Science.gov

Sample records for secondary inorganic aerosols

  1. Water absorption by secondary organic aerosol and its effect on inorganic aerosol behavior

    SciTech Connect

    Ansari, A.S.; Pandis, S.N.

    2000-01-01

    The hygroscopic nature of atmospheric aerosol has generally been associated with its inorganic fraction. In this study, a group contribution method is used to predict the water absorption of secondary organic aerosol (SOA). Compared against growth measurements of mixed inorganic-organic particles, this method appears to provide a first-order approximation in predicting SOA water absorption. The growth of common SOA species is predicted to be significantly less than common atmospheric inorganic salts such as (NH{sub 4}){sub 2}SO{sub 4} and NaCl. Using this group contribution method as a tool in predicting SOA water absorption, an integrated modeling approach is developed combining available SOA and inorganic aerosol models to predict overall aerosol behavior. The effect of SOA on water absorption and nitrate partitioning between the gas and aerosol phases is determined. On average, it appears that SOA accounts for approximately 7% of total aerosol water and increases aerosol nitrate concentrations by approximately 10%. At high relative humidity and low SOA mass fractions, the role of SOA in nitrate partitioning and its contribution to total aerosol water is negligible. However, the water absorption of SOA appears to be less sensitive to changes in relative humidity than that of inorganic species, and thus at low relative humidity and high SOA mass fraction concentrations, SOA is predicted to account for approximately 20% of total aerosol water and a 50% increase in aerosol nitrate concentrations. These findings could improve the results of modeling studies where aerosol nitrate has often been underpredicted.

  2. Simulating Secondary Inorganic Aerosols using the chemistry transport model MOCAGE version R2.15.0

    NASA Astrophysics Data System (ADS)

    Guth, J.; Josse, B.; Marécal, V.; Joly, M.

    2015-04-01

    In this study we develop a Secondary Inorganic Aerosol (SIA) module for the chemistry transport model MOCAGE developed at CNRM. Based on the thermodynamic equilibrium module ISORROPIA II, the new version of the model is evaluated both at the global scale and at the regional scale. The results show high concentrations of secondary inorganic aerosols in the most polluted regions being Europe, Asia and the eastern part of North America. Asia shows higher sulfate concentrations than other regions thanks to emissions reduction in Europe and North America. Using two simulations, one with and the other without secondary inorganic aerosol formation, the model global outputs are compared to previous studies, to MODIS AOD retrievals, and also to in situ measurements from the HTAP database. The model shows a better agreement in all geographical regions with MODIS AOD retrievals when introducing SIA. It also provides a good statistical agreement with in situ measurements of secondary inorganic aerosol composition: sulfate, nitrate and ammonium. In addition, the simulation with SIA gives generally a better agreement for secondary inorganic aerosols precursors (nitric acid, sulfur dioxide, ammonia) in particular with a reduction of the Modified Normalised Mean Bias (MNMB). At the regional scale, over Europe, the model simulation with SIA are compared to the in situ measurements from the EMEP database and shows a good agreement with secondary inorganic aerosol composition. The results at the regional scale are consistent with those obtained with the global simulations. The AIRBASE database was used to compare the model to regulated air quality pollutants being particulate matter, ozone and nitrogen dioxide concentrations. The introduction of the SIA in MOCAGE provides a reduction of the PM2.5 MNMB of 0.44 on a yearly basis and even 0.52 on a three spring months period (March, April, May) when SIA are maximum.

  3. The Characteristics of Long-range Transboundary Inorganic Secondary Aerosols in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Carmichael, G. R.; Woo, J. H.; Qiang, Z.

    2014-12-01

    Recurrent particle matter episodes greatly influence air quality in Northeast Asia. According to many studies, a major reason is long-range transport of air pollutant. Large amount of emission of chemical compounds aggravate air pollution in the region. Emitted air pollutants mainly come from industrialized regions along the East China coast. It can be transported over downwind region by the prevailing westerlies. The long-rang transported fine particle certainly attributes to air quality in downwind region, but there are many unknowns on the quantity, transport pattern, and secondary aerosol production mechanism despite the fact with many studies have been performed. Major contributors of PM2.5 are inorganic secondary aerosols, sulfate, nitrate and ammonium, in Korea. Especially high relative contributions of inorganic secondary aerosols appear for westerly wind cases. The main pathway of production of inorganic secondary aerosols is produced by converting from SO2 and NOx during the long-range transport but the contribution varies dramatically depending on season and wind pattern. Sulfate is consistently the primary contributor of PM2.5 still now but we should more concern nitrate because that NOx emissions of China is increasing steeply since 2000 by leading powerplant, industry, and transport, despite downward trend of SO2. In order to better understand regional air quality modeling of the long-range transport, international study, MICS-Asia phase III, has been initiated with many researchers. We will present chemical characteristics of PM2.5 long-range transport during westerly wind cases focused on secondary aerosol, tracking their transport pattern, and production pathway. Results using CMAQ with the modeling domain covering Northeast and Southeast China, Korea, and Japan with 15km resolution will be discussed.

  4. Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London

    NASA Astrophysics Data System (ADS)

    Young, D. E.; Allan, J. D.; Williams, P. I.; Green, D. C.; Flynn, M. J.; Harrison, R. M.; Yin, J.; Gallagher, M. W.; Coe, H.

    2015-06-01

    For the first time, the behaviour of non-refractory inorganic and organic submicron particulate through an entire annual cycle is investigated using measurements from an Aerodyne compact time-of-flight aerosol mass spectrometer (cToF-AMS) located at a UK urban background site in North Kensington, London. We show that secondary aerosols account for a significant fraction of the submicron aerosol burden and that high concentration events are governed by different factors depending on season. Furthermore, we demonstrate that on an annual basis there is no variability in the extent of secondary organic aerosol (SOA) oxidation, as defined by the oxygen content, irrespective of amount. This result is surprising given the changes in precursor emissions and contributions as well as photochemical activity throughout the year; however it may make the characterisation of SOA in urban environments more straightforward than previously supposed. Organic species, nitrate, sulphate, ammonium, and chloride were measured during 2012 with average concentrations (±1 standard deviation) of 4.32 (±4.42), 2.74 (±5.00), 1.39 (±1.34), 1.30 (±1.52), and 0.15 (±0.24) μg m-3, contributing 44, 28, 14, 13, and 2 % to the total non-refractory submicron mass (NR-PM1) respectively. Components of the organic aerosol fraction are determined using positive matrix factorisation (PMF), in which five factors are identified and attributed as hydrocarbon-like OA (HOA), cooking OA (COA), solid fuel OA (SFOA), type 1 oxygenated OA (OOA1), and type 2 oxygenated OA (OOA2). OOA1 and OOA2 represent more and less oxygenated OA with average concentrations of 1.27 (±1.49) and 0.14 (±0.29) μg m-3 respectively, where OOA1 dominates the SOA fraction (90%). Diurnal, monthly, and seasonal trends are observed in all organic and inorganic species due to meteorological conditions, specific nature of the aerosols, and availability of precursors. Regional and transboundary pollution as well as other individual pollution events influence London's total submicron aerosol burden. High concentrations of non-refractory submicron aerosols in London are governed by particulate emissions in winter, especially nitrate and SFOA, whereas SOA formation drives the high concentrations during the summer. The findings from this work could have significant implications for modelling of urban air pollution as well as for the effects of atmospheric aerosols on health and climate.

  5. Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London

    NASA Astrophysics Data System (ADS)

    Young, D. E.; Allan, J. D.; Williams, P. I.; Green, D. C.; Flynn, M. J.; Harrison, R. M.; Yin, J.; Gallagher, M. W.; Coe, H.

    2014-07-01

    For the first time, the behaviour of non-refractory inorganic and organic submicron particulate through an entire annual cycle is investigated using measurements from an Aerodyne compact time-of-flight aerosol mass spectrometer (cToF-AMS) located at a UK urban background site in North Kensington, London. We show secondary aerosols account for a significant fraction of the submicron aerosol burden and that high concentration events are governed by different factors depending on season. Furthermore, we demonstrate that on an annual basis there is no variability in the extent of secondary organic aerosol (SOA) oxidation, as defined by the oxygen content, irrespective of amount. This result is surprising given the changes in precursor emissions and contributions as well as photochemical activity throughout the year; however it may make the characterisation of SOA in urban environments more straightforward than previously supposed. Organic species, nitrate, sulphate, ammonium, and chloride were measured during 2012 with average concentrations (one standard deviation) of 4.32 (4.42), 2.74 (5.00), 1.39 (1.34), 1.30 (1.52) and 0.15 (0.24) ?g m-3, contributing 43, 28, 14, 13 and 2% to the total submicron mass, respectively. Components of the organic aerosol fraction are determined using positive matrix factorisation (PMF) where five factors are identified and attributed as hydrocarbon-like OA (HOA), cooking OA (COA), solid fuel OA (SFOA), type 1 oxygenated OA (OOA1), and type 2 oxygenated OA (OOA2). OOA1 and OOA2 represent more and less oxygenated OA with average concentrations of 1.27 (1.49) and 0.14 (0.29) ?g m-3, respectively, where OOA1 dominates the SOA fraction (90%). Diurnal, monthly, and seasonal trends are observed in all organic and inorganic species, due to meteorological conditions, specific nature of the aerosols, and availability of precursors. Regional and transboundary pollution as well as other individual pollution events influence London's total submicron aerosol burden. High concentrations of non-refractory submicron aerosols in London are governed by particulate emissions in winter, especially nitrate and SFOA, whereas SOA formation drives the high concentrations during the summer. The findings from this work could have significant implications for modelling of urban air pollution as well as for the effects of atmospheric aerosols on health and climate.

  6. First implementation of secondary inorganic aerosols in the MOCAGE version R2.15.0 chemistry transport model

    NASA Astrophysics Data System (ADS)

    Guth, J.; Josse, B.; Marécal, V.; Joly, M.; Hamer, P.

    2016-01-01

    In this study we develop a secondary inorganic aerosol (SIA) module for the MOCAGE chemistry transport model developed at CNRM. The aim is to have a module suitable for running at different model resolutions and for operational applications with reasonable computing times. Based on the ISORROPIA II thermodynamic equilibrium module, the new version of the model is presented and evaluated at both the global and regional scales. The results show high concentrations of secondary inorganic aerosols in the most polluted regions: Europe, Asia and the eastern part of North America. Asia shows higher sulfate concentrations than other regions thanks to emission reductions in Europe and North America. Using two simulations, one with and the other without secondary inorganic aerosol formation, the global model outputs are compared to previous studies, to MODIS AOD retrievals, and also to in situ measurements from the HTAP database. The model shows a better agreement with MODIS AOD retrievals in all geographical regions after introducing the new SIA scheme. It also provides a good statistical agreement with in situ measurements of secondary inorganic aerosol composition: sulfate, nitrate and ammonium. In addition, the simulation with SIA generally gives a better agreement with observations for secondary inorganic aerosol precursors (nitric acid, sulfur dioxide, ammonia), in particular with a reduction of the modified normalized mean bias (MNMB). At the regional scale, over Europe, the model simulation with SIA is compared to the in situ measurements from the EMEP database and shows a good agreement with secondary inorganic aerosol composition. The results at the regional scale are consistent with those obtained from the global simulations. The AIRBASE database was used to compare the model to regulated air quality pollutants: particulate matter, ozone and nitrogen dioxide concentrations. Introduction of the SIA in MOCAGE provides a reduction in the PM2.5 MNMB of 0.44 on a yearly basis and up to 0.52 for the 3 spring months (March, April, May) when SIAs are at their maximum.

  7. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events

    SciTech Connect

    Quan, Jiannong; Liu, Yangang; Liu, Quan; Li, Xia; Gao, Yang; Jia, Xingcan; Sheng, Jiujiang

    2015-09-30

    In this study, the effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM2.5), nitrate (NO3), sulfate (SO4), ammonium (NH4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (Nratio) and S from SO2 to sulfate (Sratio) both significantly increased in haze events, suggesting enhanced conversions from NOx and SO2 to their corresponding particle phases in the late haze period. Further analysis shows that Nratio and Sratio increased with increasing RH, with Nratio and Sratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60–80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of Nratio and Sratio to O3: the conversion ratios increase with decreasing O3 concentration when O3 concentration is lower than <15 ppb but increased with increasing O3 when O3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly due to high emission and low reaction rate; the occurrence of heterogeneous aqueous reactions in the late haze period, together with the accumulated high concentrations of precursor gases such as SO2 and NOx, accelerated the formation of secondary inorganic aerosols, and led to rapid increase of the PM2.5 concentration.

  8. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events

    DOE PAGESBeta

    Quan, Jiannong; Liu, Yangang; Liu, Quan; Li, Xia; Gao, Yang; Jia, Xingcan; Sheng, Jiujiang

    2015-09-30

    In this study, the effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM2.5), nitrate (NO3), sulfate (SO4), ammonium (NH4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (Nratio) and S from SO2 to sulfate (Sratio) bothmore » significantly increased in haze events, suggesting enhanced conversions from NOx and SO2 to their corresponding particle phases in the late haze period. Further analysis shows that Nratio and Sratio increased with increasing RH, with Nratio and Sratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60–80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of Nratio and Sratio to O3: the conversion ratios increase with decreasing O3 concentration when O3 concentration is lower than <15 ppb but increased with increasing O3 when O3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly due to high emission and low reaction rate; the occurrence of heterogeneous aqueous reactions in the late haze period, together with the accumulated high concentrations of precursor gases such as SO2 and NOx, accelerated the formation of secondary inorganic aerosols, and led to rapid increase of the PM2.5 concentration.« less

  9. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events

    NASA Astrophysics Data System (ADS)

    Quan, Jiannong; Liu, Quan; Li, Xia; Gao, Yang; Jia, Xingcan; Sheng, Jiujiang; Liu, Yangang

    2015-12-01

    The effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM2.5), nitrate (NO3), sulfate (SO4), ammonium (NH4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (Nratio) and S from SO2 to sulfate (Sratio) both significantly increased in haze events, suggesting enhanced conversions from NOx and SO2 to their corresponding particle phases in the late haze period. Further analysis shows that Nratio and Sratio increased with increasing RH, with Nratio and Sratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60-80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of Nratio and Sratio to O3: the conversion ratios increase with decreasing O3 concentration when O3 concentration is lower than <15 ppb but increased with increasing O3 when O3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly due to high emission and low reaction rate; the occurrence of heterogeneous aqueous reactions in the late haze period, together with the accumulated high concentrations of precursor gases such as SO2 and NOx, accelerated the formation of secondary inorganic aerosols, and led to rapid increase of the PM2.5 concentration.

  10. Secondary inorganic aerosol formation and its shortwave direct radiative forcing in China

    NASA Astrophysics Data System (ADS)

    Huang, Xin

    2015-04-01

    Secondary inorganic aerosol (SIA), including sulfate, nitrate and ammonium, is an important part of fine particle. SIA plays a significant role in shortwave radiation transfer. Numerical simulation is usually used to study SIA formation and its climate effect. In this work, we used the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to study SIA formation and its direct radiative forcing (DRF) over China. SO2 oxidation pathways related to mineral aerosol, including transition metal-catalyzed oxidation in aqueous phase and heterogeneous reactions, play an important role in sulfate production, but they are not well treated in current atmospheric models. In this work, we improved the WRF-Chem model by simulating the enhancement role of mineral aerosol in sulfate production. Firstly, we estimated mineral cations based on local measurements in order to well represent aqueous phase acidity. Secondly, we scaled the transition metal concentration to the mineral aerosol levels according to the existing observations and improved transition metal-catalyzed oxidation calculation. Lastly, heterogeneous reactions of acid gases on the surface of mineral aerosol were included in this simulation. Accuracy in the prediction of sulfate by the model was significantly improved and we concluded that mineral aerosol can facilitate SO2 oxidation and subsequent sulfate formation. It was demonstrated that, over China, mineral aerosol was responsible for 21.8% of annual mean sulfate concentration. The enhanced aqueous oxidation was more significant compared to the heterogeneous reactions. In winter, mineral aerosol was responsible for 39.6% of sulfate production. In summer, gaseous oxidation and aqueous oxidation of SO2 by hydrogen peroxide and ozone were the dominant pathways of sulfate formation. Mineral aerosol only contributed 11.9% to the total sulfate production. The increase in annual mean sulfate concentration due to mineral aerosol could reach up to over 6 ?g/m3 in northern China, middle and lower reaches of the Yangtze River and the Sichuan Basin. We integrated the updated ammonia emission inventory and improved model to simulate SIA formation and its DRF over China in 2006. At the top of the atmosphere (TOA), the annual mean DRF of SIA was -2.5 W/m2, in which sulfate, nitrate and ammonium contributed -1.5 W/m2, -0.4 W/m2 and -0.6 W/m2 respectively. At the surface, the annual mean DRF of sulfate, nitrate and ammonium were -2.1 W/m2, -0.5 W/m2 and -0.8 W/m2 respectively. In the atmosphere, the annual mean DRF of sulfate, nitrate and ammonium were +0.6 W/m2, +0.1 W/m2 and +0.2 W/m2 respectively. The DRF of SIA at TOA displayed a distinct seasonal variation. The national mean DRF reached its maximum of -3.4 W/m2 in summer. There were several reasons for the summer maximum. Firstly, enhanced atmospheric oxidizing capacity and increased ammonia emission in summer accelerated the formation of sulfate and ammonium. Secondly, high humidity favored the hygroscopic growth of SIA in summer. Lastly, shortwave radiation flux at the TOA peaked in summer. On the contrary, the hygroscopic growth of SIA was limited in winter. Simultaneously, the shortwave radiation flux decreased to the minimum in winter. Consequently, the national mean DRF reached its minimum of -1.7 W/m2 in winter. SIA could play an important part in climate change by offsetting BC's radiative heating effect in China.

  11. Simulation of the dynamics and composition of secondary and marine inorganic aerosols in the coastal atmosphere

    NASA Astrophysics Data System (ADS)

    von Salzen, Knut; Schlünzen, K. Heinke

    1999-12-01

    Results of an extended version of the three-dimensional Eulerian Mesoscale Transport, Chemistry, and Stream Model (METRAS) for simulating size-segregated inorganic aerosols are presented. The extended version of METRAS includes aerosol transport by advection, diffusion, gravitational settling, and dry deposition. Aerosols are produced by homogeneous nucleation and by sea spray. They are modified by condensation and evaporation of inorganic aerosol precursor gases. Altogether, 73 inorganic and organic gas species are treated in the model by taking into account transport, deposition, emissions, and gas-phase reactions. The model is applied to simulate the mixing of marine and continental air in the coastal atmosphere over the German Bight. The simulation results give evidence for the importance of the uptake of nitric acid and ammonia by sea-salt aerosol for the dynamics of nitrogen compounds in the coastal atmosphere. As a result of the mixing of polluted continental air masses with marine air masses, the pH of the sea-salt aerosol reaches values as low as pH=2.1.

  12. Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

    SciTech Connect

    Paulson, S E

    2012-05-30

    Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

  13. Impact of emission changes on secondary inorganic aerosol episodes across Germany

    NASA Astrophysics Data System (ADS)

    Banzhaf, S.; Schaap, M.; Wichink Kruit, R. J.; Denier van der Gon, H. A. C.; Stern, R.; Builtjes, P. J. H.

    2013-12-01

    In this study, the response of secondary inorganic aerosol (SIA) concentrations to changes in precursor emissions during high PM10 episodes over central Europe in spring 2009 was investigated with the Eulerian Chemistry Transport Model (CTM) REM-Calgrid (RCG). The model performed well in capturing the temporal variation of PM10 and SIA concentrations and was used to analyse the different origin, development and characteristics of the selected high PM10 episodes. SIA concentrations, which contribute to about 50% of the PM10 concentration in northwestern Europe, have been studied by means of several model runs for different emission scenarios. SO2, NOx and NH3 emissions have been varied within a domain covering Germany and within a domain covering Europe. It was confirmed that the response of sulfate, nitrate and ammonium concentrations and deposition fluxes of S and N to SO2, NOx and NH3 emission changes is non-linear. The deviation from linearity was found to be lower for total deposition fluxes of S and N than for SIA concentrations. Furthermore, the study has shown that incorporating explicit cloud chemistry in the model adds non-linear responses to the system. It significantly modifies the response of modelled SIA concentrations and S and N deposition fluxes to changes in precursor emissions. The analysis of emission reduction scenario runs demonstrates that next to European-wide emission reductions additional national NH3 measures in Germany are more effective in reducing SIA concentrations and deposition fluxes than additional national measures on SO2 and NOx.

  14. Dynamic model evaluation for secondary inorganic aerosol and its precursors over Europe between 1990 and 2009

    NASA Astrophysics Data System (ADS)

    Banzhaf, S.; Schaap, M.; Kranenburg, R.; Manders, A. M. M.; Segers, A. J.; Visschedijk, A. J. H.; Denier van der Gon, H. A. C.; Kuenen, J. J. P.; van Meijgaard, E.; van Ulft, L. H.; Cofala, J.; Builtjes, P. J. H.

    2015-04-01

    In this study we present a dynamic model evaluation of chemistry transport model LOTOS-EUROS (LOng Term Ozone Simulation - EURopean Operational Smog) to analyse the ability of the model to reproduce observed non-linear responses to emission changes and interannual variability of secondary inorganic aerosol (SIA) and its precursors over Europe from 1990 to 2009. The 20 year simulation was performed using a consistent set of meteorological data provided by RACMO2 (Regional Atmospheric Climate MOdel). Observations at European rural background sites have been used as a reference for the model evaluation. To ensure the consistency of the used observational data, stringent selection criteria were applied, including a comprehensive visual screening to remove suspicious data from the analysis. The LOTOS-EUROS model was able to capture a large part of the seasonal and interannual variability of SIA and its precursors' concentrations. The dynamic evaluation has shown that the model is able to simulate the declining trends observed for all considered sulfur and nitrogen components following the implementation of emission abatement strategies for SIA precursors over Europe. Both the observations and the model show the largest part of the decline in the 1990s, while smaller concentration changes and an increasing number of non-significant trends are observed and modelled between 2000 and 2009. Furthermore, the results confirm former studies showing that the observed trends in sulfate and total nitrate concentrations from 1990 to 2009 are lower than the trends in precursor emissions and precursor concentrations. The model captured well these non-linear responses to the emission changes. Using the LOTOS-EUROS source apportionment module, trends in the formation efficiency of SIA have been quantified for four European regions. The exercise has revealed a 20-50% more efficient sulfate formation in 2009 compared to 1990 and an up to 20% more efficient nitrate formation per unit nitrogen oxide emission, which added to the explanation of the non-linear responses. However, we have also identified some weaknesses in the model and the input data. LOTOS-EUROS underestimates the observed nitrogen dioxide concentrations throughout the whole time period, while it overestimates the observed nitrogen dioxide concentration trends. Moreover, model results suggest that the emission information of the early 1990s used in this study needs to be improved concerning magnitude and spatial distribution.

  15. Dynamic model evaluation for secondary inorganic aerosol and its precursors over Europe between 1990 and 2009

    NASA Astrophysics Data System (ADS)

    Banzhaf, S.; Schaap, M.; Kranenburg, R.; Manders, A. M. M.; Segers, A. J.; Visschedijk, A. H. J.; Denier van der Gon, H. A. C.; Kuenen, J. J. P.; van Meijgaard, E.; van Ulft, L. H.; Cofala, J.; Builtjes, P. J. H.

    2014-07-01

    In this study we present a dynamic model evaluation of the chemistry transport model LOTOS-EUROS to analyse the ability of the model to reproduce observed non-linear responses to emission changes and interannual variability of secondary inorganic aerosol (SIA) and its precursors over Europe from 1990 to 2009. The 20 year simulation was performed using a consistent set of meteorological data provided by the regional climate model RACMO2. Observations at European rural background sites have been used as reference for the model evaluation. To ensure the consistency of the used observational data stringent selection criteria were applied including a comprehensive visual screening to remove suspicious data from the analysis. The LOTOS-EUROS model was able to capture a large part of the day-to-day, seasonal and interannual variability of SIA and its precursors' concentrations. The dynamic evaluation has shown that the model is able to simulate the declining trends observed for all considered sulphur and nitrogen components following the implementation of emission abatement strategies for SIA precursors over Europe. Both, the observations and the model show the largest part of the decline in the 1990's while smaller concentration changes and an increasing number of non-significant trends are observed and modelled between 2000-2009. Furthermore, the results confirm former studies showing that the observed trends in sulphate and total nitrate concentrations from 1990 to 2009 are significantly lower than the trends in precursor emissions and precursor concentrations. The model captured these non-linear responses to the emission changes well. Using the LOTOS-EUROS source apportionment module trends in formation efficiency of SIA have been quantified for four European regions. The exercise has revealed a 20-50% more efficient sulphate formation in 2009 compared to 1990 and an up to 20% more efficient nitrate formation per unit nitrogen oxide emission, which added to the explanation of the non-linear responses. However, we have also identified some weaknesses to the model and the input data. LOTOS-EUROS underestimates the observed nitrogen dioxide concentrations throughout the whole time period, while it overestimates the observed nitrogen dioxide concentration trends. Moreover, model results suggest that the emission information of the early 1990's used in this study needs to be improved concerning magnitude and spatial distribution.

  16. Secondary inorganic aerosol evaluation: Application of a transport chemical model in the eastern part of the Po Valley

    NASA Astrophysics Data System (ADS)

    Pecorari, Eliana; Squizzato, Stefania; Longo, Andrea; Visin, Flavia; Rampazzo, Giancarlo

    2014-12-01

    Secondary inorganic aerosol (SIA) represents an important component of fine particulate matter in Europe. A photochemical model has been used to assess the distribution of secondary inorganic ions (sulfate, nitrate and ammonium) in the eastern part of the Po Valley, close to Venice. Specific meteorological and environmental conditions and very highly urbanized and industrialized areas make this domain one of the most polluted in Europe. Several studies have been conducted to assess particulate matter (PM10 and PM2.5) areal distribution. However, SIA formation dynamics are still a research subject especially in the transition environments, where the changes in the orography and in the land-use can affect air mass movements and atmospheric composition. This paper is a first attempt to simulate SIA distribution by using a photochemical model in the sea/land Venice transition area. Moreover, a modeling approach with clean boundary conditions has been used to check local and regional influence on SIA levels in the domain. Results reveal that, despite the importance of regional influences, local formation processes are important in SIA distribution especially during warm periods. SO42- and NH4+ are more linked to emission sources distribution than NO3- that tends to be more diffused in the study area. The use of a photochemical model, suitably tested in a such complex area, can improve air pollution knowledge and can help in air quality decision making.

  17. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Huang, Xiaojuan; Liu, Zirui; Zhang, Junke; Wen, Tianxue; Ji, Dongsheng; Wang, Yuesi

    2016-02-01

    Particulate matter (PM) pollution is a serious issue that has aroused great public attention in Beijing. To examine the seasonal characteristics of aerosols in typical pollution episodes, water-soluble inorganic ions (SO42 -, NO3-, NH4+, Cl-, K+, Na+, Ca2 + and Mg2 +) in size-segregated PM collected by an Anderson sampler (equipped with 50% effective cut-off diameters of 9.0, 5.8, 4.7, 3.3, 2.1, 1.1, 0.65, 0.43 μm and an after filter) were investigated in four intensive campaigns from June 2013 to May 2014 in the Beijing urban area. Pronounced seasonal variation of TWSIs in fine particles (aerodynamic diameter less than 2.1 μm) was observed, with the highest concentration in summer (71.5 ± 36.3 μg/m3) and the lowest in spring (28.1 ± 15.2 μg/m3). Different ion species presented different seasonal characteristics of mass concentration and size distribution, reflecting their different dominant sources. As the dominant component, SO42 -, NO3- and NH4+ (SNA) in fine particles appeared to play an important role in the formation of high PM pollution since its contribution to the TWSIs and PM2.1 mass increased significantly during pollution episodes. Due to the hygroscopic growth and enhanced secondary formation in the droplet mode (0.65-2.1 μm) from clean days to polluted days, the size distribution peak of SNA in the fine mode tended to shift from 0.43-0.65 μm to 0.65-2.1 μm. Relative humidity (RH) and temperature contributed to influence the secondary formation and regulate the size distributions of sulfates and nitrates. Partial correlation analysis found that high RH would promote the sulfur and nitrogen oxidation rates in the fine mode, while high temperature favored the sulfur oxidation rate in the condensation mode (0.43-0.65 μm) and reduced the nitrogen oxidation rate in the droplet mode (0.65-2.1 μm). The NO3-/SO42 - mass ratio in PM2.1 (73% of the samples) exceeded 1.0, suggesting that vehicle exhaust currently makes a greater contribution to aerosol pollution than stationary sources in Beijing.

