Science.gov

Sample records for secis binding proteins

  1. Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2.

    PubMed

    Bubenik, Jodi L; Miniard, Angela C; Driscoll, Donna M

    2014-01-01

    Selenium, a micronutrient, is primarily incorporated into human physiology as selenocysteine (Sec). The 25 Sec-containing proteins in humans are known as selenoproteins. Their synthesis depends on the translational recoding of the UGA stop codon to allow Sec insertion. This requires a stem-loop structure in the 3' untranslated region of eukaryotic mRNAs known as the Selenocysteine Insertion Sequence (SECIS). The SECIS is recognized by SECIS-binding protein 2 (SBP2) and this RNA:protein interaction is essential for UGA recoding to occur. Genetic mutations cause SBP2 deficiency in humans, resulting in a broad set of symptoms due to differential effects on individual selenoproteins. Progress on understanding the different phenotypes requires developing robust tools to investigate SBP2 structure and function. In this study we demonstrate that SBP2 protein produced by in vitro translation discriminates among SECIS elements in a competitive UGA recoding assay and has a much higher specific activity than bacterially expressed protein. We also show that a purified recombinant protein encompassing amino acids 517-777 of SBP2 binds to SECIS elements with high affinity and selectivity. The affinity of the SBP2:SECIS interaction correlated with the ability of a SECIS to compete for UGA recoding activity in vitro. The identification of a 250 amino acid sequence that mediates specific, selective SECIS-binding will facilitate future structural studies of the SBP2:SECIS complex. Finally, we identify an evolutionarily conserved core cysteine signature in SBP2 sequences from the vertebrate lineage. Mutation of multiple, but not single, cysteines impaired SECIS-binding but did not affect protein localization in cells. PMID:25692238

  2. Evolutionary history of selenocysteine incorporation from the perspective of SECIS binding proteins

    PubMed Central

    Donovan, Jesse; Copeland, Paul R

    2009-01-01

    Background The co-translational incorporation of selenocysteine into nascent polypeptides by recoding the UGA stop codon occurs in all domains of life. In eukaryotes, this event requires at least three specific factors: SECIS binding protein 2 (SBP2), a specific translation elongation factor (eEFSec), selenocysteinyl tRNA, and a cis-acting selenocysteine insertion sequence (SECIS) element in selenoprotein mRNAs. While the phylogenetic relationships of selenoprotein families and the evolution of selenocysteine usage are well documented, the evolutionary history of SECIS binding proteins has not been explored. Results In this report we present a phylogeny of the eukaryotic SECIS binding protein family which includes SBP2 and a related protein we herein term SBP2L. Here we show that SBP2L is an SBP2 paralogue in vertebrates and is the only form of SECIS binding protein in invertebrate deuterostomes, suggesting a key role in Sec incorporation in these organisms, but an SBP2/SBP2L fusion protein is unable to support Sec incorporation in vitro. An in-depth phylogenetic analysis of the conserved L7Ae RNA binding domain suggests an ancestral relationship with ribosomal protein L30. In addition, we describe the emergence of a motif upstream of the SBP2 RNA binding domain that shares significant similarity with a motif within the pseudouridine synthase Cbf5. Conclusion Our analysis suggests that SECIS binding proteins arose once in evolution but diverged significantly in multiple lineages. In addition, likely due to a gene duplication event in the early vertebrate lineage, SBP2 and SBP2L are paralogous in vertebrates. PMID:19744324

  3. The Redox State of SECIS Binding Protein 2 Controls Its Localization and Selenocysteine Incorporation Function

    PubMed Central

    Papp, Laura V.; Lu, Jun; Striebel, Frank; Kennedy, Derek; Holmgren, Arne; Khanna, Kum Kum

    2006-01-01

    Selenoproteins are central controllers of cellular redox homeostasis. Incorporation of selenocysteine (Sec) into selenoproteins employs a unique mechanism to decode the UGA stop codon. The process requires the Sec insertion sequence (SECIS) element, tRNASec, and protein factors including the SECIS binding protein 2 (SBP2). Here, we report the characterization of motifs within SBP2 that regulate its subcellular localization and function. We show that SBP2 shuttles between the nucleus and the cytoplasm via intrinsic, functional nuclear localization signal and nuclear export signal motifs and that its nuclear export is dependent on the CRM1 pathway. Oxidative stress induces nuclear accumulation of SBP2 via oxidation of cysteine residues within a redox-sensitive cysteine-rich domain. These modifications are efficiently reversed in vitro by human thioredoxin and glutaredoxin, suggesting that these antioxidant systems might regulate redox status of SBP2 in vivo. Depletion of SBP2 in cell lines using small interfering RNA results in a decrease in Sec incorporation, providing direct evidence for its requirement for selenoprotein synthesis. Furthermore, Sec incorporation is reduced substantially after treatment of cells with agents that cause oxidative stress, suggesting that nuclear sequestration of SBP2 under such conditions may represent a mechanism to regulate the expression of selenoproteins. PMID:16782878

  4. An improved definition of the RNA-binding specificity of SECIS-binding protein 2, an essential component of the selenocysteine incorporation machinery

    PubMed Central

    Cléry, A.; Bourguignon-Igel, V.; Allmang, C.; Krol, A.; Branlant, C.

    2007-01-01

    By binding to SECIS elements located in the 3′-UTR of selenoprotein mRNAs, the protein SBP2 plays a key role in the assembly of the selenocysteine incorporation machinery. SBP2 contains an L7Ae/L30 RNA-binding domain similar to that of protein 15.5K/Snu13p, which binds K-turn motifs with a 3-nt bulge loop closed by a tandem of G.A and A.G pairs. Here, by SELEX experiments, we demonstrate the capacity of SBP2 to bind such K-turn motifs with a protruding U residue. However, we show that conversion of the bulge loop into an internal loop reinforces SBP2 affinity and to a greater extent RNP stability. Opposite variations were found for Snu13p. Accordingly, footprinting assays revealed strong contacts of SBP2 with helices I and II and the 5′-strand of the internal loop, as opposed to the loose interaction of Snu13p. Our data also identifies new determinants for SBP2 binding which are located in helix II. Among the L7Ae/L30 family members, these determinants are unique to SBP2. Finally, in accordance with functional data on SECIS elements, the identity of residues at positions 2 and 3 in the loop influences SBP2 affinity. Altogether, the data provide a very precise definition of the SBP2 RNA specificity. PMID:17332014

  5. Unlocking the Bacterial SecY Translocon

    PubMed Central

    Corey, Robin A.; Allen, William J.; Komar, Joanna; Masiulis, Simonas; Menzies, Sam; Robson, Alice; Collinson, Ian

    2016-01-01

    Summary The Sec translocon performs protein secretion and membrane protein insertion at the plasma membrane of bacteria and archaea (SecYEG/β), and the endoplasmic reticular membrane of eukaryotes (Sec61). Despite numerous structures of the complex, the mechanism underlying translocation of pre-proteins, driven by the ATPase SecA in bacteria, remains unresolved. Here we present a series of biochemical and computational analyses exploring the consequences of signal sequence binding to SecYEG. The data demonstrate that a signal sequence-induced movement of transmembrane helix 7 unlocks the translocon and that this conformational change is communicated to the cytoplasmic faces of SecY and SecE, involved in SecA binding. Our findings progress the current understanding of the dynamic action of the translocon during the translocation initiation process. The results suggest that the converging effects of the signal sequence and SecA at the cytoplasmic face of SecYEG are decisive for the intercalation and translocation of pre-protein through the SecY channel. PMID:26973090

  6. Phylogenetic analysis and delineation of phytoplasmas based on the secY gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The secY gene, located in the operator-distal part of the spc ribosomal protein operon, codes for a protein translocase subunit secY. The secY gene sequence is more variable than that of the 16S rRNA gene. Comparative phylogenetic analyses with 16S rRNA and secY gene sequences from 80 and 83 phytop...

  7. Reconstitution of selenocysteine incorporation reveals intrinsic regulation by SECIS elements

    PubMed Central

    Gupta, Nirupama; DeMong, Louise W.; Banda, Sowmya; Copeland, Paul R.

    2013-01-01

    Selenoproteins are present in all three domains of life and are responsible for a major part of a cell’s antioxidant defense against reactive oxygen species. Synthesis of selenoproteins requires the decoding of a UGA codon as selenocysteine (Sec) instead of translation termination. Sec is incorporated into the growing polypeptide chain during translation elongation and is known to require a set of highly specific factors: The Sec insertion sequence (SECIS) element in the 3′ untranslated region (3′ UTR), Sec-tRNASec, the Sec-specific elongation factor eEFSec, and SECIS binding protein 2 (SBP2). Since reconstitution has not been reported, whether these factors are sufficient is unknown. Here we report a novel in vitro translation system in which Sec incorporation has been reconstituted from purified components introduced into a Sec naive system. In addition, we developed a novel method to purify Sec-tRNASec and active eEFSec/GTP/tRNA ternary complex. We found that the known basal factors are sufficient for Sec incorporation in vitro. Using this highly manipulable system, we have also found that ribosomes from non-Sec utilizing organisms cannot support Sec incorporation and that some SECIS elements are intrinsically less efficient than others. Having identified the essential set of factors, this work removes a significant barrier to our understanding of the mechanism of Sec incorporation. PMID:23624110

  8. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation

    PubMed Central

    Allen, William John; Corey, Robin Adam; Oatley, Peter; Sessions, Richard Barry; Radford, Sheena E; Tuma, Roman; Collinson, Ian

    2016-01-01

    The essential process of protein secretion is achieved by the ubiquitous Sec machinery. In prokaryotes, the drive for translocation comes from ATP hydrolysis by the cytosolic motor-protein SecA, in concert with the proton motive force (PMF). However, the mechanism through which ATP hydrolysis by SecA is coupled to directional movement through SecYEG is unclear. Here, we combine all-atom molecular dynamics (MD) simulations with single molecule FRET and biochemical assays. We show that ATP binding by SecA causes opening of the SecY-channel at long range, while substrates at the SecY-channel entrance feed back to regulate nucleotide exchange by SecA. This two-way communication suggests a new, unifying 'Brownian ratchet' mechanism, whereby ATP binding and hydrolysis bias the direction of polypeptide diffusion. The model represents a solution to the problem of transporting inherently variable substrates such as polypeptides, and may underlie mechanisms of other motors that translocate proteins and nucleic acids. DOI: http://dx.doi.org/10.7554/eLife.15598.001 PMID:27183269

  9. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation.

    PubMed

    Allen, William John; Corey, Robin Adam; Oatley, Peter; Sessions, Richard Barry; Baldwin, Steve A; Radford, Sheena E; Tuma, Roman; Collinson, Ian

    2016-01-01

    The essential process of protein secretion is achieved by the ubiquitous Sec machinery. In prokaryotes, the drive for translocation comes from ATP hydrolysis by the cytosolic motor-protein SecA, in concert with the proton motive force (PMF). However, the mechanism through which ATP hydrolysis by SecA is coupled to directional movement through SecYEG is unclear. Here, we combine all-atom molecular dynamics (MD) simulations with single molecule FRET and biochemical assays. We show that ATP binding by SecA causes opening of the SecY-channel at long range, while substrates at the SecY-channel entrance feed back to regulate nucleotide exchange by SecA. This two-way communication suggests a new, unifying 'Brownian ratchet' mechanism, whereby ATP binding and hydrolysis bias the direction of polypeptide diffusion. The model represents a solution to the problem of transporting inherently variable substrates such as polypeptides, and may underlie mechanisms of other motors that translocate proteins and nucleic acids. PMID:27183269

  10. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY.

    PubMed

    Cannon, Kurt S; Or, Eran; Clemons, William M; Shibata, Yoko; Rapoport, Tom A

    2005-04-25

    During their biosynthesis, many proteins pass through the membrane via a hydrophilic channel formed by the heterotrimeric Sec61/SecY complex. Whether this channel forms at the interface of multiple copies of Sec61/SecY or is intrinsic to a monomeric complex, as suggested by the recently solved X-ray structure of the Methanococcus jannaschii SecY complex, is a matter of contention. By introducing a single cysteine at various positions in Escherichia coli SecY and testing its ability to form a disulfide bond with a single cysteine in a translocating chain, we provide evidence that translocating polypeptides pass through the center of the SecY complex. The strongest cross-links were observed with residues that would form a constriction in an hourglass-shaped pore. This suggests that the channel makes only limited contact with a translocating polypeptide, thus minimizing the energy required for translocation. PMID:15851514

  11. Protein Binding Pocket Dynamics.

    PubMed

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  12. Anomalous behavior of water inside the SecY translocon.

    PubMed

    Capponi, Sara; Heyden, Matthias; Bondar, Ana-Nicoleta; Tobias, Douglas J; White, Stephen H

    2015-07-21

    The heterotrimeric SecY translocon complex is required for the cotranslational assembly of membrane proteins in bacteria and archaea. The insertion of transmembrane (TM) segments during nascent-chain passage through the translocon is generally viewed as a simple partitioning process between the water-filled translocon and membrane lipid bilayer, suggesting that partitioning is driven by the hydrophobic effect. Indeed, the apparent free energy of partitioning of unnatural aliphatic amino acids on TM segments is proportional to accessible surface area, which is a hallmark of the hydrophobic effect [Öjemalm K, et al. (2011) Proc Natl Acad Sci USA 108(31):E359-E364]. However, the apparent partitioning solvation parameter is less than one-half the value expected for simple bulk partitioning, suggesting that the water in the translocon departs from bulk behavior. To examine the state of water in a SecY translocon complex embedded in a lipid bilayer, we carried out all-atom molecular-dynamics simulations of the Pyrococcus furiosus SecYE, which was determined to be in a "primed" open state [Egea PF, Stroud RM (2010) Proc Natl Acad Sci USA 107(40):17182-17187]. Remarkably, SecYE remained in this state throughout our 450-ns simulation. Water molecules within SecY exhibited anomalous diffusion, had highly retarded rotational dynamics, and aligned their dipoles along the SecY transmembrane axis. The translocon is therefore not a simple water-filled pore, which raises the question of how anomalous water behavior affects the mechanism of translocon function and, more generally, the partitioning of hydrophobic molecules. Because large water-filled cavities are found in many membrane proteins, our findings may have broader implications. PMID:26139523

  13. Anomalous behavior of water inside the SecY translocon

    PubMed Central

    Capponi, Sara; Heyden, Matthias; Bondar, Ana-Nicoleta; Tobias, Douglas J.; White, Stephen H.

    2015-01-01

    The heterotrimeric SecY translocon complex is required for the cotranslational assembly of membrane proteins in bacteria and archaea. The insertion of transmembrane (TM) segments during nascent-chain passage through the translocon is generally viewed as a simple partitioning process between the water-filled translocon and membrane lipid bilayer, suggesting that partitioning is driven by the hydrophobic effect. Indeed, the apparent free energy of partitioning of unnatural aliphatic amino acids on TM segments is proportional to accessible surface area, which is a hallmark of the hydrophobic effect [Öjemalm K, et al. (2011) Proc Natl Acad Sci USA 108(31):E359–E364]. However, the apparent partitioning solvation parameter is less than one-half the value expected for simple bulk partitioning, suggesting that the water in the translocon departs from bulk behavior. To examine the state of water in a SecY translocon complex embedded in a lipid bilayer, we carried out all-atom molecular-dynamics simulations of the Pyrococcus furiosus SecYE, which was determined to be in a “primed” open state [Egea PF, Stroud RM (2010) Proc Natl Acad Sci USA 107(40):17182–17187]. Remarkably, SecYE remained in this state throughout our 450-ns simulation. Water molecules within SecY exhibited anomalous diffusion, had highly retarded rotational dynamics, and aligned their dipoles along the SecY transmembrane axis. The translocon is therefore not a simple water-filled pore, which raises the question of how anomalous water behavior affects the mechanism of translocon function and, more generally, the partitioning of hydrophobic molecules. Because large water-filled cavities are found in many membrane proteins, our findings may have broader implications. PMID:26139523

  14. Dynamic Organization of SecA and SecY Secretion Complexes in the B. subtilis Membrane.

    PubMed

    Dajkovic, Alex; Hinde, Elizabeth; MacKichan, Calum; Carballido-Lopez, Rut

    2016-01-01

    In prokaryotes, about one third of cellular proteins are translocated across the plasma membrane or inserted into it by concerted action of the cytoplasmic ATPase SecA and the universally conserved SecYEG heterotrimeric polypeptide-translocating pore. Secretion complexes have been reported to localize in specific subcellular sites in Bacillus subtilis. In this work, we used a combination of total internal reflection microscopy, scanning fluorescence correlation spectroscopy, and pair correlation function to study the localization and dynamics of SecA and SecY in growing Bacillus subtilis cells. Both SecA and SecY localized in transient and dynamic foci in the cytoplasmic membrane, which displayed no higher-level organization in helices. Foci of SecA and SecY were in constant flux with freely diffusing SecA and SecY molecules. Scanning FCS confirmed the existence of populations of cellular SecA and SecY molecules with a wide range of diffusion coefficients. Diffusion of SecY as an uncomplexed molecular species was short-lived and only local while SecY complexed with its protein partners traversed distances of over half a micrometer in the cell. PMID:27336478

  15. Dynamic Organization of SecA and SecY Secretion Complexes in the B. subtilis Membrane

    PubMed Central

    Dajkovic, Alex; Hinde, Elizabeth; MacKichan, Calum; Carballido-Lopez, Rut

    2016-01-01

    In prokaryotes, about one third of cellular proteins are translocated across the plasma membrane or inserted into it by concerted action of the cytoplasmic ATPase SecA and the universally conserved SecYEG heterotrimeric polypeptide-translocating pore. Secretion complexes have been reported to localize in specific subcellular sites in Bacillus subtilis. In this work, we used a combination of total internal reflection microscopy, scanning fluorescence correlation spectroscopy, and pair correlation function to study the localization and dynamics of SecA and SecY in growing Bacillus subtilis cells. Both SecA and SecY localized in transient and dynamic foci in the cytoplasmic membrane, which displayed no higher-level organization in helices. Foci of SecA and SecY were in constant flux with freely diffusing SecA and SecY molecules. Scanning FCS confirmed the existence of populations of cellular SecA and SecY molecules with a wide range of diffusion coefficients. Diffusion of SecY as an uncomplexed molecular species was short-lived and only local while SecY complexed with its protein partners traversed distances of over half a micrometer in the cell. PMID:27336478

  16. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  17. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  18. Cold Spots in Protein Binding.

    PubMed

    Shirian, Jason; Sharabi, Oz; Shifman, Julia M

    2016-09-01

    Understanding the energetics and architecture of protein-binding interfaces is important for basic research and could potentially facilitate the design of novel binding domains for biotechnological applications. It is well accepted that a few key residues at binding interfaces (binding hot spots) are responsible for contributing most to the free energy of binding. In this opinion article, we introduce a new concept of 'binding cold spots', or interface positions occupied by suboptimal amino acids. Such positions exhibit a potential for affinity enhancement through various mutations. We give several examples of cold spots from different protein-engineering studies and argue that identification of such positions is crucial for studies of protein evolution and protein design. PMID:27477052

  19. Recombinant forms of M13 procoat with an OmpA leader sequence or a large carboxy-terminal extension retain their independence of secY function.

    PubMed Central

    Kuhn, A; Kreil, G; Wickner, W

    1987-01-01

    The assembly of phage M13 procoat protein into the plasma membrane of Escherichia coli is independent of the secY protein. To test whether this is caused by the unusually small size of procoat, we fused DNA encoding 103 amino acids to the carboxy-terminal end of the procoat gene. The resulting fusion protein, which attains the same membrane-spanning conformation as mature coat protein, still does not require the secY function for membrane assembly. To determine whether the leader sequence governs interaction with the secY protein, we genetically exchanged the leader peptides between procoat and pro-OmpA, a protein which does require secY for its membrane assembly. Each of the resulting hybrid proteins assembles across the plasma membrane, though at a reduced rate. Membrane assembly of the fusion of procoat leader and OmpA required secY function, whereas assembly of the pro-OmpA leader/coat protein fusion was independent of secY. Properties of the entire procoat molecule, rather than its small size or a specific property of its leader peptide determines its mode of membrane assembly. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3034592

  20. Binding Efficiency of Protein-Protein Complexes

    PubMed Central

    Day, Eric S.; Cote, Shaun M.; Whitty, Adrian

    2012-01-01

    We examine the relationship between binding affinity and interface size for reversible protein-protein interactions (PPI), using cytokines from the tumor necrosis factor (TNF) superfamily and their receptors as a test case. Using surface plasmon resonance, we measured single-site binding affinities for the large receptor TNFR1 binding to its ligands TNFα (KD = 1.4 ± 0.4 nM) and lymphotoxin-α (KD = 50 ± 10 nM), and also for the small receptor Fn14 binding to TWEAK (KD = 70 ± 10 nM). We additionally assembled data for all other TNF/TNFR family complexes for which reliable single site binding affinities have been reported. We used these values to calculate the binding efficiency – defined as binding energy per Å2 of surface area buried at the contact interface – for the nine of these complexes for which co-crystal structures are available, and compared the results to those for a set of 144 protein-protein complexes with published affinity values. The results show that the most efficient PPI complexes generate ~20 cal.mol−1/Å2 of binding energy. A minimum contact area of ~500 Å2 is required for a stable complex, required to generate sufficient interaction energy to pay the entropic cost of co-localizing two proteins from 1 M solution. The most compact and efficient TNF/TNFR complex was BAFF/BR3, which achieved ~80% of the maximum achievable binding efficiency. Other small receptors also gave high binding efficiencies, while the larger receptors generated only 44-49% of this limit despite interacting primarily through just a single small domain. The results provide new insight into how much binding energy can be generated by a PPI interface of a given size, and establish a quantitative method to predict how large a natural or engineered contact interface must be to achieve a given level of binding affinity. PMID:23088250

  1. Nucleolin binds to a subset of selenoprotein mRNAs and regulates their expression.

    PubMed

    Miniard, Angela C; Middleton, Lisa M; Budiman, Michael E; Gerber, Carri A; Driscoll, Donna M

    2010-08-01

    Selenium, an essential trace element, is incorporated into selenoproteins as selenocysteine (Sec), the 21st amino acid. In order to synthesize selenoproteins, a translational reprogramming event must occur since Sec is encoded by the UGA stop codon. In mammals, the recoding of UGA as Sec depends on the selenocysteine insertion sequence (SECIS) element, a stem-loop structure in the 3' untranslated region of the transcript. The SECIS acts as a platform for RNA-binding proteins, which mediate or regulate the recoding mechanism. Using UV crosslinking, we identified a 110 kDa protein, which binds with high affinity to SECIS elements from a subset of selenoprotein mRNAs. The crosslinking activity was purified by RNA affinity chromatography and identified as nucleolin by mass spectrometry analysis. In vitro binding assays showed that purified nucleolin discriminates among SECIS elements in the absence of other factors. Based on siRNA experiments, nucleolin is required for the optimal expression of certain selenoproteins. There was a good correlation between the affinity of nucleolin for a SECIS and its effect on selenoprotein expression. As selenoprotein transcript levels and localization did not change in siRNA-treated cells, our results suggest that nucleolin selectively enhances the expression of a subset of selenoproteins at the translational level. PMID:20385601

  2. When is protein binding important?

    PubMed

    Heuberger, Jules; Schmidt, Stephan; Derendorf, Hartmut

    2013-09-01

    The present paper is an ode to a classic citation by Benet and Hoener (2002. Clin Pharm Ther 71(3):115-121). The now classic paper had a huge impact on drug development and the way the issue of protein binding is perceived and interpreted. Although the authors very clearly pointed out the limitations and underlying assumptions for their delineations, these are too often overlooked and the classic paper's message is misinterpreted by broadening to cases that were not intended. Some members of the scientific community concluded from the paper that protein binding is not important. This was clearly not intended by the authors, as they finished their paper with a paragraph entitled: "When is protein binding important?" Misinterpretation of the underlying assumptions in the classic work can result in major pitfalls in drug development. Therefore, we revisit the topic of protein binding with the intention of clarifying when clinically relevant changes should be considered during drug development. PMID:23650013

  3. The prion protein binds thiamine.

    PubMed

    Perez-Pineiro, Rolando; Bjorndahl, Trent C; Berjanskii, Mark V; Hau, David; Li, Li; Huang, Alan; Lee, Rose; Gibbs, Ebrima; Ladner, Carol; Dong, Ying Wei; Abera, Ashenafi; Cashman, Neil R; Wishart, David S

    2011-11-01

    Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction. PMID:21848803

  4. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  5. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  6. Protein binding assay for hyaluronate

    SciTech Connect

    Lacy, B.E.; Underhill, C.B.

    1986-11-01

    A relatively quick and simple assay for hyaluronate was developed using the specific binding protein, hyaluronectin. The hyaluronectin was obtained by homogenizing the brains of Sprague-Dawley rats, and then centrifuging the homogenate. The resulting supernatant was used as a source of crude hyaluronectin. In the binding assay, the hyaluronectin was mixed with (/sup 3/H)hyaluronate, followed by an equal volume of saturated (NH/sub 4/)/sub 2/SO/sub 4/, which precipitated the hyaluronectin and any (/sup 3/H)hyaluronate associated with it, but left free (/sup 3/H)hyaluronate in solution. The mixture was then centrifuged, and the amount of bound (/sup 3/H)hyaluronate in the precipitate was determined. Using this assay, the authors found that hyaluronectin specifically bound hyaluronate, since other glycosaminoglycans failed to compete for the binding protein. In addition, the interaction between hyaluronectin and hyaluronate was of relatively high affinity, and the size of the hyaluronate did not appear to substantially alter the amount of binding. To determine the amount of hyaluronate in an unknown sample, they used a competition assay in which the binding of a set amount of (/sup 3/H)hyaluronate was blocked by the addition of unlabeled hyaluronate. By comparing the degree of competition of the unknown samples with that of known amounts of hyaluronate, it was possible to determine the amount of hyaluronate in the unknowns. They have found that this method is sensitive to 1 ..mu..g or less of hyaluronate, and is unaffected by the presence of proteins.

  7. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  8. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  9. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  10. Backbone Dynamics Of Intracellular Lipid Binding Proteins

    NASA Astrophysics Data System (ADS)

    Gutiérrez-González, Luis H.

    2005-04-01

    The family of intracellular lipid binding proteins (iLBPs) comprises a group of homologous 14-15 kDa proteins that specifically bind and facilitate the transport of fatty acids, bile acids, retinoids or eicosanoids. Members of this family include several types of fatty acid binding proteins (FABPs), ileal lipid binding protein, cellular retinoic acid binding proteins and cellular retinoid binding proteins. As a contribution to understanding the structure-function relationship in this protein family, the solution structure and backbone dynamics of human epidermal-type FABP (E-FABP) determined by NMR spectroscopy are reported. Moreover, hydrogen/deuterium exchange experiments indicated a direct correlation between the stability of the hydrogen-bonding network in the β-sheet structure and the conformational exchange in the millisecond-to-microsecond time range. The features of E-FABP backbone dynamics discussed in the present study are compared with those obtained for other phylogenetically related proteins. A strong interdependence with the overall protein stability and possibly also with the ligand-binding affinity for members of the lipid-binding protein family is shown.

