study demonstrated that silver nanoparticles are destabilized in seawater condition. These results may be helpful in understanding the environmental risk of discharged silver nanoparticles in seawater conditions.

  9. Hydrothermal transport of heavy metals by seawater: The role of seawater/basalt ratio

    USGS Publications Warehouse

    Seyfried, W.; Bischoff, J.L.

    1977-01-01

    Seawater reacted with basaltic glass at 260??C and 500 bars under water-dominated conditions (50 : 1 water/rock ratio) efficiently leached and maintained heavy metals in solution. Cu, Zn, and Ba are transferred in significant proportions to the aqueous phase, while Fe and Mn attain concentrations of 45 and 20 ppm respectively as the basalt is completely made over to magnesian smectite. High metal solubility is a function of acidity maintained by large excess of dissolved Mg and equilibria with the alteration phase. Metal concentrations and relative proportions are consistent within limits required for metal-rich fluid which produced East Pacific Rise metalliferous sediments. Experiments mixing metal-bearing altered seawater and normal seawater were carried out as a qualitative indicator of sea-floor precipitation processes. Bulk composition of the precipitates are strongly influenced by mixing ratio. Precipitates range from silica-magnesium rich under low dilution by seawater to essentially pure ferric hydroxide under conditions of high dilution. ?? 1977.

  10. Controls of Trace Metals in Seawater

    NASA Astrophysics Data System (ADS)

    Bruland, K. W.; Lohan, M. C.

    2003-12-01

    Since the early 1970s, marine chemists have gained a first-order understanding of the concentrations, distributions, and chemical behaviors of trace metals in seawater. Important factors initiating this quantum leap in knowledge were major advances in modern analytical chemistry and instrumentation, along with the development and adoption of clean techniques. An instrumental development in the mid-1970s that spurred the early research on trace metals was the availability of the sensitive graphite furnace as the sample introduction system to an atomic absorption spectrometer. More recently, the appearance of inductively coupled plasma (ICP) mass spectrometers has provided an even more sensitive and powerful instrumental capability to the arsenal of marine chemists. In addition to these instruments back in shore-based laboratories, there has been the development of sensitive shipboard methods such as stripping voltammetry and flow injection analysis (FIA) systems with either chemiluminescence or catalytically enhanced spectrophotometric detection. Along with the development of these highly sensitive analytical techniques came a recognition and appreciation of the importance of handling contamination issues by using clean techniques during all phases of sampling and analysis. This is necessary due to low concentrations of trace metals in seawater relative to the ubiquitousness of metals on a ship or in a laboratory (e.g., dust, steel hydrowire, rust, paint with copper and zinc antifouling agents, brass fittings, galvanized material, sacrificial zinc anodes, etc.). As a result, seawater concentrations of most trace metals have now been accurately determined in at least some parts of the oceans, and their oceanic distributions have been found to be consistent with oceanographic processes.The concentrations and distributions of trace metals in seawater are controlled by a combination of processes. These processes include external sources of trace metals delivered by

  11. Corrosion of barrier materials in seawater environments

    SciTech Connect

    Heiser, J.H.; Soo, P.

    1995-07-01

    A brief review has been carried out on the performance of barrier materials for low-level radioactive wastes in seawater environments. The environments include those for shallower coastal waters as well as the deep ocean (down to 3800 m). The review is mainly focused on metallic materials since they are the most common for seawater service and they have the largest data base. Information from the literature is usually pertinent to shallower coastal locations, but there is a valuable source of corrosion data obtained from several studies of metallic specimens exposed to ocean-bed conditions. In addition, the corrosion of carbon steel barriers has been evaluated for actual waste containers that were retrieved from previously-used disposal sites in the Atlantic and Pacific Oceans. Of the metallic materials studied, carbon steel showed the least corrosion resistance. Failure by non-uniform attack in a typical waste container could occur in as little as 25 y in some ocean environments ` Penetration by local attack, such as pitting and crevice corrosion resistance was also observed for more expensive materials such as low-alloy steels, stainless steels, titanium alloys, zirconium alloys, copper alloys, nickel alloys, aluminum alloys, and lead alloys.

  12. REACTION PRODUCTS FROM THE CHLORINATION OF SEAWATER. CHAPTER 34

    EPA Science Inventory

    Much of the present information on the products formed when seawater is chlorinated is based on observations of laboratory experiments in which chlorine was added to seawater to stimulate conditions of electricity generating plants. Results are reported for a field study at the P...

  13. Henry's law constants for dimethylsulfide in freshwater and seawater

    NASA Technical Reports Server (NTRS)

    Dacey, J. W. H.; Wakeham, S. G.; Howes, B. L.

    1984-01-01

    Distilled water and several waters of varying salinity were subjected, over a 0-32 C temperature range, to measurements for Henry's law constants for dimethylsulfide. Values for distilled water and seawater of the solubility parameters A and C are obtained which support the concept that the concentration of dimethylsulfide in the atmosphere is far from equilibrium with seawater.

  14. Analysis of seawater flow through optical fiber

    NASA Astrophysics Data System (ADS)

    Fernández López, Sheila; Carrera Ramírez, Jesús; Rodriguez Sinobar, Leonor; Benitez, Javier; Rossi, Riccardo; Laresse de Tetto, Antonia

    2015-04-01

    The relation between sea and coastal aquifer is very important to the human populations living in coastal areas. The interrelation involves the submarine ground water discharge of relatively fresh water to the sea and the intrusion of sea water into the aquifer, which impairs the quality of ground water. The main process in seawater intrusion is managed by fluid-density effects which control the displacement of saline water. The underlain salinity acts as the restoring force, while hydrodynamic dispersion and convection lead to a mixing and vertical displacement of the brine. Because of this, a good definition of this saltwater-freshwater interface is needed what is intimately joined to the study of the movements (velocity fields) of fresh and salt water. As it is well known, the flow of salt water studied in seawater intrusion in stationary state, is nearly null or very low. However, in the rest of cases, this flux can be very important, so it is necessary its study to a better comprehension of this process. One possible manner of carry out this analysis is through the data from optical fiber. So, to research the distribution and velocity of the fresh and saltwater in the aquifer, a fiber optic system (OF) has been installed in Argentona (Baix Maresme, Catalonia). The main objective is to obtain the distributed temperature measurements (OF-DTS) and made progress in the interpretation of the dynamic processes of water. For some applications, the optical fiber acts as a passive temperature sensor but in our case, the technique Heated Active Fiber Optic will be used. This is based on the thermal response of the ground as a heat emission source is introduced. The thermal properties of the soil, dependent variables of soil water content, will make a specific temperature distribution around the cable. From the analyzed data we will deduce the velocity field, the real objective of our problem. To simulate this phenomenon and the coupled transport and flow problem

  15. Inhibition of Sodium Benzoate on Stainless Steel in Tropical Seawater

    SciTech Connect

    Seoh, S. Y.; Senin, H. B.; Nik, W. N. Wan; Amin, M. M.

    2007-05-09

    The inhibition of sodium benzoate for stainless steel controlling corrosion was studied in seawater at room temperature. Three sets of sample have been immersed in seawater containing sodium benzoate with the concentrations of 0.3M, 0.6M and 1.0M respectively. One set of sample has been immersed in seawater without adding any sodium benzoate. It was found that the highest corrosion rate was observed for the stainless steel with no inhibitor was added to the seawater. As the concentration of sodium benzoate being increased, the corrosion rate is decreases. Results show that by the addition of 1.0M of sodium benzoate in seawater samples, it giving {>=} 90% efficiencies.

  16. Characteristics of phosphate adsorption onto granulated coal ash in seawater.

    PubMed

    Asaoka, Satoshi; Yamamoto, Tamiji

    2010-08-01

    The deterioration of sediments is a serious environmental problem. Controlling nutrient release fluxes from sediments is important to alleviating eutrophication and to reducing terrigenous nutrient loads. The purpose of this study was to evaluate the phosphate removal performance of granulated coal ash (GCA) from seawater, which is produced from coal thermal electric power generation. Batch experiments were carried out to investigate the removal kinetics of phosphate from seawater under both oxic and anoxic conditions. Phosphate was removed well from seawater under both oxic and anoxic conditions. The adsorption isotherm for phosphate revealed that GCA could remove phosphate effectively from seawater above a concentration of 1.7micromolL(-1). GCA can reduce the concentration of phosphate in seawater effectively under anoxic conditions where iron type adsorbents cannot be applied. Therefore, GCA could potentially be used to adsorb phosphate in the organically-enriched sediment, which generally occurs under highly reductive conditions. PMID:20403625

  17. Effect of seawater temperature on uranium recovery from seawater using amidoxime adsorbents

    SciTech Connect

    Sekiguchi, Koji; Saito, Kyoichi; Konishi, Satoshi; Furusaki, Shintaro . Dept. of Chemical Engineering); Sugo, Takanobu . Takasaki Radiation Chemistry Research Establishment); Nobukawa, Hisashi . Dept. of Naval Architecture and Ocean Engineering)

    1994-03-01

    Porous amidoxime hollow fibers, which were prepared by radiation-induced graft polymerization of acrylonitrile onto porous polyethylene hollow fibers and subsequent amidoximation, were used as packing materials of the adsorption bed for uranium recovery from seawater. Seawater was forced to flow through the bed charged with the amidoxime hollow fibers either by pumping or by ocean current. Uranium concentration decay through the bed could be well correlated with residence time based on the adsorption rate expressed in terms of the overall mass-transfer coefficient. The resultant activation energy of 20 kcal/mol for uranium adsorption was indicative of the chelate formation of the amidoxime group with uranyl species as a rate-determining step.

  18. Optimal conditions for bioremediation of oily seawater.

    PubMed

    Zahed, Mohammad Ali; Aziz, Hamidi Abdul; Isa, Mohamed Hasnain; Mohajeri, Leila; Mohajeri, Soraya

    2010-12-01

    To determine the influence of nutrients on the rate of biodegradation, a five-level, three-factor central composite design (CCD) was employed for bioremediation of seawater artificially contaminated with crude oil. Removal of total petroleum hydrocarbons (TPH) was the dependent variable. Samples were extracted and analyzed according to US-EPA protocols. A significant (R(2)=0.9645, P<0.0001) quadratic polynomial mathematical model was generated. Removal from samples not subjected to optimization and removal by natural attenuation were 53.3% and 22.6%, respectively. Numerical optimization was carried out based on desirability functions for maximum TPH removal. For an initial crude oil concentration of 1g/L supplemented with 190.21 mg/L nitrogen and 12.71 mg/L phosphorus, the Design-Expert software predicted 60.9% hydrocarbon removal; 58.6% removal was observed in a 28-day experiment. PMID:20705460

  19. Mortality of fecal bacteria in seawater

    SciTech Connect

    Garcia-Lara, J.; Menon, P.; Servais, P.; Billen, G. )

    1991-03-01

    The authors propose a method for determining the mortality rate for allochthonous bacteria released in aquatic environments without interference due to the loss of culturability in specific culture media. This method consists of following the disappearance of radioactivity from the trichloracetic acid-insoluble fraction in water samples to which ({sup 3}H)thymidine-prelabeled allochthonous bacteria have been added. In coastal seawater, they found that the actual rate of disappearance of fecal bacteria was 1 order of magnitude lower than the rate of loss of culturability on specific media. Minor adaptation of the procedure may facilitate assessment of the effect of protozoan grazing and bacteriophage lysis on the overall bacterial mortality rate.

  20. Energy Implications of Seawater Desalination (Invited)

    NASA Astrophysics Data System (ADS)

    Cooley, H.; Heberger, M. G.

    2013-12-01

    Freshwater has traditionally come from rivers, lakes, streams, and groundwater aquifers. As demand increases and climate change alters the location and timing of water supply, these traditional sources are becoming unavailable, more difficult, or increasingly expensive to develop. As a result, many communities are switching to alternative sources of water. Interest in pursuing seawater desalination is high in many coastal communities. In California, for example, 17 plants are proposed for development along the California coast and two in Mexico. Water managers are pursing desalination because is a local supply that can help diversify the water supply portfolio. Additionally, it is a reliable supply, which can be especially valuable during a drought. But removing the salt from seawater is an energy-intensive process that consumes more energy per gallon than most other water supply and treatment options. These energy requirements are key factors that will impact the extent and success of desalination in California. Energy requirements for seawater desalination average about 4.0 kWh per cubic meter (m3) of water produced. By comparison, the least energy-intensive options of local sources of groundwater and surface water require 0 - 0.90 kWh per m3; wastewater reuse, depending on treatment levels, may require from 0.26 - 2.2 kWh per m3. Beyond the electricity required for the desalination facility itself, producing any new source of water, including through desalination, increases the amount of energy required to deliver and use the water produced as well as collect, treat, and dispose of the wastewater generated. Energy is the largest single variable cost for a desalination plant, varying from one-third to more than one-half the cost of produced water. Building a desalination plant may reduce a water utility's exposure to water reliability risks at the added expense of an increase in exposure to energy price risk. In dependent on hydropower, electricity prices tend to

  1. Post-mesozoic rapid increase of seawater Mg/Ca due to enhanced mantle-seawater interaction.

    PubMed

    Ligi, Marco; Bonatti, Enrico; Cuffaro, Marco; Brunelli, Daniele

    2013-01-01

    The seawater Mg/Ca ratio increased significantly from ~ 80 Ma to present, as suggested by studies of carbonate veins in oceanic basalts and of fluid inclusions in halite. We show here that reactions of mantle-derived peridotites with seawater along slow spreading mid-ocean ridges contributed to the post-Cretaceous Mg/Ca increase. These reactions can release to modern seawater up to 20% of the yearly Mg river input. However, no significant peridotite-seawater interaction and Mg-release to the ocean occur in fast spreading, East Pacific Rise-type ridges. The Mesozoic Pangean superocean implies a hot fast spreading ridge system. This prevented peridotite-seawater interaction and Mg release to the Mesozoic ocean, but favored hydrothermal Mg capture and Ca release by the basaltic crust, resulting in a low seawater Mg/Ca ratio. Continent dispersal and development of slow spreading ridges allowed Mg release to the ocean by peridotite-seawater reactions, contributing to the increase of the Mg/Ca ratio of post-Mesozoic seawater. PMID:24067442

  2. Post-Mesozoic Rapid Increase of Seawater Mg/Ca due to Enhanced Mantle-Seawater Interaction

    PubMed Central

    Ligi, Marco; Bonatti, Enrico; Cuffaro, Marco; Brunelli, Daniele

    2013-01-01

    The seawater Mg/Ca ratio increased significantly from ~ 80 Ma to present, as suggested by studies of carbonate veins in oceanic basalts and of fluid inclusions in halite. We show here that reactions of mantle-derived peridotites with seawater along slow spreading mid-ocean ridges contributed to the post-Cretaceous Mg/Ca increase. These reactions can release to modern seawater up to 20% of the yearly Mg river input. However, no significant peridotite-seawater interaction and Mg-release to the ocean occur in fast spreading, East Pacific Rise-type ridges. The Mesozoic Pangean superocean implies a hot fast spreading ridge system. This prevented peridotite-seawater interaction and Mg release to the Mesozoic ocean, but favored hydrothermal Mg capture and Ca release by the basaltic crust, resulting in a low seawater Mg/Ca ratio. Continent dispersal and development of slow spreading ridges allowed Mg release to the ocean by peridotite-seawater reactions, contributing to the increase of the Mg/Ca ratio of post-Mesozoic seawater. PMID:24067442

  3. Herbicide Persistence in Seawater Simulation Experiments

    PubMed Central

    Mercurio, Philip; Mueller, Jochen F.; Eaglesham, Geoff; Flores, Florita; Negri, Andrew P.

    2015-01-01

    Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes

  4. Energy balance for uranium recovery from seawater

    SciTech Connect

    Schneider, E.; Lindner, H.

    2013-07-01

    The energy return on investment (EROI) of an energy resource is the ratio of the energy it ultimately produces to the energy used to recover it. EROI is a key viability measure for a new recovery technology, particularly in its early stages of development when financial cost assessment would be premature or highly uncertain. This paper estimates the EROI of uranium recovery from seawater via a braid adsorbent technology. In this paper, the energy cost of obtaining uranium from seawater is assessed by breaking the production chain into three processes: adsorbent production, adsorbent deployment and mooring, and uranium elution and purification. Both direct and embodied energy inputs are considered. Direct energy is the energy used by the processes themselves, while embodied energy is used to fabricate their material, equipment or chemical inputs. If the uranium is used in a once-through fuel cycle, the braid adsorbent technology EROI ranges from 12 to 27, depending on still-uncertain performance and system design parameters. It is highly sensitive to the adsorbent capacity in grams of U captured per kg of adsorbent as well as to potential economies in chemical use. This compares to an EROI of ca. 300 for contemporary terrestrial mining. It is important to note that these figures only consider the mineral extraction step in the fuel cycle. At a reference performance level of 2.76 g U recovered per kg adsorbent immersed, the largest energy consumers are the chemicals used in adsorbent production (63%), anchor chain mooring system fabrication and operations (17%), and unit processes in the adsorbent production step (12%). (authors)

  5. Herbicide Persistence in Seawater Simulation Experiments.

    PubMed

    Mercurio, Philip; Mueller, Jochen F; Eaglesham, Geoff; Flores, Florita; Negri, Andrew P

    2015-01-01

    Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes

  6. Evolution of Cenozoic seawater lithium isotopes: Coupling of global denudation regime and shifting seawater sinks

    NASA Astrophysics Data System (ADS)

    Li, Gaojun; West, A. Joshua

    2014-09-01

    The Li isotopic record of seawater shows a dramatic increase of ∼9‰ over the past ∼60 million years. Here we use a model to explore what may have caused this change. We focus particularly on considering how changes in the “reverse weathering” sinks that remove Li from seawater can contribute to explain the observed increase. Our interpretation is based on dividing the oceanic sink, which preferentially removes light Li, into two components: (i) removal into marine authigenic clays in sediments at low temperatures, with associated high fractionation factors, and (ii) removal into altered oceanic basalt at higher temperatures and resulting lower fractionation factors. We suggest that increases in the flux of degraded continental material delivered to the oceans over the past 60 Ma could have increased removal of Li into sedimentary authigenic clays versus altered basalt. Because altered basalt is associated with a smaller isotopic fractionation, an increasing portion of the lower temperature (authigenic clay-associated) sink could contribute to the rise of the seawater Li isotope value. This effect would moderate the extent to which the isotopic value of continental inputs must have changed in order to explain the seawater record over the Cenozoic. Nonetheless, unless the magnitude of fractionation during removal differs significantly from current understanding, substantial change in the δLi7 of inputs from continental weathering must have occurred. Our modeling suggests that dissolved riverine fluxes in the early Eocene were characterized by δLi7 of ∼0 to +13‰, with best estimates of 6.6-12.6‰; these values imply increases over the past 60 Myrs of between 10 and 24‰, and we view a ∼13‰ increase as a likely scenario. These changes would have been accompanied by increases in both the dissolved Li flux from continental weathering and the removal flux from seawater into marine authigenic clays. Increases in δLi7 of continental input are

  7. Seawater neutralization of alkaline bauxite residue and implications for revegetation.

    PubMed

    Menzies, N W; Fulton, I M; Morrell, W J

    2004-01-01

    Reaction of bauxite residue with seawater results in neutralization of alkalinity through precipitation of Mg-, Ca-, and Al-hydroxide and carbonate minerals. In batch studies, the initial pH neutralization reaction was rapid (<5 min), with further reaction continuing to reduce pH for several weeks. Reaction with seawater produced a residue pH of 8 to 8.5. Laboratory leaching column studies were undertaken to provide information on seawater neutralization of the coarse-textured fraction of the waste, residue sand (RS), under conditions comparable with those that might be applied in the field. An 0.80-m-deep column of RS was neutralized by the application of the equivalent of 2-m depth of seawater. In addition to lowering the pH and Na content of the residue, seawater neutralization resulted in the addition of substantial amounts of the plant nutrients Ca, Mg, and K to the profile. Similar results were also obtained from a field-scale assessment of neutralization. However, the accumulation of precipitate, consisting of hydrotalcite, aragonite, and pyroaurite, in the drainage system may preclude the use of in situ seawater neutralization as a routine rehabilitation practice. Following seawater neutralization, RS remains too saline to support plant growth and would require fresh water leaching before revegetation. PMID:15356249

  8. A review of seawater intrusion and its management in Australia

    NASA Astrophysics Data System (ADS)

    Werner, Adrian D.

    2010-02-01

    Extended periods of below-average rainfall combined with a rising population density in the Australian coastal margin have led to higher stresses on coastal water resources, and the risk of seawater intrusion has increased. Despite reports of seawater intrusion in the majority of states and evidence that some Australian coastal aquifers are seriously depleted, comprehensive seawater intrusion investigations have only been completed for coastal systems in Queensland and to a lesser degree in Western Australia and South Australia. The degree of assessment appears to be linked to the perceived economic value of the groundwater resource. The most detailed studies include those of the Pioneer Valley and Burnett basins in Queensland, for which conceptual and mathematical models have been developed at the regional scale, and have been used to underpin trigger-level management approaches to protect against further seawater intrusion. Historical responses to seawater intrusion include the establishment of artificial recharge schemes; the most prominent being that of the Lower Burdekin aquifers in Queensland. Recommendations for future solutions include enhanced fit-for-purpose seawater intrusion monitoring, continuing research into investigation methods, and improved knowledge-sharing through education programs and the development of national guidelines for seawater intrusion assessment and management.

  9. Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy

    SciTech Connect

    2013-07-01

    For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding

  10. Seawater piping systems designed with AISI 316 and RCP anodes

    SciTech Connect

    Valen, S.; Johnsen, R.; Gartland, P.O.; Drugli, J.M.

    1999-11-01

    Internal cathodic protection by resistor controlled anodes--Resistor controlled Cathodic Protection (RCP)--has been introduced as an alternative method for the prevention of localized corrosion of seawater transportation systems. More than 1000 RCP anodes have been installed in seawater piping systems made from highly alloyed stainless steel which previously had suffered from corrosion. The application of cheaper stainless steels like AISI 316 in combination with RCP anodes results in significant cost savings for the seawater system, and a few systems have been installed. This paper gives a short review of the theoretical background, and a presentation of the experience from some of the installations with these materials and RCP.

  11. Extreme seawater compositions during Oceanic Anoxic Events

    NASA Astrophysics Data System (ADS)

    Cohen, A.; Bottini, C.; Dickson, A. J.; Izon, G. J.; Coe, A. L.

    2012-12-01

    For almost the entire duration of the Phanerozoic, the oceans have remained well oxygenated and highly conducive to the development of animal and plant life. However, there have been relatively brief intervals, known as Oceanic Anoxic Events (OAEs), when a very significant expansion of low-oxygen regions occurred throughout the world's oceans. OAEs were characterised by highly atypical seawater chemistry, as reflected in the chemical and isotopic compositions of contemporaneous sediments and fossil remains. These oxygen-deficient intervals also exerted profound pressures on many marine species as indicated by major changes in species populations and distributions. High-resolution chemical and isotopic data recovered from marine sediments and sedimentary rocks, together with biotic information, provide us with the best means of understanding the significance of OAEs and their place in the evolution of the Earth system. We present new Mo- and Os-isotope and geochemical data from OAE 1a (early Cretaceous), which help define how this event evolved in relation to the other major environmental parameters - including global warming, continental weathering and Ontong-Java volcanism - of that time. We compare these new observations with published results from other Mesozoic OAEs and the PETM. Recently published Os-isotope data from DSDP site 463 (mid-Pacific) [1] and northern Italy [1, 2] show that the Os budget of the oceans was dominated for a period of c. 880 ka during OAE 1a by the hydrothermal flux of unradiogenic Os from the Ontong-Java province. The observation of identical Os-isotope compositions at these two very distant sites indicates that seawater was well mixed at that time. Over the same interval, the seawater Mo-isotope composition, based upon well-preserved samples from Italy, was persistently atypical, with δ98/95Mo ranging between -0.7 and +0.7 permil [3]. All the samples analysed here accumulated under highly anoxic conditions and contain highly abundant

  12. The Major-ion Composition of Permian Seawater

    SciTech Connect

    Lowenstein, T K.; Timofeeff, Michael N.; Kovalevych, Volodymyr M.; Horita, Juske

    2005-01-01

    The major-ion (Mg{sup 2+}, Ca{sup 2+}, Na{sup +}, K{sup +}, SO{sub 4}{sup 2-}, and Cl{sup -}) composition of Permian seawater was determined from chemical analyses of fluid inclusions in marine halites. New data from the Upper Permian San Andres Formation of Texas (274--272 Ma) and Salado Formation of New Mexico (251 Ma), analyzed by the environmental scanning electron microscopy (ESEM) X-ray energy-dispersive spectrometry (EDS) method, along with published chemical compositions of fluid inclusions in Permian marine halites from North America (two formations of different ages) and the Central and Eastern European basins (eight formations of four different ages) show that Permian seawater shares chemical characteristics with modern seawater, including SO{sub 4}{sup 2-} > Ca{sup 2+} at the point of gypsum precipitation, evolution into Mg{sup 2+}-Na{sup +}-K{sup +}-SO{sub 4}{sup 2-}-Cl{sup -} brines, and Mg{sup 2+}/K{sup +} ratios {approx} 5. Permian seawater, however, is slightly depleted in SO{sub 4}{sup 2-} and enriched in Ca{sup 2+}, although modeling results do not rule out Ca{sup 2+} concentrations close to those in present-day seawater. Na{sup +} and Mg{sup 2+} in Permian seawater are close to (slightly below) their concentrations in modern seawater. Permian and modern seawater are both classified as aragonite seas, with Mg{sup 2+}/Ca{sup 2+} ratios >2, conditions favorable for precipitation of aragonite and magnesian calcite as ooids and cements. The chemistry of Permian seawater was modeled using the chemical composition of brine inclusions for three periods: Lower Permian Asselian-Sakmarian (296--283 Ma), Lower Permian Artinskian-Kungurian (283--274 Ma), and Upper Permian Tatarian (258--251 Ma). Parallel changes in the chemistry of brine inclusions from equivalent age evaporites in North America, Central Europe, and Eastern Europe show that seawater underwent secular variations in chemistry over the 50 million years of the Permian. Modeled SO{sub 4}{sup 2

  13. Altererythrobacter marensis sp. nov., isolated from seawater.

    PubMed

    Seo, Seong Hae; Lee, Soon Dong

    2010-02-01

    A novel Gram-negative bacterium, designated MSW-14(T), was isolated from seawater collected around Mara Island, Jeju, Republic of Korea. The organism was motile by means of a flagellum and showed optimum growth at 0-4 % NaCl, 30 degrees C and pH 7.1. Phylogenetic analyses based on 16S rRNA gene sequences showed that the isolate belonged to the family Erythrobacteraceae. The strain's closest phylogenetic neighbours were Altererythrobacter epoxidivorans JCS350(T) (97.7 % sequence similarity), Altererythrobacter luteolus SW-109(T) (97.3 %) and Altererythrobacter indicus MSSRF26(T) (95.0 %). The dominant cellular fatty acid was C(18 : 1) (summed feature 7, 52.8 %). The major ubiquinone was UQ-10. The DNA G+C content was 63.1 mol%. DNA-DNA hybridization values between strain MSW-14(T) and A. epoxidivorans KCCM 42314(T) and A. luteolus KCTC 12311(T) were 26.0-27.3 % and 9.8-15.2 %, respectively. On the basis of the data from the polyphasic characterization, strain MSW-14(T) represents a novel species, for which the name Altererythrobacter marensis sp. nov. is proposed. The type strain is MSW-14(T) (=KCTC 22370(T)=DSM 21428(T)). PMID:19651736

  14. Seawater batteries for the Luna 27

    SciTech Connect

    1997-04-01

    On 20 January 1996, the first installation of seawater batteries (SWBs) on a live subsea well was successfully completed on the Luna 27 well in 591 ft of water in the Ionian Sea. The SWB pack is composed of six cells, each measuring 3.3 ft in diameter by 6.6 ft high, and is designed to provide all the electrical energy required by the autonomous control system for the well. The only operations required in the future will be periodic replacement of the anodes by use of a remotely operated vehicle (ROV) every 3 to 5 years. This application of the SWBs is a part of the continuing research by Agip SpA in the area of autonomous control that began with the subsea-wells autonomous-control system (SWACS) project. This project began in 1982 and culminated with the installation of a SWACS prototype in December 1987 on the Luna 27 gas well offshore Crotone and 2.5 miles form the Luna A platform. Notwithstanding the 5-year predicted life, the system was still operating in 1996 without any noticeable problems.