  18. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  19. Secondary Inorganic Soluble Aerosol in Hong Kong: Continuous Measurements, Formation Mechanism Discussion and Improvement of an Observation-Based Model to Study Control Strategies

    NASA Astrophysics Data System (ADS)

    Xue, Jian

    Work in this thesis focuses on half-hourly or hourly measurements of PM2.5 secondary inorganic aerosols (SIA) in two locations in Hong Kong (HK) using a continuous system, PILS (Particle-into-Liquid System) coupled to two ion chromatographs. The high-resolution data sets allow the examination of SIA temporal dynamics in the scale of hours that the filter-based approach is incapable of providing. (1) Impacts of local emissions, regional transports and their interactions on chemical composition and concentrations of PM2.5 SIA and other ionic species were investigated at the Hong Kong University of Science and Technology (HKUST), a receptor site, under three synoptic conditions. (2) Chemical compositions and size characteristics of ionic species were investigated at Tung Chung, a new town area located in the Southwest part of HK. The sampling period was from 17 to 26 December 2009, covering both normal conditions and an aerosol episode. The three major secondary inorganic ions, SO42, NH4+ and NO 3-, accounted for 47 +/- 6% of PM2.5 mass. Further examination of size characteristics of NO3 - shows that fine mode NO3- is more likely to occur in environments when the fine particles are less acidic and the sea-salt aerosol contributions are low. (3) The ionic chemical composition of PM2.5 and meteorological parameters (e.g., temperature, RH) obtained at the HKUST site under all three different synoptic conditions are input into Aerosol Inorganic Model (AIM-III) for estimation of in situ pH through calculation of H+ amount and aerosol liquid water content (LWC). The second part of this thesis work is to improve an observation-based model (OBAMAP) for SIA, which was first developed by Dr. Zibing Yuan (2006) to evaluate the sensitivity of formation of nitrate ad sulfate to changes in the emissions of their precursors (i.e., NOx, SO2, and VOCs). The improvement work includes incorporating updated chemical mechanisms, thermodynamic equilibrium for gas-aerosol phase apportionment and size distribution of SIA. The new OBM for SIA is applied to hourly gaseous and particulate composition data measured during a wintertime pollution episode encountered in Tung Chung for probing effectiveness of different precursor control strategies. The OBM is demonstrated to provide a relatively simple and cost-effective tool for analyzing the increasing database of high time resolution measurements of VOCs and major aerosol ionic species. In this thesis, we propose a new production regime of SO4 2- in which oxidation of S(IV) is dominated by NO 2 and O3 in the aqueous phase. Simulated with a simplified version of OBAMAP, it is shown elevation of NOx favors productions of SO42- in this regime, especially under high-SO 2 conditions. We then study the importance of NO2-derived and O3-derived SO42- during haze episodes in PRD and during winter at urban/suburban locations in PRD. Our findings reveal these two pathways account for >70% of SO42- productions. Since production of NO2-derived SO4 2- is independent on solar actinic fluxes while production by other pathways is, NO2-derived SO42- plays a more important role under low solar actinic fluxes conditions, even during the night time. In addition, it is noted that high levels of NO2-derived SO42- can only be expected under high-SO2 conditions (like in PRD) because level of atmospheric SO2 is the limiting parameter. (Abstract shortened by UMI.)

  20. Assessing sensitivity regimes of secondary inorganic aerosol formation in Europe with the CALIOPE-EU modeling system

    NASA Astrophysics Data System (ADS)

    Pay, Mara T.; Jimnez-Guerrero, Pedro; Baldasano, Jos M.

    2012-05-01

    Sulfur dioxide and nitrogen oxides form two of largest contributors to PM2.5 in Europe; ammonium sulfate ((NH4)2SO4) and ammonium nitrate (NH4NO3). In-situ observations of many chemical components are rather sparse, and thus neither can accurately characterize the distribution of pollutants nor predict the effectiveness of emission control. Understanding (and controlling) the formation regimes for these components is important for the achievement of the reduction objectives established in the European legislation for PM2.5 (20% of PM2.5 triennial for the mean of urban background levels between 2018 and 2020). For this purpose, the present work uses the CALIOPE high-resolution air quality modeling system (12 km 12 km, 1 h) to investigate the formation of SIA (SO42-, NO3- and NH4+, which involve an important part of PM) and their gaseous precursors (SO2, HNO3 and NH3) over Europe during the year 2004. The CALIOPE system performs well at estimating SIAs when compared to the measurements from EMEP monitoring network, but errors are larger for gaseous precursors. NH3 is underestimated in the warmest months, HNO3 tends to be overestimated in the summer months, and SO2 appears to be systematically overestimated. The temporal treatment of ammonia emission is a probable source of uncertainty in the model representation of SIA. Furthermore, we discuss the annual pattern for each inorganic aerosol and gas precursor species over Europe estimated with the EMEP data and CALIOPE outputs, comparing the performance with other European studies. Spatial distribution of key indicators is used to characterize chemical regimes and understand the sensitivity of SIA components to their emission precursors. Results indicate that SO42- is not usually fully neutralized to ammonium sulfate in ambient measurements and is usually fully neutralized in model estimates. CALIOPE and EMEP observations agree that the continental regions in Europe tend to be HNO3-limited for nitrate formation. Regulatory strategies in such regions should focus on reductions in NOx (NO + NO2) rather than NH3 to control ammonium nitrate. This work assesses how well the CALIOPE system reproduces the spatial and temporal variability of SIAs and their gaseous precursors over Europe and complements the measurement findings.

  1. Mechanism for production of secondary organic aerosols and their representation in atmospheric models. Final report

    SciTech Connect

    Seinfeld, J.H.; Flagan, R.C.

    1999-06-07

    This document contains the following: organic aerosol formation from the oxidation of biogenic hydrocarbons; gas/particle partitioning of semivolatile organic compounds to model inorganic, organic, and ambient smog aerosols; and representation of secondary organic aerosol formation in atmospheric models.

  2. Future premature mortality due to O3, secondary inorganic aerosols and primary PM in Europe--sensitivity to changes in climate, anthropogenic emissions, population and building stock.

    PubMed

    Geels, Camilla; Andersson, Camilla; Hnninen, Otto; Lans, Anne Sofie; Schwarze, Per E; Skjth, Carsten Ambelas; Brandt, Jrgen

    2015-03-01

    Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000-2009, 2050-2059 and 2080-2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future. PMID:25749320

  3. Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock

    PubMed Central

    Geels, Camilla; Andersson, Camilla; Hänninen, Otto; Lansø, Anne Sofie; Schwarze, Per E.; Ambelas Skjøth, Carsten; Brandt, Jørgen

    2015-01-01

    Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000–2009, 2050–2059 and 2080–2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future. PMID:25749320

  4. The use of trajectory cluster analysis to examine the long-range transport of secondary inorganic aerosol in the UK

    NASA Astrophysics Data System (ADS)

    Abdalmogith, Salah S.; Harrison, Roy M.

    The influence of synoptic-scale atmospheric transport patterns on observed levels of sulphate, nitrate and PM 10 at Belfast (urban) and Harwell (rural) has been examined. Three-day 6-hourly back trajectories for January 2002 to December 2003, arriving at the two sampling locations at 1200 GMT and 900 hPa were calculated. A K-means clustering algorithm is used to group these trajectories into 10 clusters depending on their direction and speed. Non-parametric statistics were used to test for significant differences in mean aerosol concentration across clusters. Significant inter-cluster differences were observed with highest nitrate and sulphate levels associated with south-easterly and easterly trajectory clusters at Belfast and Harwell respectively, and highest chloride concentrations associated with fast moving maritime trajectory categories at both sites. Easterly trajectory clusters show lower sulphate/nitrate ratios compared to other clusters, especially for air travelling from the near continent. Nitrate shows greater episodicity than sulphate with implications for achievement of the daily PM 10 limit value of 50 ?g m -3. Our trajectory analysis suggests that control of NO x emissions from the UK and adjacent continental European countries has a major role to play in achieving compliance with the current PM 10 limit value.

  5. Using hourly measurements to explore the role of secondary inorganic aerosol in PM2.5 during haze and fog in Hangzhou, China

    NASA Astrophysics Data System (ADS)

    Jansen, Roeland Cornelis; Shi, Yang; Chen, Jianmin; Hu, YunJie; Xu, Chang; Hong, Shengmao; Li, Jiao; Zhang, Min

    2014-11-01

    This paper explores the role of the secondary inorganic aerosol (SIA) species ammonium, NH{4/+}, nitrate, NO{3/-}, and sulfate, SO{4/2-}, during haze and fog events using hourly mass concentrations of PM2.5 measured at a suburban site in Hangzhou, China. A total of 546 samples were collected between 1 April and 8 May 2012. The samples were analyzed and classified as clear, haze or fog depending on visibility and relative humidity (RH). The contribution of SIA species to PM2.5 mass increased to 50% during haze and fog. The mass contribution of nitrate to PM2.5 increased from 11% during clear to 20% during haze episodes. Nitrate mass exceeded sulfate mass during haze, while near equal concentrations were observed during fog episodes. The role of RH on the correlation between concentrations of SIA and visibility was examined, with optimal correlation at 60%-70% RH. The total acidity during clear, haze and fog periods was 42.38, 48.38 and 45.51 nmol m-3, respectively, indicating that sulfate, nitrate and chloride were not neutralized by ammonium during any period. The nitrate to sulfate molar ratio, as a function of the ammonium to sulfate molar ratio, indicated that nitrate formation during fog started at a higher ammonium to sulfate molar ratio compared to clear and haze periods. During haze and fog, the nitrate oxidation ratio increased by a factor of 1.6-1.7, while the sulfur oxidation ratio increased by a factor of 1.2-1.5, indicating that both gaseous NO2 and SO2 were involved in the reduced visibility.

  6. EFFECT OF ACIDITY ON SECONDARY ORGANIC AEROSOL FORMATION FROM ISOPRENE

    EPA Science Inventory

    The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is c...

  7. Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor

    NASA Astrophysics Data System (ADS)

    Sun, Yele; Wang, Zifa; Dong, Huabin; Yang, Ting; Li, Jie; Pan, Xiaole; Chen, Ping; Jayne, John T.

    2012-05-01

    An Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was first deployed in Beijing, China for characterization of summer organic and inorganic aerosols. The non-refractory submicron aerosol (NR-PM1) species, i.e., organics, sulfate, nitrate, ammonium, and chloride were measured in situ at a time resolution of 15 min from 26 June to 28 August, 2011. The total NR-PM1 measured by the ACSM agrees well with the PM2.5 measured by a Tapered Element Oscillating Microbalance (TEOM). The average total NR-PM1 mass for the entire study is 50 30 ?g m-3 with the organics being the major fraction, accounting for 40% on average. High concentration and mass fraction of nitrate were frequently observed in summer in Beijing, likely due to the high humidity and excess gaseous ammonia that facilitate the transformation of HNO3 to ammonium nitrate particles. Nitrate appears to play an important role in leading to the high particulate matter (PM) pollution since its contribution increases significantly as a function of aerosol mass loadings. Positive matrix factorization (PMF) of ACSM organic aerosol (OA) shows that the oxygenated OA (OOA) - a surrogate of secondary OA dominates OA composition throughout the day, on average accounting for 64%, while the hydrocarbon-like OA (HOA) shows a large increase at meal times due to the local cooking emissions. Our results suggest that high PM pollution in Beijing associated with stagnant conditions and southern air masses is characterized by the high contribution of secondary inorganic species and OOA from regional scale, whereas the aerosol particles during the clean events are mainly contributed by the local emissions with organics and HOA being the dominant contribution.

  8. "APEC Blue": Secondary Aerosol Reductions from Emission Controls in Beijing.

    PubMed

    Sun, Yele; Wang, Zifa; Wild, Oliver; Xu, Weiqi; Chen, Chen; Fu, Pingqing; Du, Wei; Zhou, Libo; Zhang, Qi; Han, Tingting; Wang, Qingqing; Pan, Xiaole; Zheng, Haitao; Li, Jie; Guo, Xiaofeng; Liu, Jianguo; Worsnop, Douglas R

    2016-01-01

    China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61-67% and 51-57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2-3, which led to blue sky days during APEC commonly referred to as "APEC Blue". We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution. PMID:26891104

  9. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics

    NASA Astrophysics Data System (ADS)

    Sareen, N.; Schwier, A. N.; Shapiro, E. L.; Mitroo, D.; McNeill, V. F.

    2010-02-01

    We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The kinetics were characterized using UV-Vis spectrophotometry. The results suggest that the bimolecular reaction of methylglyoxal with an ammonium or hydronium ion is the rate-limiting step for the formation of light-absorbing species, with kNH4+II=510-6 M-1 min-1 and kH3O+II?10-3 M-1 min-1. Evidence of aldol condensation products and oligomeric species up to 759 amu was found using chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS). Tentative identifications of carbon-nitrogen species and a sulfur-containing compound were also made using Aerosol-CIMS. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit significant surface tension depression. These observations add to the growing body of evidence that dicarbonyl compounds may form secondary organic material in the aerosol aqueous phase, and that secondary organic aerosol formation via heterogeneous processes may affect seed aerosol properties.

  10. EVIDENCE FOR ORGANOSULFATES IN SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    Recent work has shown that particle-phase reactions contribute to the formation of secondary organic aerosol (SOA), with enhancements of SOA yields in the presence of acidic seed aerosol. In this study, the chemical composition of SOA from the photooxidations of α-pinene and isop...

  11. EVIDENCE FOR ORGANOSULFATES IN SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    Recent work has shown that particle-phase reactions contribute to the formation of secondary organic aerosol (SOA), with enhancements of SOA yields in the presence of acidic seed aerosol. In this study, the chemical composition of SOA from the photooxidations of ?-pinene and isop...

  12. Organosulfate Formation in Biogenic Secondary Organic Aerosol

    EPA Science Inventory

    Organosulfates of isoprene, ?-pinene, and ?-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive seri...

  13. Secondary organic aerosol formation of primary, secondary and tertiary Amines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amines have been widely identified in ambient aerosol in both urban and rural environments and they are potential precursors for formation of nitrogen-containing secondary organic aerosols (SOA). However, the role of amines in SOA formation has not been well studied. In this wrok, we use UC-Riversid...

  14. Evaporation of mixed inorganic/organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Zardini, A.; Riipinen, I.; Kulmala, M.; Bilde, M.

    2009-04-01

    Biogenic sources as well as human activities contribute large amounts of volatile organic compounds to the atmosphere. Upon oxidation, polyfunctional molecules such as dicarboxylic acids are formed. These molecules generally have lower vapor pressures than the parent molecules and are able to condense on existing particles or maybe even participate in formation of new particles in the atmosphere. Current knowledge about the thermodynamic properties governing this partitioning as well as the influence of the organic molecules on properties of aqueous solution droplets is poor. We have therefore developed a new method based on the HTDMA technique (Hygroscopicity Tandem Differential Mobility Analyzer) for determining the subcooled liquid state vapor pressure as well as other thermodynamic properties of secondary organic aerosol components. We have recently measured evaporation rates of aqueous solution droplets containing one dicarboxylic acid (C3 to C5) and water [1-2-3]. In this work we expand the list of organics and investigate more complicated systems such as dicarboxylic acid together with inorganic salts. In addition, we show the first results of evaporation of freshly produced organic particles in an environmental chamber. References: 1. Koponen IK, Thermodynamic properties of malonic, succinic, and glutaric acids: Evaporation rates and saturation vapor pressures. Environmental Science & Technology, 41(11), 3926-3933, 2007. 2. Riipinen I, A method for determining thermophysical properties of organic material in aqueous solutions: Succinic acid. Atmospheric Research, 82(3-4), 579-590, 2006. 3. Zardini AA et al., White light Mie resonance spectroscopy used to measure very low vapor pressures of substances in aqueous solution aerosol particles. Optics Express 14,6951-6962, 2006.

  15. Common Inorganic Salts Catalyze the Transformations of Organic Compounds in Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Noziere, B.; Dziedzic, P.; Cordova, A.

    2008-12-01

    This presentation reports the discovery that inorganic salts that are ubiquitous in atmospheric aerosols are efficient catalysts for the transformations of organic compounds in these aerosols, by reactions such as aldol condensation or acetal formation.1 For some of these salts, these catalytic properties were not even known in chemistry.2 Kinetic and product studies of these reactions will be presented for carbonyl compounds such as acetaldehyde, acetone, and glyoxal,1,3 and compared with previously known catalysts such as the recently discovered amino acids.4,5 These studies show that these salts make the reactions as fast in typical tropospheric aerosols as in concentrated sulfuric acid. These reactions produce secondary "fulvic" compounds that absorb light in the near UV and visible and would affect the optical properties of aerosols.1,5 They would also account for the depletion of glyoxal recently reported in Mexico city.3 Thus, while acid catalysis is several orders of magnitudes too slow to be significant in tropospheric aerosols, this work identifies new processes that should be ubiquitous in these aerosols and important for atmospheric chemistry. Refs. 1Noziere, B., Dziedzic, P., Cordova, A., Common inorganic ions catalyze chemical reactions of organic compounds in atmospheric aerosols, Submitted, 2008. 2 Noziere, B., Cordova, A., A novel catalyst for aldol condensation reaction, patent pending 02/10/2007. 3Noziere, B., Dziedzic, P., Cordova, A., Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by inorganic ions, Submitted to J. Phys. Chem. A, 2008. 4Noziere, B., and Cordova, A., A Kinetic and Mechanistic Study of the Amino Acid-Catalyzed Aldol Condensation of Acetaldehyde in Aqueous and Salt Solutions, J. Phys. Chem. A, 112, 2827, 2008. 5Noziere, B., Dziedzic, P., and Cordova, A., The Formation of Secondary Light-Absorbing "fulvic-like" Oligomers: A Common Process in Aqueous and Ionic Atmospheric Particles?, Geophys. Res. Lett., 34, L21812, doi:10.1029/ 2007GL031300, 2007.

  16. Common inorganic ions are efficient catalysts for organic reactions in atmospheric aerosols and other natural environments

    NASA Astrophysics Data System (ADS)

    Nozire, B.; Dziedzic, P.; Crdova, A.

    2009-01-01

    In this work, inorganic ammonium ions, NH4+, and carbonate ions, CO32-, are reported for the first time as catalysts for organic reactions in atmospheric aerosols and other natural environments at the Earth's surface. These reactions include the formation of C-C and C-O bonds by aldol condensation and acetal formation, and reveal a new aspect of the interactions between organic and inorganic materials in natural environments. The catalytic properties of inorganic ammonium ions, in particular, were not previously known in chemistry. The reactions were found to be as fast in tropospheric ammonium sulfate composition as in concentrated sulfuric acid. The ubiquitous presence and large concentrations of ammonium ions in tropospheric aerosols would make of ammonium catalysis a main consumption pathway for organic compounds in these aerosols, while acid catalysis would have a minor contribution. In particular, ammonium catalysis would account quantitatively for the aging of carbonyl compounds into secondary ''fulvic'' compounds in tropospheric aerosols, a transformation affecting the optical properties of these aerosols. In general, ammonium catalysis is likely to be responsible for many observations previously attributed to acid catalysis in the troposphere.

  17. Evolved gas analysis of secondary organic aerosols

    SciTech Connect

    Grosjean, D.; Williams, E.L. II; Grosjean, E. ); Novakov, T. )

    1994-11-01

    Secondary organic aerosols have been characterized by evolved gas analysis (EGA). Hydrocarbons selected as aerosol precursors were representative of anthropogenic emissions (cyclohexene, cyclopentene, 1-decene and 1-dodecene, n-dodecane, o-xylene, and 1,3,5-trimethylbenzene) and of biogenic emissions (the terpenes [alpha]-pinene, [beta]-pinene and d-limonene and the sesquiterpene trans-caryophyllene). Also analyzed by EGA were samples of secondary, primary (highway tunnel), and ambient (urban) aerosols before and after exposure to ozone and other photochemical oxidants. The major features of the EGA thermograms (amount of CO[sub 2] evolved as a function of temperature) are described. The usefulness and limitations of EGA data for source apportionment of atmospheric particulate carbon are briefly discussed. 28 refs., 7 figs., 4 tabs.

  18. THERMAL PROPERTIES OF SECONDARY ORGANIC AEROSOLS

    EPA Science Inventory

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in several hydrocarbon/NOx irradiation experiments. These measurements were used to estimate the thermal behavior of the particles that may be formed in the atmosphere. These laborator...

  19. Organosulfate Formation in Biogenic Secondary Organic Aerosol

    EPA Science Inventory

    Organosulfates of isoprene, α-pinene, and β-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive seri...

  20. Glass transition measurements in mixed organic and organic/inorganic aerosol particles

    NASA Astrophysics Data System (ADS)

    Dette, Hans Peter; Qi, Mian; Schrder, David; Godt, Adelheid; Koop, Thomas

    2014-05-01

    The recent proposal of a semi-solid or glassy state of secondary organic aerosol (SOA) particles has sparked intense research in that area. In particular, potential effects of a glassy aerosol state such as incomplete gas-to-particle partitioning of semi-volatile organics, inhibited chemical reactions and water uptake, and the potential to act as heterogeneous ice nuclei have been identified so far. Many of these studies use well-studied proxies for oxidized organics such as sugars or other polyols. There are, however, few measurements on compounds that do exist in atmospheric aerosol particles. Here, we have performed studies on the phase state of organics that actually occur in natural SOA particles arising from the oxidation of alpha-pinene emitted in boreal forests. We have investigated the two marker compounds pinonic acid and 3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA) and their mixtures. 3-MBCTA was synthesized from methyl isobutyrate and dimethyl maleate in two steps. In order to transfer these substances into a glassy state we have developed a novel aerosol spray drying technique. Dilute solutions of the relevant organics are atomized into aerosol particles which are dried subsequently by diffusion drying. The dried aerosol particles are then recollected in an impactor and studied by means of differential scanning calorimetry (DSC), which provides unambiguous information on the aerosols' phase state, i.e. whether the particles are crystalline or glassy. In the latter case DSC is used to determine the glass transition temperature Tg of the investigated samples. Using the above setup we were able to determine Tg of various mixtures of organic aerosol compounds as a function of their dry mass fraction, thus allowing to infer a relation between Tg and the O:C ratio of the aerosols. Moreover, we also studied the glass transition behavior of mixed organic/inorganic aerosol particles, including the effects of liquid-liquid phase separation upon drying.

  1. Aerosol route to functional nanostructured inorganic and hybrid porous materials.

    PubMed

    Boissiere, Cedric; Grosso, David; Chaumonnot, Alexandra; Nicole, Lionel; Sanchez, Clement

    2011-02-01

    The major advances in the field of the designed construction of hierarchically structured porous inorganic or hybrid materials wherein multiscale texturation is obtained via the combination of aerosol or spray processing with sol-gel chemistry, self-assembly and multiple templating are the topic of this review. The available materials span a very large set of structures and chemical compositions (silicates, aluminates, transition metal oxides, nanocomposites including metallic or chalcogenides nanoparticles, hybrid organic-inorganic, biohybrids). The resulting materials are manifested as powders or smart coatings via aerosol-directed writing combine the intrinsic physical and chemical properties of the inorganic or hybrid matrices with defined multiscale porous networks having a tunable pore size and connectivity, high surface area and accessibility. Indeed the combination of soft chemical routes and spray processing provides "a wind of change" in the field of "advanced materials". These strategies give birth to a promising family of innovative materials with many actual and future potential applications in various domains such as catalysis, sensing, photonic and microelectronic devices, nano-ionics and energy, functional coatings, biomaterials, multifunctional therapeutic carriers, and microfluidics, among others. PMID:20963791

  2. Secondary Ion Mass Spectrometry of Environmental Aerosols

    SciTech Connect

    Gaspar, Daniel J.; Cliff, John B.

    2010-08-01

    Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

  3. Secondary organic aerosol formation from the oxidation of aromatic hydrocarbons in the presence of dry submicron ammonium sulfate aerosol

    NASA Astrophysics Data System (ADS)

    Kleindienst, T. E.; Smith, D. F.; Li, W.; Edney, E. O.; Driscoll, D. J.; Speer, R. E.; Weathers, W. S.

    A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas-aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds generated from hydrocarbon-nitrogen oxide (HC/NO x) mixtures irradiated in the presence of fine (<2.5 ?m) particulate matter. The goal was to determine to what extent photochemical oxidation products of aromatic hydrocarbons contribute to secondary organic aerosol formation through uptake on pre-existing inorganic aerosols in the absence of liquid water films. Irradiations were conducted with toluene, p-xylene, and 1,3,5-trimethylbenzene in the presence of NO x and ammonium sulfate aerosol, with propylene added to enhance the production of radicals in the system. The secondary organic aerosol yields were determined by dividing the mass concentration of organic fraction of the aerosol collected on quartz filters by the mass concentration of the aromatic hydrocarbon removed by reaction. The mass concentration of the organic fraction was obtained by multiplying the measured organic carbon concentration by 2.0, a correction factor that takes into account the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. The mass concentrations of ammonium, nitrate, and sulfate concentrations as well as the total mass of the aerosols were measured. A reasonable mass balance was found for each of the aerosols. The largest secondary organic aerosol yield of 1.590.40% was found for toluene at an organic aerosol concentration of 8.2 ?m -3, followed by 1.090.27% for p-xylene at 6.4 ?g m -3, and 0.410.10% for 1,3,5-trimethylbenzene at 2.0 ?g m -3. In general, these results agree with those reported by Odum et al. and appear to be consistent with the gas-aerosol partitioning theory developed by Pankow. The presence of organic in the aerosol did not affect significantly the hygroscopic properties of the aerosol.

  4. Characterizing the formation of secondary organic aerosols

    SciTech Connect

    Lunden, Melissa; Black, Douglas; Brown, Nancy

    2004-02-01

    Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the concentrations of important gas phase nitrogen compounds. Experiments have been ongoing at the Blodgett field site since the fall of 2000, and have included portions of the summer and fall of 2001, 2002, and 2003. Analysis of both the gas and particle phase data from the year 2000 show that the particle loading at the site correlates with both biogenic precursors emitted in the forest and anthropogenic precursors advected to the site from Sacramento and the Central Valley of California. Thus the particles at the site are affected by biogenic processing of anthropogenic emissions. Size distribution measurements show that the aerosol at the site has a geometric median diameter of approximately 100 nm. On many days, in the early afternoon, growth of nuclei mode particles (<20 nm) is also observed. These growth events tend to occur on days with lower average temperatures, but are observed throughout the summer. Analysis of the size resolved data for these growth events, combined with typical measured terpene emissions, show that the particle mass measured in these nuclei mode particles could come from oxidation products of biogenic emissions, and can serve as a significant route for SOA partitioning into the particle phase. During periods of each year, the effect of emissions for forest fires can be detected at the Blodgett field location. During the summer of 2002 emissions from the Biscuit fire, a large fire located in Southwest Oregon, was detected in the aerosol data. The results show that increases in particle scattering can be directly related to increased black carbon concentration and an appearance of a larger mode in the aerosol size distribution. These results show that emissions from fires can have significant impact on visibility over large distances. The results also reinforce the view that forest fires can be a significant source of black carbon in the atmosphere, which has important climate and visibility. Continuing work with the 2002 data set, particularly the combination of the aerosol and gas phase data, will continue to provide important information on the extent to which biogenic emissions contribute to secondary organic aerosol and may elucidate important interactions between anthropogenic and biogenic sources. The results of these studies, performed in the field, will contribute to the growing effort to produce robust models for particulate formation that are necessary for air quality planning and source apportionment.

  5. Chemistry of secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Yee, Lindsay Diana

    The photooxidation of volatile organic compounds (VOCs) in the atmosphere can lead to the formation of secondary organic aerosol (SOA), a major component of fine particulate matter. Improvements to air quality require insight into the many reactive intermediates that lead to SOA formation, of which only a small fraction have been measured at the molecular level. This thesis describes the chemistry of secondary organic aerosol (SOA) formation from several atmospherically relevant hydrocarbon precursors. Photooxidation experiments of methoxyphenol and phenolic compounds and C12 alkanes were conducted in the Caltech Environmental Chamber. These experiments include the first photooxidation studies of these precursors run under sufficiently low NOx levels, such that RO2 + HO2 chemistry dominates, an important chemical regime in the atmosphere. Using online Chemical Ionization Mass Spectrometery (CIMS), key gas-phase intermediates that lead to SOA formation in these systems were identified. With complementary particle-phase analyses, chemical mechanisms elucidating the SOA formation from these compounds are proposed. Three methoxyphenol species (phenol, guaiacol, and syringol) were studied to model potential photooxidation schemes of biomass burning intermediates. SOA yields (ratio of mass of SOA formed to mass of primary organic reacted) exceeding 25% are observed. Aerosol growth is rapid and linear with the organic conversion, consistent with the formation of essentially non-volatile products. Gas and aerosol-phase oxidation products from the guaiacol system show that the chemical mechanism consists of highly oxidized aromatic species in the particle phase. Syringol SOA yields are lower than that of phenol and guaiacol, likely due to unique chemistry dependent on methoxy group position. The photooxidation of several C12 alkanes of varying structure n-dodecane, 2-methylundecane, cyclododecane, and hexylcyclohexane) were run under extended OH exposure to investigate the effect of molecular structure on SOA yields and photochemical aging. Peroxyhemiacetal formation from the reactions of several multifunctional hydroperoxides and aldehyde intermediates was found to be central to organic growth in all systems, and SOA yields increased with cyclic character of the starting hydrocarbon. All of these studies provide direction for future experiments and modeling in order to lessen outstanding discrepancies between predicted and measured SOA.

  6. CARES Helps Explain Secondary Organic Aerosols

    SciTech Connect

    Zaveri, Rahul

    2014-03-28

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  7. CARES Helps Explain Secondary Organic Aerosols

    ScienceCinema

    Zaveri, Rahul

    2014-06-02

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  8. Ultraviolet Absorption by Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Madronich, S.; Lee-Taylor, J. M.; Hodzic, A.; Aumont, B.

    2014-12-01

    Secondary organic aerosols (SOA) are typically formed in the atmosphere by the condensation of a myriad of intermediates from the photo-oxidation of volatile organic compounds (VOCs). Many of these partly oxidized molecules have functional groups (chromophores) that absorb at the ultraviolet (UV) wavelengths available in the troposphere (? ? 290 nm). We used the explicit chemical model GECKO-A (Generator of Explicit Chemistry and Kinetics for Organics in the Atmosphere) to estimate UV absorption cross sections for the gaseous and particulate components of SOA from different precursors (biogenic and anthropogenic) and formed in different environments (low and high NOx, day and night). Model predictions are evaluated with laboratory and field measurements of SOA UV optical properties (esp. mass absorption coefficients and single scattering albedo), and implications are presented for surface UV radiation trends, urban actinic flux modification, and SOA lifetimes.