  11. The detection of DNA-binding proteins by protein blotting.

    PubMed Central

    Bowen, B; Steinberg, J; Laemmli, U K; Weintraub, H

    1980-01-01

    A method, called "protein blotting," for the detection of DNA-binding proteins is described. Proteins are separated on an SDA-polyacrylamide gel. The gel is sandwiched between 2 nitrocellulose filters and the proteins allowed to diffuse out of the gel and onto the filters. The proteins are tightly bound to each filter, producing a replica of the original gel pattern. The replica is used to detect DNA-binding proteins, RNA-binding proteins or histone-binding proteins by incubation of the filter with [32P]DNA, [125I]RNA, or [125I] histone. Evidence is also presented that specific protein-DNA interactions may be detected by this technique; under appropriate conditions, the lac repressor binds only to DNA containing the lac operator. Strategies for the detection of specific protein-DNA interactions are discussed. Images PMID:6243775

  12. Regulation of the protein-conducting channel by a bound ribosome

    PubMed Central

    Gumbart, James; Trabuco, Leonardo G.; Schreiner, Eduard; Villa, Elizabeth; Schulten, Klaus

    2009-01-01

    Summary During protein synthesis, it is often necessary for the ribosome to form a complex with a membrane-bound channel, the SecY/Sec61 complex, in order to translocate nascent proteins across a cellular membrane. Structural data on the ribosome-channel complex are currently limited to low-resolution cryo-electron microscopy maps, including one showing a bacterial ribosome bound to a monomeric SecY complex. Using that map along with available atomic-level models of the ribosome and SecY, we have determined, through molecular dynamics flexible fitting (MDFF), an atomic-resolution model of the ribosome-channel complex. We characterized computationally the sites of ribosome-SecY interaction within the complex and determined the effect of ribosome binding on the SecY channel. We also constructed a model of a ribosome in complex with a SecY dimer by adding a second copy of SecY to the MDFF-derived model. The study involved 2.7-million-atom simulations over altogether nearly 50 ns. PMID:19913480

  13. A prl mutation in SecY suppresses secretion and virulence defects of Listeria monocytogenes secA2 mutants.

    PubMed

    Durack, Juliana; Burke, Thomas P; Portnoy, Daniel A

    2015-03-01

    The bulk of bacterial protein secretion occurs through the conserved SecY translocation channel that is powered by SecA-dependent ATP hydrolysis. Many Gram-positive bacteria, including the human pathogen Listeria monocytogenes, possess an additional nonessential specialized ATPase, SecA2. SecA2-dependent secretion is required for normal cell morphology and virulence in L. monocytogenes; however, the mechanism of export via this pathway is poorly understood. L. monocytogenes secA2 mutants form rough colonies, have septation defects, are impaired for swarming motility, and form small plaques in tissue culture cells. In this study, 70 spontaneous mutants were isolated that restored swarming motility to L. monocytogenes secA2 mutants. Most of the mutants had smooth colony morphology and septated normally, but all were lysozyme sensitive. Five representative mutants were subjected to whole-genome sequencing. Four of the five had mutations in proteins encoded by the lmo2769 operon that conferred lysozyme sensitivity and increased swarming but did not rescue virulence defects. A point mutation in secY was identified that conferred smooth colony morphology to secA2 mutants, restored wild-type plaque formation, and increased virulence in mice. This secY mutation resembled a prl suppressor known to expand the repertoire of proteins secreted through the SecY translocation complex. Accordingly, the ΔsecA2prlA1 mutant showed wild-type secretion levels of P60, an established SecA2-dependent secreted autolysin. Although the prl mutation largely suppressed almost all of the measurable SecA2-dependent traits, the ΔsecA2prlA1 mutant was still less virulent in vivo than the wild-type strain, suggesting that SecA2 function was still required for pathogenesis. PMID:25535272

  14. Haptenation: Chemical Reactivity and Protein Binding

    PubMed Central

    Chipinda, Itai; Hettick, Justin M.; Siegel, Paul D.

    2011-01-01

    Low molecular weight chemical (LMW) allergens are commonly referred to as haptens. Haptens must complex with proteins to be recognized by the immune system. The majority of occupationally related haptens are reactive, electrophilic chemicals, or are metabolized to reactive metabolites that form covalent bonds with nucleophilic centers on proteins. Nonelectrophilic protein binding may occur through disulfide exchange, coordinate covalent binding onto metal ions on metalloproteins or of metal allergens, themselves, to the major histocompatibility complex. Recent chemical reactivity kinetic studies suggest that the rate of protein binding is a major determinant of allergenic potency; however, electrophilic strength does not seem to predict the ability of a hapten to skew the response between Th1 and Th2. Modern proteomic mass spectrometry methods that allow detailed delineation of potential differences in protein binding sites may be valuable in predicting if a chemical will stimulate an immediate or delayed hypersensitivity. Chemical aspects related to both reactivity and protein-specific binding are discussed. PMID:21785613

  15. Calmodulin Binding Proteins and Alzheimer's Disease.

    PubMed

    O'Day, Danton H; Eshak, Kristeen; Myre, Michael A

    2015-01-01

    The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer's disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer's disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer's disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  16. Partial characterization of a proacrosin binding protein.

    PubMed

    Yi, L S; Runion, C M; Willand, J L; Polakoski, K L

    1992-01-01

    All of the acid (pH 4.0) extracted proacrosin from porcine epididymal spermatozoa was found to be tightly associated with a specific protein referred to as the binding protein. A combination of gel filterations and gel electrophoresis revealed that the binding protein is composed of a major 28 kd and a minor 29 kd protein. Both of the proteins were shown to be nonproteolytic by gelatin SDS-PAGE analysis and the amino acid composition analysis of the purified 28 kd protein revealed that it is not related to the proteolytic component of the proacrosinacrosin system. PMID:1519775

  17. Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons.

    PubMed Central

    Berry, M J; Banu, L; Harney, J W; Larsen, P R

    1993-01-01

    We investigated the requirements for selenocysteine insertion at single or multiple UGA codons in eukaryotic selenoproteins. Two functional SECIS elements were identified in the 3' untranslated region of the rat selenoprotein P mRNA, with predicted stem-loops and critical nucleotides similar to those in the SECIS elements in the type I iodothyronine 5' deiodinase (5'DI) and glutathione peroxidase selenoprotein mRNAs. Site-directed mutational analyses of three SECIS elements confirmed that conserved nucleotides in the loop and in unpaired regions of the stem are critical for activity. This indicates that multiple contact sites are required for SECIS function. Stop codon function at any of five out-of-context UGA codons in the 5'DI mRNA was suppressed by SECIS elements from the 5'DI or selenoprotein P genes linked downstream. Thus, the presence of SECIS elements in eukaryotic selenoprotein mRNAs permits complete flexibility in UGA codon position. Images PMID:8344267

  18. Mercury-binding proteins of Mytilus edulis

    SciTech Connect

    Roesijadi, G.; Morris, J.E.; Calabrese, A.

    1981-11-01

    Mytilus edulis possesses low molecular weight, mercury-binding proteins. The predominant protein isolated from gill tissue is enriched in cysteinyl residues (8%) and possesses an amino acid composition similar to cadmium-binding proteins of mussels and oysters. Continuous exposure of mussels to 5 ..mu..g/l mercury results in spillover of mercury from these proteins to high molecular weight proteins. Antibodies to these proteins have been isolated, and development of immunoassays is presently underway. Preliminary studies to determine whether exposure of adult mussels to mercury will result in induction of mercury-binding proteins in offspring suggest that such proteins occur in larvae although additional studies are indicated for a conclusive demonstration.

  19. Computational Prediction of RNA-Binding Proteins and Binding Sites

    PubMed Central

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions. PMID:26540053

  20. The molecular architecture of protein-protein binding sites.

    PubMed

    Reichmann, Dana; Rahat, Ofer; Cohen, Mati; Neuvirth, Hani; Schreiber, Gideon

    2007-02-01

    The formation of specific protein interactions plays a crucial role in most, if not all, biological processes, including signal transduction, cell regulation, the immune response and others. Recent advances in our understanding of the molecular architecture of protein-protein binding sites, which facilitates such diversity in binding affinity and specificity, are enabling us to address key questions. What is the amino acid composition of binding sites? What are interface hotspots? How are binding sites organized? What are the differences between tight and weak interacting complexes? How does water contribute to binding? Can the knowledge gained be translated into protein design? And does a universal code for binding exist, or is it the architecture and chemistry of the interface that enable diverse but specific binding solutions? PMID:17239579

  1. Lamin-Binding Proteins in Caenorhabditis elegans.

    PubMed

    Dobrzynska, Agnieszka; Askjaer, Peter; Gruenbaum, Yosef

    2016-01-01

    The nuclear lamina, composed of lamins and numerous lamin-associated proteins, is required for mechanical stability, mechanosensing, chromatin organization, developmental gene regulation, mRNA transcription, DNA replication, nuclear assembly, and nuclear positioning. Mutations in lamins or lamin-binding proteins cause at least 18 distinct human diseases that affect specific tissues such as muscle, adipose, bone, nerve, or skin, and range from muscular dystrophies to lipodystrophy, peripheral neuropathy, or accelerated aging. Caenorhabditis elegans has unique advantages in studying lamin-binding proteins. These advantages include the low complexity of genes encoding lamin and lamin-binding proteins, advanced transgenic techniques, simple application of RNA interference, sophisticated genetic strategies, and a large collection of mutant lines. This chapter provides detailed and comprehensive protocols for the genetic and phenotypic analysis of lamin-binding proteins in C. elegans. PMID:26778571

  2. Structure and Function of Lipopolysaccharide Binding Protein

    NASA Astrophysics Data System (ADS)

    Schumann, Ralf R.; Leong, Steven R.; Flaggs, Gail W.; Gray, Patrick W.; Wright, Samuel D.; Mathison, John C.; Tobias, Peter S.; Ulevitch, Richard J.

    1990-09-01

    The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.

  3. Evolution of Protein Binding Modes in Homooligomers

    PubMed Central

    Dayhoff, Judith E.; Shoemaker, Benjamin A.; Bryant, Stephen H.; Panchenko, Anna R.

    2009-01-01

    The evolution of protein interactions cannot be deciphered without a detailed analysis of interaction interfaces and binding modes. We performed a large-scale study of protein homooligomers in terms of their symmetry, interface sizes, and conservation of binding modes. We also focused specifically on the evolution of protein binding modes from nine families of homooligomers and mapped 60 different binding modes and oligomerization states onto the phylogenetic trees of these families. We observed a significant tendency for the same binding modes to be clustered together and conserved within clades on phylogenetic trees; this trend is especially pronounced for close homologs with 70% sequence identity or higher. Some binding modes are conserved among very distant homologs, pointing to their ancient evolutionary origin, while others are very specific for a certain phylogenetic group. Moreover, we found that the most ancient binding modes have a tendency to involve symmetrical (isologous) homodimer binding arrangements with larger interfaces, while recently evolved binding modes more often exhibit asymmetrical arrangements and smaller interfaces. PMID:19879880

  4. Affinity purification of proteins binding to GST fusion proteins.

    PubMed

    Swaffield, J C; Johnston, S A

    2001-05-01

    This unit describes the use of proteins fused to glutathione-S-transferase (GST fusion proteins) to affinity purify other proteins, a technique also known as GST pulldown purification. The describes a strategy in which a GST fusion protein is bound to agarose affinity beads and the complex is then used to assay the binding of a specific test protein that has been labeled with [35S]methionine by in vitro translation. However, this method can be adapted for use with other types of fusion proteins; for example, His6, biotin tags, or maltose-binding protein fusions (MBP), and these may offer particular advantages. A describes preparation of an E. coli extract that is added to the reaction mixture with purified test protein to reduce nonspecific binding. PMID:18265191

  5. Copper binding in the prion protein.

    PubMed

    Millhauser, Glenn L

    2004-02-01

    A conformational change of the prion protein is responsible for a class of neurodegenerative diseases called the transmissible spongiform encephalopathies that include mad cow disease and the human afflictions kuru and Creutzfeldt-Jakob disease. Despite the attention given to these diseases, the normal function of the prion protein in healthy tissue is unknown. Research over the past few years, however, demonstrates that the prion protein is a copper binding protein with high selectivity for Cu(2+). The structural features of the Cu(2+) binding sites have now been characterized and are providing important clues about the normal function of the prion protein and perhaps how metals or loss of protein function play a role in disease. The link between prion protein and copper may provide insight into the general, and recently appreciated, role of metals in neurodegenerative disease. PMID:14967054

  6. Folding funnels, binding funnels, and protein function.

    PubMed Central

    Tsai, C. J.; Kumar, S.; Ma, B.; Nussinov, R.

    1999-01-01

    Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly

  7. Astaxanthin binding protein in Atlantic salmon.

    PubMed

    Matthews, Sarah J; Ross, Neil W; Lall, Santosh P; Gill, Tom A

    2006-06-01

    The rubicund pigmentation in salmon and trout flesh is unique and is due to the deposition of dietary carotenoids, astaxanthin and canthaxanthin in the muscle. The present study was undertaken to determine which protein was responsible for pigment binding. Salmon muscle proteins were solubilized by sequential extractions with non-denaturing, low ionic strength aqueous solutions and segregated as such into six different fractions. Approximately 91% of the salmon myofibrillar proteins were solubilized under non-denaturing conditions using a protocol modified from a method described by Krishnamurthy et al. [Krishnamurthy, G., Chang, H.S., Hultin, H.O., Feng, Y., Srinivasan, S., Kelleher. S.D., 1996. Solubility of chicken breast muscle proteins in solutions of low ionic strength. J. Agric. Food Chem. 44: 408-415.] for the dissolution of avian muscle. To our knowledge, this is the first time this solubilization approach has been applied to the study of molecular interactions in myofibrillar proteins. Astaxanthin binding in each fraction was determined using an in vitro binding assay. In addition, SDS-PAGE and quantitative densitometry were used to separate and determine the relative amounts of each of the proteins in the six fractions. The results showed that alpha-actinin was the only myofibrillar protein correlating significantly (P<0.05) with astaxanthin binding. Alpha-actinin was positively identified using electrophoretic techniques and confirmed by tandem mass spectroscopy. Purified salmon alpha-actinin bound synthetic astaxanthin in a molar ratio of 1.11:1.00. The study was repeated using halibut alpha-actinin, which was found to have a molar binding ratio of astaxanthin to alpha-actinin of 0.893:1. These results suggest that the difference in pigmentation between white fish and Atlantic salmon is not due to binding capacity in the muscle, but rather differences in the metabolism or transport of pigment. PMID:16644255

  8. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins.

    PubMed

    Clifton, Ben E; Jackson, Colin J

    2016-02-18

    The promiscuous functions of proteins are an important reservoir of functional novelty in protein evolution, but the molecular basis for binding promiscuity remains elusive. We used ancestral protein reconstruction to experimentally characterize evolutionary intermediates in the functional expansion of the polar amino acid-binding protein family, which has evolved to bind a variety of amino acids with high affinity and specificity. High-resolution crystal structures of an ancestral arginine-binding protein in complex with l-arginine and l-glutamine show that the promiscuous binding of l-glutamine is enabled by multi-scale conformational plasticity, water-mediated interactions, and selection of an alternative conformational substate productive for l-glutamine binding. Evolution of specialized glutamine-binding proteins from this ancestral protein was achieved by displacement of water molecules from the protein-ligand interface, reducing the entropic penalty associated with the promiscuous interaction. These results provide a structural and thermodynamic basis for the co-option of a promiscuous interaction in the evolution of binding specificity. PMID:26853627

  9. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins

    ERIC Educational Resources Information Center

    Nixon, J. E.

    1977-01-01

    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  10. Predicting Ca(2+)-binding sites in proteins.

    PubMed Central

    Nayal, M; Di Cera, E

    1994-01-01

    The coordination shell of Ca2+ ions in proteins contains almost exclusively oxygen atoms supported by an outer shell of carbon atoms. The bond-strength contribution of each ligating oxygen in the inner shell can be evaluated by using an empirical expression successfully applied in the analysis of crystals of metal oxides. The sum of such contributions closely approximates the valence of the bound cation. When a protein is embedded in a very fine grid of points and an algorithm is used to calculate the valence of each point representing a potential Ca(2+)-binding site, a typical distribution of valence values peaked around 0.4 is obtained. In 32 documented Ca(2+)-binding proteins, containing a total of 62 Ca(2+)-binding sites, a very small fraction of points in the distribution has a valence close to that of Ca2+. Only 0.06% of the points have a valence > or = 1.4. These points share the remarkable tendency to cluster around documented Ca2+ ions. A high enough value of the valence is both necessary (58 out of 62 Ca(2+)-binding sites have a valence > or = 1.4) and sufficient (87% of the grid points with a valence > or = 1.4 are within 1.0 A from a documented Ca2+ ion) to predict the location of bound Ca2+ ions. The algorithm can also be used for the analysis of other cations and predicts the location of Mg(2+)- and Na(+)-binding sites in a number of proteins. The valence is, therefore, a tool of pinpoint accuracy for locating cation-binding sites, which can also be exploited in engineering high-affinity binding sites and characterizing the linkage between structural components and functional energetics for molecular recognition of metal ions by proteins. Images Fig. 4 PMID:8290605

  11. prlA suppression of defective export of maltose-binding protein in secB mutants of Escherichia coli.

    PubMed

    Francetić, O; Hanson, M P; Kumamoto, C A

    1993-07-01

    An Escherichia coli strain containing a signal sequence mutation in the periplasmic maltose-binding protein (MBP) (malE18-1) and a point mutation in the soluble export factor SecB (secBL75Q) is completely defective in export of MBP and unable to grow on maltose (Mal- phenotype). We isolated 95 spontaneous Mal+ revertants and characterized them genetically. Three types of extragenic suppressors were identified: informational (missense) suppressors, a bypass suppressor conferring the Mal+ phenotype in the absence of MBP, and suppressors affecting the prlA gene, which encodes a component of the protein export apparatus. In this study, a novel prlA allele, designated prlA1001 and mapping in the putative second transmembrane domain of the PrlA (SecY) protein, was found. In addition, we isolated a mutation designated prlA1024 which is identical to prlA4-2, the mutation responsible for the signal sequence suppression in the prlA4 (prlA4-1 prlA4-2) double mutant (T. Sako and T. Iino, J. Bacteriol. 170:5389-5391, 1988). Comparison of the prlA1024 mutant and the prlA4 double mutant provides a possible explanation for the isolation of these prlA alleles. PMID:8320219

  12. Crystallization and preliminary X-ray analysis of the mRNA-binding domain of elongation factor SelB from Escherichia coli in complex with RNA

    SciTech Connect

    Soler, Nicolas; Fourmy, Dominique; Yoshizawa, Satoko

    2007-05-01

    The mRNA-binding domain of E. coli selenocysteine-specific elongation factor SelB (residues 478–614; SelB-WH3/4) was overproduced in E. coli and its cognate mRNA ligand, 23 nucleotides of the SECIS RNA hairpin, was prepared by in vitro transcription. The purified SelB-WH3/4–SECIS RNA complex crystallized in space group C2 and diffracted to 2.3 Å. In bacteria, selenocysteine (the 21st amino acid) is incorporated into proteins via machinery that includes SelB, a specific translational elongation factor. SelB binds to an mRNA hairpin called the selenocysteine-insertion sequence (SECIS) and delivers selenocysteyl-tRNA{sup Sec} to the ribosomal A site. The minimum C-terminal fragment (residues 478–614) of Escherichia coli SelB (SelB-WH3/4) required for SECIS binding has been overexpressed and purified. This protein was crystallized in complex with 23 nucleotides of the SECIS hairpin at 294 K using the hanging-drop vapour-diffusion method. A data set was collected to 2.3 Å resolution from a single crystal at 100 K using ESRF beamline BM-30. The crystal belongs to space group C2, with unit-cell parameters a = 103.50, b = 56.51, c = 48.41 Å. The asymmetric unit contains one WH3/4-domain–RNA complex. The Matthews coefficient was calculated to be 3.37 Å{sup 3} Da{sup −1} and the solvent content was estimated to be 67.4%.

  13. Ice-Binding Proteins and Their Function.

    PubMed

    Bar Dolev, Maya; Braslavsky, Ido; Davies, Peter L

    2016-06-01

    Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities. PMID:27145844

  14. Stretching DNA to quantify nonspecific protein binding

    NASA Astrophysics Data System (ADS)

    Goyal, Sachin; Fountain, Chandler; Dunlap, David; Family, Fereydoon; Finzi, Laura

    2012-07-01

    Nonspecific binding of regulatory proteins to DNA can be an important mechanism for target search and storage. This seems to be the case for the lambda repressor protein (CI), which maintains lysogeny after infection of E. coli. CI binds specifically at two distant regions along the viral genome and induces the formation of a repressive DNA loop. However, single-molecule imaging as well as thermodynamic and kinetic measurements of CI-mediated looping show that CI also binds to DNA nonspecifically and that this mode of binding may play an important role in maintaining lysogeny. This paper presents a robust phenomenological approach using a recently developed method based on the partition function, which allows calculation of the number of proteins bound nonspecific to DNA from measurements of the DNA extension as a function of applied force. This approach was used to analyze several cycles of extension and relaxation of λ DNA performed at several CI concentrations to measure the dissociation constant for nonspecific binding of CI (˜100 nM), and to obtain a measurement of the induced DNA compaction (˜10%) by CI.

  15. Signal transduction by guanine nucleotide binding proteins.

    PubMed

    Spiegel, A M

    1987-01-01

    High affinity binding of guanine nucleotides and the ability to hydrolyze bound GTP to GDP are characteristics of an extended family of intracellular proteins. Subsets of this family include cytosolic initiation and elongation factors involved in protein synthesis, and cytoskeletal proteins such as tubulin (Hughes, S.M. (1983) FEBS Lett. 164, 1-8). A distinct subset of guanine nucleotide binding proteins is membrane-associated; members of this subset include the ras gene products (Ellis, R.W. et al. (1981) Nature 292, 506-511) and the heterotrimeric G-proteins (also termed N-proteins) (Gilman, A.G. (1984) Cell 36, 577-579). Substantial evidence indicates that G-proteins act as signal transducers by coupling receptors (R) to effectors (E). A similar function has been suggested but not proven for the ras gene products. Known G-proteins include Gs and Gi, the G-proteins associated with stimulation and inhibition, respectively, of adenylate cyclase; transducin (TD), the G-protein coupling rhodopsin to cGMP phosphodiesterase in rod photoreceptors (Bitensky, M.W. et al. (1981) Curr. Top. Membr. Transp. 15, 237-271; Stryer, L. (1986) Annu. Rev. Neurosci. 9, 87-119), and Go, a G-protein of unknown function that is highly abundant in brain (Sternweis, P.C. and Robishaw, J.D. (1984) J. Biol. Chem. 259, 13806-13813; Neer, E.J. et al. (1984) J. Biol. Chem. 259, 14222-14229). G-proteins also participate in other signal transduction pathways, notably that involving phosphoinositide breakdown. In this review, I highlight recent progress in our understanding of the structure, function, and diversity of G-proteins. PMID:2435586

  16. [Carbohydrate-binding proteins of marine invertebrates].

    PubMed

    Luk'ianov, P A; Chernikov, O V; Kobelev, S S; Chikalovets, I V; Molchanova, V I; Li, W

    2007-01-01

    The information on the carbohydrate specificity and molecular organization of some carbohydrate-binding proteins (lectins) of marine invertebrates is reported. Antiviral activity of some of the lectins against human immunodeficiency virus has been studied. Lectins of marine invertebrates are promising tools for studying natural glycoconjugates and cell effectors in vitro. PMID:17375673

  17. Evolution of Protein-binding DNA Sequences through Competitive Binding

    NASA Astrophysics Data System (ADS)

    Peng, Weiqun; Gerland, Ulrich; Hwa, Terence; Levine, Herbert

    2002-03-01

    The dynamics of in vitro DNA evolution controlled via competitive binding of DNA sequences to proteins has been explored in a recent serial transfer experiment footnote B. Dubertret, S.Liu, Q. Ouyang, A. Libchaber, Phys. Rev. Lett. 86, 6022 (2001).. Motivated by the experiment, we investigate a continuum model for this evolution process in various parameter regimes. We establish a self-consistent mean-field evolution equation, determine its dynamical properties and finite population size corrections. In addition, we discuss the experimental implications of our results.

  18. Quantifying drug-protein binding in vivo.

    SciTech Connect

    Buchholz, B; Bench, G; Keating III, G; Palmblad, M; Vogel, J; Grant, P G; Hillegonds, D

    2004-02-17

    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS.

  19. Odorant-binding proteins in insects.

    PubMed

    Zhou, Jing-Jiang

    2010-01-01

    Our understanding of the molecular and biochemical mechanisms that mediate chemoreception in insects has been greatly improved after the discovery of olfactory and taste receptor proteins. However, after 50 years of the discovery of first insect sex pheromone from the silkmoth Bombyx mori, it is still unclear how hydrophobic compounds reach the dendrites of sensory neurons in vivo across aqueous space and interact with the sensory receptors. The presence of soluble polypeptides in high concentration in the lymph of chemosensilla still poses unanswered questions. More than two decades after their discovery and despite the wealth of structural and biochemical information available, the physiological function of odorant-binding proteins (OBPs) is not well understood. Here, I review the structural properties of different subclasses of insect OBPs and their binding to pheromones and other small ligands. Finally, I discuss current ideas and models on the role of such proteins in insect chemoreception. PMID:20831949

  20. Cadmium-binding protein (metallothionein) in carp.

    PubMed Central

    Kito, H; Ose, Y; Sato, T

    1986-01-01

    When carp (Cyprinus carpio) were exposed to 5 and 30 ppm Cd in the water, the contents of Cd-binding protein, which has low molecular weight, increased in the hepatopancreas, kidney, gills and gastrointestinal tract with the duration of exposure. This Cd-binding protein was purified from hepatopancreas, kidney, gills, and spleen of carp administered 2 mg/kg Cd (as CdCl2), intraperitoneally for 6 days. Two Cd-binding proteins were separated by DEAE-Sephadex A-25 column chromatography. These proteins had Cd-mercaptide bond, high cysteine contents (ca. 29-34%), but no aromatic amino acids or histidine. From these characteristics the Cd-binding proteins were identified as metallothionein. By using antiserum obtained from a rabbit to which carp hepatopancreas MT-II had been administered, immunological characteristics between hepatopancreas MT-I, II and kidney MT-II were studied, and a slight difference in antigenic determinant was observed among them. By immunological staining techniques with horseradish peroxidase, the localization of metallothionein was investigated. In the nontreated group, metallothionein was present in the acinar cells of hepatopancreas and renal convoluted tubules. In the Cd-treated group (2 mg/kg IP daily for 3 days), metallothionein was present in the nuclei, sinusoids, and extracellular space of hepatopancreas, in addition to the acinar cells. Carp were bred in 1 ppm Cd, 5 ppm Zn solution, and tap water for 14 days, following transfer to 15 ppm Cd solution, respectively. The survival ratio was the highest in the Zn group followed by Cd-treated and control groups. The metallothionein contents increased in hepatopancreas and kidney in the order: Zn greater than Cd greater than control group. Images FIGURE 5. FIGURE 6. PMID:3519201

  1. Nucleolin is a calcium-binding protein.

    PubMed

    Gilchrist, James S C; Abrenica, Bernard; DiMario, Patrick J; Czubryt, Michael P; Pierce, Grant N

    2002-01-01

    We have purified a prominent 110-kDa protein (p110) from 1.6 M NaCl extracts of rat liver nuclei that appears to bind Ca2+. p110 was originally identified by prominent blue staining with 'Stains-All' in sodium dodecyl sulfate-polyacrylamide gels and was observed to specifically bind ruthenium red and 45Ca2+ in nitrocellulose blot overlays. In spin-dialysis studies, purified p110 saturably bound approximately 75 nmol Ca2+/mg protein at a concentration of 1 mM total Ca2+ with half-maximal binding observed at 105 microM Ca2+. With purification, p110 became increasingly susceptible to proteolytic (likely autolytic) fragmentation, although most intermediary peptides between 40 and 90 kDa retained "Stains-All", ruthenium red, and 45Ca2+ binding. N-terminal sequencing of intact p110 and a 70-kDa autolytic peptide fragment revealed a strong homology to nucleolin. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)/IEF revealed autolysis produced increasingly acidic peptide fragments ranging in apparent pI's from 5.5 for intact p110 to 3.5 for a 40 kDa peptide fragment. Intact p110 and several peptide fragments were immunostained with a highly specific anti-nucleolin antibody, R2D2, thus confirming the identity of this protein with nucleolin. These annexin-like Ca2+-binding characteristics of nucleolin are likely contributed by its highly acidic argyrophilic N-terminus with autolysis apparently resulting in largely selective removal of its basic C-terminal domain. Although the Ca2+-dependent functions of nucleolin are unknown, we discuss the possibility that like the structurally analogous HMG-1, its Ca2+-dependent actions may regulate chromatin structure, possibly during apoptosis. PMID:11948683

  2. Sterol Carrier Protein-2: Binding Protein for Endocannabinoids

    PubMed Central

    Liedhegner, Elizabeth Sabens; Vogt, Caleb D.; Sem, Daniel S.; Cunningham, Christopher W.

    2015-01-01

    The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs “on-demand,” thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs, N-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ΔG values of −3.6 and −4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (−6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA. PMID:24510313

  3. Gene encoding herbicide safener binding protein

    SciTech Connect

    Walton, J.D.; Scott-Craig, J.S.

    1999-10-26

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is presented. The deduced amino acid sequence is provided. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with vectors and seeds from the plants.