  15. Dokdonia pacifica sp. nov., isolated from seawater.

    PubMed

    Zhang, Zenghu; Gao, Xin; Wang, Long; Zhang, Xiao-Hua

    2015-07-01

    A Gram-stain-negative, aerobic, non-flagellated, non-gliding, oxidase- and catalase-positive, rod-shaped, yellow-pigmented bacterium, designated strain SW230(T), was isolated from a surface seawater sample collected from the South Pacific Gyre. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SW230(T) shared highest similarity with members of the genus Dokdonia (95.0-94.5%), exhibiting 95.0% sequence similarity to Dokdonia genika NBRC 100811(T). Optimal growth occurred in the presence of 2-3% (w/v) NaCl, at pH 8.0 and at 28 °C. The DNA G+C content of strain SW230(T) was 36 mol%. The major fatty acids (>10% of the total) were iso-C15:1 G, iso-C15:0, iso-C17:0 3-OH, and C16:1 ω7c and/or C16:1ω6c. The major respiratory quinone was menaquinone-6. The major polar lipids were phosphatidylethanolamine, two unidentified aminolipids and two unidentified lipids. On the basis of data from the present polyphasic study, strain SW230(T) is considered to represent a novel species of the genus Dokdonia, for which the name Dokdonia pacifica sp. nov. is proposed. The type strain is SW230(T) ( = CGMCC 1.12184(T) = JCM 18216(T)). PMID:25862384

  16. Autonomous in situ measurements of seawater alkalinity.

    PubMed

    Spaulding, Reggie S; DeGrandpre, Michael D; Beck, James C; Hart, Robert D; Peterson, Brittany; De Carlo, Eric H; Drupp, Patrick S; Hammar, Terry R

    2014-08-19

    Total alkalinity (AT) is an important parameter for describing the marine inorganic carbon system and understanding the effects of atmospheric CO2 on the oceans. Measurements of AT are limited, however, because of the laborious process of collecting and analyzing samples. In this work we evaluate the performance of an autonomous instrument for high temporal resolution measurements of seawater AT. The Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk) uses a novel tracer monitored titration method where a colorimetric pH indicator quantifies both pH and relative volumes of sample and titrant, circumventing the need for gravimetric or volumetric measurements. The SAMI-alk performance was validated in the laboratory and in situ during two field studies. Overall in situ accuracy was -2.2 ± 13.1 μmol kg(-1) (n = 86), on the basis of comparison to discrete samples. Precision on duplicate analyses of a carbonate standard was ±4.7 μmol kg(-1) (n = 22). This prototype instrument can measure in situ AT hourly for one month, limited by consumption of reagent and standard solutions. PMID:25051401

  17. A closed recirculated sea-water system

    USGS Publications Warehouse

    1967-01-01

    Study of a virus disease in the chinook salmon (Oncorhynchus tshawytscha) necessitated the use of a marine environment to study the long range effects of the disease and to complete the life cycle of its etiologic agent. A closed recirculated sea-water system was designed for use under experimental laboratory conditions so that controlled studies of the disease could be made. As others may wish to do marine environment studies in the laboratory, the design and operation of our system are presented. Other systems currently in use have been described by Chin (1959), DeWitt and Salo (1960), McCrimmon and Berst (1966), and the authors of collected papers edited by Clark and Clark (1964). Preparatory to the design and construction of the system in use in this laboratory, visits were made to marine systems in use at the University of Washington's College of Fisheries, Seattle, -washington, and Friday Harbor Laboratory, San Juan Island, Washington; the Washington State Department of Fisheries' Point whitney Shellfish Laboratory, Brinnon, Washington; Humboldt State College, Arcata, California; and the Steinhart Aquarium of the California Academy of Science, San Francisco, California.

  18. DEVELOPING METHODS FOR ANALYZING OIL DISPERSANTS IN SEAWATER

    EPA Science Inventory

    An analytical method was sought for determining the concentrations of dispersants in seawater contaminated with oil in both field and laboratory situations. Methods of analysis for surfactants found in the literature included spectrophotometry, gas chromatography (GC), thin-layer...

  19. Enzymatic hydrolysis of microcrystalline cellulose in concentrated seawater.

    PubMed

    Grande, Philipp M; de María, Pablo Domínguez

    2012-01-01

    This communication explores the use of seawater (1X) and concentrated seawater (2X and 4X) as reaction media for the enzyme-catalyzed depolymerization of cellulose. The commercially available Accellerase-1500® - a "cocktail" of different glycosidases - is able to depolymerize several amorphous celluloses and microcrystalline cellulose Avicel® in these reaction media, at slightly lower rates (ca. 90%) than those observed when reactions are performed in pure citrate buffer (control reactions). Remarkably, at concentrated seawater effluents enzymes also display significant rates of cellulose hydrolysis. Considering the expected increasing shortages in accessibility to fresh drinkable water, the herein-reported concept may provide novel inspiring leads for a smart use of resources in an environmentally-friendly and efficient manner, and for the genetic development of cellulases highly active and stable in concentrated seawater solutions. PMID:22101072

  20. Corrosion performance of zinc coated steel in seawater environment

    NASA Astrophysics Data System (ADS)

    Liu, Shuan; Zhao, Xia; Zhao, Haichao; Sun, Huyuan; Chen, Jianmin

    2016-05-01

    Considering the continuous exploitation of marine resources, it is very important to study the anticorrosion performance and durability of zinc coated streel (ZCS) because its increasing use as reinforcements in seawater. Tafel polarization curves and linear polarization curves combined with electrochemical impedance spectroscopy (EIS) were employed to evaluate the corrosion performance of ZCS at Qingdao test station during long-term immersion in seawater. The results indicated that the corrosion rate of the ZCS increased obviously with immersion time in seawater. The corrosion products that formed on the zinc coated steel were loose and porous, and were mainly composed of Zn5(OH)8Cl2, Zn5(OH)6(CO3)2, and ZnO. Pitting corrosion occurred on the steel surface in neutral seawater, and the rate of ZCS corrosion decreased with increasing pH.

  1. The future of seawater desalination: energy, technology, and the environment.

    PubMed

    Elimelech, Menachem; Phillip, William A

    2011-08-01

    In recent years, numerous large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources, and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants. Here, we review the possible reductions in energy demand by state-of-the-art seawater desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages. PMID:21817042

  2. A STRATEGY FOR PROTECTING CIRCULATING SEAWATER SYSTEMS FROM OIL SPILLS

    EPA Science Inventory

    A strategy is described for establishing a simple, inexpensive monitoring program for determining approximate levels of petroleum hydrocarbons in ambient water collected near intake structures of circulating seawater systems. The ambient water is obtained from the depth of intake...

  3. EFFECTS OF CHLORINATED SEAWATER ON DECAPOD CRUSTACEANS AND 'MULINIA' LARVAE

    EPA Science Inventory

    Eggs and larvae of decapod crustaceans and embryos of Mulinia lateralis were exposed to chlorinated seawater for varying periods in continuous flow systems. Mortality, developmental rate, and general behavior were recorded. Panopeus herbstii zoeae were more sensitive to chlorine-...

  4. Seawater pretreatment for reverse osmosis: chemistry, contaminants, and coagulation.

    PubMed

    Edzwald, James K; Haarhoff, Johannes

    2011-11-01

    The paper addresses the effects of salinity and temperature on the chemistry of important parameters affecting coagulation pretreatment including the ion product of water, acid-base chemistry, dissolved metal speciation, and precipitation reactions for aluminum and iron coagulants. The ion product of seawater is greater than for freshwaters and affects chemical hydrolysis and metal-hydroxide solubility reactions. Inorganic carbon is the main cause of seawater alkalinity and buffer intensity but borate B(OH)(4)(1-) also contributes. Buffer intensity is an important parameter in assessing coagulation pH adjustment. Mineral particles are relatively unstable in seawater from electrical double layer compression, and when present these particles are easily coagulated. Algal-particle stability is affected by steric effects and algal motility. Dissolved natural organic matter from algae and humic substances causes fouling of RO membranes and pretreatment removal is essential. Aluminum coagulants are not recommended, and not used, because they are too soluble in seawater. Ferric coagulants are preferred and used. The equilibrium solubility of Fe with amorphous ferric hydroxide in seawater is low over a wide range of pH and temperature conditions. Ferric chloride dosing guidelines are presented for various raw seawater quality characteristics. The effect of pH on coagulant dose and the role of buffer intensity are addressed. A dual coagulation strategy is recommended for treating seawater with moderate to high concentrations of algae or seawater with humic matter. This involves a low and constant dose with high charge-density cationic polymers using Fe as the main coagulant where it is varied in response to raw water quality changes. PMID:21907384

  5. The chromium isotopic composition of seawater and marine carbonates

    NASA Astrophysics Data System (ADS)

    Bonnand, P.; James, R. H.; Parkinson, I. J.; Connelly, D. P.; Fairchild, I. J.

    2013-11-01

    Chromium isotopes are fractionated during redox reactions and have the potential to provide a record of changes in the oxygenation levels of the oceans in the geological past. However, Cr is a trace metal in seawater and its low concentrations make isotopic measurements challenging. Here we report the first determinations of δCr53 for seawater from open ocean (Argentine Basin) and coastal (Southampton Water) settings, using a double-spike technique. The total chromium concentration in seawater from Southampton Water is 1.85 nM, whereas the Cr content of Argentine Basin samples is 5.8-6.6 nM. The δCr53 value of seawater from the Argentine Basin is 0.491-0.556‰ in intermediate and deep waters, and varies between 0.412 and 0.664‰ in surface waters (<150 m). The δCr53 value of Southampton Water seawater is 1.505‰, which may reflect in situ reduction of Cr(VI) to Cr(III). All of our seawater samples have higher δCr53 than crustal and mantle silicates, and mass balance modelling demonstrates that river water must also be enriched in heavy Cr isotopes, indicating that Cr isotopes are fractionated during weathering and/or during transport to the oceans. We also show that the Cr isotopic composition of modern non-skeletal marine carbonates (0.640- 0.745‰) encompasses the range that we measure for Argentine Basin seawater. Thus, fractionation of Cr isotopes during precipitation of these marine carbonates is likely to be small (<0.2‰), and they have the potential to provide a record of the Cr isotopic composition of ancient seawater. Phanerozoic carbonates are also characterised by heavy δCr53 and a correlation between δCr53 and Ce/Ce* suggests that the Cr and Ce cycles in the ocean are linked.

  6. Temperature Sensing in Seawater Based on Microfiber Knot Resonator

    PubMed Central

    Yang, Hongjuan; Wang, Shanshan; Wang, Xin; Liao, Yipeng; Wang, Jing

    2014-01-01

    Ocean internal-wave phenomena occur with the variation in seawater vertical temperature, and most internal-wave detections are dependent on the measurement of seawater vertical temperature. A seawater temperature sensor based on a microfiber knot resonator (MKR) is designed theoretically and demonstrated experimentally in this paper. Especially, the dependences of sensing sensitivity on fiber diameter and probing wavelength are studied. Calculated results show that sensing sensitivity increases with the increasing microfiber diameter with the range of 2.30–3.91 μm and increases with the increasing probing wavelength, which reach good agreement with results obtained by experiments. By choosing the appropriate parameters, the maximum sensitivity measured can reach to be 22.81 pm/°C. The seawater temperature sensor demonstrated here shows advantages of small size, high sensitivity, easy fabrication, and easy integration with fiber systems, which may offer a new optical method to detect temperature of seawater or ocean internal-wave phenomenon and offer valuable reference for assembling micro sensors used for other parameters related to seawater, such as salinity, refractive index, concentration of NO3− and so on. PMID:25299951

  7. [Regulation effects of tourmaline on seawater pH value].

    PubMed

    Xia, Meisheng; Zhang, Hongmei; Hu, Caihong; Xu, Zirong

    2005-10-01

    In this paper, chemical analysis, X-ray diffraction and atomic force microscopy were employed to examine the characteristics of tourmaline produced in east Inner Mongolia Autonomous Region, and batch experiments were conducted to study its regulation effects on seawater pH value. The factors affecting the regulation, such as the dosage of tourmaline and the salinity and initial pH value of seawater, were also studied. The results showed that tourmaline could regulate the seawater pH value from its initial 3 and 10 to 7.1 and 8.9, respectively, and the regulation effect was greater in the seawater with lower salinity, e.g., after 120 minutes treatment, the initial pH value (5.0) of the seawater with a salinity of 5, 10, 15, 20 and 35 was increased by 3.24, 3.16, 3.06, 2.99 and 2.85 unit, respectively. Tourmaline had little effect on seawater conductivity. This study would provide an experimental base for the application of tourmaline in aquaculture. PMID:16422525

  8. Low Frequency Volume Reverberation Measurements in Turbid Seawater

    NASA Astrophysics Data System (ADS)

    Liu, Yongwei; Li, Qi; Shang, Dejiang; Yang, Daheng; Zhang, Chao; Tang, Rui; Shang, Dajing; Chen, Mengying

    2010-09-01

    Shallow coastal waters are characterized by high levels of suspended sediment particles relative to the open ocean. This kind of seawater is also characterized as turbid seawater. An experimental investigation on volume reverberation has been done in the sea area outside the Yangtze River Estuary, where the seawater contains a lot of suspended sediment particles. Sound scattering data at 8 sites in the frequency range from 10 to 40 kHz, in steps of 1 kHz, has been obtained. The results demonstrate that volume backscattering intensity in turbid seawater may be expected to fall in the range from -60 to -100 dB re m-1. Because sound absorption caused by suspended sediment particles in turbid seawater is much greater than that in clear seawater, the volume backscattering intensity does not change with the pulse length of the transmitted signal, even when the pulse length is less than 0.5 ms. Salinity in the sea area has little effect on volume backscattering intensity. However, suspended sediment particles may have a great effect on it. Therefore, if the concentration of suspended sediment particles changes from 31 mg/L to 47 mg/L, the volume backscattering intensity may be changed by 30 dB.

  9. Laboratory Experiments for Seawater Intrusion into Freshwater Aquifer with Heterogeneity

    NASA Astrophysics Data System (ADS)

    Maekawa, K.; Karasaki, K.; Takasu, T.

    2007-12-01

    It is important for safety assessment of high-level radioactive waste geologic disposal to understand groundwater flow in deep underground accurately. Especially, groundwater flow in the coastal area is considered to be quite complex that involves density and hydraulic gradient driven flow of freshwater and seawater. In order to understand the behavior of seawater intrusion into freshwater in deep underground, we constructed a laboratory equipment, 'Mini-MACRO' (MAss transport Characterization in host ROck). Mini-MACRO consists of three parts: a sandbox (0.5m x 0.25m x 0.1m) and a reservoir tank on each side containing saltwater simulating seawater and freshwater, respectively. Seawater intrusion experiments are conducted using glass beads (sub- millimeter in diameter) and colored saltwater in the sandbox with a transparent face plate to allow visual observation. We created several cases of experimental conditions to observe the seawater intrusion behavior into two-layered stratum against various hydraulic gradients and densities of saltwater resembling the so-called Henry Problem. We confirmed that the results using this equipment match numerical results under simple heterogeneous condition. These results contribute to the better understanding of seawater intrusion behavior and to increasing confidence in modeling methodology of groundwater flow and mass transport in deep underground through comparison with numerical analysis. We believe that it is crucial for the safety assessment of geologic disposal to integrate this knowledge.

  10. Infectivity of microsporidia spores stored in seawater at environmental temperatures.

    PubMed

    Fayer, R

    2004-06-01

    To determine how long spores of Encephalitozoon cuniculi, E. hellem, and E. intestinalis remain viable in seawater at environmental temperatures, culture-derived spores were stored in 10, 20, and 30 ppt artificial seawater at 10 and 20 C. At intervals of 1, 2, 4, 8, and 12 wk, spores were tested for infectivity in monolayer cultures of Madin Darby bovine kidney cells. Spores of E. hellem appeared the most robust, some remaining infectious in 30 ppt seawater at 10 C for 12 wk and in 30 ppt seawater at 20 C for 2 wk. Those of E. intestinalis were slightly less robust, remaining infectious in 30 ppt seawater at 10 and 20 C for 1 and 2 wk, respectively. Spores of E. cuniculi remained infectious in 10 ppt seawater at 10 and 20 C for 2 wk but not at higher salinities. These findings indicate that the spores of the 3 species of Encephalitozoon vary in their ability to remain viable when exposed to a conservative range of salinities and temperatures found in nature but, based strictly on salinity and temperature, can potentially remain infectious long enough to become widely dispersed in estuarine and coastal waters. PMID:15270118

  11. Tenacibaculum geojense sp. nov., isolated from seawater.

    PubMed

    Kang, So-Jung; Lee, Soo-Young; Lee, Mi-Hwa; Oh, Tae-Kwang; Yoon, Jung-Hoon

    2012-01-01

    A Gram-negative, non-flagellated, non-spore-forming bacterium, designated YCS-6(T), that was motile by gliding, was isolated from seawater on the southern coast of Korea. Strain YCS-6(T) grew optimally at 30 °C and with 2% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YCS-6(T) fell within the genus Tenacibaculum and was most closely associated with Tenacibaculum litopenaei B-I(T), with which the isolate exhibited 95.9% 16S rRNA gene sequence similarity. Sequence similarity between strain YCS-6(T) and other members of the genus Tenacibaculum was 93.8-95.7%. Strain YCS-6(T) contained menaquinone-6 (MK-6) as the predominant respiratory quinone and iso-C(15:0), summed feature 3 (iso-C(15:0) 2-OH and/or C(16:1)ω7c), iso-C(15:0) 3-OH and iso-C(15:1) G as the major fatty acids. The DNA G+C content was 32.7 mol%. Differential phenotypic properties and phylogenetic distinctiveness distinguished strain YCS-6(T) from all other members of the genus Tenacibaculum. On the basis of our phenotypic, chemotaxonomic and phylogenetic data, strain YCS-6(T) is considered to represent a novel species of the genus Tenacibaculum, for which the name Tenacibaculum geojense sp. nov. is proposed. The type strain is YCS-6(T) (=KCTC 23423(T) =CCUG 60527(T)). PMID:21257684

  12. Loktanella tamlensis sp. nov., isolated from seawater.

    PubMed

    Lee, Soon Dong

    2012-03-01

    An aerobic, Gram-reaction-negative, chemo-organotrophic bacterium, designated strain SSW-35(T), was isolated from seawater in Jeju, Republic of Korea. Cells were motile, short rods; colonies were circular, smooth, convex, translucent and beige in colour. No diffusible pigment formed on any of the media tested. The bacterium grew at 4-30 °C and pH 7.1-10.1. Phylogenetic analysis based on 16S rRNA gene sequences showed that the organism was related to members of the genus Loktanella, its closest recognized relatives being Loktanella rosea Fg36(T) (98.1% sequence similarity) and Loktanella maricola DSW-18(T) (97.8%). Levels of 16S rRNA gene similarity between strain SSW-35(T) and other recognized species of the genus Loktanella were all <97%. Polar lipid analysis revealed the presence of diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and an unknown lipid as major components, as well as small amounts of two unknown phospholipids. The predominant ubiquinone was Q-10. The major cellular fatty acid was C(18:1) (summed feature 7), and the 3-hydroxy fatty acids detected were C(12:1) 3-OH and C(10:0) 3-OH. The genomic DNA G+C content was 55.0 mol%. In DNA-DNA hybridization experiments, the relatedness values between strain SSW-35(T) and the type strains of the phylogenetically closest recognized species were all <11%. On the basis of the phenotypic and genotypic characteristics, phylogenetic analysis and DNA-DNA relatedness, a novel species, Loktanella tamlensis sp. nov., is proposed. The type strain is SSW-35(T) (=KCTC 12722(T)=JCM 14020(T)). PMID:21515703

  13. Loktanella litorea sp. nov., isolated from seawater.

    PubMed

    Yoon, Jung-Hoon; Jung, Yong-Taek; Lee, Jung-Sook

    2013-01-01

    A Gram-negative, non-motile, rod-shaped bacterial strain, designated DPG-5(T), was isolated from seawater of the South Sea, Korea and subjected to a study using a polyphasic taxonomic approach. Strain DPG-5(T) grew optimally at pH 7.0-8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. Neighbour-joining phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-5(T) fell within the clade comprising members of the genus Loktanella, and formed a cluster with the type strains of Loktanella rosea, Loktanella maricola, Loktanella koreensis and Loktanella tamlensis, with which it exhibited highest 16S rRNA gene sequence similarity values of 96.7, 96.5, 96.2 and 96.7 %, respectively. The 16S rRNA gene sequence similarity values between strain DPG-5(T) and the type strains of the other species of the genus Loktanella were in the range of 94.4-96.0 %. The DNA G+C content of strain DPG-5(T) was 57.6 mol%. Strain DPG-5(T) contained Q-10 as the predominant ubiquinone and C(18 : 1)ω7c and 11-methyl C(18 : 1)ω7c as the major fatty acids. The major polar lipids found in strain DPG-5(T) were phosphatidylcholine and phosphatidylglycerol. Differential phenotypic properties, together with the phylogenetic distinctiveness, showed that strain DPG-5(T) is differentiated from other species of the genus Loktanella. On the basis of the data presented, strain DPG-5(T) is considered to represent a novel species of the genus Loktanella, for which the name Loktanella litorea sp. nov. is proposed. The type strain is DPG-5(T) (= KCTC 23883(T) = CCUG 62113(T)). PMID:22389278

  14. Loktanella ponticola sp. nov., isolated from seawater.

    PubMed

    Jung, Yong-Taek; Park, Sooyeon; Park, Ji-Min; Yoon, Jung-Hoon

    2014-11-01

    A Gram-reaction-negative, aerobic, non-flagellated and coccoid, ovoid or rod-shaped bacterial strain, designated W-SW2(T), was isolated from seawater in the South Sea of South Korea. The novel strain grew optimally at pH 7.0-8.0, at 25 °C and in the presence of approximately 2% (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain W-SW2(T) fell within the clade comprising the type strains of species of the genus Loktanella, clustering and sharing the highest sequence similarity value (96.3%) with the type strain of Loktanella koreensis. The 16S rRNA gene sequence similarity values between strain W-SW2(T) and the type strains of the other species of the genus Loktanella were in the range 93.1-96.0%. The DNA G+C content of strain W-SW2(T) was 55.9 mol%. Strain W-SW2(T) contained Q-10 as the predominant ubiquinone and C(18:1)ω7c as the predominant fatty acid. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, one unidentified aminolipid and one unidentified lipid. Differential phenotypic properties, together with the phylogenetic distinctiveness, revealed that strain W-SW2(T) is separated phylogenetically from other species of the genus Loktanella. On the basis of the data presented, strain W-SW2(T) is considered to represent a novel species of the genus Loktanella, for which the name Loktanella ponticola sp. nov. is proposed. The type strain is W-SW2(T) ( =KCTC 42133(T) =NBRC 110409(T)). PMID:25106924

  15. 3D Inverse problem: Seawater intrusions

    NASA Astrophysics Data System (ADS)

    Steklova, K.; Haber, E.

    2013-12-01

    Modeling of seawater intrusions (SWI) is challenging as it involves solving the governing equations for variable density flow, multiple time scales and varying boundary conditions. Due to the nonlinearity of the equations and the large aquifer domains, 3D computations are a costly process, particularly when solving the inverse SWI problem. In addition the heads and concentration measurements are difficult to obtain due to mixing, saline wedge location is sensitive to aquifer topography, and there is general uncertainty in initial and boundary conditions and parameters. Some of these complications can be overcome by using indirect geophysical data next to standard groundwater measurements, however, the inverse problem is usually simplified, e.g. by zonation for the parameters based on geological information, steady state substitution of the unknown initial conditions, decoupling the equations or reducing the amount of unknown parameters by covariance analysis. In our work we present a discretization of the flow and solute mass balance equations for variable groundwater (GW) flow. A finite difference scheme is to solve pressure equation and a Semi - Lagrangian method for solute transport equation. In this way we are able to choose an arbitrarily large time step without losing stability up to an accuracy requirement coming from the coupled character of the variable density flow equations. We derive analytical sensitivities of the GW model for parameters related to the porous media properties and also the initial solute distribution. Analytically derived sensitivities reduce the computational cost of inverse problem, but also give insight for maximizing information in collected data. If the geophysical data are available it also enables simultaneous calibration in a coupled hydrogeophysical framework. The 3D inverse problem was tested on artificial time dependent data for pressure and solute content coming from a GW forward model and/or geophysical forward model. Two

  16. Sporulation and survival of Toxoplasma gondii oocysts in seawater

    USGS Publications Warehouse

    Lindsay, D.S.; Collins, M.V.; Mitchell, S.M.; Cole, R.A.; Flick, G.J.; Wetch, C.N.; Lindquist, A.; Dubey, J.P.

    2003-01-01

    We have been collaborating since 1992 in studies on southern sea otters (Enhdyra lutris nereis) as part of a program to define factors, which may be responsible for limiting the growth of the southern sea otter population. We previously demonstrated Toxoplasma gondii in sea otters. We postulated that cat feces containing oocysts could be entering the marine environment through storm run-off or through municipal sewage since cat feces are often disposed down toilets by cat owners. The present study examined the sporulation of T. gondii oocysts in seawater and the survival of sporulated oocysts in seawater. Unsporulated oocysts were placed in 15 ppt artificial seawater, 32 ppt artificial seawater or 2% sulfuric acid (positive control) at 24 C in an incubator. Samples were examined daily for 3 days and development monitored by counting 100 oocysts from each sample. From 75 to 80% of the oocysts were sporulated by 3 days post-inoculation under all treatment conditions. Groups of 2 mice were fed 10,000 oocysts each from each of the 3 treatment groups. All inoculated mice developed toxoplasmosis indicating that oocysts were capable of sporulating in seawater. Survival of sporulated oocysts was examined by placing sporulated T. gondii oocysts in 15 ppt seawater at room temperature 22a??24 C (RT) or in a refrigerator kept at 4 C. Mice fed oocysts that had been stored at 4C or RT for 6 months became infected. These results indicate that T. gondii oocysts can sporulate and remain viable in seawater for several months.

  17. Altererythrobacter aestiaquae sp. nov., isolated from seawater.

    PubMed

    Jung, Yong-Taek; Park, Sooyeon; Lee, Jung-Sook; Yoon, Jung-Hoon

    2014-12-01

    A Gram-stain-negative, coccoid- or oval-shaped, gliding bacterial strain, designated HDW-31(T), belonging to the class Alphaproteobacteria, was isolated from seawater of the Yellow Sea, Korea, and was subjected to a taxonomic study using a polyphasic approach. Strain HDW-31(T) grew optimally at pH 7.0-8.0, at 30 °C and in the presence of 2-3 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain HDW-31(T) fell within the clade comprising the genus Altererythrobacter, clustering with the type strains of Altererythrobacter luteolus and Altererythrobacter gangjinensis, with which strain HDW-31(T) exhibited 97.0 and 96.0 % sequence similarity values, respectively. Sequence similarities to the type strains of the other recognized species of the genus Altererythrobacter were 93.5-96.0 %. The DNA G+C content was 57.9 mol% and mean DNA-DNA relatedness between strain HDW-31(T) and the type strain of A. luteolus was 5.3 %. Strain HDW-31(T) contained Q-10 as the predominant ubiquinone and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and C16 : 0 as the major fatty acids. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, a sphingoglycolipid, two unidentified glycolipids and an unidentified lipid. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain HDW-31(T) is distinguishable from recognized species of the genus Altererythrobacter. On the basis of the data presented, strain HDW-31(T) is considered to represent a novel species of the genus Altererythrobacter, for which the name Altererythrobacter aestiaquae sp. nov. is proposed. The type strain is HDW-31(T) ( = KCTC 42006(T) = CECT 8527(T)). PMID:25201916

  18. Development of analytical techniques of vanadium isotope in seawater

    NASA Astrophysics Data System (ADS)

    Huang, T.; Owens, J. D.; Sarafian, A.; Sen, I. S.; Huang, K. F.; Blusztajn, J.; Nielsen, S.

    2015-12-01

    Vanadium (V) is a transition metal with isotopes of 50V and 51V, and oxidation states of +2, +3, +4 and +5. The average concentration in seawater is 1.9 ppb, which results in a marine residence time of ~50 kyrs. Its various oxidation states make it a potential tool for investigating redox conditions in the ocean and sediments due to redox related changes in the valance state of vanadium. In turn, chemical equilibrium between different oxidation states of V will likely cause isotopic fractionation that can potentially be utilized to quantify past ocean redox states. In order to apply V isotopes as a paleo-redox tracer, it is required that we know the isotopic composition of seawater and the relation to marine sources and sinks of V. We developed a novel method for pre-concentrating V and measuring the isotope ratio in seawater samples. In our method, we used four ion exchange chromatography columns to separate vanadium from seawater matrix elements, in particular titanium and chromium, which both have an isobaric interference on 50V. The first column uses the NOBIAS resin, which effectively separates V and other transition metals from the majority of seawater matrix. Subsequent columns are identical to those utilized when separating V from silicate samples (Nielsen et al, Geostand. Geoanal. Res., 2011). The isotopic composition of the purified V is measured using a Thermo Scientific Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS) in medium resolution mode. This setup resolves all molecular interferences from masses 49, 50, 51, 52 and 53 including S-O species on mass 50. To test the new method, we spiked an open ocean seawater sample from the Bermuda Atlantic Time Series (BATS) station with 10-25 μg of Alfa Aesar vanadium solution, which has an isotopic composition of δ51V = 0 [where δ51V = 1000 × [(51V/50Vsample - 51V/50VAA)/51V/50VAA]. The average of six spiked samples is -0.03±0.19‰, which is within error of the true

  19. Abiotic Nitrous Oxide Production in Natural and Artificial Seawater

    NASA Astrophysics Data System (ADS)

    Ochoa, H.; Stanton, C. L.; Cavazos, A. R.; Ostrom, N. E.; Glass, J. B.

    2014-12-01

    The ocean contributes approximately one third of global sources of nitrous oxide (N2O) to the atmosphere. While nitrification is thought to be the dominant pathway for marine N2O production, mechanisms remain unresolved. Previous studies have carried the implicit assumption that marine N2O originates directly from enzymatic sources. However, abiotic production of N2O is possible via chemical reactions between nitrogenous intermediates and redox active trace metals in seawater. In this study, we investigated N2O production and isotopic composition in treatments with and without added hydroxylamine (NH2OH) and nitric oxide (NO), intermediates in microbial oxidation of ammonia to nitrite, and Fe(III). Addition of substrates to sterile artificial seawater was compared with filtered and unfiltered seawater from Sapelo Island, coastal Georgia, USA. N2O production was observed immediately after addition of Fe(III) in the presence of NH2OH at pH 8 in sterile artificial seawater. Highest N2O production was observed in the presence of Fe(III), NO, and NH2OH. The isotopomer site preference of abiotically produced N2O was consistent with previous studies (31 ± 2 ‰). Higher abiotic N2O production was observed in sterile artificial seawater (salinity: 35 ppt) than filtered Sapelo Island seawater (salinity: 25 ppt) whereas diluted sterile artificial seawater (18 ppt) showed lowest N2O production, suggesting that higher salinity promotes enhanced abiotic N2O production. Addition of Fe(III) to unfiltered Sapelo Island seawater stimulated N2O production. The presence of ammonia-oxidizing archaea (AOA), which lack known N2O producing enzymes, in Sapelo Island seawater was confirmed by successful amplification of the archaeal amoA gene, whereas ammonia-oxidizing bacteria (AOB), which contain N2O-producing enzymes were undetected. Given the few Fe-containing proteins present in AOA, it is likely that Fe(III) addition promoted N2O production via an abiotic vs. enzymatic N2O mechanism

  20. XAS and TRLIF spectroscopy of uranium and neptunium in seawater.

    PubMed

    Maloubier, Melody; Solari, Pier Lorenzo; Moisy, Philippe; Monfort, Marguerite; Den Auwer, Christophe; Moulin, Christophe

    2015-03-28

    Seawater contains radionuclides at environmental levels; some are naturally present and others come from anthropogenic nuclear activity. In this report, the molecular speciation in seawater of uranium(VI) and neptunium(V) at a concentration of 5 × 10(-5) M has been investigated for the first time using a combination of two spectroscopic techniques: Time-resolved laser-induced fluorescence (TRLIF) for U and extended X-ray absorption fine structure (EXAFS) for U and Np at the LIII edge. In parallel, the theoretical speciation of uranium and neptunium in seawater at the same concentration is also discussed and compared to spectroscopic data. The uranium complex was identified as the neutral carbonato calcic complex UO2(CO3)3Ca2, which has been previously described in other natural systems. In the case of neptunium, the complex identified is mainly a carbonato complex whose exact stoichiometry is more difficult to assess. The knowledge of the actinide molecular speciation and reactivity in seawater is of fundamental interest in the particular case of uranium recovery and more generally regarding the actinide life cycle within the biosphere in the case of accidental release. This is the first report of actinide direct speciation in seawater medium that can complement inventory data. PMID:25689216

  1. Effect of calcium carbonate saturation of seawater on coral calcification

    USGS Publications Warehouse

    Gattuso, J.-P.; Frankignoulle, M.; Bourge, I.; Romaine, S.; Buddemeier, R.W.