  9. Secondary organic aerosol formation from isoprene photooxidation.

    PubMed

    Kroll, Jesse H; Ng, Nga L; Murphy, Shane M; Flagan, Richard C; Seinfeld, John H

    2006-03-15

    Recent work has shown that the atmospheric oxidation of isoprene (2-methyl-1,3-butadiene, C5H8) leads to the formation of secondary organic aerosol (SOA). In this study, the mechanism of SOA formation by isoprene photooxidation is comprehensively investigated, by measurements of SOA yields over a range of experimental conditions, namely isoprene and NOx concentrations. Hydrogen peroxide is used as the radical precursor, substantially constraining the observed gas-phase chemistry; all oxidation is dominated by the OH radical, and organic peroxy radicals (RO2) react only with HO2 (formed in the OH + H2O2 reaction) or NO concentrations, including NOx-free conditions. At high NOx, yields are found to decrease substantially with increasing [NOx], indicating the importance of RO2 chemistry in SOA formation. Under low-NOx conditions, SOA mass is observed to decay rapidly, a result of chemical reactions of semivolatile SOA components, most likely organic hydroperoxides. PMID:16570610

  10. “APEC Blue”: Secondary Aerosol Reductions from Emission Controls in Beijing

    NASA Astrophysics Data System (ADS)

    Sun, Yele; Wang, Zifa; Wild, Oliver; Xu, Weiqi; Chen, Chen; Fu, Pingqing; Du, Wei; Zhou, Libo; Zhang, Qi; Han, Tingting; Wang, Qingqing; Pan, Xiaole; Zheng, Haitao; Li, Jie; Guo, Xiaofeng; Liu, Jianguo; Worsnop, Douglas R.

    2016-02-01

    China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61–67% and 51–57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2–3, which led to blue sky days during APEC commonly referred to as “APEC Blue”. We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution.

  11. “APEC Blue”: Secondary Aerosol Reductions from Emission Controls in Beijing

    PubMed Central

    Sun, Yele; Wang, Zifa; Wild, Oliver; Xu, Weiqi; Chen, Chen; Fu, Pingqing; Du, Wei; Zhou, Libo; Zhang, Qi; Han, Tingting; Wang, Qingqing; Pan, Xiaole; Zheng, Haitao; Li, Jie; Guo, Xiaofeng; Liu, Jianguo; Worsnop, Douglas R.

    2016-01-01

    China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61–67% and 51–57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2–3, which led to blue sky days during APEC commonly referred to as “APEC Blue”. We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution. PMID:26891104

  12. A COMPARATIVE REVIEW OF INORGANIC AEROSOL THERMODYNAMIC EQUILIBRIUM MODULES: SIMILARITIES, DIFFERENCES, AND THEIR LIKELY CAUSES

    EPA Science Inventory

    A comprehensive comparison of five inorganic aerosol thermodynamic equilibrium modules, MARS-A, SEQUILIB, SCAPE2, EQUISOLV II, and AIM2, was conducted for a variety of atmospheric concentrations of particulate matter (PM) constituents, relative humidities (RHs), and temperatures....

  13. Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics

    NASA Astrophysics Data System (ADS)

    Beardsley, R. L.; Jang, M.

    2015-11-01

    The secondary organic aerosol (SOA) produced by the photooxidation of isoprene with and without inorganic seed is simulated using the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model. Recent work has found the SOA formation of isoprene to be sensitive to both aerosol acidity ([H+]) and aerosol liquid water content (LWC) with the presence of either leading to significant aerosol phase organic mass generation and large growth in SOA yields (YSOA). Classical partitioning models alone are insufficient to predict isoprene SOA formation due to the high volatility of the photooxidation products and the sensitivity of their mass yields to variations in inorganic aerosol composition. UNIPAR utilizes the chemical structures provided by a near-explicit chemical mechanism to estimate the thermodynamic properties of the gas phase products, which are lumped based on their calculated vapor pressure (8 groups) and aerosol phase reactivity (6 groups). UNIPAR then determines the SOA formation of each lumping group from both partitioning and aerosol phase reactions (oligomerization, acid catalyzed reactions, and organosulfate formation) assuming a single homogeneously mixed organic-inorganic phase as a function of inorganic composition and VOC / NOx. The model is validated using isoprene photooxidation experiments performed in the dual, outdoor UF APHOR chambers. UNIPAR is able to predict the experimental SOA formation of isoprene without seed, with H2SO4 seed gradually titrated by ammonia, and with the acidic seed generated by SO2 oxidation. Oligomeric mass is predicted to account for more than 65 % of the total OM formed in all cases and over 85 % in the presence of strongly acidic seed. The model is run to determine the sensitivity of YSOA to [H+], LWC, and VOC / NOx, and it is determined that the SOA formation of isoprene is most strongly related to [H+] but is dynamically related to all three parameters. For VOC / NOx > 10, with increasing NOx both experimental and simulatedYSOA increase and are found to be more sensitive to [H+] and LWC. For atmospherically relevant conditions, YSOA is found to be more than 150 % higher in partially titrated acidic seeds (NH4HSO4) than in effloresced inorganics or in isoprene only.

  14. Aqueous phase processing of secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Tritscher, T.; Praplan, A. P.; Decarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.; Monod, A.

    2011-07-01

    The aging of secondary organic aerosol (SOA) by photooxidation in the aqueous phase was experimentally investigated. To simulate multiphase processes, the following experiments were sequentially performed in a smog chamber and in an aqueous phase photoreactor: (1) Gas-phase photooxidation of three different volatile organic compounds (VOC): isoprene, ?-pinene, and 1,3,5-trimethylbenzene (TMB) in the presence of NOx, leading to the formation of SOA which was subjected to on-line physical and chemical analysis; (2) particle-to-liquid transfer of water soluble species of SOA using filter sampling and aqueous extraction; (3) aqueous-phase photooxidation of the obtained water extracts; and (4) nebulization of the solutions for a repetition of the on-line characterization. SOA concentrations in the chamber measured with a scanning mobility particle sizer (SMPS) were higher than 200 ?g m-3, as the experiments were conducted under high initial concentrations of volatile organic compounds (VOC) and NOx. The aging of SOA through aqueous phase processing was investigated by measuring the physical and chemical properties of the particles online before and after processing using a high resolution time-of-flight aerosol mass spectrometer (AMS) and a hygroscopicity tandem differential mobility analyzer (H-TDMA). It was shown that, after aqueous phase processing, the particles were significantly more hygroscopic, and contained more fragmentation ions at m/z = 44 and less ions at m/z = 43, thus showing a significant impact on SOA aging for the three different precursors. Additionally, the particles were analyzed with a thermal desorption atmospheric pressure ionization aerosol mass spectrometer (TD-API-AMS). Comparing the smog chamber SOA composition and non processed nebulized aqueous extracts with this technique revealed that sampling, extraction and/or nebulization did not significantly impact the chemical composition of SOA formed from isoprene and ?-pinene, whereas it affected that formed from TMB. For the two first precursors, the aqueous phase chemical composition of SOA was further investigated using offline measurements, i.e. ion chromatography coupled to a mass spectrometer (IC-MS) and an atmospheric pressure chemical ionization mass spectrometer (APCI-MS) equipped with high pressure liquid chromatography (HPLC-MS). These analyses showed that aqueous phase processing enhanced the formation of some compounds already present in the SOA, thus confirming the aging effect of aqueous phase processes. For isoprene experiments, additional new compounds, likely oligomers, were formed through aqueous phase photooxidation, and their possible origins are discussed.

  15. AEROSOL INORGANICS AND ORGANICS MODEL (AIOM) WITH USER DEFINED PROPERTIES FOR ORGANIC COMPOUNDS

    EPA Science Inventory

    The Aerosol Inorganics Model (AIM) is widely used to calculate gas/liquid/solid phase equilibrium in aerosol systems containing the species H+-NH4+-SO42--NO3--H2O over a range of tropospheric ...

  16. Evaluation of biogenic emission flux and its impact on oxidants and inorganic aerosols in East Asia

    NASA Astrophysics Data System (ADS)

    Han, K. M.; Song, C. H.; Park, R. S.; Woo, J.; Kim, H.

    2010-12-01

    As a major precursor during the summer season, biogenic species are of primary importance in the ozone and SOAs (secondary organic aerosols) formations. Isoprene and mono-terpene also influence the level of inorganic aerosols (i.e. sulfate and nitrate) by controlling OH radicals. However, biogenic emission fluxes are highly uncertain in East Asia. While isoprene emission fluxes from the GEIA (Global Emissions Inventory Activity) and POET (Precursors of Ozone and their Effects in the Troposphere) inventories estimate approximately 20 Tg yr-1 in East Asia, those from the MEGAN (Model of Emissions of Gases and Aerosols from Nature) and MOHYCAN (MOdel for Hydrocarbon emissions by the CANopy) estimate approximately 10 Tg yr-1 and 5 Tg yr-1, respectively. In order to evaluate and/or quantify the magnitude of biogenic emission fluxes over East Asia, the tropospheric HCHO columns obtained from the GOME (Global Ozone Monitoring Experiment) observations were compared with the HCHO columns from the CMAQ (Community Multi-scale Air Quality) simulations over East Asia. In this study, US EPA Models-3/CMAQ v4.5.1 model simulation using the ACE-ASIA (Asia Pacific Regional Aerosol Characterization Experiment) emission inventory for anthropogenic pollutants and GEIA, POET, MEGAN, and MOHYCAN emission inventories for biogenic species was carried out in conjunction with the Meteorological fields generated from the PSU/NCAR MM5 (Pennsylvania state University/National Center for Atmospheric Research Meso-scale Model 5) model for the summer episodes of the year 2002. In addition to an evaluation of the biogenic emission flux, we investigated the impact of the uncertainty in biogenic emission inventory on inorganic aerosol formations and variations of oxidants (OH, O3, and H2O2) in East Asia. In this study, when the GEIA and POET emission inventories are used, the CMAQ-derived HCHO columns are highly overestimated over East Asia, particularly South China compared with GOME-derived HCHO columns. The CMAQ-derived HCHO columns using the MOHYCAN emission inventory have similar values with the GOME-derived HCHO columns over East Asia. Also, differences in biogenic emission fluxes lead to changes in the levels of nitrates by changing the OH radical concentrations.

  17. Characterization of the inorganic aerosol in Barcelona site during DAURE 2009 field campaigns

    NASA Astrophysics Data System (ADS)

    Plaza, Javier; Gómez-Moreno, Francisco J.; Aránzazu Revuelta, M.; Coz, Esther; Moreno, Natalia; Pujadas, Manuel; Artíñano, Begoña.

    2010-05-01

    Inorganic compounds account for a significant mass of the ambient aerosol. However this contribution varies with time and aerosol size fraction, depending on the influence of source emissions and ambient conditions, which can be relevant in the formation processes of secondary species. Time series of particulate nitrate, 10 m time resolution, have been obtained during the February-March and July 2009 DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean) field campaigns in the urban area of Barcelona by means of an R&P8400N monitor. Meteorological conditions during these periods were relevant for the photochemical formation and accumulation of secondary species. Ambient concentrations were higher in winter, specially coinciding with development of atmospheric stagnant episodes that enhanced the accumulation of pollutants including particulate nitrate that reached concentrations of 25 µgm-3 in some occasions, day or night, under these conditions. High humidity periods favored in occasions the formation of nitrates at submicronic scale. Variations in wind direction resulted in transport of particulate nitrate from near emission areas. Size segregated aerosol was sampled during the winter campaign with a micro-orifice uniform deposit impactor (MOUDI) using eleven size stages with aluminum substrates and a quartz fiber backup filter. Samples were collected twice per day for day/night periods. The first sampling period tried to collect secondary aerosol as it started after the early morning emission period. The second sample collected the night aerosol and the emission period. Soluble ions (sulfate, nitrate, ammonium and calcium) were later analyzed by IC. The nitrate mass was concentrated in two modes, the accumulation one around 0.75 µm and the coarse one around 3.90 µm. The sulfate and ammonium masses were concentrated in the accumulation mode, around 0.50 µm, although a small peak close to 5 µm also appeared. The ammonium measured in the accumulation mode was able to neutralize the inorganic acidity caused by the nitrate and sulfate, but not the acidity in the coarse mode caused by the nitrate. This particulate nitrate was generated by the reaction of gaseous nitric acid with crustal calcium carbonate thus being calcium the neutralizing cation. Acknowledgement: Special thanks are given to the X. Querol and A. Alastauey (IDAEA-CSIC) and J.L. Jimenez (U. Colorado, CO, USA) for organizing the DAURE field campaign This part of the study has been financed by the CGL2007-3052-E/CLI, CGL2008-02817-E/CLI, PROFASE (CGL2007-64117) and GRACCIE (CSD2007-00067) projects. M.A. Revuelta acknowledges the Ministry of Science and Innovation for their economical support through the FPI predoctoral grant BES-2008-007079.

  18. Secondary organic aerosol formation from road vehicle emissions

    NASA Astrophysics Data System (ADS)

    Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.

    2014-05-01

    Organic aerosol particles (OA) are a major fraction of the submicron particulate matter. OA consists of directly emitted primary (POA) and secondary OA (SOA). SOA is formed in-situ in the atmosphere via the reaction of volatile organic precursors. The partitioning of SOA species depends not only on the exposure to oxidants, but for instance also on temperature, relative humidity (RH), and the absorptive mass chemical composition (presence of inorganics) and concentration. Vehicle exhaust is a known source of POA and likely contributes to SOA formation in urban areas [1;2]. This has recently been estimated by (i) analyzing ambient data from urban areas combined with fuel consumption data [3], (ii) by examining the chemical composition of raw fuels [4], or (iii) smog chamber studies [5, 6]. Contradictory and thus somewhat controversial results in the relative quantity of SOA from diesel vs. gasoline vehicle exhaust were observed. In order to elucidate the impact of variable ambient conditions on the potential SOA formation of vehicle exhaust, and its relation to the emitted gas phase species, we studied SOA formed from the exhaust of passenger cars and trucks as a function of fuel and engine type (gasoline, diesel) at different temperatures (T 22 vs. -7oC) and RH (40 vs. 90%), as well as with different levels of inorganic salt concentrations. The exhaust was sampled at the tailpipe during regulatory driving cycles on chassis dynamometers, diluted (200 - 400x) and introduced into the PSI mobile smog chamber [6], where the emissions were subjected to simulated atmospheric ageing. Particle phase instruments (HR-ToF-AMS, aethalometers, CPC, SMPS) and gas phase instruments (PTR-TOF-MS, CO, CO2, CH4, THC, NH3 and other gases) were used online during the experiments. We found that gasoline emissions, because of cold starts, were generally larger than diesel, especially during cold temperatures driving cycles. Gasoline vehicles also showed the highest SOA formation. Furthermore, we observed that vehicle emissions and SOA are significantly affected by temperature and RH: doubling the RH in the chamber resulted in significantly increased SOA formation. Primary emissions and secondary aerosol formation from diesel and gasoline vehicles will be compared at different temperature and RH. Also the interaction and influence of inorganics on organics will be discussed. References: [1] Robinson, A.L., et al. (2007) Science 315, 1259. [2] Weitkamp, E.A., et al. (2007) Environ. Sci. Technol. 41, 6969. [3] Bahreini, R., et al. (2012) Geophys. Res. Lett. 39, L06805. [4] Gentner, D.R. et al. (2012) PNAS 109, 18318. [5] Gordon, T.D. et al. (2013) Atmos. Chem. Phys. Discuss 13, 23173. [6] Platt, S.M., et al. (2013) Atmos. Chem. Phys. Discuss. 12, 28343.

  19. Modeling the Thermodynamics of Mixed Organic-Inorganic Aerosols to Predict Water Activities and Phase Equilibria

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B.; Peter, T.

    2008-12-01

    Tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behavior. While the thermodynamics of aqueous inorganic systems at atmospheric temperatures are well established, little is known about the physicochemistry of mixed organic-inorganic particles. Salting-out and salting-in effects result from organic-inorganic interactions and are used to improve industrial separation processes. In the atmosphere, they may influence the aerosol phases. Liquid-liquid phase separations into a mainly polar (aqueous) and a less polar organic phase may considerably influence the gas/particle partitioning of semi-volatile substances compared to a single phase estimation. Moreover, the phases present in the aerosol define the reaction medium for heterogeneous and multiphase chemistry occurring in aerosol particles. A correct description of these phases is needed when gas- or cloud-phase reaction schemes are adapted to aerosols. Non-ideal thermodynamic behavior in mixtures is usually described by an expression for the excess Gibbs energy. We present the group-contribution model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients), which explicitly accounts for molecular interactions between solution constituents, both organic and inorganic, to calculate activities, chemical potentials and the total Gibbs energy of mixed systems. This model allows to compute vapor-liquid (VLE), liquid-liquid (LLE) and solid-liquid (SLE) equilibria within one framework. Focusing on atmospheric applications we considered eight different cations, five anions and a wide range of alcohols/polyols as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are very well represented up to high ionic strength. We show that the semiempirical middle-range parametrization of direct organic-inorganic interactions in alcohol-water-salt solutions enables accurate computations of liquid-liquid equilibria -- and phase diagrams in general.

  20. Influence of Aerosol Acidity on the Formation of Secondary Organic Aerosol from Biogenic Precursor Hydrocarbons

    EPA Science Inventory

    Secondary organic aerosol (SOA) formation and dynamics may be important factors for the role of aerosols in adverse health effects, visibility and climate change. Formation of SOA occurs when a parent volatile organic compound is oxidized to create products that form in a conden...

  1. A large source of low-volatility secondary organic aerosol.

    PubMed

    Ehn, Mikael; Thornton, Joel A; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B; Jørgensen, Solvejg; Kjaergaard, Henrik G; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R; Wildt, Jürgen; Mentel, Thomas F

    2014-02-27

    Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally. PMID:24572423

  2. Improvement and further development in CESM/CAM5: gas-phase chemistry and inorganic aerosol treatments

    NASA Astrophysics Data System (ADS)

    He, J.; Zhang, Y.

    2013-10-01

    Gas-phase chemistry and subsequent gas-to-particle conversion processes such as new particle formation, condensation, and thermodynamic partitioning have large impacts on air quality, climate, and public health through influencing the amounts and distributions of gaseous precursors and secondary aerosols. Their roles in global air quality and climate are examined in this work using the Community Earth System Model version 1.0.5 (CESM1.0.5) with the Community Atmosphere Model version 5.1 (CAM5.1) (referred to as CESM1.0.5/CAM5.1). CAM5.1 includes a simple chemistry that is coupled with a 7-mode prognostic Modal Aerosol Model (MAM7). MAM7 includes classical homogenous nucleation (binary and ternary) and activation nucleation (empirical first-order power law) parameterizations, and a highly-simplified inorganic aerosol thermodynamics treatment that only simulates sulfate (SO42-) and ammonium (NH4+). In this work, a new gas-phase chemistry mechanism based on the 2005 Carbon Bond Mechanism for Global Extension (CB05_GE) and several advanced inorganic aerosol treatments for condensation of volatile species, ion-mediated nucleation (IMN), and explicit inorganic aerosol thermodynamics have been incorporated into CESM/CAM5.1-MAM7. Comparing to the simple gas-phase chemistry, CB05_GE can predict many more gaseous species, and improve model performance for PM2.5, PM10, PM2.5 components, and some PM gaseous precursors such as SO2 and NH3 in several regions, as well as aerosol optical depth (AOD) and cloud properties (e.g., cloud fraction (CF), cloud droplet number concentration (CDNC), and shortwave cloud forcing (SWCF)) on globe. The modified condensation and aqueous-phase chemistry further improves the predictions of additional variables such as HNO3, NO2, and O3 in some regions, and new particle formation rate (J) and AOD over globe. IMN can improve the predictions of secondary PM2.5 components, PM2.5, and PM10 over Europe, as well as AOD and CDNC over globe. The explicit inorganic aerosol thermodynamics using ISORROPIA II improves the predictions of all major PM2.5 components and their gaseous precursors in some regions, as well as near-surface temperature and specific humidity, precipitation, downwelling shortwave radiation, SWCF, and cloud condensation nuclei at a supersaturation of 0.5% over globe. With all the modified and new treatments, the improved model predicts that on a global average, SWCF decreases by 2.9 W m-2, reducing the overprediction of SWCF from 7.9% to 0.9%. Uncertainties in emissions can explain largely the inaccurate predictions of precursor gases (e.g., SO2, NH3, and NO) and primary aerosols (e.g., black carbon and primary organic matter). Additional factors leading to discrepancies between model predictions and observations include uncertainties in model treatments such as dust emissions, secondary organic aerosol formation, multiple-phase chemistry, cloud microphysics, aerosol-cloud interaction, and dry and wet deposition.

  3. Improvement and further development in CESM/CAM5: gas-phase chemistry and inorganic aerosol treatments

    NASA Astrophysics Data System (ADS)

    He, J.; Zhang, Y.

    2014-09-01

    Gas-phase chemistry and subsequent gas-to-particle conversion processes such as new particle formation, condensation, and thermodynamic partitioning have large impacts on air quality, climate, and public health through influencing the amounts and distributions of gaseous precursors and secondary aerosols. Their roles in global air quality and climate are examined in this work using the Community Earth System Model version 1.0.5 (CESM1.0.5) with the Community Atmosphere Model version 5.1 (CAM5.1) (referred to as CESM1.0.5/CAM5.1). CAM5.1 includes a simple chemistry that is coupled with a 7-mode prognostic Modal Aerosol Model (MAM7). MAM7 includes classical homogenous nucleation (binary and ternary) and activation nucleation (empirical first-order power law) parameterizations, and a highly simplified inorganic aerosol thermodynamics treatment that only simulates particulate-phase sulfate and ammonium. In this work, a new gas-phase chemistry mechanism based on the 2005 Carbon Bond Mechanism for Global Extension (CB05_GE) and several advanced inorganic aerosol treatments for condensation of volatile species, ion-mediated nucleation (IMN), and explicit inorganic aerosol thermodynamics for sulfate, ammonium, nitrate, sodium, and chloride have been incorporated into CESM/CAM5.1-MAM7. Compared to the simple gas-phase chemistry, CB05_GE can predict many more gaseous species, and thus could improve model performance for PM2.5, PM10, PM components, and some PM gaseous precursors such as SO2 and NH3 in several regions as well as aerosol optical depth (AOD) and cloud properties (e.g., cloud fraction (CF), cloud droplet number concentration (CDNC), and shortwave cloud forcing, SWCF) on the global scale. The modified condensation and aqueous-phase chemistry could further improve the prediction of additional variables such as HNO3, NO2, and O3 in some regions, and new particle formation rate (J) and AOD on the global scale. IMN can improve the prediction of secondary PM2.5 components, PM2.5, and PM10 over Europe as well as AOD and CDNC on the global scale. The explicit inorganic aerosol thermodynamics using the ISORROPIA II model improves the prediction of all major PM2.5 components and their gaseous precursors in some regions as well as downwelling shortwave radiation, SWCF, and cloud condensation nuclei at a supersaturation of 0.5% on the global scale. For simulations of 2001-2005 with all the modified and new treatments, the improved model predicts that on global average, SWCF increases by 2.7 W m-2, reducing the normalized mean bias (NMB) of SWCF from -5.4 to 1.2%. Uncertainties in emissions can largely explain the inaccurate prediction of precursor gases (e.g., SO2, NH3, and NO) and primary aerosols (e.g., black carbon and primary organic matter). Additional factors leading to the discrepancies between model predictions and observations include assumptions associated with equilibrium partitioning for fine particles assumed in ISORROPIA II, irreversible gas/particle mass transfer treatment for coarse particles, uncertainties in model treatments such as dust emissions, secondary organic aerosol formation, multi-phase chemistry, cloud microphysics, aerosol-cloud interaction, dry and wet deposition, and model parameters (e.g., accommodation coefficients and prefactors of the nucleation power law) as well as uncertainties in model configuration such as the use of a coarse-grid resolution.

  4. New Particle Formation and Secondary Organic Aerosol in Beijing

    NASA Astrophysics Data System (ADS)

    Hu, M.; Yue, D.; Guo, S.; Hu, W.; Huang, X.; He, L.; Wiedensohler, A.; Zheng, J.; Zhang, R.

    2011-12-01

    Air pollution in Beijing has been a major concern due to being a mega-city and green Olympic Games requirements. Both long term and intensive field measurements have been conducted at an Urban Air Quality Monitoring Station in the campus of Peking University since 2004. Aerosol characteristics vary seasonally depending on meteorological conditions and source emissions. Secondary compositions of SNA (sum of sulfate, nitrate, and ammonium) and SOA (secondary organic aerosol) become major fraction of fine particles, which may enhance aerosol impacts on visibility and climate change. The transformation processes of new particle formation (NPF) and secondary organic aerosol have been focused on. It was found that gaseous sulfuric acid, ammonia, and organic compounds are important precursors to NPF events in Beijing and H2SO4-NH3-H2O ternary nucleation is one of the important mechanisms. The contributions of condensation and neutralization of sulfuric acid, coagulation, and organics to the growth of the new particles are estimated as 45%, 34%, and 21%, respectively. Tracer-based method to estimate biogenic and anthropogenic SOA was established by using gas chromatography-mass spectrometry. Secondary organic tracers derived from biogenic (isoprene, ?-pinene, ?-caryophyllene) and anthropogenic (toluene) contributed 32% at urban site and 35% at rural site, respectively. Other source apportionment techniques were also used to estimate secondary organic aerosols, including EC tracer method, water soluble organic carbon content, chemical mass balance model, and AMS-PMF method.

  5. Ozone and secondary aerosol formation Analysis of particle observations in the 2009 SHARP campaign

    NASA Astrophysics Data System (ADS)

    Cowin, J.; Yu, X.; Laulainen, N.; Iedema, M.; Lefer, B. L.; Anderson, D.; Pernia, D.; Flynn, J. H.

    2010-12-01

    Particulate matters (PM) play important roles in the formation and transformation of ozone. Although photooxidation of volatile organic compounds with respect to ozone formation in the gas phase is well understood, many unknowns still exist in heterogeneous mechanisms that process soot, secondary aerosols (both inorganic and organic), and key radical precursors such as formaldehyde and nitrous acid. Our main objective is to answer two key science questions: 1) will reduction of fine PM reduce ozone formation? 2) What sources of PM are most culpable? Are they from local chemistry or long-range transport? The field data collected in the 2009 Study of Houston Atmospheric Radical Precursors (SHARP) by our group at the Moody Tower consist of 1) real-time photolysis rates of ozone precursors, 2) particle size distributions, 3) organic carbon and elemental carbon, and 4) an archive of single particle samples taken with the Time Resolved Aerosol Collector (TRAC) sampler. The time resolution of the TRAC sampler is 30 minutes for routine measurements, and 15 minutes during some identified events (usually in the mid-afternoon) of high ozone and secondary organic or sulfate particle formation. The latter events last typically about an hour. Five ozone exceedance days occurred during the 6 weeks of deployment. Strong correlation between photochemical activities and organic carbon was observed. Initial data analysis indicates that secondary organic aerosol is a major component of the carbonaceous aerosols observed in Houston. Soot, secondary sulfate, seal salt, and mineral dust particles are determined from single particle analysis using scanning electron microscope and transmission electron microcopy coupled with energy dispersive X-ray spectroscopy. Compared with observations in 2000, the mass percentage of organics is higher (60 vs. 30%), and lower for sulfate (20% vs. 32%). On-going data analysis will focus on the composition, sources, and transformation of primary and secondary aerosols initiated by photolysis and subsequent heterogeneous reactions in high ozone days.

  6. An SOA model for toluene oxidation in the presence of inorganic aerosols.

    PubMed

    Cao, Gang; Jang, Myoseon

    2010-01-15

    A predictive model for secondary organic aerosol (SOA) formation including both partitioning and heterogeneous reactions is explored for the SOA produced from the oxidation of toluene in the presence of inorganic seed aerosols. The predictive SOA model comprises the explicit gas-phase chemistry of toluene, gas-particle partitioning, and heterogeneous chemistry. The resulting products from the explicit gas phase chemistry are lumped into several classes of chemical species based on their vapor pressure and reactivity for heterogeneous reactions. Both the gas-particle partitioning coefficient and the heterogeneous reaction rate constant of each lumped gas-phase product are theoretically determined using group contribution and molecular structure-reactivity. In the SOA model, the predictive SOA mass is decoupled into partitioning (OM(P)) and heterogeneous aerosol production (OM(H)). OM(P) is estimated from the SOA partitioning model developed by Schell et al. (J. Geophys. Res. 2001, 106, 28275-28293 ) that has been used in a regional air quality model (CMAQ 4.7). OM(H) is predicted from the heterogeneous SOA model developed by Jang et al. (Environ. Sci. Technol. 2006, 40, 3013-3022 ). The SOA model is evaluated using a number of the experimental SOA data that are generated in a 2 m(3) indoor Teflon film chamber under various experimental conditions (e.g., humidity, inorganic seed compositions, NO(x) concentrations). The SOA model reasonably predicts not only the gas-phase chemistry, such as the ozone formation, the conversion of NO to NO(2), and the toluene decay, but also the SOA production. The model predicted that the OM(H) fraction of the total toluene SOA mass increases as NO(x) concentrations decrease: 0.73-0.83 at low NO(x) levels and 0.17-0.47 at middle and high NO(x) levels for SOA experiments with high initial toluene concentrations. Our study also finds a significant increase in the OM(H) mass fraction in the SOA generated with low initial toluene concentrations, compared to those with high initial toluene concentrations. On average, more than a 1-fold increase in OM(H) fraction is observed when the comparison is made between SOA experiments with 40 ppb toluene to those with 630 ppb toluene. Such an observation implies that heterogeneous reactions of the second-generation products of toluene oxidation can contribute considerably to the total SOA mass under atmospheric relevant conditions. PMID:20017537

  7. Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: sources of organic aerosols and atmospheric processing

    NASA Astrophysics Data System (ADS)

    Aggarwal, S. G.; Kawamura, K.; Umarji, G. S.; Tachibana, E.; Patil, R. S.; Gupta, P. K.