  4. Polynucleotides encoding TRF1 binding proteins

    DOEpatents

    Campisi, Judith; Kim, Sahn-Ho

    2002-01-01

    The present invention provides a novel telomere associated protein (Trf1-interacting nuclear protein 2 "Tin2") that hinders the binding of Trf1 to its specific telomere repeat sequence and mediates the formation of a Tin2-Trf1-telomeric DNA complex that limits telomerase access to the telomere. Also included are the corresponding nucleic acids that encode the Tin2 of the present invention, as well as mutants of Tin2. Methods of making, purifying and using Tin2 of the present invention are described. In addition, drug screening assays to identify drugs that mimic and/or complement the effect of Tin2 are presented.

  5. Binding of transition metals to S100 proteins.

    PubMed

    Gilston, Benjamin A; Skaar, Eric P; Chazin, Walter J

    2016-08-01

    The S100 proteins are a unique class of EF-hand Ca(2+) binding proteins distributed in a cell-specific, tissue-specific, and cell cycle-specific manner in humans and other vertebrates. These proteins are distinguished by their distinctive homodimeric structure, both intracellular and extracellular functions, and the ability to bind transition metals at the dimer interface. Here we summarize current knowledge of S100 protein binding of Zn(2+), Cu(2+) and Mn(2+) ions, focusing on binding affinities, conformational changes that arise from metal binding, and the roles of transition metal binding in S100 protein function. PMID:27430886

  6. Systematic discovery of Xist RNA binding proteins.

    PubMed

    Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A; Bharadwaj, Maheetha; Calabrese, J Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y

    2015-04-01

    Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA-protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3' RNA processing machinery. Xist, an essential lncRNA for X chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK, which participates in Xist-mediated gene silencing and histone modifications but not Xist localization, and Drosophila Split ends homolog Spen, which interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing. PMID:25843628

  7. Systematic discovery of Xist RNA binding proteins

    PubMed Central

    Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A.; Bharadwaj, Maheetha; Calabrese, J. Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y.

    2015-01-01

    Summary Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA- protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3′ RNA processing machinery. Xist, an essential lncRNA for X-chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK that participates in Xist-mediated gene silencing and histone modifications, but not Xist localization and Drosophila Split ends homolog Spen that interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing. PMID:25843628

  8. Farewell TID-14844; hello SECY-92-127

    SciTech Connect

    Lahti, G.P.; Johnson, W.J. )

    1992-01-01

    This year, 1992, marks the 50th anniversary of the first sustained nuclear reaction in the pile at the University of Chicago's Stagg Field. But it also marks the 30th anniversary of the publication of TID-14844, which has served as the design-basis source term for radiological assessments supporting the licensing of nuclear power plants in the United States since its inception. The conservative TID-14844 model assumes that 100% of the noble gases and 50% of the iodines are instantaneously released to the containment and are available for leakage to the environment. TID-14844 is formally embodied in the US Nuclear Regulatory Commission's (NRC's) regulations in parts 10CFR100 (siting) and 10CFR50 (review of control room habitability, postaccident shielding and sampling systems). It is also embodied in a host of NRC Regulatory Guides and NUREG reports that address off-site consequences of releases of radioactivity, equipment qualification, and other postaccident radiological concerns. On April 20, 1992, the NRC staff presented to the NRC commissioners the draft Revised Accident Source Terms for Light-Water Nuclear Power Plants.' This effort is documented in SECY-92-127 and provides the first official position of the NRC in this matter.

  9. YidC Occupies the Lateral Gate of the SecYEG Translocon and Is Sequentially Displaced by a Nascent Membrane Protein*

    PubMed Central

    Sachelaru, Ilie; Petriman, Narcis Adrian; Kudva, Renuka; Kuhn, Patrick; Welte, Thomas; Knapp, Bettina; Drepper, Friedel; Warscheid, Bettina; Koch, Hans-Georg

    2013-01-01

    Most membrane proteins are co-translationally inserted into the lipid bilayer via the universally conserved SecY complex and they access the lipid phase presumably via a lateral gate in SecY. In bacteria, the lipid transfer of membrane proteins from the SecY channel is assisted by the SecY-associated protein YidC, but details on the SecY-YidC interaction are unknown. By employing an in vivo and in vitro site-directed cross-linking approach, we have mapped the SecY-YidC interface and found YidC in contact with all four transmembrane domains of the lateral gate. This interaction did not require the SecDFYajC complex and was not influenced by SecA binding to SecY. In contrast, ribosomes dissociated the YidC contacts to lateral gate helices 2b and 8. The major contact between YidC and the lateral gate was lost in the presence of ribosome nascent chains and new SecY-YidC contacts appeared. These data demonstrate that the SecY-YidC interaction is influenced by nascent-membrane-induced lateral gate movements. PMID:23609445

  10. Copper-binding protein in Mimulus guttatus

    SciTech Connect

    Robinson, N.J.; Thurman, D.A.

    1985-01-01

    A Cu-binding protein has been purified from the roots of Mimulus guttatus using gel permeation chromatography on Sephadex G-75 and anion exchange chromatography on DEAE Biogel A. The protein has similar properties to putative metallothioneins (MTS) purified from other angiosperms. Putative MT was estimated by measuring the relative percentage incorporation of (/sup 35/S) into fractions containing the protein after HPLC on SW 3000-gel. In the roots of both Cu-tolerant and non tolerant plants synthesis of putative MT is induced by increased Cu concentration in the nutrient solution. The relative percentage incorporation of (/sup 35/S) into putative MT is significantly higher in extracts from the roots of Cu-tolerant than non tolerant M. guttatus after growth in 1 ..mu..M Cu suggesting involvement in the mechanism of tolerance. 22 refs., 2 figs., 1 tab.

  11. Cation specific binding with protein surface charges.

    PubMed

    Hess, Berk; van der Vegt, Nico F A

    2009-08-11

    Biological organization depends on a sensitive balance of noncovalent interactions, in particular also those involving interactions between ions. Ion-pairing is qualitatively described by the law of "matching water affinities." This law predicts that cations and anions (with equal valence) form stable contact ion pairs if their sizes match. We show that this simple physical model fails to describe the interaction of cations with (molecular) anions of weak carboxylic acids, which are present on the surfaces of many intra- and extracellular proteins. We performed molecular simulations with quantitatively accurate models and observed that the order K(+) < Na(+) < Li(+) of increasing binding affinity with carboxylate ions is caused by a stronger preference for forming weak solvent-shared ion pairs. The relative insignificance of contact pair interactions with protein surfaces indicates that thermodynamic stability and interactions between proteins in alkali salt solutions is governed by interactions mediated through hydration water molecules. PMID:19666545

  12. A Crayfish Insulin-like-binding Protein

    PubMed Central

    Rosen, Ohad; Weil, Simy; Manor, Rivka; Roth, Ziv; Khalaila, Isam; Sagi, Amir

    2013-01-01

    Across the animal kingdom, the involvement of insulin-like peptide (ILP) signaling in sex-related differentiation processes is attracting increasing attention. Recently, a gender-specific ILP was identified as the androgenic sex hormone in Crustacea. However, moieties modulating the actions of this androgenic insulin-like growth factor were yet to be revealed. Through molecular screening of an androgenic gland (AG) cDNA library prepared from the crayfish Cherax quadricarinatus, we have identified a novel insulin-like growth factor-binding protein (IGFBP) termed Cq-IGFBP. Based on bioinformatics analyses, the deduced Cq-IGFBP was shown to share high sequence homology with IGFBP family members from both invertebrates and vertebrates. The protein also includes a sequence determinant proven crucial for ligand binding, which according to three-dimensional modeling is assigned to the exposed outer surface of the protein. Recombinant Cq-IGFBP (rCq-IGFBP) protein was produced and, using a “pulldown” methodology, was shown to specifically interact with the insulin-like AG hormone of the crayfish (Cq-IAG). Particularly, using both mass spectral analysis and an immunological tool, rCq-IGFBP was shown to bind the Cq-IAG prohormone. Furthermore, a peptide corresponding to residues 23–38 of the Cq-IAG A-chain was found sufficient for in vitro recognition by rCq-IGFBP. Cq-IGFBP is the first IGFBP family member shown to specifically interact with a gender-specific ILP. Unlike their ILP ligands, IGFBPs are highly conserved across evolution, from ancient arthropods, like crustaceans, to humans. Such conservation places ILP signaling at the center of sex-related phenomena in early animal development. PMID:23775079

  13. DNA and RNA Quadruplex-Binding Proteins

    PubMed Central

    Brázda, Václav; Hároníková, Lucia; Liao, Jack C. C.; Fojta, Miroslav

    2014-01-01

    Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc.), the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGG)n, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2) and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development. PMID:25268620

  14. DNA and RNA quadruplex-binding proteins.

    PubMed

    Brázda, Václav; Hároníková, Lucia; Liao, Jack C C; Fojta, Miroslav

    2014-01-01

    Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc.), the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGG)n, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2) and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development. PMID:25268620

  15. Identification of DNA-binding and protein-binding proteins using enhanced graph wavelet features.

    PubMed

    Zhu, Yuan; Zhou, Weiqiang; Dai, Dao-Qing; Yan, Hong

    2013-01-01

    Interactions between biomolecules play an essential role in various biological processes. For predicting DNA-binding or protein-binding proteins, many machine-learning-based techniques have used various types of features to represent the interface of the complexes, but they only deal with the properties of a single atom in the interface and do not take into account the information of neighborhood atoms directly. This paper proposes a new feature representation method for biomolecular interfaces based on the theory of graph wavelet. The enhanced graph wavelet features (EGWF) provides an effective way to characterize interface feature through adding physicochemical features and exploiting a graph wavelet formulation. Particularly, graph wavelet condenses the information around the center atom, and thus enhances the discrimination of features of biomolecule binding proteins in the feature space. Experiment results show that EGWF performs effectively for predicting DNA-binding and protein-binding proteins in terms of Matthew's correlation coefficient (MCC) score and the area value under the receiver operating characteristic curve (AUC). PMID:24334394

  16. Competitive protein binding assay for piritrexim

    SciTech Connect

    Woolley, J.L. Jr.; Ringstad, J.L.; Sigel, C.W. )

    1989-09-01

    A competitive protein binding assay for piritrexim (PTX, 1) that makes use of a commercially available radioassay kit for methotrexate has been developed. After it is selectively extracted from plasma, PTX competes with ({sup 125}I)methotrexate for binding to dihydrofolate reductase isolated from Lactobacillus casei. Free drug is separated from bound drug by adsorption to dextran-coated charcoal. Piritrexim is measurable over a range of 0.01 to 10.0 micrograms/mL in plasma with a coefficient of variation less than 15%. The limit of sensitivity of the assay is approximately 2 ng/mL. An excellent correlation between this assay and a previously published HPLC method was found.

  17. Landscape of protein-small ligand binding modes.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  18. Regulation of Pluripotency by RNA Binding Proteins

    PubMed Central

    Ye, Julia; Blelloch, Robert

    2015-01-01

    Establishment, maintenance, and exit from pluripotency require precise coordination of a cell’s molecular machinery. Substantial headway has been made in deciphering many aspects of this elaborate system, particularly with respect to epigenetics, transcription, and noncoding RNAs. Less attention has been paid to posttranscriptional regulatory processes such as alternative splicing, RNA processing and modification, nuclear export, regulation of transcript stability, and translation. Here, we introduce the RNA binding proteins that enable the posttranscriptional regulation of gene expression, summarizing current and ongoing research on their roles at different regulatory points and discussing how they help script the fate of pluripotent stem cells. PMID:25192462

  19. Gene encoding herbicide safener binding protein

    SciTech Connect

    Walton, Jonathan D.; Scott-Craig, John S.

    1999-01-01

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is set forth in FIG. 5 and SEQ ID No. 1. The deduced amino acid sequence is provided in FIG. 5 and SEQ ID No. 2. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors and seeds from said plants.

  20. Computational Design of DNA-Binding Proteins.

    PubMed

    Thyme, Summer; Song, Yifan

    2016-01-01

    Predicting the outcome of engineered and naturally occurring sequence perturbations to protein-DNA interfaces requires accurate computational modeling technologies. It has been well established that computational design to accommodate small numbers of DNA target site substitutions is possible. This chapter details the basic method of design used in the Rosetta macromolecular modeling program that has been successfully used to modulate the specificity of DNA-binding proteins. More recently, combining computational design and directed evolution has become a common approach for increasing the success rate of protein engineering projects. The power of such high-throughput screening depends on computational methods producing multiple potential solutions. Therefore, this chapter describes several protocols for increasing the diversity of designed output. Lastly, we describe an approach for building comparative models of protein-DNA complexes in order to utilize information from homologous sequences. These models can be used to explore how nature modulates specificity of protein-DNA interfaces and potentially can even be used as starting templates for further engineering. PMID:27094297

  1. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  2. Ligand configurational entropy and protein binding

    PubMed Central

    Chang, Chia-en A.; Chen, Wei; Gilson, Michael K.

    2007-01-01

    The restriction of a small molecule's motion on binding to a protein causes a loss of configurational entropy, and thus a penalty in binding affinity. Some energy models used in computer-aided ligand design neglect this entropic penalty, whereas others account for it based on an expected drop in the number of accessible rotamers upon binding. However, the validity of the physical assumptions underlying the various approaches is largely unexamined. The present study addresses this issue by using Mining Minima calculations to analyze the association of amprenavir with HIV protease. The computed loss in ligand configurational entropy is large, contributing ∼25 kcal/mol (4.184 kJ/kcal) to ΔG°. Most of this loss results from narrower energy wells in the bound state, rather than a drop in the number of accessible rotamers. Coupling among rotation/translation and internal degrees of freedom complicates the decomposition of the entropy change into additive terms. The results highlight the potential to gain affinity by designing conformationally restricted ligands and have implications for the formulation of energy models for ligand scoring. PMID:17242351

  3. Alternative polyadenylation and RNA-binding proteins.

    PubMed

    Erson-Bensan, Ayse Elif

    2016-08-01

    Our understanding of the extent of microRNA-based gene regulation has expanded in an impressive pace over the past decade. Now, we are beginning to better appreciate the role of 3'-UTR (untranslated region) cis-elements which harbor not only microRNA but also RNA-binding protein (RBP) binding sites that have significant effect on the stability and translational rate of mRNAs. To add further complexity, alternative polyadenylation (APA) emerges as a widespread mechanism to regulate gene expression by producing shorter or longer mRNA isoforms that differ in the length of their 3'-UTRs or even coding sequences. Resulting shorter mRNA isoforms generally lack cis-elements where trans-acting factors bind, and hence are differentially regulated compared with the longer isoforms. This review focuses on the RBPs involved in APA regulation and their action mechanisms on APA-generated isoforms. A better understanding of the complex interactions between APA and RBPs is promising for mechanistic and clinical implications including biomarker discovery and new therapeutic approaches. PMID:27208003

  4. Ligand configurational entropy and protein binding.

    PubMed

    Chang, Chia-en A; Chen, Wei; Gilson, Michael K

    2007-01-30

    The restriction of a small molecule's motion on binding to a protein causes a loss of configurational entropy, and thus a penalty in binding affinity. Some energy models used in computer-aided ligand design neglect this entropic penalty, whereas others account for it based on an expected drop in the number of accessible rotamers upon binding. However, the validity of the physical assumptions underlying the various approaches is largely unexamined. The present study addresses this issue by using Mining Minima calculations to analyze the association of amprenavir with HIV protease. The computed loss in ligand configurational entropy is large, contributing approximately 25 kcal/mol (4.184 kJ/kcal) to DeltaG degrees. Most of this loss results from narrower energy wells in the bound state, rather than a drop in the number of accessible rotamers. Coupling among rotation/translation and internal degrees of freedom complicates the decomposition of the entropy change into additive terms. The results highlight the potential to gain affinity by designing conformationally restricted ligands and have implications for the formulation of energy models for ligand scoring. PMID:17242351

  5. The modular architecture of protein-protein binding interfaces.

    PubMed

    Reichmann, D; Rahat, O; Albeck, S; Meged, R; Dym, O; Schreiber, G

    2005-01-01

    Protein-protein interactions are essential for life. Yet, our understanding of the general principles governing binding is not complete. In the present study, we show that the interface between proteins is built in a modular fashion; each module is comprised of a number of closely interacting residues, with few interactions between the modules. The boundaries between modules are defined by clustering the contact map of the interface. We show that mutations in one module do not affect residues located in a neighboring module. As a result, the structural and energetic consequences of the deletion of entire modules are surprisingly small. To the contrary, within their module, mutations cause complex energetic and structural consequences. Experimentally, this phenomenon is shown on the interaction between TEM1-beta-lactamase and beta-lactamase inhibitor protein (BLIP) by using multiple-mutant analysis and x-ray crystallography. Replacing an entire module of five interface residues with Ala created a large cavity in the interface, with no effect on the detailed structure of the remaining interface. The modular architecture of binding sites, which resembles human engineering design, greatly simplifies the design of new protein interactions and provides a feasible view of how these interactions evolved. PMID:15618400

  6. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  7. Prednisolone protein binding in renal transplant patients.

    PubMed Central

    Reece, P A; Disney, A P; Stafford, I; Shastry, J C

    1985-01-01

    Prednisolone pharmacokinetics and protein binding characteristics were studied in 10 renal transplant patients with various degrees of renal function (serum creatinine: 80-380 mumol/l) who received their usual oral maintenance dose of prednisolone (0.18 +/- 0.04 mg/kg). Plasma was assayed for prednisolone and hydrocortisone by h.p.l.c. and free prednisolone concentrations were determined in each sample by a rapid ultrafiltration technique. Free prednisolone area under curve (AUCu) ranged from 101 to 436 ng ml-1 h and was 6.3 to 15.0% of total prednisolone AUC. The fraction AUCu/AUC was closely related to serum albumin and creatinine concentrations determined at the time of study (multilinear regression correlation coefficient r2 = 0.830, P less than 0.0001); elevated serum creatinine and low albumin concentrations were associated with a higher % free. These results suggest that much of the variability in prednisolone protein binding could be attributed to inter-patient variability in serum albumin and creatinine concentrations. Total prednisolone concentrations would be potentially misleading in any comparisons made between patient groups with different renal function. PMID:3899153

  8. Isolation of a Thiamine-binding Protein from Rice Germ and Distribution of Similar Proteins.

    PubMed

    Shimizu, M; Yoshida, T; Toda, T; Iwashima, A; Mitsunaga, T

    1996-01-01

    A thiamine-binding protein was purified from rice germ (Oryza sativa L.) by extraction, salting-out with ammonium sulfate, and column chromatography. From the results of molecular mass, Kd and Bmax values for thiamine-binding, binding specificity for thiamine phosphates and analog, the protein was suggested to be identical to the thiamine-binding protein in rice bran. The thiamine-binding protein w as more efficiently purified from rice germ than from rice bran. The protein was rich in glutamic acid (and/or glutamine) and glycine. The protein did not show immunological similarity to thiamine-binding proteins in buckwheat and sesame seeds. However proteins similar to the thiamine-binding protein from rice germ existed in gramineous seeds. They were suggested to have thiamine-binding activity and to be of the same molecular mass as the thiamine-binding protein. PMID:27299548

  9. Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein.

    PubMed

    Sawicka, Kirsty; Bushell, Martin; Spriggs, Keith A; Willis, Anne E

    2008-08-01

    PTB (polypyrimidine-tract-binding protein) is a ubiquitous RNA-binding protein. It was originally identified as a protein with a role in splicing but it is now known to function in a large number of diverse cellular processes including polyadenylation, mRNA stability and translation initiation. Specificity of PTB function is achieved by a combination of changes in the cellular localization of this protein (its ability to shuttle from the nucleus to the cytoplasm is tightly controlled) and its interaction with additional proteins. These differences in location and trans-acting factor requirements account for the fact that PTB acts both as a suppressor of splicing and an activator of translation. In the latter case, the role of PTB in translation has been studied extensively and it appears that this protein is required for an alternative form of translation initiation that is mediated by a large RNA structural element termed an IRES (internal ribosome entry site) that allows the synthesis of picornaviral proteins and cellular proteins that function to control cell growth and cell death. In the present review, we discuss how PTB regulates these disparate processes. PMID:18631133

  10. Structural neighboring property for identifying protein-protein binding sites

    PubMed Central

    2015-01-01

    Background The protein-protein interaction plays a key role in the control of many biological functions, such as drug design and functional analysis. Determination of binding sites is widely applied in molecular biology research. Therefore, many efficient methods have been developed for identifying binding sites. In this paper, we calculate structural neighboring property through Voronoi diagram. Using 6,438 complexes, we study local biases of structural neighboring property on interface. Results We propose a novel statistical method to extract interacting residues, and interacting patches can be clustered as predicted interface residues. In addition, structural neighboring property can be adopted to construct a new energy function, for evaluating docking solutions. It includes new statistical property as well as existing energy items. Comparing to existing methods, our approach improves overall Fnat value by at least 3%. On Benchmark v4.0, our method has average Irmsd value of 3.31Å and overall Fnat value of 63%, which improves upon Irmsd of 3.89 Å and Fnat of 49% for ZRANK, and Irmsd of 3.99Å and Fnat of 46% for ClusPro. On the CAPRI targets, our method has average Irmsd value of 3.46 Å and overall Fnat value of 45%, which improves upon Irmsd of 4.18 Å and Fnat of 40% for ZRANK, and Irmsd of 5.12 Å and Fnat of 32% for ClusPro. Conclusions Experiments show that our method achieves better results than some state-of-the-art methods for identifying protein-protein binding sites, with the prediction quality improved in terms of CAPRI evaluation criteria. PMID:26356630

  11. RNA Bind-n-Seq: Measuring the Binding Affinity Landscape of RNA-Binding Proteins.

    PubMed

    Lambert, Nicole J; Robertson, Alex D; Burge, Christopher B

    2015-01-01

    RNA-binding proteins (RBPs) coordinate post-transcriptional control of gene expression, often through sequence-specific recognition of primary transcripts or mature messenger RNAs. Hundreds of RBPs are encoded in the human genome, most with undefined or incompletely defined biological roles. Understanding the function of these factors will require the identification of each RBP's distinct RNA binding specificity. RNA Bind-n-Seq (RBNS) is a high-throughput, cost-effective in vitro method capable of resolving sequence and secondary structure preferences of RBPs. Dissociation constants can also be inferred from RBNS data when provided with additional experimental information. Here, we describe the experimental procedures to perform RBNS and discuss important parameters of the method and ways that the experiment can be tailored to the specific RBP under study. Additionally, we present the conceptual framework and execution of the freely available RBNS computational pipeline and describe the outputs of the pipeline. Different approaches to quantify binding specificity, quality control metrics, and estimation of binding constants are also covered. PMID:26068750

  12. Calcyclin Binding Protein/Siah-1 Interacting Protein Is a Hsp90 Binding Chaperone

    PubMed Central

    Góral, Agnieszka; Bieganowski, Paweł; Prus, Wiktor; Krzemień-Ojak, Łucja; Kądziołka, Beata; Fabczak, Hanna; Filipek, Anna

    2016-01-01

    The Hsp90 chaperone activity is tightly regulated by interaction with many co-chaperones. Since CacyBP/SIP shares some sequence homology with a known Hsp90 co-chaperone, Sgt1, in this work we performed a set of experiments in order to verify whether CacyBP/SIP can interact with Hsp90. By applying the immunoprecipitation assay we have found that CacyBP/SIP binds to Hsp90 and that the middle (M) domain of Hsp90 is responsible for this binding. Furthermore, the proximity ligation assay (PLA) performed on HEp-2 cells has shown that the CacyBP/SIP-Hsp90 complexes are mainly localized in the cytoplasm of these cells. Using purified proteins and applying an ELISA we have shown that Hsp90 interacts directly with CacyBP/SIP and that the latter protein does not compete with Sgt1 for the binding to Hsp90. Moreover, inhibitors of Hsp90 do not perturb CacyBP/SIP-Hsp90 binding. Luciferase renaturation assay and citrate synthase aggregation assay with the use of recombinant proteins have revealed that CacyBP/SIP exhibits chaperone properties. Also, CacyBP/SIP-3xFLAG expression in HEp-2 cells results in the appearance of more basic Hsp90 forms in 2D electrophoresis, which may indicate that CacyBP/SIP dephosphorylates Hsp90. Altogether, the obtained results suggest that CacyBP/SIP is involved in regulation of the Hsp90 chaperone machinery. PMID:27249023

  13. Glycan Masking of Plasmodium vivax Duffy Binding Protein for Probing Protein Binding Function and Vaccine Development

    PubMed Central

    Janes, Joel; Gurumoorthy, Sairam; Gibson, Claire; Melcher, Martin; Chitnis, Chetan E.; Wang, Ruobing; Schief, William R.; Smith, Joseph D.

    2013-01-01

    Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP) and the Duffy Antigen Receptor for Chemokines (DARC) and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s) lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development. PMID:23853575

  14. Identification and isoprenylation of plant GTP-binding proteins.

    PubMed

    Biermann, B; Randall, S K; Crowell, D N

    1996-08-01

    To identify isoprenylated plant GTP-binding proteins, Arabidopsis thaliana and Nicotiana tabacum cDNA expression libraries were screened for cDNA-encoded proteins capable of binding [32P]GTP in vitro. ATGB2, an Arabidopsis homologue of the GTP-binding protein Rab2, was found to bind GTP in vitro and to be a substrate for a geranylgeranyl:protein transferase (GGTase) present in plant extracts. The carboxyl terminus of this protein contains a -GCCG sequence, which has not previously been shown to be recognized by any prenyl:protein transferase (PTase), but which most closely resembles that isoprenylated by the type II GGTase (-XXCC, -XCXC, or -CCXX). In vitro geranylgeranylation of an Arabidopsis Rab1 protein containing a carboxyl-terminal-CCGQ sequence confirmed the presence of a type II GGTase-like activity in plant extracts. Several other proteins were also identified by in vitro GTP binding, including Arabidopsis and tobacco homologues of Rab11, ARF (ADP-ribosylation factor) and Sar proteins, as well as a novel 22 kDa Arabidopsis protein (ATG81). This 22 kDa protein had consensus GTP-binding motifs and bound GTP with high specificity, but its structure was not closely related to that of any known GTP-binding protein (it most resembled proteins within the ARF/Sar and G protein alpha-subunit superfamilies). PMID:8843944

  15. Protein Function Annotation By Local Binding Site Surface Similarity

    PubMed Central

    Spitzer, Russell; Cleves, Ann E.; Varela, Rocco; Jain, Ajay N.

    2013-01-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against approximately 60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that pre-dated query protein biochemical annotation for five out of the eight query proteins. A panel of twelve currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins. PMID:24166661

  16. Characterizing the morphology of protein binding patches.

    PubMed

    Malod-Dognin, Noël; Bansal, Achin; Cazals, Frédéric

    2012-12-01

    Let the patch of a partner in a protein complex be the collection of atoms accounting for the interaction. To improve our understanding of the structure-function relationship, we present a patch model decoupling the topological and geometric properties. While the geometry is classically encoded by the atomic positions, the topology is recorded in a graph encoding the relative position of concentric shells partitioning the interface atoms. The topological-geometric duality provides the basis of a generic dynamic programming-based algorithm comparing patches at the shell level, which may favor topological or geometric features. On the biological side, we address four questions, using 249 cocrystallized heterodimers organized in biological families. First, we dissect the morphology of binding patches and show that Nature enjoyed the topological and geometric degrees of freedom independently while retaining a finite set of qualitatively distinct topological signatures. Second, we argue that our shell-based comparison is effective to perform atomic-level comparisons and show that topological similarity is a less stringent than geometric similarity. We also use the topological versus geometric duality to exhibit topo-rigid patches, whose topology (but not geometry) remains stable upon docking. Third, we use our comparison algorithms to infer specificity-related information amidst a database of complexes. Finally, we exhibit a descriptor outperforming its contenders to predict the binding affinities of the affinity benchmark. The softwares developed with this article are availablefrom http://team.inria.fr/abs/vorpatch_compatch/. PMID:22806945

  17. RNA-binding protein nucleolin in disease.

    PubMed

    Abdelmohsen, Kotb; Gorospe, Myriam

    2012-06-01

    Nucleolin is a multifunctional protein localized primarily in the nucleolus, but also found in the nucleoplasm, cytoplasm and cell membrane. It is involved in several aspects of DNA metabolism, and participates extensively in RNA regulatory mechanisms, including transcription, ribosome assembly, mRNA stability and translation, and microRNA processing. Nucleolin's implication in disease is linked to its ability to associate with target RNAs via its four RNA-binding domains and its arginine/glycin-rich domain. By modulating the post-transcriptional fate of target mRNAs, which typically bear AU-rich and/or G-rich elements, nucleolin has been linked to cellular events that influence disease, notably cell proliferation and protection against apoptotic death. Through its diverse RNA functions, nucleolin is increasingly implicated in pathological processes, particularly cancer and viral infection. Here, we review the RNA-binding activities of nucleolin, its influence on gene expression patterns, and its impact upon diseases. We also discuss the rising interest in targeting nucleolin therapeutically. PMID:22617883

  18. RNA-binding protein nucleolin in disease

    PubMed Central

    Abdelmohsen, Kotb; Gorospe, Myriam

    2012-01-01

    Nucleolin is a multifunctional protein localized primarily in the nucleolus, but also found in the nucleoplasm, cytoplasm and cell membrane. It is involved in several aspects of DNA metabolism, and participates extensively in RNA regulatory mechanisms, including transcription, ribosome assembly, mRNA stability and translation, and microRNA processing. Nucleolin’s implication in disease is linked to its ability to associate with target RNAs via its four RNA-binding domains and its arginine/glycin-rich domain. By modulating the post-transcriptional fate of target mRNAs, which typically bear AU-rich and/or G-rich elements, nucleolin has been linked to cellular events that influence disease, notably cell proliferation and protection against apoptotic death. Through its diverse RNA functions, nucleolin is increasingly implicated in pathological processes, particularly cancer and viral infection. Here, we review the RNA-binding activities of nucleolin, its influence on gene expression patterns, and its impact upon diseases. We also discuss the rising interest in targeting nucleolin therapeutically. PMID:22617883

  19. Latent TGF-β-binding proteins

    PubMed Central

    Robertson, Ian B.; Horiguchi, Masahito; Zilberberg, Lior; Dabovic, Branka; Hadjiolova, Krassimira; Rifkin, Daniel B.