    1998-01-01

    The carbonate chemistry of seawater is usually not considered to be an important factor influencing calcium-carbonate-precipitation by corals because surface seawater is supersaturated with respect to aragonite. Recent reports, however, suggest that it could play a major role in the evolution and biogeography of recent corals. We investigated the calcification rates of five colonies of the zooxanthellate coral Stylophora pistillata in synthetic seawater using the alkalinity anomaly technique. Changes in aragonite saturation from 98% to 585% were obtained by manipulating the calcium concentration. The results show a nonlinear increase in calcification rate as a function of aragonite saturation level. Calcification increases nearly 3-fold when aragonite saturation increases from 98% to 390%, i.e., close to the typical present saturation state of tropical seawater. There is no further increase of calcification at saturation values above this threshold. Preliminary data suggest that another coral species, Acropora sp., displays a similar behaviour. These experimental results suggest: (l) that the rate of calcification does not change significantly within the range of saturation levels corresponding to the last glacial-interglacial cycle, and (2) that it may decrease significantly in the future as a result of the decrease in the saturation level due to anthropogenic release of CO2 into the atmosphere. Experimental studies that control environmental conditions and seawater composition provide unique opportunities to unravel the response of corals to global environmental changes.

  2. Seawater calcium isotope ratios across the Eocene-Oligocene transition

    USGS Publications Warehouse

    Griffith, E.M.; Paytan, A.; Eisenhauer, A.; Bullen, T.D.; Thomas, E.

    2011-01-01

    During the Eocene-Oligocene transition (EOT, ca. 34 Ma), Earth's climate cooled significantly from a greenhouse to an icehouse climate, while the calcite (CaCO3) compensation depth (CCD) in the Pacific Ocean increased rapidly. Fluctuations in the CCD could result from various processes that create an imbalance between calcium (Ca) sources to, and sinks from, the ocean (e.g., weathering and CaCO3 deposition), with different effects on the isotopic composition of dissolved Ca in the oceans due to differences in the Ca isotopic composition of various inputs and outputs. We used Ca isotope ratios (??44/40Ca) of coeval pelagic marine barite and bulk carbonate to evaluate changes in the marine Ca cycle across the EOT. We show that the permanent deepening of the CCD was not accompanied by a pronounced change in seawater ??44/40Ca, whereas time intervals in the Neogene with smaller carbonate depositional changes are characterized by seawater ??44/40Ca shifts. This suggests that the response of seawater ??44/40Ca to changes in weathering fluxes and to imbalances in the oceanic alkalinity budget depends on the chemical composition of seawater. A minor and transient fluctuation in the Ca isotope ratio of bulk carbonate may reflect a change in isotopic fractionation associated with CaCO3 precipitation from seawater due to a combination of factors, including changes in temperature and/or in the assemblages of calcifying organisms. ?? 2011 Geological Society of America.

  3. Seawater-Cultured Botryococcus braunii for Efficient Hydrocarbon Extraction

    PubMed Central

    Furuhashi, Kenichi; Saga, Kiyotaka; Okada, Shigeru; Imou, Kenji

    2013-01-01

    As a potential source of biofuel, the green colonial microalga Botryococcus braunii produces large amounts of hydrocarbons that are accumulated in the extracellular matrix. Generally, pretreatment such as drying or heating of wet algae is needed for sufficient recoveries of hydrocarbons from B. braunii using organic solvents. In this study, the Showa strain of B. braunii was cultured in media derived from the modified Chu13 medium by supplying artificial seawater, natural seawater, or NaCl. After a certain period of culture in the media with an osmotic pressure corresponding to 1/4-seawater, hydrocarbon recovery rates exceeding 90% were obtained by simply mixing intact wet algae with n-hexane without any pretreatments and the results using the present culture conditions indicate the potential for hydrocarbon milking. Highlights Seawater was used for efficient hydrocarbon extraction from Botryococcus braunii. The alga was cultured in media prepared with seawater or NaCl. Hydrocarbon recovery rate exceeding 90% was obtained without any pretreatment. PMID:23799107

  4. Differentiating seawater and groundwater sulfate attack in Portland cement mortars

    SciTech Connect

    Santhanam, Manu . E-mail: manus@iitm.ac.in; Cohen, Menashi; Olek, Jan

    2006-12-15

    The study reported in this article deals with understanding the physical, chemical and microstructural differences in sulfate attack from seawater and groundwater. Portland cement mortars were completely immersed in solutions of seawater and groundwater. Physical properties such as length, mass, and compressive strength were monitored periodically. Thermal analysis was used to study the relative amounts of phases such as ettringite, gypsum, and calcium hydroxide, and microstructural studies were conducted by scanning electron microscopy. Portland cement mortars performed better in seawater solution compared to groundwater solution. The difference in performance could be attributed to the reduction in the quantity of the expansive attack products (gypsum and ettringite). The high Cl concentration of seawater could have played an important role by binding the C{sub 3}A to form chloroaluminate compounds, such as Friedel's salt (detected in the microstructural studies), and also by lowering the expansive potential of ettringite. Furthermore, the thicker layer of brucite forming on the specimens in seawater could have afforded better protection against ingress of the solution than in groundwater.

  5. Degradation Products of Benzophenone-3 in Chlorinated Seawater Swimming Pools.

    PubMed

    Manasfi, Tarek; Storck, Veronika; Ravier, Sylvain; Demelas, Carine; Coulomb, Bruno; Boudenne, Jean-Luc

    2015-08-01

    Oxybenzone (2-hydroxy-4-methoxyphenone, benzophenone-3) is one of the UV filters commonly found in sunscreens. Its presence in swimming pools and its reactivity with chlorine has already been demonstrated but never in seawater swimming pools. In these pools, chlorine added for disinfection results in the formation of bromine, due to the high levels of bromide in seawater, and leads to the formation of brominated disinfection byproducts, known to be more toxic than chlorinated ones. Therefore, it seems important to determine the transformation products of oxybenzone in chlorinated seawater swimming pools; especially that users of seawater swimming pools may apply sunscreens and other personal-care products containing oxybenzone before going to pools. This leads to the introduction of oxybenzone to pools, where it reacts with bromine. For this purpose, the reactivity of oxybenzone has been examined as a function of chlorine dose and temperature in artificial seawater to assess its potential to produce trihalomethanes and to determine the byproducts generated following chlorination. Increasing doses of chlorine and increasing temperatures enhanced the formation of bromoform. Experiments carried out with excess doses of chlorine resulted in the degradation of oxybenzone and allowed the determination of the degradation mechanisms leading to the formation of bromoform. In total, ten transformation products were identified, based on which the transformation pathway was proposed. PMID:26167727

  6. Quasi-horizontal circulation cells in 3D seawater intrusion

    USGS Publications Warehouse

    Abarca, E.; Carrera, J.; Sanchez-Vila, X.; Voss, C.I.

    2007-01-01

    The seawater intrusion process is characterized by the difference in freshwater and seawater density that causes freshwater to float on seawater. Many confined aquifers have a large horizontal extension with respect to thickness. In these cases, while buoyancy acts in the vertical direction, flow is confined between the upper and bottom boundaries and the effect of gravity is controlled by variations of aquifer elevation. Therefore, the effective gravity is controlled by the slope and the shape of the aquifer boundaries. Variability in the topography of the aquifer boundaries is one case where 3D analysis is necessary. In this work, density-dependent flow processes caused by 3D aquifer geometry are studied numerically and specifically, considering a lateral slope of the aquifer boundaries. Sub-horizontal circulation cells are formed in the saltwater entering the aquifer. The penetration of the saltwater can be quantified by a dimensionless buoyancy number that measures the lateral slope of the aquifer relative to freshwater flux. The penetration of the seawater intrusion wedge is controlled more by this slope than by the aquifer thickness and dispersivity. Thus, the slope must be taken into account in order to accurately evaluate seawater intrusion. ?? 2007 Elsevier B.V. All rights reserved.

  7. Quasi-horizontal circulation cells in 3D seawater intrusion

    NASA Astrophysics Data System (ADS)

    Abarca, Elena; Carrera, Jesús; Sánchez-Vila, Xavier; Voss, Clifford I.

    2007-06-01

    SummaryThe seawater intrusion process is characterized by the difference in freshwater and seawater density that causes freshwater to float on seawater. Many confined aquifers have a large horizontal extension with respect to thickness. In these cases, while buoyancy acts in the vertical direction, flow is confined between the upper and bottom boundaries and the effect of gravity is controlled by variations of aquifer elevation. Therefore, the effective gravity is controlled by the slope and the shape of the aquifer boundaries. Variability in the topography of the aquifer boundaries is one case where 3D analysis is necessary. In this work, density-dependent flow processes caused by 3D aquifer geometry are studied numerically and specifically, considering a lateral slope of the aquifer boundaries. Sub-horizontal circulation cells are formed in the saltwater entering the aquifer. The penetration of the saltwater can be quantified by a dimensionless buoyancy number that measures the lateral slope of the aquifer relative to freshwater flux. The penetration of the seawater intrusion wedge is controlled more by this slope than by the aquifer thickness and dispersivity. Thus, the slope must be taken into account in order to accurately evaluate seawater intrusion.

  8. Modeling Regional Seawater Intrusion Using One Model Layer Per Aquifer

    NASA Astrophysics Data System (ADS)

    Bakker, M.; Schaars, F.

    2012-12-01

    Seawater intrusion is an ongoing and expanding problem in coastal aquifers. A Dupuit formulation was developed to make it possible to simulate seawater intrusion using one model layer per aquifer. The formulation is implemented in the SWI package for MODFLOW. Aquifers don't need to be discretized vertically so that the evolution of the salinity distribution may be simulated in a timely manner on a regular Mac or PC. SWI may be applied to simulate seawater intrusion with an existing MODFLOW model through the addition of just one input file. SWI is envisioned to be complimentary to codes that solve the coupled flow and transport equations, such as SEAWAT and SUTRA: SWI may be used to simulate regional flow including density effects, and other codes may be used to simulate local seawater intrusion, including dispersive mixing. Since its first release in 2004, SWI has been benchmarked against several other codes and was shown to perform well, even when a moderate amount of dispersion was included in the simulations. SWI has recently been implemented in MODFLOW2005. The new implementation includes a number of enhancements such as variable time stepping, separate budgets for fresh and salt water, and the ability to simulate upconing through aquitards. In the presentation, the main features of the SWI package are discussed, the new capabilities are showcased, and several examples are presented.

  9. Flow through luminescence for heavy metal analysis in seawater

    NASA Astrophysics Data System (ADS)

    San Vicente De la Riva, Blanca; Costa Fernandez, Jose M.; Pereiro Garcia, Rosario; Sanz-Medel, Alfredo

    1999-12-01

    The toxicity of heavy metals is well documented today and legislation for their control in seawater continuously becomes more and more restrictive. In order to control and ensure the marine environment quality it is demanded an effort to develop new analytical tools, which allow the analysis of trace levels of heavy metals in seawater. The measurement of luminescence (phosphorescence and fluorescence) gives rise to high sensitive, selective and innovative approaches which could be used to develop new trace metal sensing methods. In this way, we have observed that the metal-chelates formed between different sulphonic-hydroxyquinolines with heavy metals, such as lead, or the metal-chelates between mercury and purines exhibit strong room temperature phosphorescence and fluorescence, respectively. Based on the formation of such quelates, two luminescence methods are investigated for sensing of lead and mercury in seawater. Optimum experimental conditions and the analytical performance characteristics of the methods are discussed. Relative standard deviations in the order of 4% are typical at 100 ng mL-1 of Pb(II) and Hg (II). The detection limits are 0.1 and 1.4 ng mL-1 for lead and mercury, respectively. Possible interferences present in seawater, including sea water cations and anions are evaluated in detail. Finally, the methods are applied to the determination de mercury and lead in seawater samples.

  10. Biogeochemical effects of seawater restoration to diked salt marshes

    USGS Publications Warehouse

    Portnoy, J.W.; Giblin, A.E.

    1997-01-01

    We conducted greenhouse microcosm experiments to examine the biogeochemical effects of restoring seawater to historically diked Cape Cod salt marshes. Peat cores from both seasonally flooded and drained diked marshes were waterlogged with seawater, and porewater chemistry was subsequently monitored for 21 mo. The addition of seawater to highly organic, seasonally flooded peat caused the death of freshwater wetland plants, 6-8 cm of sediment subsidence, and increased N and P mineralization. Also, sulfides and alkalinity increased 10-fold, suggesting accelerated decomposition by sulfate reduction. Addition of seawater to the low-organic-content acidic peat from the drained marsh increased porewater pH, alkalinity, PO4-P, and Fe(II), which we attribute to the reestablishment of SO4 and Fe(III) mineral reduction. Increased cation exchange contributed to 6-fold increases in dissolved Fe(II) and Al and 60-fold increases in NH4-N within 6 mo of sail-nation. Seawater reintroductions to seasonally flooded diked marshes will cause porewater sulfides to increase, likely reducing the success of revegetation efforts. Sulfide toxicity is of less concern in resalinated drained peats because of the abundance of Fe(II) to precipitate sulfides, and of NH4-N to offset sulfide inhibition of N uptake. Restoration of either seasonally flooded or drained diked marshes could stimulate potentially large nutrient and Fe(II) releases, which could in turn increase primary production and lower oxygen in receiving waters. These findings suggest that tidal restoration be gradual and carefully monitored.

  11. Table Salt from Seawater (Solar Evaporation). What We Take from Our Environment. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Science Education Center.

    This module discusses methods of obtaining table salt from seawater. Topic areas considered include: (1) obtaining salt by solar evaporation of seawater in holes; (2) obtaining salt by boiling seawater in pots; (3) how table salt is obtained from seawater in the Philippines; and (4) methods of making salt by solar evaporation of seawater in the…

  12. Degradation of graphite/polymer composites in seawater

    SciTech Connect

    Tucker, W.C. )

    1991-12-01

    Glass-reinforced plastics have a substantial history of use in sea water. With the advent of high-performance graphite fibers offering greater stiffness than glass, some marine engineering applications may be implemented where glass was unsuitable. However, the nobility of graphite in the galvanic series makes it an extremely efficient cathode when coupled with metals in seawater. Degradation of the cathodic composite material is an unexpected result of the corrosion chemistry in natural seawater. Deep submergence of composite materials introduces another potential degradative mechanism in seawater due to an increase moisture uptake by damage-dependent mechanisms. In this paper other environmental exposure to sunlight, deep submergence and cyclic thermal changes which show potential for degradation of composites are discussed.

  13. Sulfate was a trace constituent of Archean seawater

    NASA Astrophysics Data System (ADS)

    Crowe, Sean A.; Paris, Guillaume; Katsev, Sergei; Jones, CarriAyne; Kim, Sang-Tae; Zerkle, Aubrey L.; Nomosatryo, Sulung; Fowle, David A.; Adkins, Jess F.; Sessions, Alex L.; Farquhar, James; Canfield, Donald E.

    2014-11-01

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of δ34S values. Using models informed by sulfur cycling in Lake Matano, we infer Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 103 to 104 years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans.

  14. Sulfate was a trace constituent of Archean seawater.

    PubMed

    Crowe, Sean A; Paris, Guillaume; Katsev, Sergei; Jones, CarriAyne; Kim, Sang-Tae; Zerkle, Aubrey L; Nomosatryo, Sulung; Fowle, David A; Adkins, Jess F; Sessions, Alex L; Farquhar, James; Canfield, Donald E

    2014-11-01

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of δ(34)S values. Using models informed by sulfur cycling in Lake Matano, we infer Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans. PMID:25378621

  15. Bacteria-driven production of alkyl nitrates in seawater

    NASA Astrophysics Data System (ADS)

    Kim, Michelle J.; Michaud, Jennifer M.; Williams, Renee; Sherwood, Byron Pedler; Pomeroy, Robert; Azam, Farooq; Burkart, Michael; Bertram, Timothy H.

    2015-01-01

    and ship-borne measurements have shown that the ocean is a large, diffuse source for short chain (C1-C3) gas phase alkyl nitrates (RONO2). Photochemical production of RONO2 has been demonstrated previously as a viable mechanism in surface waters; however, it cannot account for the observed depth profile of RONO2, suggesting an additional, dark RONO2 production mechanism. We present measurements of gas phase C1-C5 alkyl nitrates emitted from seawater in a controlled mesocosm experiment conducted under low-light conditions in a glass-walled wave channel. Ethyl and butyl nitrate emission rates from seawater are strongly correlated with the abundance of heterotrophic bacteria (R2 ≥ 0.89) and show no correlation to chlorophyll a concentration. Controlled flask experiments conducted using ambient and sterile seawater, inoculated with a heterotrophic bacterium, confirm that bacterial driven production of select RONO2 can proceed efficiently in the absence of light.

  16. Analytical calculation of muon intensities under deep sea-water

    NASA Technical Reports Server (NTRS)

    Inazawa, H.; Kobayakawa, K.

    1985-01-01

    The study of the energy loss of high energy muons through different materials, such as rock and sea-water can cast light on characteristics of lepton interactions. There are less ambiguities for the values of atomic number (Z) and mass number (A) in sea-water than in rock. Muon intensities should be measured as fundamental data and as background data for searching the fluxes of neutrino. The average range energy relation in sea-water is derived. The correction factors due to the range fluctuation is also computed. By applying these results, the intensities deep under sea are converted from a given muon energy spectra at sea-level. The spectra of conventional muons from eta, K decays have sec theta enhancement. The spectrum of prompt muons from charmed particles is almost isotropic. The effect of prompt muons is examined.

  17. Mining Critical Metals and Elements from Seawater: Opportunities and Challenges.

    PubMed

    Diallo, Mamadou S; Kotte, Madhusudhana Rao; Cho, Manki

    2015-08-18

    The availability and sustainable supply of technology metals and valuable elements is critical to the global economy. There is a growing realization that the development and deployment of the clean energy technologies and sustainable products and manufacturing industries of the 21st century will require large amounts of critical metals and valuable elements including rare-earth elements (REEs), platinum group metals (PGMs), lithium, copper, cobalt, silver, and gold. Advances in industrial ecology, water purification, and resource recovery have established that seawater is an important and largely untapped source of technology metals and valuable elements. This feature article discusses the opportunities and challenges of mining critical metals and elements from seawater. We highlight recent advances and provide an outlook of the future of metal mining and resource recovery from seawater. PMID:25894365

  18. Molecular Architecture for Polyphosphazene Electrolytes for Seawater Batteries

    SciTech Connect

    Mason K. Harrup; Mason K. Harrup; Thomas A. Luther; Christopher J. Orme; Eric S. Peterson

    2005-08-01

    In this work, a series of polyphosphazenes were designed to function as water resistant, yet ionically conductive membranes for application to lithium/seawater batteries. In membranes of this nature, various molecular architectures are possible and representatives from each possible type were chosen. These polymers were synthesized and their performance as solid polymer electrolytes was evaluated in terms of both lithium ion conductivity and water permeability. The impact that this molecular architecture has on total performance of the membranes for seawater batteries is discussed. Further implications of this molecular architecture on the mechanisms of lithium ion transport through polyphosphazenes are also discussed.

  19. A new focus on groundwater-seawater interactions

    USGS Publications Warehouse

    Langevin, C.; Sanford, W.; Polemio, M.; Povinec, P.

    2007-01-01

    In summary, the papers in this volume present research by those working from the marine and the terrestrial sides of issues related to SGD and groundwater-seawater interactions. The first part of this paper provides an introduction and background information on the subject of SGD and groundwater-seawater interactions. The second part of this paper provides an overview of the 38 symposium papers and places them in context according to the methods used to quantify SGD. The papers presented in this volume describe important contributions to the literature and document a variety of investigative approaches applied over a range of conditions at locations across the globe.

  20. The major-ion composition of Carboniferous seawater

    NASA Astrophysics Data System (ADS)

    Holt, Nora M.; García-Veigas, Javier; Lowenstein, Tim K.; Giles, Peter S.; Williams-Stroud, Sherilyn

    2014-06-01

    The major-ion chemistry (Na+, Mg2+, Ca2+, K+, SO42-, and Cl-) of Carboniferous seawater was determined from chemical analyses of fluid inclusions in marine halites, using the cryo scanning electron microscopy (Cryo-SEM) X-ray energy-dispersive spectrometry (EDS) technique. Fluid inclusions in halite from the Mississippian Windsor and Mabou Groups, Shubenacadie Basin, Nova Scotia, Canada (Asbian and Pendleian Substages, 335.5-330 Ma), and from the Pennsylvanian Paradox Formation, Utah, USA, (Desmoinesian Stage 309-305 Ma) contain Na+-Mg2+-K+-Ca2+-Cl- brines, with no measurable SO42-, which shows that the Carboniferous ocean was a “CaCl2 sea”, relatively enriched in Ca2+ and low in SO42- with equivalents Ca2+ > SO42- + HCO3-. δ34S values from anhydrite in the Mississippian Shubenacadie Basin (13.2-14.0 ‰) and the Pennsylvanian Paradox Formation (11.2-12.6 ‰) support seawater sources. Br in halite from the Shubenacadie Basin (53-111 ppm) and the Paradox Basin (68-147 ppm) also indicate seawater parentages. Carboniferous seawater, modeled from fluid inclusions, contained ∼22 mmol Ca2+/kg H2O (Mississippian) and ∼24 mmol Ca2+/kg H2O (Pennsylvanian). Estimated sulfate concentrations are ∼14 mmol SO42-/kg H2O (Mississippian), and ∼12 mmol SO42-/kg H2O (Pennsylvanian). Calculated Mg2+/Ca2+ ratios are 2.5 (Mississippian) and 2.3 (Pennsylvanian), with an estimated range of 2.0-3.2. The fluid inclusion record of seawater chemistry shows a long period of CaCl2 seas in the Paleozoic, from the Early Cambrian through the Carboniferous, when seawater was enriched in Ca2+ and relatively depleted in SO42-. During this ∼200 Myr interval, Ca2+ decreased and SO42- increased, but did not cross the Ca2+-SO42- chemical divide to become a MgSO4 sea (when SO42- in seawater became greater than Ca2+) until the latest Pennsylvanian or earliest Permian (∼309-295 Ma). Seawater remained a MgSO4 sea during the Permian and Triassic, for ∼100 Myr. Fluid inclusions also record

  1. The Mg isotopic composition of Cenozoic seawater - evidence for a link between Mg-clays, seawater Mg/Ca, and climate

    NASA Astrophysics Data System (ADS)

    Higgins, John A.; Schrag, Daniel P.

    2015-04-01

    Cooling of Earth's climate over the Cenozoic has been accompanied by large changes in the magnesium and calcium content of seawater whose origins remain enigmatic. The processes that control these changes affect the magnesium isotopic composition of seawater, rendering it a useful tool for elucidating the processes that control seawater chemistry on geologic timescales. Here we present a Cenozoic magnesium isotope record of carbonate sediments and use a numerical model of seawater chemistry and the carbon cycle to test hypotheses for the covariation between Cenozoic seawater chemistry and climate. Records are consistent with a 2-3× increase in seawater Mg/Ca and little change in the Mg isotopic composition of seawater. These observations are best explained by a change in the cycling of Mg-silicates. We propose that Mg/Ca changes were caused by a reduction in removal of Mg from seawater in low-temperature marine clays, though an increase in the weathering of Mg-silicates cannot be excluded. We attribute the reduction in the Mg sink in marine clays to changes in ocean temperature, directly linking the major element chemistry of seawater to global climate and providing a novel explanation for the covariation of seawater Mg/Ca and climate over the Cenozoic.

  2. Freeze desalination of seawater using LNG cold energy.

    PubMed

    Chang, Jian; Zuo, Jian; Lu, Kang-Jia; Chung, Tai-Shung

    2016-10-01

    With the aid of cold energy from regasification of liquefied natural gas (LNG), freeze desalination (FD) is an emerging technology for seawater desalination because of its low energy characteristics and insensitivities to fouling problems. This work aims to investigate the major operating parameters of FD such as coolant temperature, freezing duration, supercooling, seeding, agitation, crystallizer material and subsequent washing procedure on ice production and water quality. It was found that the optimal freezing duration per batch was 1 h for an iron crystallizer and 1.5 h for a glass crystallizer. The optimal coolant temperature should be around -8 °C. The optimal amount of washing water to clean the raw ice was about 50 wt% of the raw ice. Over 50 wt% of the feed could be recovered as raw ice within 1 h, which means an overall ice recovery rate of higher than 25% (of the original seawater), considering the consumption of washing water. Both artificial and real seawater were tested under the optimized conditions. The total dissolved solid in the product ice was around 300 ppm, which met the World Health Organization (WHO) potable water salinity standard of 500 ppm. Therefore, the process parameters optimized in this study can be directly used for the freeze desalination of seawater. PMID:27371931

  3. Tandem electrochemical desalination-potentiometric nitrate sensing for seawater analysis.

    PubMed

    Cuartero, Maria; Crespo, Gastón A; Bakker, Eric

    2015-08-18

    We report on a methodology for the direct potentiometric determination of nitrate in seawater by in-line coupling to an electrochemical desalination module. A microfluidic custom-fabricated thin layer flat cell allows one to electrochemically reduce the chloride concentration of seawater more than 100-fold, from 600 mM down to ∼2.8 mM. The desalinator operates by the exhaustive electrochemical plating of the halides from the thin layer sample onto a silver element as silver chloride, which is coupled to the transfer of the counter cations across a permselective ion-exchange membrane to an outer solution. As a consequence of suppressing the major interference of an ion-exchanger based membrane, the 80 μL desalinated sample plug is passed to a potentiometric flow cell of 13 μL volume. The potentiometric sensor is composed of an all-solid-state nitrate selective electrode based on lipophilic carbon nanotubes (f-MWCNTs) as an ion-to-electron transducer (slope of -58.9 mV dec(-1), limit of detection of 5 × 10(-7) M, and response time of 5 s in batch mode) and a miniaturized reference electrode. Nitrate is successfully determined in desalinated seawater using ion chromatography as the reference method. It is anticipated that this concept may form an attractive platform for in situ environmental analysis of a variety of ions that normally suffer from interference by the high saline level of seawater. PMID:26201537

  4. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions.

    PubMed

    Lowenstein, T K; Timofeeff, M N; Brennan, S T; Hardie, L A; Demicco, R V

    2001-11-01

    Systematic changes in the chemistry of evaporated seawater contained in primary fluid inclusions in marine halites indicate that seawater chemistry has fluctuated during the Phanerozoic. The fluctuations are in phase with oscillations in seafloor spreading rates, volcanism, global sea level, and the primary mineralogies of marine limestones and evaporites. The data suggest that seawater had high Mg2+/Ca2+ ratios (>2.5) and relatively high Na+ concentrations during the Late Precambrian [544 to 543 million years ago (Ma)], Permian (258 to 251 Ma), and Tertiary through the present (40 to 0 Ma), when aragonite and MgSO4 salts were the dominant marine precipitates. Conversely, seawater had low Mg2+/Ca2+ ratios (<2.3) and relatively low Na+ concentrations during the Cambrian (540 to 520 Ma), Silurian (440 to 418 Ma), and Cretaceous (124 to 94 Ma), when calcite was the dominant nonskeletal carbonate and K-, Mg-, and Ca-bearing chloride salts, were the only potash evaporites. PMID:11691988

  5. Combining mariculture and seawater-based solar ponds

    SciTech Connect

    Lowrey, P.; Ford, R.; Collando, F.; Morgan, J.; Frusti, E. . Dept. of Mechanical Engineering)

    1990-05-01

    Solar ponds have been thoroughly studied as a means to produce electricity or heat, but there may be comparable potential to use solar ponds to produce optimized environments for the cultivation of some aquaculture crops. For this, conventional brine-based solar ponds could be used. This strategy would probably be most suitable at desert sites where concentrated brine was abundant, pond liners might not be needed, and the crop produced could be shipped to market. Generally, a heat exchanger would be required to transfer heat from the solar pond into the culture ponds. Culture ponds could therefore use either fresh or marine water. In contrast, this paper explores seawater-based solar ponds. These are solar ponds which use seawater in the bottom storage zone and fresh water in the upper convective zone. Because the required temperature elevations for mariculture are only about 10{degrees}C, seawater-based solar ponds are conceivable. Seawater-based ponds should be very inexpensive because, by the shore, salt costs would be negligible and a liner might be unnecessary.