    2012-08-01

    To better understand the sources of PM10 samples from Mumbai, India, aerosol chemical compositions, i.e. total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied together with specific markers such as methanesulfonate (MSA), oxalic acid (C2), azelaic acid (C9), and levoglucosan. The results revealed that biofuel/biomass burning and fossil fuel combustion are the major sources of the Mumbai aerosols. Nitrogen-isotopic (?15N) composition of aerosol total nitrogen, which ranged from 18.1 to 25.4, also suggest that biofuel/biomass burning is the dominant source in both summer and winter seasons. Aerosol mass concentrations of major species increased 3-4 times in winter compared to summer, indicating an enhanced emission from these sources in winter season. Photochemical production tracers, C2 diacid and nssSO42- do not show diurnal changes. Concentrations of C2 diacid and WSOC show a strong correlation (r2 = 0.95). In addition, WSOC to OC (or TC) ratios remain almost constant for day- (0.37 0.06 (0.28 0.04)) and nighttime (0.38 0.07 (0.28 0.06)), suggesting that mixing of fresh secondary organic aerosols is not significant rather the Mumbai aerosols are photochemically well processed. Concentrations of MSA and C9 diacid present a positive correlation (r2 = 0.75), indicating a marine influence on Mumbai aerosols in addition to local/regional influence. Backward air mass trajectory analyses further suggested that the Mumbai aerosols are largely influenced by long-range continental and regional transport. Stable C-isotopic ratios (?13C) of TC ranged from -27.0 to -25.4 with slightly lower average (-26.5 0.3) in summer than in winter (-25.9 0.3). Positive correlation between WSOC/TC ratios and ?13C values suggested that the increment in ?13C of wintertime TC may be caused by prolonged photochemical processing of organic aerosols in this season. This study suggests that in winter, the tropical aerosols are more aged due to longer residence time in the atmosphere than in the summer aerosols.

  8. Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: sources of organic aerosols and atmospheric processing

    NASA Astrophysics Data System (ADS)

    Aggarwal, S. G.; Kawamura, K.; Umarji, G. S.; Tachibana, E.; Patil, R. S.; Gupta, P. K.

    2013-05-01

    To better understand the sources of PM10 samples in Mumbai, India, aerosol chemical composition, i.e., total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied together with specific markers such as methanesulfonate (MSA), oxalic acid (C2), azelaic acid (C9), and levoglucosan. The results revealed that biofuel/biomass burning and fossil fuel combustion are the major sources of the Mumbai aerosols. Nitrogen-isotopic (?15N) composition of aerosol total nitrogen, which ranged from 18.1 to 25.4, also suggests that biofuel/biomass burning is a predominate source in both the summer and winter seasons. Aerosol mass concentrations of major species increased 3-4 times in winter compared to summer, indicating enhanced emission from these sources in the winter season. Photochemical production tracers, C2 diacid and nssSO42-, do not show diurnal changes. Concentrations of C2 diacid and WSOC show a strong correlation (r2 = 0.95). In addition, WSOC to OC (or TC) ratios remain almost constant for daytime (0.37 0.06 (0.28 0.04)) and nighttime (0.38 0.07 (0.28 0.06)), suggesting that mixing of fresh secondary organic aerosols is not significant and the Mumbai aerosols are photochemically well processed. Concentrations of MSA and C9 diacid present a positive correlation (r2 = 0.75), indicating a marine influence on Mumbai aerosols in addition to local/regional influence. Backward air mass trajectory analyses further suggested that the Mumbai aerosols are largely influenced by long-range continental and regional transport. Stable C-isotopic ratios (?13C) of TC ranged from -27.0 to -25.4, with slightly lower average (-26.5 0.3) in summer than in winter (-25.9 0.3). Positive correlation between WSOC/TC ratios and ?13C values suggested that the relative increment in 13C of wintertime TC may be caused by prolonged photochemical processing of organic aerosols in this season. This study suggests that in winter, the tropical aerosols are more aged due to longer residence time in the atmosphere than in summer aerosols. However, these conclusions are based on the analysis of a limited number of samples (n=25) and more information on this topic may be needed from other similar coastal sites in future.

  9. Behaviors of volatile inorganic components in urban aerosols

    NASA Astrophysics Data System (ADS)

    Ueda, Hiromasa; Takemoto, Taroh; Kim, Young Pyo; Sha, Weiming

    A multicomponent gas-aerosol equilibrium model (Kim et al., 1993a,b; Kim and Seinfeld, 1995) was used to explain the behaviors of water content and other volatile species in the aerosols observed in polluted air mass in Central Japan. It was found that gas-aerosol equilibrium was attained after long-range transport of polluted air mass (e.g., 50 km) from emission source area, while it was not completed in large emission source areas. The present model predicted with high accuracy the gas-aerosol equilibrium of ammonium, nitrate and chloride at remote sites. The correlation coefficient was R=0.98 for ammonia and more than R=0.86 for gaseous nitric acid. It was R=0.94 for gaseous hydrochloric acid, which meant significant chlorine deficit under high-temperature and low humidity conditions was also predicted accurately. The predicted water content was consistent with that calculated by the semi-theoretical Winkler's formula (Aerosol Sceince, 13, 1973, 373-387). At RH=90% the water content attained almost the same weight as that of dry aerosol, while at about RH=60% it was less than 10%. In contrast, temperature dependency of the water content was weak except for very high air temperature conditions in summer. Finally, it emphasized the superiority of the multicomponent approach for gas-aerosol equilibrium, compared with the binary-component approach.

  10. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  11. The effect of varying primary emissions on the concentrations of inorganic aerosols predicted by the enhanced UK Photochemical Trajectory Model

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.; Jones, Alan M.; Beddows, David C. S.; Derwent, Richard G.

    2013-04-01

    An enhanced Photochemical Trajectory Model (PTM) has been used to simulate concentrations of secondary inorganic aerosol (for the purposes of this work, sulphate, nitrate, chloride and ammonium) in PM10 over a two-month period at a rural site in central southern England (Harwell). Judged against a base year of 2007, emissions of precursor gases, SO2, NOx and NH3 have been varied over plausible ranges, occurring across the UK only, mainland Europe only, or the whole of Europe. The model is able to reproduce observed non-linearities and shows that abatement is less than proportional in all cases. Additionally, abatement of sulphur dioxide leads to increased nitrate concentrations. The combination of a weak response of nitrate to reductions in NOx emissions, and the effect of sulphur dioxide reductions in increasing nitrate is consistent with the very small recent observed trends in nitrate concentrations over the UK. A scenario for 2020 in which emissions of SO2, NOx and NH3 fall to 64%, 75% and 96% respectively of their 2007 baseline levels across the whole of Europe shows a reduction of 2 ?g m-3 in secondary inorganic aerosol which is 13% below the baseline case for a two month period in 2007, due mostly to a fall in sulphate and ammonium. As this was a relatively high pollution period, it is estimated that over a full year, the reduction is more likely to be around 1 ?g m-3.

  12. High secondary aerosol contribution to particulate pollution during haze events in China

    NASA Astrophysics Data System (ADS)

    Huang, Ru-Jin; Zhang, Yanlin; Bozzetti, Carlo; Ho, Kin-Fai; Cao, Jun-Ji; Han, Yongming; Daellenbach, Kaspar R.; Slowik, Jay G.; Platt, Stephen M.; Canonaco, Francesco; Zotter, Peter; Wolf, Robert; Pieber, Simone M.; Bruns, Emily A.; Crippa, Monica; Ciarelli, Giancarlo; Piazzalunga, Andrea; Schwikowski, Margit; Abbaszade, Glcin; Schnelle-Kreis, Jrgen; Zimmermann, Ralf; An, Zhisheng; Szidat, Snke; Baltensperger, Urs; Haddad, Imad El; Prvt, Andr S. H.

    2014-10-01

    Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.

  13. High secondary aerosol contribution to particulate pollution during haze events in China.

    PubMed

    Huang, Ru-Jin; Zhang, Yanlin; Bozzetti, Carlo; Ho, Kin-Fai; Cao, Jun-Ji; Han, Yongming; Daellenbach, Kaspar R; Slowik, Jay G; Platt, Stephen M; Canonaco, Francesco; Zotter, Peter; Wolf, Robert; Pieber, Simone M; Bruns, Emily A; Crippa, Monica; Ciarelli, Giancarlo; Piazzalunga, Andrea; Schwikowski, Margit; Abbaszade, Glcin; Schnelle-Kreis, Jrgen; Zimmermann, Ralf; An, Zhisheng; Szidat, Snke; Baltensperger, Urs; El Haddad, Imad; Prvt, Andr S H

    2014-10-01

    Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution. PMID:25231863

  14. Secondary aerosol production from agricultural gas precursors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Increasing evidence from both laboratory and field work suggests that not only does ammonia produce secondary particulate matter, but some volatile org...

  15. Preliminary characterization of submicron secondary aerosol in the amazon forest - ATTO station

    NASA Astrophysics Data System (ADS)

    Carbone, S.; Ferreira De Brito, J.; Andreae, M. O.; Pöhlker, C.; Chi, X.; Saturno, J.; Barbosa, H. M.; Artaxo, P.

    2014-12-01

    Biogenic secondary organic aerosol particles are investigated in the Amazon in the context of the GoAmazon Project. The forest naturally emits a large number of gaseous compounds; they are called the volatile organic compounds (VOCs). They are emitted through processes that are not totally understood. Part of those gaseous compounds are converted into aerosol particles, which affect the biogeochemical cycles, the radiation balance, the mechanisms involving cloud formation and evolution, among few other important effects. In this study the aerosol life-cycle is investigated at the ATTO station, which is located about 150 km northeast of Manaus, with emphasis on the natural organic component and its impacts in the ecosystem. To achieve these objectives physical and chemical aerosol properties have been investigated, such as the chemical composition with aerosol chemical speciation monitor (ACSM), nanoparticle size distribution (using the SMPS - Scanning Mobility Particle Sizer), optical properties with measurements of scattering and absorption (using nephelometers and aethalometers). Those instruments have been operating continuously since February 2014 together with trace gases (O3, CO2, CO, SO2 and NOx) analyzers and additional meteorological instruments. On average PM1 (the sum of black carbon, organic and inorganic ions) totalized 1.0±0.3 μg m-3, where the organic fraction was dominant (75%). During the beginning of the dry season (July/August) the organic aerosol presented a moderate oxygenated character with the oxygen to carbon ratio (O:C) of 0.7. In the wet season some episodes containing significant amount of chloride and backward wind trajectories suggest aerosol contribution from the Atlantic Ocean. A more comprehensive analysis will include an investigation of the different oxidized fractions of the organic aerosol and optical properties.

  16. Modeling Secondary Organic Aerosols over Europe: Impact of Activity Coefficients and Viscosity

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sartelet, K.; Couvidat, F.

    2014-12-01

    Semi-volatile organic species (SVOC) can condense on suspended particulate materials (PM) in the atmosphere. The modeling of condensation/evaporation of SVOC often assumes that gas-phase and particle-phase concentrations are at equilibrium. However, recent studies show that secondary organic aerosols (SOA) may not be accurately represented by an equilibrium approach between the gas and particle phases, because organic aerosols in the particle phase may be very viscous. The condensation in the viscous liquid phase is limited by the diffusion from the surface of PM to its core. Using a surrogate approach to represent SVOC, depending on the user's choice, the secondary organic aerosol processor (SOAP) may assume equilibrium or model dynamically the condensation/evaporation between the gas and particle phases to take into account the viscosity of organic aerosols. The model is implemented in the three-dimensional chemistry-transport model of POLYPHEMUS. In SOAP, activity coefficients for organic mixtures can be computed using UNIFAC for short-range interactions between molecules and AIOMFAC to also take into account the effect of inorganic species on activity coefficients. Simulations over Europe are performed and POLYPHEMUS/SOAP is compared to POLYPHEMUS/H2O, which was previously used to model SOA using the equilibrium approach with activity coefficients from UNIFAC. Impacts of the dynamic approach on modeling SOA over Europe are evaluated. The concentrations of SOA using the dynamic approach are compared with those using the equilibrium approach. The increase of computational cost is also evaluated.

  17. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3- aerosol during the 2013 Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; Ault, A.; Bondy, A.; Takahama, S.; Modini, R. L.; Baumann, K.; Edgerton, E.; Knote, C.; Laskin, A.; Wang, B.; Fry, J. L.

    2015-09-01

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3-) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 ?m) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3- is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3- and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas-aerosol phase partitioning.

  18. Secondary organic aerosols from anthropogenic and biogenic precursors.

    PubMed

    Baltensperger, U; Kalberer, M; Dommen, J; Paulsen, D; Alfarra, M R; Coe, H; Fisseha, R; Gascho, A; Gysel, M; Nyeki, S; Sax, M; Steinbacher, M; Prevot, A S H; Sjgren, S; Weingartner, E; Zenobi, R

    2005-01-01

    Secondary organic aerosol (SOA) formation from the photooxidation of an anthropogenic (1,3,5-trimethylbenzene) and a biogenic (alpha-pinene) precursor was investigated at the new PSI smog chamber. The chemistry of the gas phase was followed by proton transfer reaction mass spectrometry, while the aerosol chemistry was investigated with aerosol mass spectrometry, ion chromatography, laser desorption ionization mass spectrometry, and infrared spectroscopy, along with volatility and hygroscopicity studies. Evidence for oligomer formation for SOA from both precursors was given by an increasing abundance of compounds with a high molecular weight (up to 1000 Da) and by an increasing thermal stability with increasing aging time. The results were compared to data obtained from ambient aerosol samples, revealing a number of similar features. PMID:16161788

  19. Effect of hydrophobic primary organic aerosols on secondary organic aerosol formation from ozonolysis of ?-pinene

    NASA Astrophysics Data System (ADS)

    Song, Chen; Zaveri, Rahul A.; Alexander, M. Lizabeth; Thornton, Joel A.; Madronich, Sasha; Ortega, John V.; Zelenyuk, Alla; Yu, Xiao-Ying; Laskin, Alexander; Maughan, David A.

    2007-10-01

    Semi-empirical secondary organic aerosol (SOA) models typically assume a well-mixed organic aerosol phase even in the presence of hydrophobic primary organic aerosols (POA). This assumption significantly enhances the modeled SOA yields as additional organic mass is made available to absorb greater amounts of oxidized secondary organic gases than otherwise. We investigate the applicability of this critical assumption by measuring SOA yields from ozonolysis of ?-pinene (a major biogenic SOA precursor) in a smog chamber in the absence and in the presence of dioctyl phthalate (DOP) and lubricating oil seed aerosol. These particles serve as surrogates for urban hydrophobic POA. The results show that these POA did not enhance the SOA yields. If these results are found to apply to other biogenic SOA precursors, then the semi-empirical models used in many global models would predict significantly less biogenic SOA mass and display reduced sensitivity to anthropogenic POA emissions than previously thought.

  20. SECONDARY ORGANIC AEROSOL FORMATION FROM THE IRRADIATION OF SIMULATED AUTOMOBILE EXHAUST

    EPA Science Inventory

    A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SO...

  1. EVALUATION OF SECONDARY ORGANIC AEROSOL FORMATION IN WINTER. (R823514)

    EPA Science Inventory

    Three different methods are used to predict secondary organic aerosol (SOA)
    concentrations in the San Joaquin Valley of California during the winter of 1995-1996 [Integrated
    Monitoring Study, (IMS95)]. The first of these methods estimates SOA by using elemental carbon as

  2. Molecular transformations accompanying the aging of laboratory secondary organic aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aging of fresh secondary organic aerosol, generated by alpha-pinene ozonolysis in a flow tube reactor, was studied by passing it through a second reaction chamber where hydroxyl radicals were generated. Two types of experiments were performed: plug injection experiments where the particle mass a...

  3. A Review of Secondary Organic Aerosol (SOA) Formation from Isoprene

    EPA Science Inventory

    Recent field and laboratory evidence indicates that the oxidation of isoprene forms secondary organic aerosol (SOA). Global biogenic emissions of isoprene (600 Tg yr-1) are sufficiently large the formation of SOA is even small yields results in substantial production ...

  4. Optical Properties of Polymers Relevant to Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Marrero-Ortiz, W.; Gomez-Hernandez, M. E.; Xu, W.; Guo, S.; Zhang, R.

    2014-12-01

    Atmospheric aerosols play a critical role in climate directly by scattering and absorbing solar radiation and indirectly by modifying the cloud formation. Currently, the direct and indirect effects of aerosols represent the largest uncertainty in climate predictions models. Some aerosols are directly emitted, but the majority are formed in the atmosphere by the oxidation of gaseous precursors. However, the formation of aerosols at the molecular level is not fully characterized. Certain category of secondary organic aerosols (SOA), which represent a significant fraction of the total aerosol burden, can be light-absorbing, also known as brown carbon. However, the overall contribution of SOA to the brown carbon and the related climate forcing is poorly understood. Such incomplete understanding is due in part to the chemical complexity of SOA and the lack of knowledge regarding SOA formation, transformation, and optical properties. Based on previous laboratory experiments, field measurements, and modeling studies, it has been suggested that the polymers and oligomers play an important role in the SOA formation. Atmospheric polymers could be produced by the hydration or heterogeneous reactions of epoxides and small ?-dicarbonyls. Their aqueous chemistry products have been shown to give light-absorbing and high molecular weight oligomeric species, which increase the SOA mass production and alter the direct and indirect effect of aerosols. In this paper, the aerosol chemistry of small ?-dicarbonyl compounds with amines is investigated and the associated optical properties are measured using spectroscopic techniques. The differences between primary, secondary and tertiary amines with glyoxal and methylglyoxal are evaluated in terms of SOA browning efficiency. Atmospheric implications of our present work for understanding the formation of light-absorbing SOA will be presented, particularly in terms of the product distribution of light-absorbing SOA formed by aqueous phase reactions.

  5. Atmospheric aging of monoterpene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Mang, Stephen Anthony

    The behavior of monoterpene SOA with respect to tropospheric radiation is an important field of study because of the potential impacts on the chemical composition and energy balance of the Earth's atmosphere. Of concern is the lack of understanding of the absorption profiles of real atmospheric aerosol particles. Most models assume that the only aerosol absorbers of radiation are those particles that contain black carbon; all other particles are treated as scatterers and assigned negative radiative forcings. In Chapter 3 of this thesis, have described a method of measuring the absorption spectra of films of aerosol particles, the results of which cast doubt on this assumption. The new procedure allows us to measure spectra of the particles directly, without worrying about solvent effects. The results show that SOA formed from the ozonolysis of monoterpenes have absorption profiles that overlap significantly with the tropospheric actinic window (radiation with lambda > 295 nm). We have calculated the lifetime of these SOA with respect to photolysis, and found that it is often an order of magnitude shorter than the most important competing aging process, attack by OH. The lifetime of the particles with respect to photolysis depends on the kind of reactions that absorbed radiation will be able to initiate. In Chapter 2 we investigated this question by detecting the gas phase products of limonene SOA photolysis in order to draw conclusions about the mechanisms of monoterpene SOA photolysis. Based on the product distribution and on the known products of limonene ozonolysis, we proposed that the Norrish type I and II photolysis of carbonyl-containing molecules will be an important mechanism of photochemical aging for monoterpene aerosols in the troposphere. In Chapter 3, I have presented results from experiments on particle aging in the absence of UV radiation. These results imply that particles can be aged by non-photochemical processes, meaning that particles will be modified during their time in the troposphere even when conditions are unfavorable to photochemistry. The mechanism of the changes that alter the absorption profile of monoterpene SOA in the absence of radiation is unknown at this time.

  6. Effects of mineral dust on the semivolatile inorganic aerosol components in a polluted Megacity

    NASA Astrophysics Data System (ADS)

    Karydis, V. A.; Tsimpidi, A. P.; Fountoukis, C.; Nenes, A.; Zavala, M.; Lei, W.; Molina, L. T.; Pandis, S. N.

    2009-04-01

    Aerosols play a significant role in the atmosphere having adverse impacts on human health and directly affecting air quality, visibility and climate change. One of the most challenging tasks for models is the prediction of the partitioning of the semivolatile inorganic aerosol components (ammonia, nitric acid, hydrochloric acid, etc) between the gas and particulate phases. Moreover, the effects of mineral aerosols in the atmosphere remain largely uncertain. As a result, most current models have serious difficulties in reproducing the observed particulate nitrate and chloride concentrations. The improved aerosol thermodynamic model ISORROPIA II (Fountoukis and Nenes, 2007) simulating explicitly the chemistry of Ca, Mg, and K salts has been linked to the regional chemical transport model PMCAMx (Gaydos et al., 2007). PMCAMx also includes the CMU inorganic aerosol growth module (Gaydos et al., 2003; Koo et al., 2003a) and the VSRM aqueous-phase chemistry module (Fahey and Pandis, 2001). The hybrid approach (Koo et al., 2003b) for modeling aerosol dynamics is applied in order to accurately simulate the inorganic components in the coarse mode. This approach assumes that the smallest particles are in equilibrium, while the condensation/evaporation equation is solved for the larger ones. PMCAMx is applied to the Mexico City Metropolitan Area (MCMA). The emission inventory has been improved and now includes more accurate dust and NaCl emissions. The April 2003 (MCMA Campaign) and the March 2006 (MILAGRO campaign) datasets are used to evaluate the inorganic aerosol module of PMCAMx in order to test our understanding of inorganic aerosol. The results from the new modeling framework are also compared with the results from the previous version of PMCAMx in order to investigate the influence of each of the added features to the formation of the semivolatile inorganic components. References Fountoukis, C. and Nenes, A., (2007). ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42- -NO3- -Cl- -H2O aerosols. Atmos. Chem. Phys., 7, 4639-4659. Gaydos, T., Pinder, R., Koo, B., Fahey, ?., Yarwood, G., and Pandis, S. N., (2007). Development and application of a three-dimensional Chemical Transport Model, PMCAMx. Atmospheric Environment, in press. Gaydos, T., Koo, B., and Pandis, S. N., (2003). Development and application of an efficient moving sectional approach for the solution of the atmospheric aerosol condensation/evaporation equations. Atmospheric Environment, 37, 3303-3316. Koo, B., Pandis S. N., and Ansari, A. (2003a). Integrated approaches to modeling the organic and inorganic atmospheric aerosol components. Atmospheric Environment, 37, 4757-4768. Fahey, K. and Pandis, S. N., (2001). Optimizing model performance: variable size resolution in cloud chemistry modeling. Atmospheric Environment 35, 4471-4478. Koo, B., Gaydos, T.M., Pandis, S.N., (2003b). Evaluation of the equilibrium, hybrid, and dynamic aerosol modeling approaches. Aerosol Science and Technology 37, 53-64

  7. PREDICTION OF MULTICOMPONENT INORGANIC ATMOSPHERIC AEROSOL BEHAVIOR. (R824793)

    EPA Science Inventory

    Many existing models calculate the composition of the atmospheric aerosol system by solving a set of algebraic equations based on reversible reactions derived from thermodynamic equilibrium. Some models rely on an a priori knowledge of the presence of components in certain relati...

  8. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics - Part 1: Surface tension depression and light-absorbing products

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Shapiro, E. L.; Sareen, N.; McNeill, V. F.

    2009-07-01

    We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The light-absorbing products form on the order of minutes, and solution composition continues to change over several days. The results suggest an aldol condensation pathway involving the participation of the ammonium ion. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit surface tension depression. Methylglyoxal uptake could potentially change the optical properties, climate effects, and heterogeneous chemistry of the seed aerosol over its lifetime.

  9. Thermodynamic Modeling of Organic-Inorganic Aerosols with the Group-Contribution Model AIOMFAC

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, T.

    2009-04-01

    Liquid aerosol particles are - from a physicochemical viewpoint - mixtures of inorganic salts, acids, water and a large variety of organic compounds (Rogge et al., 1993; Zhang et al., 2007). Molecular interactions between these aerosol components lead to deviations from ideal thermodynamic behavior. Strong non-ideality between organics and dissolved ions may influence the aerosol phases at equilibrium by means of liquid-liquid phase separations into a mainly polar (aqueous) and a less polar (organic) phase. A number of activity models exists to successfully describe the thermodynamic equilibrium of aqueous electrolyte solutions. However, the large number of different, often multi-functional, organic compounds in mixed organic-inorganic particles is a challenging problem for the development of thermodynamic models. The group-contribution concept as introduced in the UNIFAC model by Fredenslund et al. (1975), is a practical method to handle this difficulty and to add a certain predictability for unknown organic substances. We present the group-contribution model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients), which explicitly accounts for molecular interactions between solution constituents, both organic and inorganic, to calculate activities, chemical potentials and the total Gibbs energy of mixed systems (Zuend et al., 2008). This model enables the computation of vapor-liquid (VLE), liquid-liquid (LLE) and solid-liquid (SLE) equilibria within one framework. Focusing on atmospheric applications we considered eight different cations, five anions and a wide range of alcohols/polyols as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are very well represented up to high ionic strength. We show that the semi-empirical middle-range parametrization of direct organic-inorganic interactions in alcohol-water-salt solutions enables accurate computations of vapor-liquid and liquid-liquid equilibria. References Fredenslund, A., Jones, R. L., and Prausnitz, J. M.: Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures, AIChE J., 21, 1086-1099, 1975. Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R., and Simoneit, B. R. T.: Quantification of Urban Organic Aerosols at a Molecular Level: Identification, Abundance and Seasonal Variation, Atmos. Environ., 27, 1309-1330, 1993. Zhang, Q. et al.: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13 801, 2007. Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, Atmos. Chem. Phys., 8, 4559-4593, 2008.

  10. The impact of long-range transport on secondary aerosol in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Carmichael, G. R.; Woo, J.; Zhang, Q.

    2013-12-01

    Long-range transport air pollution is an important issue in Northeast Asia. Large amounts of anthropogenic emissions of SO2 and NOx aggravate air pollution in the region. Most of the emissions come from the industrialized regions along the East China coast. China and Korea are changing their air quality standards for particle pollutant from PM10 to PM2.5 in 2012 and 2015, respectively. According to many previous studies, the long-rang transport of particle matter contributes to Korean air pollution problems, but there are many uncertainties regarding the impact of long range transport. Secondary inorganic aerosols (sulfate, nitrate and ammonium) are dominant ionic contributors to PM2.5. Especially high relative contributions of secondary aerosol appear under westerly wind cases at Korea. The secondary aerosols are produced by converting from SO2 and NOx during the long-range transport, but the contribution varies dramatically depending on season and wind pattern. So far, sulfate is the primary contributor to PM2.5, but nitrate levels are increasing because that NOx emissions in China are increasing dramatically since 2000 due to the growth in power, industry, and transport, while SO2 emissions are trending downward since 2005. We will present chemical characteristics of PM2.5 by westerly long-range transport focused on secondary aerosol, tracking their transport pattern, and production pathway in order to better understand regional air quality modeling of the long-range transport. This study will be performed based on the international study, MICS-Asia phase III, initiated with many researchers. Results using CMAQ with the modeling domain covering Northeast and Southeast China, Korea, and Japan with 15km resolution will be discussed.

  11. Cluster analysis on mass spectra of biogenic secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Spindler, C.; Kiendler-Scharr, A.; Kleist, E.; Mensah, A.; Mentel, T.; Tillmann, R.; Wildt, J.

    2009-04-01

    Biogenic secondary organic aerosols (BSOA) are of high importance in the atmosphere. The formation of SOA from the volatile organic compound (VOC) emissions of selected trees was investigated in the JPAC (Jlich Plant Aerosol Chamber) facility. The VOC (mainly monoterpenes) were transferred into a reaction chamber where vapors were photo-chemically oxidized and formed BSOA. The aerosol was characterized by aerosol mass spectrometry (Aerodyne Quadrupol-AMS). Inside the AMS, flash-vaporization of the aerosol particles and electron impact ionization of the evaporated molecules cause a high fragmentation of the organic compounds. Here, we present a classification of the aerosol mass spectra via cluster analysis. Average mass spectra are produced by combination of related single mass spectra to so-called clusters. The mass spectra were similar due to the similarity of the precursor substances. However, we can show that there are differences in the BSOA mass spectra of different tree species. Furthermore we can distinguish the influence of the precursor chemistry and chemical aging. BSOA formed from plants exposed to stress can be distinguished from BSOA formed under non stressed conditions. Significance and limitations of the clustering method for very similar mass spectra will be demonstrated and discussed.

  12. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2014-08-01

    Aerosol particles were characterized by an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) along with various collocated instruments in Beijing, China to investigate the aerosol composition and sources during the Chinese Spring Festival, 2013. Three fireworks (FW) events exerting significant and short-term impacts on fine particles (PM2.5) were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW showed major impacts on non-refractory potassium, chloride, sulfate, and organics in PM1, of which the FW organics appeared to be mainly secondary with its mass spectrum resembling to that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated PM1 accounting for 63-82% during the nine PEs observed. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than that during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impacts of reduced anthropogenic emissions on aerosol chemistry in the city. The primary species showed ubiquitous reductions during the holiday period with the largest reduction for cooking OA (69%), nitrogen monoxide (54%), and coal combustion OA (28%). The secondary sulfate, however, remained minor change, and the SOA and the total PM2.5 even slightly increased. These results have significant implications that controlling local primary source emissions, e.g., cooking and traffic activities, might have limited effects on improving air quality during PEs when SPM that is formed over regional scales dominates aerosol particle composition.

  13. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3- aerosol during the 2013 Southern Oxidant and Aerosol Study

    SciTech Connect

    Allen, Hannah M.; Draper, Danielle C.; Ayres, Benjamin R.; Ault, Andrew P.; Bondy, Amy L.; Takahama, S.; Modini, Robert; Baumann, K.; Edgerton, Eric S.; Knote, Christoph; Laskin, Alexander; Wang, Bingbing; Fry, Juliane L.

    2015-09-25

    The inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 1 June to 15 July 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA), an ion chromatograph coupled with a wet rotating denuder and a steam-jet aerosol collector for monitoring of ambient inorganic gas and aerosol species, revealed two periods of high aerosol nitrate (NO3 ) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of coarse mode mineral or sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 um) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of mineral dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral dust surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas/aerosol phase partitioning.