    2016-01-01

    The LTBPs (or latent transforming growth factor β binding proteins) are important components of the extracellular matrix (ECM) that interact with fibrillin microfibrils and have a number of different roles in microfibril biology. There are four LTBPs isoforms in the human genome (LTBP-1, -2, -3, and -4), all of which appear to associate with fibrillin and the biology of each isoform is reviewed here. The LTBPs were first identified as forming latent complexes with TGFβ by covalently binding the TGFβ propeptide (LAP) via disulfide bonds in the endoplasmic reticulum. LAP in turn is cleaved from the mature TGFβ precursor in the trans golgi network but LAP and TGFβ remain strongly bound through non-covalent interactions. LAP, TGFβ, and LTBP together form the large latent complex (LLC). LTBPs were originally thought to primarily play a role in maintaining TGFβ latency and targeting the latent growth factor to the extracellular matrix (ECM), but it has also been shown that LTBP-1 participates in TGFβ activation by integrins and may also regulate activation by proteases and other factors. LTBP-3 appears to have a role in skeletal formation including tooth development. As well as having important functions in TGFβ regulation, TGFβ-independent activities have recently been identified for LTBP-2 and LTBP-4 in stabilizing microfibril bundles and regulating elastic fiber assembly. PMID:25960419

  20. Cellular retinol-binding protein and retinoic acid-binding protein in rat testes: effect of retinol depletion.

    PubMed

    Ong, D E; Tsai, C H; Chytil, F

    1976-02-01

    Testes of rats contain two cellular binding proteins of interest in vitamin A metabolism. One protein binds retinoic acid with high specificity; the other binds retinol with high specificity. When the cellular retinol-binding protein was partially purified from rat testes, it exhibited fluorescence excitation and emission spectra similar to that of all-trans-retinol in hexane. Exposure of this preparation to UV light destroyed this fluorescence but spectra identical to the original were obtained after addition of retinol. Hexane extracts of the binding protein had fluorescence spectra identical to all-trans-retinol, suggesting that this compound is bound to the protein in vivo. Extracts of testes from retinol depleted rats were submitted to gel filtration but failed to show a retinol-like fluorescence at the elution position of retinol binding protein. This fluorescence was observed in the preparations from pair fed control animals. However, after addition of all-trans-retinol to the extracts from the depleted rats, fluorescence at that elution position was observed. This indicates that in testes of retinol depleted rats the cellular retinol binding protein is present but without bound retinol, in contrast to the non-depleted rats where 30-43% of the binding protein had bound retinol. The amounts of cellular retinol binding protein and retinoic acid binding protein in testes, as determined by sucrose gradient centrifugation, were found to be similar for retinol depleted and pair fed control rats. PMID:942996

  1. How Does Confinement Change Ligand-Receptor Binding Equilibrium? Protein Binding in Nanopores and Nanochannels.

    PubMed

    Tagliazucchi, Mario; Szleifer, Igal

    2015-10-01

    We present systematic studies for the binding of small model proteins to ligands attached to the inner walls of long nanochannels and short nanopores by polymeric tethers. Binding of proteins to specific ligands inside nanometric channels and pores leads to changes in their ionic conductance, which have been exploited in sensors that quantify the concentration of the proteins in solution. The theoretical predictions presented in this work are aimed to provide a fundamental understanding of protein binding under geometrically confined environments and to guide the design of this kind of nanochannel-based sensors. The theory predicts that the fraction of the channel volume filled by bound proteins is a nonmonotonic function of the channel radius, the length of the tethers, the surface density of the ligands and the size of the proteins. Notably, increasing the density of ligands, decreasing the size of the channel or increasing the size of the protein may lead to a decrease of the fraction of the channel volume filled by bound proteins. These results are explained from the incomplete binding of proteins to the ligands due to repulsive protein-protein and protein-ligand steric interactions. Our work suggests strategies to optimize the change in conductance due to protein binding, for example: (i) proteins much smaller than the radius of the channel may effectively block the channel if tethers of appropriate length are used, and (ii) a large decrease in conductance upon protein binding can be achieved if the channel and the protein are oppositely charged. PMID:26368839

  2. Detection of secondary binding sites in proteins using fragment screening

    PubMed Central

    Ludlow, R. Frederick; Verdonk, Marcel L.; Saini, Harpreet K.; Tickle, Ian J.; Jhoti, Harren

    2015-01-01

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets. PMID:26655740

  3. Improving Binding Affinity and Selectivity of Computationally Designed Ligand-Binding Proteins Using Experiments.

    PubMed

    Tinberg, Christine E; Khare, Sagar D

    2016-01-01

    The ability to de novo design proteins that can bind small molecules has wide implications for synthetic biology and medicine. Combining computational protein design with the high-throughput screening of mutagenic libraries of computationally designed proteins is emerging as a general approach for creating binding proteins with programmable binding modes, affinities, and selectivities. The computational step enables the creation of a binding site in a protein that otherwise does not (measurably) bind the intended ligand, and targeted mutagenic screening allows for validation and refinement of the computational model as well as provides orders-of-magnitude increases in the binding affinity. Deep sequencing of mutagenic libraries can provide insights into the mutagenic binding landscape and enable further affinity improvements. Moreover, in such a combined computational-experimental approach where the binding mode is preprogrammed and iteratively refined, selectivity can be achieved (and modulated) by the placement of specified amino acid side chain groups around the ligand in defined orientations. Here, we describe the experimental aspects of a combined computational-experimental approach for designing-using the software suite Rosetta-proteins that bind a small molecule of choice and engineering, using fluorescence-activated cell sorting and high-throughput yeast surface display, high affinity and ligand selectivity. We illustrated the utility of this approach by performing the design of a selective digoxigenin (DIG)-binding protein that, after affinity maturation, binds DIG with picomolar affinity and high selectivity over structurally related steroids. PMID:27094290

  4. Minimalistic predictor of protein binding energy: contribution of solvation factor to protein binding.

    PubMed

    Choi, Jeong-Mo; Serohijos, Adrian W R; Murphy, Sean; Lucarelli, Dennis; Lofranco, Leo L; Feldman, Andrew; Shakhnovich, Eugene I

    2015-02-17

    It has long been known that solvation plays an important role in protein-protein interactions. Here, we use a minimalistic solvation-based model for predicting protein binding energy to estimate quantitatively the contribution of the solvation factor in protein binding. The factor is described by a simple linear combination of buried surface areas according to amino-acid types. Even without structural optimization, our minimalistic model demonstrates a predictive power comparable to more complex methods, making the proposed approach the basis for high throughput applications. Application of the model to a proteomic database shows that receptor-substrate complexes involved in signaling have lower affinities than enzyme-inhibitor and antibody-antigen complexes, and they differ by chemical compositions on interfaces. Also, we found that protein complexes with components that come from the same genes generally have lower affinities than complexes formed by proteins from different genes, but in this case the difference originates from different interface areas. The model was implemented in the software PYTHON, and the source code can be found on the Shakhnovich group webpage: http://faculty.chemistry.harvard.edu/shakhnovich/software. PMID:25692584

  5. Photoaffinity labeling of retinoic acid-binding proteins.

    PubMed Central

    Bernstein, P S; Choi, S Y; Ho, Y C; Rando, R R

    1995-01-01

    Retinoid-binding proteins are essential mediators of vitamin A function in vertebrate organisms. They solubilize and stabilize retinoids, and they direct the intercellular and intracellular trafficking, transport, and metabolic function of vitamin A compounds in vision and in growth and development. Although many soluble retinoid-binding proteins and receptors have been purified and extensively characterized, relatively few membrane-associated enzymes and other proteins that interact with retinoids have been isolated and studied, due primarily to their inherent instabilities during purification. In an effort to identify and purify previously uncharacterized retinoid-binding proteins, it is shown that radioactively labeled all-trans-retinoic acid can be used as a photoaffinity labeling reagent to specifically tag two known retinoic acid-binding proteins, cellular retinoic acid-binding protein and albumin, in complex mixtures of cytosolic proteins. Additionally, a number of other soluble and membrane-associated proteins that bind all-trans-[11,12-3H]retinoic acid with high specificity are labeled utilizing the same photoaffinity techniques. Most of these labeled proteins have molecular weights that do not correspond to any known retinoid-binding proteins. Thus, photoaffinity labeling with all-trans-retinoic acid and related photoactivatable retinoids is a method that should prove extremely useful in the identification and purification of novel soluble and membrane-associated retinoid-binding proteins from ocular and nonocular tissues. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7846032

  6. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    PubMed

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  7. DNA Shape versus Sequence Variations in the Protein Binding Process.

    PubMed

    Chen, Chuanying; Pettitt, B Montgomery

    2016-02-01

    The binding process of a protein with a DNA involves three stages: approach, encounter, and association. It has been known that the complexation of protein and DNA involves mutual conformational changes, especially for a specific sequence association. However, it is still unclear how the conformation and the information in the DNA sequences affects the binding process. What is the extent to which the DNA structure adopted in the complex is induced by protein binding, or is instead intrinsic to the DNA sequence? In this study, we used the multiscale simulation method to explore the binding process of a protein with DNA in terms of DNA sequence, conformation, and interactions. We found that in the approach stage the protein can bind both the major and minor groove of the DNA, but uses different features to locate the binding site. The intrinsic conformational properties of the DNA play a significant role in this binding stage. By comparing the specific DNA with the nonspecific in unbound, intermediate, and associated states, we found that for a specific DNA sequence, ∼40% of the bending in the association forms is intrinsic and that ∼60% is induced by the protein. The protein does not induce appreciable bending of nonspecific DNA. In addition, we proposed that the DNA shape variations induced by protein binding are required in the early stage of the binding process, so that the protein is able to approach, encounter, and form an intermediate at the correct site on DNA. PMID:26840719

  8. Dot-blot assay for heparin-binding proteins

    SciTech Connect

    Hirose, N.; Krivanek, M.; Jackson, R.L.; Cardin, A.D.

    1986-08-01

    A method for the detection and quantitation of picomole amounts of heparin-binding proteins is described. Proteins are first spotted on nitrocellulose and then incubated with /sup 125/I-heparin. Binding of heparin to the proteins is detected by radioautography and quantitated by scanning densitometry; proteins are quantitated by densitometric analysis of the amido black stained nitrocellulose. Heparin-binding was time-dependent and sensitive to the presence of metal ions, urea, and detergents (anionic, nonionic, and zwitterionic). The divalent cations Ca/sup 2 +/ and Mg/sup 2 +/ and the zwitterionic detergent 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate increased heparin binding whereas NaCl, urea, sodium dodecylsulfate, and La3+ decreased binding. This assay is applicable to the identification and characterization of a variety of heparin-binding proteins.

  9. Partial characterization of GTP-binding proteins in Neurospora

    SciTech Connect

    Hasunuma, K.; Miyamoto-Shinohara, Y.; Furukawa, K.

    1987-08-14

    Six fractions of GTP-binding proteins separated by gel filtration of a mycelial extract containing membrane components of Neurospora crassa were partially characterized. (/sup 35/S)GTP gamma S bound to GTP-binding protein was assayed by repeated treatments with a Norit solution and centrifugation. The binding of (/sup 35/S)GTP gamma S to GTP-binding proteins was competitively prevented in the presence of 0.1 to 1 mM GTP but not in the presence of ATP. These GTP-binding proteins fractionated by the gel column had Km values of 20, 7, 4, 4, 80 and 2 nM. All six fractions of these GTP-binding proteins showed the capacity to be ADP-ribosylated by pertussis toxin.

  10. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  11. Convergent evolution among immunoglobulin G-binding bacterial proteins.

    PubMed Central

    Frick, I M; Wikström, M; Forsén, S; Drakenberg, T; Gomi, H; Sjöbring, U; Björck, L

    1992-01-01

    Protein G, a bacterial cell-wall protein with high affinity for the constant region of IgG (IgGFc) antibodies, contains homologous repeats responsible for the interaction with IgGFc. A synthetic peptide corresponding to an 11-amino acid-long sequence in the COOH-terminal region of the repeats was found to bind to IgGFc and block the interaction with protein G. Moreover, two other IgGFc-binding bacterial proteins (proteins A and H), which do not contain any sequences homologous to the peptide, were also inhibited in their interactions with IgGFc by the peptide. Finally, a decapeptide based on a sequence in IgGFc blocked the binding of all three proteins to IgGFc. This unusually clear example of convergent evolution emphasizes the complexity of protein-protein interactions and suggests that bacterial surface-protein interaction with host protein adds selective advantages to the microorganism. Images PMID:1528858

  12. Fused protein domains inhibit DNA binding by LexA.

    PubMed Central

    Golemis, E A; Brent, R

    1992-01-01

    Many studies of transcription activation employ fusions of activation domains to DNA binding domains derived from the bacterial repressor LexA and the yeast activator GAL4. Such studies often implicitly assume that DNA binding by the chimeric proteins is equivalent to that of the protein donating the DNA binding moiety. To directly investigate this issue, we compared operator binding by a series of LexA-derivative proteins to operator binding by native LexA, by using both in vivo and in vitro assays. We show that operator binding by many proteins such as LexA-Myc, LexA-Fos, and LexA-Bicoid is severely impaired, while binding of other LexA-derivative proteins, such as those that carry bacterially encoded acidic sequences ("acid blobs"), is not. Our results also show that DNA binding by LexA derivatives that contain the LexA carboxy-terminal dimerization domain (amino acids 88 to 202) is considerably stronger than binding by fusions that lack it and that heterologous dimerization motifs cannot substitute for the LexA88-202 function. These results suggest the need to reevaluate some previous studies of activation that employed LexA derivatives and modifications to recent experimental approaches that use LexA and GAL4 derivatives to detect and study protein-protein interactions. Images PMID:1620111

  13. Odorant binding proteins: a biotechnological tool for odour control.

    PubMed

    Silva, Carla; Matamá, Teresa; Azoia, Nuno G; Mansilha, Catarina; Casal, Margarida; Cavaco-Paulo, Artur

    2014-04-01

    The application of an odorant binding protein for odour control and fragrance delayed release from a textile surface was first explored in this work. Pig OBP-1 gene was cloned and expressed in Escherichia coli, and the purified protein was biochemically characterized. The IC₅₀ values (concentrations of competitor that caused a decay of fluorescence to half-maximal intensity) were determined for four distinct fragrances, namely, citronellol, benzyl benzoate, citronellyl valerate and ethyl valerate. The results showed a strong binding of citronellyl valerate, citronellol and benzyl benzoate to the recombinant protein, while ethyl valerate displayed weaker binding. Cationized cotton substrates were coated with porcine odorant binding protein and tested for their capacity to retain citronellol and to mask the smell of cigarette smoke. The immobilized protein delayed the release of citronellol when compared to the untreated cotton. According to a blind evaluation of 30 assessors, the smell of cigarette smoke, trapped onto the fabrics' surface, was successfully attenuated by porcine odorant binding protein (more than 60 % identified the weakest smell intensity after protein exposure compared to β-cyclodextrin-treated and untreated cotton fabrics). This work demonstrated that porcine odorant binding protein can be an efficient solution to prevent and/or remove unpleasant odours trapped on the large surface of textiles. Its intrinsic properties make odorant binding proteins excellent candidates for controlled release systems which constitute a new application for this class of proteins. PMID:24092006

  14. Protein Binding: Do We Ever Learn?▿

    PubMed Central

    Zeitlinger, Markus A.; Derendorf, Hartmut; Mouton, Johan W.; Cars, Otto; Craig, William A.; Andes, David; Theuretzbacher, Ursula

    2011-01-01

    Although the influence of protein binding (PB) on antibacterial activity has been reported for many antibiotics and over many years, there is currently no standardization for pharmacodynamic models that account for the impact of protein binding of antimicrobial agents in vitro. This might explain the somewhat contradictory results obtained from different studies. Simple in vitro models which compare the MIC obtained in protein-free standard medium versus a protein-rich medium are prone to methodological pitfalls and may lead to flawed conclusions. Within in vitro test systems, a range of test conditions, including source of protein, concentration of the tested antibiotic, temperature, pH, electrolytes, and supplements may influence the impact of protein binding. As new antibiotics with a high degree of protein binding are in clinical development, attention and action directed toward the optimization and standardization of testing the impact of protein binding on the activity of antibiotics in vitro become even more urgent. In addition, the quantitative relationship between the effects of protein binding in vitro and in vivo needs to be established, since the physiological conditions differ. General recommendations for testing the impact of protein binding in vitro are suggested. PMID:21537013

  15. Calmodulin Binding Proteins and Alzheimer’s Disease

    PubMed Central

    O’Day, Danton H.; Eshak, Kristeen; Myre, Michael A.

    2015-01-01

    Abstract The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer’s disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer’s disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer’s disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  16. Therapeutic and analytical applications of arsenic binding to proteins.

    PubMed

    Chen, Beibei; Liu, Qingqing; Popowich, Aleksandra; Shen, Shengwen; Yan, Xiaowen; Zhang, Qi; Li, Xing-Fang; Weinfeld, Michael; Cullen, William R; Le, X Chris

    2015-01-01

    Arsenic binding to proteins plays a pivotal role in the health effects of arsenic. Further knowledge of arsenic binding to proteins will advance the development of bioanalytical techniques and therapeutic drugs. This review summarizes recent work on arsenic-based drugs, imaging of cellular events, capture and purification of arsenic-binding proteins, and biosensing of arsenic. Binding of arsenic to the promyelocytic leukemia fusion oncoprotein (PML-RARα) is a plausible mode of action leading to the successful treatment of acute promyelocytic leukemia (APL). Identification of other oncoproteins critical to other cancers and the development of various arsenicals and targeted delivery systems are promising approaches to the treatment of other types of cancers. Techniques for capture, purification, and identification of arsenic-binding proteins make use of specific binding between trivalent arsenicals and the thiols in proteins. Biarsenical probes, such as FlAsH-EDT2 and ReAsH-EDT2, coupled with tetracysteine tags that are genetically incorporated into the target proteins, are used for site-specific fluorescence labelling and imaging of the target proteins in living cells. These allow protein dynamics and protein-protein interactions to be studied. Arsenic affinity chromatography is useful for purification of thiol-containing proteins, and its combination with mass spectrometry provides a targeted proteomic approach for studying the interactions between arsenicals and proteins in cells. Arsenic biosensors evolved from the knowledge of arsenic resistance and arsenic binding to proteins in bacteria, and have now been developed into analytical techniques that are suitable for the detection of arsenic in the field. Examples in the four areas, arsenic-based drugs, imaging of cellular events, purification of specific proteins, and arsenic biosensors, demonstrate important therapeutic and analytical applications of arsenic protein binding. PMID:25356501

  17. Odorant-Binding Protein: Localization to Nasal Glands and Secretions

    NASA Astrophysics Data System (ADS)

    Pevsner, Jonathan; Sklar, Pamela B.; Snyder, Solomon H.

    1986-07-01

    An odorant-binding protein (OBP) was isolated from bovine olfactory and respiratory mucosa. We have produced polyclonal antisera to this protein and report its immunohistochemical localization to mucus-secreting glands of the olfactory and respiratory mucosa. Although OBP was originally isolated as a pyrazine binding protein, both rat and bovine OBP also bind the odorants [3H]methyldihydrojasmonate and 3,7-dimethyl-octan-1-ol as well as 2-isobutyl-3-[3H]methoxypyrazine. We detect substantial odorant-binding activity attributable to OBP in secreted rat nasal mucus and tears but not in saliva, suggesting a role for OBP in transporting or concentrating odorants.

  18. Actin binding proteins, spermatid transport and spermiation*

    PubMed Central

    Qian, Xiaojing; Mruk, Dolores D.; Cheng, Yan-Ho; Tang, Elizabeth I.; Han, Daishu; Lee, Will M.; Wong, Elissa W. P.; Cheng, C. Yan

    2014-01-01

    The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby entering the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility. However, the biology of spermatid transport, in particular the final events that lead to spermiation remain elusive. Based on recent data in the field, we critically evaluate the biology of spermiation herein by focusing on the actin binding proteins (ABPs) that regulate the organization of actin microfilaments at the Sertoli-spermatid interface, which is crucial for spermatid transport during this event. The hypothesis we put forth herein also highlights some specific areas of research that can be pursued by investigators in the years to come. PMID:24735648

  19. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  20. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  1. Selective polyamine-binding proteins. Spermine binding by an androgen-sensitive phosphoprotein.

    PubMed

    Liang, T; Mezzetti, G; Chen, C; Liao, S

    1978-09-01

    Rat ventral prostate contains an acidic protein which can bind spermine selectively. The relative binding affinities of various aliphatic amines for the protein are, in decreasing order, spermine greater than thermine greater than greater than putrecine greater than 1,10-diaminodecane, cadaverine and 1,12-diaminododecane. The binding protein has an isoelectric point at pH 4.3 and a sedimentation coefficient of 3 S. Its molecular weight is approx. 30 000. Histones and nuclear chromatin preparations of the prostate can interact with the binding protein. The spermine-binding activity of the purified prostate protein can be inactivated by treatment with intestinal alkaline phosphatases. The phosphatase treated preparation can then be reactivated by beef heart protein kinase in the presence of cyclic AMP and ATP. The spermine-binding activity of the prostate cytosol protein fraction decreases after castration, but increases very rapidly after the castrated rats are injected with 5alpha-dihydrotestosterone. This finding raises the possibility that, in the postate, certain androgen actions may be dependent on the androgen-induced increase in the acidic protein binding of polyamines and their translocation to a functional cellular site such as nuclear chromatin. In the prostate cytosol, spermine also binds to 4-S tRNAs and to a unique RNA which has a sedimentation coefficient of 1.5 S. PMID:28786

  2. Clinical relevance of drug binding to plasma proteins

    NASA Astrophysics Data System (ADS)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  3. Characterization of the DNA binding properties of polyomavirus capsid protein

    NASA Technical Reports Server (NTRS)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  4. AU-rich RNA binding proteins in hematopoiesis and leukemogenesis.

    PubMed

    Baou, Maria; Norton, John D; Murphy, John J

    2011-11-24

    Posttranscriptional mechanisms are now widely acknowledged to play a central role in orchestrating gene-regulatory networks in hematopoietic cell growth, differentiation, and tumorigenesis. Although much attention has focused on microRNAs as regulators of mRNA stability/translation, recent data have highlighted the role of several diverse classes of AU-rich RNA-binding protein in the regulation of mRNA decay/stabilization. AU-rich elements are found in the 3'-untranslated region of many mRNAs that encode regulators of cell growth and survival, such as cytokines and onco/tumor-suppressor proteins. These are targeted by a burgeoning number of different RNA-binding proteins. Three distinct types of AU-rich RNA binding protein (ARE poly-U-binding degradation factor-1/AUF1, Hu antigen/HuR/HuA/ELAVL1, and the tristetraprolin/ZFP36 family of proteins) are essential for normal hematopoiesis. Together with 2 further AU-rich RNA-binding proteins, nucleolin and KHSRP/KSRP, the functions of these proteins are intimately associated with pathways that are dysregulated in various hematopoietic malignancies. Significantly, all of these AU-rich RNA-binding proteins function via an interconnected network that is integrated with microRNA functions. Studies of these diverse types of RNA binding protein are providing novel insight into gene-regulatory mechanisms in hematopoiesis in addition to offering new opportunities for developing mechanism-based targeted therapeutics in leukemia and lymphoma. PMID:21917750

  5. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry.

    PubMed

    Xiao, Yongsheng; Wang, Yinsheng

    2016-09-01

    Nucleotide-binding proteins, such as protein kinases, ATPases and GTP-binding proteins, are among the most important families of proteins that are involved in a number of pivotal cellular processes. However, global study of the structure, function, and expression level of nucleotide-binding proteins as well as protein-nucleotide interactions can hardly be achieved with the use of conventional approaches owing to enormous diversity of the nucleotide-binding protein family. Recent advances in mass spectrometry (MS) instrumentation, coupled with a variety of nucleotide-binding protein enrichment methods, rendered MS-based proteomics a powerful tool for the comprehensive characterizations of the nucleotide-binding proteome, especially the kinome. Here, we review the recent developments in the use of mass spectrometry, together with general and widely used affinity enrichment approaches, for the proteome-wide capture, identification and quantification of nucleotide-binding proteins, including protein kinases, ATPases, GTPases, and other nucleotide-binding proteins. The working principles, advantages, and limitations of each enrichment platform in identifying nucleotide-binding proteins as well as profiling protein-nucleotide interactions are summarized. The perspectives in developing novel MS-based nucleotide-binding protein detection platform are also discussed. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:601-619, 2016. PMID:25376990

  6. In Situ Quantification of Protein Binding to the Plasma Membrane

    PubMed Central

    Smith, Elizabeth M.; Hennen, Jared; Chen, Yan; Mueller, Joachim D.