  6. Precipitation softening: a pretreatment process for seawater desalination.

    PubMed

    Ayoub, George M; Zayyat, Ramez M; Al-Hindi, Mahmoud

    2014-02-01

    Reduction of membrane fouling in reverse osmosis systems and elimination of scaling of heat transfer surfaces in thermal plants are a major challenge in the desalination of seawater. Precipitation softening has the potential of eliminating the major fouling and scaling species in seawater desalination plants, thus allowing thermal plants to operate at higher top brine temperatures and membrane plants to operate at a reduced risk of fouling, leading to lower desalinated water costs. This work evaluated the use of precipitation softening as a pretreatment step for seawater desalination. The effectiveness of the process in removing several scale-inducing materials such as calcium, magnesium, silica, and boron was investigated under variable conditions of temperature and pH. The treatment process was also applied to seawater spiked with other known fouling species such as iron and bacteria to determine the efficiency of removal. The results of this work show that precipitation softening at a pH of 11 leads to complete elimination of calcium, silica, and bacteria; to very high removal efficiencies of magnesium and iron (99.6 and 99.2 %, respectively); and to a reasonably good removal efficiency of boron (61 %). PMID:24151028

  7. Removal of trihalomethane from chlorinated seawater using gamma radiation.

    PubMed

    Rajamohan, R; Natesan, Usha; Venugopalan, V P; Rajesh, Puspalata; Rangarajan, S

    2015-12-01

    Chlorine addition as a biocide in seawater results in the formation of chlorination by-products such as trihalomethanes (THMs). Removal of THMs is of importance as they are potential mutagenic and carcinogenic agents. In this context, a study was conducted that used ionizing radiation to remove THMs from chlorinated (1, 3, and 5 mg/L) seawater by applying various dosages (0.4-5.0 kGy) of gamma radiation. Bromoform (BF) showed a faster rate of degradation as compared to other halocarbons such as bromodichloromethane (BDCM) and dibromochloromethane (DBCM). In chlorine-dosed seawater, total irradiation dose of 0.4 to 5 kGy caused percentage reduction in the range of 6.9 to 76.7%, 2.3 to 99.6%, and 45.7 to 98.3% for BDCM, DBCM, and BF, respectively. During the irradiation process, pH of the chlorinated seawater decreased with increase in the absorbed dose; however, no change in total organic carbon (TOC) was observed. The results show that gamma dose of 2.5 kGy was adequate for maximum degradation of THM; but for complete mineralization, higher dose would be required. PMID:26199004

  8. Study on determination of dic in seawater by coulometric method

    NASA Astrophysics Data System (ADS)

    Ji, Lei; Lu, Xian-Kun

    1997-12-01

    The complete analytical procedure using coulometric titration to determine dissolved inorganic carbon (DIC) in seawater consists of studying the setup of the coulometric titration, the solution composition of the coulometer cell, correctly judging the titration end—point, and establishing (and evaluating the accuracy of) the DIC determination system.

  9. Macroporous monoliths for trace metal extraction from seawater

    SciTech Connect

    Yue, Yanfeng; Mayes, Richard; Gill, Gary A.; Kuo, Li -Jung; Wood, Jordana R.; Binder, Andrew; Brown, Suree; Dai, Sheng

    2015-05-29

    The viability of seawater-based uranium recovery depends on the uranium adsorption rate and capacity, since the concentration of uranium in the oceans is relatively low (3.3 μgL⁻¹). An important consideration for a fast adsorption is to maximize the adsorption properties of adsorbents such as surface areas and pore structures, which can greatly improve the kinetics of uranium extraction and the adsorption capacity simultaneously. Following this consideration, macroporous monolith adsorbents were prepared from the copolymerization of acrylonitrile (AN) and N,N’-methylenebis(acrylamide) (MBAAm) based on a cryogel method using both hydrophobic and hydrophilic monomers. The monolithic sorbents were tested with simulated seawater containing a high uranyl concentration (–6 ppm) and the uranium adsorption results showed that the adsorption capacities are strongly influenced by the ratio of monomer to the crosslinker, i.e., the density of the amidoxime groups. The preliminary seawater testing indicates the high salinity content of seawater does not hinder the adsorption of uranium.

  10. Extracting uranium from seawater: Promising AI series adsorbents

    DOE PAGESBeta

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-10

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged frommore » 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.« less

  11. Extracting uranium from seawater: Promising AI series adsorbents

    SciTech Connect

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-10

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.

  12. Macroporous monoliths for trace metal extraction from seawater

    SciTech Connect

    Yue, Yanfeng; Mayes, Richard T.; Gill, Gary; Kuo, Li -Jung; Wood, Jordana; Binder, Andrew J.; Brown, Suree; Dai, Sheng

    2015-05-29

    The viability of seawater-based uranium recovery depends on the uranium adsorption rate and capacity, since the concentration of uranium in the oceans is relatively low (3.3 gL-1). An important consideration for a fast adsorption is to maximize the adsorption properties of adsorbents such as surface areas and pore structures, which can greatly improve the kinetics of uranium extraction and the adsorption capacity simultaneously. Following this consideration, macroporous monolith adsorbents were prepared from the copolymerization of acrylonitrile (AN) and N,N -methylenebis(acrylamide) (MBAAm) based on a cryogel method using both hydrophobic and hydrophilic monomers. The monolithic sorbents were tested with simulated seawater containing a high uranyl concentration (–6 ppm) and the uranium adsorption results showed that the adsorption capacities are strongly influenced by the ratio of monomer to the crosslinker, i.e., the density of the amidoxime groups. Furthermore, the preliminary seawater testing indicates the high salinity content of seawater does not hinder the adsorption of uranium.

  13. Latent Toxicity of Endothall to Anadromous Salmonids During Seawater Challenge.

    PubMed

    Courter, Lauren A; Garrison, Thomas M; Courter, Ian I

    2016-05-01

    Limited evidence exists on the latent effects of toxicant exposure on the seawater adaptability of anadromous salmon and steelhead. It is unclear whether such an effect exists for the widely used and relatively non-toxic herbicide endothall. Coho salmon, Oncorhynchus kisutch (coho), Chinook salmon, O. tshawytscha (Chinook), and anadromous rainbow trout, O. mykiss (steelhead) were subjected to a 10-day seawater challenge following freshwater treatments [0-12 mg acid equivalent (a.e)./L at 96 h]. Mean survival resulted in 82 % (n = 225), 84 % (n = 133), 90 % (n = 73) and 59 % (n = 147) survival for 0, 3-5, 6-8, and 9-12 mg a.e./L, respectively. Our results indicate a lower toxicity threshold compared with previously reported acute toxicity results, but higher compared with previous seawater challenge studies. We demonstrate the utility of the seawater challenge assay to accurately define toxic effects of pesticides on salmonids with complex life-histories. PMID:27000379

  14. A novel determination of calcite dissolution kinetics in seawater

    NASA Astrophysics Data System (ADS)

    Subhas, Adam V.; Rollins, Nick E.; Berelson, William M.; Dong, Sijia; Erez, Jonathan; Adkins, Jess F.

    2015-12-01

    We present a novel determination of the dissolution kinetics of inorganic calcite in seawater. We dissolved 13 C -labeled calcite in unlabeled seawater, and traced the evolving δ13 C composition of the fluid over time to establish dissolution rates. This method provides sensitive determinations of dissolution rate, which we couple with tight constraints on both seawater saturation state and surface area of the dissolving minerals. We have determined dissolution rates for two different abiotic calcite materials and three different grain sizes. Near-equilibrium dissolution rates are highly nonlinear, and are well normalized by geometric surface area, giving an empirical dissolution rate dependence on saturation state (Ω) of: This result substantiates the non-linear response of calcite dissolution to undersaturation. The bulk dissolution rate constant calculated here is in excellent agreement with those determined in far from equilibrium and dilute solution experiments. Plots of dissolution versus undersaturation indicates the presence of at least two dissolution mechanisms, implying a criticality in the calcite-seawater system. Finally, our new rate determination has implications for modeling of pelagic and seafloor dissolution. Nonlinear dissolution kinetics in a simple 1-D lysocline model indicate a possible transition from kinetic to diffusive control with increasing water depth, and also confirm the importance of respiration-driven dissolution in setting the shape of the calcite lysocline.

  15. Seawater Immersion Aggravates Burn Injury Causing Severe Blood Coagulation Dysfunction

    PubMed Central

    Yan, Hong; Mao, Qingxiang; Ma, Yongda; Wang, Li; Chen, Xian; Hu, Yi; Ge, Hengjiang

    2016-01-01

    This study aimed to investigate the endothelial function in a canine model of burn injury combined with seawater immersion. The model of burn injury was established. The dogs were randomly divided into four groups including dogs with burn injury (B group), or burn injury combined with seawater immersion (BI group), or only immersion in seawater (I group), or control animals with no injury or immersion (C group). The circulating endothelial cell (CEC) count and coagulation-fibrinolysis parameters were measured. The CEC count in B group increased at 4 h, 7 h, and 10 h after injury and then reduced, whereas it continuously increased to a greater extent in BI group (P < 0.05). The von Willebrand factor (vWF) activity, plasminogen activator inhibitor (PAI-1), and the ratio of thromboxane B2 (TXB2) to 6-keto-prostaglandin F1α (6-K-PGF1α) in BI group had a marked increase after injury, and the tissue-type plasminogen activator (tPA) in the BI group decreased. Microscope observations revealed thrombus formation in lungs of the animals in BI group, but not in C, I, or B groups. Burn injury causes endothelial dysfunction, and seawater immersion lastingly aggravates this injury, leading to a higher risk of developing thrombosis. PMID:26885523

  16. Disinfection by-product formation during seawater desalination: A review.

    PubMed

    Kim, Daekyun; Amy, Gary L; Karanfil, Tanju

    2015-09-15

    Due to increased freshwater demand across the globe, seawater desalination has become the technology of choice in augmenting water supplies in many parts of the world. The use of chemical disinfection is necessary in desalination plants for pre-treatment to control both biofouling as well as the post-disinfection of desalinated water. Although chlorine is the most commonly used disinfectant in desalination plants, its reaction with organic matter produces various disinfection by-products (DBPs) (e.g., trihalomethanes [THMs], haloacetic acids [HAAs], and haloacetonitriles [HANs]), and some DBPs are regulated in many countries due to their potential risks to public health. To reduce the formation of chlorinated DBPs, alternative oxidants (disinfectants) such as chloramines, chlorine dioxide, and ozone can be considered, but they also produce other types of DBPs. In addition, due to high levels of bromide and iodide concentrations in seawater, highly cytotoxic and genotoxic DBP species (i.e., brominated and iodinated DBPs) may form in distribution systems, especially when desalinated water is blended with other source waters having higher levels of organic matter. This article reviews the knowledge accumulated in the last few decades on DBP formation during seawater desalination, and summarizes in detail, the occurrence of DBPs in various thermal and membrane plants involving different desalination processes. The review also identifies the current challenges and future research needs for controlling DBP formation in seawater desalination plants and to reduce the potential toxicity of desalinated water. PMID:26099832

  17. Physiological indices of seawater readiness in postspawning steelhead kelts

    USGS Publications Warehouse

    Buelow, Jessica; Moffitt, Christine M.

    2015-01-01

    Management goals to improve the recovery of steelhead (Oncorhynchus mykiss) stocks at risk of extinction include increasing the proportion of postspawning fish that survive and spawn again. To be successful, postspawning steelhead (kelts) migrating downstream to the ocean must prepare physiologically and physically for a seawater transition. We sampled blood, gill filaments, and evaluated the external condition of migrating kelts from an ESA-listed population in the Snake/Columbia River system over two consecutive years to evaluate their physiological readiness for transition to seawater. We chose attributes often considered as measures of preparation for seawater in juveniles, including gill Na+,K+ ATPase activity, plasma electrolytes and hormones to consider factors related to external condition, size and sex. We found kelts in good external condition had plasma profiles similar to downstream-migrating smolts. In addition, we found more than 80% of kelts ranked in good external condition had smolt-like body silvering. We compared measures from migrating kelts with samples obtained from hatchery fish at the time of spawning to confirm that Na+, K+ ATPase activity in kelts was significantly elevated over spawning fish. We found significant differences in gill Na+, K+ ATPase activity in migrating kelts between the years of sampling, but little indication of influence of fish condition. We conclude that the postspawning steelhead sampled exhibited a suite of behaviours, condition and physiology characteristic of fish prepared for successful transition to a seawater environment.

  18. Evaluating Foraminifera as an Archive for Seawater Chromium Isotopic Composition

    NASA Astrophysics Data System (ADS)

    Wang, X.; Planavsky, N.; Hull, P. M.; Tripati, A.; Reinhard, C.; Zou, H.; Elder, L. E.; Henehan, M. J.

    2015-12-01

    In recent years there has been growing interest in using chromium isotopes (δ53Cr) as a proxy to investigate the redox evolution of Earth's ocean-atmosphere system throughout geological history. Potential archives for seawater δ53Cr that have been identified to date include iron formations and organic-rich siliciclastic sediments. However, these types of sediments are not common and they are discontinuous over geologic time. As a result, alternative types of archives are needed. Here we evaluate the utility of foraminifera tests as a recorder of seawater δ53Cr. Core-tops used were from different ocean basins. Mono-specific samples of Globigerinoides sacculifer, Orbulina universa, Pulleniatina obliquiloculata, Globoratalia crassula-crassaformis, Globoratalia truncatulinoides, and Globigerinella siphonifera were isolated to investigate inter-species isotope fractionation. Chromium concentrations were measured by isotope dilution method to be 0.1-0.3 μg/g. The δ53Cr values of these species range from 0.2‰ to 2.4‰, with an analytical uncertainty of 0.3‰ (95% confidence). Despite the high analytical uncertainty due to the extremely low levels of Cr present, there is still large detectable variation in foraminiferal δ53Cr values, which overlap presently available seawater values (Bonnand et al., 2013; Scheiderich et al., 2015). Possible explanations for such variations in foraminiferal δ53Cr values include heterogeneity of seawater δ53Cr in the modern oceans, and/or photobiochemical redox cycling of Cr in the surface oceans. Therefore, care should be taken when using foraminifera to reconstruct past seawater δ53Cr values. ReferencesBonnand, P., James, R., Parkinson, I., Connelly, D., Fairchild, I., 2013. The chromium isotopic composition of seawater and marine carbonates. Earth and Planetary Science Letters, 382: 10-20. Scheiderich, K., Amini, M., Holmden, C., Francois, R., 2015. Global variability of chromium isotopes in seawater demonstrated by Pacific

  19. Strontium isotopic variations of Neoproterozoic seawater: Implications for crustal evolution

    SciTech Connect

    Asmerom, Y.; Jacobsen, S.B.; Knoll, A.H.; Butterfield, N.J. ); Swett, K. )

    1991-10-01

    The authors report high precision Sr isotopic data on carbonates from the Neoproterozoic Shaler Group, Victoria Island, Northwest Territories, Canada. Samples with low {sup 87}Rb/{sup 86}Sr ratios (<0.01) were selected for Sr isotopic analysis. {delta}{sup 18}O, Mn, Ca, Mg, and Sr data were used to recognize altered samples. The altered samples are characterized by high Mn/Sr ({ge}2) and variable {delta}{sup 18}O; most are dolomites. The data indicate that between ca. 790-850 Ma the {sup 87}Sr/{sup 86}Sr ratio of seawater varied between 0.70676 and 0.70561. The samples show smooth and systematic variation, with the lowest {sup 87}Sr/{sup 86}Sr value of 0.70561 at ca. 830 Ma. The low {sup 87}Sr/{sup 86}Sr ratio of carbonates from the lower parts of the section is similar to a value reported for one sample from the Adrar of Mauritania ({approx}900 Ma), West African Craton. Isotopic ratios from the upper part of the Shaler section are identical to values from the lower part of the Neoproterozoic Akademikerbreen Group, Spitsbergen. Although a paucity of absolute age determinations hinders attempts at the precise correlation of Neoproterozoic successions, it is possible to draw a broad outline of the Sr isotopic composition of seawater for this period. Data from this study and the literature are used to construct a curve of the {sup 87}Sr/{sup 86}Sr ratio of Neoproterozoic seawater. The Sr isotope composition of seawater reflects primarily the balance between continental Sr input through river input and mantle input via hydrothermal circulation of seawater through mid-ocean ridges. Coupling of Nd and Sr isotopic systems allows the authors to model changes in seafloor spreading rates (or hydrothermal flux) and continental erosion. The Sr hydrothermal flux and the erosion rate (relative to present-day value) are modeled for the period 500-900 Ma.

  20. Fouling control in seawater by on-line acid addition

    SciTech Connect

    Salvago, G.; Taccani, G.; Polimeni, R.; Fumagalli, G.; Picenoni, D.

    1996-11-01

    An experimental plant was set up containing once-through test lines supplied with seawater. The pH level of the seawater was maintained at 6.3 by the acids addition. Heat exchange monitoring equipment and channels exposing different metal specimens were installed on each of the lines. Observation by microscope and EDS analyses were carried out both on the specimen surfaces and on the cross section of the fouling after fracturing in liquid N{sub 2}. The results obtained show that: fouling must not be confused with its effects or simply with its biological components; acidifying seawater can prevent the resistance to heat exchange from increasing without impeding its biological activity. Observation by microscope of the fouling cross sections showed that in untreated seawater the foulings on stainless steel were composed of a continuous compact layer, covered by disorderly clusters. These compact layers were found to contain high quantities of corrosion products of the metals. Elements typical of corrosion products of ferrous materials (Fe, Mn) were also found on Pt, copper alloys and plastic materials. The addition of HCl or H{sub 2}SO{sub 4} to the seawater, to bring it to pH 6.3, reduces the amount of fouling adhering to the surfaces, prevents the development of the continuous layer containing iron and prevents significant increases in heat exchange resistance. The addition of CO{sub 2} can encourage the development of incoherent fibrous material with high Si content and low Fe content which is of little impediment to heat exchange. The addition of lactic acid can encourage both the abnormal development of biomass and the formation of several, separate, layers on stainless steel surfaces.

  1. Adsorption and desorption of phosphate on limestone in experiments simulating seawater intrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The absorption and desorption of phosphorus on a large block of limestone was investigated using deionized water (DIW) and seawater. The limestone had a high affinity to adsorb phosphorus in DIW. Phosphate adsorption was significantly less in seawater, and more phosphorus was desorbed in the seawate...

  2. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale

    NASA Astrophysics Data System (ADS)

    Millero, Frank J.; Feistel, Rainer; Wright, Daniel G.; McDougall, Trevor J.

    2008-01-01

    Fundamental determinations of the physical properties of seawater have previously been made for Atlantic surface waters, referred to as "Standard Seawater". In this paper a Reference Composition consisting of the major components of Atlantic surface seawater is determined using these earlier analytical measurements. The stoichiometry of sea salt introduced here is thus based on the most accurate prior determination of the composition, adjusted to achieve charge balance and making use of the 2005 atomic weights. Reference Seawater is defined as any seawater that has the Reference Composition and a new Reference-Composition Salinity SR is defined to provide the best available estimate of the Absolute Salinity of both Reference Seawater and the Standard Seawater that was used in the measurements of the physical properties. From a practical point of view, the value of SR can be related to the Practical Salinity S by S=(35.16504/35)gkg×S. Reference Seawater that has been "normalized" to a Practical Salinity of 35 has a Reference-Composition Salinity of exactly SR=35.16504 g kg -1. The new independent salinity variable SR is intended to be used as the concentration variable for future thermodynamic functions of seawater, as an SI-based extension of Practical Salinity, as a reference for natural seawater composition anomalies, as the currently best estimate for Absolute Salinity of IAPSO Standard Seawater, and as a theoretical model for the electrolyte mixture "seawater".

  3. Development of Novel Sorbents for Uranium Extraction from Seawater

    SciTech Connect

    Lin, Wenbin; Taylor-Pashow, Kathryn

    2014-01-08

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be

  4. River-derived humic substances as iron chelators in seawater

    PubMed Central

    Krachler, Regina; Krachler, Rudolf F.; Wallner, Gabriele; Hann, Stephan; Laux, Monika; Cervantes Recalde, Maria F.; Jirsa, Franz; Neubauer, Elisabeth; von der Kammer, Frank; Hofmann, Thilo; Keppler, Bernhard K.

    2015-01-01

    The speciation of iron(III) in oxic seawater is dominated by its hydrolysis and sedimentation of insoluble iron(III)-oxyhydroxide. As a consequence, many oceanic areas have very low iron levels in surface seawater which leads to iron deficiency since phytoplankton require iron as a micronutrient in order to grow. Fortunately, iron solubility is not truly as low as Fe(III) solubility measurements in inorganic seawater would suggest, since oceanic waters contain organic molecules which tend to bind the iron and keep it in solution. Various iron-binding organic ligands which combine to stabilize dissolved iron have been detected and thoroughly investigated in recent years. However, the role of iron-binding ligands from terrestrial sources remains poorly constrained. Blackwater rivers supply large amounts of natural organic material (NOM) to the ocean. This NOM (which consists mainly of vascular plant-derived humic substances) is able to greatly enhance iron bioavailability in estuaries and coastal regions, however, breakdown processes lead to a rapid decrease of river-derived NOM concentrations with increasing distance from land. It has therefore been argued that the influence of river-derived NOM on iron biogeochemistry in offshore seawater does not seem to be significant. Here we used a standard method based on 59Fe as a radiotracer to study the solubility of Fe(III)-oxyhydroxide in seawater in the presence of riverine NOM. We aimed to address the question how effective is freshwater NOM as an iron chelator under open ocean conditions where the concentration of land-derived organic material is about 3 orders of magnitude smaller than in coastal regions, and does this iron chelating ability vary between NOM from different sources and between different size fractions of the river-borne NOM. Our results show that the investigated NOM fractions were able to substantially enhance Fe(III)-oxyhydroxide solubility in seawater at concentrations of the NOM ≥ 5

  5. Nucleation and Growth of Gas Hydrate in Natural Seawater

    NASA Astrophysics Data System (ADS)

    Holman, S. A.; Osegovic, J. P.; Young, J. C.; Max, M. D.; Ames, A. L.

    2003-12-01

    Large-scale nucleation of gas hydrate takes place when hydrate-forming gas and seawater are brought together under suitable pressure-temperature conditions or where dissolved hydrate-forming gas in saturated or near-saturated seawater is chilled or brought to higher pressures. Profuse formation of hydrate shells on gas bubbles and nucleation of at least five different forms of gas hydrate have been achieved in fresh natural seawater. Growth of masses of solid gas hydrate takes place when hydrate-forming gas reactant dissolved in seawater is brought into the vicinity of the hydrate. The gas concentration of the enriched water in the vicinity of hydrate is higher than the hydrate equilibrium gas concentration. Hydrate growth under these conditions is accelerated due to the chemical potential difference between the enriched water and the hydrate crystals, which induces mass flux of dissolved hydrate forming gas into new hydrate crystals. As long as water enriched in the hydrate-forming gas is circulated into the vicinity of the hydrate, growth proceeds into the water space. Experimental approaches for growth of examples of solid masses of hydrate are presented. Results of these experiments provide an insight into the growth of gas hydrate under natural conditions where interstitial water in marine sediments is captured by burial from open seawater, and where solid gas hydrate forms on the seafloor. By using fresh natural seawater, which is a chemically and materially complex fluid, our experiments in pressurized, refrigerated reactors should closely track the growth history of solid hydrate in the natural environment. In our model for hydrate growth in sediments, nearly complete pore fill by diagenetic hydrate can best be accomplished by nucleation of hydrate at a point source within the pore water or at a particular point on sediment particulate, with growth outward into the water space that is refreshed with ground water having high concentrations of hydrate

  6. Impediment to symbiosis establishment between giant clams and Symbiodinium algae due to sterilization of seawater.

    PubMed

    Kurihara, Takeo; Yamada, Hideaki; Inoue, Ken; Iwai, Kenji; Hatta, Masayuki

    2013-01-01

    To survive the juvenile stage, giant clam juveniles need to establish a symbiotic relationship with the microalgae Symbiodinium occurring in the environment. The percentage of giant clam juveniles succeeding in symbiosis establishment ("symbiosis rate") is often low, which is problematic for seed producers. We investigated how and why symbiosis rates vary, depending on whether giant clam seeds are continuously reared in UV treated or non treated seawater. Results repeatedly demonstrated that symbiosis rates were lower for UV treated seawater than for non treated seawater. Symbiosis rates were also lower for autoclaved seawater and 0.2-µm filtered seawater than for non treated seawater. The decreased symbiosis rates in various sterilized seawater suggest the possibility that some factors helping symbiosis establishment in natural seawater are weakened owing to sterilization. The possible factors include vitality of giant clam seeds, since additional experiments revealed that survival rates of seeds reared alone without Symbiodinium were lower in sterilized seawater than in non treated seawater. In conclusion, UV treatment of seawater was found to lead to decreased symbiosis rates, which is due possibly to some adverse effects common to the various sterilization techniques and relates to the vitality of the giant clam seeds. PMID:23613802

  7. Impediment to Symbiosis Establishment between Giant Clams and Symbiodinium Algae Due to Sterilization of Seawater

    PubMed Central

    Kurihara, Takeo; Yamada, Hideaki; Inoue, Ken; Iwai, Kenji; Hatta, Masayuki

    2013-01-01

    To survive the juvenile stage, giant clam juveniles need to establish a symbiotic relationship with the microalgae Symbiodinium occurring in the environment. The percentage of giant clam juveniles succeeding in symbiosis establishment (“symbiosis rate”) is often low, which is problematic for seed producers. We investigated how and why symbiosis rates vary, depending on whether giant clam seeds are continuously reared in UV treated or non treated seawater. Results repeatedly demonstrated that symbiosis rates were lower for UV treated seawater than for non treated seawater. Symbiosis rates were also lower for autoclaved seawater and 0.2-µm filtered seawater than for non treated seawater. The decreased symbiosis rates in various sterilized seawater suggest the possibility that some factors helping symbiosis establishment in natural seawater are weakened owing to sterilization. The possible factors include vitality of giant clam seeds, since additional experiments revealed that survival rates of seeds reared alone without Symbiodinium were lower in sterilized seawater than in non treated seawater. In conclusion, UV treatment of seawater was found to lead to decreased symbiosis rates, which is due possibly to some adverse effects common to the various sterilization techniques and relates to the vitality of the giant clam seeds. PMID:23613802

  8. Modification of Optical Properties of Seawater Exposed to Oil Contaminants Based on Excitation-Emission Spectra

    NASA Astrophysics Data System (ADS)

    Baszanowska, E.; Otremba, Z.

    2015-10-01

    The optical behaviour of seawater exposed to a residual amount of oil pollution is presented and a comparison of the fluorescence spectra of oil dissolved in both n-hexane and seawater is discussed based on excitation-emission spectra. Crude oil extracted from the southern part of the Baltic Sea was used to characterise petroleum properties after contact with seawater. The wavelength-independent fluorescence maximum for natural seawater and seawater artificially polluted with oil were determined. Moreover, the specific excitation-emission peaks for natural seawater and polluted water were analysed to identify the natural organic matter composition. It was found that fluorescence spectra identification is a promising method to detect even an extremely low concentration of petroleum residues directly in the seawater. In addition, alien substances disturbing the fluorescence signatures of natural organic substances in a marine environment is also discussed.

  9. Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios

    NASA Astrophysics Data System (ADS)

    Wunsch, Carl

    2016-06-01

    An earlier analysis of pore-water salinity (chlorinity) in two deep-sea cores, using terminal constraint methods of control theory, concluded that although a salinity amplification in the abyss was possible during the LGM, it was not required by the data. Here the same methodology is applied to δ18Ow in the upper 100 m of four deep-sea cores. An ice volume amplification to the isotopic ratio is, again, consistent with the data but not required by it. In particular, results are very sensitive, with conventional diffusion values, to the assumed initial conditions at -100 ky and a long list of noise (uncertainty) assumptions. If the calcite values of δ18O are fully reliable, then published enriched values of the ratio in seawater are necessary to preclude sub-freezing temperatures, but the seawater δ18O in pore fluids does not independently require the conclusion.

  10. Microbial specificity of metallic surfaces exposed to ambient seawater

    SciTech Connect

    Zaidi, B.R.; Bard, R.F.; Tosteson, T.R.

    1984-09-01

    High-molecular-weight materials associated with the extracellular matrix and film found on titanium and aluminum surfaces after exposure to flowing coastal seawater were isolated. This material was purified by hydroxylapatite chromatography and subsequently employed to produce antibodies in the toad, Bufo marinus. The antibodies were immobilized on a solid support and employed to isolate adhesion-enhancing, high-molecular-weight materials from the laboratory culture media of bacterial strains recovered from the respective metallic surfaces during the course of their exposure to seawater. The adhesion-enhancing materials produced by the surface-associated bacterial strains were immunologically related to the extracellular biofouling matrix material found on the surfaces from which these bacteria were isolated. The surface selectivity of these bacterial strains appeared to be based on the specificity of the interaction between adhesion-enhancing macromolecules produced by these bacteria and the surfaces in question. 30 references, 6 tables.

  11. Recovery of uranium from seawater by immobilized tannin

    SciTech Connect

    Sakaguchi, T.; Nakajima, A.

    1987-06-01

    Tannin compounds having multiple adjacent hydroxy groups have an extremely high affinity for uranium. To prevent the leaching of tannins into water and to improve the adsorbing characteristics of these compounds, the authors tried to immobilize tannins. The immobilized tannin has the most favorable features for uranium recovery; high selective adsorption ability to uranium, rapid adsorption rate, and applicability in both column and batch systems. The immobilized tannin can recover uranium from natural seawater with high efficiency. About 2530 ..mu..g uranium is adsorbed per gram of this adsorbent within 22 h. Depending on the concentration in seawater, an enrichment of up to 766,000-fold within the adsorbent is possible. Almost all uranium adsorbed is easily desorbed with a very dilute acid. Thus, the immobilized tannin can be used repeatedly in the adsorption-desorption process.

  12. Desalting seawater and brackish waters: 1981 cost update

    SciTech Connect

    Reed, S.A.

    1982-08-01

    This is the fourth in a series of desalting cost update reports. Cost data are reported for desalting seawater by various distillation systems and by reverse osmosis. Costs of desalting four brackish waters, representative of those found in the United States by both reverse osmosis and electrodialysis are also given. Cost data are presented parametrically as a function of energy cost and plant size. The cost of desalting seawater by distillation has increased by 40% during the past two years, while desalting by reverse osmosis has increased by about 36% during the same period. Brackish water desalting by reverse osmosis has only increased by about 12%, and brackish water desalting by electrodialysis is up by 40%. Again, the continued increase in energy costs has had a major impact on all desalination systems.