  14. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    SciTech Connect

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

  15. Adsorptive uptake of water by semisolid secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Pajunoja, Aki; Lambe, Andrew T.; Hakala, Jani; Rastak, Narges; Cummings, Molly J.; Brogan, James F.; Hao, Liqing; Paramonov, Mikhail; Hong, Juan; Prisle, Nnne L.; Malila, Jussi; Romakkaniemi, Sami; Lehtinen, Kari E. J.; Laaksonen, Ari; Kulmala, Markku; Massoli, Paola; Onasch, Timothy B.; Donahue, Neil M.; Riipinen, Ilona; Davidovits, Paul; Worsnop, Douglas R.; Petj, Tuukka; Virtanen, Annele

    2015-04-01

    Aerosol climate effects are intimately tied to interactions with water. Here we combine hygroscopicity measurements with direct observations about the phase of secondary organic aerosol (SOA) particles to show that water uptake by slightly oxygenated SOA is an adsorption-dominated process under subsaturated conditions, where low solubility inhibits water uptake until the humidity is high enough for dissolution to occur. This reconciles reported discrepancies in previous hygroscopicity closure studies. We demonstrate that the difference in SOA hygroscopic behavior in subsaturated and supersaturated conditions can lead to an effect up to about 30% in the direct aerosol forcinghighlighting the need to implement correct descriptions of these processes in atmospheric models. Obtaining closure across the water saturation point is therefore a critical issue for accurate climate modeling.

  16. Aerosol Precursor Emissions, Secondary Aerosol Production, and Climate-Forcing Gas Exchange in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Doskey, P. V.

    2009-12-01

    Aerosol precursors in the Midwest are generated from a myriad of sources including biogenic emissions of terpenes from the Ozarks region, anthropogenic emissions of volatile and semivolatile aliphatic and aromatic hydrocarbons from the St. Louis airshed, and agricultural emissions of ammonia (NH3), amines, and nitrogen oxides (NOx) from animal husbandry and cropping systems of the Midwest Corn Belt. The deciduous and coniferous forests of the Ozarks region are significant sources of isoprene, monoterpenes, and sesquiterpenes that are sensitive to rising CO2 levels and temperature and generate light-scattering, secondary organic aerosol (SOA). Application of nitrogen fertilizers stimulates emissions of ammonia (NH3), nitric oxide (NO), and nitrous oxide (N2O) from agricultural soils and crops. Nitric acid, generated through photooxidation of NO emissions from fossil fuel combustion in urban air and from soil emissions in agroecosystems, reacts rapidly with NH3 to generate light-scattering, secondary inorganic aerosol (SIA). The atmospheric lifetime of N2O is about 120 years, making the substance a potent greenhouse gas with a global warming potential of 290 for a time horizon of 20 years relative to CO2. Emissions of CO2, N2O, and SIA precursors from the Midwest Corn Belt and surrounding areas are likely to increase in the near future as pastureland and prairie is converted to grow corn and other biofuel crops to meet the demand for renewable fuels. Several large river systems transport nutrients from fertilized fields of the Midwest agroecosystem to the Gulf of Mexico where plankton growth is accelerated. Microbial decomposition of plankton detritus consumes oxygen and creates a hypoxic zone, which might be a significant source of N2O.The presentation will discuss gaps in our knowledge of the production of climate-forcing species in the Midwestern United States.

  17. A Study on the Aqueous Formation of Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Sinclair, K.; Tsigaridis, K.

    2013-12-01

    The effect aerosols have on radiative forcing in the atmosphere is recognized as one of the largest uncertainties in the radiation budget. About 80% of organic aerosol mass in the atmosphere is estimated to be created though secondary processes. Recently, the aqueous formation of secondary organic aerosols (SOA) has become recognized as important when considering the source, transformation and radiative impacts of SOA. This work focuses on implementing a mechanism for aqueous SOA formation that can be used in atmospheric chemistry and models of all scales, from box to global. A box model containing a simplified chemical mechanism for the aqueous production of precursors of aqueous SOA (Myriokefalitakis et al. (2011) is coupled to gas-phase chemistry which uses the carbon bond mechanism (CBM) IV is presented. The model implements aqueous chemistry of soluble gases, both in-cloud and aerosol water, including organic compounds such as glyoxal and methylglyoxal, which have been shown as potentially significant sources for dissolved secondary organic aerosols. This mechanism implements aqueous phase mass transfer and molecular dissociation. The model's performance is evaluated against previous box model studies from the literature. A comparison is conducted between the detailed GAMMA model (McNeill et al., 2012), which is constrained with chamber experiments and the one developed here. The model output under different atmospheric conditions is explored and differences and sensitivities are assessed. The objective of this work is to create a robust framework for simulating aqueous phase formation of SOA and maximizing the computational efficiency of the model, while maintaining accuracy, in order to later use the exact mechanism in global climate simulations.

  18. SECONDARY ORGANIC AEROSOL FORMATION FROM THE OXIDATION OF AROMATIC HYDROCARBONS IN THE PRESENCE OF DRY SUBMICRON AMMONIUM SULFATE AEROSOL

    EPA Science Inventory

    A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas-aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds ...

  19. Atmospheric oxidation of isoprene and 1,3-Butadiene: influence of aerosol acidity and Relative humidity on secondary organic aerosol

    EPA Science Inventory

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA)have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ per m3 air s...

  20. Cloud condensation nucleus activation properties of biogenic secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Vanreken, Timothy M.; Ng, Nga L.; Flagan, Richard C.; Seinfeld, John H.

    2005-04-01

    Organic aerosols in general and secondary organic aerosol (SOA) in particular are known to contribute significantly to the atmospheric population of cloud condensation nuclei (CCN). However, current knowledge is limited with respect to the nature of this contribution. This study presents a series of experiments wherein the potential for biogenically derived SOA to act as CCN is explored. Five compounds were studied: four monoterpenes (α-pinene, β-pinene, limonene, and Δ3-carene) and one terpenoid alcohol (terpinene-4-ol). In each case the aerosol formation was driven by the reaction of ozone with the biogenic precursor. The SOA produced in each experiment was allowed to age for several hours, during which CCN concentrations were periodically measured at four supersaturations: S = 0.27%, 0.32%, 0.54%, and 0.80%. The calculated relationships between particle dry diameter and critical supersaturation were found to fall in the range of previously reported data for single-component organic aerosols; of the systems studied, α-pinene SOA was the least CCN active, while limonene SOA exhibited the strongest CCN activity. Interestingly, the inferred critical supersaturation of the SOA products was considerably more sensitive to particle diameter than was found in previous studies. Furthermore, the relationships between particle size and critical supersaturation for the monoterpene SOA shifted considerably over the course of the experiments, with the aerosol becoming less hygroscopic over time. These results are consistent with the progressive oligomerization of the SOA.

  1. Secondary Organic Aerosol Production From Terpenes: Chemical Influences on Aerosol Yields

    NASA Astrophysics Data System (ADS)

    Donahue, N. M.; Huff-Hartz, K.; Presto, A. A.; Pathak, R.; Robinson, A. L.; Pandis, S. N.

    2005-12-01

    Secondary Organic Aerosol (SOA) generation is caused by the production of relatively low vapor pressure products from higher vapor pressure precursors. Mono- and sesquiterpenes are recognized as major sources of biogenic SOA, especially following ozonolysis. SOA yields, however, depend on numerous factors. First is the widely accepted work of Pankow, Odom, and colleagues demonstrating that the partitioning of semi-volatile compounds depends strongly on the total mass of organic aerosol in a given system; extension of this theory leads us to refute the 'fallacy of the polluting tree'. Biogenic SOA yields in the absence of primary and secondary anthropogenic aerosol would be significantly lower than in polluted urban and regional environments. Other factors strongly influence SOA production. While the reaction mechanism following ozonolysis remains poorly defined, we have recently shown that SOA yields decline dramatically under high NOx conditions. However, continued oxidation, or aging, of semi-volatile organics in either phase will tend to further lower product vapor pressures, thus increasing aerosol yields. In addition to recent experimental results addressing all of these issues, we shall present a unifying framework for modeling semi-volatile partitioning and aerosol aging.

  2. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions

    NASA Astrophysics Data System (ADS)

    Zhang, Q. J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J. M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A.

    2015-03-01

    Secondary pollutants such as ozone, secondary inorganic aerosol, and secondary organic aerosol formed in the plume of megacities can affect regional air quality. In the framework of the FP7/EU MEGAPOLI project, an intensive campaign was launched in the Greater Paris Region in July 2009. The major objective was to quantify different sources of organic aerosol (OA) within a megacity and in its plume. In this study, we use airborne measurements aboard the French ATR-42 aircraft to evaluate the regional chemistry-transport model CHIMERE within and downwind the Paris region. Slopes of the plume OA levels vs. Ox (= O3 + NO2) show secondary OA (SOA) formation normalized with respect to photochemical activity and are used for specific evaluation of the OA scheme in the model. Simulated and observed slopes are in good agreement, when the most realistic "high-NOx" yields are used in the Volatility-Basis-Set scheme implemented into the model. In addition, these slopes are relatively stable from one day to another, which suggest that they are characteristic for the given megacity plume environment. Since OA within the plume is mainly formed from anthropogenic precursors (VOC and primary OA, POA), this work allows a specific evaluation of anthropogenic SOA and SOA formed from primary semi-volatile and intermediate volatile VOCs (SI-SOA) formation scheme in a model. For specific plumes, this anthropogenic OA build-up can reach about 10 ?g m-3. For the average of the month of July 2009, maximum increases occur close to the agglomeration for primary OA are noticed at several tens (for POA) to hundred (for SI-SOA) kilometers of distance from the Paris agglomeration.

  3. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Jimenez, J. L.; Aiken, A. C.; Gaffney, J. S.; Marley, N. A.

    2008-09-01

    A photoacoustic spectrometer, a nephelometer, an aetholemeter, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in north east Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP), as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethelometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 7 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the same-day photochemical production of secondary aerosol (inorganic and organic) is approximately 40 percent of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA) indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.

  4. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Jimenez, J. L.; Aiken, A. C.; Gaffney, J. S.; Marley, N. A.

    2009-06-01

    A photoacoustic spectrometer, a nephelometer, an aethalometer, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in North East Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP), as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethalometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 07:00 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the photochemical production of secondary aerosol (inorganic and organic) is approximately 75% of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA) indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.

  5. Temperature Effects on Secondary Organic Aerosol Formation and Properties

    NASA Astrophysics Data System (ADS)

    Kacarab, M.; Cocker, D. R., III

    2014-12-01

    Formation and properties of multiple secondary organic aerosol (SOA) systems were studied in the UC Riverside / CE-CERT dual 90m3 environmental chambers at temperatures ranging from 278K to 313K, controlled to a set point within 0.5K. Three SOA systems were studied: a simple cyclohexene ozonolysis system, a biogenic ?-pinene ozonolysis system, and an anthropogenic gasoline vehicle exhaust. Aerosol number, volume, and mass concentrations were monitored throughout experiments along with particle density, volatility, and hygroscopicity. Both gas and aerosol phase mass spectra were observed in real time via a SYFT selected ion flow tube mass spectrometer (SIFT-MS) and an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), respectively. It was found that the temperature of the system drastically affected aerosol yields in all three systems studied with 278K yields being drastically higher than yields at 313K. Particle density was found to be much higher at 278K for the cyclohexene-O3 and vehicle exhaust systems (at 1.6g/cm3 and 2 g/cm3, respectively), compared to average SOA density of 1.4g/cm3, while the particle density of the biogenic system remained unaffected by temperature. Aerosol phase mass spectra showed significant oxidation at 313K compared to 278K. This work aims to help elucidate temperature's effect on gas-particle partitioning and hysteresis effects seen in SOA formation that can be used in emerging atmospheric SOA models.

  6. Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation

    EPA Science Inventory

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...

  7. Observations and Estimates of Secondary Organic Aerosol Production in Western North Carolina

    NASA Astrophysics Data System (ADS)

    Link, M. F.; Taubman, B.; Zhou, Y.; Sive, B. C.; Neufeld, H.; Perry, B.

    2013-12-01

    Studies in recent years have described secondary organic aerosol (SOA) to be a dominant condensed-phase constituent of the troposphere. The effects of SOA on global and regional climate are poorly characterized because of the varied chemical nature of SOA products and their optical properties coupled with gross uncertainties in regional and global SOA loading estimates. Concurrent hourly gas-phase and aerosol chemical measurements were analyzed from June 15 to July 2, 2013 at the Appalachian Interdisciplinary Atmospheric Research (AppalAIR) station on Appalachian State University's campus in Boone, North Carolina to quantify regional SOA loading typical of summertime conditions. A meteorological source analysis was performed to understand the respective long-range transport and regionally produced organic aerosol (OA) contributions to total OA loading. Positive matrix factorization (PMF) analysis of quadrupole aerosol mass spectrometer (Q-AMS) data resolved long range transport low-volatility oxygenated OA (LV-OOA) and biogenic semi-volatile oxygenated OA (BSV-OOA) factors contributing to the total observed OA . Inorganic aerosol correlation, gas-phase precursor trending with time, and AMS reference spectra were used to characterize the PMF resolved factors. During the sampling period total OA loading was composed of approximately 77 (23)% and 23 (18)% LV-OOA and BSV-OOA, respectively. Temporal trends between total OA loading and ozone-dictated isoprene oxidation chemistry suggests signatures of localized SOA production. The results of this characterization provide an estimate of regionally produced SOA loading for an area representative of globally significant rates of biogenic emissions.

  8. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics

    NASA Astrophysics Data System (ADS)

    Shapiro, E. L.; Szprengiel, J.; Sareen, N.; Jen, C. N.; Giordano, M. R.; McNeill, V. F.

    2009-01-01

    Light-absorbing and high-molecular-weight secondary organic products were observed to result from the reaction of glyoxal in mildly acidic (pH=4) aqueous inorganic salt solutions mimicking aqueous tropospheric aerosol particles. High-molecular-weight (500-600 amu) products were observed when ammonium sulfate ((NH4)2SO4) or sodium chloride (NaCl) was present in the aqueous phase. The products formed in the (NH4)2SO4 solutions absorb light at UV and visible wavelengths. Substantial absorption at 300-400 nm develops within two hours, and absorption between 400-600 nm develops within days. Pendant drop tensiometry measurements show that the products are not surface-active. The experimental results along with ab initio predictions of the UV/Vis absorption of potential products suggest that an aldol condensation mechanism is active in the glyoxal-(NH4)2SO4system, resulting in the formation of pi-conjugated products. If similar products are formed in atmospheric aerosol particles, they could change the optical properties of the seed aerosol over its lifetime.

  9. Simultaneous online monitoring of inorganic compounds in aerosols and gases in an industrialized area

    NASA Astrophysics Data System (ADS)

    Khezri, Bahareh; Mo, Huan; Yan, Zhen; Chong, Shey-Ling; Heng, Aik Kian; Webster, Richard D.

    2013-12-01

    The automatic MARGA (monitor for aerosols and gases in ambient air) sampling system was used to measure the inorganic ions Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+ and Ca2+ in the PM2.5 aerosol phase and the corresponding inorganic gases HCl, HNO2, SO2, HNO3 and NH3 present in the gas phase. Samples were collected and analyzed hourly for 3 months between April and June, 2011, from a sampling site in Singapore close to a heavy industrial area containing extensive petrochemical refineries. The data (hourly and daily average) were analyzed, compared and discussed based on the ratios of HNO2/HNO3 and NH3/NH4+, the levels of nitrate and sulfate, the total nitrogen, the distribution of particulate matter and gaseous compounds, and the acidity of the aerosols. SO2 was the most abundant gas that appeared in an order of magnitude higher concentration than the other trace gases, and correspondingly SO42- was found to be at least 3-10 times higher than other anionic aerosol species. The concentration of major ions in aerosol samples and the related gaseous compounds followed the order of: SO42- > NH4+ > NO3- > K+ > Na+ > Cl- > Ca2+ > Mg2+ and SO2 > NH3 > HNO2 > HNO3, respectively. The maximum values for many of the target analytes occurred during the hazy period in May when there was significant contamination from regional fires. The elevated levels of HNO2 compared to HNO3 and high levels of HNO3 were rationalized based on artifacts in the denuder sampling methodology.

  10. Marine Primary and Secondary Aerosol emissions related to seawater biogeochemistry

    NASA Astrophysics Data System (ADS)

    Sellegri, Karine; D'Anna, Barbara; Marchand, Nicolas; Charriere, Bruno; Sempere, Richard; Mas, Sebastien; Schwier, Allison; Rose, Clmence; Pey, Jorge; Langley Dewitt, Helen; Mme, Aurlie; R'mili, Badr; George, Christian; Delmont, Anne

    2014-05-01

    Marine aerosol contributes significantly to the global aerosol load and consequently has an important impact on both the Earth's albedo and climate. Different factors influence the way they are produced from the sea water and transferred to the atmosphere. The sea state (whitecap coverage) and sea temperature influence the size and concentration of primarily produced particles but also biogeochemical characteristics of the sea water may influence both the physical and chemical fluxes. In order to study marine emissions, one approach is to use semicontrolled environments such as mesocosms. Within the SAM project (Sources of marine Aerosol in the Mediterranean), we characterize the primary Sea Salt Aerosol (SSA) and Secondary aerosol formation by nucleation during mesocosms experiments performed in May 2013 at the Oceanographic and Marine Station STARESO in western Corsica. We followed both water and air characteristics of three mesocosms containing an immerged part filled with 3,3 m3 of sea water and an emerged part filled with filtered natural air. Mesocosms were equipped with a pack of optical and physicochemical sensors and received different treatments: one of these mesocosms was left unchanged as control and the two others were enriched by addition of nitrates and phosphates respecting Redfield ratio (N:P = 16) in order to create different levels of phytoplanctonic activities. The set of sensors in each mesocosm was allowed to monitor the water temperature, conductivity, pH, incident light, fluorescence of chlorophyll a, and dissolved oxygen concentration. The mesocosms waters were daily sampled for chemical and biological (dissolved organic matter (i.e. DOC and CDOM), particulate matter and related polar compounds, transparent polysaccharides and nutrients concentration) and biological (chlorophyll a, virus, bacteria, phytoplankton and zooplankton concentrations) analyses. Secondary new particle formation was followed on-line in the emerged parts of the mesocosms, while a primary production by bubble bursting was simulated from a sample of sea water in a dedicated set-up every day. The size segregated aerosol number fluxes, cloud condensation nuclei (CCN) fluxes, and biological and organic contents were determined as a function of the sea water characteristics.

  11. Influence of particle-phase state on the hygroscopic behavior of mixed organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Mui, W.; Flagan, R. C.; Seinfeld, J. H.

    2015-05-01

    Recent work has demonstrated that organic and mixed organic-inorganic particles can exhibit multiple phase states depending on their chemical composition and on ambient conditions such as relative humidity (RH). To explore the extent to which water uptake varies with particle-phase behavior, hygroscopic growth factors (HGFs) of nine laboratory-generated, organic and organic-inorganic aerosol systems with physical states ranging from well-mixed liquids to phase-separated particles to viscous liquids or semi-solids were measured with the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe at RH values ranging from 40 to 90%. Water-uptake measurements were accompanied by HGF and RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. In addition, AIOMFAC-predicted growth curves are compared to several simplified HGF modeling approaches: (1) representing particles as ideal, well-mixed liquids; (2) forcing a single phase but accounting for non-ideal interactions through activity coefficient calculations; and (3) a Zdanovskii-Stokes-Robinson-like calculation in which complete separation of the inorganic and organic components is assumed at all RH values, with water uptake treated separately in each of the individual phases. We observed variability in the characteristics of measured hygroscopic growth curves across aerosol systems with differing phase behaviors, with growth curves approaching smoother, more continuous water uptake with decreasing prevalence of liquid-liquid phase separation and increasing oxygen : carbon ratios of the organic aerosol components. We also observed indirect evidence for the dehydration-induced formation of highly viscous semi-solid phases and for kinetic limitations to the crystallization of ammonium sulfate at low RH for sucrose-containing particles. AIOMFAC-predicted growth curves are generally in good agreement with the HGF measurements. The performances of the simplified modeling approaches, however, differ for particles with differing phase states. This suggests that no single simplified modeling approach can be used to capture the water-uptake behavior for the diversity of particle-phase behavior expected in the atmosphere. Errors in HGFs calculated with the simplified models are of sufficient magnitude to produce substantial errors in estimates of particle optical and radiative properties, particularly for the assumption that water uptake is driven by absorptive equilibrium partitioning with ideal particle-phase mixing.

  12. Influence of particle phase state on the hygroscopic behavior of mixed organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Mui, W.; Flagan, R. C.; Seinfeld, J. H.

    2014-12-01

    Recent work has demonstrated that organic and mixed organic-inorganic particles can exhibit multiple phase states depending on their chemical composition and on ambient conditions such as relative humidity (RH). To explore the extent to which water uptake varies with particle phase behavior, hygroscopic growth factors (HGFs) of nine laboratory-generated, organic and organic-inorganic aerosol systems with physical states ranging from well-mixed liquids, to phase-separated particles, to viscous liquids or semi-solids were measured with the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe at RH values ranging from 40-90%. Water-uptake measurements were accompanied by HGF and RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. In addition, AIOMFAC-predicted growth curves are compared to several simplified HGF modeling approaches: (1) representing particles as ideal, well-mixed liquids, (2) forcing a single phase, but accounting for non-ideal interactions through activity coefficient calculations, and (3) a Zdanovskii-Stokes-Robinson-like calculation in which complete separation between the inorganic and organic components is assumed at all RH values, with water-uptake treated separately in each of the individual phases. We observed variability in the characteristics of measured hygroscopic growth curves across aerosol systems with differing phase behaviors, with growth curves approaching smoother, more continuous water uptake with decreasing prevalence of liquid-liquid phase separation and increasing oxygen : carbon ratios of the organic aerosol components. We also observed indirect evidence for the dehydration-induced formation of highly viscous semi-solid phases and for kinetic limitations to the crystallization of ammonium sulfate at low RH for sucrose-containing particles. AIOMFAC-predicted growth curves are generally in good agreement with the HGF measurements. The performances of the simplified modeling approaches, however, differ for particles with differing phase states. This suggests that a single simplified modeling approach cannot be used to capture the water-uptake behavior for the diversity of particle phase behavior expected in the atmosphere. Errors in HGFs calculated with the simplified models are of sufficient magnitude to contribute substantially to error in estimates of particle optical and radiative properties, particularly for the assumption that water uptake is driven by absorptive equilibrium partitioning with ideal particle-phase mixing.

  13. New characteristics of submicron aerosols and factor analysis of combined organic and inorganic aerosol mass spectra during winter in Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, J. K.; Ji, D. S.; Liu, Z. R.; Hu, B.; Wang, L. L.; Huang, X. J.; Wang, Y. S.

    2015-07-01

    In recent years, an increasing amount of attention has been paid to heavy haze pollution in Beijing, China. In addition to Beijing's population of approximately 20 million and its 5 million vehicles, nearby cities and provinces are host to hundreds of heavily polluting industries. In this study, a comparison between observations in January 2013 and January 2014 showed that non-refractory PM1 (NR-PM1) pollution was weaker in January 2014, which was primarily caused by variations in meteorological conditions. For the first time, positive matrix factorization (PMF) was applied to the merged high-resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer measurements in Beijing, and the sources and evolution of NR-PM1 in January 2014 were investigated. The two factors, NO3-OA1 and NO3-OA2, were primarily composed of ammonium nitrate, and each showed a different degree of oxidation and diurnal variation. The organic fraction of SO4-OA showed the highest degree of oxidation of all PMF factors. The hydrocarbon-like organic aerosol (OA) and cooking OA factors contained negligible amounts of inorganic species. The coal combustion OA factor contained a high contribution from chloride in its mass spectrum. The NR-PM1 composition showed significant variations in January 2014, in which the contribution of nitrate clearly increased during heavy pollution events. The most effective way to control fine particle pollution in Beijing is through joint prevention and control measures at the regional level, rather than a focus on an individual city, especially for severe haze events.

  14. MATHEMATICAL MODEL FOR GAS/PARTICLE PARTITIONING OF SECONDARY ORGANIC AEROSOLS. (R824970)

    EPA Science Inventory

    A dynamic model is developed for gas-particle absorptive partitioning of semi-volatile organic aerosols. The model is applied to simulate a pair of m-xylene/NOx outdoor smog chamber experiments. In the presence of an inorganic seed aerosol a threshold ...

  15. Mixing and phase partitioning of primary and secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Asa-Awuku, A.; Miracolo, M. A.; Kroll, J. H.; Robinson, A. L.; Donahue, N. M.

    2009-08-01

    Predicting primary and secondary organic aerosol (POA and SOA) concentrations requires understanding the phase partitioning of semi-volatile organic species. A well-mixed single phase organic aerosol can absorb greater amounts of semi-volatile species but little experimental evidence exists on the phase distribution of particulate organics. We investigated the phase partitioning and mixing of semi-volatile POA and SOA in a smog chamber. Particle time of flight (PToF) data from an Aerodyne aerosol mass spectrometer (AMS) were used to quantify the extent of mixing. The SOA plus motor oil and diesel fuel combination produced a weakly mixed system, in which two particulate organic phases coexist. However, the POA in diesel exhaust readily mixed with SOA, forming a single phase after one hour. Although both POA types contain semi-volatile components, there is a fundamental difference in their partitioning behavior with SOA. The high resolution AMS data reveal minor differences in composition between the two types of POA. This work provides further evidence that there exists a set of unidentified components that influence particulate mixing that affect OA formation and suggests the extent of absorbent phase mixing (strong versus weak) can be observed and quantified with PToF data.

  16. Nonequilibrium atmospheric secondary organic aerosol formation and growth.

    PubMed

    Perraud, Véronique; Bruns, Emily A; Ezell, Michael J; Johnson, Stanley N; Yu, Yong; Alexander, M Lizabeth; Zelenyuk, Alla; Imre, Dan; Chang, Wayne L; Dabdub, Donald; Pankow, James F; Finlayson-Pitts, Barbara J

    2012-02-21

    Airborne particles play critical roles in air quality, health effects, visibility, and climate. Secondary organic aerosols (SOA) formed from oxidation of organic gases such as α-pinene account for a significant portion of total airborne particle mass. Current atmospheric models typically incorporate the assumption that SOA mass is a liquid into which semivolatile organic compounds undergo instantaneous equilibrium partitioning to grow the particles into the size range important for light scattering and cloud condensation nuclei activity. We report studies of particles from the oxidation of α-pinene by ozone and NO(3) radicals at room temperature. SOA is primarily formed from low-volatility ozonolysis products, with a small contribution from higher volatility organic nitrates from the NO(3) reaction. Contrary to expectations, the particulate nitrate concentration is not consistent with equilibrium partitioning between the gas phase and a liquid particle. Rather the fraction of organic nitrates in the particles is only explained by irreversible, kinetically determined uptake of the nitrates on existing particles, with an uptake coefficient that is 1.6% of that for the ozonolysis products. If the nonequilibrium particle formation and growth observed in this atmospherically important system is a general phenomenon in the atmosphere, aerosol models may need to be reformulated. The reformulation of aerosol models could impact the predicted evolution of SOA in the atmosphere both outdoors and indoors, its role in heterogeneous chemistry, its projected impacts on air quality, visibility, and climate, and hence the development of reliable control strategies. PMID:22308444

  17. Nonequilibrium atmospheric secondary organic aerosol formation and growth

    PubMed Central

    Perraud, Véronique; Bruns, Emily A.; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Alexander, M. Lizabeth; Zelenyuk, Alla; Imre, Dan; Chang, Wayne L.; Dabdub, Donald; Pankow, James F.; Finlayson-Pitts, Barbara J.

    2012-01-01

    Airborne particles play critical roles in air quality, health effects, visibility, and climate. Secondary organic aerosols (SOA) formed from oxidation of organic gases such as α-pinene account for a significant portion of total airborne particle mass. Current atmospheric models typically incorporate the assumption that SOA mass is a liquid into which semivolatile organic compounds undergo instantaneous equilibrium partitioning to grow the particles into the size range important for light scattering and cloud condensation nuclei activity. We report studies of particles from the oxidation of α-pinene by ozone and NO3 radicals at room temperature. SOA is primarily formed from low-volatility ozonolysis products, with a small contribution from higher volatility organic nitrates from the NO3 reaction. Contrary to expectations, the particulate nitrate concentration is not consistent with equilibrium partitioning between the gas phase and a liquid particle. Rather the fraction of organic nitrates in the particles is only explained by irreversible, kinetically determined uptake of the nitrates on existing particles, with an uptake coefficient that is 1.6% of that for the ozonolysis products. If the nonequilibrium particle formation and growth observed in this atmospherically important system is a general phenomenon in the atmosphere, aerosol models may need to be reformulated. The reformulation of aerosol models could impact the predicted evolution of SOA in the atmosphere both outdoors and indoors, its role in heterogeneous chemistry, its projected impacts on air quality, visibility, and climate, and hence the development of reliable control strategies. PMID:22308444

  18. Inorganic aerosols responses to emission changes in Yangtze River Delta, China.

    PubMed

    Dong, Xinyi; Li, Juan; Fu, Joshua S; Gao, Yang; Huang, Kan; Zhuang, Guoshun

    2014-05-15

    The new Chinese National Ambient Air Quality standards (CH-NAAQS) published on Feb. 29th, 2012 listed PM2.5 as criteria pollutant for the very first time. In order to probe into PM2.5 pollution over Yangtze River Delta, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Total PM2.5 concentration over YRD was found to have strong seasonal variation with higher values in winter months (up to 89.9 μg/m(3) in January) and lower values in summer months (down to 28.8 μg/m(3) in July). Inorganic aerosols were found to have substantial contribution to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3(-)) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3(-) concentration throughout the year. In winter, NO3(-) was found to increase under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4(+)) and sulfate (SO4(2-)), while other seasons showed decrease response of NO3(-). Sensitivity responses of NO3(-) under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3(-) formation was actually more sensitive to VOC than NOx due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols. PMID:24631615

  19. Inorganic and black carbon aerosols in the Los Angeles Basin during CalNex

    NASA Astrophysics Data System (ADS)

    Ensberg, J. J.; Craven, J. S.; Metcalf, A. R.; Allan, J. D.; Angevine, W. M.; Bahreini, R.; Brioude, J.; Cai, C.; Coe, H.; Gouw, J. A.; Ellis, R. A.; Flynn, J. H.; Haman, C. L.; Hayes, P. L.; Jimenez, J. L.; Lefer, B. L.; Middlebrook, A. M.; Murphy, J. G.; Neuman, J. A.; Nowak, J. B.; Roberts, J. M.; Stutz, J.; Taylor, J. W.; Veres, P. R.; Walker, J. M.; Seinfeld, J. H.