    2015-01-01

    This study presents a fluorescence-based assay that allows for direct measurement of protein binding to the plasma membrane inside living cells. An axial scan through the cell generates a fluorescence intensity profile that is analyzed to determine the membrane-bound and cytoplasmic concentrations of a peripheral membrane protein labeled by the enhanced green fluorescent protein (EGFP). The membrane binding curve is constructed by mapping those concentrations for a population of cells with a wide range of protein expression levels, and a fit of the binding curve determines the number of binding sites and the dissociation coefficient. We experimentally verified the technique, using myosin-1C-EGFP as a model system and fit its binding curve. Furthermore, we studied the protein-lipid interactions of the membrane binding domains from lactadherin and phospholipase C-δ1 to evaluate the feasibility of using competition binding experiments to identify specific lipid-protein interactions in living cells. Finally, we applied the technique to determine the lipid specificity, the number of binding sites, and the dissociation coefficient of membrane binding for the Gag matrix domain of human T-lymphotropic virus type 1, which provides insight into early assembly steps of the retrovirus. PMID:26039166

  7. Protein-protein binding affinities by pulse proteolysis: application to TEM-1/BLIP protein complexes.

    PubMed

    Hanes, Melinda S; Ratcliff, Kathleen; Marqusee, Susan; Handel, Tracy M

    2010-10-01

    Efficient methods for quantifying dissociation constants have become increasingly important for high-throughput mutagenesis studies in the postgenomic era. However, experimentally determining binding affinity is often laborious, requires large amounts of purified protein, and utilizes specialized equipment. Recently, pulse proteolysis has been shown to be a robust and simple method to determine the dissociation constants for a protein-ligand pair based on the increase in thermodynamic stability upon ligand binding. Here, we extend this technique to determine binding affinities for a protein-protein complex involving the β-lactamase TEM-1 and various β-lactamase inhibitor protein (BLIP) mutants. Interaction with BLIP results in an increase in the denaturation curve midpoint, C(m), of TEM-1, which correlates with the rank order of binding affinities for several BLIP mutants. Hence, pulse proteolysis is a simple, effective method to assay for mutations that modulate binding affinity in protein-protein complexes. From a small set (n = 4) of TEM-1/BLIP mutant complexes, a linear relationship between energy of stabilization (dissociation constant) and ΔC(m) was observed. From this "calibration curve," accurate dissociation constants for two additional BLIP mutants were calculated directly from proteolysis-derived ΔC(m) values. Therefore, in addition to qualitative information, armed with knowledge of the dissociation constants from the WT protein and a limited number of mutants, accurate quantitation of binding affinities can be determined for additional mutants from pulse proteolysis. Minimal sample requirements and the suitability of impure protein preparations are important advantages that make pulse proteolysis a powerful tool for high-throughput mutagenesis binding studies. PMID:20669180

  8. Odorant-binding proteins from a primitive termite.

    PubMed

    Ishida, Yuko; Chiang, Vicky P; Haverty, Michael I; Leal, Walter S

    2002-09-01

    Hitherto, odorant-binding proteins (OBPs) have been identified from insects belonging to more highly evolved insect orders (Lepidoptera, Coleoptera, Diptera, Hymenoptera, and Hemiptera), whereas only chemosensory proteins have been identified from more primitive species, such as orthopteran and phasmid species. Here, we report for the first time the isolation and cloning of odorant-binding proteins from a primitive termite species, the dampwood termite. Zootermopsis nevadensis nevadensis (Isoptera: Termopsidae). A major antennae-specific protein was detected by native PAGE along with four other minor proteins, which were also absent in the extract from control tissues (hindlegs). Multiple cDNA cloning led to the full characterization of the major antennae-specific protein (ZnevOBP1) and to the identification of two other antennae-specific cDNAs, encoding putative odorant-binding proteins (ZnevOBP2 and ZnevOBP3). N-terminal amino acid sequencing of the minor antennal bands and cDNA cloning showed that olfaction in Z. n. nevadensis may involve multiple odorant-binding proteins. Database searches suggest that the OBPs from this primitive termite are homologues of the pheromone-binding proteins from scarab beetles and antennal-binding proteins from moths. PMID:12449514

  9. Search for Amyloid-Binding Proteins by Affinity Chromatography

    PubMed Central

    Calero, Miguel; Rostagno, Agueda; Ghiso, Jorge

    2013-01-01

    ‘Amyloid binging proteins’ is a generic term used to designate proteins that interact with different forms of amyloidogenic peptides or proteins and that, as a result, may modulate their physiological and pathological functions by altering solubility, transport, clearance, degradation, and fibril formation. We describe a simple affinity chromatography protocol to isolate and characterize amyloid-binding proteins based on the use of sequential elution steps that may provide further information on the type of binding interaction. As an example, we depict the application of this protocol to the study of Alzheimer’s amyloid β (Aβ) peptide-binding proteins derived from human plasma. Biochemical analysis of the proteins eluted under different conditions identified serum amyloid P component (SAP) and apolipoprotein J (clusterin) as the main plasma Aβ-binding proteins while various apolipoproteins (apoA-IV, apoE, and apoA-I), as well as albumin (HSA) and fibulin were identified as minor contributors. PMID:22528093

  10. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  11. The actin binding protein adseverin regulates osteoclastogenesis.

    PubMed

    Hassanpour, Siavash; Jiang, Hongwei; Wang, Yongqiang; Kuiper, Johannes W P; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion. PMID:25275604

  12. The Actin Binding Protein Adseverin Regulates Osteoclastogenesis

    PubMed Central

    Wang, Yongqiang; Kuiper, Johannes W. P.; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion. PMID:25275604

  13. Cooperative binding modes of Cu(II) in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  14. Activities of the Sex-lethal protein in RNA binding and protein:protein interactions.

    PubMed Central

    Samuels, M; Deshpande, G; Schedl, P

    1998-01-01

    The Drosophila sex determination gene Sex-lethal (Sxl) controls its own expression, and the expression of downstream target genes such as transformer , by regulating pre-mRNA splicing and mRNA translation. Sxl codes an RNA-binding protein that consists of an N-terminus of approximately 100 amino acids, two 90 amino acid RRM domains, R1 and R2, and an 80 amino acid C-terminus. In the studies reported here we have examined the functional properties of the different Sxl protein domains in RNA binding and in protein:protein interactions. The two RRM domains are responsible for RNA binding. Specificity in the recognition of target RNAs requires both RRM domains, and proteins which consist of the single domains or duplicated domains have anomalous RNA recognition properties. Moreover, the length of the linker between domains can affect RNA recognition properties. Our results indicate that the two RRM domains mediate Sxl:Sxl protein interactions, and that these interactions probably occur both in cis and trans. We speculate that cis interactions between R1 and R2 play a role in RNA recognition by the Sxl protein, while trans interactions stabilize complex formation on target RNAs that contain two or more closely spaced binding sites. Finally, we show that the interaction of Sxl with the snRNP protein Snf is mediated by the R1 RRM domain. PMID:9592147

  15. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  16. EMSA Analysis of DNA Binding By Rgg Proteins

    PubMed Central

    LaSarre, Breah; Federle, Michael J.

    2016-01-01

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function (e.g. interruption of DNA-binding in some cases).

  17. Guardian of Genetic Messenger-RNA-Binding Proteins

    PubMed Central

    Anji, Antje; Kumari, Meena

    2016-01-01

    RNA in cells is always associated with RNA-binding proteins that regulate all aspects of RNA metabolism including RNA splicing, export from the nucleus, RNA localization, mRNA turn-over as well as translation. Given their diverse functions, cells express a variety of RNA-binding proteins, which play important roles in the pathologies of a number of diseases. In this review we focus on the effect of alcohol on different RNA-binding proteins and their possible contribution to alcohol-related disorders, and discuss the role of these proteins in the development of neurological diseases and cancer. We further discuss the conventional methods and newer techniques that are employed to identify RNA-binding proteins. PMID:26751491

  18. Purification of a Zn-binding phloem protein with sequence identity to chitin-binding proteins.

    PubMed Central

    Taylor, K C; Albrigo, L G; Chase, C D

    1996-01-01

    In citrus blight, a decline disorder of unknown etiology, the tree canopy exhibits symptoms of Zn deficiency while Zn accumulates in the trunk phloem. We have purified a Zn-binding protein (ZBP) from phloem tissue of healthy and blight-affected citrus (Citrus sinensis [L.] Osbeck on Citrus jambhiri [L.]). The molecular weight of the ZBP was estimated to be 5000 by size-exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Ion-exchange chromatography at pH 8.0 demonstrated the 5-kD ZBP to be anionic. A partial N-terminal amino acid sequence revealed a cysteine-, glycine-rich domain with 45 to 80% identity with the chitin-binding domain of hevein, wheat germ agglutinin, and several class I chitinases. That the abundance of this protein increased 2.5-fold in association with Zn accumulation in the phloem is characteristic of citrus blight. Tissue mass changes of the phloem suggests that altered tissue structure accompanies blight. Phloem accumulation of the 5-kD ZBP may be in response to wounding or other stress of blight-affected citrus. PMID:8742339

  19. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

    PubMed

    Khan, Waqasuddin; Duffy, Fergal; Pollastri, Gianluca; Shields, Denis C; Mooney, Catherine

    2013-01-01

    Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif) containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58).Next, we trained a bidirectional recurrent neural network (BRNN) using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72) showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods) clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors. PMID:24019881

  20. Identification of AOSC-binding proteins in neurons

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Nie, Qin; Xin, Xianliang; Geng, Meiyu

    2008-11-01

    Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brown algae polysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer’s Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities.

  1. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. PMID:26873273

  2. The human "magnesome": detecting magnesium binding sites on human proteins

    PubMed Central

    2012-01-01

    Background Magnesium research is increasing in molecular medicine due to the relevance of this ion in several important biological processes and associated molecular pathogeneses. It is still difficult to predict from the protein covalent structure whether a human chain is or not involved in magnesium binding. This is mainly due to little information on the structural characteristics of magnesium binding sites in proteins and protein complexes. Magnesium binding features, differently from those of other divalent cations such as calcium and zinc, are elusive. Here we address a question that is relevant in protein annotation: how many human proteins can bind Mg2+? Our analysis is performed taking advantage of the recently implemented Bologna Annotation Resource (BAR-PLUS), a non hierarchical clustering method that relies on the pair wise sequence comparison of about 14 millions proteins from over 300.000 species and their grouping into clusters where annotation can safely be inherited after statistical validation. Results After cluster assignment of the latest version of the human proteome, the total number of human proteins for which we can assign putative Mg binding sites is 3,751. Among these proteins, 2,688 inherit annotation directly from human templates and 1,063 inherit annotation from templates of other organisms. Protein structures are highly conserved inside a given cluster. Transfer of structural properties is possible after alignment of a given sequence with the protein structures that characterise a given cluster as obtained with a Hidden Markov Model (HMM) based procedure. Interestingly a set of 370 human sequences inherit Mg2+ binding sites from templates sharing less than 30% sequence identity with the template. Conclusion We describe and deliver the "human magnesome", a set of proteins of the human proteome that inherit putative binding of magnesium ions. With our BAR-hMG, 251 clusters including 1,341 magnesium binding protein structures

  3. Niobium Uptake and Release by Bacterial Ferric Ion Binding Protein

    PubMed Central

    Shi, Yanbo; Harvey, Ian; Campopiano, Dominic; Sadler, Peter J.

    2010-01-01

    Ferric ion binding proteins (Fbps) transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III) is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues) together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed. PMID:20445753

  4. Paramagnetic Ligand Tagging To Identify Protein Binding Sites

    PubMed Central

    2015-01-01

    Transient biomolecular interactions are the cornerstones of the cellular machinery. The identification of the binding sites for low affinity molecular encounters is essential for the development of high affinity pharmaceuticals from weakly binding leads but is hindered by the lack of robust methodologies for characterization of weakly binding complexes. We introduce a paramagnetic ligand tagging approach that enables localization of low affinity protein–ligand binding clefts by detection and analysis of intermolecular protein NMR pseudocontact shifts, which are invoked by the covalent attachment of a paramagnetic lanthanoid chelating tag to the ligand of interest. The methodology is corroborated by identification of the low millimolar volatile anesthetic interaction site of the calcium sensor protein calmodulin. It presents an efficient route to binding site localization for low affinity complexes and is applicable to rapid screening of protein–ligand systems with varying binding affinity. PMID:26289584

  5. The Potassium Binding Protein Kbp Is a Cytoplasmic Potassium Sensor.

    PubMed

    Ashraf, Khuram U; Josts, Inokentijs; Mosbahi, Khedidja; Kelly, Sharon M; Byron, Olwyn; Smith, Brian O; Walker, Daniel

    2016-05-01

    Escherichia coli possesses a number of specific K(+) influx and efflux systems that maintain an appropriate intracellular K(+) concentration. Although regulatory mechanisms have been identified for a number of these transport systems, the exact mechanism through which K(+) concentration is sensed in the cell remains unknown. In this work we show that Kbp (K(+) binding protein, formerly YgaU), a soluble 16-kDa cytoplasmic protein from Escherichia coli, is a highly specific K(+) binding protein and is required for normal growth in the presence of high levels of external K(+). Kbp binds a single potassium ion with high specificity over Na(+) and other metal ions found in biological systems, although, in common with K(+) transporters, it also binds Rb(+) and Cs(+). Dissection of the K(+) binding determinants of Kbp suggests a mechanism through which Kbp is able to sense changes in K(+) concentration over the relevant range of intracellular K(+) concentrations. PMID:27112601

  6. The RNA binding site of bacteriophage MS2 coat protein.

    PubMed Central

    Peabody, D S

    1993-01-01

    The coat protein of the RNA bacteriophage MS2 binds a specific stem-loop structure in viral RNA to accomplish encapsidation of the genome and translational repression of replicase synthesis. In order to identify the structural components of coat protein required for its RNA binding function, a series of repressor-defective mutants has been isolated. To ensure that the repressor defects were due to substitution of binding site residues, the mutant coat proteins were screened for retention of the ability to form virus-like particles. Since virus assembly presumably requires native structure, this approach eliminated mutants whose repressor defects were secondary consequences of protein folding or stability defects. Each of the variant coat proteins was purified and its ability to bind operator RNA in vitro was measured. DNA sequence analysis identified the nucleotide and amino acid substitutions responsible for reduced RNA binding affinity. Localization of the substituted sites in the three-dimensional structure of coat protein reveals that amino acid residues on three adjacent strands of the coat protein beta-sheet are required for translational repression and RNA binding. The sidechains of the affected residues form a contiguous patch on the interior surface of the viral coat. Images PMID:8440248

  7. Exchange Kinetics of a Hydrophobic Ligand Binding Protein

    NASA Astrophysics Data System (ADS)

    Vaughn, Jeff; Stone, Martin

    2002-03-01

    Conformational fluctuations of proteins are thought to be important for determining the functional roles in biological activity. In some cases, the rates of these conformational changes may be directly correlated to, for example, the rates of catalysis or ligand binding. We are studying the role of conformational fluctuations in the binding of small volatile hydrophobic pheromones by the mouse major urinary proteins (MUPs). Communication among mice occurs, in part, with the MUP-1 protein. This urinary protein binds pheromones as a way to increase the longevity of the pheromone in an extracellular environment. Of interest is that the crystal structure of MUP-1 with a pheromone ligand shows the ligand to be completely occluded from the solvent with no obvious pathway to enter or exit. This suggests that conformational exchange of the protein may be required for ligand binding and release to occur. We hypothesize that the rate of conformational exchange may be a limiting factor determining the rate of ligand association and dissociation. By careful measurement of the on- and off-rates of ligand binding and the rates of conformational changes of the protein, a more defined picture of the interplay between protein structure and function can be obtained. To this end, heteronuclear saturation transfer, ^15N-exchange and ^15N dynamics experiments have been employed to probe the kinetics of ligand binding to MUP-1.

  8. General RNA binding proteins render translation cap dependent.

    PubMed Central

    Svitkin, Y V; Ovchinnikov, L P; Dreyfuss, G; Sonenberg, N

    1996-01-01

    Translation in rabbit reticulocyte lysate is relatively independent of the presence of the mRNA m7G cap structure and the cap binding protein, eIF-4E. In addition, initiation occurs frequently at spurious internal sites. Here we show that a critical parameter which contributes to cap-dependent translation is the amount of general RNA binding proteins in the extract. Addition of several general RNA binding proteins, such as hnRNP A1, La autoantigen, pyrimidine tract binding protein (hnRNP I/PTB) and the major core protein of cytoplasmic mRNP (p50), rendered translation in a rabbit reticulocyte lysate cap dependent. These proteins drastically inhibited the translation of an uncapped mRNA, but had no effect on translation of a capped mRNA. Based on these and other results, we suggest that one function of general mRNA binding proteins in the cytoplasm is to promote ribosome binding by a 5' end, cap-mediated mechanism, and prevent spurious initiations at aberrant translation start sites. Images PMID:9003790

  9. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms

    PubMed Central

    2015-01-01

    ABSTRACT Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms. PMID:26055114

  10. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms.

    PubMed

    Chou, Shan-Ho; Galperin, Michael Y

    2016-01-01

    Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms. PMID:26055114

  11. Granzyme A binding to target cell proteins. Granzyme A binds to and cleaves nucleolin in vitro.

    PubMed

    Pasternack, M S; Bleier, K J; McInerney, T N

    1991-08-01

    The physiologic substrates of cytotoxic T lymphocyte granule-associated serine esterases (referred to hereafter as proteases or "granzymes"), and the role of these enzymes in cell-mediated activity remain unclear. We have developed an assay for possible ligands of the trypsin-like dimeric serine protease granzyme A based on Western immunoblotting techniques. This protein-binding assay demonstrates the selective binding of granzyme A to several proteins present in the target cell P815. The binding specificity is preserved when enzyme binding is performed in the presence of excess competing proteins, including such cationic species as lysozyme and RNase. Enzyme binding is inhibited, however, by heat or detergent inactivation of granzyme A. Subcellular fractionation of target cells shows that the nuclear fraction contains most granzyme A binding reactivity, which is recovered in the nuclear salt wash fraction. A protein with Mr = 100,000 and two closely migrating proteins with Mr = 35,000 and 38,000 are the predominant reactive moieties, and the N-terminal sequence of the 100-kDa protein confirmed that this protein was murine nucleolin. Incubation of granzyme A with nucleolin generates a discrete proteolytic cleavage product of Mr = 88,000. Since nucleolin is known to shuttle between nucleus and cytoplasm, the interaction of granzyme A and nucleolin may be important in the process of apoptosis which accompanies cytotoxic T lymphocyte-mediated lysis of target cells. PMID:1860869

  12. Cell-Binding Assays for Determining the Affinity of Protein-Protein Interactions: Technologies and Considerations.

    PubMed

    Hunter, S A; Cochran, J R

    2016-01-01

    Determining the equilibrium-binding affinity (Kd) of two interacting proteins is essential not only for the biochemical study of protein signaling and function but also for the engineering of improved protein and enzyme variants. One common technique for measuring protein-binding affinities uses flow cytometry to analyze ligand binding to proteins presented on the surface of a cell. However, cell-binding assays require specific considerations to accurately quantify the binding affinity of a protein-protein interaction. Here we will cover the basic assumptions in designing a cell-based binding assay, including the relevant equations and theory behind determining binding affinities. Further, two major considerations in measuring binding affinities-time to equilibrium and ligand depletion-will be discussed. As these conditions have the potential to greatly alter the Kd, methods through which to avoid or minimize them will be provided. We then outline detailed protocols for performing direct- and competitive-binding assays against proteins displayed on the surface of yeast or mammalian cells that can be used to derive accurate Kd values. Finally, a comparison of cell-based binding assays to other types of binding assays will be presented. PMID:27586327

  13. Ice-shell purification of ice-binding proteins.

    PubMed

    Marshall, Craig J; Basu, Koli; Davies, Peter L

    2016-06-01

    Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. PMID:27025155

  14. Erythrocyte Protein 4.1 Binds and Regulates Myosin

    NASA Astrophysics Data System (ADS)

    Pasternack, Gary R.; Racusen, Richard H.

    1989-12-01

    Myosin was recently identified in erythrocytes and was shown to partition both with membrane and cytosolic fractions, suggesting that it may be loosely bound to membranes [Fowler, V. M., Davis, J. Q. & Bennett, V. (1985) J. Cell Biol. 100, 47-55, and Wong, A. J., Kiehart, D. P. & Pollard, T. D. (1985) J. Biol. Chem. 260, 46-49]; however, the molecular basis for this binding was unclear. The present studies employed immobilized monomeric myosin to examine the interaction of myosin with erythrocyte protein 4.1. In human erythrocytes, protein 4.1 binds to integral membrane proteins and mediates spectrin-actin assembly. Protein 4.1 binds to rabbit skeletal muscle myosin with a Kd = 140 nM and a stoichiometry consistent with 1:1 binding. Heavy meromyosin competes for protein 4.1 binding with Ki = 36-54 nM; however, the S1 fragment (the myosin head) competes less efficiently. Affinity chromatography of partial chymotryptic digests of protein 4.1 on immobilized myosin identified a 10-kDa domain of protein 4.1 as the myosin-binding site. In functional studies, protein 4.1 partially inhibited the actin-activated Mg2+-ATPase activity of rabbit skeletal muscle myosin with Ki = 51 nM. Liver cytosolic and erythrocyte myosins preactivated with myosin light-chain kinase were similarly inhibited by protein 4.1. These studies show that protein 4.1 binds, modulates, and thus may regulate myosin. This interaction might serve to generate the contractile forces involved in Mg2+-ATP-dependent shape changes in erythrocytes and may additionally serve as a model for myosin organization and regulation in non-muscle cells.

  15. Theoretical studies of protein-protein and protein-DNA binding rates

    NASA Astrophysics Data System (ADS)

    Alsallaq, Ramzi A.

    Proteins are folded chains of amino acids. Some of the amino acids (e.g. Lys, Arg, His, Asp, and Glu) carry charges under physiological conditions. Proteins almost always function through binding to other proteins or ligands, for example barnase is a ribonuclease protein, found in the bacterium Bacillus amyloliquefaceus. Barnase degrades RNA by hydrolysis. For the bacterium to inhibit the potentially lethal action of Barnase within its own cell it co-produces another protein called barstar which binds quickly, and tightly, to barnase. The biological function of this binding is to block the active site of barnase. The speeds (rates) at which proteins associate are vital to many biological processes. They span a wide range (from less than 103 to 108 M-1s-1 ). Rates greater than ˜ 106 M -1s-1 are typically found to be manifestations of enhancements by long-range electrostatic interactions between the associating proteins. A different paradigm appears in the case of protein binding to DNA. The rate in this case is enhanced through attractive surface potential that effectively reduces the dimensionality of the available search space for the diffusing protein. This thesis presents computational and theoretical models on the rate of association of ligands/proteins to other proteins or DNA. For protein-protein association we present a general strategy for computing protein-protein rates of association. The main achievements of this strategy is the ability to obtain a stringent reaction criteria based on the landscape of short-range interactions between the associating proteins, and the ability to compute the effect of the electrostatic interactions on the rates of association accurately using the best known solvers for Poisson-Boltzmann equation presently available. For protein-DNA association we present a mathematical model for proteins targeting specific sites on a circular DNA topology. The main achievements are the realization that a linear DNA with reflecting ends

  16. Natural ligand binding and transfer from liver fatty acid binding protein (LFABP) to membranes.

    PubMed

    De Gerónimo, Eduardo; Hagan, Robert M; Wilton, David C; Córsico, Betina

    2010-09-01

    Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates. PMID:20541621

  17. Leukocyte Protease Binding to Nucleic Acids Promotes Nuclear Localization and Cleavage of Nucleic Acid Binding Proteins

    PubMed Central

    Thomas, Marshall P.; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-01-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. Here we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein (RBP) targets, while adding RNA to recombinant RBP substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Pre-incubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G (CATG). During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps (NETs), which bind NE and CATG. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and NETs in a DNA-dependent manner. Thus, high affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation. PMID:24771851

  18. Plasma protein binding of nitroxynil in several species.

    PubMed

    Alvinerie, M; Floc'h, R; Galtier, P

    1991-06-01

    The binding of nitroxynil to total plasma proteins of cows, sheep and rabbits was characterized using equilibrium dialysis. The data indicate clearly that nitroxynil was highly (97-98%) bound to plasma protein of each animal. This linear binding would be due to the particular power exerted by serum albumin. The results are in good agreement with known pharmacokinetic properties of nitroxynil in domestic species. PMID:1920604

  19. Therapeutic potential of vitamin D-binding protein.

    PubMed

    Gomme, Peter T; Bertolini, Joseph

    2004-07-01

    Vitamin D-binding protein (DBP) is a multi-functional plasma protein with many important functions. These include transport of vitamin D metabolites, control of bone development, binding of fatty acids, sequestration of actin and a range of less-defined roles in modulating immune and inflammatory responses. Exploitation of the unique properties of DBP could enable the development of important therapeutic agents for the treatment of a variety of diseases. PMID:15245906

  20. Subcellular distribution of small GTP binding proteins in pancreas: Identification of small GTP binding proteins in the rough endoplasmic reticulum

    SciTech Connect

    Nigam, S.K. )

    1990-02-01

    Subfractionation of a canine pancreatic homogenate was performed by several differential centrifugation steps, which gave rise to fractions with distinct marker profiles. Specific binding of guanosine 5{prime}-({gamma}-({sup 35}S)thio)triphosphate (GTP({gamma}-{sup 35}S)) was assayed in each fraction. Enrichment of GTP({gamma}-{sup 35}S) binding was greatest in the interfacial smooth microsomal fraction, expected to contain Golgi and other smooth vesicles. There was also marked enrichment in the rough microsomal fraction. Electron microscopy and marker protein analysis revealed the rough microsomes (RMs) to be highly purified rough endoplasmic reticulum (RER). The distribution of small (low molecular weight) GTP binding proteins was examined by a ({alpha}-{sup 32}P)GTP blot-overlay assay. Several apparent GTP binding proteins of molecular masses 22-25 kDa were detected in various subcellular fractions. In particular, at least two such proteins were found in the Golgi-enriched and RM fractions, suggesting that these small GTP binding proteins were localized to the Golgi and RER. To more precisely localize these proteins to the RER, native RMs and RMs stripped of ribosomes by puromycin/high salt were subjected to isopycnic centrifugation. The total GTP({gamma}-{sup 35}S) binding, as well as the small GTP binding proteins detected by the ({alpha}-{sup 32}P)GTP blot overlay, distributed into fractions of high sucrose density, as did the RER marker ribophorin I. Consistent with a RER localization, when the RMS were stripped of ribosomes and subjected to isopycnic centrifugation, the total GTP({gamma}-{sup 35}S) binding and the small GTP binding proteins detected in the blot-overlay assay shifted to fractions of lighter sucrose density along with the RER marker.

  1. Binding of fluorescent lanthanides to rat liver mitochondrial membranes and calcium ion-binding proteins.

    PubMed

    Mikkelsen, R B; Wallach, D F

    1976-05-21

    (1) Tb3+ binding to mitochondrial membranes can be monitored by enhanced ion fluorescence at 545 nm with excitation at 285 nm. At low protein concentrations (less than 30 mug/ml) no inner filter effects are observed. (2) This binding is localized at the external surface of the inner membrane and is unaffected by inhibitors of respiration or oxidative phosphorylation. (3) A soluble Ca2+ binding protein isolated according to Lehninger, A.L. ((1971) Biochem. Biophys. Res. Commun. 42, 312-317) also binds Tb3+ with enhanced ion fluorescence upon excitation at 285 nm. The excitation spectrum of the isolated protein and of the intact mitochondria are indicative of an aromatic amino acid at the cation binding site. (4) Further characterization of the Tb3+-protein interaction revealed that there is more than one binding site per protein molecule and that these sites are clustered (less than 20 A). Neuraminidase treatment or organic solvent extraction of the protein did not affect fluorescent Tb3+ binding. (5) pH dependency studies of Tb3+ binding to the isolated protein or intact mitochondria demonstrated the importance of an ionizable group of pK greater than 6. At pH less than 7.5 the amount of Tb3+ bound to the isolated protein decreased with increase in pH as monitored by Tb3+ fluorescence. With intact mitochondria the opposite occurred with a large increase in Tb3+ fluorescence at higher pH. This increase was not observed when the mitochondria were preincubated with antimycin A and rotenone. PMID:6061

  2. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  3. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  4. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  5. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  6. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  7. Being a binding site: characterizing residue composition of binding sites on proteins.