  13. Isolation and characterization of microalgae for biodiesel production from seawater.

    PubMed

    Zhao, Liu; Qi, Yun; Chen, Guanyi

    2015-05-01

    As green marine microalgae isolated from local seawater in Tianjin, China, Nannochloropsis gaditana Q6 was tolerant to the variation of salinity with the highest biomass and lipid concentration in natural seawater medium. Although this strain could grow mixotrophically with glycerol, the narrow gap between mixotrophic and autotrophic cultivation suggested that autotrophic cultivation was the optimal trophic type for N. gaditana Q6 growth. In addition, strain Q6 was more sensitive to the variance of NH4HCO3 concentration than NaH2PO4 concentration. Consequently, the lipid production could be maximized by the two-stage cultivation strategy, with an initial high NH4HCO3 concentration for biomass production followed by low NH4HCO3 concentration for lipid accumulation. PMID:25453432

  14. Microbial Specificity of Metallic Surfaces Exposed to Ambient Seawater

    PubMed Central

    Zaidi, B. R.; Bard, R. F.; Tosteson, T. R.

    1984-01-01

    High-molecular-weight materials associated with the extracellular matrix and film found on titanium and aluminum surfaces after exposure to flowing coastal seawater were isolated. This material was purified by hydroxylapatite chromatography and subsequently employed to produce antibodies in the toad, Bufo marinus. The antibodies were immobilized on a solid support and employed to isolate adhesion-enhancing, high-molecular-weight materials from the laboratory culture media of bacterial strains recovered from the respective metallic surfaces during the course of their exposure to seawater. The adhesion-enhancing materials produced by the surface-associated bacterial strains were immunologically related to the extracellular biofouling matrix material found on the surfaces from which these bacteria were isolated. The surface selectivity of these bacterial strains appeared to be based on the specificity of the interaction between adhesion-enhancing macromolecules produced by these bacteria and the surfaces in question. PMID:16346622

  15. Biogas production from Macrocystis pyrifera biomass in seawater system.

    PubMed

    Fan, Xiaolei; Guo, Rongbo; Yuan, Xianzheng; Qiu, Yanling; Yang, Zhiman; Wang, Fei; Sun, Mengting; Zhao, Xiaoxian

    2015-12-01

    Marine sediments from littoral and sublittoral location were evaluated as inocula for methane production from anaerobic fermentation of Macrocystis pyrifera in seawater system. Littoral sediment showed the higher methanogenetic activity from acetate and resulted in a higher biomethane yield of 217.1±2.4mL/g-VS, which was comparable with that reported in freshwater system with desalted seaweeds. With 0.8mM sodium molybdate added, both the maximal methane yield and concentration increased while the lag-time was greatly shortened, suggesting that sulfate was one of the major inhibitors. Microbial community analysis revealed that degradation of M. pyrifera needed cooperation of very complex microbial populations. Hydrogenotrophic methanogens had an absolute dominance in distribution compared with the acetotrophic ones, indicating syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis might play important roles in the thalassic anaerobic fermentation system. These results clearly showed that biomethane production of raw seaweeds in seawater system was feasible. PMID:26344241

  16. Determination of photosynthetic parameters in two seawater-tolerant vegetables

    NASA Astrophysics Data System (ADS)

    Qiu, Nianwei; Zhou, Feng; Liu, Qian; Zhao, Wenqian

    2016-03-01

    It is difficult to determine the photosynthetic parameters of non-flat leaves/green stems using photosynthetic instruments, due to the unusual morphology of both organs, especially for Suaeda salsa and Salicornia bigelovii as two seawater-tolerant vegetables. To solve the problem, we developed a simple, practical, and effective method to measure and calculate the photosynthetic parameters (such as P N, g s, E) based on unit fresh mass, instead of leaf area. The light/CO2/temperature response curves of the plants can also be measured by this method. This new method is more effective, stable, and reliable than conventional methods for plants with non-flat leaves. In addition, the relative notes on measurements and calculation of photosynthetic parameters were discussed in this paper. This method solves technical difficulties in photosynthetic parameter determination of the two seawater-tolerant vegetables and similar plants.

  17. Performance of OTEC Heat Exchanger Materials in Tropical Seawaters

    NASA Astrophysics Data System (ADS)

    Larsen-Basse, Jorn

    1985-03-01

    The corrosion of several aluminum alloys in flowing Hawaiian surface seawater and water from 600 m depth for exposure periods up to three years has been studied. The alloys tested in cold water were Alclad (7072) 3003 and 3004; and bare 3004 and 5052). All show some pitting. Pit growth is slow, and pits do not penetrate the cladding. In the warm water, only uniform corrosion has been found. All alloys corrode at the same, low rate of˜3 μm/year after an initial short period of more rapid corrosion. This behavior is closely linked to the formation of a protective inorganic scale film on the surface. It consists of precipitated scale minerals from the seawater and aluminum corrosion products. The results indicate that OTEC evaporator heat exchangers constructed of aluminum alloys should have acceptable service lives.

  18. Deep seawater inherent optical properties in the Southern Ionian Sea

    NASA Astrophysics Data System (ADS)

    Riccobene, G.; Capone, A.; Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Avanzini, C.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; de Bonis, G.; de Marzo, C.; de Rosa, G.; de Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raffaelli, F.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Russo, S.; Sapienza, P.; Sedita, M.; Schuller, J.-P.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.

    2007-02-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration has been carrying out since 1998 an evaluation programme of deep sea sites suitable for the construction of the future Mediterranean km3 Čerenkov neutrino telescope. We investigated the seawater optical and oceanographic properties of several deep sea marine areas close to the Italian Coast. Inherent optical properties (light absorption and attenuation coefficients) have been measured as a function of depth using an experimental apparatus equipped with standard oceanographic probes and the commercial transmissometer AC9 manufactured by WETLabs. This paper reports on the visible light absorption and attenuation coefficients measured in deep seawater of a marine region located in the Southern Ionian Sea, 60 100 km SE of Capo Passero (Sicily). Data show that blue light absorption coefficient is about 0.015 m-1 (corresponding to an absorption length of 67 m) close to the one of optically pure water and it does not show seasonal variation.

  19. Localized cathodic protection of simulated prestressed concrete pilings in seawater

    SciTech Connect

    Chaix, O.; Hartt, W.H.; Kessler, R.; Powers, R.

    1995-05-01

    Corrosion-induced deterioration of prestressed concrete pilings in seawater has been established as the predominant failure mode. A technology involving localized impressed-current cathodic protection (CP) of the splash-zone region in association with conductive rubber anodes was developed to mitigate this deterioration. A series of experiments involving cathodic polarization of simulated prestressed concrete piling specimens partially immersed in seawater was performed. Variables included the concrete mix design, specimen cross section, anode dimensions, and water level. An interactive aspect of CP-operating parameters in association with water level was identified as important if excessively negative potentials and possible tendon embrittlement were to be avoided. The data were evaluated with regard to the interdependence between depolarization magnitude, potential, and concrete relative humidity. Results were reviewed within the context of CP utility for prestressed concrete bridge piling.

  20. Extracting uranium from seawater: Promising AF series adsorbents

    SciTech Connect

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-02

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater.

  1. Extracting uranium from seawater: Promising AF series adsorbents

    DOE PAGESBeta

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-02

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8more » ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater.« less

  2. Microbially mediated cobalt oxidation in seawater revealed by radiotracer experiments

    SciTech Connect

    Lee, B.G.; Fisher, N.S. )

    1993-12-01

    The influence of microbial activity on Co and Mn oxidation in decomposing diatom cultures was determined with radiotracer techniques. Adding a consortium of microorganisms collected from coastal seawater (0.2-3-[mu]m size fraction) to the cultures increased particulate Co formation rates at 18[degrees]C by an order of magnitude (to 3.8% d[sup [minus]1]) and particulate Mn formation rates 3-fold (to 7.9% d[sup [minus

  3. Assessment of regional management strategies for controlling seawater intrusion

    USGS Publications Warehouse

    Reichard, E.G.; Johnson, T.A.

    2005-01-01

    Simulation-optimization methods, applied with adequate sensitivity tests, can provide useful quantitative guidance for controlling seawater intrusion. This is demonstrated in an application to the West Coast Basin of coastal Los Angeles that considers two management options for improving hydraulic control of seawater intrusion: increased injection into barrier wells and in lieu delivery of surface water to replace current pumpage. For the base-case optimization analysis, assuming constant groundwater demand, in lieu delivery was determined to be most cost effective. Reduced-cost information from the optimization provided guidance for prioritizing locations for in lieu delivery. Model sensitivity to a suite of hydrologic, economic, and policy factors was tested. Raising the imposed average water-level constraint at the hydraulic-control locations resulted in nonlinear increases in cost. Systematic varying of the relative costs of injection and in lieu water yielded a trade-off curve between relative costs and injection/in lieu amounts. Changing the assumed future scenario to one of increasing pumpage in the adjacent Central Basin caused a small increase in the computed costs of seawater intrusion control. Changing the assumed boundary condition representing interaction with an adjacent basin did not affect the optimization results. Reducing the assumed hydraulic conductivity of the main productive aquifer resulted in a large increase in the model-computed cost. Journal of Water Resources Planning and Management ?? ASCE.

  4. Constitutive modeling of calcium carbonate supersaturated seawater mixtures

    NASA Astrophysics Data System (ADS)

    Reis, Martina; Sousa, Maria De Fátima; Bertran, Celso; Bassi, Adalberto

    2014-11-01

    Calcium carbonate supersaturated seawater mixtures have attracted attention of many researchers since the deposition of CaCO3(s) from such solutions can lead to scaling problems in oil fields. However, despite their evident practical importance in petroleum engineering, the hydro and thermodynamic behaviors of these mixtures have not been well-understood yet. In this work, a constitutive model based on the foundations of the constitutive theory of continuum mechanics, and the Müller-Liu entropy principle is proposed. The calcium carbonate supersaturated seawater mixture is regarded as a reactive viscous fluid with heat and electrical conductions. The obtained results indicate that the thermodynamic behavior of CaCO3 supersaturated seawater mixtures is closely related to the individual dynamics of each constituent of the mixture, particularly to the linear momentum, and mass exchanges. Furthermore, the results show that, unlike classical continuum mixtures, the extra entropy flux is not null, and higher-order gradients of deformation contribute to the residual entropy production of the class of mixtures under study. The results of this work may be relevant for the prevention of the mineral scale formation in oil fields. The first author acknowledges the São Paulo Research Foundation (Grant 2013/ 20872-2) for its funding.

  5. Strontium isotopic variations of Neoproterozoic seawater - Implications for crustal evolution

    NASA Technical Reports Server (NTRS)

    Asmerom, Yemane; Jacobsen, Stein B.; Knoll, Andrew H.; Butterfield, Nicholas J.; Swett, Keene

    1991-01-01

    High-precision Sr isotopic data were obtained on carbonate samples from the Neoproterozoic Shaler Group, Victoria Island (Canada). Results indicate that, between ca. 790 and 850 Ma, the Sr-87/Sr-86 ratio of seawater varied betweeen 0.70676 and 0.70561, with the minimum value at about 830 Ma. A curve of the Sr-87/Sr-86 seawater ratio vs. age showed that the new data substantially improve the existing isotopic record of Sr in seawater for the period 790-850 Ma. The Sr isotopic system data were coupled with data for the Nd isotopic system to model changes in the seafloor spreading rates (hydrothermal flux) and the continental erosion for the period 500-900 Ma. Results indicate that hydrothermal flux reached a maximum value at ca. 830 Ma, while a maximum in erosion rate occurred at ca. 570 Ma. These peaks are considered to be related to the developments in the Pan-African and related orogenic events.

  6. The Absolute Salinity of seawater diluted by riverwater

    NASA Astrophysics Data System (ADS)

    Pawlowicz, Rich

    2015-07-01

    Seawater is often assumed to have a constant relative composition of dissolved matter, so that a measurement of one property (e.g., electrical conductivity) can be used with a suitable correlation equation to estimate other properties like density. However, small variations in the relative composition do occur, and the associated variation in seawater properties can be orders of magnitude larger than would be naively assumed from measurement precision. The new seawater standard TEOS-10 provides a mechanism to account for these compositional variations, and correction factors are provided suitable for measurements in the open ocean when composition changes occur due to specific biogeochemical processes. Here variations due to the addition of river salts are considered by combining numerical models for the conductivity, salinity, and density of arbitrary aqueous solutions with a global database of river chemistry. It is found that calculated densities in river diluted waters will typically be too low by 0.02-0.3 kg m- 3, but with significant spatial variability.

  7. Uranium from seawater research. Final progress report, FY 1982

    SciTech Connect

    Borzekowski, J.; Driscoll, M.J.; Best, F.R.

    1982-09-01

    During the FY 1982 campaign 14 new ion exchange resin formulations, prepared by the Rohm and Haas Company, were tested by MIT at the Woods Hole Oceanographic Institution. The best of these chelating resins was again of the acrylic amidoxime type; it picked up approximately 100 ppM uranium in seven days' exposure to seawater, which represents a factor of better than two improvement over the seven-day results for the best FY 1981 candidate (which saturated at roughly 100 ppM U after 30 days' exposure). Saturation was not reached and, within experimental accuracy, uranium accumulated at a constant rate over the seven-day period; it is speculated that a useful capacity of over 300 ppM U would be achieved. All resins of the styrenic amidoxime type were found to be an order of magnitude lower in their effective capacity for uranium in seawater than the best of the acrylic forms. Particle size effects, which were found to be less than expected from theoretical computations of both fluid and solid side mass transfer resistance, can not account for this difference. Scanning electron microscope examination by R and H scientists of ion exchange resin beads from beds subjected to seawater flow for 30 days in MIT's WHOI columns showed that the internal pores of the macro-reticular-type resins become filled with debris (of undetermined nature and effect) during exposure.

  8. Turbidity study of solar ponds utilizing seawater as salt source

    SciTech Connect

    Li, Nan; Sun, Wence; Shi, Yufeng; Yin, Fang; Zhang, Caihong

    2010-02-15

    A series of experiments were conducted to study the turbidity reduction in solar ponds utilizing seawater as salt source. The experiment on the turbidity reduction efficiency with chemicals indicates that alum (KAl(SO{sub 4}){sub 2}.12H{sub 2}O) has a better turbidity control property because of its strongly flocculating and also well depressing the growing of algae and bacteria in the seawater. In comparison with bittern and seawater, our experiment shows that the residual brine after desalination can keep limpidity for a long time even without any chemical in it. Experiments were also conducted on the diffusion of turbidity and salinity, which show that the turbidity did not diffuse upwards in the solution. In the experiment on subsidence of soil in the bittern and saline with the same salinity, it was found that soil subsided quite quickly in the pure saline water, but very slowly in the bittern. In this paper we also proposed an economical method to protect the solar pond from the damage of rain. Finally, thermal performance of a solar pond was simulated in the conditions of different turbidities using a thermal diffusion model. (author)

  9. Antibiotic resistance of Vibrio harveyi isolated from seawater in Korea.

    PubMed

    Kang, Chang-Ho; Kim, YongGyeong; Oh, Soo Ji; Mok, Jong-Soo; Cho, Myung-Hwan; So, Jae-Seong

    2014-09-15

    Vibrio harveyi is an opportunistic human pathogen that may cause gastroenteritis, severe necrotizing soft-tissue infections, and primary septicemia, with a potentially high rate of lethality. In this study, we isolated and characterized V. harveyi from seawater collected from the West Sea in Korea, including sites located near shellfish farms. For the initial isolation of putative V. harveyi, isolates were incubated on thiosulfate citrate bile salt sucrose agar plates for 24h, followed by selection of greenish colonies. Gram-negative and oxidase-positive colonies were subsequently confirmed by biochemical assays and the API 20E kit test system. Species-specific 16S rRNA and hemolysin genes were used to design V. harveyi-specific PCR primers. From 840 seawater samples, a total of 2 strains of V. harveyi were isolated from shellfish farm seawater. The two isolates were subjected to profiling against 16 antibiotics and found to be resistant to cephalothin, vancomycin, ampicillin, cefepime, cefotetan, and streptomycin. PMID:25066453

  10. Macroporous monoliths for trace metal extraction from seawater

    DOE PAGESBeta

    Yue, Yanfeng; Mayes, Richard T.; Gill, Gary; Kuo, Li -Jung; Wood, Jordana; Binder, Andrew J.; Brown, Suree; Dai, Sheng

    2015-05-29

    The viability of seawater-based uranium recovery depends on the uranium adsorption rate and capacity, since the concentration of uranium in the oceans is relatively low (3.3 gL-1). An important consideration for a fast adsorption is to maximize the adsorption properties of adsorbents such as surface areas and pore structures, which can greatly improve the kinetics of uranium extraction and the adsorption capacity simultaneously. Following this consideration, macroporous monolith adsorbents were prepared from the copolymerization of acrylonitrile (AN) and N,N -methylenebis(acrylamide) (MBAAm) based on a cryogel method using both hydrophobic and hydrophilic monomers. The monolithic sorbents were tested with simulated seawatermore » containing a high uranyl concentration (–6 ppm) and the uranium adsorption results showed that the adsorption capacities are strongly influenced by the ratio of monomer to the crosslinker, i.e., the density of the amidoxime groups. Furthermore, the preliminary seawater testing indicates the high salinity content of seawater does not hinder the adsorption of uranium.« less

  11. Adsorption combined with ultrafiltration to remove organic matter from seawater.

    PubMed

    Tansakul, Chatkaew; Laborie, Stéphanie; Cabassud, Corinne

    2011-12-01

    Organic fouling and biofouling are the major severe types of fouling of reverse osmosis (RO) membranes in seawater (SW) desalination. Low pressure membrane filtration such as ultrafiltration (UF) has been developed as a pre-treatment before reverse osmosis. However, UF alone may not be an effective enough pre-treatment because of the existence of low-molecular weight dissolved organic matter in seawater. Therefore, the objective of the present work is to study a hybrid process, powdered activated carbon (PAC) adsorption/UF, with real seawater and to evaluate its performance in terms of organic matter removal and membrane fouling. The effect of different PAC types and concentrations is evaluated. Stream-activated wood-based PAC addition increased marine organic matter removal by up to 70% in some conditions. Moreover, coupling PAC adsorption with UF decreased UF membrane fouling and the fouling occurring during short-term UF was totally reversible. It can be concluded that the hybrid PAC adsorption/UF process performed in crossflow filtration mode is a relevant pre-treatment process before RO desalination, allowing organic matter removal of 75% and showing no flux decline for short-term experiments. PMID:21996607

  12. The mercury isotope composition of Arctic coastal seawater

    NASA Astrophysics Data System (ADS)

    Štrok, Marko; Baya, Pascale Anabelle; Hintelmann, Holger

    2015-11-01

    For the first time, Hg isotope composition of seawater in the Canadian Arctic Archipelago is reported. Hg was pre-concentrated from large volumes of seawater sampling using anion exchange resins onboard the research vessel immediately after collection. Elution of Hg was performed in laboratory followed by isotope composition determination by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For comparison, seawater from two stations was shipped to the laboratory and processed within it. Results showed negative mass-dependent fractionation in the range from -2.85 to -1.10‰ for δ202Hg, as well as slightly positive mass-independent fractionation of odd Hg isotopes. Positive mass-independent fractionation of 200Hg was also observed. Samples that were pre-concentrated in the laboratory showed different Hg isotope signatures and this is most probably due to the abiotic reduction of Hg in the dark by organic matter during storage and shipment after sampling. This emphasizes the need for immediate onboard pre-concentration.

  13. Misleading reconstruction of seawater intrusion via integral depth sampling

    NASA Astrophysics Data System (ADS)

    Colombani, N.; Volta, G.; Osti, A.; Mastrocicco, M.

    2016-05-01

    Saltwater intrusion in coastal aquifers is an urgent issue for the actual and future groundwater supply and a detailed characterization of groundwater quality with depth is a fundamental prerequisite to correctly distinguish salinization processes. In this study, interpolated Cl- maps of the Po River delta coastal aquifer (Italy), gained with Integrated Depth Sampling (IDS) and Multi-Level Sampling (MLS) techniques, are compared. The data set used to build up the IDS and MLS interpolated Cl- maps come from numerous monitoring campaigns on surface and ground waters, covering the time frame from 2010 to 2014. The IDS interpolated Cl- map recalls the phenomenon of actual seawater intrusion, with Cl- concentration never exceeding that of seawater and the absence of hypersaline groundwater all over the study area. On the contrary, in the MLS interpolated Cl- maps the lower portion of the unconfined aquifer presents hypersaline groundwater making it necessary to consider salinization processes other than actual seawater intrusion, like upward flux from a saline aquitard. Results demonstrate the obligation of using MLS in reconstructing a reliable representation of the distribution of salinity, especially in areas where the density contrast between fresh and saline groundwater is large. Implications of the reported field case are not limited to the local situation but have a wider significance, since the IDS technique is often employed in saltwater intrusion monitoring even in recent works, with detrimental effect on the sustainable water resource management of coastal aquifers.

  14. Does chlorination of seawater reverse osmosis membranes control biofouling?

    PubMed

    Khan, Muhammad Tariq; Hong, Pei-Ying; Nada, Nabil; Croue, Jean Philippe

    2015-07-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full-scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations. PMID:25917390

  15. Preliminary design studies on a nuclear seawater desalination system

    SciTech Connect

    Wibisono, A. F.; Jung, Y. H.; Choi, J.; Kim, H. S.; Lee, J. I.; Jeong, Y. H.; No, H. C.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclear heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)

  16. In vitro survival of human pathogenic fungi in seawater.

    PubMed

    Anderson, J H

    1979-03-01

    The survival of propagules from 4 pathogenic fungi, Trichophyton mentagrophytes, Trichosporon cutaneum, Candida albicans, and Microsporum gypseum was studied in seawater subjected to different temperature (20--35 degrees C) and salinity (6--50%) levels in diurnal rhythm of 12 h cycles. Survival was measured by viability of propagules over a period of 52 weeks. All fungi, except T. cutaneum at 35 degrees C survived the experimental conditions for 52 weeks. Temperature was the most influential factor. When temperature increased, M. gypseum responded with enhanced viability whereas survival for C. albicans and T. cutaneum was inhibited. At 35 degrees C, T. cutaneum was not viable after 6--7 weeks even though it survived the initial 5 weeks with less loss of viability than the other test organisms. No correlation was seen between salinity level and loss of viability. Diurnal light had an inhibitory effect on T. cutaneum and C. albicans survival under in vitro conditions approximating those of seawater in Hawaii. M. gypseum had the highest level of survival over 52 weeks under usual in situ conditions simulated in vitro, followed by T. mentagrophytes, T. cutaneum, and C. albicans. Survival for 52 weeks even when salinity and temperature levels exceed those of the natural habitat indicates that seawater which washes sand beaches can be an environmental niche for potentially pathogenic fungi. PMID:375437

  17. The fresh water-seawater contact in coastal aquifers supporting intensive pumped seawater extractions: A case study

    NASA Astrophysics Data System (ADS)

    Jorreto, Sara; Pulido-Bosch, Antonio; Gisbert, Juan; Sánchez-Martos, Francisco; Francés, Isaac

    2009-12-01

    The construction of desalination plants along the Mediterranean coast that are supplied with seawater via pumped boreholes in coastal aquifers has given rise to novel hydrogeological situations. At the experimental site on the Andarax delta (SE Spain), a monitoring system has been set up, consisting of piezometer clusters. Piezometric level and electrical conductivity are monitored continuously at various depths in the aquifer. The data obtained allow the response of the aquifer to the intensive saltwater extraction to be assessed. Under a natural regime, the situation is highly stable and only the influence of the tides is detected. Under a regime of seawater extraction, the response becomes very dynamic, with pronounced falls in water level in the deepest piezometers and a marked descent in the position of the interface (25 m). This leads to a gradual decline in electrical conductivity in the slotted piezometers situated at the interface as a result of ingress of fresh water via slotted portions of the production boreholes.

  18. Mercury isotope signatures of seawater discharged from a coal-fired power plant equipped with a seawater flue gas desulfurization system.

    PubMed

    Lin, Haiying; Peng, Jingji; Yuan, Dongxing; Lu, Bingyan; Lin, Kunning; Huang, Shuyuan

    2016-07-01

    Seawater flue gas desulfurization (SFGD) systems are commonly used to remove acidic SO2 from the flue gas with alkaline seawater in many coastal coal-fired power plants in China. However, large amount of mercury (Hg) originated from coal is also transferred into seawater during the desulfurization (De-SO2) process. This research investigated Hg isotopes in seawater discharged from a coastal plant equipped with a SFGD system for the first time. Suspended particles of inorganic minerals, carbon residuals and sulfides are enriched in heavy Hg isotopes during the De-SO2 process. δ(202)Hg of particulate mercury (PHg) gradually decreased from -0.30‰ to -1.53‰ in study sea area as the distance from the point of discharge increased. The results revealed that physical mixing of contaminated De-SO2 seawater and uncontaminated fresh seawater caused a change in isotopic composition of PHg isotopes in the discharging area; and suggested that both De-SO2 seawater and local background contributed to PHg. The impacted sea area predicted with isotopic tracing technique was much larger than that resulted from a simple comparison of pollutant concentration. It was the first attempt to apply mercury isotopic composition signatures with two-component mixing model to trace the mercury pollution and its influence in seawater. The results could be beneficial to the coal-fired plants with SFGD systems to assess and control Hg pollution in sea area. PMID:27155100

  19. Experimental determination of boron isotope fractionation in seawater

    NASA Astrophysics Data System (ADS)

    Klochko, K.; Kaufman, A. J.; Yao, W.; Byrne, R. H.; Tossell, J. A.

    2005-12-01

    The boron isotopic composition of marine carbonates is believed to be a useful tracer of seawater pH, which may then be used to reconstruct atmospheric pCO2 through time. Use of this proxy requires an intimate understanding of chemical kinetics and thermodynamic isotope exchange reactions between the two dominant boron-bearing species in seawater: boric acid B(OH)3 and borate ion B(OH)4-, which is preferentially incorporated into the carbonate lattice. However, due to our inability to quantitatively isolate these species from seawater, the magnitude of boron isotope fractionation at different temperatures and salinities has not previously been empirically measured. All paleo-pH studies have relied on the boron isotope equilibrium constant (11-10Kb = 1.0194 at 25°C) estimated theoretically in 1977 by Kakihana and colleagues. Here we present results of empirical determination of the boron isotope equilibrium constant at different temperatures and ionic strengths. The determinations are based on titration of isotopically labeled solutions, containing either 10B(OH)3 or 11B(OH)3, with NaOH. The pH of the titrated solutions is precisely measured using thymol blue indicator absorbance ratios. Differences in solution pH or, equivalently, borate/boric acid pK values between the isotopically substituted solutions, provides the desired equilibrium constant for the reaction: 10B(OH)3 + 11B(OH)4- <=> 11B(OH)3 + 10B(OH)4-. We have performed experiments to assess the influence of the temperature (25 and 40°C), ionic strength (0.05 and 0.7 molar) and medium composition (pure water, 0.6 M KCl, and synthetic seawater) on the isotopic equilibrium constant. Within experimental uncertainty maximum of ±0.002 (1σ), our results show only a weak dependence of the equilibrium constant on the above factors. The boron isotope equilibrium constant in seawater (S = 35) was determined to be 1.0269 ± 0.0013 at 25°C (1σ, n=6), which is in poor agreement with the theoretical basis for all

  20. An experimental investigation of barite formation in seawater

    USGS Publications Warehouse

    Ganeshram, R.S.; Francois, R.; Commeau, J.; Brown-Leger, S. L.

    2003-01-01

    We report results from time-series decay and sequential leaching experiments of laboratory cultured and coastal plankton to elucidate the mechanisms controlling barite formation in seawater. Batch-cultured diatoms ( Stephanopyxis palmerina ) and coccolithophorids (Emiliania huxleyi) were let to decay in the dark for 8-10 weeks, suspended in aerated seawater. The development of barite crystals was monitored by Scanning Electron Microscopy (SEM). A similar experiment was conducted with plankton collected during the spring-bloom in Vineyard Sound (MA). In addition to SEM, suspended particles were sequentially leached for Ba (distilled water rinse; 10% (v/v) HNO3 rinse at room temperature; 30% (v/v) HCl at 80??C overnight; 50% (v/v) HNO3 at 80??C overnight) immediately after collection, and after 10-week decay in seawater, in seawater poisoned with HgCl2, and in seawater spiked with 135Ba. Both experiments showed an increase in the number of barite crystals during decay. The spring-bloom plankton had initially a large pool of labile Ba, soluble in distilled water and cold dilute HNO3 that was lost from the plankton after 10-week decay in both axenic and nonaxenic conditions. In contrast, Ba in the decayed plankton samples was predominantly in forms extracted by hot HCl and hot HNO3 acids, which were attributed to presence of barite Ba and refractory organic Ba respectively. The increase in barite crystal counts under a Scanning Electron Microscope (SEM), the increase in HCl extractable Ba relative to organic carbon, and the loss of a large fraction of Ba during plankton decay suggest that living plankton consists of a relatively large pool of labile Ba, which is rapidly released during plankton decomposition and acts as the main source of Ba for barite formation in supersaturated microenvironments. Since mass balance indicates that only a small proportion (2 to 4%) of the labile-Ba pool is converted to barite, the availability of microenvironments that could locally

  1. Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene-Pleistocene seawater Mg/Ca, temperature and sea level change

    NASA Astrophysics Data System (ADS)

    Evans, David; Brierley, Chris; Raymo, Maureen E.; Erez, Jonathan; Müller, Wolfgang

    2016-03-01

    Foraminifera Mg/Ca paleothermometry forms the basis of a substantial portion of ocean temperature reconstruction over the last 5 Ma. Furthermore, coupled Mg/Ca-oxygen isotope (δ18O) measurements of benthic foraminifera can constrain eustatic sea level (ESL) independent of paleo-shoreline derived approaches. However, this technique suffers from uncertainty regarding the secular variation of the Mg/Ca seawater ratio (Mg/Casw) on timescales of millions of years. Here we present coupled seawater-test Mg/Ca-temperature laboratory calibrations of Globigerinoides ruber in order to test the widely held assumptions that (1) seawater-test Mg/Ca co-vary linearly, and (2) the Mg/Ca-temperature sensitivity remains constant with changing Mg/Casw. We find a nonlinear Mg/Catest-Mg/Casw relationship and a lowering of the Mg/Ca-temperature sensitivity at lower than modern Mg/Casw from 9.0% °C-1 at Mg/Casw = 5.2 mol mol-1 to 7.5 ± 0.9% °C-1 at 3.4 mol mol-1. Using our calibrations to more accurately calculate the offset between Mg/Ca and biomarker-derived paleotemperatures for four sites, we derive a Pliocene Mg/Casw ratio of ∼4.3 mol mol-1. This Mg/Casw implies Pliocene ocean temperature 0.9-1.9 °C higher than previously reported and, by extension, ESL ∼30 m lower compared to when one assumes that Pliocene Mg/Casw is the same as at present. Correcting existing benthic foraminifera datasets for Mg/Casw indicates that deep water source composition must have changed through time, therefore seawater oxygen isotope reconstructions relative to present day cannot be used to directly reconstruct Pliocene ESL.