    2013-02-01

    We evaluate predictions from the Community Multiscale Air Quality (CMAQ version 4.7.1) model against a suite of airborne and ground-based meteorological measurements, gas- and aerosol-phase inorganic measurements, and black carbon (BC) measurements over Southern California during the CalNex field campaign in May/June 2010. Ground-based measurements are from the CalNex Pasadena ground site, and airborne measurements took place onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Navy Twin Otter and the NOAA WP-3D aircraft. BC predictions are in general agreement with observations at the Pasadena ground site and onboard the WP-3D, but are consistently overpredicted when compared to Twin Otter measurements. Adjustments to predicted inorganic mass concentrations, based on predicted aerosol size distributions and the AMS transmission efficiency, are shown to be significant. Owing to recent shipping emission reductions, the dominant source of sulfate in the L.A. Basin may now be long-range transport. Sensitivity studies suggest that severely underestimated ammonia emissions, and not the exclusion of crustal species (Ca2 +, K+, and Mg2 +), are the single largest contributor to measurement/model disagreement in the eastern part of the L.A. Basin. Despite overstated NOx emissions, total nitrate concentrations are underpredicted, which suggests a missing source of HNO3 and/or overprediction of deposition rates. Adding gas-phase NH3 measurements and size-resolved measurements, up to 10 μm, of nitrate and various cations (e.g. Na+, Ca2 +, K+) to routine monitoring stations in the L.A. Basin would greatly facilitate interpreting day-to-day fluctuations in fine and coarse inorganic aerosol.

  20. Inorganic aerosols responses to emission changes in Yangtze River Delta, China

    SciTech Connect

    Dong, Xinyi; Li, Juan; Fu, Joshua S.; Gao, Yang; Huang, Kan; Zhuang, Guoshun

    2014-05-15

    China announced the Chinese National Ambient Air Quality standards (CH-NAAQS) on Feb. 29th, 2012, and PM2.5 is for the very first time included in the standards as a criteria pollutant. In order to probe into PM2.5 pollution over Yangtze River Delta, which is one of the major urban clusters hosting more than 80 million people in China, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Both simulation and observation demonstrated that, inorganic aerosols have substantial contributions to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3-) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3-concentration throughout the year. We also found that in winter NO3- was even increased under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4+) and sulfate (SO42-), while other seasons showed decrease response of NO3-. Sensitivity responses of NO3- under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3- formation was actually VOC sensitive due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols.

  1. The Radiative Forcing from Biogenic Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Scott, C. E.; Forster, P.; Spracklen, D. V.; Carslaw, K. S.; Arnold, S.; Rap, A.

    2012-12-01

    Vegetation emits biogenic volatile organic compounds (BVOCs), such as monoterpenes, isoprene and sesquiterpenes, into the atmosphere. Once emitted, BVOCs rapidly undergo reactions with the hydroxyl radical, ozone and the nitrate radical to yield a range of lower volatility oxidation products. These compounds are of sufficiently low volatility to partition into the aerosol phase, forming secondary organic aerosol (SOA). Increasingly, there are indications that organic compounds, specifically the oxidation products of terpenes, may contribute to the process of new particle formation as well as the growth of existing particles. The formation of SOA can influence the Earth's radiative balance by absorbing and scattering radiation (the direct effect) and by altering the properties of clouds (the indirect effect), via their action as cloud condensation nuclei (CCN). Biogenic SOA formed from the oxidation products of isoprene and monoterpenes has been shown to be CCN active under atmospherically relevant conditions, indicating that complex climate feedbacks may result from the emission of BVOCs. Using a global aerosol microphysics model (GLOMAP), and offline radiative transfer code, we simulate a present day aerosol indirect radiative forcing of between -0.07 and - 0.81 W.m-2, for the emission of BVOCs, due to a simulated increase in the number of particles able to act as CCN. The forcing obtained per emission is not spatially uniform, with monoterpenes in the southern hemisphere being most efficient at inducing a radiative change. We find a strong sensitivity to the treatment of concurrent anthropogenic emissions. In the present day, biogenic secondary organic material is more efficient at perturbing CCN number concentrations, but when anthropogenic emissions from 1750 are included in our simulations, the lower background aerosol concentration results in a more significant radiative response. The largest uncertainty in the forcing obtained however, comes from the inclusion of organic compounds in the formation rate of new particles; until a more complete understanding of the nucleation process is achieved, it will be difficult to constrain this value further. Studies that aim to evaluate the impact of forests on the climate have traditionally focused on carbon sequestration and surface albedo changes; our study suggests that neglecting additional biogeochemical effects could result in an inaccurate assessment.

  2. Molecular Characterization of Secondary Aerosol from Oxidation of Cyclic Methylsiloxanes

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Johnston, Murray V.

    2016-01-01

    Cyclic volatile methylsiloxanes (cVMS) have been identified as important gas-phase atmospheric contaminants, but knowledge of the molecular composition of secondary aerosol derived from cVMS oxidation is incomplete. Here, the chemical composition of secondary aerosol produced from the OH-initiated oxidation of decamethylcyclopentasiloxane (D5, C10H30O5Si5) is characterized by high performance mass spectrometry. ESI-MS reveals a large number of monomeric (300 < m/z < 470) and dimeric (700 < m/z < 870) oxidation products. With the aid of high resolution and MS/MS, it is shown that oxidation leads mainly to the substitution of a CH3 group by OH or CH2OH, and that a single molecule can undergo many CH3 group substitutions. Dimers also exhibit OH and CH2OH substitutions and can be linked by O, CH2, and CH2CH2 groups. GC-MS confirms the ESI-MS results. Oxidation of D4 (C8H24O4Si4) exhibits similar substitutions and oligomerizations to D5, though the degree of oxidation is greater under the same conditions and there is direct evidence for the formation of peroxy groups (CH2OOH) in addition to OH and CH2OH.

  3. Molecular Characterization of Secondary Aerosol from Oxidation of Cyclic Methylsiloxanes.

    PubMed

    Wu, Yue; Johnston, Murray V

    2016-03-01

    Cyclic volatile methylsiloxanes (cVMS) have been identified as important gas-phase atmospheric contaminants, but knowledge of the molecular composition of secondary aerosol derived from cVMS oxidation is incomplete. Here, the chemical composition of secondary aerosol produced from the OH-initiated oxidation of decamethylcyclopentasiloxane (D5, C10H30O5Si5) is characterized by high performance mass spectrometry. ESI-MS reveals a large number of monomeric (300 < m/z < 470) and dimeric (700 < m/z < 870) oxidation products. With the aid of high resolution and MS/MS, it is shown that oxidation leads mainly to the substitution of a CH3 group by OH or CH2OH, and that a single molecule can undergo many CH3 group substitutions. Dimers also exhibit OH and CH2OH substitutions and can be linked by O, CH2, and CH2CH2 groups. GC-MS confirms the ESI-MS results. Oxidation of D4 (C8H24O4Si4) exhibits similar substitutions and oligomerizations to D5, though the degree of oxidation is greater under the same conditions and there is direct evidence for the formation of peroxy groups (CH2OOH) in addition to OH and CH2OH. Graphical Abstract ᅟ. PMID:26729452

  4. Molecular Characterization of Secondary Aerosol from Oxidation of Cyclic Methylsiloxanes

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Johnston, Murray V.

    2016-03-01

    Cyclic volatile methylsiloxanes (cVMS) have been identified as important gas-phase atmospheric contaminants, but knowledge of the molecular composition of secondary aerosol derived from cVMS oxidation is incomplete. Here, the chemical composition of secondary aerosol produced from the OH-initiated oxidation of decamethylcyclopentasiloxane (D5, C10H30O5Si5) is characterized by high performance mass spectrometry. ESI-MS reveals a large number of monomeric (300 < m/z < 470) and dimeric (700 < m/z < 870) oxidation products. With the aid of high resolution and MS/MS, it is shown that oxidation leads mainly to the substitution of a CH3 group by OH or CH2OH, and that a single molecule can undergo many CH3 group substitutions. Dimers also exhibit OH and CH2OH substitutions and can be linked by O, CH2, and CH2CH2 groups. GC-MS confirms the ESI-MS results. Oxidation of D4 (C8H24O4Si4) exhibits similar substitutions and oligomerizations to D5, though the degree of oxidation is greater under the same conditions and there is direct evidence for the formation of peroxy groups (CH2OOH) in addition to OH and CH2OH.

  5. Secondary organic aerosol composition from C12 alkanes.

    PubMed

    Schilling Fahnestock, Katherine A; Yee, Lindsay D; Loza, Christine L; Coggon, Matthew M; Schwantes, Rebecca; Zhang, Xuan; Dalleska, Nathan F; Seinfeld, John H

    2015-05-14

    The effects of structure, NOx conditions, relative humidity, and aerosol acidity on the chemical composition of secondary organic aerosol (SOA) are reported for the photooxidation of three C12 alkanes: n-dodecane, cyclododecane, and hexylcyclohexane. Acidity was modified through seed particle composition: NaCl, (NH4)2SO4, and (NH4)2SO4 + H2SO4. Off-line analysis of SOA was carried out by solvent extraction and gas chromatography-mass spectrometry (GC/MS) and direct analysis in real-time mass spectrometry. We report here 750 individual masses of SOA products identified from these three alkane systems and 324 isomers resolved by GC/MS analysis. The chemical compositions for each alkane system provide compelling evidence of particle-phase chemistry, including reactions leading to oligomer formation. Major oligomeric species for alkane SOA are peroxyhemiacetals, hemiacetals, esters, and aldol condensation products. Furans, dihydrofurans, hydroxycarbonyls, and their corresponding imine analogues are important participants in these oligomer-producing reactions. Imines are formed in the particle phase from the reaction of the ammonium sulfate seed aerosol with carbonyl-bearing compounds present in all the SOA systems. Under high-NO conditions, organonitrate products can lead to an increase of aerosol volume concentration by up to a factor of 5 over that in low-NO conditions. Structure was found to play a key role in determining the degree of functionalization and fragmentation of the parent alkane, influencing the mean molecular weight of the SOA produced and the mean atomic O:C ratio. PMID:24814371

  6. Modeling regional secondary organic aerosol using the Master Chemical Mechanism

    NASA Astrophysics Data System (ADS)

    Li, Jingyi; Cleveland, Meredith; Ziemba, Luke D.; Griffin, Robert J.; Barsanti, Kelley C.; Pankow, James F.; Ying, Qi

    2015-02-01

    A modified near-explicit Master Chemical Mechanism (MCM, version 3.2) with 5727 species and 16,930 reactions and an equilibrium partitioning module was incorporated into the Community Air Quality Model (CMAQ) to predict the regional concentrations of secondary organic aerosol (SOA) from volatile organic compounds (VOCs) in the eastern United States (US). In addition to the semi-volatile SOA from equilibrium partitioning, reactive surface uptake processes were used to simulate SOA formation due to isoprene epoxydiol, glyoxal and methylglyoxal. The CMAQ-MCM-SOA model was applied to simulate SOA formation during a two-week episode from August 28 to September 7, 2006. The southeastern US has the highest SOA, with a maximum episode-averaged concentration of ?12 ?g m-3. Primary organic aerosol (POA) and SOA concentrations predicted by CMAQ-MCM-SOA agree well with AMS-derived hydrocarbon-like organic aerosol (HOA) and oxygenated organic aerosol (OOA) urban concentrations at the Moody Tower at the University of Houston. Predicted molecular properties of SOA (O/C, H/C, N/C and OM/OC ratios) at the site are similar to those reported in other urban areas, and O/C values agree with measured O/C at the same site. Isoprene epoxydiol is predicted to be the largest contributor to total SOA concentration in the southeast US, followed by methylglyoxal and glyoxal. The semi-volatile SOA components are dominated by products from ?-caryophyllene oxidation, but the major species and their concentrations are sensitive to errors in saturation vapor pressure estimation. A uniform decrease of saturation vapor pressure by a factor of 100 for all condensable compounds can lead to a 150% increase in total SOA. A sensitivity simulation with UNIFAC-calculated activity coefficients (ignoring phase separation and water molecule partitioning into the organic phase) led to a 10% change in the predicted semi-volatile SOA concentrations.

  7. OZONE-ISOPRENE REACTION: RE-EXAMINATION OF THE FORMATION OF SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    The reaction of ozone and isoprene has been studied to examine physical and chemical characteristics of the secondary organic aerosol formed. Using a scanning mobility particle sizer, the volume distribution of the aerosol was found in the range 0.05 - 0.2 m. The aerosol yield w...

  8. OZONE-ISOPRENE REACTION: RE-EXAMINATION OF THE FORMATION OF SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    The reaction of ozone and isoprene has been studied to examine physical and chemical characteristics of the secondary organic aerosol formed. Using a scanning mobility particle sizer, the volume distribution of the aerosol was found in the range 0.05 - 0.2 µm. The aerosol yield w...

  9. Aerosol Size Distribution Response to Anthropogenically Driven Historical Changes in Biogenic Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Pierce, J. R.; D'Andrea, S.; Acosta Navarro, J. C.; Farina, S.; Scott, C.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.

    2014-12-01

    Emissions of biological volatile organic compounds (BVOC) have changed in the past millennium due to changes in land use, temperature and CO2 concentrations. A recent model reconstruction of BVOC emissions over the past millennium predicted the changes in the three dominant secondary organic aerosol (SOA) producing BVOC classes (isoprene, monoterpenes and sesquiterpenes). The reconstruction predicted that in global averages isoprene emissions have decreased (land-use changes to crop/grazing land dominate the reduction), while monoterpene and sesquiterpene emissions have increased (temperature increases dominate the increases); however, all three show both increases and decreases in certain regions due to competition between the various influencing factors. These BVOC changes have largely been anthropogenic in nature, and land-use change was shown to have the most dramatic effect by decreasing isoprene emissions. We use these modeled estimates of these three dominant BVOC classes' emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on SOA formation and global aerosol size distributions using the GEOS-Chem-TOMAS global aerosol microphysics model. With anthropogenic emissions (e.g. SO2, NOx, primary aerosols) held at present day values and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of >25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000. This change in N80 was predominantly driven by a shift towards crop/grazing land that produces less BVOC than the natural vegetation. Similar sensitivities to year 1000 vs. year 2000 BVOC emissions exist when anthropogenic emissions are turned off. This large decrease in N80 could be a largely overlooked and important anthropogenic aerosol effect on regional climates.

  10. Temporal variability of primary and secondary aerosols over northern India: Impact of biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Rastogi, N.; Singh, A.; Sarin, M. M.; Singh, D.

    2016-01-01

    The ambient particulate matter injected from biomass burning emissions (BBEs) over northern India has been a subject of major debate in the context of regional air quality and atmospheric chemistry of several organic and inorganic constituents. This necessitates an observational approach over a large spatial and temporal scale. We present an extensive data set on PM2.5 samples (n = 147) collected for one full year from a sampling site (Patiala: 30.2°N, 76.3°E) in the source region of BBEs in northern India. During the sampling period from October 2011 to September 2012, PM2.5 mass concentration varied from ∼20 to 400 μg m-3. Among the major constituents, contribution of total carbonaceous aerosols (OC + EC) ranged from 8 to 60%. The average OC/EC and K+/EC ratio, varying from 3.2 to 12 and 0.26 to 0.80, respectively, emphasizes the dominance of BBEs over the annual seasonal cycle. The average secondary organic matter (SOM) accounts for ∼10-40% of PM2.5 mass in different seasons; whereas contribution of secondary inorganics was maximum (∼40%) during the winter. The pronounced temporal variability in SOM suggests its contribution from varying sources, their emission strength and process of secondary organic formation. Diurnal differences in the chemical constituents are attributable to regional meteorological factors and boundary layer dynamics. The emerging data set from this study is important to understand feedback mechanism from anthropogenic activities to the regional climate change scenario.

  11. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility-only model suggested that differences in the volatility of the precursors were able to explain most of the variability observed in the SOA formation. For aircraft exhaust, the previous methods to simulate SOA formation from SVOC and IVOC performed poorly. A more physically-realistic modeling framework was developed, which was then used to show that SOA formation from aircraft exhaust was (a) higher for petroleum-based than synthetically derived jet fuel and (b) higher at lower engine loads and vice versa. All of the SOA data from combustion emissions experiments were used to determine source-specific parameterizations to model SOA formation from SVOC, IVOC and other unspeciated emissions. The new parameterizations were used to investigate their influence on the OA budget in the United States. Combustion sources were estimated to emit about 2.61 Tg yr-1 of SVOC, 1VOC and other unspeciated emissions (sixth of the total anthropogenic organic emissions), which are predicted to double SOA production from combustion sources in the United States. The contribution of SVOC and IVOC emissions to global SOA formation was assessed using a global climate model. Simulations were performed using a modified version of GISS GCM 11'. The modified model predicted that SVOC and IVOC contributed to half of the OA mass in the atmosphere. Their inclusion improved OA model-measurement comparisons for absolute concentrations, POA-SOA split and volatility (gas-particle partitioning) globally suggesting that atmospheric models need to incorporate SOA formation from SVOC and IVOC if they are to reasonably predict the abundance and properties of aerosols. This thesis demonstrates that SVOC/IVOC and possibly other unspeciated organics emitted by combustion sources are very important precursors of SOA and potentially large contributors to the atmospheric aerosol mass. Models used for research and policy applications need to represent them to improve model-predictions of aerosols on climate and health outcomes. The improved modeling frameworks developed in this dissertation are suitable for implementation into chemical transport models.

  12. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles

    NASA Astrophysics Data System (ADS)

    Li, Jia; Pósfai, MiháLy; Hobbs, Peter V.; Buseck, Peter R.

    2003-07-01

    Individual aerosol particles collected over southern Africa during the SAFARI 2000 field study were studied using transmission electron microscopy and field-emission scanning electron microscopy. The sizes, shapes, compositions, mixing states, surface coatings, and relative abundances of aerosol particles from biomass burning, in boundary layer hazes, and in the free troposphere were compared, with emphasis on aging and reactions of inorganic smoke particles. Potassium salts and organic particles were the predominant species in the smoke, and most were internally mixed. More KCl particles occur in young smoke, whereas more K2SO4 and KNO3 particles were present in aged smoke. This change indicates that with the aging of the smoke, KCl particles from the fires were converted to K2SO4 and KNO3 through reactions with sulfur- and nitrogen-bearing species from biomass burning as well as other sources. More soot was present in smoke from flaming grass fires than bush and wood fires, probably due to the predominance of flaming combustion in grass fires. The high abundance of organic particles and soluble salts can affect the hygroscopic properties of biomass-burning aerosols and therefore influence their role as cloud condensation nuclei. Particles from biomass burning were important constituents of the regional hazes.

  13. Hydroxyl radicals from secondary organic aerosol decomposition in water

    NASA Astrophysics Data System (ADS)

    Tong, Haijie; Arangio, Andrea M.; Lakey, Pascale S. J.; Berkemeier, Thomas; Liu, Fobang; Kampf, Christopher J.; Brune, William H.; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-02-01

    We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, limonene) is ˜ 0.1 % upon extraction with pure water and increases to ˜ 1.5 % in the presence of Fe2+ ions due to Fenton-like reactions. Upon extraction of SOA samples from OH photooxidation of isoprene, we also detected OH yields of around ˜ 0.1 %, which increases upon addition of Fe2+. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical H2O2 Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.

  14. Secondary organic aerosol from polycyclic aromatic hydrocarbons in Southeast Texas

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Ying, Qi

    2012-08-01

    Recent chamber studies show that low-volatility gas phase precursors such as polycyclic aromatic hydrocarbons (PAHs) can be a significant source of secondary organic aerosol (SOA). In this work, formation of SOA from the photo-oxidation products of PAHs is added to the SOA modeling framework of the Community Multiscale Air Quality (CMAQ) model to determine the regional distribution of SOA products from PAHs (PAH-SOA) and the contributions from sources in Southeast Texas during the Texas Air Quality Study 2006 (TexAQS 2006). Results show that PAHs released from anthropogenic sources can produce SOA mass as much as 10% of that from the traditional light aromatics or approximately 4% of total anthropogenic SOA. In areas under the influence of wildfire emissions, the amount of PAH-SOA can be as much as 50% of the SOA from light aromatics. A source-oriented modeling framework is adopted to determine the major sources of PAH-SOA by tracking the emitted PAHs and their oxidation products in the gas and aerosol phases from different sources separately. Among the eight sources (vehicles, solvent utilization, residential wood, industries, natural gas combustion, coal combustion, wildfire and other sources) that are tracked in the model, wildfire, vehicles, solvent and industries are the major sources of PAH-SOA. Coal and natural gas combustion appear to be less important in terms of their contributions to PAH-SOA.

  15. Hydroxyl radicals from secondary organic aerosol decomposition in water

    NASA Astrophysics Data System (ADS)

    Tong, H.; Arangio, A. M.; Lakey, P. S. J.; Berkemeier, T.; Liu, F.; Kampf, C. J.; Pöschl, U.; Shiraiwa, M.

    2015-11-01

    We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, limonene) is ~ 0.1 % upon extraction with pure water and increases to ~ 1.5 % in the presence of Fe2+ ions due to Fenton-like reactions. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical H2O2 Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.

  16. Updated aerosol module and its application to simulate secondary organic aerosols during IMPACT campaign May 2008

    NASA Astrophysics Data System (ADS)

    Li, Y. P.; Elbern, H.; Lu, K. D.; Friese, E.; Kiendler-Scharr, A.; Mentel, Th. F.; Wang, X. S.; Wahner, A.; Zhang, Y. H.

    2013-07-01

    The formation of Secondary organic aerosol (SOA) was simulated with the Secondary ORGanic Aerosol Model (SORGAM) by a classical gas-particle partitioning concept, using the two-product model approach, which is widely used in chemical transport models. In this study, we extensively updated SORGAM including three major modifications: firstly, we derived temperature dependence functions of the SOA yields for aromatics and biogenic VOCs (volatile organic compounds), based on recent chamber studies within a sophisticated mathematic optimization framework; secondly, we implemented the SOA formation pathways from photo oxidation (OH initiated) of isoprene; thirdly, we implemented the SOA formation channel from NO3-initiated oxidation of reactive biogenic hydrocarbons (isoprene and monoterpenes). The temperature dependence functions of the SOA yields were validated against available chamber experiments, and the updated SORGAM with temperature dependence functions was evaluated with the chamber data. Good performance was found with the normalized mean error of less than 30%. Moreover, the whole updated SORGAM module was validated against ambient SOA observations represented by the summed oxygenated organic aerosol (OOA) concentrations abstracted from aerosol mass spectrometer (AMS) measurements at a rural site near Rotterdam, the Netherlands, performed during the IMPACT campaign in May 2008. In this case, we embedded both the original and the updated SORGAM module into the EURopean Air pollution and Dispersion-Inverse Model (EURAD-IM), which showed general good agreements with the observed meteorological parameters and several secondary products such as O3, sulfate and nitrate. With the updated SORGAM module, the EURAD-IM model also captured the observed SOA concentrations reasonably well especially those during nighttime. In contrast, the EURAD-IM model before update underestimated the observations by a factor of up to 5. The large improvements of the modeled SOA concentrations by updated SORGAM were attributed to the mentioned three modifications. Embedding the temperature dependence functions of the SOA yields, including the new pathways from isoprene photo oxidations, and switching on the SOA formation from NO3 initiated biogenic VOC oxidations, contributed to this enhancement by 10, 22 and 47%, respectively. However, the EURAD-IM model with updated SORGAM still clearly underestimated the afternoon SOA observations up to a factor of two.

  17. Small molecules as tracers in atmospheric secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Yu, Ge

    Secondary organic aerosol (SOA), formed from in-air oxidation of volatile organic compounds, greatly affects human health and climate. Although substantial research has been devoted to SOA formation and evolution, the modeled and lab-generated SOA are still low in mass and degree of oxidation compared to ambient measurements. In order to compensate for these discrepancies, the aqueous processing pathway has been brought to attention. The atmospheric waters serve as aqueous reaction media for dissolved organics to undergo further oxidation, oligomerization, or other functionalization reactions, which decreases the vapor pressure while increasing the oxidation state of carbon atoms. Field evidence for aqueous processing requires the identification of tracer products such as organosulfates. We synthesized the standards for two organosulfates, glycolic acid sulfate and lactic acid sulfate, in order to measure their aerosol-state concentration from five distinct locations via filter samples. The water-extracted filter samples were analyzed by LC-MS. Lactic acid sulfate and glycolic acid sulfate were detected in urban locations in the United States, Mexico City, and Pakistan with varied concentrations, indicating their potential as tracers. We studied the aqueous processing reaction between glyoxal and nitrogen-containing species such as ammonium and amines exclusively by NMR spectrometry. The reaction products formic acid and several imidazoles along with the quantified kinetics were reported. The brown carbon generated from these reactions were quantified optically by UV-Vis spectroscopy. The organic-phase reaction between oxygen molecule and alkenes photosensitized by alpha-dicarbonyls were studied in the same manner. We observed the fast kinetics transferring alkenes to epoxides under simulated sunlight. Statistical estimations indicate a very effective conversion of aerosol-phase alkenes to epoxides, potentially forming organosulfates in a deliquescence event and increasing aerosol mass. Finally, we built a containerless apparatus to study aqueous processing reactions using an acoustic levitator paired with a mass spectrometer. The levitator is capable of trapping droplets with the size of 80-500 mum in diameter for over eight hours. The apparatus is also capable of drying and wetting the droplet in a controllable manner. We performed am example reaction between glyoxal and ammonium sulfate using this instrument, and showed that it could qualitatively monitor aqueous processing reactions.

  18. Field Studies for Secondary Organic Aerosol in the Transboundary Air

    NASA Astrophysics Data System (ADS)

    Irei, S.; Takami, A.; Sadanaga, Y.; Nozoe, S.; Hayashi, M.; Hara, K.; Arakaki, T.; Hatakeyama, S.; Miyoshi, T.; Yokouchi, Y.; Bandow, H.

    2014-12-01

    To study formation of secondary organic aerosol (SOA) in the air outflowed from the Chinese continent and its fraction in an urban city located in downwind, we have conducted field studies at two background sites and one urban site in the western Japan: the Cape Hedo Aerosol and Atmospheric Monitoring Station (26.9?N, 128.3?E), the Fukue Atmospheric Monitoring Station (32.8?N, 128.7?E), and Fukuoka University (33.6?N, 130.4?E), respectively. During the studies, stable carbon isotope ratio (?13C) of low-volatile water-soluble organic carbon (LV-WSOC) was measured in 24 h collected filter samples of total suspended particulate matter. Concentration of fine organic aerosol and the proportion of the signal at m/z 44 (ions from the carboxyl group) in the organic mass spectra (f44) were also measured by Aerodyne aerosol mass spectrometers. Limited to the Fukue site only, mixing ratios of trace gas species, such as aromatic hydrocarbons, NOx, and NOy, were also measured using GC-FID and NOx and NOyanalyzers for estimation of photochemical age (t[OH]). A case study in December 2010 showed that plots of ?13C versus f44 showed systematic variations at Hedo and Fukue. However, their trends were opposite. At Fukue the trend was consistent in the plot of ?13C of LV-WSOC versus t[OH] estimated by the NOx/NOy or the hydrocarbon ratios, indicating influence of SOA. The systematic trends aforementioned qualitatively agreed with a binary mixture model of SOA with background LV-WSOC having the f44 of ~0.06 and the ?13C of -17 or higher, implication of some influence of primary emission associated with C4plants. Given that the LV-WSOC at the urban Fukuoka site was a binary mixture, a mass balance for ?13C was constructed below. In the equation, ?13CMix, ?13CLocal, ?13CTrans, and FLocal are ?13C of binary LV-WSOC mixture, ?13C of LV-WSOC from local emission origin, ?13C of LV-WSOC from transboundary pollution origin, and a fraction of LV-WSOC from local emission origin in the mixture, respectively. We applied d13C values at Fukuoka and Fukue to ?13CMix and ?13CTrans, respectively, and ?13C of -27 for vehicular emission to ?13CLocal. The preliminary results demonstrated that, except some negative FLocal, the majority of calculated FLocal ranged from 4% to 86% and the lower FLocal, the higher LV-WSOC concentration.

  19. Anthropogenic Influence on Secondary Aerosol Formation and Total Water-Soluble Carbon on Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    Gioda, Adriana; Mateus, Vinicius; Monteiro, Isabela; Taira, Fabio; Esteves, Veronica; Saint'Pierre, Tatiana

    2013-04-01

    On a global scale, the atmosphere is an important source of nutrients, as well as pollutants, because of its interfaces with soil and water. Important compounds in the gaseous phase are in both organic and inorganic forms, such as organic acids, nitrogen, sulfur and chloride. In spite of the species in gas form, a huge number of process, anthropogenic and natural, are able to form aerosols, which may be transported over long distances. Sulfates e nitrates are responsible for rain acidity; they may also increase the solubility of organic compounds and metals making them more bioavailable, and also can act as cloud condensation nuclei (CCN). Aerosol samples (PM2.5) were collected in a rural and industrial area in Rio de Janeiro, Brazil, in order to quantify chemical species and evaluate anthropogenic influences in secondary aerosol formation and organic compounds. Samples were collected during 24 h every six days using a high-volume sampler from August 2010 to July 2011. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (NO3-, SO4= and Cl-); total water-soluble carbon (TWSC) was determined by a TOC analyzer. The average aerosol (PM2.5) concentrations ranged from 1 to 43 ug/m3 in the industrial site and from 4 to 35 ug/m3 in the rural area. Regarding anions, the highest concentrations were measured for SO42- (10.6 ?g/m3-12.6 ?g/m3); where the lowest value was found in the rural site and the highest in the industrial. The concentrations for NO3- and Cl- ranged from 4.2 ?g/m3 to 9.3 ?g/m3 and 3.1 ?g/m3 to 6.4 ?g /m3, respectively. Sulfate was the major species and, like nitrate, it is related to photooxidation in the atmosphere. Interestingly sulfate concentrations were higher during the dry period and could be related to photochemistry activity. The correlations between nitrate and non-sea-salt sulfate were weak, suggesting different sources for these species. The secondary aerosol represented an important fraction of total compounds in PM2.5 ranged from 16 to 18% for (NH4)2SO4 and 6 to 8% for NH4NO3. The values for TWSC ranged from 0.28 to 6.35 ?g/m3 in the industrial area and 0.12 to 7.49 ?g/m3 for rural area. The similarity between the areas regarding secondary aerosols formation and water-soluble carbon compounds is probably due to the particle size.