    PubMed

    Iván, Gábor; Szabadka, Zoltán; Grolmusz, Vince

    2007-01-01

    The Protein Data Bank contains the description of more than 45,000 three-dimensional protein and nucleic-acid structures today. Started to exist as the computer-readable depository of crystallographic data complementing printed articles, the proper interpretation of the content of the individual files in the PDB still frequently needs the detailed information found in the citing publication. This fact implies that the fully automatic processing of the whole PDB is a very hard task. We first cleaned and re-structured the PDB data, then analyzed the residue composition of the binding sites in the whole PDB for frequency and for hidden association rules. Main results of the paper: (i) the cleaning and repairing algorithm (ii) redundancy elimination from the data (iii) application of association rule mining to the cleaned non-redundant data set. We have found numerous significant relations of the residue-composition of the ligand binding sites on protein surfaces, summarized in two figures. One of the classical data-mining methods for exploring implication-rules, the association-rule mining, is capable to find previously unknown residue-set preferences of bind ligands on protein surfaces. Since protein-ligand binding is a key step in enzymatic mechanisms and in drug discovery, these uncovered preferences in the study of more than 19,500 binding sites may help in identifying new binding protein-ligand pairs. PMID:18305831

  8. Protein-DNA binding in high-resolution

    PubMed Central

    Mahony, Shaun; Pugh, B. Franklin

    2015-01-01

    Recent advances in experimental and computational methodologies are enabling ultra-high resolution genome-wide profiles of protein-DNA binding events. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Similarly, deeply sequenced chromatin accessibility assays (e.g. DNase-seq and ATACseq) enable the detection of protected footprints at protein-DNA binding sites. With these techniques and others, we have the potential to characterize the individual nucleotides that interact with transcription factors, nucleosomes, RNA polymerases, and other regulatory proteins in a particular cellular context. In this review, we explain the experimental assays and computational analysis methods that enable high-resolution profiling of protein-DNA binding events. We discuss the challenges and opportunities associated with such approaches. PMID:26038153

  9. Binding of CCAAT displacement protein CDP to adenovirus packaging sequences.

    PubMed

    Erturk, Ece; Ostapchuk, Philomena; Wells, Susanne I; Yang, Jihong; Gregg, Keqin; Nepveu, Alain; Dudley, Jaquelin P; Hearing, Patrick

    2003-06-01

    Adenovirus (Ad) type 5 DNA packaging is initiated in a polar fashion from the left end of the genome. The packaging process is dependent upon the cis-acting packaging domain located between nucleotides 194 and 380. Seven A/T-rich repeats have been identified within this domain that direct packaging. A1, A2, A5, and A6 are the most important repeats functionally and share a bipartite sequence motif. Several lines of evidence suggest that there is a limiting trans-acting factor(s) that plays a role in packaging. Two cellular activities that bind to minimal packaging domains in vitro have been previously identified. These binding activities are P complex, an uncharacterized protein(s), and chicken ovalbumin upstream promoter transcription factor (COUP-TF). In this work, we report that a third cellular protein, octamer-1 protein (Oct-1), binds to minimal packaging domains. In vitro binding analyses and in vivo packaging assays were used to examine the relevance of these DNA binding activities to Ad DNA packaging. The results of these experiments reveal that COUP-TF and Oct-1 binding does not play a functional role in Ad packaging, whereas P-complex binding directly correlates with packaging function. We demonstrate that P complex contains the cellular protein CCAAT displacement protein (CDP) and that full-length CDP is found in purified virus particles. In addition to cellular factors, previous evidence indicates that viral factors play a role in the initiation of viral DNA packaging. We propose that CDP, in conjunction with one or more viral proteins, binds to the packaging sequences of Ad to initiate the encapsidation process. PMID:12743282

  10. High-throughput analysis of protein-DNA binding affinity.

    PubMed

    Franco-Zorrilla, José M; Solano, Roberto

    2014-01-01

    Sequence-specific protein-DNA interactions mediate most regulatory processes underlying gene expression, such as transcriptional regulation by transcription factors (TFs) or chromatin organization. Current knowledge about DNA-binding specificities of TFs is based mostly on low- to medium-throughput methodologies that are time-consuming and often fail to identify DNA motifs recognized by a TF with lower affinity but retaining biological relevance. The use of protein-binding microarrays (PBMs) offers a high-throughput alternative for the identification of protein-DNA specificities. PBM consists in an array of pseudorandomized DNA sequences that are optimized to include all the possible 10- or 11-mer DNA sequences, allowing the determination of binding specificities of most eukaryotic TFs. PBMs that can be synthesized by several manufacturing companies as single-stranded DNA are converted into double-stranded in a simple primer extension reaction. The protein of interest fused to an epitope tag is then incubated onto the PBM, and specific DNA-protein complexes are revealed in a series of immunological reactions coupled to a fluorophore. After scanning and quantifying PBMs, specific DNA motifs recognized by the protein are identified with ready-to-use scripts, generating comprehensive but accessible information about the DNA-binding specificity of the protein. This chapter describes detailed procedures for preparation of double-stranded PBMs, incubation with recombinant protein, and detection of protein-DNA complexes. Finally, we outline some cues for evaluating the biological role of DNA motifs obtained in vitro. PMID:24057393

  11. Computational evaluation of protein – small molecule binding

    PubMed Central

    Guvench, Olgun; MacKerell, Alexander D.

    2009-01-01

    Determining protein – small molecule binding affinity is a key component of present-day rational drug discovery. To circumvent the time, labor, and materials costs associated with experimental protein – small molecule binding assays, a variety of structure-based computational methods have been developed for determining protein – small molecule binding affinities. These methods can be placed in one of two classes: accurate but slow (Class 1), and fast but approximate (Class 2). Class 1 methods, which explicitly take into account protein flexibility and include an atomic-level description of solvation, are capable of quantitatively reproducing experimental protein – small molecule absolute binding free energies. However, Class 1 computational requirements make screening thousands to millions of small molecules against a protein, as required for rational drug design, infeasible for the foreseeable future. Class 2 methods, on the other hand, are sufficiently fast to perform such inhibitor screening, yet they suffer from limited descriptions of protein flexibility and solvation, which in turn limit their ability to select and rank-order small molecules by computed binding affinities. This review presents an overview of Class 1 and Class 2 methods, avenues of research in Class 2 methods aimed at bringing them closer to Class 1 accuracy, and intermediate approaches that incorporate features of both Class 1 and Class 2 methods. PMID:19162472

  12. Lipid A binding proteins in macrophages detected by ligand blotting

    SciTech Connect

    Hampton, R.Y.; Golenbock, D.T.; Raetz, C.R.H.

    1987-05-01

    Endotoxin (LPS) stimulates a variety of eukaryotic cells. These actions are involved in the pathogenesis of Gram-negative septicemia. The site of action of the LPS toxic moiety, lipid A (LA), is unclear. Their laboratory has previously identified a bioactive LA precursor lipid IV/sub A/, which can be enzymatically labeled with /sup 32/P/sub i/ (10/sup 9/ dpm/nmole) and purified (99%). They now show that this ligand binds to specific proteins immobilized on nitrocellulose (NC) from LPS-sensitive RAW 264.7 cultured macrophages. NC blots were incubated with (/sup 32/P)-IV/sub A/ in a buffer containing BSA, NaCl, polyethylene glycol, and azide. Binding was assessed using autoradiography or scintillation counting. Dot blot binding of the radioligand was inhibited by excess cold IV/sub A/, LA, or ReLPS but not by phosphatidylcholine, cardiolipin, phosphatidylinositol, or phosphatidic acid. Binding was trypsin-sensitive and dependent on protein concentration. Particulate macrophage proteins were subjected to SDS-PAGE and then electroblotted onto NC. Several discrete binding proteins were observed. Identical treatment of fetal bovine serum or molecular weight standards revealed no detectable binding. By avoiding high nonspecific binding of intact membranes, this ligand blotting assay may be useful in elucidating the molecular actions of LPS.

  13. Metal-binding proteins as metal pollution indicators

    SciTech Connect

    Hennig, H.F.

    1986-03-01

    The fact that metal-binding proteins are a consequence of elevated metal concentration in organisms is well known. What has been overlooked is that the presence of these proteins provides a unique opportunity to reformulate the criteria of metal pollution. The detoxification effect of metal-binding proteins in animals from polluted areas has been cited, but there have been only very few studies relating metal-binding proteins to pollution. This lack is due partly to the design of most experiments, which were aimed at isolation of metal-binding proteins and hence were of too short duration to allow for correlation to adverse physiological effects on the organism. In this study metal-binding proteins were isolated and characterized from five different marine animals (rock lobster, Jasus lalandii; hermit crab, Diogenes brevirostris; sandshrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis; and limpet, Patella granularis). These animals were kept under identical metal-enriched conditions, hence eliminating differences in method and seasons. The study animals belonged to different phyla; varied in size, mass, age, behavior, food requirements and life stages; and accumulated metals at different rates. It is possible to link unseasonal moulting in crustacea, a known physiological effect due to a metal-enriched environment, to the production of the metal-binding protein without evidence of obvious metal body burden. Thus a new concept of pollution is defined: the presence of metal-binding proteins confirms toxic metal pollution. This concept was then tested under field conditions in the whelk Bullia digitalis and in metal-enriched grass.

  14. A Correlation between Protein Function and Ligand Binding Profiles

    PubMed Central

    Shortridge, Matthew D.; Bokemper, Michael; Copeland, Jennifer C.; Stark, Jaime L.; Powers, Robert

    2011-01-01

    We report that proteins with the same function bind the same set of small molecules from a standardized chemical library. This observation led to a quantifiable and rapidly adaptable method for protein functional analysis using experimentally-derived ligand binding profiles. Ligand binding is measured using a high-throughput NMR ligand affinity screen with a structurally diverse chemical library. The method was demonstrated using a set of 19 proteins with a range of functions. A statistically significant similarity in ligand binding profiles was only observed between the two functionally identical albumins and between the five functionally similar amylases. This new approach is independent of sequence, structure or evolutionary information, and therefore, extends our ability to analyze and functionally annotate novel genes. PMID:21366353

  15. Binding profile of spiramycin to oviducal proteins of laying hens.

    PubMed

    Furusawa, N

    2000-12-01

    In vitro protein binding of spiramycin (SP) in the plasma and oviducts of laying hens was studied. The data for SP were compared with those for oxytetracycline (OTC), sulphadimidine (SDD), sulphamonomethoxine (SMM) and sulphaquinoxaline (SQ). The two oviduct segments, magnum (M) and isthmus plus shell gland (IS), were collected. The soluble (cell sap) fractions from the magnum (M-S9) and the isthmus plus shell gland (IS-S9) were used as samples. Plasma protein binding was highest for SQ (81.4%) (P < 0.01), and lowest for SDD (30.9%) (P < 0.01). No M-S9 protein binding of OTC was found. The IS-S9 protein binding of SP (60.4%) was very much higher than those of OTC (0.8%), SDD (4.1%), SMM (4.0%) and SQ (12.3%) (P < 0.01). Biological half-lives of these drugs in egg albumen were directly correlated to the extent of their binding to IS proteins. Of plasma, M-S9 and IS-S9, variation in SP concentration in the ranges from 1 to 20 micrograms/ml did not alter the binding properties of the drug. PMID:11199206

  16. Detecting O2 binding sites in protein cavities

    PubMed Central

    Kitahara, Ryo; Yoshimura, Yuichi; Xue, Mengjun; Kameda, Tomoshi; Mulder, Frans A. A.

    2016-01-01

    Internal cavities are important elements in protein structure, dynamics, stability and function. Here we use NMR spectroscopy to investigate the binding of molecular oxygen (O2) to cavities in a well-studied model for ligand binding, the L99A mutant of T4 lysozyme. On increasing the O2 concentration to 8.9 mM, changes in 1H, 15N, and 13C chemical shifts and signal broadening were observed specifically for backbone amide and side chain methyl groups located around the two hydrophobic cavities of the protein. O2-induced longitudinal relaxation enhancements for amide and methyl protons could be adequately accounted for by paramagnetic dipolar relaxation. These data provide the first experimental demonstration that O2 binds specifically to the hydrophobic, and not the hydrophilic cavities, in a protein. Molecular dynamics simulations visualized the rotational and translational motions of O2 in the cavities, as well as the binding and egress of O2, suggesting that the channel consisting of helices D, E, G, H, and J could be the potential gateway for ligand binding to the protein. Due to strong paramagnetic relaxation effects, O2 gas-pressure NMR measurements can detect hydrophobic cavities when populated to as little as 1%, and thereby provide a general and highly sensitive method for detecting oxygen binding in proteins. PMID:26830762

  17. Assessing Energetic Contributions to Binding from a Disordered Region in a Protein-Protein Interaction

    SciTech Connect

    S Cho; C Swaminathan; D Bonsor; M Kerzic; R Guan; J Yang; C Kieke; P Anderson; D Kranz; et al.

    2011-12-31

    Many functional proteins are at least partially disordered prior to binding. Although the structural transitions upon binding of disordered protein regions can influence the affinity and specificity of protein complexes, their precise energetic contributions to binding are unknown. Here, we use a model protein-protein interaction system in which a locally disordered region has been modified by directed evolution to quantitatively assess the thermodynamic and structural contributions to binding of disorder-to-order transitions. Through X-ray structure determination of the protein binding partners before and after complex formation and isothermal titration calorimetry of the interactions, we observe a correlation between protein ordering and binding affinity for complexes along this affinity maturation pathway. Additionally, we show that discrepancies between observed and calculated heat capacities based on buried surface area changes in the protein complexes can be explained largely by heat capacity changes that would result solely from folding the locally disordered region. Previously developed algorithms for predicting binding energies of protein-protein interactions, however, are unable to correctly model the energetic contributions of the structural transitions in our model system. While this highlights the shortcomings of current computational methods in modeling conformational flexibility, it suggests that the experimental methods used here could provide training sets of molecular interactions for improving these algorithms and further rationalizing molecular recognition in protein-protein interactions.

  18. Recent improvements to Binding MOAD: a resource for protein-ligand binding affinities and structures.

    PubMed

    Ahmed, Aqeel; Smith, Richard D; Clark, Jordan J; Dunbar, James B; Carlson, Heather A

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein-ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23,269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. PMID:25378330

  19. Mapping the Ligand-Binding Region of Borrelia hermsii Fibronectin-Binding Protein

    PubMed Central

    Brenner, Christiane; Bomans, Katharina; Habicht, Jüri; Simon, Markus M.; Wallich, Reinhard

    2013-01-01

    Many pathogenic microorganisms express fibronectin-binding molecules that facilitate their adherence to the extracellular matrix and/or entry into mammalian cells. We have previously described a Borrelia recurrentis gene, cihC that encodes a 40-kDa surface receptor for both, fibronectin and the complement inhibitors C4bp and C1-Inh. We now provide evidence for the expression of a group of highly homologues surface proteins, termed FbpA, in three B. hermsii isolates and two tick-borne relapsing fever spirochetes, B. parkeri and B. turicatae. When expressed in Escherichia coli or B. burgdorferi, four out of five proteins were shown to selectively bind fibronectin, whereas none of five proteins were able to bind the human complement regulators, C4bp and C1-Inh. By applying deletion mutants of the B. hermsii fibronectin-binding proteins a putative high-affinity binding site for fibronectin was mapped to its central region. In addition, the fibronectin-binding proteins of B. hermsii were found to share sequence homology with BBK32 of the Lyme disease spirochete B. burgdorferi with similar function suggesting its involvement in persistence and/or virulence of relapsing fever spirochetes. PMID:23658828

  20. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.

    PubMed

    Kokh, Daria B; Czodrowski, Paul; Rippmann, Friedrich; Wade, Rebecca C

    2016-08-01

    Simulations of the long-time scale motions of a ligand binding pocket in a protein may open up new perspectives for the design of compounds with steric or chemical properties differing from those of known binders. However, slow motions of proteins are difficult to access using standard molecular dynamics (MD) simulations and are thus usually neglected in computational drug design. Here, we introduce two nonequilibrium MD approaches to identify conformational changes of a binding site and detect transient pockets associated with these motions. The methods proposed are based on the rotamerically induced perturbation (RIP) MD approach, which employs perturbation of side-chain torsional motion for initiating large-scale protein movement. The first approach, Langevin-RIP (L-RIP), entails a series of short Langevin MD simulations, each starting with perturbation of one of the side-chains lining the binding site of interest. L-RIP provides extensive sampling of conformational changes of the binding site. In less than 1 ns of MD simulation with L-RIP, we observed distortions of the α-helix in the ATP binding site of HSP90 and flipping of the DFG loop in Src kinase. In the second approach, RIPlig, a perturbation is applied to a pseudoligand placed in different parts of a binding pocket, which enables flexible regions of the binding site to be identified in a small number of 10 ps MD simulations. The methods were evaluated for four test proteins displaying different types and degrees of binding site flexibility. Both methods reveal all transient pocket regions in less than a total of 10 ns of simulations, even though many of these regions remained closed in 100 ns conventional MD. The proposed methods provide computationally efficient tools to explore binding site flexibility and can aid in the functional characterization of protein pockets, and the identification of transient pockets for ligand design. PMID:27399277

  1. Detergent binding as a sensor of hydrophobicity and polar interactions in the binding cavities of proteins.

    PubMed

    Peyre, Véronique; Lair, Virginie; André, Virginie; le Maire, Guerric; Kragh-Hansen, Ulrich; le Maire, Marc; Møller, Jesper V

    2005-09-13

    To evaluate the role of hydrophobic and electrostatic or other polar interactions for protein-ligand binding, we studied the interaction of human serum albumin (HSA) and beta-lactoglobulin with various aliphatic (C10-C14) cationic and zwitterionic detergents. We find that cationic detergents, at levels that do not cause unfolding, interact with a single site on beta-lactoglobulin and with two primary and five to six secondary sites on HSA with an affinity that is approximately the same as that with which zwitterionic (dimethylamineoxide) detergents interact, suggesting the absence of significant electrostatic interactions in the high-affinity binding of these compounds. The binding affinity for all of the groups of compounds was dependent upon hydrocarbon chain length, suggesting the predominant role of hydrophobic forces, supported by polar interactions at the protein surface. A distinct correlation between the binding energy and the propensity for micelle formation within the group of cationic or noncharged (nonionic and zwitterionic) detergents indicated that the critical micellar concentration (CMC) for each of these detergent groups, rather than the absolute length of the hydrocarbon chain, can be used to compare their hydrophobicities during their interaction with protein. Intrinsic fluorescence data suggest that the two primary binding sites on serum albumin for the zwitterionic and cationic compounds are located in the C-terminal part of the albumin molecule, possibly in the Sudlow II binding region. Comparisons with previous binding data on anionic amphiphiles emphasize the important contribution of ion bond formation and other polar interactions in the binding of fatty acids and dodecyl sulfate (SDS) by HSA but not by beta-lactoglobulin. Electrostatic interactions by cationic detergents played a significant role in destabilizing the protein structure at high binding levels, with beta-lactoglobulin being more susceptible to unfolding than HSA. Zwitterionic

  2. Studies on the spermatogenic sulfogalactolipid binding protein SLIP 1

    SciTech Connect

    Lingwood, C.; Nutikka, A. )

    1991-02-01

    We have purified the testicular sulfogalactolipid binding protein SLIP 1 and shown by photoaffinity labeling that it contains an ATP binding site. Purified SLIP 1 was fluorescently labeled and shown to retain specific sulfogalactolipid binding function. This probe was used to investigate the topology of SLIP 1 binding sites on testicular germ cells. The binding pattern precisely coincided with the previously demonstrated asymmetric surface domains of sulfogalactoglycerolipid (SGG). Occasionally these SGG-containing, SLIP 1-binding cell surface domains exactly coincided with structural features on the cell surface as detected by differential interference contrast microscopy. These results demonstrate that SLIP 1/SGG interactions could provide an effective intercellular communication network between testicular germ cells within the seminiferous tubule.

  3. Solid-binding Proteins for Modification of Inorganic Substrates

    NASA Astrophysics Data System (ADS)

    Coyle, Brandon Laurence

    Robust and simple strategies to directly functionalize graphene- and diamond-based nanostructures with proteins are of considerable interest for biologically driven manufacturing, biosensing and bioimaging. In this work, we identify a new set of carbon binding peptides that vary in overall hydrophobicity and charge, and engineer two of these sequences (Car9 and Car15) within the framework of various proteins to exploit their binding ability. In addition, we conducted a detailed analysis of the mechanisms that underpin the interaction of the fusion proteins with carbon and silicon surfaces. Through these insights, we were able to develop proteins suitable for dispersing graphene flakes and carbon nanotubes in aqueous solutions, while retaining protein activity. Additionally, our investigation into the mechanisms of adhesion for our carbon binding peptides inspired a cheap, disposable protein purification system that is more than 10x cheaper than commonly used His-tag protein purification. Our results emphasize the importance of understanding both bulk and molecular recognition events when exploiting the adhesive properties of solid-binding peptides and proteins in technological applications.

  4. Theoretical studies of binding of mannose-binding protein to monosaccharides

    NASA Astrophysics Data System (ADS)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi

    2004-11-01

    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  5. Cholesterol-binding viral proteins in virus entry and morphogenesis.

    PubMed

    Schroeder, Cornelia

    2010-01-01

    Up to now less than a handful of viral cholesterol-binding proteins have been characterized, in HIV, influenza virus and Semliki Forest virus. These are proteins with roles in virus entry or morphogenesis. In the case of the HIV fusion protein gp41 cholesterol binding is attributed to a cholesterol recognition consensus (CRAC) motif in a flexible domain of the ectodomain preceding the trans-membrane segment. This specific CRAC sequence mediates gp41 binding to a cholesterol affinity column. Mutations in this motif arrest virus fusion at the hemifusion stage and modify the ability of the isolated CRAC peptide to induce segregation of cholesterol in artificial membranes.Influenza A virus M2 protein co-purifies with cholesterol. Its proton translocation activity, responsible for virus uncoating, is not cholesterol-dependent, and the transmembrane channel appears too short for integral raft insertion. Cholesterol binding may be mediated by CRAC motifs in the flexible post-TM domain, which harbours three determinants of binding to membrane rafts. Mutation of the CRAC motif of the WSN strain attenuates virulence for mice. Its affinity to the raft-non-raft interface is predicted to target M2 protein to the periphery of lipid raft microdomains, the sites of virus assembly. Its influence on the morphology of budding virus implicates M2 as factor in virus fission at the raft boundary. Moreover, M2 is an essential factor in sorting the segmented genome into virus particles, indicating that M2 also has a role in priming the outgrowth of virus buds.SFV E1 protein is the first viral type-II fusion protein demonstrated to directly bind cholesterol when the fusion peptide loop locks into the target membrane. Cholesterol binding is modulated by another, proximal loop, which is also important during virus budding and as a host range determinant, as shown by mutational studies. PMID:20213541

  6. Detergent activation of the binding protein in the folate radioassay

    SciTech Connect

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1982-01-01

    A minor cow's whey protein associated with ..beta..-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to ..beta..-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants (lipids/detergents).

  7. DNA-binding proteins in plant mitochondria: implications for transcription.

    PubMed

    Gualberto, José M; Kühn, Kristina

    2014-11-01

    The structural complexity of plant mitochondrial genomes correlates with the variety of single-strand DNA-binding proteins found in plant mitochondria. Most of these are plant-specific and have roles in homologous recombination and genome maintenance. Mitochondrial nucleoids thus differ fundamentally between plants and yeast or animals, where the principal nucleoid protein is a DNA-packaging protein that binds double-stranded DNA. Major transcriptional cofactors identified in mitochondria of non-plant species are also seemingly absent from plants. This article reviews current knowledge on plant mitochondrial DNA-binding proteins and discusses that those may affect the accessibility and conformation of transcription start sites, thus functioning as transcriptional modulators without being dedicated transcription factors. PMID:24561574

  8. Liver takes up retinol-binding protein from plasma

    SciTech Connect

    Gjoen, T.; Bjerkelund, T.; Blomhoff, H.K.; Norum, K.R.; Berg, T.; Blomhoff, R.

    1987-08-15

    Retinol is transported in plasma bound to a specific transport protein, retinol-binding protein. We prepared /sup 125/I-tyramine cellobiose-labeled rat retinol-binding protein and studied its tissue uptake 1, 5, and 24 h after intravenous injection into rats. The liver was the organ containing most radioactivity at all time points studied. After 5 and 24 h, 30 and 22% of the injected dose were recovered in liver, respectively. After separating the liver into parenchymal and nonparenchymal cells in the 5-h group, we found that both cell fractions contained approximately the same amount of radioactivity (per gram of liver). Most of the retinol-binding protein radioactivity in the nonparenchymal cell fraction was in the stellate cells. The implication of these results for a possible transfer mechanism for retinol between parenchymal and stellate cells is discussed.

  9. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins

    PubMed Central

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements. PMID:21087992

  10. PRBP: Prediction of RNA-Binding Proteins Using a Random Forest Algorithm Combined with an RNA-Binding Residue Predictor.

    PubMed

    Ma, Xin; Guo, Jing; Xiao, Ke; Sun, Xiao

    2015-01-01

    The prediction of RNA-binding proteins is an incredibly challenging problem in computational biology. Although great progress has been made using various machine learning approaches with numerous features, the problem is still far from being solved. In this study, we attempt to predict RNA-binding proteins directly from amino acid sequences. A novel approach, PRBP predicts RNA-binding proteins using the information of predicted RNA-binding residues in conjunction with a random forest based method. For a given protein, we first predict its RNA-binding residues and then judge whether the protein binds RNA or not based on information from that prediction. If the protein cannot be identified by the information associated with its predicted RNA-binding residues, then a novel random forest predictor is used to determine if the query protein is a RNA-binding protein. We incorporated features of evolutionary information combined with physicochemical features (EIPP) and amino acid composition feature to establish the random forest predictor. Feature analysis showed that EIPP contributed the most to the prediction of RNA-binding proteins. The results also showed that the information from the RNA-binding residue prediction improved the overall performance of our RNA-binding protein prediction. It is anticipated that the PRBP method will become a useful tool for identifying RNA-binding proteins. A PRBP Web server implementation is freely available at http://www.cbi.seu.edu.cn/PRBP/. PMID:26671809

  11. The RNA-binding protein repertoire of Arabidopsis thaliana.

    PubMed

    Marondedze, Claudius; Thomas, Ludivine; Serrano, Natalia L; Lilley, Kathryn S; Gehring, Chris

    2016-01-01

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category 'RNA-binding', have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses. PMID:27405932

  12. Mercury-binding proteins from the marine mussel, Mytilus edulis

    SciTech Connect

    Roesijadi, G.

    1986-03-01

    The marine mussel, Mytilus edulis, possesses low molecular weight, metal-binding proteins which can be induced by and, in turn, bind mercury when individuals are exposed to low, but elevated concentrations of mercury as HgCl/sub 2/. Induction of the proteins by exposure of mussels to copper, cadmium, or mercury is associated with enhanced tolerance to mercury toxicity. Mercury-binding proteins isolated from gills of mussels occur as two molecular weight variants of about 20-25 and 10-12 kdaltons, respectively, on Sephadex G-75. These have been designated as HgBP/sub 20/ and HgBP/sub 10/ following the nomenclature used for cadmium-binding proteins. HgBP/sub 20/ represents the primary mercury-binding species. Separation of HgBP/sub 20/ by anion-exchange high-performance liquid chromatography resulted in the resolution of six peaks, indicating a more complex situation than was evident from DEAE-cellulose separations. Although not completely purified, these also contain cysteine- and glycine-rich proteins.

  13. Escherichia coli sec mutants accumulate a processed immature form of maltose-binding protein (MBP), a late-phase intermediate in MBP export.

    PubMed

    Ueguchi, C; Ito, K

    1990-10-01

    Protein translocation across the Escherichia coli cytoplasmic membrane may consist of several temporally or topographically distinct steps. Although early events in the translocation pathway have been characterized to some extent, the mechanisms responsible for the trans-bilayer movement of a polypeptide are only poorly understood. This article reports on our attempts to dissect the translocation pathway in vivo. A processed form of maltose-binding protein (MBP) was detected in the spheroplasts of secY and secA temperature-sensitive mutant cells that had been pulse-labeled at the permissive temperature (30 degrees C). This species of molecule was found to have an electrophoretic mobility identical to that of the mature MBP, but a considerable fraction of it was inaccessible to externally added protease. It had not attained the protease-resistant conformation characteristically observed for the exported mature protein. The radioactivity associated with this species decreased during chase and was presumably converted into the exported mature form, a process that required energy, probably the proton motive force, as demonstrated by its inhibition by an energy uncoupler. The spheroplast-associated processed form was more predominantly observed in the presence of a low concentration of chloramphenicol. A similar intermediate was also detected for beta-lactamase in wild-type cells. These results suggest that in a late phase of translocation, the bulk of the polypeptide chain can move through the membrane in the absence of the covalently attached leader peptide, and the secA-secY gene products are somehow involved in this process. We termed the processed intermediates processed immature forms. PMID:2211501

  14. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C

    SciTech Connect

    Anholt, R.R.H.; Mumby, S.M.; Stoffers, D.A.; Girard, P.R.; Kuo, J.F.; Snyder, S.H.

    1987-02-10

    The authors have analyzed guanine nucleotide binding proteins (G-proteins) in the olfactory epithelium of Rana catesbeiana using subunit-specific antisera. The olfactory epithelium contained the ..cap alpha.. subunits of three G-proteins, migrating on polyacrylamide gels in SDS with apparent molecular weights of 45,000, 42,000, and 40,000, corresponding to G/sub s/, G/sub i/, and G/sub o/, respectively. A single ..beta.. subunit with an apparent molecular weight of 36,000 was detected. An antiserum against the ..cap alpha.. subunit of retinal transducin failed to detect immunoreactive proteins in olfactory cilia detached from the epithelium. The olfactory cilia appeared to be enriched in immunoreactive G/sub s..cap alpha../ relative to G/sub ichemically bond/ and G/sub ochemically bond/ when compared to membranes prepared from the olfactory epithelium after detachment of the cilia. Bound antibody was detected by autoradiography after incubation with (/sup 125/I)protein. Immunohistochemical studies using an antiserum against the ..beta.. subunit of G-proteins revealed intense staining of the ciliary surface of the olfactory epithelium and of the axon bundles in the lamina propria. In contrast, an antiserum against a common sequence of the ..cap alpha.. subunits preferentially stained the cell membranes of the olfactory receptor cells and the acinar cells of Bowman's glands and the deep submucosal glands. In addition to G-proteins, they have identified protein kinase C in olfactory cilia via a protein kinase C specific antiserum and via phorbol ester binding. However, in contrast to the G-proteins, protein kinase C occurred also in cilia isolated from respiratory epithelium.