  2. Seawater fluid inclusions preserved within Cambrian-Ordovician marine cements indicate Cambrian-Ordovician seawater precipitated low-magnesium calcite

    SciTech Connect

    Johnson, W.J.; Goldstein, R.H. . Dept. of Geology)

    1992-01-01

    The San Saba Member of the Wilberns Formation (Llano Uplift, Texas) contains a series of Late Cambrian-Early Ordovician hardgrounds. Bladed low-Mg calcite cements are truncated at hardground surfaces and overlain by shallow marine limestones, indicating a syndepositional shallow marine origin. Primary one-phase fluid inclusions within bladed cements have marine salinities, suggesting that these low-Mg calcite cements formed as a precipitate from Late Cambrian and Early Ordovician seawater and have not undergone recrystallization. Stable isotope analysis of the bladed cement yields delta O-18 values that cluster between [minus]5.6--[minus]6.0 ([per thousand] PDB) which is comparable to those previously reported for Early Ordovician marine calcite. The delta C-13 values are more positive than those reported for this time interval (0.6--1.3 [per thousand] PDB). Trace element analysis indicates that strontium content ranges from 200 to 2,200 ppm. Iron ranges from below detection by electron microprobe to 800 ppm. Mg is generally below detection, however, cements in one hardground display Mg contents that increase progressively toward pore centers. Trace element data lack covariance that would suggest recrystallization. In addition, closed system recrystallization cannot be supported here due to a lack of microdolomite inclusions. Stable isotope, trace element, and fluid inclusion data are consistent with submarine cementation at or below the sediment-water interface. These cements have not undergone significant recrystallization and preserve a primary low Mg calcite mineralogy. These data suggest that early Paleozoic seawater differed chemically from modern seawater. Moreover, preservation of ancient seawater, within fluid inclusions, may provide a direct means of determining those differences.

  3. Concentration of enteric virus indicator from seawater using granular activated carbon.

    PubMed

    Cormier, Jiemin; Gutierrez, Miguel; Goodridge, Lawrence; Janes, Marlene

    2014-02-01

    Fecal contamination of shellfish growing seawater with enteric viruses is often associated with human outbreaks of gastroenteritis. Male specific bacteriophage MS2 is correlated with those of enteric viruses in a wide range of water environments and has been used widely as a surrogate for pathogenic waterborne viruses. Since viruses in contaminated water are usually at low levels, the development of methods to concentrate viruses from water is crucial for detection purposes. In the present study, granular activated carbon was evaluated for concentration of MS2 from artificial seawater, and different parameters of the seawater were also compared. Recovery of MS2 from warm seawater (37°C) was found to be significantly greater than from cold seawater (4 and 20°C), and even greater than from fresh water (4, 20 and 37°C); the difference between seawater and fresh water became less profound when the temperatures of both were below 37°C. Although not of statistical significance, recovery of MS2 from low salinity seawater (10 and 20 parts per thousand, ppt) was greater than from high salinity seawater (30 and 40ppt). One gram of granular activated carbon was able to extract 6-log plaque forming units (PFU) of MS2 from 500ml seawater at 37°C. This study demonstrated that granular activated carbon can concentrate an enteric virus indicator from shellfish growing seawater effectively. PMID:24269798

  4. Seawater pH at the advent of metazoan calcification

    NASA Astrophysics Data System (ADS)

    Ries, Justin; Gonzalez-Roubaud, Cécile; Douville, Eric; Montagna, Paolo

    2016-04-01

    The boron isotopic composition (δ11B) of bulk limestones provides a potentially powerful tool for reconstructing seawater pH deep into the geologic past (Kasemann et al., 2005; Paris et al., 2010; Ohnemueller et al., 2014). Here, we present δ11B of 35 calcitic limestones derived from a ca. 9 m.y. interval of the terminal Proterozoic Nama Group of southern Namibia. These units immediately precede the so-called Cambrian Radiation - the greatest diversification of metazoans in Earth history marked by the near-simultaneous advent of calcification across most animal phyla. The Nama Group represents one of the best preserved (average [Sr] = 1805 ppm; Mn/Sr < 2; δ18O > -10‰) and most continuous terminal Proterozoic limestone sequences known in the world. The carbonate units investigated here were deposited between ca. 552 and 543 Ma in a semi-divided foreland basin of the Kalahari Craton (Grotzinger and Miller, 2008). Depositional environments were shore-associated and ranged from upper shoreline/tidal flats to below-wave-base lower shoreface, and comprise calcisiltites, calcarenites, heterolithic interbeds, grainstones, and microbialites (Saylor et al., 1998; Grotzinger and Miller, 2008). The δ11B of the 35 sampled Nama Group carbonates were obtained via MC-ICP-MS. Samples were screened for contamination of the δ11B signal by clays (using [Al] as a proxy for clay content) (Paris et al., 2010) and by open-system meteoric diagenesis (δ11B-δ18O correlation). The δ11B values of the limestones ranged from 0.5 to 10.8‰ (avg. = 5.3‰), which is consistent with the previously observed increasing trend in carbonate δ11B (Paris et al., 2010) from the -6.2 to 2.7‰ values reported for Neoproterozoic cap carbonate dolostones (Kasemann et al., 2005) to the ca. 25‰ value reported for most modern marine carbonates. B/Ca ratios for the sampled limestones ranged from 3.4 to 24.0 ppm (avg. = 11.0). Assuming a seawater temperature of 25° C, a salinity of 35, a depth of 10

  5. Strontium isotopic variations of Neoproterozoic seawater: implications for crustal evolution.

    PubMed

    Asmerom, Y; Jacobsen, S B; Knoll, A H; Butterfield, N J; Swett, K

    1991-01-01

    We report high precision Sr isotopic data on carbonates from the Neoproterozoic Shaler Group, Victoria Island, Northwest Territories, Canada. Lithostratigraphic correlations with the relatively well-dated Mackenzie Mountains Supergroup constrain Shaler deposition to approximately 770-880 Ma, a range corroborated by 723 +/- 3 Ma lavas that disconformably overlie Shaler carbonates and by Late Riphean microfossils within the section. Samples with low 87Rb/86Sr ratios (<0.01) were selected for Sr isotopic analysis. Delta 18O, Mn, Ca, Mg, and Sr data were used to recognize altered samples. The altered samples are characterized by high Mn/Sr (> or = 2) and variable delta 18O; most are dolomites. The data indicate that between ca. 790-850 Ma the 87Sr/86Sr ratio of seawater varied between 0.70676 and 0.70561. The samples show smooth and systematic variation, with the lowest 87Sr/86Sr value of 0.70561 at ca. 830 Ma. The low 87Sr/86Sr ratio of carbonates from the lower parts of our section is similar to a value reported for one sample from the Adrar of Mauritania (approximately 900 Ma), West African Craton. Isotopic ratios from the upper part of the Shaler section are identical to values from the lower part of the Neoproterozoic Akademikerbreen Group, Spitsbergen. Although a paucity of absolute age determinations hinders attempts at the precise correlation of Neoproterozoic successions, it is possible to draw a broad outline of the Sr isotopic composition of seawater for this period. Indeed, the Sr isotope data themselves provide a stratigraphic tool of considerable potential. Data from this study and the literature are used to construct a curve of the 87Sr/86Sr ratio of Neoproterozoic seawater. The new data reported in this study substantially improve the isotopic record of Sr in seawater for the period 790-850 Ma. The Sr isotope composition of seawater reflects primarily the balance between continental Sr input through river input and mantle input via hydrothermal

  6. Seawater pH at the dawn of animal life

    NASA Astrophysics Data System (ADS)

    Ries, J. B.; Gonzalez-Roubaud, C.; Douville, E.; Montagna, P.; Grotzinger, J. P.

    2012-12-01

    The boron isotopic composition (δ11B) of bulk limestones provides a potentially powerful tool for reconstructing seawater pH deep into the geologic past (Kasemann et al., 2005; Paris et al., 2010). Here, we present δ11B of 35 calcitic limestones derived from a ca. 9 my interval of the terminal Proterozoic Nama Group of southern Namibia. These units immediately precede the so-called Cambrian Radiation—the greatest diversification of metazoans in Earth history. The Nama Group represents one of the best preserved (average [Sr] = 1805 ppm; Mn/Sr < 2; δ18O > -10‰) and most continuous terminal Proterozoic limestone sequences known in the world. The carbonate units investigated here were deposited between ca. 552 and 543 Ma in a semidivided foreland basin of the Kalahari Craton (Grotzinger and Miller, 2008). Depositional environments were shore-associated and ranged from upper shoreline/tidal flats to below-wave-base lower shoreface, and comprise calcisiltites, calcarenites, heterolithic interbeds, grainstones, and microbialites (Saylor et al., 1998; Grotzinger and Miller, 2008). The δ11B of the 35 sampled Nama Group carbonates were obtained via MC-ICP-MS. Samples were screened (Paris et al., 2010) for contamination of the δ11B signal by clays (using [Al] as a proxy for clay content) and by open-system meteoric diagenesis (δ11B-δ18O correlation). The δ11B values of the limestones ranged from 0.5 to 10.8‰ (avg. = 5.3‰), which is consistent with the observed increasing trend in carbonate δ11B (Paris et al., 2010) from the -6.2 to 2.7‰ values reported for Neoproterozoic cap carbonate dolostones (Kasemann et al., 2005) to the ca. 25‰ value reported for most modern marine carbonates. B/Ca ratios for the sampled limestones ranged from 3.4 to 24.0 ppm (avg. = 11.0 ppm). Assuming a seawater temperature of 25° C, a salinity of 35, a depth of 10 m, a seawater δ11B of 25‰ (based upon 380 Ma halites; Paris et al., 2010), and a boron isotope fractionation

  7. Erythropoietin Pretreatment Attenuates Seawater Aspiration-Induced Acute Lung Injury in Rats.

    PubMed

    Ji, Mu-huo; Tong, Jian-hua; Tan, Yuan-hui; Cao, Zhen-yu; Ou, Cong-yang; Li, Wei-yan; Yang, Jian-jun; Peng, Y G; Zhu, Si-hai

    2016-02-01

    Seawater drowning-induced acute lung injury (ALI) is a serious clinical condition characterized by increased alveolar-capillary permeability, excessive inflammatory responses, and refractory hypoxemia. However, current therapeutic options are largely supportive; thus, it is of great interest to search for alternative agents to treat seawater aspiration-induced ALI. Erythropoietin (EPO) is a multifunctional agent with antiinflammatory, antioxidative, and antiapoptotic properties. However, the effects of EPO on seawater aspiration-induced ALI remain unclear. In the present study, male rats were randomly assigned to the naive group, normal saline group, seawater group, or seawater + EPO group. EPO was administered intraperitoneally at 48 and 24 h before seawater aspiration. Arterial blood gas analysis was performed with a gas analyzer at baseline, 30 min, 1 h, 4 h, and 24 h after seawater aspiration, respectively. Histological scores, computed tomography scan, nuclear factor kappa B p65, inducible nitric oxide synthase, caspase-3, tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, IL-10, wet-to-dry weight ratio, myeloperoxidase activity, malondialdehyde, and superoxide dismutase in the lung were determined 30 min after seawater aspiration. Our results showed that EPO pretreatment alleviated seawater aspiration-induced ALI, as indicated by increased arterial partial oxygen tension and decreased lung histological scores. Furthermore, EPO pretreatment attenuated seawater aspiration-induced increase in the expressions of pulmonary nuclear factor kappa B p65, inducible nitric oxide synthase, caspase-3, tumor necrosis factor-alpha, IL-1β, myeloperoxidase activity, and malondialdehyde when compared with the seawater group. Collectively, our study suggested that EPO pretreatment attenuates seawater aspiration-induced ALI by down-regulation of pulmonary pro-inflammatory cytokines, oxidative stress, and apoptosis. PMID:26454446

  8. Performance and flow characteristics of MHD seawater thruster

    SciTech Connect

    Doss, E.D.

    1990-01-01

    The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.

  9. Biochemical alterations induced in Hediste diversicolor under seawater acidification conditions.

    PubMed

    Freitas, Rosa; Pires, Adília; Moreira, Anthony; Wrona, Frederick J; Figueira, Etelvina; Soares, Amadeu M V M

    2016-06-01

    Seawater pH is among the environmental factors controlling the performance of marine organisms, especially in calcifying marine invertebrates. However, changes in non-calcifying organisms (including polychaetes) may also occur due to pH decrease. Polychaetes are often the most abundant group of organisms in estuarine systems, representing an important ecological and economic resource. Thus, the present study aimed to evaluate the impacts of seawater acidification in the polychaete Hediste diversicolor, a species commonly used as bioindicator. For this, organisms were exposed to different pH levels (7.9, 7.6 and 7.3) during 28 days and several biochemical markers were measured. The results obtained demonstrated that pH decrease negatively affected osmotic regulation and polychaetes metabolism, with individuals under low pH (7.6 and 7.3) presenting higher carbonic anhydrase activity, lower energy reserves (protein and glycogen content) and higher metabolic rate (measured as Electron transport system activity). The increase on CA activity was associated to organisms osmoregulation capacity while the increase on ETS and decrease on energy reserves was associated to the polychaetes capacity to develop defense mechanisms (e.g. antioxidant defenses). In fact, despite having observed higher lipid peroxidation at pH 7.6, in polychaetes at the lowest tested pH (7.3) LPO levels were similar to values recorded in individuals under control pH (7.9). Such findings may result from higher antioxidant enzyme activity at the lowest tested pH, which prevented organisms from higher oxidative stress levels. Overall, our study demonstrated how polychaetes may respond to near-future ocean acidification conditions, exhibiting the capacity to develop biochemical strategies which will prevent organisms from lethal injuries. Such defense strategies will contribute for polychaetes populations maintenance and survival under predicted seawater acidification scenarios. PMID:27088614

  10. Enteric neuroplasticity in seawater-adapted European eel (Anguilla anguilla).

    PubMed

    Sorteni, C; Clavenzani, P; De Giorgio, R; Portnoy, O; Sirri, R; Mordenti, O; Di Biase, A; Parmeggiani, A; Menconi, V; Chiocchetti, R

    2014-02-01

    European eels live most of their lives in freshwater until spawning migration to the Sargasso Sea. During seawater adaptation, eels modify their physiology, and their digestive system adapts to the new environment, drinking salt water to compensate for the continuous water loss. In that period, eels stop feeding until spawning. Thus, the eel represents a unique model to understand the adaptive changes of the enteric nervous system (ENS) to modified salinity and starvation. To this purpose, we assessed and compared the enteric neuronal density in the cranial portion of the intestine of freshwater eels (control), lagoon eels captured in brackish water before their migration to the Sargasso Sea (T0), and starved seawater eels hormonally induced to sexual maturity (T18; 18 weeks of starvation and treatment with standardized carp pituitary extract). Furthermore, we analyzed the modification of intestinal neuronal density of hormonally untreated eels during prolonged starvation (10 weeks) in seawater and freshwater. The density of myenteric (MP) and submucosal plexus (SMP) HuC/D-immunoreactive (Hu-IR) neurons was assessed in wholemount preparations and cryosections. The number of MP and SMP HuC/D-IR neurons progressively increased from the freshwater to the salty water habitat (control > T0 > T18; P < 0.05). Compared with freshwater eels, the number of MP and SMP HuC/D-IR neurons significantly increased (P < 0.05) in the intestine of starved untreated salt water eels. In conclusion, high salinity evokes enteric neuroplasticity as indicated by the increasing number of HuC/D-IR MP and SMP neurons, a mechanism likely contributing to maintaining the body homeostasis of this fish in extreme conditions. PMID:24433383

  11. Innovative Elution Processes for Recovering Uranium from Seawater

    SciTech Connect

    Wai, Chien; Tian, Guoxin; Janke, Christopher

    2014-05-29

    Utilizing amidoxime-based polymer sorbents for extraction of uranium from seawater has attracted considerable interest in recent years. Uranium collected in the sorbent is recovered typically by elution with an acid. One drawback of acid elution is deterioration of the sorbent which is a significant factor that limits the economic competitiveness of the amidoxime-based sorbent systems for sequestering uranium from seawater. Developing innovative elution processes to improve efficiency and to minimize loss of sorbent capacity become essential in order to make this technology economically feasible for large-scale industrial applications. This project has evaluated several elution processes including acid elution, carbonate elution, and supercritical fluid elution for recovering uranium from amidoxime-based polymer sorbents. The elution efficiency, durability and sorbent regeneration for repeated uranium adsorption- desorption cycles in simulated seawater have been studied. Spectroscopic techniques are used to evaluate chemical nature of the sorbent before and after elution. A sodium carbonate-hydrogen peroxide elution process for effective removal of uranium from amidoxime-based sorbent is developed. The cause of this sodium carbonate and hydrogen peroxide synergistic leaching of uranium from amidoxime-based sorbent is attributed to the formation of an extremely stable uranyl peroxo-carbonato complex. The efficiency of uranium elution by the carbonate-hydrogen peroxide method is comparable to that of the hydrochloric acid elution but damage to the sorbent material is much less for the former. The carbonate- hydrogen peroxide elution also does not need any elaborate step to regenerate the sorbent as those required for hydrochloric acid leaching. Several CO2-soluble ligands have been tested for extraction of uranium from the sorbent in supercritical fluid carbon dioxide. A mixture of hexafluoroacetylacetone and tri-n-butylphosphate shows the best result but uranium

  12. Documentation of the seawater intrusion (SWI2) package for MODFLOW

    USGS Publications Warehouse

    Bakker, Mark; Schaars, Frans; Hughes, Joseph D.; Langevin, Christian D.; Dausman, Alyssa M.

    2013-01-01

    The SWI2 Package is the latest release of the Seawater Intrusion (SWI) Package for MODFLOW. The SWI2 Package allows three-dimensional vertically integrated variable-density groundwater flow and seawater intrusion in coastal multiaquifer systems to be simulated using MODFLOW-2005. Vertically integrated variable-density groundwater flow is based on the Dupuit approximation in which an aquifer is vertically discretized into zones of differing densities, separated from each other by defined surfaces representing interfaces or density isosurfaces. The numerical approach used in the SWI2 Package does not account for diffusion and dispersion and should not be used where these processes are important. The resulting differential equations are equivalent in form to the groundwater flow equation for uniform-density flow. The approach implemented in the SWI2 Package allows density effects to be incorporated into MODFLOW-2005 through the addition of pseudo-source terms to the groundwater flow equation without the need to solve a separate advective-dispersive transport equation. Vertical and horizontal movement of defined density surfaces is calculated separately using a combination of fluxes calculated through solution of the groundwater flow equation and a simple tip and toe tracking algorithm. Use of the SWI2 Package in MODFLOW-2005 only requires the addition of a single additional input file and modification of boundary heads to freshwater heads referenced to the top of the aquifer. Fluid density within model layers can be represented using zones of constant density (stratified flow) or continuously varying density (piecewise linear in the vertical direction) in the SWI2 Package. The main advantage of using the SWI2 Package instead of variable-density groundwater flow and dispersive solute transport codes, such as SEAWAT and SUTRA, is that fewer model cells are required for simulations using the SWI2 Package because every aquifer can be represented by a single layer of cells

  13. Iron speciation and its biological availability in seawater: A workshop

    SciTech Connect

    Wells, M.L.; Bruland, K.W.

    1995-09-08

    This workshop brought together marine chemists with expertise in iron chemistry and biologists with expertise in the role of iron in phytoplankton production to discuss controversies regarding the role of iron in oceanic primary productivity and global climatic change. A new paradigm for marine iron biogeochemistry was generated. The five major new items within this paradigm included (1) the nature of iron inputs to the sea, (2) chemical speciation of iron in seawater, (3) relationships between iron chemistry and marine microbial community dynamics, (4) adaptations of marine microbes to iron input, and (5) ecological and biogeochemical implications of changes in iron supply to the sea.

  14. Uranyl peroxide enhanced nuclear fuel corrosion in seawater

    PubMed Central

    Armstrong, Christopher R.; Nyman, May; Shvareva, Tatiana; Sigmon, Ginger E.; Burns, Peter C.; Navrotsky, Alexandra

    2012-01-01

    The Fukushima-Daiichi nuclear accident brought together compromised irradiated fuel and large amounts of seawater in a high radiation field. Based on newly acquired thermochemical data for a series of uranyl peroxide compounds containing charge-balancing alkali cations, here we show that nanoscale cage clusters containing as many as 60 uranyl ions, bonded through peroxide and hydroxide bridges, are likely to form in solution or as precipitates under such conditions. These species will enhance the corrosion of the damaged fuel and, being thermodynamically stable and kinetically persistent in the absence of peroxide, they can potentially transport uranium over long distances. PMID:22308442

  15. Carbonate-H₂O₂ leaching for sequestering uranium from seawater.

    PubMed

    Pan, Horng-Bin; Liao, Weisheng; Wai, Chien M; Oyola, Yatsandra; Janke, Christopher J; Tian, Guoxin; Rao, Linfeng

    2014-07-28

    Uranium adsorbed on amidoxime-based polyethylene fiber in simulated seawater can be quantitatively eluted at room temperature using 1 M Na2CO3 containing 0.1 M H2O2. This efficient elution process is probably due to the formation of an extremely stable uranyl-peroxo-carbonato complex in the carbonate solution. After washing with water, the sorbent can be reused with minimal loss of uranium loading capacity. Possible existence of this stable uranyl species in ocean water is also discussed. PMID:24710325

  16. Hydrochemical and isotopic characteristics of estuarial seawater and river water of Bailanghe in Laizhou Bay, China

    NASA Astrophysics Data System (ADS)

    Yang, Qiaofeng; Xu, Suning; Wang, Ruijiu; Li, Wenpeng; Wang, Zhiyi; Mei, Junjun; Ding, Zhilei; Yang, Peijie; Yu, Liangju; Lv, Tieying; Bai, Gang; Kang, Wei

    2016-04-01

    In the study of seawater intrusion, seawater is usually taken as an end-member that mixes with other source(s). However, compared to standard seawater, the coastal seawater particularly that near the estuary, can be strongly influenced by the rivers into the sea and by coastal human activities. Their composition can be thus continuously changed and redistributed with space and time. Therefore, before investigating seawater intrusion in a certain area, it is essentially important to determine the features of the estuarine seawater (e.g. the mixture percentage between standard seawater and river water). In this study, we aimed to gain a clear situation of the seawater intrusion in Laizhou Bay, Southern Bohai, China. The issue aforementioned was investigated by comparing the stable isotopic and hydrochemical composition of the marine and river water collected in this area. Samples investigated include 5 surface water samples collected at the downstream of the Bailanghe and 7 seawater samples near the estuary of Laizhou Bay. Inert tracers (δD, δ18O, Cl, Br) and reaction tracers (Na, Mg, SO4, HCO3, Ca, NO3) are particularly analyzed. The major results are as follows: 1) All the river water samples fall below the Global Meteoric Water Line in the δD - δ18O diagram, reflecting evaporation of the upstream reservoir water. The seawater samples fall on the mixing line of standard seawater and the river water in the stable isotopic diagram. 2) The Cl-δ18O diagram indicates widespread dissolution of evaporate into the river, while high concentration of Ca and HCO3‑, as well as the SO42‑ - Cl relation of the river water samples reflect the dissolution of CO2 , carbonate and sulfate in the atmosphere and on the ground. 3) The Br/Cl ratios of seawater samples are closed to the marine ratios. This together with the plots of major ions vs. Cl suggest that the seawater samples are originated from the mixture of standard seawater and river water. Therefore, when referring to

  17. Impact of seawater Ca2+ on the calcification and calcite Mg/Ca of Amphistegina lessonii

    NASA Astrophysics Data System (ADS)

    Mewes, A.; Langer, G.; Thoms, S.; Nehrke, G.; Reichart, G.-J.; de Nooijer, L. J.; Bijma, J.

    2014-12-01

    Mg/Ca ratios in foraminiferal tests are routinely used as paleo temperature proxy, but on long timescales, also hold the potential to reconstruct past seawater Mg/Ca. Impact of both temperature and seawater Mg/Ca on Mg incorporation in foraminifera have been quantified by a number of studies. The underlying mechanism responsible for Mg incorporation in foraminiferal calcite and its sensitivity to environmental conditions, however, is not fully identified. A recently published biomineralization model (Nehrke et al., 2013) proposes a combination of transmembrane transport and seawater leakage or vacuolization to link calcite Mg/Ca to seawater Mg/Ca and explains inter-species variability in Mg/Ca ratios. To test the assumptions of this model, we conducted a culture study in which seawater Mg/Ca was manipulated by varying [Ca2+] and keeping [Mg2+] constant. Foraminiferal growth rates, test thickness and calcite Mg/Ca of newly formed chambers were analyzed. Results showed optimum growth rates and test thickness at Mg/Ca closest to that of ambient seawater. Calcite Mg/Ca is positively correlated to seawater Mg/Ca, indicating that not absolute seawater [Ca2+] and [Mg2+], but the telative ratio controls Mg/Ca in tests. These results demonstrate that the calcification process cannot be based only on seawater vacuolization, supporting the mixing model proposed by Nehrke et al. (2013). Here we, however, suggest a transmembrane transport fractionation that is not as strong as suggested by Nehrke et al. (2013).

  18. Material selection for wellhead equipment exposed to chlorinated and natural seawater

    SciTech Connect

    Olsen, S.; Nice, P.; Strandmyr, O.; Maligas, M.; Vicic, J.

    1996-08-01

    Corrosion resistant alloys have been used in marine environments for their corrosion resistance. However, some of these materials are prone to localized corrosion, in particular crevice and pitting corrosion, in natural seawater. Injection water normally consists of de-oxygenated seawater, but, more recently either continuously or batch chlorinated and fully oxygenated seawater has been selected for this purpose because of their cost benefits. This investigation covers testing of corrosion resistant materials to aid in the selection of materials for wellhead equipment in an oxygenated and chlorinated seawater injection environment.

  19. Impact of seawater [Ca2+] on the calcification and calciteMg / Ca of Amphistegina lessonii

    NASA Astrophysics Data System (ADS)

    Mewes, A.; Langer, G.; Thoms, S.; Nehrke, G.; Reichart, G.-J.; de Nooijer, L. J.; Bijma, J.

    2015-04-01

    Mg / Ca ratios in foraminiferal tests are routinely used as paleotemperature proxies, but on long timescales, they also hold the potential to reconstruct past seawater Mg / Ca. The impact of both temperature and seawater Mg / Ca on Mg incorporation in Foraminifera has been quantified by a number of studies. The underlying mechanism responsible for Mg incorporation in foraminiferal calcite and its sensitivity to environmental conditions, however, has not been fully identified. A recently published biomineralization model (Nehrke et al., 2013) proposes a combination of transmembrane transport and seawater leakage or vacuolization to link calcite Mg / Ca to seawater Mg / Ca and explains inter-species variability in Mg / Ca ratios. To test the assumptions of this model, we conducted a culture study in which seawater Mg / Ca was manipulated by varying [Ca2+] and keeping [Mg2+] constant. Foraminiferal growth rates, test thickness and calcite Mg / Ca of newly formed chambers were analyzed. Results showed optimum growth rates and test thickness at Mg / Ca closest to that of ambient seawater. Calcite Mg / Ca is positively correlated to seawater Mg / Ca, indicating that it is not absolute seawater [Ca2+] and [Mg2+] but their ratio that controls Mg / Ca in tests. These results demonstrate that the calcification process cannot be based only on seawater vacuolization, supporting the mixing model proposed by Nehrke et al. (2013). Here, however, we suggest transmembrane transport fractionation that is not as strong as suggested by Nehrke et al. (2013).

  20. Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: interaction of seawater with fayalite and magnetite at 200–350°C

    USGS Publications Warehouse

    Shanks, Wayne C., III; Bischoff, James L.; Rosenbauer, Robert J.

    1981-01-01

    Systematics of sulfur isotopes in the 250 and 350°C experiments indicate that isotopic equilibrium is reached, and can be modeled as a Rayleigh distillation process. Isotopic composition of hydrothermally produced H2S in natural systems is strongly dependent upon the seawater/basalt ratio in the geothermal system, which controls the relative sulfide contributions from the two important sulfur sources, seawater sulfate and sulfide phases in basalt. Anhydrite precipitation during geothermal heating severely limits sulfate ingress into high temperature interaction zones. Quantitative sulfate reduction can thus be accomplished without producing strongly oxidized rocks and resultant sulfide sulfur isotope values represent a mixture of seawater and basaltic sulfur.

  1. The evolution of Phanerozoic seawater - Isotope paleothermometry finds consensus on Early Paleozoic warmth and constant seawater δ18O

    NASA Astrophysics Data System (ADS)

    Grossman, E. L.; Henkes, G. A.; Passey, B. H.; Shenton, B.; Yancey, T. E.; Perez-Huerta, A.