  20. Estimates of non-traditional secondary organic aerosols from aircraft SVOC and IVOC emissions using CMAQ

    NASA Astrophysics Data System (ADS)

    Woody, M. C.; West, J. J.; Jathar, S. H.; Robinson, A. L.; Arunachalam, S.

    2015-06-01

    Utilizing an aircraft-specific parameterization based on smog chamber data in the Community Multiscale Air Quality (CMAQ) model with the volatility basis set (VBS), we estimated contributions of non-traditional secondary organic aerosols (NTSOA) for aircraft emissions during landing and takeoff (LTO) activities at the Hartsfield-Jackson Atlanta International Airport. NTSOA, formed from the oxidation of semi-volatile and intermediate volatility organic compounds (S/IVOCs), is a heretofore unaccounted component of fine particulate matter (PM2.5) in most air quality models. We expanded a prerelease version of CMAQ with VBS implemented for the Carbon Bond 2005 (CB05) chemical mechanism to use the Statewide Air Pollution Research Center 2007 (SAPRC-07) chemical mechanism and added species representing aircraft S/IVOCs and corresponding NTSOA oxidation products. Results indicated that the maximum monthly average NTSOA contributions occurred at the airport and ranged from 2.4 ng m-3 (34 % from idle and 66 % from non-idle aircraft activities) in January to 9.1 ng m-3 (33 and 67 %) in July. This represents 1.7 % (of 140 ng m-3) in January and 7.4 % in July (of 122 ng m-3) of aircraft-attributable PM2.5 compared to 41.0-42.0 % from elemental carbon and 42.8-58.0 % from inorganic aerosols. As a percentage of PM2.5, impacts were higher downwind of the airport, where NTSOA averaged 4.6-17.9 % of aircraft-attributable PM2.5 and, considering alternative aging schemes, was as high as 24.0 % - thus indicating the increased contribution of aircraft-attributable SOA as a component of PM2.5. However, NTSOA contributions were generally low compared to smog chamber results, particularly at idle, due to the considerably lower ambient organic aerosol concentrations in CMAQ compared to those in the smog chamber experiments.

  1. Estimates of non-traditional secondary organic aerosols from aircraft SVOC and IVOC emissions using CMAQ

    NASA Astrophysics Data System (ADS)

    Woody, M. C.; West, J. J.; Jathar, S. H.; Robinson, A. L.; Arunachalam, S.

    2014-12-01

    Utilizing an aircraft-specific parameterization based on smog chamber data in the Community Multiscale Air Quality (CMAQ) model with the Volatility Basis Set (VBS), we estimated contributions of non-traditional secondary organic aerosols (NTSOA) for aircraft emissions during landing and takeoff (LTO) activities at the Hartsfield-Jackson Atlanta International Airport. NTSOA, formed from the oxidation of semi-volatile and intermediate volatility organic compounds (S/IVOCs), is a heretofore unaccounted component of fine particulate matter (PM2.5) in most air quality models. We expanded a prerelease version of CMAQ with VBS implemented for the Carbon Bond 2005 (CB05) chemical mechanism to use the Statewide Air Pollution Research Center 2007 (SAPRC-07) chemical mechanism, and added species representing aircraft S/IVOCs and corresponding NTSOA oxidation products. Results indicated the maximum monthly average NTSOA contributions occurred at the airport, and ranged from 2.4 ng m-3 (34% from idle and 66% from non-idle aircraft activities) in January to 9.1 ng m-3 (33 and 67%) in July. This represents 1.7% (of 140 ng m-3) in January and 7.4% in July (of 122 ng m-3) of aircraft-attributable PM2.5, compared to 41.0-42.0% from elemental carbon and 42.8-58.0% from inorganic aerosols. As a percentage of PM2.5, impacts were higher downwind of the airport, where NTSOA averaged 4.6-17.9% of aircraft-attributable PM2.5 and, considering alternative aging schemes, was high as 24.0% - thus indicating the increased contribution of aircraft-attributable SOA, as a component of PM2.5. However, NTSOA contributions were generally low compared to smog chamber results, particularly at idle, due to the considerably lower ambient organic aerosol concentrations in CMAQ, vs. those in the smog chamber experiments.

  2. Semi-continuous gas and inorganic aerosol measurements at a Finnish urban site: comparisons with filters, nitrogen in aerosol and gas phases, and aerosol acidity

    NASA Astrophysics Data System (ADS)

    Makkonen, U.; Virkkula, A.; Mntykentt, J.; Hakola, H.; Keronen, P.; Vakkari, V.; Aalto, P. P.

    2012-02-01

    Concentrations of 5 gases (HCl, HNO3, HONO, NH3, SO2) and 8 major inorganic ions in particles (Cl-, NO3-, SO42-, NH4+, Na+, K+, Mg2+, Ca2+) were measured with an online monitor MARGA 2S in two size ranges, Dp < 2.5 ?m and Dp < 10 ?m, in Helsinki, Finland from November 2009 to May 2010. The results were compared with filter sampling, mass concentrations obtained from particle number size distributions, and a conventional SO2 monitor. The MARGA yielded lower concentrations than those analyzed from the filter samples for most ions. Linear regression yielded MARGA vs. filter slopes of 0.68, 0.89, 0.84, 0.52, 0.88, 0.17, 2.88, and 3.04 for Cl-, NO3-, SO42-, NH4+, Na+, K+, Mg2+, and Ca2+, respectively, and 0.90 for the MARGA vs. SO2 monitor. There were clear seasonal cycles in the concentrations of the nitrogen-containing gases: the median concentrations of HNO3, HONO, and NH3 were 0.09 ppb, 0.37 ppb, and 0.01 ppb in winter, respectively, and 0.15, 0.15, and 0.14 in spring, respectively. The gas-phase fraction of nitrogen decreased roughly with decreasing temperature so that in the coldest period from January to February the median contribution was 28% but in April to May 53%. There were also large fractionation variations that temperature alone cannot explain. HONO correlated well with NOx but a large fraction of the HONO-to-NOx ratios were larger than published ratios in a road traffic tunnel suggesting that a large amount of HONO had other sources than vehicle exhaust. Aerosol acidity was estimated by calculating ion equivalent ratios. The sources of acidic aerosols were studied with trajectory statistics that showed that continental aerosol is mainly neutralized and marine aerosol acidic.

  3. Springtime variations of organic and inorganic constituents in submicron aerosols (PM1.0) from Cape Hedo, Okinawa

    NASA Astrophysics Data System (ADS)

    Kunwar, Bhagawati; Torii, K.; Zhu, Chunmao; Fu, Pingqing; Kawamura, Kimitaka

    2016-04-01

    During the spring season with enhanced Asian outflow, we collected submicron aerosol (PM1.0) samples at Cape Hedo, Okinawa Island in the western North Pacific Rim. We analyzed the filter samples for diacids, oxoacids, pyruvic acid, α-dicarbonyls and fatty acids to better understand the sources and atmospheric processes in the outflow regions of Asian pollutants. Molecular distributions of diacids show a predominance of oxalic acid (C2) followed by malonic (C3) and succinic (C4) acids. Total diacids strongly correlated with secondary source tracers such as SO42- (r = 0.87), NH4+ (0.90) and methanesulfonate (MSA-) (0.84), suggesting that diacids are secondarily formed from their precursor compounds. We also found good correlations among C2, organic carbon (OC) and elemental carbon (EC) in the Okinawa aerosols, suggesting that diacids are mainly derived from anthropogenic sources. However, a weak correlation of diacids with levoglucosan, a biomass burning tracer, suggests that biomass buring is not the main source of diacids, rather diacids are secondarily formed by photochemical oxidation of organic precursors derived from fossil fuel combustion. We found a strong correlation (r = 0.98) between inorganic nitrogen (NO3-N + NH4-N) and total nitrogen (TN), to which organic nitrogen (ON) contributed 23%. Fatty acids were characterized by even carbon number predominance, suggesting that they are derived from biogenic sources. The higher abundances of short chain fatty acids (C20) further suggest that fatty acids are largely derived from marine phytoplankton during spring bloom.

  4. High Molecular Weight Dimer Esters in ?-Pinene Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Cui, Tianqu; Zhang, Haofei; Gold, Avram; Glasius, Marianne; Surratt, Jason D.

    2014-05-01

    Monoterpenes, such as ?-pinene, constitute an important group of biogenic volatile organic compounds (BVOC). Once emitted into the atmosphere ?-pinene is removed by oxidization by the hydroxyl radical (OH), reactions with ozone (O3), and with nitrate radicals (NO3) resulting in the formation of first-generation oxidation products, such as semi-volatile carboxylic acids. In addition, higher molecular weight dimer esters originating from the oxidation of ?-pinene have been observed in both laboratory-generated and ambient secondary organic aerosols (SOA). While recent studies suggest that the dimers are formed through esterification between carboxylic acids in the particle phase, the formation mechanism of the dimer esters is still ambiguous. In this work, we present the results of a series of smog chamber experiments to assess the formation of dimer esters formed from the oxidation of ?-pinene. Experiments were conducted in the University of North Carolina (UNC) dual outdoor smog chamber facility to investigate the effect of oxidant species (OH versus O3), relative humidity (RH), and seed aerosol acidity in order to obtain a better understanding of the conditions leading to the formation of the dimer esters and how these parameters may affect the formation and chemical composition of SOA. The chemical composition of ?-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), and a total of eight carboxylic acids and four dimer esters were identified, constituting between 8 and 12 % of the total ?-pinene SOA mass.

  5. Kinetic regimes for formation and aging of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Berkemeier, Thomas; Schilling-Fahnestock, Katherine; Seinfeld, John; Pschl, Ulrich

    2014-05-01

    Here we present a conceptual framework of kinetic regime and limiting cases for formation and aging of secondary organic aerosol (SOA). The limiting step of SOA formation can be identified following the developed classification scheme, which is based on three fundamental properties of oxidation products: the reaction location, the saturation ratio, and the heterogeneity in the gas and particle phases. Using the kinetic multi-layer model of gas-particle interactions (KM-GAP) (Shiraiwa et al., 2012), we have analyzed the experimental data of photooxidation of dodecane and subsequent SOA formation. We have found that the contribution of intermediate gas-phase oxidation products to SOA formation is most likely limited by gas-phase reaction, validating the assumption of instantaneous equilibrium partitioning. For semi-volatile and low volatility gas-phase oxidation products, partitioning into the particle phase can be limited by surface accommodation, and possibly by bulk diffusion when organic aerosols adopt glassy or amorphous solid state. The formation of low volatility particle-phase products, such as oligomers and other high molar mass compounds, may be limited by reaction and diffusion in the particle. The 2D evolution plot of molar mass vs. volatility is useful to overview SOA formation and aging. The average molar mass of the organic compounds can be used as a yardstick to estimate relative contribution of gas- vs. particle-phase chemistry to SOA formation. The relatively high values of measured average molar mass for ambient and laboratory-generated SOA imply the importance of particle-phase chemistry in SOA formation.

  6. An amorphous solid state of biogenic secondary organic aerosol particles.

    PubMed

    Virtanen, Annele; Joutsensaari, Jorma; Koop, Thomas; Kannosto, Jonna; Yli-Piril, Pasi; Leskinen, Jani; Mkel, Jyrki M; Holopainen, Jarmo K; Pschl, Ulrich; Kulmala, Markku; Worsnop, Douglas R; Laaksonen, Ari

    2010-10-14

    Secondary organic aerosol (SOA) particles are formed in the atmosphere from condensable oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs). On a global scale, biogenic VOCs account for about 90% of VOC emissions and of SOA formation (90?billion kilograms of carbon per year). SOA particles can scatter radiation and act as cloud condensation or ice nuclei, and thereby influence the Earth's radiation balance and climate. They consist of a myriad of different compounds with varying physicochemical properties, and little information is available on the phase state of SOA particles. Gas-particle partitioning models usually assume that SOA particles are liquid, but here we present experimental evidence that they can be solid under ambient conditions. We investigated biogenic SOA particles formed from oxidation products of VOCs in plant chamber experiments and in boreal forests within a few hours after atmospheric nucleation events. On the basis of observed particle bouncing in an aerosol impactor and of electron microscopy we conclude that biogenic SOA particles can adopt an amorphous solid-most probably glassy-state. This amorphous solid state should provoke a rethinking of SOA processes because it may influence the partitioning of semi-volatile compounds, reduce the rate of heterogeneous chemical reactions, affect the particles' ability to accommodate water and act as cloud condensation or ice nuclei, and change the atmospheric lifetime of the particles. Thus, the results of this study challenge traditional views of the kinetics and thermodynamics of SOA formation and transformation in the atmosphere and their implications for air quality and climate. PMID:20944744

  7. Light absorption by secondary organic aerosol from ?-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    NASA Astrophysics Data System (ADS)

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-01

    is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark ?-pinene + O3 and ?-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from ?-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Overall, these results suggest that dark ?-pinene + O3 and ?-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  8. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of α-Pinene

    SciTech Connect

    Song, Chen; Zaveri, Rahul A.; Alexander, M. Lizabeth; Thornton, Joel A.; Madronich, Sasha; Ortega, John V.; Zelenyuk, Alla; Yu, Xiao-Ying; Laskin, Alexander; Maughan, A. D.

    2007-10-16

    Semi-empirical secondary organic aerosol (SOA) models typically assume a well-mixed organic aerosol phase even in the presence of hydrophobic primary organic aerosols (POA). This assumption significantly enhances the modeled SOA yields as additional organic mass is made available to absorb greater amounts of oxidized secondary organic gases than otherwise. We investigate the applicability of this critical assumption by measuring SOA yields from ozonolysis of α-pinene (a major biogenic SOA precursor) in a smog chamber in the absence and in the presence of dioctyl phthalate (DOP) and lubricating oil seed aerosol. These particles serve as surrogates for urban hydrophobic POA. The results show that these POA did not enhance the SOA yields. If these results are found to apply to other biogenic SOA precursors, then the semi-empirical models used in many global models would predict significantly less biogenic SOA mass and display reduced sensitivity to anthropogenic POA emissions than previously thought.

  9. Radiative Effects of Carbonaceous and Inorganic Aerosols over California during CalNex and CARES: Observations versus Model Predictions

    NASA Astrophysics Data System (ADS)

    Vinoj, V.; Fast, J. D.; Liu, Y.

    2012-12-01

    Aerosols have been identified to be a major contributor to the uncertainty in understanding the present climate. Most of this uncertainty arises due to the lack of knowledge of their micro-physical and chemical properties as well as how to adequately represent their spatial and temporal distributions. Increased process level understanding can be achieved through carefully designed field campaigns and experiments. These measurements can be used to elucidate the aerosol properties, mixing, transport and transformation within the atmosphere and also to validate and improve models that include meteorology-aerosol-chemistry interactions. In the present study, the WRF-Chem model is used to simulate the evolution of carbonaceous and inorganic aerosols and their impact on radiation during May and June of 2010 over California when two field campaigns took place: the California Nexus Experiment (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES). We merged CalNex and CARES data along with data from operational networks such as, California Air Resources Board (CARB's) air quality monitoring network, the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, the AErosol RObotic NETwork (AERONET), and satellites into a common dataset for the Aerosol Modeling Test bed. The resulting combined dataset is used to rigorously evaluate the model simulation of aerosol mass, size distribution, composition, and optical properties needed to understand uncertainties that could affect regional variations in aerosol radiative forcing. The model reproduced many of the diurnal, multi-day, and spatial variations of aerosols as seen in the measurements. However, regionally the performance varied with reasonably good agreement with observations around Los Angeles and Sacramento and poor agreement with observations in the vicinity of Bakersfield (although predictions aloft were much better). Some aerosol species (sulfate and nitrate) were better represented than others (organic matter, black carbon) at many locations. The model also reproduced the observed transport of sea-salt by intrusions of marine air from the Bay Area to Sacramento. The vertical distribution of aerosols was simulated reasonably as evidenced from comparison with observed profiles from the High Spectral Resolution Lidar (HSRL) on the NASA B-200 aircraft, although the values in the boundary layer were too high at times. Consistent with the bias in aerosol mass, the simulated column aerosol optical depths at the AERONET and field campaign sites were often too high. Comparisons between observed and predicted aerosol optical depth and single scattering albedo will be presented. Using aerosol observations as a constraint, we will present the radiative effect of simulated aerosols and its sensitivity to the uncertainties in predicted aerosol properties.

  10. Contribution of primary and secondary sources to organic aerosol and PM2.5 at SEARCH network sites.

    PubMed

    Kleindienst, Tadeusz E; Lewandowski, Michael; Offenberg, John H; Edney, Edward O; Jaoui, Mohammed; Zheng, Mei; Ding, Xiang; Edgerton, Eric S

    2010-11-01

    Chemical tracer methods for determining contributions to primary organic aerosol (POA) are fairly well established, whereas similar techniques for secondary organic aerosol (SOA), inherently complicated by time-dependent atmospheric processes, are only beginning to be studied. Laboratory chamber experiments provide insights into the precursors of SOA, but field data must be used to test the approaches. This study investigates primary and secondary sources of organic carbon (OC) and determines their mass contribution to particulate matter 2.5 microm or less in aerodynamic diameter (PM2.5) in Southeastern Aerosol Research and Characterization (SEARCH) network samples. Filter samples were taken during 20 24-hr periods between May and August 2005 at SEARCH sites in Atlanta, GA (JST); Birmingham, AL (BHM); Centerville, AL (CTR); and Pensacola, FL (PNS) and analyzed for organic tracers by gas chromatography-mass spectrometry. Contribution to primary OC was made using a chemical mass balance method and to secondary OC using a mass fraction method. Aerosol masses were reconstructed from the contributions of POA, SOA, elemental carbon, inorganic ions (sulfate [SO4(2-)], nitrate [NO3-], ammonium [NH4+]), metals, and metal oxides and compared with the measured PM2.5. From the analysis, OC contributions from seven primary sources and four secondary sources were determined. The major primary sources of carbon were from wood combustion, diesel and gasoline exhaust, and meat cooking; major secondary sources were from isoprene and monoterpenes with minor contributions from toluene and beta-caryophyllene SOA. Mass concentrations at the four sites were determined using source-specific organic mass (OM)-to-OC ratios and gave values in the range of 12-42 microg m(-3). Reconstructed masses at three of the sites (JST, CTR, PNS) ranged from 87 to 91% of the measured PM2.5 mass. The reconstructed mass at the BHM site exceeded the measured mass by approximately 25%. The difference between the reconstructed and measured PM2.5 mass for nonindustrial areas is consistent with not including aerosol liquid water or other sources of organic aerosol. PMID:21141432

  11. Hygroscopicity of internally mixed aerosol particles containing benzoic acid and inorganic salts

    NASA Astrophysics Data System (ADS)

    Shi, Yajun; Ge, Maofa; Wang, Weigang

    2012-12-01

    The hygroscopic behaviors of benzoic acid (BA) particles and internal mixtures of inorganic salts (sodium chloride and ammonium sulfate) and BA are investigated in the 10-90% RH using the hygroscopicity tandem differential mobility analyzer (H-TDMA) system. Different morphology of BA, NaCl-BA, and (NH4)2SO4-BA particles at representative RH is characterized by Transmission Electron Microscopy (TEM). The hygroscopic growth factors (GFs) of BA exhibit a significant reduction in the 75-85% RH, followed by a slight increase at 90% RH. Internally mixed NaCl-BA and (NH4)2SO4-BA particles display deliquescence transitions at 70% RH, followed by apparently hampered hygroscopic growth due to the presence of BA. According to the TEM results, the morphology of BA particles and mixed particles show marked change in humidification, which possibly can be attributed to the strong microstructural rearrangement of BA fraction. This significant restructuring is responsible for the GFs change of BA particles and the hygroscopic behaviors transformation of mixed NaCl-BA and (NH4)2SO4-BA particles. These results demonstrate that atmospheric BA could significantly influence the hygroscopic properties of inorganic aerosols.

  12. Formation of semivolatile inorganic aerosols in the Mexico City Metropolitan Area during the MILAGRO campaign

    NASA Astrophysics Data System (ADS)

    Karydis, V. A.; Tsimpidi, A. P.; Lei, W.; Molina, L. T.; Pandis, S. N.

    2011-12-01

    One of the most challenging tasks for chemical transport models (CTMs) is the prediction of the formation and partitioning of the major semi-volatile inorganic aerosol components (nitrate, chloride, ammonium) between the gas and particulate phases. In this work the PMCAMx-2008 CTM, which includes the recently developed aerosol thermodynamic model ISORROPIA-II, is applied in the Mexico City Metropolitan Area in order to simulate the formation of the major inorganic aerosol components. The main sources of SO2 (such as the Miguel Hidalgo Refinery and the Francisco Perez Rios Power Plant) in the Mexico City Metropolitan Area (MCMA) are located in Tula, resulting in high predicted PM1 (particulate matter with diameter less than 1 μm) sulfate concentrations (over 25 μg m-3) in that area. The average predicted PM1 nitrate concentrations are up to 3 μg m-3 (with maxima up to 11 μg m-3) in and around the urban center, mostly produced from local photochemistry. The presence of calcium coming from the Tolteca area (7 μg m-3) as well as the rest of the mineral cations (1 μg m-3 potassium, 1 μg m-3 magnesium, 2 μg m-3 sodium, and 3 μg m-3 calcium) from the Texcoco Lake resulted in the formation of a significant amount of aerosol nitrate in the coarse mode with concentrations up to 3 μg m-3 over these areas. PM1-10 (particulate matter with diameter between 1 and 10 μm) chloride is also high and its concentration exceeds 2 μg m-3 in Texcoco Lake. PM1 ammonium concentrations peak at the center of Mexico City (2 μg m-3) and the Tula vicinity (2.5 μg m-3). The performance of the model for the major inorganic PM components (sulfate, ammonium, nitrate, chloride, sodium, calcium, and magnesium) is encouraging. At the T0 measurement site, located in the Mexico City urban center, the average measured values of PM1 sulfate, nitrate, ammonium, and chloride are 3.5 μg m-3, 3.5 μg m-3, 2.1 μg m-3, and 0.36 μg m-3, respectively. The corresponding predicted values are 3.7 μg m-3, 2.7 μg m-3, 1.7 μg m-3, and 0.25 μg m-3. High sulfate concentrations are associated with the transport of sulfate from the Tula vicinity, while in periods where southerly winds are dominant; the concentrations of sulfate are low. The underprediction of nitrate can be attributed to the underestimation of OH levels by the model during the early morning. Ammonium is sensitive to the predicted sulfate concentrations and the nitrate levels. The performance of the model is also evaluated against measurements taken from a suburban background site (T1) located north of Mexico City. The average predicted PM2.5 (particulate matter with diameter less than 2.5 μm) sulfate, nitrate, ammonium, chloride, sodium, calcium, and magnesium are 3.3, 3.2, 1.4, 0.5, 0.3, 1.2, and 0.15 μg m-3, respectively. The corresponding measured concentrations are 3.7, 2.9, 1.5, 0.3, 0.4, 0.6, and 0.15 μg m-3. The overprediction of calcium indicates a possible overestimation of its emissions and affects the partitioning of nitric acid to the aerosol phase resulting occasionally in an overprediction of nitrate. Additional improvements are possible by improving the performance of the model regarding the oxidant levels, and revising the emissions and the chemical composition of the fugitive dust. The hybrid approach in which the mass transfer to the fine aerosol is simulated using the bulk equilibrium assumption and to the remaining aerosol sections using a dynamic approach, is needed in order to accurately simulate the size distribution of the inorganic aerosols. The bulk equilibrium approach fails to reproduce the observed coarse nitrate and overpredicts the fine nitrate. Sensitivity tests indicate that sulfate concentration in Tula decreases by up to 0.5 μg m-3 after a 50% reduction of SO2 emissions while it can increase by up to 0.3 μg m-3 when NOx emissions are reduced by 50%. Nitrate concentration decreases by up to 1 μg m-3 after the 50% reduction of NOx or NH3 emissions. Ammonium concentration decreases by up to 1 μg m-3, 0.3 μg m-3, and 0.1 μg m-3 after the 50% reduction of NH3, NOx, and SO2 emissions, respectively.

  13. Effect of Hydrophilic Organic Seed Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of α-Pinene

    SciTech Connect

    Song, Chen; Zaveri, Rahul A.; Shilling, John E.; Alexander, M. L.; Newburn, Matthew K.

    2011-07-26

    Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized VOC product will increase as the mass loading of preexisting organic aerosol increases. In a previous study, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the secondary organic aerosol (SOA) yields from ozonolysis of {alpha}-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, non-polar, hydrophobic POA may gradually become polar and hydrophilic as it undergoes oxidative aging while POA formed from biomass burning is already somewhat polar and hydrophilic. In this study, we investigate the effects of model hydrophilic POA such as fulvic acid, adipic acid and citric acid on the gas-particle partitioning of SOA from {alpha}-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of {alpha}-pinene SOA into the particle-phase. The other two POA seed particles have negligible effect on the {alpha}-pinene SOA yields, suggesting that {alpha}-pinene SOA forms a well-mixed organic aerosol phase with citric acid while a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted POA.

  14. Secondary organic aerosol formation from reaction of tertiary amines with nitrate radical

    NASA Astrophysics Data System (ADS)

    Erupe, M. E.; Price, D. J.; Silva, P. J.; Malloy, Q. G. J.; Qi, L.; Warren, B.; Cocker, D. R., III

    2008-09-01

    Secondary organic aerosol formation from the reaction of tertiary amines with nitrate radical was investigated in an indoor environmental chamber. Particle chemistry was monitored using a high resolution aerosol mass spectrometer while gas-phase species were detected using a proton transfer reaction mass spectrometer. Trimethylamine, triethylamine and tributylamine were studied. Results indicate that tributylamine forms the most aerosol mass followed by trimethylamine and triethylamine respectively. Spectra from the aerosol mass spectrometer indicate the formation of complex non-salt aerosol products. We propose a reaction mechanism that proceeds via abstraction of a proton by nitrate radical followed by RO2 chemistry. Rearrangement of the aminyl alkoxy radical through hydrogen shift leads to the formation of hydroxylated amides, which explain most of the higher mass ions in the mass spectra. These experiments show that oxidation of tertiary amines by nitrate radical may be an important night-time source of secondary organic aerosol.

  15. Formation of semivolatile inorganic aerosols in the mexico city metropolitan area during the milagro campaign

    NASA Astrophysics Data System (ADS)

    Karydis, V. A.; Tsimpidi, A. P.; Lei, W.; Molina, L. T.; Pandis, S. N.

    2011-08-01

    One of the most challenging tasks for chemical transport models (CTMs) is the prediction of the formation and partitioning of the major semi-volatile inorganic aerosol components (nitrate, chloride, ammonium) between the gas and particulate phases. In this work the PMCAMx-2008 CTM, which includes the recently developed aerosol thermodynamic model ISORROPIA-II, is applied in the Mexico City Metropolitan Area in order to simulate the formation of the major inorganic aerosol components. The main sources of SO2 (such as the Miguel Hidalgo Refinery and the Francisco Perez Rios Power Plant) in the Mexico City Metropolitan Area (MCMA) are located in Tula, resulting in high predicted PM1 sulfate concentrations (over 25 μg m-3) in that area. The average predicted PM1 nitrate concentrations are up to 3 μg m-3 (with maxima up to 11 μg m-3) in and around the urban center, mostly produced from local photochemistry. The presence of calcium coming from the Tolteca area (7 μg m-3) as well as the rest of the mineral cations (1 μg m-3 potassium, 1 μg m-3 magnesium, 2 μg m-3 sodium, and 3 μg m-3 calcium) from the Texcoco Lake resulted in the formation of a significant amount of aerosol nitrate in the coarse mode with concentrations up to 3 μg m-3 over these areas. PM1-10 chloride is also high and its concentration exceeds 2 μg m-3 in Texcoco Lake. PM ammonium concentrations peak at the center of Mexico City (2 μg m-3) and the Tula vicinity (2.5 μg m-3). The performance of the model for the major inorganic PM components (sulfate, ammonium, nitrate, chloride, sodium, calcium, and magnesium) is encouraging. At T0, the average measured values of PM1 sulfate, nitrate, ammonium, and chloride are 3.6 μg m-3, 3.6 μg m-3, 2.1 μg m-3, and 0.35 μg m-3 respectively. The corresponding predicted values are 3.7 μg m-3, 2.8 μg m-3, 1.7 μg m-3, and 0.25 μg m-3. Additional improvements are possible by (i) using a day-dependent emission inventory, (ii) improving the performance of the model regarding the oxidant levels, and (iii) revising the emissions and the chemical composition of the fugitive dust. Sensitivity tests indicate that sulfate concentration in Tula decreases by up to 0.5 μg m-3 after a 50 % reduction of SO2 emissions while it can increase by up to 0.3 μg m-3 when NOx emissions are reduced by 50 %. Nitrate concentration decreases by up to 1 μg m-3 after the 50 % reduction of NOx or NH3 emissions. Ammonium concentration decreases by up to 1 μg m-3, 0.3 μg m-3, and 0.1 μg m-3 after the 50 % reduction of NH3, NOx, and SO2 emissions respectively.