  15. Tetrapyrrole binding affinity of the murine and human p22HBP heme-binding proteins.

    PubMed

    Micaelo, Nuno M; Macedo, Anjos L; Goodfellow, Brian J; Félix, Vítor

    2010-11-01

    We present the first systematic molecular modeling study of the binding properties of murine (mHBP) and human (hHBP) p22HBP protein (heme-binding protein) with four tetrapyrrole ring systems belonging to the heme biosynthetic pathway: iron protoporphyrin IX (HEMIN), protoporphyrin IX (PPIX), coproporphyrin III (CPIII), coproporphyrin I (CPI). The relative binding affinities predicted by our computational study were found to be similar to those observed experimentally, providing a first rational structural analysis of the molecular recognition mechanism, by p22HBP, toward a number of different tetrapyrrole ligands. To probe the structure of these p22HBP protein complexes, docking, molecular dynamics and MM-PBSA methodologies supported by experimental NMR ring current shift data have been employed. The tetrapyrroles studied were found to bind murine p22HBP with the following binding affinity order: HEMIN> PPIX> CPIII> CPI, which ranged from -22.2 to -6.1 kcal/mol. In general, the protein-tetrapyrrole complexes are stabilized by non-bonded interactions between the tetrapyrrole propionate groups and basic residues of the protein, and by the preferential solvation of the complex compared to the unbound components. PMID:20800521

  16. Evaluation of silica nanoparticle binding to major human blood proteins

    NASA Astrophysics Data System (ADS)

    Hata, Katsutomo; Higashisaka, Kazuma; Nagano, Kazuya; Mukai, Yohei; Kamada, Haruhiko; Tsunoda, Shin-ichi; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2014-12-01

    Nanomaterials are used for various biomedical applications because they are often more effective than conventional materials. Recently, however, it has become clear that the protein corona that forms on the surface of nanomaterials when they make contact with biological fluids, such as blood, influences the pharmacokinetics and biological responses induced by the nanomaterials. Therefore, when evaluating nanomaterial safety and efficacy, it is important to analyze the interaction between nanomaterials and proteins in biological fluids and to evaluate the effects of the protein corona. Here, we evaluated the interaction of silica nanoparticles, a commonly used nanomaterial, with the human blood proteins albumin, transferrin, fibrinogen, and IgG. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the amount of albumin, transferrin, and IgG binding to the silica particles increased as the particle size decreased under conditions where the silica particle mass remained the same. However, under conditions in which the specific surface area remained constant, there were no differences in the binding of human plasma proteins to the silica particles tested, suggesting that the binding of silica particles with human plasma proteins is dependent on the specific surface area of the silica particles. Furthermore, the amount of albumin, transferrin, and IgG binding to silica nanoparticles with a diameter of 70 nm (nSP70) and a functional amino group was lower than that with unmodified nSP70, although there was no difference in the binding between nSP70 with the surface modification of a carboxyl functional group and nSP70. These results suggest that the characteristics of nanomaterials are important for binding with human blood proteins; this information may contribute to the development of safe and effective nanomaterials.

  17. Protein D of Haemophilus influenzae is not a universal immunoglobulin D-binding protein.

    PubMed Central

    Sasaki, K; Munson, R S

    1993-01-01

    Haemophilus influenzae type b and nontypeable H. influenzae have been reported to bind human immunoglobulin D (IgD). IgD myeloma sera from five patients were tested for the ability of IgD to bind to H. influenzae. Serotype b strains bound human IgD in four of the five sera tested. IgD in the fifth serum bound strongly to type b strain MinnA but poorly to other type b strains. Additionally, IgD binding was not observed when nontypeable strains were tested. The gene for protein D, the putative IgD-binding protein, was cloned from the IgD-binding H. influenzae type b strain MinnA and expressed in Escherichia coli. IgD binding to E. coli expressing protein D was not demonstrable. Recombinant protein D was purified, and antisera were generated in rabbits. Using these rabbit sera, we detected protein D in nontypeable as well as serotype b strains by Western blotting (immunoblotting). In contrast, IgD myeloma protein 4490, which was previously reported to bind to protein D by Ruan and coworkers (M. Ruan, M. Akkoyunlu, A. Grubb, and A. Forsgren, J. Immunol. 145:3379-3384), bound strongly to both type b and nontypeable H. influenzae as well as to E. coli expressing protein D. Thus, IgD binding is a general property of H. influenzae type b strains but not a general property of nontypeable strains, although both type b and nontypeable strains produce protein D. With the exception of IgD myeloma protein 4490 binding, we have no evidence for a role of protein D in IgD binding to H. influenzae. Images PMID:8514409

  18. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein.

    PubMed

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang

    2014-09-01

    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein. PMID:24878641

  19. Metal binding proteins, recombinant host cells and methods

    DOEpatents

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  20. Lactation-induced cadmium-binding proteins

    SciTech Connect

    Bhattacharyya, M.H.; Solaiman, D.; Garvey, J.S.; Miyazaki, W.Y.

    1987-01-01

    Previously we have demonstrated an increase during midlactation in /sup 109/Cd adsorption and increased retention by the duodenum, kidney, and mammary tissue of mouse dams receiving environmental levels of cadmium//sup 109/Cd via drinking water, with little change in /sup 109/Cd retention in liver and jejunum compared to nonpregnant controls. Results are reported here of a study of cadmium deposition during midlactation as associated with induction of metallothionein (MT). A cadmium/hemoglobin (Cd/Hb) assay and radioimmunoassay for MT which measures heat-stable cadmium binding capacity in tissues was used to determine MT concentrations in fractions of kidney, liver, duodenum, and jejunum from female mice. Both assays demonstrated clear lactation-induced increases in MT concentrations in liver, kidney, and duodenum, with MT concentrations falling rapidly to control levels after weaning. 4 refs., 1 tab.

  1. Quantifying Aptamer-Protein Binding via Thermofluorimetric Analysis

    PubMed Central

    Hu, Juan; Kim, Joonyul; Easley, Christopher J.

    2015-01-01

    Effective aptamer-based protein assays require coupling to a quantitative reporter of aptamer-protein binding. Typically, this involves a direct optical or electrochemical readout of DNA hybridization or an amplification step coupled to the readout. However, method development is often hampered by the multiplicity of aptamer-target binding mechanisms, which can interfere with the hybridization step. As a simpler and more generalizable readout of aptamer-protein binding, we report that thermofluorimetric analysis (TFA) can be used to quantitatively assay protein levels. Sub-nanomolar detection (0.74 nM) of platelet-derived growth factor (PDGF) with its corresponding aptamer is shown as a test case. In the presence of various DNA intercalating dyes, protein-bound aptamers exhibit a change in fluorescence intensity compared to the intercalated, unbound aptamer. This allows thermal resolution of bound and unbound aptamers using fluorescence melting analysis (−dF/dT curves). Remarkably, the homogeneous optical method allows subtraction of autofluorescence in human serum, giving PDGF detection limits of 1.8 and 10.7 nM in serum diluted 1:7 and 1:3, respectively. We have thus demonstrated that bound and unbound aptamers can be thermally resolved in a homogeneous format using a simple qPCR instrument—even in human serum. The simplicity of this approach provides an important step toward a robust, generalizable readout of aptamer-protein binding. PMID:26366207

  2. AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins.

    PubMed Central

    Shen, W F; Montgomery, J C; Rozenfeld, S; Moskow, J J; Lawrence, H J; Buchberg, A M; Largman, C

    1997-01-01

    Recent studies show that Hox homeodomain proteins from paralog groups 1 to 10 gain DNA binding specificity and affinity through cooperative binding with the divergent homeodomain protein Pbx1. However, the AbdB-like Hox proteins from paralogs 11, 12, and 13 do not interact with Pbx1a, raising the possibility of different protein partners. The Meis1 homeobox gene has 44% identity to Pbx within the homeodomain and was identified as a common site of viral integration in myeloid leukemias arising in BXH-2 mice. These integrations result in constitutive activation of Meis1. Furthermore, the Hoxa-9 gene is frequently activated by viral integration in the same BXH-2 leukemias, suggesting a biological synergy between these two distinct classes of homeodomain proteins in causing malignant transformation. We now show that the Hoxa-9 protein physically interacts with Meis1 proteins by forming heterodimeric binding complexes on a DNA target containing a Meis1 site (TGACAG) and an AbdB-like Hox site (TTTTACGAC). Hox proteins from the other AbdB-like paralogs, Hoxa-10, Hoxa-11, Hoxd-12, and Hoxb-13, also form DNA binding complexes with Meis1b, while Hox proteins from other paralogs do not appear to interact with Meis1 proteins. DNA binding complexes formed by Meis1 with Hox proteins dissociate much more slowly than DNA complexes with Meis1 alone, suggesting that Hox proteins stabilize the interactions of Meis1 proteins with their DNA targets. PMID:9343407

  3. AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins.

    PubMed

    Shen, W F; Montgomery, J C; Rozenfeld, S; Moskow, J J; Lawrence, H J; Buchberg, A M; Largman, C

    1997-11-01

    Recent studies show that Hox homeodomain proteins from paralog groups 1 to 10 gain DNA binding specificity and affinity through cooperative binding with the divergent homeodomain protein Pbx1. However, the AbdB-like Hox proteins from paralogs 11, 12, and 13 do not interact with Pbx1a, raising the possibility of different protein partners. The Meis1 homeobox gene has 44% identity to Pbx within the homeodomain and was identified as a common site of viral integration in myeloid leukemias arising in BXH-2 mice. These integrations result in constitutive activation of Meis1. Furthermore, the Hoxa-9 gene is frequently activated by viral integration in the same BXH-2 leukemias, suggesting a biological synergy between these two distinct classes of homeodomain proteins in causing malignant transformation. We now show that the Hoxa-9 protein physically interacts with Meis1 proteins by forming heterodimeric binding complexes on a DNA target containing a Meis1 site (TGACAG) and an AbdB-like Hox site (TTTTACGAC). Hox proteins from the other AbdB-like paralogs, Hoxa-10, Hoxa-11, Hoxd-12, and Hoxb-13, also form DNA binding complexes with Meis1b, while Hox proteins from other paralogs do not appear to interact with Meis1 proteins. DNA binding complexes formed by Meis1 with Hox proteins dissociate much more slowly than DNA complexes with Meis1 alone, suggesting that Hox proteins stabilize the interactions of Meis1 proteins with their DNA targets. PMID:9343407

  4. The liver fatty acid binding protein--comparison of cavity properties of intracellular lipid-binding proteins.

    PubMed

    Thompson, J; Ory, J; Reese-Wagoner, A; Banaszak, L

    1999-02-01

    The crystal and solution structures of all of the intracellular lipid binding proteins (iLBPs) reveal a common beta-barrel framework with only small local perturbations. All existing evidence points to the binding cavity and a poorly delimited 'portal' region as defining the function of each family member. The importance of local structure within the cavity appears to be its influence on binding affinity and specificity for the lipid. The portal region appears to be involved in the regulation of ligand exchange. Within the iLBP family, liver fatty acid binding protein or LFABP, has the unique property of binding two fatty acids within its internalized binding cavity rather than the commonly observed stoichiometry of one. Furthermore, LFABP will bind hydrophobic molecules larger than the ligands which will associate with other iLBPs. The crystal structure of LFABP contains two bound oleate molecules and provides the explanation for its unusual stoichiometry. One of the bound fatty acids is completely internalized and has its carboxylate interacting with an arginine and two serines. The second oleate represents an entirely new binding mode with the carboxylate on the surface of LFABP. The two oleates also interact with each other. Because of this interaction and its inner location, it appears the first oleate must be present before the second more external molecule is bound. PMID:10331654

  5. RNA binding proteins in neurodegeneration: Seq and you shall receive

    PubMed Central

    Nussbacher, Julia K.; Batra, Ranjan; Lagier-Tourenne, Clotilde; Yeo, Gene W.

    2015-01-01

    As critical players in gene regulation, RNA binding proteins are taking center stage in our understanding of cellular function and disease. In our era of bench-top sequencers and unprecedented computational power, biological questions can be addressed in a systematic, genome-wide manner. Development of high-throughput sequencing methodologies provides unparalleled potential to discover new mechanisms of disease-associated perturbations of RNA homeostasis. Complementary to candidate single-gene studies, these innovative technologies may elicit the discovery of unexpected mechanisms, and allow us to determine the widespread influence of the multifunctional RNA binding proteins on their targets. As disruption of RNA processing is increasingly implicated in neurological diseases, these approaches will continue to provide insights into the roles of RNA binding proteins in disease pathogenesis. PMID:25765321

  6. Flexible Linker Modulates Glycosaminoglycan Affinity of Decorin Binding Protein A.

    PubMed

    Morgan, Ashli; Sepuru, Krishna Mohan; Feng, Wei; Rajarathnam, Krishna; Wang, Xu

    2015-08-18

    Decorin binding protein A (DBPA) is a glycosaminoglycan (GAG)-binding adhesin found on the surface of the bacterium Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme disease. DBPA facilitates bacterial adherence to extracellular matrices of human tissues and is crucial during the early stage of the infection process. Interestingly, DBPA from different strains (B31, N40, and PBr) show significant differences in GAG affinities, but the structural basis for the differences is not clear. In this study, we show that GAG affinity of N40 DBPA is modulated in part by flexible segments that control access to the GAG binding site, such that shortening of the linker leads to higher GAG affinity when analyzed using ELISA, gel mobility shift assay, solution NMR, and isothermal titration calorimetry. Our observation that GAG affinity differences among different B. burgdorferi strains can be attributed to a flexible linker domain regulating access to the GAG-binding domain is novel. It also provides a rare example of how neutral amino acids and dynamic segments in GAG binding proteins can have a large influence on GAG affinity and provides insights into why the number of basic amino acids in the GAG-binding site may not be the only factor determining GAG affinity of proteins. PMID:26223367

  7. Escherchia coli ribose binding protein based bioreporters revisited

    PubMed Central

    Reimer, Artur; Yagur-Kroll, Sharon; Belkin, Shimshon; Roy, Shantanu; van der Meer, Jan Roelof

    2014-01-01

    Bioreporter bacteria, i.e., strains engineered to respond to chemical exposure by production of reporter proteins, have attracted wide interest because of their potential to offer cheap and simple alternative analytics for specified compounds or conditions. Bioreporter construction has mostly exploited the natural variation of sensory proteins, but it has been proposed that computational design of new substrate binding properties could lead to completely novel detection specificities at very low affinities. Here we reconstruct a bioreporter system based on the native Escherichia coli ribose binding protein RbsB and one of its computationally designed variants, reported to be capable of binding 2,4,6-trinitrotoluene (TNT). Our results show in vivo reporter induction at 50 nM ribose, and a 125 nM affinity constant for in vitro ribose binding to RbsB. In contrast, the purified published TNT-binding variant did not bind TNT nor did TNT cause induction of the E. coli reporter system. PMID:25005019

  8. BindUP: a web server for non-homology-based prediction of DNA and RNA binding proteins.

    PubMed

    Paz, Inbal; Kligun, Efrat; Bengad, Barak; Mandel-Gutfreund, Yael

    2016-07-01

    Gene expression is a multi-step process involving many layers of regulation. The main regulators of the pathway are DNA and RNA binding proteins. While over the years, a large number of DNA and RNA binding proteins have been identified and extensively studied, it is still expected that many other proteins, some with yet another known function, are awaiting to be discovered. Here we present a new web server, BindUP, freely accessible through the website http://bindup.technion.ac.il/, for predicting DNA and RNA binding proteins using a non-homology-based approach. Our method is based on the electrostatic features of the protein surface and other general properties of the protein. BindUP predicts nucleic acid binding function given the proteins three-dimensional structure or a structural model. Additionally, BindUP provides information on the largest electrostatic surface patches, visualized on the server. The server was tested on several datasets of DNA and RNA binding proteins, including proteins which do not possess DNA or RNA binding domains and have no similarity to known nucleic acid binding proteins, achieving very high accuracy. BindUP is applicable in either single or batch modes and can be applied for testing hundreds of proteins simultaneously in a highly efficient manner. PMID:27198220

  9. Binding of drugs in milk: the role of casein in milk protein binding.

    PubMed

    Stebler, T; Guentert, T W

    1990-06-01

    Unbound fractions of 14C-labeled diazepam and tenoxicam in skimmed milk of various species (man, horse, goat, cow, sheep, dog, rabbit) with different milk compositions were determined. Furthermore, the protein binding of five 14C-labeled benzodiazepines differing in their lipophilicity (bromazepam, clonazepam, diazepam, flumazenil, and flunitrazepam) were measured in human milk and in artificially prepared solutions of individual milk proteins (lactoferrin, 2.4 g/liter; alpha-lactalbumin, 2.1 g/liter; albumin, 0.4 g/liter; and casein--2.1, 3.4, and 13.3 g/liter). The extent of binding was determined by equilibrium dialysis of protein solution against 1/15 M phosphate buffer, made isocryoscopic with lactose. The results showed that the casein fraction is a major binding component in milk for all tested drugs. The extent of binding of diazepam and tenoxicam in the milk of various species was independent of the whey protein concentration. In human milk the fraction of bromazepam, clonazepam, diazepam, and flunitrazepam bound to casein was higher than that bound to any other of the milk proteins tested. Albumin contributed little to the overall binding of these benzodiazepines, and lactoferrin and alpha-lactalbumin did not account for significant binding. The benzodiazepine antagonist flumazenil showed the lowest overall binding in milk and in casein solution. As the casein concentration is highest in colostral milk and drops during the course of lactation, it is expected that M/P ratios of drugs strongly bound to casein are higher during the first days postpartum than in later phases of lactation. PMID:2367331

  10. MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions.

    PubMed

    Li, Minghui; Simonetti, Franco L; Goncearenco, Alexander; Panchenko, Anna R

    2016-07-01

    Proteins engage in highly selective interactions with their macromolecular partners. Sequence variants that alter protein binding affinity may cause significant perturbations or complete abolishment of function, potentially leading to diseases. There exists a persistent need to develop a mechanistic understanding of impacts of variants on proteins. To address this need we introduce a new computational method MutaBind to evaluate the effects of sequence variants and disease mutations on protein interactions and calculate the quantitative changes in binding affinity. The MutaBind method uses molecular mechanics force fields, statistical potentials and fast side-chain optimization algorithms. The MutaBind server maps mutations on a structural protein complex, calculates the associated changes in binding affinity, determines the deleterious effect of a mutation, estimates the confidence of this prediction and produces a mutant structural model for download. MutaBind can be applied to a large number of problems, including determination of potential driver mutations in cancer and other diseases, elucidation of the effects of sequence variants on protein fitness in evolution and protein design. MutaBind is available at http://www.ncbi.nlm.nih.gov/projects/mutabind/. PMID:27150810

  11. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    SciTech Connect

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  12. Solvation structure of ice-binding antifreeze proteins

    NASA Astrophysics Data System (ADS)

    Hansen-Goos, Hendrik; Wettlaufer, John

    2009-03-01

    Antifreeze proteins (AFPs) can be found in organisms which survive at subzero temperatures. They were first discovered in polar fishes since the 1950's [1] and have been isolated meanwhile also from insects, plants, and bacteria. While AFPs shift the freezing point of water below the bulk melting point and hence can prevent recrystallization; the effect is non-colligative and there is a pronounced hysteresis between freezing and melting. For many AFPs it is generally accepted that they function through an irreversible binding to the ice-water interface which leads to a piecewise convex growth front with a lower nonequilibrium freezing point due to the Kelvin effect. Recent molecular dynamics simulations of the AFP from Choristoneura fumiferana reveal that the solvation structures of water at ice-binding and non-ice-binding faces of the protein are crucial for understanding how the AFP binds to the ice surface and how it is protected from being overgrown [2]. We use density functional theory of classical fluids in order to assess the microscopic solvent structure in the vicinity of protein faces with different surface properties. With our method, binding energies of different protein faces to the water-ice-interface can be computed efficiently in a simplified model. [1] Y. Yeh and R.E. Feeney, Chem. Rev. 96, 601 (1996). [2] D.R. Nutt and J.C. Smith, J. Am. Chem. Soc. 130, 13066 (2008).

  13. A Model Membrane Protein for Binding Volatile Anesthetics

    PubMed Central

    Ye, Shixin; Strzalka, Joseph; Churbanova, Inna Y.; Zheng, Songyan; Johansson, Jonas S.; Blasie, J. Kent

    2004-01-01

    Earlier work demonstrated that a water-soluble four-helix bundle protein designed with a cavity in its nonpolar core is capable of binding the volatile anesthetic halothane with near-physiological affinity (0.7 mM Kd). To create a more relevant, model membrane protein receptor for studying the physicochemical specificity of anesthetic binding, we have synthesized a new protein that builds on the anesthetic-binding, hydrophilic four-helix bundle and incorporates a hydrophobic domain capable of ion-channel activity, resulting in an amphiphilic four-helix bundle that forms stable monolayers at the air/water interface. The affinity of the cavity within the core of the bundle for volatile anesthetic binding is decreased by a factor of 4–3.1 mM Kd as compared to its water-soluble counterpart. Nevertheless, the absence of the cavity within the otherwise identical amphiphilic peptide significantly decreases its affinity for halothane similar to its water-soluble counterpart. Specular x-ray reflectivity shows that the amphiphilic protein orients vectorially in Langmuir monolayers at higher surface pressure with its long axis perpendicular to the interface, and that it possesses a length consistent with its design. This provides a successful starting template for probing the nature of the anesthetic-peptide interaction, as well as a potential model system in structure/function correlation for understanding the anesthetic binding mechanism. PMID:15465862

  14. Reprogramming cellular events by poly(ADP-ribose)-binding proteins

    PubMed Central

    Pic, Émilie; Ethier, Chantal; Dawson, Ted M.; Dawson, Valina L.; Masson, Jean-Yves; Poirier, Guy G.; Gagné, Jean-Philippe

    2013-01-01

    Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. PMID:23268355

  15. Coenzyme Q10-Binding/Transfer Protein Saposin B also Binds gamma-Tocopherol.

    PubMed

    Jin, Guangzhi; Horinouchi, Ryo; Sagawa, Tomofumi; Orimo, Nobutsune; Kubo, Hiroshi; Yoshimura, Shinichi; Fujisawa, Akio; Kashiba, Misato; Yamamoto, Yorihiro

    2008-09-01

    gamma-Tocopherol, the major form of dietary vitamin E, is absorbed in the intestine and is secreted in chylomicrons, which are then transferred to liver lysosomes. Most gamma-tocopherol is transferred to liver microsomes and is catabolized by cytochrome p450. Due to the hydrophobicity of gamma-tocopherol, a binding and transfer protein is plausible, but none have yet been isolated and characterized. We recently found that a ubiquitous cytosolic protein, saposin B, binds and transfers coenzyme Q10 (CoQ10), which is an essential factor for ATP production and an important antioxidant. Here, we report that saposin B also binds gamma-tocopherol, but not alpha-tocopherol, as efficiently as CoQ10 at pH 7.4. At acidic pH, saposin B binds gamma-tocopherol preferentially to CoQ10 and alpha-tocopherol. Furthermore, we confirmed that saposin B selectively binds gamma-tocopherol instead of CoQ10 and alpha-tocopherol at every pH between 5.4 and 8.0 when all three lipids are competing for binding. We detected gamma-tocopherol in human saposin B monoclonal antibody-induced immunoprecipitates from human urine, although the amount of gamma-tocopherol was much smaller than that of CoQ10. These results suggest that saposin B binds and transports gamma-tocopherol in human cells. PMID:18818759

  16. Can cofactor-binding sites in proteins be flexible? Desulfovibrio desulfuricans flavodoxin binds FMN dimer.

    PubMed

    Muralidhara, B K; Wittung-Stafshede, Pernilla

    2003-11-11

    Flavodoxins catalyze redox reactions using the isoalloxazine moiety of the flavin mononucleotide (FMN) cofactor stacked between two aromatic residues located in two peptide loops. At high FMN concentrations that favor stacked FMN dimers in solution, isothermal titration calorimetric studies show that these dimers bind strongly to apo-flavodoxin from Desulfovibrio desulfuricans (30 degrees C, 20 mM Hepes, pH 7, K(D) = 5.8 microM). Upon increasing the temperature so the FMN dimers dissociate (as shown by (1)H NMR), only one-to-one (FMN-to-protein) binding is observed. Calorimetric titrations result in one-to-one binding also in the presence of phosphate or sulfate (30 degrees C, 13 mM anion, pH 7, K(D) = 0.4 microM). FMN remains dimeric in the presence of phosphate and sulfate, suggesting that specific binding of a divalent anion to the phosphate-binding site triggers ordering of the peptide loops so only one isoalloxazine can fit. Although the physiological relevance of FMN and other nucleotides as dimers has not been explored, our study shows that high-affinity binding to proteins of such dimers can occur in vitro. This emphasizes that the cofactor-binding site in flavodoxin is more flexible than previously expected. PMID:14596623

  17. Ribosome binding induces repositioning of the signal recognition particle receptor on the translocon

    PubMed Central

    Kuhn, Patrick; Draycheva, Albena; Vogt, Andreas; Petriman, Narcis-Adrian; Sturm, Lukas; Drepper, Friedel; Warscheid, Bettina; Wintermeyer, Wolfgang

    2015-01-01

    Cotranslational protein targeting delivers proteins to the bacterial cytoplasmic membrane or to the eukaryotic endoplasmic reticulum membrane. The signal recognition particle (SRP) binds to signal sequences emerging from the ribosomal tunnel and targets the ribosome-nascent-chain complex (RNC) to the SRP receptor, termed FtsY in bacteria. FtsY interacts with the fifth cytosolic loop of SecY in the SecYEG translocon, but the functional role of the interaction is unclear. By using photo-cross-linking and fluorescence resonance energy transfer measurements, we show that FtsY–SecY complex formation is guanosine triphosphate independent but requires a phospholipid environment. Binding of an SRP–RNC complex exposing a hydrophobic transmembrane segment induces a rearrangement of the SecY–FtsY complex, which allows the subsequent contact between SecY and ribosomal protein uL23. These results suggest that direct RNC transfer to the translocon is guided by the interaction between SRP and translocon-bound FtsY in a quaternary targeting complex. PMID:26459600

  18. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes. PMID:19754879

  19. Behind the scenes of vitamin D binding protein: more than vitamin D binding.

    PubMed

    Delanghe, Joris R; Speeckaert, Reinhart; Speeckaert, Marijn M

    2015-10-01

    Although being discovered in 1959, the number of published papers in recent years reveals that vitamin D binding protein (DBP), a member of the albuminoid superfamily, is a hot research topic. Besides the three major phenotypes (DBP1F, DBP1S and DBP2), more than 120 unique variants have been described of this polymorphic protein. The presence of DBP has been demonstrated in different body fluids (serum, urine, breast milk, ascitic fluid, cerebrospinal fluid, saliva and seminal fluid) and organs (brain, heart, lungs, kidneys, placenta, spleen, testes and uterus). Although the major function is binding, solubilization and transport of vitamin D and its metabolites, the name of this glycoprotein hides numerous other important biological functions. In this review, we will focus on the analytical aspects of the determination of DBP and discuss in detail the multifunctional capacity [actin scavenging, binding of fatty acids, chemotaxis, binding of endotoxins, influence on T cell response and influence of vitamin D binding protein-macrophage activating factor (DBP-MAF) on bone metabolism and cancer] of this abundant plasma protein. PMID:26522461

  20. Structure-based protocol for identifying mutations that enhance protein-protein binding affinities.

    PubMed

    Sammond, Deanne W; Eletr, Ziad M; Purbeck, Carrie; Kimple, Randall J; Siderovski, David P; Kuhlman, Brian

    2007-08-31

    The ability to manipulate protein binding affinities is important for the development of proteins as biosensors, industrial reagents, and therapeutics. We have developed a structure-based method to rationally predict single mutations at protein-protein interfaces that enhance binding affinities. The protocol is based on the premise that increasing buried hydrophobic surface area and/or reducing buried hydrophilic surface area will generally lead to enhanced affinity if large steric clashes are not introduced and buried polar groups are not left without a hydrogen bond partner. The procedure selects affinity enhancing point mutations at the protein-protein interface using three criteria: (1) the mutation must be from a polar amino acid to a non-polar amino acid or from a non-polar amino acid to a larger non-polar amino acid, (2) the free energy of binding as calculated with the Rosetta protein modeling program should be more favorable than the free energy of binding calculated for the wild-type complex and (3) the mutation should not be predicted to significantly destabilize the monomers. The performance of the computational protocol was experimentally tested on two separate protein complexes; Galpha(i1) from the heterotrimeric G-protein system bound to the RGS14 GoLoco motif, and the E2, UbcH7, bound to the E3, E6AP from the ubiquitin pathway. Twelve single-site mutations that were predicted to be stabilizing were synthesized and characterized in the laboratory. Nine of the 12 mutations successfully increased binding affinity with five of these increasing binding by over 1.0 kcal/mol. To further assess our approach we searched the literature for point mutations that pass our criteria and have experimentally determined binding affinities. Of the eight mutations identified, five were accurately predicted to increase binding affinity, further validating the method as a useful tool to increase protein-protein binding affinities. PMID:17603074

  1. Light-dependent GTP-binding proteins in squid photoreceptors.

    PubMed Central

    Robinson, P R; Wood, S F; Szuts, E Z; Fein, A; Hamm, H E; Lisman, J E

    1990-01-01

    Previous biochemical and electrophysiological evidence suggests that in invertebrate photoreceptors, a GTP-binding protein (G-protein) mediates the actions of photoactivated rhodopsin in the initial stages of transduction. We find that squid photoreceptors contain more than one protein (molecular masses 38, 42 and 46 kDa) whose ADP-ribosylation by bacterial exotoxins is light-sensitive. Several lines of evidence suggest that these proteins represent distinct alpha subunits of G-proteins. (1) Pertussis toxin and cholera toxin react with distinct subsets of these polypeptides. (2) Only the 42 kDa protein immunoreacts with the monoclonal antibody 4A, raised against the alpha subunit of the G-protein of vertebrate rods [Hamm & Bownds (1984) J. Gen. Physiol. 84. 265-280]. (3) In terms of ADP-ribosylation, the 42 kDa protein is the least labile to freezing. (4) Of the 38 kDa and 42 kDa proteins, the former is preferentially extracted with hypo-osmotic solutions, as demonstrated by the solubility of its ADP-ribosylated state and by the solubility of the light-dependent binding of guanosine 5'-[gamma-thio]triphosphate. The specific target enzymes for the observed G-proteins have not been established. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:2124806

  2. Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins.