    2015-12-01

    Evolution of metazoan life is closely linked to the Phanerozoic evolution of ocean temperatures and chemistry. Oxygen isotopic evidence for early Phanerozoic paleotemperatures has been equivocal, with decreasing δ18O values with age being interpreted as warmer early oceans, decreasing seawater δ18O with age, or increasing diagenetic alteration in older samples. Here we compare an updated compilation of oxygen isotope data for carbonate and phosphate fossils and microfossils (Grossman, 2012, Geol. Time Scale, Elsevier, 195-220) with a compilation of new and existing clumped isotope data. Importantly, these data are curated based on sample preservation with special consideration given to screening techniques, and tectonic and burial history. Burial history is critical in the preservation of carbonate clumped isotope temperatures in particular, which can undergo reordering in the solid state. We use a model derived for reordering kinetics (Henkes et al., 2014, Geochim. Cosmochim. Acta 139:362-382) to screen clumped isotope data for the effects of solid-state burial alteration. With minor but significant exceptions (Late Cretaceous, Early Triassic), average δ18O values (4 m.y. window, 2 m.y. steps) for post-Devonian brachiopods, belemnites, and foraminifera, representing tropical-subtropical surface ocean conditions, yield average isotopic temperatures below 30°C (assuming a seawater δ18O value [ -1‰ VSMOW] of an "ice-free" world). In contrast, Ordovician to Devonian data show sustained temperatures of 35-40°C. Likewise, isotopic paleotemperatures from conodont apatite, known to be resistant to isotopic exchange, follow the same pattern. Clumped isotope data derived from Paleozoic brachiopod shells that experienced minimal burial (< 100 °C) and <1% reordering according to the taxon-specific clumped isotope reordering model yield typical temperatures of 25-30°C for the Carboniferous, and 35-40°C for the Ordovician-Silurian. Inserting clumped temperatures and

  2. Improved solvents for seawater desalination (the Puraq process)

    SciTech Connect

    Not Available

    1991-01-01

    The Puraq process for desalinating seawater is based on solven extraction of fresh water from seawater using specially tailored liquid polymers with molecular weights of 3000 or less. This polymeric solvent insures that the solubility of solvent in the coexistent aqueous phases within the process will be essentially zero. Although it was indicated earlier that the upper limit of polymer content in recycle solvent stream could not exceed 92%, this restrictive upper limit could be exceeded by broadening the field of possible polymer compositions used in choosing a particular sample. This would further decrease the projected cost of product water from $2.03 to $1.08 per thousand gallons. Presence in the polymer of water-soluble components prevented the separation of water droplets when determining the cloud point with small amounts of water in the sample. A number of measurements of true'' phase points indicated that for most samples, the difference in temperatures of phase separation between compositions of 80 and 98% was 15 C or less.

  3. Extracellular proteases are released by ciliates in defined seawater microcosms.

    PubMed

    Thao, Ngo Vy; Nozawa, Akino; Obayashi, Yumiko; Kitamura, Shin-Ichi; Yokokawa, Taichi; Suzuki, Satoru

    2015-08-01

    The biodegradation of proteins in seawater requires various proteases which are commonly thought to be mainly derived from heterotrophic bacteria. We, however, found that protists showed a high protease activity and continuously produced trypsin-type enzymes. The free-living marine heterotrophic ciliate Paranophrys marina together with an associated bacterium was isolated and used for microcosm incubation with different concentrations of killed bacteria as food for 10 days. The results showed that the co-existence of the ciliate with its associated bacterium produced a significant protease activity in both cell-associated and cell-free fractions while that in the associated bacterium only microcosm was negligible. The protease profiles are different between cell-associated and cell-free fractions, and a trypsin-type enzyme hydrolyzing Boc-Val-Leu-Lys-MCA was detected throughout the period in the presence of ciliates. This suggests that ciliates release proteases into the surrounding environment which could play a role in protein digestion outside cells. It has been previously suggested that bacteria are the major transformers in seawater. We here present additional data which indicates that protists, or at least ciliates with their specific enzymes, are a potential player in organic matter degradation in water columns. PMID:26115436

  4. Seawater Pervaporation through Zeolitic Imidazolate Framework Membranes: Atomistic Simulation Study.

    PubMed

    Gupta, Krishna M; Qiao, Zhiwei; Zhang, Kang; Jiang, Jianwen

    2016-06-01

    An atomistic simulation study is reported for seawater pervaporation through five zeolitic imidazolate framework (ZIF) membranes including ZIF-8, -93, -95, -97, and -100. Salt rejection in the five ZIFs is predicted to be 100%. With the largest aperture, ZIF-100 possesses the highest water permeability of 5 × 10(-4) kg m/(m(2) h bar), which is substantially higher compared to commercial reverse osmosis membranes, as well as zeolite and graphene oxide pervaporation membranes. In ZIF-8, -93, -95, and -97 with similar aperture size, water flux is governed by framework hydrophobicity/hydrophilicity; in hydrophobic ZIF-8 and -95, water flux is higher than in hydrophilic ZIF-93 and -97. Furthermore, water molecules in ZIF-93 move slowly and remain in the membrane for a long time but undergo to-and-fro motion in ZIF-100. The lifetime of hydrogen bonds in ZIF-93 is found to be longer than in ZIF-100. This simulation study quantitatively elucidates the dynamic and structural properties of water in ZIF membranes, identifies the key governing factors (aperture size and framework hydrophobicity/hydrophilicity), and suggests that ZIF-100 is an intriguing membrane for seawater pervaporation. PMID:27195441

  5. Sulfathiazole: analytical methods for quantification in seawater and macroalgae.

    PubMed

    Leston, Sara; Nebot, Carolina; Nunes, Margarida; Cepeda, Alberto; Pardal, Miguel Ângelo; Ramos, Fernando

    2015-01-01

    The awareness of the interconnection between pharmaceutical residues, human health, and aquaculture has highlighted the concern with the potential harmful effects it can induce. Furthermore, to better understand the consequences more research is needed and to achieve that new methodologies on the detection and quantification of pharmaceuticals are necessary. Antibiotics are a major class of drugs included in the designation of emerging contaminants, representing a high risk to natural ecosystems. Among the most prescribed are sulfonamides, with sulfathiazole being the selected compound to be investigated in this study. In the environment, macroalgae are an important group of producers, continuously exposed to contaminants, with a significant role in the trophic web. Due to these characteristics are already under scope for the possibility of being used as bioindicators. The present study describes two new methodologies based on liquid chromatography for the determination of sulfathiazole in seawater and in the green macroalgae Ulva lactuca. Results show both methods were validated according to international standards, with MS/MS detection showing more sensitivity as expected with LODs of 2.79ng/g and 1.40ng/mL for algae and seawater, respectively. As for UV detection the values presented were respectively 2.83μg/g and 2.88μg/mL, making it more suitable for samples originated in more contaminated sites. The methods were also applied to experimental data with success with results showing macroalgae have potential use as indicators of contamination. PMID:25473819

  6. Formation and speciation characteristics of brominated trihalomethanes in seawater chlorination.

    PubMed

    Padhi, R K; Sowmya, M; Mohanty, A K; Bramha, S N; Satpathy, K K

    2012-11-01

    Formation character of brominated-trihalomethanes (Br-THMs) in chlorinated seawater and its dependence on applied chlorine dose, reaction time, and temperature were investigated in the laboratory. Seawater was collected from the east coast of India and a chlorine dose of 1, 3, 5, and 10 ppm was each applied at a temperature of 20, 30, and 40 degrees C to investigate the yield and kinetics of Br-THMs formation. Qualitative and quantitative estimation of THM formation at various intervals of time ranging from 5 min to 168 h was determined by a gas chromatograph equipped with an electron capture detector (GC-ECD). Chlorine dose, chlorine contact time, and reaction temperature positively affected the load of THMs. The ratio of chlorine dose to halogen incorporation decreased from 12% to 5% with increasing applied chlorine dose from 1 to 10 ppm. Significant levels of THMs were found to be formed within 0.5 h of reaction, followed by a very slow rate of formation. Elevated temperature favored both increased rate of formation and overall THM yield. The formation order of different trihalomethane species at all studied temperatures was observed to be bromodichloromethane (CHCl2Br) < dibromochloromethane (CHClBr2) < bromoform (CHBr3). Formation of chloroform was not observed, and bromoform was the dominant (96% to 98%) among the three THM species formed. PMID:23356015

  7. Microbiologically induced corrosion of UNS N04400 in seawater

    SciTech Connect

    Gouda, V.K. ); Banat, I.M.; Riad, W.T.; Mansour, S. )

    1993-01-01

    Laboratory and field immersion tests were conducted on UNS N04400 (Mone 400) to assess its susceptibility toward microbial attack in Arabian Gulf seawater. Specimens were exposed to chlorinated and nonchlorinated seawater for periods up to four months. Other tests included exposure of UNS N04400 to prepared culture of sulfate-reducing bacteria (SRB). The results indicated that SRB attack initiated beneath a black sulfide-rich deposit, overlaid by a green chloride-rich deposit, and a beige-colored calcareous scale was on all specimen surfaces after long exposure periods. The black layer was comprised manly of one or more iron-nickel sulfides (Fe, Ni)[sub x]S[sub y] and nickel sulfide (Ni[sub 3]S[sub 4]), whereas the green layer was essentially CuCl[sub 2] [times] 3Cu (OH)[sub 2] with a low concentration of NiCl[sub 2]. These deposits were in the form of nodules scattered on the surface, and, when removed, circular attacked areas or cavities were revealed. Scanning electron microscopy examinations of these areas indicated severe intergranular corrosion, and energy dispersive spectroscopy indicated selective dissolution of Ni and Fe.

  8. Effects of recharge wells and flow barriers on seawater intrusion.

    PubMed

    Luyun, Roger; Momii, Kazuro; Nakagawa, Kei

    2011-01-01

    The installation of recharge wells and subsurface flow barriers are among several strategies proposed to control seawater intrusion on coastal groundwater systems. In this study, we performed laboratory-scale experiments and numerical simulations to determine the effects of the location and application of recharge wells, and of the location and penetration depth of flow barriers, on controlling seawater intrusion in unconfined coastal aquifers. We also compared the experimental results with existing analytical solutions. Our results showed that more effective saltwater repulsion is achieved when the recharge water is injected at the toe of the saltwater wedge. Point injection yields about the same repulsion compared with line injection from a screened well for the same recharge rate. Results for flow barriers showed that more effective saltwater repulsion is achieved with deeper barrier penetration and with barriers located closer to the coast. When the flow barrier is installed inland from the original toe position however, saltwater intrusion increases with deeper barrier penetration. Saltwater repulsion due to flow barrier installation was found to be linearly related to horizontal barrier location and a polynomial function of the barrier penetration depth. PMID:20533955

  9. Flow development and analysis of MHD generators and seawater thrusters

    SciTech Connect

    Doss, E.D. ); Roy, G.D. )

    1992-03-01

    In this paper, the flow characteristics inside magnetohydrodynamic (MHD) plasma generators and seawater thrusters are analyzed and are compared using a three-dimensional computer model that solves the governing partial differential equations for fluid flow and electrical fields. Calculations have been performed for a Faraday plasma generator and for a continuous electrode seawater thruster. The results of the calculations show that the effects caused by the interaction of the MHD forces with the fluid flow are strongly manifested in the case of the MHD generator as compared to the flow development in the MHD thruster. The existence of velocity overshoots over the sidewalls confirm previously published results for MHD generators with strong MHD interaction. For MHD thrusters, the velocity profile is found to be slightly flatter over the sidewall as compared to that over the electrode wall. As a result, distinct enhancement of the skin friction exists over the sidewalls of MHD generators in comparison to that of MHD thrusters. Plots of velocity profiles and skin friction distributions are presented to illustrate and compare the flow development in MHD generators and thrusters.

  10. Biodegradability of chlorophenols and mixtures of chlorophenols in seawater

    SciTech Connect

    Lindgaard-Jorgensen, P.

    1989-04-01

    Laboratory studies using chemical concentrations comparable to those found in nature have provided considerable knowledge of microbial transformations in nature. Although the number of studies performed is increasing rapidly, the effects of low substrate levels on growth, enzyme induction, enzyme activity, and the use of mixtures of substrates have not yet been clarified. Likewise, studies at low concentrations in seawater are lacking. This paper describes a study of the rates of degradation of chlorophenols 4-chlor-2-methylphenol, 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol at concentrations ranging from 2 to 18 micrograms/liter. The compounds were tested separately, in a mixture, and in waste water containing other organics. The obtained rates of 2,4-DCP in seawater were comparable to those found in fresh water. Also, the rates were in general agreement with a kinetic model proposed for degradation of chlorophenols. The rates of degradation of chlorophenols in the mixture were comparable to those found when tested separately. In the waste, very low rates were observed. It is suggested that this might be explained by a toxic effect, caused by other substances in the waste water, on the microorganisms considered to be active in degrading the chlorophenols at low concentrations.

  11. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; Steen, A. D.; Arnosti, C.

    2010-03-01

    Marine snow aggregates are heavily colonized by heterotrophic microorganisms that express high levels of hydrolytic activities, making aggregates hotspots for carbon remineralization in the ocean. To assess how aggregate formation influences the ability of seawater microbial communities to access organic carbon, we compared hydrolysis rates of six polysaccharides in coastal seawater after aggregates had been formed (via incubation on a roller table) with hydrolysis rates in seawater from the same site that had not incubated on a roller table (referred to as whole seawater). Hydrolysis rates in the aggregates themselves were up to three orders of magnitude higher on a volume basis than in whole seawater. The enhancement of enzyme activity in aggregates relative to whole seawater differed by substrate, suggesting that the enhancement was under cellular control, rather than due to factors such as lysis or grazing. A comparison of hydrolysis rates in whole seawater with those in aggregate-free seawater, i.e. the fraction of water from the roller bottles that did not contain aggregates, demonstrated a nuanced microbial response to aggregate formation. Activities of laminarinase and xylanase enzymes in aggregate-free seawater were higher than in whole seawater, while activities of chondroitin, fucoidan, and arabinogalactan hydrolyzing enzymes were lower than in whole seawater. These data suggest that aggregate formation enhanced production of laminarinase and xylanase enzymes, and the enhancement also affected the surrounding seawater. Decreased activities of chondroitin, fucoidan, and arabinoglactan-hydrolyzing enzymes in aggregate-free seawaters relative to whole seawater are likely due to shifts in enzyme production by the aggregate-associated community, coupled with the effects of enzyme degradation. Enhanced activities of laminarin- and xylan-hydrolyzing enzymes in aggregate-free seawater were due at least in part to cell-free enzymes. Measurements of enzyme

  12. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; Steen, A. D.; Arnosti, C.

    2009-12-01

    Marine snow aggregates are heavily colonized by heterotrophic microorganisms that express high levels of hydrolytic activities, making aggregates hotspots for carbon remineralization in the ocean. To assess how aggregate formation influences the ability of seawater microbial communities to access organic carbon, we compared hydrolysis rates of six polysaccharides in coastal seawater after aggregates had been formed (via incubation on a roller table) with hydrolysis rates in seawater from the same site that had not incubated on a roller table (referred to as whole seawater). Hydrolysis rates in the aggregates themselves were up to three orders of magnitude higher on a volume basis than in whole seawater. The enhancement of enzyme activity in aggregates relative to whole seawater differed by substrate, suggesting that the enhancement was under cellular control, rather than due to factors such as lysis or grazing. A comparison of hydrolysis rates in whole seawater with those in aggregate-free seawater, i.e. the fraction of water from the roller bottles that did not contain aggregates, demonstrated a nuanced microbial response to aggregate formation. Activities of laminarinase and xylanase enzymes in aggregate-free seawater were higher than in whole seawater, while activities of chondroitin, fucoidan, and arabinogalactan hydrolyzing enzymes were lower than in whole seawater. These data suggest that aggregate formation enhanced production of laminarinase and xylanase enzymes, and the enhancement also affected the surrounding seawater. Decreased activities of chondroitin, fucoidan, and arabinoglactan-hydrolyzing enzymes in aggregate-free seawater relative to whole seawater are likely due to shifts in enzyme production by the aggregate-associated community, coupled with the effects of enzyme degradation. Enhanced activities of laminarin- and xylan-hydrolyzing enzymes in aggregate-free seawater were due at least in part to cell-free enzymes. Measurements of enzyme lifetime

  13. High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater.

    PubMed

    Leema, J T Mary; Kirubagaran, R; Vinithkumar, N V; Dheenan, P S; Karthikayulu, S

    2010-12-01

    The prospects of utilizing pretreated seawater for the culture of Arthrospira (Spirulina) platensis was evaluated under laboratory conditions with three seawater media and a control: (1) Zarrouk media (freshwater-control) (2) seawater media SW 1 (3) seawater media SW2 and (4) seawater media SW 3. The relative performance of these media were investigated with respect to their biomass production, pigment production (phycocyanin, lutein and betacarotene), and biochemical composition. A. platensis grown in media SW 2 had a biomass production (2.99+/-0.145 g L(-1)) comparable to that of control media (3.114+/-0.085 g L(-1)); highest specific growth rate (0.255 d(-1)) and lowest doubling time (2.720 days). Phycocyanin content of the cells grown in seawater media SW 3(81.85%) was closer to that of control. Similarly the purity ratio of phycocyanin produced from cells grown in seawater media SW 3 and control were closer to 4, while the phycocyanin obtained from cells grown in other two media exhibited lower purity ratios due to accumulation of lower molecular weight carbohydrates. The phycocyanin/Chl-a ratio and the betacarotene/Chl-a ratio of the cells grown in seawater media were higher than control. The lutein content of A. platensis cells grown in seawater media SW 2 was higher than that of control. The cells grown in seawater media had a slightly modified biochemical composition than the control with a higher carbohydrate and lower protein content. All the three seawater based media with fewer chemicals than the control (Zarrouk media) supported the growth of A. platensis as good as the control. PMID:20655201

  14. EFFECT OF CHELATING AGENTS ON THE GROWTH OF ESCHERICHIA COLI IN SEAWATER1

    PubMed Central

    Jones, Galen E.

    1964-01-01

    Jones, Galen E. (Scripps Institution of Oceanography, University of California, La Jolla). Effect of chelating agents on the growth of Escherichia coli in seawater. J. Bacteriol. 87:483–499. 1964.—Escherichia coli did not grow at 37 C, or grew only after a prolonged lag phase in filter-sterilized basal seawater medium (synthetic or natural seawater supplemented with glucose, NH4Cl, and K2HPO4). When this basal medium was enriched with 0.01% or less organic matter, such as casein hydrolysate, peptone, or yeast extract, growth always occurred after a short lag phase. Adding 10−5m cysteine or autoclaving the seawater gave a similar effect. A variety of organic chelating agents (histidine, glycine, methionine, glycylglycine, 8-hydroxyquinoline, thioglycolic acid, o-phenanthroline, disodium ethylenediaminetetraacetic acid, etc.) reversed the toxicity of filter-sterilized basal seawater medium in concentrations predictable from stability constants. Even metal-complexing agents such as Na2S2O3, Na2S, and NaCN in appropriate concentrations reversed toxicity. The quality of the distilled water and the treatment of glassware had a significant effect on the growth of E. coli in basal seawater medium. It was concluded that iodate is probably not the toxic substance for E. coli in seawater, since relatively high concentrations were stimulatory. The inhibition resulting from the individual salts of synthetic seawater was proportional to their concentration; NaCl was most inhibitory. This toxicity is believed to be derived from trace impurities in the reagent-grade chemicals used to prepare synthetic seawater. Evidence was also found for the toxicity of heavy metals in natural seawater. Heavy metals in seawater appear to inhibit growth but not respiration. PMID:14127563

  15. EFFECT OF CHELATING AGENTS ON THE GROWTH OF ESCHERICHIA COLI IN SEAWATER.

    PubMed

    JONES, G E

    1964-03-01

    Jones, Galen E. (Scripps Institution of Oceanography, University of California, La Jolla). Effect of chelating agents on the growth of Escherichia coli in seawater. J. Bacteriol. 87:483-499. 1964.-Escherichia coli did not grow at 37 C, or grew only after a prolonged lag phase in filter-sterilized basal seawater medium (synthetic or natural seawater supplemented with glucose, NH(4)Cl, and K(2)HPO(4)). When this basal medium was enriched with 0.01% or less organic matter, such as casein hydrolysate, peptone, or yeast extract, growth always occurred after a short lag phase. Adding 10(-5)m cysteine or autoclaving the seawater gave a similar effect. A variety of organic chelating agents (histidine, glycine, methionine, glycylglycine, 8-hydroxyquinoline, thioglycolic acid, o-phenanthroline, disodium ethylenediaminetetraacetic acid, etc.) reversed the toxicity of filter-sterilized basal seawater medium in concentrations predictable from stability constants. Even metal-complexing agents such as Na(2)S(2)O(3), Na(2)S, and NaCN in appropriate concentrations reversed toxicity. The quality of the distilled water and the treatment of glassware had a significant effect on the growth of E. coli in basal seawater medium. It was concluded that iodate is probably not the toxic substance for E. coli in seawater, since relatively high concentrations were stimulatory. The inhibition resulting from the individual salts of synthetic seawater was proportional to their concentration; NaCl was most inhibitory. This toxicity is believed to be derived from trace impurities in the reagent-grade chemicals used to prepare synthetic seawater. Evidence was also found for the toxicity of heavy metals in natural seawater. Heavy metals in seawater appear to inhibit growth but not respiration. PMID:14127563

  16. Quantification of glycine betaine, choline and trimethylamine N-oxide in seawater particulates: Minimisation of seawater associated ion suppression.

    PubMed

    Beale, Rachael; Airs, Ruth

    2016-09-28

    A liquid chromatography/mass spectrometry (LC/MS, electrospray ionisation) method has been developed for the quantification of nitrogenous osmolytes (N-osmolytes) in the particulate fraction of natural water samples. Full method validation demonstrates the validity of the method for measuring glycine betaine (GBT), choline and trimethylamine N-oxide (TMAO) in particulates from seawater. Limits of detection were calculated as 3.5, 1.2 and 5.9 pg injected onto column (equivalent to 1.5, 0.6 and 3.9 nmol per litre) for GBT, choline and TMAO respectively. Precision of the method was typically 3% for both GBT and choline and 6% for TMAO. Collection of the particulate fraction of natural samples was achieved via in-line filtration. Resulting chromatography and method sensitivity was assessed and compared for the use of both glass fibre and polycarbonate filters during sample collection. Ion suppression was shown to be a significant cause of reduced instrument response to N-osmolytes and was associated with the presence of seawater in the sample matrix. PMID:27619093

  17. Hydrogeochemical, multiple isotopic approaches to investigate seawater mixing of groundwater in volcanic Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Koh, E. H.; Kaown, D.; Lee, S. H.; Lee, K. K.

    2014-12-01

    Groundwater is a sole resource for water supply in Jeju Island which is composed of various formations of porous volcanic rocks. Therefore, preservation of the groundwater resource is an essential issue. Due to its geological features of the island, seawater has been intruded landward, mainly in the eastern region, which restricts groundwater use in the area. In the western region, severe nitrate contaminations of groundwater have been occurred by heavily performed agricultural activities, and moreover deterioration of groundwater quality by seawater intrusion has been observed in recent years. In this study, to delineate the mixing process related to seawater intrusion into groundwater from Gosan (western region) and Pyoseon (eastern region) of Jeju Island, hydrogeochemical and multiple isotopic approaches were applied. Also, fractionation ratios of each factors (fresh groundwater, nitrate contaminated groundwater, and seawater) which affect the groundwater quality from the study areas were estimated by using the MIX_PROGRAM. The effect of seawater was observed at the groundwater wells located inland up to 1.5 km from the coast and showed to be enlarged landward during a dry season. The fractionation ratios of seawater had the minor range (0.1~1.2%) for the Pyoseon area and 0.4~3.7% of seawater was mixed with fresh groundwater in the Gosan area. Differences in hydrogeological properties between Gosan and Pyoseon areas made dissimilar occurrences of seawater mixing into groundwater in the island.

  18. Detection of crude oil emulsions in the Bering Sea by the analysis of seawater color

    NASA Astrophysics Data System (ADS)

    Salyuk, Pavel A.; Stepochkin, Igor E.; Sokolova, Ekaterina B.; Kachur, Vasiliy A.; Prokuda, Natalya A.

    2015-11-01

    The paper presents the analysis of uncertainties between observed remote sensed reflectance spectra of seawater, with crude oil emulsions and oil dissolved fractions, and modeled remote sensed reflectance spectra of seawater without oil calculated from the fluorometric measurements of chlorophyll-a and dissolved organic matter concentrations carried out in the layer under oil pollution.

  19. Adsorption/desorption of phosphorus on limestone from the Biscayne Aquifer under freshwater and seawater conditions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Areas of seawater intrusion are known geochemically active regions particularly in limestone aquifers, where carbonate mineral dissolution and ion exchange reactions are important. Both of these processes can lead to a release of phosphorus from the aquifer matrix to the groundwater as seawater int...

  20. Seawater mesocosm experiments in the Arctic uncover differential transfer of marine bacteria to aerosols.

    PubMed

    Fahlgren, Camilla; Gómez-Consarnau, Laura; Zábori, Julia; Lindh, Markus V; Krejci, Radovan; Mårtensson, E Monica; Nilsson, Douglas; Pinhassi, Jarone

    2015-06-01

    Biogenic aerosols critically control atmospheric processes. However, although bacteria constitute major portions of living matter in seawater, bacterial aerosolization from oceanic surface layers remains poorly understood. We analysed bacterial diversity in seawater and experimentally generated aerosols from three Kongsfjorden sites, Svalbard. Construction of 16S rRNA gene clone libraries from paired seawater and aerosol samples resulted in 1294 sequences clustering into 149 bacterial and 34 phytoplankton operational taxonomic units (OTUs). Bacterial communities in aerosols differed greatly from corresponding seawater communities in three out of four experiments. Dominant populations of both seawater and aerosols were Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria. Across the entire dataset, most OTUs from seawater could also be found in aerosols; in each experiment, however, several OTUs were either selectively enriched in aerosols or little aerosolized. Notably, a SAR11 clade OTU was consistently abundant in the seawater, but was recorded in significantly lower proportions in aerosols. A strikingly high proportion of colony-forming bacteria were pigmented in aerosols compared with seawater, suggesting that selection during aerosolization contributes to explaining elevated proportions of pigmented bacteria frequently observed in atmospheric samples. Our findings imply that atmospheric processes could be considerably influenced by spatiotemporal variations in the aerosolization efficiency of different marine bacteria. PMID:25682947

  1. Predatory bacteria as natural modulators of Vibrio parahaemolyticus and Vibrio vulnificus in seawater and oysters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study shows that naturally occurring Vibrio predatory bacteria (VPB) exert a major role in controlling pathogenic vibrios in seawater and shellfish. The growth and persistence of Vibrio parahaemolyticus (Vp) and Vibrio vulnificus (Vv) were assessed in natural seawater and in the Eastern oyster...

  2. Intensively exploited Mediterranean aquifers: resilience to seawater intrusion and proximity to critical thresholds

    NASA Astrophysics Data System (ADS)

    Mazi, K.; Koussis, A. D.; Destouni, G.

    2014-05-01

    We investigate seawater intrusion in three prominent Mediterranean aquifers that are subject to intensive exploitation and modified hydrologic regimes by human activities: the Nile Delta, Israel Coastal and Cyprus Akrotiri aquifers. Using a generalized analytical sharp interface model, we review the salinization history and current status of these aquifers, and quantify their resilience/vulnerability to current and future seawater intrusion forcings. We identify two different critical limits of seawater intrusion under groundwater exploitation and/or climatic stress: a limit of well intrusion, at which intruded seawater reaches key locations of groundwater pumping, and a tipping point of complete seawater intrusion up to the prevailing groundwater divide of a coastal aquifer. Either limit can be reached, and ultimately crossed, under intensive aquifer exploitation and/or climate-driven change. We show that seawater intrusion vulnerability for different aquifer cases can be directly compared in terms of normalized intrusion performance curves. The site-specific assessments show that (a) the intruding seawater currently seriously threatens the Nile Delta aquifer, (b) in the Israel Coastal aquifer the sharp interface toe approaches the well location and (c) the Cyprus Akrotiri aquifer is currently somewhat less threatened by increased seawater intrusion.

  3. Mercury content of shrimp (Penaeus vannamei) reared in a wastewater-seawater aquacultural system

    SciTech Connect

    Landau, M.; Pierce, R.

    1986-10-01

    Penaeus vannamei were reared in two ponds, one receiving 10% wastewater in seawater and no feed, and the other receiving only seawater and a prepared commercial feed. The pond receiving the wastewater had significantly more mercury in the sediment, yet shrimp in this pond did not accumulate significant amounts of the mercury in their edible tissue.

  4. Temporal Patterns in Seawater Quality from Dredging in Tropical Environments

    PubMed Central

    Jones, Ross; Fisher, Rebecca; Stark, Clair; Ridd, Peter

    2015-01-01

    Maintenance and capital dredging represents a potential risk to tropical environments, especially in turbidity-sensitive environments such as coral reefs. There is little detailed, published observational time-series data that quantifies how dredging affects seawater quality conditions temporally and spatially. This information is needed to test realistic exposure scenarios to better understand the seawater-quality implications of dredging and ultimately to better predict and manage impacts of future projects. Using data from three recent major capital dredging programs in North Western Australia, the extent and duration of natural (baseline) and dredging-related turbidity events are described over periods ranging from hours to weeks. Very close to dredging i.e. <500 m distance, a characteristic features of these particular case studies was high temporal variability. Over several hours suspended sediment concentrations (SSCs) can range from 100–500 mg L-1. Less turbid conditions (10–80 mg L-1) can persist over several days but over longer periods (weeks to months) averages were <10 mg L-1. During turbidity events all benthic light was sometimes extinguished, even in the shallow reefal environment, however a much more common feature was very low light ‘caliginous’ or daytime twilight periods. Compared to pre-dredging conditions, dredging increased the intensity, duration and frequency of the turbidity events by 10-, 5- and 3-fold respectively (at sites <500 m from dredging). However, when averaged across the entire dredging period of 80–180 weeks, turbidity values only increased by 2–3 fold above pre-dredging levels. Similarly, the upper percentile values (e.g., P99, P95) of seawater quality parameters can be highly elevated over short periods, but converge to values only marginally above baseline states over longer periods. Dredging in these studies altered the overall probability density distribution, increasing the frequency of extreme values. As such

  5. Crustal evolution reflected in seawater Sr and Nd isotope records

    NASA Astrophysics Data System (ADS)

    Peucker-Ehrenbrink, B.

    2013-12-01

    Radiogenic isotope ratios record time-integrated parent-daughter ratios, and are thus sensitive to chemical composition and time. The oceans recieve the integrated runoff from the continental surface and preserve these signals in marine sedimentary records. Radiogenic isotope records of seawater and marine sediments have been reconstructed over the past five decades for many of the radiogenic isotope systems. For some systems (Sr) excellent records do exist that integrate seawater signals for the entire ocean. In contrast, globally averaged records of radiogenic isotopes with short marine residence times (Nd, Pb) are much more difficult to establish. Here, I attempt to link long-term (Phanerozoic) records of marine radiogenic isotope systems to records of the evolution of the continental surface that interacts with the hydrologic cycle. For the present we can show that the dissolved and particulate loads from the continents integrate different portions of the continental surface (Peucker-Ehrenbrink et al., 2010, G-cubed 11, doi: 10.1029/2009GC002869). For instance, the areas generating the dissolved load are characterized by significantly older bedrock (~400 Myr) than those generating the particulate load (~320 Myr). The fact that both are younger than the mean bedrock age of the non-glaciated, exorheic portion of the continental surface (~450 Myr) reflects the disproportionate role active margins, high-standing ocean island, and weathering and erosion of young sedimentary strata play in exporting dissolved matter and sedimnent to the oceans. Using present-day systematics as a guide, I argue that the first-order trough-like shape of the Phanerozoic marine Sr isotope record reflects the rejuvenation of the continental surface involved in exporting Sr to the ocean from the early Phanerozoic to the mid Jurassic that is followed by an 'aging' that continues into the Quaternary. This long-term evolution of the continental surface is mirrored by a similar - though more

  6. Mercury and cadmium uptake from seawater and from food by the Norway lobster Nephrops norvegicus

    SciTech Connect

    Canli, M.; Furness, R.W.

    1995-05-01

    Norway lobsters, nephrops norvegicus, were fed on a mercury- and cadmium-rich diet for up to 50 d or were exposed to sublethal concentrations of organic mercury, inorganic mercury, or cadmium in seawater for 30 d. Cadmium taken up from seawater accumulated mainly in the hepatopancreas and gill, while it accumulated mainly in the hepatopancreas after feeding. Both organic and inorganic mercury taken up from seawater accumulated mainly in the gill, while highest concentrations were found in the hepatopancreas after the feeding experiment. Accumulation of organic mercury was higher than that of inorganic mercury. Although all treatments resulted in the accumulation of mercury and cadmium from seawater and food, tissue distribution of metals differed significantly among treatments. Distributions of organic and inorganic mercury also varied among tissues after uptake from seawater, with organic mercury being more evenly distributed among tissues than inorganic mercury, the latter being found predominantly in the gill.

  7. A method for determining arsenolipids in seawater by HPLC-high resolution mass spectrometry.

    PubMed

    Khan, Muslim; Jensen, Kenneth B; Francesconi, Kevin A

    2016-06-01

    Arsenic-containing lipids (arsenolipids), naturally occurring arsenicals in algae, have never been detected in seawater even though they might be introduced to the water column on senescence of marine algae or by active excretion. The complex nature of seawater presents an analytical challenge to detect these compounds and to monitor their environmental fate. We developed a simple sample preparation method using liquid-liquid extraction combined with HPLC-high resolution mass spectrometry (HRMS) capable of measuring six standard arsenolipids in seawater at the ng As/L level (<1% of the total arsenic in seawater). The method is suitable for studies on the biotransformation and pathways of arsenolipids in the marine environment. When we applied the method to four samples of natural seawater, however, we did not find any of the six standard arsenolipids. PMID:27130122

  8. Henry's law constant for phosphine in seawater: determination and assessment of influencing factors

    NASA Astrophysics Data System (ADS)

    Fu, Mei; Yu, Zhiming; Lu, Guangyuan; Song, Xiuxian

    2013-07-01

    The Henry's Law constant ( k) for phosphine in seawater was determined by multiple phase equilibration combined with headspace gas chromatography. The effects of pH, temperature, and salinity on k were studied. The k value for phosphine in natural seawater was 6.415 at room temperature (approximately 23°C). This value increases with increases in temperature and salinity, but no obvious change was observed at different pH levels. At the same temperature, there was no significant difference between the k for phosphine in natural seawater and that in artificial seawater. This implies that temperature and salinity are major determining factors for k in marine environment. Double linear regression with Henry's Law constants for phosphine as a function of temperature and salinity confirmed our observations. These results provide a basis for the measurement of trace phosphine concentrations in seawater, and will be helpful for future research on the status of phosphine in the oceanic biogeochemical cycle of phosphorus.

  9. The use of seawater as a carbon dioxide scrubbing medium for underwater life support

    SciTech Connect

    Nuckols, M.L.

    1996-09-01

    Experimental evidence suggests that seawater could be used to scrub carbon dioxide form cabin air in underwater habitats. Seawater has the capacity to absorb carbon dioxide in quantities directly dependent on a number of variables, the most significant of which is the partial pressure of the carbon dioxide in the gas. The absorption capacities of freshwater and seawater are determined in this study in relation to the variables of carbon dioxide partial pressure, water temperature and pH for use in simple engineering design calculations. A conceptual carbon dioxide scrubber is proposed which involves the direct absorption of carbon dioxide in small concentrations in diffused air by a pressurized seawater tower. This conceptual design can potentially offer a low-energy seawater carbon dioxide scrubber to be externally or internally mounted on an underwater habitat.

  10. Seawater teleosts: evidence for a sodium-potassium exchange in the branchial sodium-excreting pump.

    PubMed

    Maetz, J

    1969-10-31

    The net sodium extrusion rate by the gill of the seawater-adapted euryhaline flounder is identical to the potassium influx. The excretion of sodium is blocked in K(+)-free seawater solutions. The instantaneous sodium outflux readjustment pattern of flounders transferred from seawater to solutions of various sodium chloride or potassium chloride concentrations is consistent with the hypothesis of a linkage between Na(+) outflux and K(+) influx through a common exchange carrier. External Na(+) and K(+) compete for this comnmonz carrier. It is suggested that the exchange diffusion mechanism (linkage of sodium influx and outflux) and the high internal sodium turnover rate which characterizes all seawater teleosts are the results of this competitive process. The sodium-potassium dependent adenosine triphosphatase system occurring in the gill of the seawater teleosts may play a central role in this sodium-potassium exchange pump. PMID:5823292

  11. Crevice and pitting corrosion behavior of stainless steels in seawater

    SciTech Connect

    Zaragoza-Ayala, A.E.; Orozco-Cruz, R.

    1999-11-01

    Pitting and crevice corrosion tests in natural seawater were performed on a series of stainless steels (i.e., S31603, N08904, S32304, S31803, S32520, N08925 and S31266) in order to determine their resistance to these types of localized corrosion. Open circuit potential (OCP) measurements for these alloys show for short exposure times an ennoblement in the OCP. After a certain time, occasional fall and rise in the OCP values was observed, which can be related to nucleation and repassivation of pits and/or crevices on the metal surface. Analysis of the electrochemical behavior and microscopic observations shows that only S31603 and S32304 alloys were susceptible to crevice and pitting corrosion, whereas the remaining alloys exhibited good resistance. Pitting potentials determined by the potentiodynamic technique also show S3 1603 and S32304 are susceptible to pitting corrosion under the experimental conditions used in this work.

  12. Corrosion fatigue of high strength fastener materials in seawater

    NASA Astrophysics Data System (ADS)

    Tipton, D. G.

    1983-12-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  13. Corrosion fatigue of high strength fastener materials in seawater

    NASA Technical Reports Server (NTRS)

    Tipton, D. G.

    1983-01-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  14. An evaluation of carbon steel corrosion under stagnant seawater conditions.

    PubMed

    Lee, Jason S; Ray, Richard I; Lemieux, Edward J; Falster, Alexander U; Little, Brenda J

    2004-01-01

    Corrosion of 1020 carbon steel coupons in natural seawater over a 1-year period was more aggressive under strictly anaerobic stagnant conditions than under aerobic stagnant conditions as measured by weight loss and instantaneous corrosion rate (polarization resistance). Under oxygenated conditions, a two-tiered oxide layer of lepidocrocite/goethite formed. The inner layer was extremely tenacious and resistant to acid cleaning. Under anaerobic conditions, the corrosion product was initially a non-tenacious sulphur-rich corrosion product, mackinawite, with enmeshed bacteria. As more sulphide was produced the mackinawite was transformed to pyrrhotite. In both aerobic and anaerobic exposures, corrosion was more aggressive on horizontally oriented coupons compared to vertically oriented samples. PMID:15621645

  15. Wireless sensor node for surface seawater density measurements.

    PubMed

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings. PMID:22736986

  16. Geochemistry of Precambrian carbonates. V - Late Paleoproterozoic seawater

    NASA Technical Reports Server (NTRS)

    Veizer, Jan; Plumb, K. A.; Clayton, R. N.; Hinton, R. W.; Grotzinger, J. P.

    1992-01-01

    A study of mineralogy, chemistry, and isotopic composition of the Coronation Supergroup (about 1.9 Ga, NWT), Canada, and the McArthur Group (about 1.65 NT), Australia, is reported in order to obtain better constrained data for the first- and second-order variations in the isotopic composition of late Paleoproterozoic (1.9 +/- 0.2 Ga) seawater. Petrologically, both carbonate sequences are mostly dolostones. The McArthur population contains more abundant textural features that attest to the former presence of sulfates and halite, and the facies investigated represent ancient equivalents of modern evaporitic sabkhas and lacustrine playa lakes. It is suggested that dolomitization was an early diagenetic event and that the O-18 depletion of the Archean to late Paleoproterozoic carbonates is not an artifact of postdepositional alteration.

  17. Cadmium Isotope Fractionation in Seawater - A Signature of Nutrient Utilization

    NASA Astrophysics Data System (ADS)

    Wichtlhuber, S.; Rehkaemper, M.; Halliday, A. N.

    2005-12-01

    Cadmium displays a nutrient-like distribution akin to phosphorous in the oceans. This has been attributed to the assimilation of Cd by phytoplankton in surface waters and re-mineralization at depth. If biological uptake is associated with kinetic isotopic fractionation, as recently suggested by Lacan et al. (2005), then the Cd-depleted surface waters of the oceans (with Cd contents of < 0.08 nmol/kg) should be depleted in the "light" isotopes of Cd, relative to the bottom waters, which typically have Cd concentrations of 0.2 to 1 nmol/kg. Previous investigations were, however, unable to identify any significant Cd isotope effects in either seawater samples or sedimentary rocks (Wombacher et. al, 2003; Lacan et al., 2005). In this study, we have extended the search for Cd isotope variations in the oceans with analyses of two depth profiles and various additional seawater samples from the North Pacific, the Arctic, and the Southern Ocean. The Cd isotope measurements utilized a double spike technique in conjunction with multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS), to achieve a precision and accuracy of about ± 0.8 to 1.5 ɛ114/110Cd. This precision is about a factor of 3 to 4 better than that of previous studies, which did not utilize a double spike. The data collected for the samples display a clear co-variation of Cd isotope compositions with Cd concentrations. The most Cd-rich water samples (with ~1 nmol/kg Cd) display the "lightest" Cd isotope compositions with ɛ114/110Cd ~ +3, akin to results previously obtained for crustal and mantle rocks (Wombacher et. al, 2003). In contrast, samples from the upper water column of the North Pacific (with < 0.02 nmol/kg Cd) have the heaviest Cd isotope compositions with ɛ114/110Cd values of up to +35. To a first order, the Cd isotope and concentration data can be accounted for with a simple, single-stage Rayleigh fractionation model that applies a fractionation factor of about 1.0002 to 1

  18. Cl-36 in polar ice, rainwater and seawater

    NASA Technical Reports Server (NTRS)

    Finkel, R. C.; Nishiizumi, K.; Elmore, D.; Ferraro, R. D.; Gove, H. E.

    1980-01-01

    Concentrations of the cosmogenic radioisotope Cl-36 in Antarctic ice, rain, and an upper limit of the seawater value are determined using van de Graaff accelerator high energy mass spectrometry. Cl-36 concentrations in Antarctic ice range between 2.5 to 8.7 x 10 to the 6th atoms Cl-36/kg, while those concentrations in samples collected at the Alan Hills ice field locations where meteorites have been brought to the surface by glacial flow and ablation are found to vary by more than a factor of three. This variation is attributed either to the effects of atmospheric mixing and scavenging or to radioactive decay in old ice. The Cl-36 concentration found in a present sample of rainwater is much lower than that reported in samples collected in the early 1960's, suggesting the occurrence of a decrease in the concentration of atmospheric Cl-36 derived from nuclear weapons tests over this time period.

  19. Preliminary ecotoxicity assessment of new generation alternative fuels in seawater.

    PubMed

    Rosen, Gunther; Dolecal, Renee E; Colvin, Marienne A; George, Robert D

    2014-06-01

    The United States Navy (USN) is currently demonstrating the viability of environmentally sustainable alternative fuels to power its fleet comprised of aircraft and ships. As with any fuel used in a maritime setting, there is potential for introduction into the environment through transport, storage, and spills. However, while alternative fuels are often presumed to be eco-friendly relative to conventional petroleum-based fuels, their environmental fate and effects on marine environments are essentially unknown. Here, standard laboratory-based toxicity experiments were conducted for two alternative fuels, jet fuel derived from Camelina sativa (wild flax) seeds (HRJ5) and diesel fuel derived from algae (HRD76), and two conventional counterparts, jet fuel (JP5) and ship diesel (F76). Initial toxicity tests performed on water-accommodated fractions (WAF) from neat fuels partitioned into seawater, using four standard marine species in acute and chronic/sublethal tests, indicate that the alternative fuels are significantly less toxic to marine organisms. PMID:24315182

  20. Responses to high seawater temperatures in zooxanthellate octocorals.

    PubMed

    Sammarco, Paul W; Strychar, Kevin B

    2013-01-01

    Increases in Sea Surface Temperatures (SSTs) as a result of global warming have caused reef-building scleractinian corals to bleach worldwide, a result of the loss of obligate endosymbiotic zooxanthellae. Since the 1980's, bleaching severity and frequency has increased, in some cases causing mass mortality of corals. Earlier experiments have demonstrated that zooxanthellae in scleractinian corals from three families from the Great Barrier Reef, Australia (Faviidae, Poritidae, and Acroporidae) are more sensitive to heat stress than their hosts, exhibiting differential symptoms of programmed cell death - apoptosis and necrosis. Most zooxanthellar phylotypes are dying during expulsion upon release from the host. The host corals appear to be adapted or exapted to the heat increases. We attempt to determine whether this adaptation/exaptation occurs in octocorals by examining the heat-sensitivities of zooxanthellae and their host octocoral alcyonacean soft corals - Sarcophyton ehrenbergi (Alcyoniidae), Sinularia lochmodes (Alcyoniidae), and Xenia elongata (Xeniidae), species from two different families. The soft coral holobionts were subjected to experimental seawater temperatures of 28, 30, 32, 34, and 36°C for 48 hrs. Host and zooxanthellar cells were examined for viability, apoptosis, and necrosis (in hospite and expelled) using transmission electron microscopy (TEM), fluorescent microscopy (FM), and flow cytometry (FC). As experimental temperatures increased, zooxanthellae generally exhibited apoptotic and necrotic symptoms at lower temperatures than host cells and were expelled. Responses varied species-specifically. Soft coral hosts were adapted/exapted to higher seawater temperatures than their zooxanthellae. As with the scleractinians, the zooxanthellae appear to be the limiting factor for survival of the holobiont in the groups tested, in this region. These limits have now been shown to operate in six species within five families and two orders of the Cnidaria

  1. Seawater intrusions: Coupling groundwater model and geophysical data

    NASA Astrophysics Data System (ADS)

    Steklova, K.; Haber, E.; Cockett, R.

    2012-12-01

    The process of seawater intrusions into freshwater aquifers occurs naturally, but also as a result of increased groundwater extraction. Different types of models to capture this complex process involving density driven flow and variable boundary conditions have already been proposed and implemented. However, many fewer studies were done in groundwater management planning, for example how to adjust the future groundwater extraction or injection rates with respect to saltwater intrusions occurrence. Geophysical methods (e.g. DC resistivity) offer a good alternative to standard hydrological measurement techniques which need to deal with the miscibility of both freshwater and saltwater and only scarce observation points. The resistivity survey can provide 3D data at lower cost, however the precision depends on the reference models and often decreases with depth. Therefore we suggest an optimization framework which links the hydrogeological model with geophysical datasets. The dynamics of the system is represented by a 3D model for transient groundwater flow in a confined aquifer based on discretized flow and solute mass balance equations. To overcome the difficulty of coupled nonlinear governing equations a semi - Lagrangian method is implemented for the transport equation. This enables to choose arbitrarily large time step without losing stability. For the geophysical forward and inverse problem RESINVM3D package is used. Once the coupled optimization framework is used for many time steps it leads to an optimal control problem. Kalman filtering techniques are often used for such problems, after each time step the optimal state estimates are found based on the system dynamics and observations which are in this case provided by geophysical data. For the variable density flow the process dynamic is nonlinear, in such cases the KF state estimates derivation assumes that the deviation from linearity is of a first order. For the seawater intrusions, where the concentration

  2. Simplified seawater alkalinity analysis: Use of linear array spectrometers

    NASA Astrophysics Data System (ADS)

    Yao, Wensheng; Byrne, Robert H.

    1998-08-01

    Modified spectrophotometric procedures are presented for the determination of seawater total alkalinity using rapid scan linear array spectrometers. Continuous monitoring of solution pH allows titrations to be terminated at relatively high pH, whereby excess acid terms are very small. Excess acid concentrations are quantified using the sulfonephthalein indicators, bromocresol green and bromocresol purple. The outlined spectrophotometric procedures require no thermal equilibration of samples. Using bromocresol green, solution pH T ([H +] T in moles per kg of solution) is given as: pHT=4.2699+0.002578(35- S)+ log((R(25)-0.00131)/(2.3148-0.1299 R(25))) - log(1-0.001005S) and R(25)= R( t){1+0.00909(25- t)}, where 29⩽S⩽37, 13° C⩽t⩽32° C, and R( t) is the absorbance ratio ( A616/ A444) at temperature t and salinity S. Using bromocresol purple, the solution pH T is given as pH T=5.8182+0.00129(35- S)+log(( R(25)-0.00381)/(2.8729-0.05104 R(25))) and R(25)= R( t){1+0.01869(25- t)}, where 29⩽S⩽37, 13° C⩽t⩽32° C, and R( t)= A589/ A432. Alkalinity measurements using bromocresol purple had a precision on the order of 0.3 μmol kg -1 and were within 0.3-0.9 μmol kg -1 of the alkalinities of certified seawater reference materials.

  3. Effects of seawater acidification on a coral reef meiofauna community

    NASA Astrophysics Data System (ADS)

    Sarmento, V. C.; Souza, T. P.; Esteves, A. M.; Santos, P. J. P.

    2015-09-01

    Despite the increasing risk that ocean acidification will modify benthic communities, great uncertainty remains about how this impact will affect the lower trophic levels, such as members of the meiofauna. A mesocosm experiment was conducted to investigate the effects of water acidification on a phytal meiofauna community from a coral reef. Community samples collected from the coral reef subtidal zone (Recife de Fora Municipal Marine Park, Porto Seguro, Bahia, Brazil), using artificial substrate units, were exposed to a control pH (ambient seawater) and to three levels of seawater acidification (pH reductions of 0.3, 0.6, and 0.9 units below ambient) and collected after 15 and 30 d. After 30 d of exposure, major changes in the structure of the meiofauna community were observed in response to reduced pH. The major meiofauna groups showed divergent responses to acidification. Harpacticoida and Polychaeta densities did not show significant differences due to pH. Nematoda, Ostracoda, Turbellaria, and Tardigrada exhibited their highest densities in low-pH treatments (especially at the pH reduction of 0.6 units, pH 7.5), while harpacticoid nauplii were strongly negatively affected by low pH. This community-based mesocosm study supports previous suggestions that ocean acidification induces important changes in the structure of marine benthic communities. Considering the importance of meiofauna in the food web of coral reef ecosystems, the results presented here demonstrate that the trophic functioning of coral reefs is seriously threatened by ocean acidification.

  4. Chloroform extraction of iodine in seawater: method development

    NASA Astrophysics Data System (ADS)

    Seidler, H. B.; Glimme, A.; Tumey, S.; Guilderson, T. P.

    2012-12-01

    While 129I poses little to no radiological health hazard, the isotopic ratio of 129I to stable iodine is very useful as a nearly conservative tracer for ocean mixing processes. The unfortunate disaster at the Fukushima Daiichi nuclear power plant released many radioactive materials into the environment, including 129I. The release allows the studying of oceanic processes through the tracking of 129I. However, with such a low iodine (~0.5 micromolar) and 129I concentrations (<10-11) accelerator mass spectrometry (AMS) is needed for accurate measurements. In order to prepare the samples of ocean water for analysis by AMS, the iodine needs to be separated from the various other salts in the seawater. Solvent extraction is the preferred method for preparation of seawater for AMS analysis of 129I. However, given the relatively low background 129I concentrations in the Pacific Ocean, we sought to optimize recovery of thismethod, which would minimize both the sample size and the carrier addition required for analysis. We started from a base method described in other research and worked towards maximum efficiency of the process while boosting the recovery of iodine. During development, we assessed each methodological change qualitatively using a color scale (I2 in CHCl3) and quantitatively using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The "optimized method" yielded a 20-40% increase in recovery of the iodine compared to the base method (80-85% recovery vs. 60%). Lastly, the "optimized method" was tested by AMS for fractionation of the extracted iodine.

  5. Responses to High Seawater Temperatures in Zooxanthellate Octocorals

    PubMed Central

    Sammarco, Paul W.; Strychar, Kevin B.

    2013-01-01

    Increases in Sea Surface Temperatures (SSTs) as a result of global warming have caused reef-building scleractinian corals to bleach worldwide, a result of the loss of obligate endosymbiotic zooxanthellae. Since the 1980’s, bleaching severity and frequency has increased, in some cases causing mass mortality of corals. Earlier experiments have demonstrated that zooxanthellae in scleractinian corals from three families from the Great Barrier Reef, Australia (Faviidae, Poritidae, and Acroporidae) are more sensitive to heat stress than their hosts, exhibiting differential symptoms of programmed cell death – apoptosis and necrosis. Most zooxanthellar phylotypes are dying during expulsion upon release from the host. The host corals appear to be adapted or exapted to the heat increases. We attempt to determine whether this adaptation/exaptation occurs in octocorals by examining the heat-sensitivities of zooxanthellae and their host octocoral alcyonacean soft corals – Sarcophyton ehrenbergi (Alcyoniidae), Sinularia lochmodes (Alcyoniidae), and Xenia elongata (Xeniidae), species from two different families. The soft coral holobionts were subjected to experimental seawater temperatures of 28, 30, 32, 34, and 36°C for 48 hrs. Host and zooxanthellar cells were examined for viability, apoptosis, and necrosis (in hospite and expelled) using transmission electron microscopy (TEM), fluorescent microscopy (FM), and flow cytometry (FC). As experimental temperatures increased, zooxanthellae generally exhibited apoptotic and necrotic symptoms at lower temperatures than host cells and were expelled. Responses varied species-specifically. Soft coral hosts were adapted/exapted to higher seawater temperatures than their zooxanthellae. As with the scleractinians, the zooxanthellae appear to be the limiting factor for survival of the holobiont in the groups tested, in this region. These limits have now been shown to operate in six species within five families and two orders of the

  6. Enriched Seawater Delivery System to Support In Situ Ocean Acidification Experiments using Carbon Dioxide for pH Adjustment of Seawater

    NASA Astrophysics Data System (ADS)

    Kirkwood, W. J.; Peltzer, E. T.; Walz, P. M.; Shane, F.; Kecy, C.; Headley, K. L.; Herlien, B.; Maughan, T.; Scholfield, J.; Salamy, K. A.; O'Reilly, T.; Brewer, P. G.

    2011-12-01

    A series of Free Ocean CO2 Enrichment (FOCE) experiments are underway or are in planning to perform in situ ocean acidification research at a number of locations around the world. One of the most challenging locations is in Monterey Bay at the site of the Monterey Accelerated Research System, the United States test facility for cabled observatories. This site is located at 890 m deep and 4 0C within the local oxygen minimum zone and approximately 50 kilometers from shore. At this depth and temperature the behavior of liquid CO2 presents various challenges that had to be addressed in order to provide the low pH seawater needed for the FOCE apparatus to perform as desired. To solve this challenge a team of engineers and scientists at the Monterey Bay Aquarium Research Institute (MBARI) have developed a standalone device referred to as the Enriched Seawater Delivery System. Simple injections of seawater saturated at one atmosphere with CO2 demonstrated that the FOCE unit itself performs as designed. However, providing a consistent source of CO2 enriched pH altered seawater within the design criteria proved to be an imposing problem which when solved could have a broader impact in the oceanographic community. The decision was made to build a stand-alone device separate from the FOCE flume to perform in situ CO2 experiments in conditions where CO2 hydrate can form. Challenges to be over-come by this work included: (1) liquid CO2 is buoyant at the prescribed depth; (2) minimizing the formation of hydrates while manufacturing the CO2 enriched seawater. Because CO2 hydrate is denser than seawater, management of the phases and stability of liquid CO2 was necessary to prevent clogging within the delivery system. Our earliest field experiments demonstrated that containing and controlling the CO2 and the CO2-enriched seawater is difficult and makes the metering of the enriched fluid with on demand milliliter per second precision an extremely challenging problem. The Enriched

  7. Ultra-trace plutonium determination in small volume seawater by sector field inductively coupled plasma mass spectrometry with application to Fukushima seawater samples.

    PubMed

    Bu, Wenting; Zheng, Jian; Guo, Qiuju; Aono, Tatsuo; Tagami, Keiko; Uchida, Shigeo; Tazoe, Hirofumi; Yamada, Masatoshi

    2014-04-11

    Long-term monitoring of Pu isotopes in seawater is required for assessing Pu contamination in the marine environment from the Fukushima Dai-ichi Nuclear Power Plant accident. In this study, we established an accurate and precise analytical method based on anion-exchange chromatography and SF-ICP-MS. This method was able to determine Pu isotopes in seawater samples with small volumes (20-60L). The U decontamination factor was 3×10(7)-1×10(8), which provided sufficient removal of interfering U from the seawater samples. The estimated limits of detection for (239)Pu and (240)Pu were 0.11fgmL(-1) and 0.08fgmL(-1), respectively, which corresponded to 0.01mBqm(-3) for (239)Pu and 0.03mBqm(-3) for (240)Pu when a 20L volume of seawater was measured. We achieved good precision (2.9%) and accuracy (0.8%) for measurement of the (240)Pu/(239)Pu atom ratio in the standard Pu solution with a (239)Pu concentration of 11fgmL(-1) and (240)Pu concentration of 2.7fgmL(-1). Seawater reference materials were used for the method validation and both the (239+240)Pu activities and (240)Pu/(239)Pu atom ratios agreed well with the expected values. Surface and bottom seawater samples collected off Fukushima in the western North Pacific since March 2011 were analyzed. Our results suggested that there was no significant variation of the Pu distribution in seawater in the investigated areas compared to the distribution before the accident. PMID:24636561

  8. A comparison between SWI and SEAWAT: the importance of dispersion, inversion and vertical anisotropy

    USGS Publications Warehouse

    Dausman, Alyssa M.; Langevin, Christian D.; Bakker, Mark; Schaars, Frans

    2010-01-01

    SWI and SEAWAT are both computer codes designed to model variable-density systems. One of the options in SWI is to model Dupuit interface flow, where freshwater and seawater are separated by an interface. In this paper we compare seawater intrusion model results of SWI to model results of SEAWAT, which simulates full variable-density flow and transport. Results indicate that SWI is valid for many variable-density systems. For the case considered in this paper, SWI results are accurate when the simulated width of the transition zone between seawater to freshwater is 15% or less of the scale of the problem, density inversion (saltwater over freshwater) occurs over only a small part of the model domain, and the ratio of vertical to horizontal hydraulic conductivity is larger than 0.01. Results also show that the simulated interface moves further inland using SWI than for the same conditions using SEAWAT. SWI is preferable to be used in systems where run times for a fully-coupled variable-density flow and transport model would be prohibitive; for the case considered here, SWI run times were a few seconds and SEAWAT run times were almost three hours.

  9. Plutonium determination in seawater by inductively coupled plasma mass spectrometry: A review.

    PubMed

    Cao, Liguo; Bu, Wenting; Zheng, Jian; Pan, Shaoming; Wang, Zhongtang; Uchida, Shigeo

    2016-05-01

    Knowing the concentration and isotopic ratio of Pu in seawater is of critical importance for assessing Pu contamination and investigating oceanic processes. In recent decades, the concentration of (239+240)Pu in seawater, particularly for surface seawater, has presented an exponential decreasing trend with time; thus determination of Pu in seawater has become a challenge nowadays. Here, we have summarized and critically discussed a variety of reported analytical methods for Pu determination in seawater sample based on inductively coupled plasma mass spectrometry (ICP-MS) analytical technique for rapid ultra-trace detection of Pu. Generally, pretreatments for seawater sample include co-precipitation, valence adjustment and chemical separation and purification procedures, all of which are comprehensively reviewed. Overall, the selected anion-exchange, extraction resins and operation condition are important for decontamination of interference from matrix elements and achieving satisfactory chemical yields. In addition, other mass spectrometric and radiometric detections are briefly addressed and compared with the focus on assessing ICP-MS. Finally, we discuss some issues and prospects in determination and application of Pu isotopes in seawater samples for future research. PMID:26946007

  10. The effect of composition anomalies on the conductivity and density of seawater

    NASA Astrophysics Data System (ADS)

    Pawlowicz, R. A.; Wright, D.; Millero, F. J.

    2010-12-01

    As seawater circulates through the global ocean, its relative composition undergoes small variations. This results in changes to the conductivity/salinity/density relationship, which is currently well-defined only for Standard Seawater obtained from a particular area in the North Atlantic. Although these changes have been ignored for 30 years, they are in fact the largest source of errors in the determination of the thermodynamic properties of real seawater using the equation of state (either EOS80 or the newer TEOS-10). Here we describe a theoretical model that relates seawater composition, conductivity, and density. A numerical implementation of the model can be used to predict density anomalies resulting from observed conductivities, carbonate-system parameters, and nutrient concentrations. Predictions of density anomalies made this way for a number of hydrographic sections are shown below. Calculations replicate direct observations of density anomalies in both laboratory experiments and in the open ocean. Theoretical analysis suggests that a hierarchy of salinity variables are required to fully describe the effects of anomalous seawater, but numerical experimentation shows that simple conversion factors can be used to relate them all in typical open-ocean situations. These results are incorporated into the new seawater manual (IOC, SCOR, and IAPSO, The International Thermodynamic Equation of Seawater - 2010: Calculation and Use of Thermodynamic Properties,UNESCO, 2010, also at www.teos-10.org) and should be useful in future attempts to understand and model global ocean circulation. Model-calculated density anomalies over several trans-oceanic sections