    PubMed

    Rowland, Andrew; Hallifax, David; Nussio, Matthew R; Shapter, Joseph G; Mackenzie, Peter I; Brian Houston, J; Knights, Kathleen M; Miners, John O

    2015-01-01

    1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2. Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu > 0.8) to extensive (fu < 0.1). Of the compounds screened, the highest binding to both HSA and LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for β-estradiol (a polar, neutral compound). 3. The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP. 4. Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP. PMID:25801059

  3. Binding-regulated click ligation for selective detection of proteins.

    PubMed

    Cao, Ya; Han, Peng; Wang, Zhuxin; Chen, Weiwei; Shu, Yongqian; Xiang, Yang

    2016-04-15

    Herein, a binding-regulated click ligation (BRCL) strategy for endowing selective detection of proteins is developed with the incorporation of small-molecule ligand and clickable DNA probes. The fundamental principle underlying the strategy is the regulating capability of specific protein-ligand binding against the ligation between clickable DNA probes, which could efficiently combine the detection of particular protein with enormous DNA-based sensing technologies. In this work, the feasibly of the BRCL strategy is first verified through agarose gel electrophoresis and electrochemical impedance spectroscopy measurements, and then confirmed by transferring it to a nanomaterial-assisted fluorescence assay. Significantly, the BRCL strategy-based assay is able to respond to target protein with desirable selectivity, attributing to the specific recognition between small-molecule ligand and its target. Further experiments validate the general applicability of the sensing method by tailoring the ligand toward different proteins (i.e., avidin and folate receptor), and demonstrate its usability in complex biological samples. To our knowledge, this work pioneers the practice of click chemistry in probing specific small-molecule ligand-protein binding, and therefore may pave a new way for selective detection of proteins. PMID:26599478

  4. Quantitative analysis of pheromone-binding protein specificity

    PubMed Central

    Katti, S.; Lokhande, N.; González, D.; Cassill, A.; Renthal, R.

    2012-01-01

    Many pheromones have very low water solubility, posing experimental difficulties for quantitative binding measurements. A new method is presented for determining thermodynamically valid dissociation constants for ligands binding to pheromone-binding proteins (OBPs), using β-cyclodextrin as a solubilizer and transfer agent. The method is applied to LUSH, a Drosophila OBP that binds the pheromone 11-cis vaccenyl acetate (cVA). Refolding of LUSH expressed in E. coli was assessed by measuring N-phenyl-1-naphthylamine (NPN) binding and Förster resonance energy transfer between LUSH tryptophan 123 (W123) and NPN. Binding of cVA was measured from quenching of W123 fluorescence as a function of cVA concentration. The equilibrium constant for transfer of cVA between β-cyclodextrin and LUSH was determined from a linked equilibria model. This constant, multiplied by the β-cyclodextrin-cVA dissociation constant, gives the LUSH-cVA dissociation constant: ~100 nM. It was also found that other ligands quench W123 fluorescence. The LUSH-ligand dissociation constants were determined to be ~200 nM for the silk moth pheromone bombykol and ~90 nM for methyl oleate. The results indicate that the ligand-binding cavity of LUSH can accommodate a variety ligands with strong binding interactions. Implications of this for the pheromone receptor model proposed by Laughlin et al. (Cell 133: 1255–65, 2008) are discussed. PMID:23121132

  5. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein.

    PubMed Central

    Larrick, J W; Hirata, M; Balint, R F; Lee, J; Zhong, J; Wright, S C

    1995-01-01

    CAP18 (18-kDa cationic antimicrobial protein) is a protein originally identified and purified from rabbit leukocytes on the basis of its capacity to bind and inhibit various activities of lipopolysaccharide (LPS). Here we report the cloning of human CAP18 and characterize the anti-LPS activity of the C-terminal fragment. Oligonucleotide probes designed from the rabbit CAP18 cDNA were used to identify human CAP18 from a bone marrow cDNA library. The cDNA encodes a protein composed of a 30-amino-acid signal peptide, a 103-amino-acid N-terminal domain of unknown function, and a C-terminal domain of 37 amino acids homologous to the LPS-binding antimicrobial domain of rabbit CAP18, designated CAP18(104-140). A human CAP18-specific antiserum was generated by using CAP18 expressed as a fusion protein with the maltose-binding protein. Western blots (immunoblots) with this antiserum showed specific expression of human CAP18 in granulocytes. Synthetic human CAP18(104-140) and a more active truncated fragment, CAP18(104-135), were shown to (i) bind to erythrocytes coated with diverse strains of LPS, (ii) inhibit LPS-induced release of nitric oxide from macrophages, (iii) inhibit LPS-induced generation of tissue factor, and (iv) protect mice from LPS lethality. CAP18(104-140) may have therapeutic utility for conditions associated with elevated concentrations of LPS. PMID:7890387

  6. Fast prediction and visualization of protein binding pockets with PASS.

    PubMed

    Brady, G P; Stouten, P F

    2000-05-01

    PASS (Putative Active Sites with Spheres) is a simple computational tool that uses geometry to characterize regions of buried volume in proteins and to identify positions likely to represent binding sites based upon the size, shape, and burial extent of these volumes. Its utility as a predictive tool for binding site identification is tested by predicting known binding sites of proteins in the PDB using both complexed macromolecules and their corresponding apoprotein structures. The results indicate that PASS can serve as a front-end to fast docking. The main utility of PASS lies in the fact that it can analyze a moderate-size protein (approximately 30 kDa) in under 20 s, which makes it suitable for interactive molecular modeling, protein database analysis, and aggressive virtual screening efforts. As a modeling tool, PASS (i) rapidly identifies favorable regions of the protein surface, (ii) simplifies visualization of residues modulating binding in these regions, and (iii) provides a means of directly visualizing buried volume, which is often inferred indirectly from curvature in a surface representation. PASS produces output in the form of standard PDB files, which are suitable for any modeling package, and provides script files to simplify visualization in Cerius2, InsightII, MOE, Quanta, RasMol, and Sybyl. PASS is freely available to all. PMID:10815774

  7. Drug-drug plasma protein binding interactions of ivacaftor.

    PubMed

    Schneider, Elena K; Huang, Johnny X; Carbone, Vincenzo; Baker, Mark; Azad, Mohammad A K; Cooper, Matthew A; Li, Jian; Velkov, Tony

    2015-06-01

    Ivacaftor is a novel cystic fibrosis (CF) transmembrane conductance regulator (CFTR) potentiator that improves the pulmonary function for patients with CF bearing a G551D CFTR-protein mutation. Because ivacaftor is highly bound (>97%) to plasma proteins, there is the strong possibility that co-administered CF drugs may compete for the same plasma protein binding sites and impact the free drug concentration. This, in turn, could lead to drastic changes in the in vivo efficacy of ivacaftor and therapeutic outcomes. This biochemical study compares the binding affinity of ivacaftor and co-administered CF drugs for human serum albumin (HSA) and α1 -acid glycoprotein (AGP) using surface plasmon resonance and fluorimetric binding assays that measure the displacement of site-selective probes. Because of their ability to strongly compete for the ivacaftor binding sites on HSA and AGP, drug-drug interactions between ivacaftor are to be expected with ducosate, montelukast, ibuprofen, dicloxacillin, omeprazole, and loratadine. The significance of these plasma protein drug-drug interactions is also interpreted in terms of molecular docking simulations. This in vitro study provides valuable insights into the plasma protein drug-drug interactions of ivacaftor with co-administered CF drugs. The data may prove useful in future clinical trials for a staggered treatment that aims to maximize the effective free drug concentration and clinical efficacy of ivacaftor. PMID:25707701

  8. The RNA-binding protein repertoire of Arabidopsis thaliana

    PubMed Central

    Marondedze, Claudius; Thomas, Ludivine; Serrano, Natalia L.; Lilley, Kathryn S.; Gehring, Chris

    2016-01-01

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses. PMID:27405932

  9. Protein Binding for Detection of Small Changes on Nanoparticle Surface

    PubMed Central

    Zeng, Shang; Huang, Yu-ming M.; Chang, Chia-en A.; Zhong, Wenwan

    2014-01-01

    Protein adsorption on nanoparticles is closely associated with the physicochemical properties of particles, in particular, their surface property. We synthesized two batches of polyacrylic acid-coated nanoparticles under almost identical conditions except for heating duration and found differences in the head-group structure of the polyacrylic acid. The structure change was confirmed by NMR and MS. The two batches of particles had varied binding affinities to a selected group of proteins. Computational work confirmed that the head group of the polymer on the surface of a nanoparticle could directly interact with a protein, and small structural changes in the head group were sufficient to result in a significant difference in the free energy of binding. Our results demonstrate that protein adsorption is so sensitive to the surface property of particles that it can reveal even small variations in the structure of a nanoparticle surface ligand, and should be useful for quick assessment of nanoparticle properties. PMID:24482794

  10. Chemokine binding proteins: An immunomodulatory strategy going viral.

    PubMed

    González-Motos, Víctor; Kropp, Kai A; Viejo-Borbolla, Abel

    2016-08-01

    Chemokines are chemotactic cytokines whose main function is to direct cell migration. The chemokine network is highly complex and its deregulation is linked to several diseases including immunopathology, cancer and chronic pain. Chemokines also play essential roles in the antiviral immune response. Viruses have therefore developed several counter strategies to modulate chemokine activity. One of these is the expression of type I transmembrane or secreted proteins with the ability to bind chemokines and modulate their activity. These proteins, termed viral chemokine binding proteins (vCKBP), do not share sequence homology with host proteins and are immunomodulatory in vivo. In this review we describe the discovery and characterization of vCKBP, explain their role in the context of infection in vivo and discuss relevant novel findings. PMID:26987612

  11. Drug bioactivation, covalent binding to target proteins and toxicity relevance.

    PubMed

    Zhou, Shufeng; Chan, Eli; Duan, Wei; Huang, Min; Chen, Yu-Zong

    2005-01-01

    A number of therapeutic drugs with different structures and mechanisms of action have been reported to undergo metabolic activation by Phase I or Phase II drug-metabolizing enzymes. The bioactivation gives rise to reactive metabolites/intermediates, which readily confer covalent binding to various target proteins by nucleophilic substitution and/or Schiff's base mechanism. These drugs include analgesics (e.g., acetaminophen), antibacterial agents (e.g., sulfonamides and macrolide antibiotics), anticancer drugs (e.g., irinotecan), antiepileptic drugs (e.g., carbamazepine), anti-HIV agents (e.g., ritonavir), antipsychotics (e.g., clozapine), cardiovascular drugs (e.g., procainamide and hydralazine), immunosupressants (e.g., cyclosporine A), inhalational anesthetics (e.g., halothane), nonsteroidal anti-inflammatory drugs (NSAIDSs) (e.g., diclofenac), and steroids and their receptor modulators (e.g., estrogens and tamoxifen). Some herbal and dietary constituents are also bioactivated to reactive metabolites capable of binding covalently and inactivating cytochrome P450s (CYPs). A number of important target proteins of drugs have been identified by mass spectrometric techniques and proteomic approaches. The covalent binding and formation of drug-protein adducts are generally considered to be related to drug toxicity, and selective protein covalent binding by drug metabolites may lead to selective organ toxicity. However, the mechanisms involved in the protein adduct-induced toxicity are largely undefined, although it has been suggested that drug-protein adducts may cause toxicity either through impairing physiological functions of the modified proteins or through immune-mediated mechanisms. In addition, mechanism-based inhibition of CYPs may result in toxic drug-drug interactions. The clinical consequences of drug bioactivation and covalent binding to proteins are unpredictable, depending on many factors that are associated with the administered drugs and patients

  12. A general approach to visualize protein binding and DNA conformation without protein labelling

    PubMed Central

    Song, Dan; Graham, Thomas G. W.; Loparo, Joseph J.

    2016-01-01

    Single-molecule manipulation methods, such as magnetic tweezers and flow stretching, generally use the measurement of changes in DNA extension as a proxy for examining interactions between a DNA-binding protein and its substrate. These approaches are unable to directly measure protein–DNA association without fluorescently labelling the protein, which can be challenging. Here we address this limitation by developing a new approach that visualizes unlabelled protein binding on DNA with changes in DNA conformation in a relatively high-throughput manner. Protein binding to DNA molecules sparsely labelled with Cy3 results in an increase in fluorescence intensity due to protein-induced fluorescence enhancement (PIFE), whereas DNA length is monitored under flow of buffer through a microfluidic flow cell. Given that our assay uses unlabelled protein, it is not limited to the low protein concentrations normally required for single-molecule fluorescence imaging and should be broadly applicable to studying protein–DNA interactions. PMID:26952553

  13. Protein-Ligand Binding Detected by Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Knab, J.; Chen, J. Y.; Mader, M.; Markelz, A.

    2004-03-01

    Established measures of protein flexibility through the B-factor use time intensive and facility limited techniques such as X-ray crystallography, NMR structure analysis and inelastic neutron scattering. We demonstrate a novel technique that may be used for determination of ligand binding for proteins as well as a measure of protein flexibility. Using the method of terahertz (THz) time domain spectroscopy, we measured the far infrared dielectric response as a function of the binding of N (1-4)-acetylglucosamine (NAG) to hen egg white lysozyme (HEWL). Vibrational modes associated with tertiary structure conformational motions lay in the THz frequency range. The THz dielectric response reflects the density and amplitude of these normal modes through dipole coupling. Transmission measurements on thin films show that while there is no change in the real part of the refractive index as a function of binding, there is a decrease in the absorbance for the HEWL+NAG thin films relative to HEWL films. This decrease can be attributed to a reduction in the flexibility of the protein with binding. These results are compared to calculated absorbance spectra.

  14. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  15. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  16. DNA binding proteins that alter nucleic acid flexibility

    NASA Astrophysics Data System (ADS)

    McCauley, Micah; Hardwidge, Philip R.; Maher, L. J., III; Williams, Mark C.

    2007-09-01

    Dual - beam optical tweezers experiments subject single molecules of DNA to high forces (~ 300 pN) with 0.1 pN accuracy, probing the energy and specificity of nucleic acid - ligand structures. Stretching phage λ-DNA reveals an increase in the applied force up to a critical force known as the overstretching transition. In this region, base pairing and stacking are disrupted as double stranded DNA (dsDNA) is melted. Proteins that bind to the double strand will tend to stabilize dsDNA, and melting will occur at higher forces. Proteins that bind to single stranded DNA (ssDNA) destabilize melting, provided that the rate of association is comparable to the pulling rate of the experiment. Many proteins, however, exhibit some affinity for both dsDNA and ssDNA. We describe experiments upon DNA + HMGB2 (box A), a nuclear protein that is believed to facilitate transcription. By characterizing changes in the structure of dsDNA with a polymer model of elasticity, we have determined the equilibrium association constant for HMGB2 to be K ds = 0.15 +/- 0.7 10 9 M -1 for dsDNA binding. Analysis of the melting transition reveals an equilibrium association constant for HMGB2 to ssDNA to be K ss = 0.039 +/- 0.019 10 9 M -1 for ssDNA binding.

  17. Capacitance-modulated transistor detects odorant binding protein chiral interactions.

    PubMed

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters. PMID:25591754

  18. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    NASA Astrophysics Data System (ADS)

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters.

  19. Multiple Binding Poses in the Hydrophobic Cavity of Bee Odorant Binding Protein AmelOBP14.

    PubMed

    Pechlaner, Maria; Oostenbrink, Chris

    2015-12-28

    In the first step of olfaction, odorants are bound and solubilized by small globular odorant binding proteins (OBPs) which shuttle them to the membrane of a sensory neuron. Low ligand affinity and selectivity at this step enable the recognition of a wide range of chemicals. Honey bee Apis mellifera's OBP14 (AmelOBP14) binds different plant odorants in a largely hydrophobic cavity. In long molecular dynamics simulations in the presence and absence of ligand eugenol, we observe a highly dynamic C-terminal region which forms one side of the ligand-binding cavity, and the ligand drifts away from its crystallized orientation. Hamiltonian replica exchange simulations, allowing exchanges of conformations sampled by the real ligand with those sampled by a noninteracting dummy molecule and several intermediates, suggest an alternative, quite different ligand pose which is adopted immediately and which is stable in long simulations. Thermodynamic integration yields binding free energies which are in reasonable agreement with experimental data. PMID:26633245

  20. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4)

    PubMed Central

    González, Javier M.; Fisher, S. Zoë

    2015-01-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments. PMID:25664790

  1. The neuronal calcium sensor family of Ca2+-binding proteins.

    PubMed Central

    Burgoyne, R D; Weiss, J L

    2001-01-01

    Ca(2+) plays a central role in the function of neurons as the trigger for neurotransmitter release, and many aspects of neuronal activity, from rapid modulation to changes in gene expression, are controlled by Ca(2+). These actions of Ca(2+) must be mediated by Ca(2+)-binding proteins, including calmodulin, which is involved in Ca(2+) regulation, not only in neurons, but in most other cell types. A large number of other EF-hand-containing Ca(2+)-binding proteins are known. One family of these, the neuronal calcium sensor (NCS) proteins, has a restricted expression in retinal photoreceptors or neurons and neuroendocrine cells, suggesting that they have specialized roles in these cell types. Two members of the family (recoverin and guanylate cyclase-activating protein) have established roles in the regulation of phototransduction. Despite close sequence similarities, the NCS proteins have distinct neuronal distributions, suggesting that they have different functions. Recent work has begun to demonstrate the physiological roles of members of this protein family. These include roles in the modulation of neurotransmitter release, control of cyclic nucleotide metabolism, biosynthesis of polyphosphoinositides, regulation of gene expression and in the direct regulation of ion channels. In the present review we describe the known sequences and structures of the NCS proteins, information on their interactions with target proteins and current knowledge about their cellular and physiological functions. PMID:11115393

  2. The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation.

    PubMed

    Weidmann, Chase A; Raynard, Nathan A; Blewett, Nathan H; Van Etten, Jamie; Goldstrohm, Aaron C

    2014-08-01

    PUF proteins are potent repressors that serve important roles in stem cell maintenance, neurological processes, and embryonic development. These functions are driven by PUF protein recognition of specific binding sites within the 3' untranslated regions of target mRNAs. In this study, we investigated mechanisms of repression by the founding PUF, Drosophila Pumilio, and its human orthologs. Here, we evaluated a previously proposed model wherein the Pumilio RNA binding domain (RBD) binds Argonaute, which in turn blocks the translational activity of the eukaryotic elongation factor 1A. Surprisingly, we found that Argonautes are not necessary for repression elicited by Drosophila and human PUFs in vivo. A second model proposed that the RBD of Pumilio represses by recruiting deadenylases to shorten the mRNA's polyadenosine tail. Indeed, the RBD binds to the Pop2 deadenylase and accelerates deadenylation; however, this activity is not crucial for regulation. Rather, we determined that the poly(A) is necessary for repression by the RBD. Our results reveal that poly(A)-dependent repression by the RBD requires the poly(A) binding protein, pAbp. Furthermore, we show that repression by the human PUM2 RBD requires the pAbp ortholog, PABPC1. Pumilio associates with pAbp but does not disrupt binding of pAbp to the mRNA. Taken together, our data support a model wherein the Pumilio RBD antagonizes the ability of pAbp to promote translation. Thus, the conserved function of the PUF RBD is to bind specific mRNAs, antagonize pAbp function, and promote deadenylation. PMID:24942623

  3. Studies on fatty acid-binding proteins. The diurnal variation shown by rat liver fatty acid-binding protein.

    PubMed Central

    Wilkinson, T C; Wilton, D C

    1987-01-01

    The concentration of fatty acid-binding protein in rat liver was examined by SDS/polyacrylamide-gel electrophoresis, by Western blotting and by quantifying the fluorescence enhancement achieved on the binding of the fluorescent probe 11-(dansylamino)undecanoic acid. A 2-3-fold increase in the concentration of this protein produced by treatment of rats with the peroxisome proliferator tiadenol was readily detected; however, only a small variation in the concentration of the protein due to a diurnal rhythm was observed. This result contradicts the 7-10-fold variation previously reported for this protein [Hargis, Olson, Clarke & Dempsey (1986) J. Biol. Chem. 261, 1988-1991]. Images Fig. 1. Fig. 3. PMID:3593284

  4. RNA–protein binding interface in the telomerase ribonucleoprotein

    PubMed Central

    Bley, Christopher J.; Qi, Xiaodong; Rand, Dustin P.; Borges, Chad R.; Nelson, Randall W.; Chen, Julian J.-L.

    2011-01-01

    Telomerase is a specialized reverse transcriptase containing an intrinsic telomerase RNA (TR) which provides the template for telomeric DNA synthesis. Distinct from conventional reverse transcriptases, telomerase has evolved a unique TR-binding domain (TRBD) in the catalytic telomerase reverse transcriptase (TERT) protein, integral for ribonucleoprotein assembly. Two structural elements in the vertebrate TR, the pseudoknot and CR4/5, bind TERT independently and are essential for telomerase enzymatic activity. However, the details of the TR–TERT interaction have remained elusive. In this study, we employed a photoaffinity cross-linking approach to map the CR4/5-TRBD RNA–protein binding interface by identifying RNA and protein residues in close proximity. Photoreactive 5-iodouridines were incorporated into the medaka CR4/5 RNA fragment and UV cross-linked to the medaka TRBD protein fragment. The cross-linking RNA residues were identified by alkaline partial hydrolysis and cross-linked protein residues were identified by mass spectrometry. Three CR4/5 RNA residues (U182, U187, and U205) were found cross-linking to TRBD amino acids Tyr503, Phe355, and Trp477, respectively. This CR4/5 binding pocket is distinct and separate from the previously proposed T pocket in the Tetrahymena TRBD. Based on homologous structural models, our cross-linking data position the essential loop L6.1 adjacent to the TERT C-terminal extension domain. We thus propose that stem-loop 6.1 facilitates proper TERT folding by interacting with both TRBD and C-terminal extension. Revealing the telomerase CR4/5-TRBD binding interface with single-residue resolution provides important insights into telomerase ribonucleoprotein architecture and the function of the essential CR4/5 domain. PMID:22123986

  5. Observation of Protein Structural Vibrational Mode Sensitivity to Ligand Binding

    NASA Astrophysics Data System (ADS)

    Niessen, Katherine; Xu, Mengyang; Snell, Edward; Markelz, Andrea

    2014-03-01

    We report the first measurements of the dependence of large-scale protein intramolecular vibrational modes on ligand binding. These collective vibrational modes in the terahertz (THz) frequency range (5-100 cm-1) are of great interest due to their predicted relation to protein function. Our technique, Crystals Anisotropy Terahertz Microscopy (CATM), allows for room temperature, table-top measurements of the optically active intramolecular modes. CATM measurements have revealed surprisingly narrowband features. CATM measurements are performed on single crystals of chicken egg-white lysozyme (CEWL) as well as CEWL bound to tri-N-acetylglucosamine (CEWL-3NAG) inhibitor. We find narrow band resonances that dramatically shift with binding. Quasiharmonic calculations are performed on CEWL and CEWL-3NAG proteins with CHARMM using normal mode analysis. The expected CATM response of the crystals is then calculated by summing over all protein orientations within the unit cell. We will compare the CATM measurements with the calculated results and discuss the changes which arise with protein-ligand binding. This work is supported by NSF grant MRI 2 grant DBI2959989.

  6. Cellular Actions of Insulin-Like Growth Factor Binding Proteins

    PubMed Central

    Ferry, R. J.; Katz, L. E. L.; Grimberg, Adda; Cohen, P.; Weinzimer, S. A.

    2014-01-01

    The insulin-like growth factors (IGFs), insulin-like growth factor binding proteins (IGFBPs), and the IGFBP proteases are involved in the regulation of somatic growth and cellular proliferation both in vivo and in vitro. IGFs are potent mitogenic agents whose actions are determined by the availability of free IGFs to interact with the IGF receptors. IGFBPs comprise a family of proteins that bind IGFs with high affinity and specificity and thereby regulate IGF-dependent actions. IGFBPs have recently emerged as IGF-independent regulators of cell growth. Various IGFBP association proteins as well as cleavage of IGFBPs by specific proteases modulate levels of free IGFs and IGFBPs. The ubiquity and complexity of the IGF axis promise exciting discoveries and applications for the future. PMID:10226802

  7. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins.

    PubMed

    Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian

    2016-12-15

    In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins. PMID:27451201

  8. Streptococcal IgA-binding proteins bind in the Calpha 2-Calpha 3 interdomain region and inhibit binding of IgA to human CD89.

    PubMed

    Pleass, R J; Areschoug, T; Lindahl, G; Woof, J M

    2001-03-16

    Certain pathogenic bacteria express surface proteins that bind to the Fc part of human IgA or IgG. These bacterial proteins are important as immunochemical tools and model systems, but their biological function is still unclear. Here, we describe studies of three streptococcal proteins that bind IgA: the Sir22 and Arp4 proteins of Streptococcus pyogenes and the unrelated beta protein of group B streptococcus. Analysis of IgA domain swap and point mutants indicated that two loops at the Calpha2/Calpha3 domain interface are critical for binding of the streptococcal proteins. This region is also used in binding the human IgA receptor CD89, an important mediator of IgA effector function. In agreement with this finding, the three IgA-binding proteins and a 50-residue IgA-binding peptide derived from Sir22 blocked the ability of IgA to bind CD89. Further, the Arp4 protein inhibited the ability of IgA to trigger a neutrophil respiratory burst via CD89. Thus, we have identified residues on IgA-Fc that play a key role in binding of different streptococcal IgA-binding proteins, and we have identified a mechanism by which a bacterial IgA-binding protein may interfere with IgA effector function. PMID:11096107

  9. Polyamine Binding to Proteins in Oat and Petunia Protoplasts 1

    PubMed Central

    Mizrahi, Yosef; Applewhite, Philip B.; Galston, Arthur W.

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozenthawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein. Images Figure 2 PMID:11537462

  10. Polyamine binding to proteins in oat and Petunia protoplasts

    NASA Technical Reports Server (NTRS)

    Mizrahi, Y.; Applewhite, P. B.; Galston, A. W.

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.