  16. Heterogeneous ice nucleation on simulated secondary organic aerosol.

    PubMed

    Schill, Gregory P; De Haan, David O; Tolbert, Margaret A

    2014-01-01

    In this study, we have explored the phase behavior and the ice nucleation properties of secondary organic aerosol made from aqueous processing (aqSOA). AqSOA was made from the dark reactions of methylglyoxal with methylamine in simulated evaporated cloud droplets. The resulting particles were probed from 215 to 250 K using Raman spectroscopy coupled to an environmental cell. We find these particles are in a semisolid or glassy state based upon their behavior when exposed to mechanical pressure as well as their flow behavior. Further, we find that these aqSOA particles are poor depositional ice nuclei, in contrast to previous studies on simple mixtures of glassy organics. Additionally, we have studied the effect of ammonium sulfate on the phase, morphology, and ice nucleation behavior of the aqSOA. We find that the plasticizing effect of ammonium sulfate lowers the viscosity of the aqSOA, allowing the ammonium sulfate to effloresce within the aqSOA matrix. Upon humidification, the aqSOA matrix liquefies before it can depositionally nucleate ice, and the effloresced ammonium sulfate can act as an immersion mode ice nucleus. This change in the mode of nucleation is accompanied by an increase in the overall ice nucleation efficiency of the aqSOA particles. PMID:24410444

  17. Observation of viscosity transition in ?-pinene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Jrvinen, E.; Ignatius, K.; Nichman, L.; Kristensen, T. B.; Fuchs, C.; Hppel, N.; Corbin, J. C.; Craven, J.; Duplissy, J.; Ehrhart, S.; El Haddad, I.; Frege, C.; Gates, S. J.; Gordon, H.; Hoyle, C. R.; Jokinen, T.; Kallinger, P.; Kirkby, J.; Kiselev, A.; Naumann, K.-H.; Petj, T.; Pinterich, T.; Prevot, A. S. H.; Saathoff, H.; Schiebel, T.; Sengupta, K.; Simon, M.; Trstl, J.; Virtanen, A.; Vochezer, P.; Vogt, S.; Wagner, A. C.; Wagner, R.; Williamson, C.; Winkler, P. M.; Yan, C.; Baltensperger, U.; Donahue, N. M.; Flagan, R. C.; Gallagher, M.; Hansel, A.; Kulmala, M.; Stratmann, F.; Worsnop, D. R.; Mhler, O.; Leisner, T.; Schnaiter, M.

    2015-10-01

    Under certain conditions, secondary organic aerosol (SOA) particles can exist in the atmosphere in an amorphous solid or semi-solid state. To determine their relevance to processes such as ice nucleation or chemistry occurring within particles requires knowledge of the temperature and relative humidity (RH) range for SOA to exist in these states. In the CLOUD experiment at CERN, we deployed a new in-situ optical method to detect the viscosity of ?-pinene SOA particles and measured their transition from the amorphous viscous to liquid state. The method is based on the depolarising properties of laboratory-produced non-spherical SOA particles and their transformation to non-depolarising spherical liquid particles during deliquescence. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. A transition to spherical shape was observed as the RH was increased to between 35 % at -10 C and 80 % at -38 C, confirming previous calculations of the viscosity transition conditions. Consequently, ?-pinene SOA particles exist in a viscous state over a wide range of ambient conditions, including the cirrus region of the free troposphere. This has implications for the physical, chemical and ice-nucleation properties of SOA and SOA-coated particles in the atmosphere.

  18. Ozone-driven secondary organic aerosol production chain.

    PubMed

    Iinuma, Yoshiteru; Kahnt, Ariane; Mutzel, Anke; Böge, Olaf; Herrmann, Hartmut

    2013-04-16

    Acidic sulfate particles are known to enhance secondary organic aerosol (SOA) mass in the oxidation of biogenic volatile organic compounds (BVOCs) through accretion reactions and organosulfate formation. Enhanced phase transfer of epoxides, which form during the BVOC oxidation, into the acidified sulfate particles is shown to explain the latter process. We report here a newly identified ozone-driven SOA production chain that increases SOA formation dramatically. In this process, the epoxides interact with acidic sulfate particles, forming a new generation of highly reactive VOCs through isomerization. These VOCs partition back into the gas phase and undergo a new round of SOA forming oxidation reactions. Depending on the nature of the isomerized VOCs, their next generation oxidation forms highly oxygenated terpenoic acids or organosulfates. Atmospheric evidence is presented for the existence of marker compounds originating from this chain. The identified process partly explains the enhanced SOA formation in the presence of acidic particles on a molecular basis and could be an important source of missing SOA precursor VOCs that are currently not included in atmospheric models. PMID:23488636

  19. Nonequilibrium Atmospheric Secondary Organic Aerosol Formation and Growth

    SciTech Connect

    Perraud, Veronique M.; Bruns, Emily A.; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Alexander, M. L.; Zelenyuk, Alla; Imre, D.; Chang, W. L.; Dabdub, Donald; Pankow, James F.; Finlayson-Pitts, Barbara J.

    2012-02-21

    Airborne particles play a critical role in air quality, human health effects, visibility and climate. Secondary organic aerosols (SOA) account for a significant portion of total airborne particles. They are formed in reactions of organic gases that produce low volatility and semi-volatile organic compounds (SVOCs). Current atmospheric models assume that SOA are liquids into which SVOCs undergo equilibrium partitioning and grow the particles. However a large discrepancy between model predictions and field measurements of SOA is commonly observed. We report here laboratory studies of the oxidation of a-pinene by ozone and nitrate radicals and show that particle composition is actually consistent with a kinetically determined growth mechanism, and not with equilibrium partitioning between the gas phase and liquid particles. If this is indeed a general phenomenon in air, the formulation of atmospheric SOA models will have to be revised to reflect this new paradigm. This will have significant impacts on quantifying the role of SOA in air quality, visibility, and climate.

  20. Experimental Determination of Chemical Diffusion within Secondary Organic Aerosol Particles

    SciTech Connect

    Abramson, Evan H.; Imre, D.; Beranek, Josef; Wilson, Jacqueline; Zelenyuk, Alla

    2013-02-28

    Formation, properties, transformations, and temporal evolution of secondary organic aerosols (SOA) particles strongly depend on particle phase. Recent experimental evidence from a number of groups indicates that SOA is in a semi-solid phase, the viscosity of which remained unknown. We find that when SOA is made in the presence of vapors of volatile hydrophobic molecules the SOA particles absorb and trap them. Here, we illustrate that it is possible to measure the evaporation rate of these molecules that is determined by their diffusion in SOA, which is then used to calculate a reasonably accurate value for the SOA viscosity. We use pyrene as a tracer molecule and a-pinene SOA as an illustrative case. It takes ~24 hours for half the pyrene to evaporate to yield a viscosity of 10^8 Pa s for a-pinene. This viscosity is consistent with measurements of particle bounce and evaporation rates. We show that viscosity of 10^8 Pa s implies coalescence times of minutes, consistent with the findings that SOA particles are spherical. Similar measurements on aged SOA particles doped with pyrene yield a viscosity of 10^9 Pa s, indicating that hardening occurs with time, which is consistent with observed decrease in water uptake and evaporation rate with aging.

  1. Processes influencing secondary aerosol formation in the San Joaquin Valley during winter

    SciTech Connect

    Frederick W. Lurmann; Steven G. Brown; Michael C. McCarthy; Paul T. Roberts

    2006-12-15

    Air quality data collected in the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM2.5) mass concentrations in California ({le} 188 {mu}g/m{sup 3} 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NOx)-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NOx and volatile organic compound (VOC) emissions plus background O{sub 3} levels are expected to determine NOx oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter. 59 refs., 11 figs., 1 tab.

  2. Processes influencing secondary aerosol formation in the San Joaquin Valley during winter.

    PubMed

    Lurmann, Frederick W; Brown, Steven G; McCarthy, Michael C; Roberts, Paul T

    2006-12-01

    Air quality data collected in the California Regional PM10/ PM(2.5) Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM(2.5)) mass concentrations in California (< or = 188 microg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NO(x))-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NO(x) and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NO(x) oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter. PMID:17195487

  3. Secondary Organic Aerosol Formation in Aerosol Water by Photochemical Reactions of Gaseous Mixture of Monoterpene and Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Lim, H.; Yi, S.; Park, J.; Cho, H.; Jung, K.

    2011-12-01

    There exist large uncertainties in model predictions for climate change and regional air quality. It could be caused by incomplete integration of secondary organic aerosol (SOA) formation in atmospheric chemical models. Recent laboratory studies have found SOA formation through chemical reactions on aerosol surface and in aerosol water. Water soluble organics formed by photochemical degradation of biogenic organics including isoprene and anthropogenic aromatics are predicted to form substantial amount of SOA through the newly found pathways. Although SOA formation in bulk aqueous solution was reported for laboratory experiments of various precursors (e.g., water soluble carbonyls and phenols), little is known for SOA formation in real aerosol water. In this study, photochemical reactions of the gaseous mixture of monoterpene and hydrogen peroxide were examined to investigate SOA formation through reactions in real aerosol phase water. SOA formation was conducted using a flow tube reactor (ID 30 cm x L 150 cm, FEP) and a smog chamber using FEP film in the presence of dry and wet seed particles. Acidity and chemical composition of seed aerosol were also controlled as important parameters influencing SOA formation. Particle size distribution and aerosol composition were analyzed to account for differences in SOA formation mechanisms and yields for dry and wet particles. The differences might be mainly associated with SOA formation in aerosol phase water. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0000221).

  4. Light Absorption by Secondary Organic Aerosol from α-Pinene: Effects of Oxidants, Seed Aerosol Acidity, and Relative Humidity

    SciTech Connect

    Song, Chen; Gyawali, Madhu S.; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOA) generated from ozonolysis or NO3 oxidation of -pinene in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532 and 870 nm. Light absorption at 355 and 405 nm was observed by SOA generated from oxidation of -pinene in the presence of acidic sulfate seed aerosols, under dry conditions. No absorption was observed when the relative humidity was elevated to greater than 27%, or in the presence of neutral sulfate seed aerosols. The light-absorbing compounds are speculated to be aldol condensation oligomers with organosulfate and organic nitrate groups. The results of this study also indicate that organic nitrates from -pinene SOA formed in the presence of neutral sulfate seed aerosols do not appear to absorb near-UV and UV radiation.

  5. Local source impacts on primary and secondary aerosols in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Jayarathne, Thilina; Rathnayake, Chathurika M.; Stone, Elizabeth A.

    2016-04-01

    Atmospheric particulate matter (PM) exhibits heterogeneity in composition across urban areas, leading to poor representation of outdoor air pollutants in human exposure assessments. To examine heterogeneity in PM composition and sources across an urban area, fine particulate matter samples (PM2.5) were chemically profiled in Iowa City, IA from 25 August to 10 November 2011 at two monitoring stations. The urban site is the federal reference monitoring (FRM) station in the city center and the peri-urban site is located 8.0 km to the west on the city edge. Measurements of PM2.5 carbonaceous aerosol, inorganic ions, molecular markers for primary sources, and secondary organic aerosol (SOA) tracers were used to assess statistical differences in composition and sources across the two sites. PM2.5 mass ranged from 3 to 26 μg m-3 during this period, averaging 11.2 ± 4.9 μg m-3 (n = 71). Major components of PM2.5 at the urban site included organic carbon (OC; 22%), ammonium (14%), sulfate (13%), nitrate (7%), calcium (2.9%), and elemental carbon (EC; 2.2%). Periods of elevated PM were driven by increases in ammonium, sulfate, and SOA tracers that coincided with hot and dry conditions and southerly winds. Chemical mass balance (CMB) modeling was used to apportion OC to primary sources; biomass burning, vegetative detritus, diesel engines, and gasoline engines accounted for 28% of OC at the urban site and 24% of OC at the peri-urban site. Secondary organic carbon from isoprene and monoterpene SOA accounted for an additional 13% and 6% of OC at the urban and peri-urban sites, respectively. Differences in biogenic SOA across the two sites were associated with enhanced combustion activities in the urban area and higher aerosol acidity at the urban site. Major PM constituents (e.g., OC, ammonium, sulfate) were generally well-represented by a single monitoring station, indicating a regional source influence. Meanwhile, nitrate, biomass burning, food cooking, suspended dust, and biogenic SOA were not well-represented by a single site and demonstrated local influences. For isoprene SOA, product distributions indicated a larger role for the high-NOx pathway at the urban site. These local sources are largely responsible for differences in population exposures to outdoor PM in the study domain located within the Midwestern US.

  6. Dimers in ?-pinene secondary organic aerosol: effect of hydroxyl radical, ozone, relative humidity and aerosol acidity

    NASA Astrophysics Data System (ADS)

    Kristensen, K.; Cui, T.; Zhang, H.; Gold, A.; Glasius, M.; Surratt, J. D.

    2014-04-01

    The formation of secondary organic aerosol (SOA) from both ozonolysis and hydroxyl radical (OH)-initiated oxidation of ?-pinene under conditions of high nitric oxide (NO) concentrations with varying relative humidity (RH) and aerosol acidity was investigated in the University of North Carolina dual outdoor smog chamber facility. SOA formation from ozonolysis of ?-pinene was enhanced relative to that from OH-initiated oxidation in the presence of initially high-NO conditions. However, no effect of RH on SOA mass was evident. Ozone (O3)-initiated oxidation of ?-pinene in the presence of ammonium sulfate (AS) seed coated with organic aerosol from OH-initiated oxidation of ?-pinene showed reduced nucleation compared to ozonolysis in the presence of pure AS seed aerosol. The chemical composition of ?-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), with a focus on the formation of carboxylic acids and high-molecular weight dimers. A total of eight carboxylic acids and four dimers were identified, constituting between 8 and 12% of the total ?-pinene SOA mass. OH-initiated oxidation of ?-pinene in the presence of nitrogen oxides (NOx) resulted in the formation of highly oxidized carboxylic acids, such as 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). The formation of dimers was observed only in SOA produced from the ozonolysis of ?-pinene in the absence of NOx, with increased concentrations by a factor of two at higher RH (50-90%) relative to lower RH (30-50%). The increased formation of dimers correlates with an observed increase in new particle formation at higher RH due to nucleation. Increased aerosol acidity was found to have a negligible effect on the formation of the dimers. SOA mass yield did not influence the chemical composition of SOA formed from ?-pinene ozonolysis with respect to carboxylic acids and dimers. The results support the formation of the high-molecular weight dimers through gas-phase reactions of the stabilized Criegee Intermediate (sCI) formed from the ozonolysis of ?-pinene. The high molecular weight and polar nature of dimers formed in the gas phase may explain increased particle number concentration as a result of homogenous nucleation. Since three of these dimers (i.e. pinyl-diaterpenyl dimer (MW 358), pinyl-diaterebyl dimer (MW 344) and pinonyl-pinyl dimer (MW 368)) have been observed in both laboratory-generated and ambient fine organic aerosol samples, we conclude that the dimers observed in this study can be used as tracers for the O3-initiated oxidation of ?-pinene, and are therefore indicative of enhanced anthropogenic activities, and that the high molecular weight and low volatility dimers result in homogenous nucleation under laboratory conditions, increasing the particle number concentration.

  7. Chemical composition and acidity of size-fractionated inorganic aerosols of 2013-14 winter haze in Shanghai and associated health risk of toxic elements

    NASA Astrophysics Data System (ADS)

    Behera, Sailesh N.; Cheng, Jinping; Huang, Xian; Zhu, Qiongyu; Liu, Ping; Balasubramanian, Rajasekhar

    2015-12-01

    The severe winter haze episode that occurred in Shanghai from December 2013 to January 2014, characterized by elevated levels of particulate matter (PM), received considerable international attention because of its impacts on public health and disruption of day-to-day activities. To examine the characteristics of PM during this haze episode and to assess the chemistry behind formation of secondary inorganic aerosols (SIA) and associated health impacts due to exposure of toxic elements, we characterized eight water soluble inorganic (WSI) ions and twenty four trace elements in twelve size-fractionated PM (10 nm-9.9 μm). The average mass concentrations of coarse (1.8 μm < Dp < 9.9 μm), fine (Dp < 2.5 μm), ultrafine (0.01 μm < Dp < 0.10 μm) and nano (0.01 μm < Dp < 0.056 μm) particles during hazy days were 2.8, 5.2, 5.3 and 5.1 times higher than those during non-hazy days, respectively. The in-situ pH (pHIS), as predicted by the Aerosol Inorganic Model (AIM-IV) in all sizes of PM, was observed to be lower during hazy days (average of -0.64) than that during non-hazy days (average of -0.29); there was an increased acidity in haze aerosols. Based on the measured concentrations of particulate-bound toxic elements, health risk assessment was conducted, which revealed that the excess lifetime carcinogenic risk to individuals exposed to fine particles under haze events increased significantly (P < 0.05) to 69 ± 18 × 10-6 compared to non-hazy days (34 ± 10 × 10-6). The qualitative source attribution analysis suggested that the occurrence of haze could be due to a combination of increased emissions of PM from multiple anthropogenic sources followed by its accumulation under unfavourable meteorological conditions with lower mixing heights and less wind speeds and the formation of secondary aerosols.

  8. The Correlation of Secondary Organic Aerosol with Odd Oxygen in Mexico City

    EPA Science Inventory

    Data from a mountain location intercepting the Mexico City emission plume demonstrate a strong correlation between secondary organic aerosol and odd-oxygen (O3 + NO2). The measured oxygenated-organic aerosol correlates with odd-oxygen measurements with an a...

  9. Model Representation of Secondary Organic Aerosol in CMAQ v4.7

    EPA Science Inventory

    Numerous scientific upgrades to the representation of secondary organic aerosol (SOA) are incorporated into the Community Multiscale Air Quality (CMAQ) modeling system. Additions include several recently identified SOA precursors: benzene, isoprene, and sesquiterpenes; and pathwa...

  10. Investigation of the Correlation between Odd Oxygen and Secondary Organic Aerosol in Mexico City and Houston

    EPA Science Inventory

    Many recent models underpredict secondary organic aerosol (SOA) particulate matter(PM) concentrations in polluted regions, indicating serious deficiencies in the models' chemical mechanisms and/or missing SOA precursors. Since tropospheric photochemical ozone production is much b...

  11. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    EPA Science Inventory

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemic...

  12. Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liggio, J.; Staebler, R.; Li, S.-M.

    2015-06-01

    As a class of brown carbon, organonitrogen compounds originating from the heterogeneous uptake of NH3 by secondary organic aerosol (SOA) have received significant attention recently. In the current work, particulate organonitrogen formation during the ozonolysis of α-pinene and the OH oxidation of m-xylene in the presence of ammonia (34-125 ppb) is studied in a smog chamber equipped with a High Resolution Time-of-Flight Aerosol Mass Spectrometer and a Quantum Cascade Laser instrument. A large diversity of nitrogen containing organic (NOC) fragments was observed which were consistent with the reaction of ammonia with carbonyl containing SOA. The uptake coefficients of NH3 to SOA leading to organonitrogen compounds are reported for the first time and were in the range of ∼ 10-3-10-2, decreasing significantly to < 10-5 after 6 h of reaction. At the end of experiments (∼ 6 h) the NOC mass contributed 8.9 ± 1.7 and 31.5 ± 4.4 wt% to the total α-pinene and m-xylene derived SOA, and 4-15 wt% of the total nitrogen in the system. Uptake coefficients were also found to be positively correlated with particle acidity and negatively correlated with NH3 concentration, indicating that heterogeneous reactions were responsible for the observed NOC mass, possibly limited by liquid phase diffusion. Under these conditions, the data also indicate that the formation of NOC can compete kinetically with inorganic acid neutralization. The formation of NOC in this study suggests that a significant portion of the ambient particle associated N may be derived from NH3 heterogeneous reactions with SOA. NOC from such a mechanism may be an important and unaccounted for source of PM associated nitrogen, and a mechanism for medium or long-range transport and dry/wet deposition of atmospheric nitrogen.

  13. Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liggio, J.; Staebler, R.; Li, S.-M.

    2015-12-01

    As a class of brown carbon, organonitrogen compounds originating from the heterogeneous uptake of NH3 by secondary organic aerosol (SOA) have received significant attention recently. In the current work, particulate organonitrogen formation during the ozonolysis of α-pinene and the OH oxidation of m-xylene in the presence of ammonia (34-125 ppb) was studied in a smog chamber equipped with a high resolution time-of-flight aerosol mass spectrometer and a quantum cascade laser instrument. A large diversity of nitrogen-containing organic (NOC) fragments was observed which were consistent with the reactions between ammonia and carbonyl-containing SOA. Ammonia uptake coefficients onto SOA which led to organonitrogen compounds were reported for the first time, and were in the range of ∼ 10-3-10-2, decreasing significantly to < 10-5 after 6 h of reaction. At the end of experiments (~ 6 h) the NOC mass contributed 8.9 ± 1.7 and 31.5 ± 4.4 wt % to the total α-pinene- and m-xylene-derived SOA, respectively, and 4-15 wt % of the total nitrogen in the system. Uptake coefficients were also found to be positively correlated with particle acidity and negatively correlated with NH3 concentration, indicating that heterogeneous reactions were responsible for the observed NOC mass, possibly limited by liquid phase diffusion. Under these conditions, the data also indicate that the formation of NOC can compete kinetically with inorganic acid neutralization. The formation of NOC in this study suggests that a significant portion of the ambient particle associated N may be derived from NH3 heterogeneous reactions with SOA. NOC from such a mechanism may be an important and unaccounted for source of PM associated nitrogen. This mechanism may also contribute to the medium or long-range transport and wet/dry deposition of atmospheric nitrogen.

  14. Field Observation of Heterogeneous Formation of Secondary Organic Aerosols on Asian Mineral Dust Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, G.

    2014-12-01

    This study investigated the heterogeneous formation mechanism of secondary organic aerosols (SOA) on dust surfaces by characterizing molecular compositions and size distributions of dicarboxylic acids, keto-carboxylic acids, a-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) in the urban atmosphere of Xi'an, China during dust storm periods and comparing with those in non-dust storm periods. In the presence of a dust storm, all the above mentioned SOA species in Xi'an are predominantly enriched on coarse particles (>2.1 m). Oxalic acid well correlated with NO3- (r2=0.72, p<0.01) rather than SO42-. This phenomenon differs greatly from the observed particles during a non-dust storm period, which is characterized by an enrichment of the SOA on fine particles (<2.1 m) with a strong correlation between C2 and SO42-. We propose a three-step formation pathway to explain these observations as follows. First, nitric acid and nitrogen oxides react with dust to form a liquid film on the surface via water vapor-absorption of calcium nitrate. Second, gaseous Gly and mGly partition into the aqueous-phase. Finally, the aqueous-phase Gly and mGly oxidize into glyoxylic acid (wC2), followed by a further oxidation into C2. To the best of our knowledge, we found for the first time the enrichments of glyoxal (Gly) and methylglyoxal (mGly) on dust surfaces. Our data indicate a more critical role of nitrate than sulfate in the heterogeneous formation process of SOA on dust surfaces. Mass ratio of C2 to wC2 was found to be higher in coarse particles than in fine particles during the dust storm events, which is due to low acidity condition of large particles that is favorable for conversion of wC2 to C2.

  15. Reactivity of liquid and semisolid secondary organic carbon with chloride and nitrate in atmospheric aerosols

    SciTech Connect

    Wang, Bingbing; O'Brien, Rachel E.; Kelly, Stephen T.; Shilling, John E.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

    2015-05-14

    Constituents of secondary organic carbon (SOC) in atmospheric aerosols are often mixed with inorganic components and compose a significant mass fraction of fine particulate matter in the atmosphere. Interactions between SOC and other condensed-phase species are not well understood. Here, we investigate the reactions of liquid-like and semi-solid SOC from ozonolysis of limonene (LSOC) and α-pinene (PSOC) with NaCl using a set of complementary micro-spectroscopic analyses. These reactions result in chloride depletion in the condensed phase, release of gaseous HCl, and formation of organic salts. The reactions attributed to acid displacement by SOC acidic components are driven by the high volatility of HCl. Similar reactions can take place in SOC/NaNO₃ particles. The results show that an increase in SOC mass fraction in the internally mixed SOC/NaCl particles leads to higher chloride depletion. Glass transition temperatures and viscosity of PSOC were estimated for atmospherically relevant conditions. Data show that the reaction extent depends on SOC composition, particle phase state and viscosity, mixing state, temperature, relative humidity (RH), and reaction time. LSOC shows slightly higher potential to deplete chloride than PSOC. Higher particle viscosity at low temperatures and RH can hinder these acid displacement reactions. Formation of organic salts from these overlooked reactions can alter particle physiochemical properties and may affect their reactivity and ability to act as cloud condensation and ice nuclei. The release and potential recycling of HCl and HNO₃ from reacted aerosol particles may have important implications for atmospheric chemistry.

  16. Reactivity of liquid and semisolid secondary organic carbon with chloride and nitrate in atmospheric aerosols.

    PubMed

    Wang, Bingbing; O'Brien, Rachel E; Kelly, Stephen T; Shilling, John E; Moffet, Ryan C; Gilles, Mary K; Laskin, Alexander

    2015-05-14

    Constituents of secondary organic carbon (SOC) in atmospheric aerosols are often mixed with inorganic components and compose a significant mass fraction of fine particulate matter in the atmosphere. Interactions between SOC and other condensed-phase species are not well understood. Here, we investigate the reactions of liquid-like and semisolid SOC from ozonolysis of limonene (LSOC) and ?-pinene (PSOC) with NaCl using a set of complementary microspectroscopic analyses. These reactions result in chloride depletion in the condensed phase, release of gaseous HCl, and formation of organic salts. The reactions attributed to acid displacement by SOC acidic components are driven by the high volatility of HCl. Similar reactions can take place in SOC/NaNO3 particles. The results show that an increase in SOC mass fraction in the internally mixed SOC/NaCl particles leads to higher chloride depletion. Glass transition temperatures and viscosity of PSOC were estimated for atmospherically relevant conditions. Data show that the reaction extent depends on SOC composition, particle phase state and viscosity, mixing state, temperature, relative humidity (RH), and reaction time. LSOC shows slightly higher potential to deplete chloride than PSOC. Higher particle viscosity at low temperatures and RH can hinder these acid displacement reactions. Formation of organic salts from these overlooked reactions can alter particle physiochemical properties and may affect their reactivity and ability to act as cloud condensation and ice nuclei. The release and potential recycling of HCl and HNO3 from reacted aerosol particles may have important implications for atmospheric chemistry. PMID:25386912

  17. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions

    NASA Astrophysics Data System (ADS)

    Zhang, Q. J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J. M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A.

    2015-12-01

    Secondary pollutants such as ozone, secondary inorganic aerosol, and secondary organic aerosol formed in the plumes of megacities can affect regional air quality. In the framework of the FP7/EU MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) project, an intensive campaign was launched in the greater Paris region in July 2009. The major objective was to quantify different sources of organic aerosol (OA) within a megacity and in its plume. In this study, we use airborne measurements aboard the French ATR-42 aircraft to evaluate the regional chemistry-transport model CHIMERE within and downwind of the Paris region. Two mechanisms of secondary OA (SOA) formation are used, both including SOA formation from oxidation and chemical aging of primary semivolatile and intermediate volatility organic compounds (SI-SOA) in the volatility basis set (VBS) framework. As for SOA formed from traditional VOC (volatile organic compound) precursors (traditional SOA), one applies chemical aging in the VBS framework adopting different SOA yields for high- and low-NOx environments, while another applies a single-step oxidation scheme without chemical aging. Two emission inventories are used for discussion of emission uncertainties. The slopes of the airborne OA levels versus Ox (i.e., O3 + NO2) show SOA formation normalized with respect to photochemical activity and are used for specific evaluation of the OA scheme in the model. The simulated slopes were overestimated slightly by factors of 1.1, 1.7 and 1.3 with respect to those observed for the three airborne measurements, when the most realistic "high-NOx" yields for traditional SOA formation in the VBS scheme are used in the model. In addition, these slopes are relatively stable from one day to another, which suggests that they are characteristic for the given megacity plume environment. The configuration with increased primary organic aerosol (POA) emissions and with a single-step oxidation scheme of traditional SOA also agrees with the OA / Ox slopes (about ± 50 % with respect to the observed ones); however, it underestimates the background. Both configurations are coherent with observed OA plume buildup, but they show very different SI-SOA and traditional anthropogenic SOA (ASOA) contributions. It is hence concluded that available theoretical knowledge and available data in this study are not sufficient to discern the relative contributions of different types of anthropogenic SOA in the Paris pollution plume, while its sum is correctly simulated. Based on these simulations, for specific plumes, the anthropogenic OA buildup can reach between 8 and 10μg m-3. For the average of the month of July 2009, maximum OA increases due to emissions from the Paris agglomeration are noticed close to the agglomeration at various length scales: several tens (for primary OA) to hundreds (for SI-SOA and ASOA) of kilometers from the Paris agglomeration. In addition, BSOA (SOA formed from biogenic VOC precursors) is an important contributor to regional OA levels (inside and outside the Paris plume).

  18. Semi-continuous gas and inorganic aerosol measurements at a Finnish urban site: comparisons with filters, nitrogen in aerosol and gas phases, and aerosol acidity

    NASA Astrophysics Data System (ADS)

    Makkonen, U.; Virkkula, A.; Mntykentt, J.; Hakola, H.; Keronen, P.; Vakkari, V.; Aalto, P. P.

    2012-06-01

    Concentrations of 5 gases (HCl, HNO3, HONO, NH3, SO2) and 8 major inorganic ions in particles (Cl-, NO3-, SO42-, NH4+, Na+, K+, Mg2+, Ca2+) were measured with an online monitor MARGA 2S in two size ranges, Dp <2.5 ?m and Dp < 10 ?m, in Helsinki, Finland from November 2009 to May 2010. The results were compared with filter sampling, mass concentrations obtained from particle number size distributions, and a conventional SO2 monitor. The MARGA yielded lower concentrations than those analyzed from the filter samples for most ions. Linear regression yielded the following MARGA vs. filter slopes: 0.72 for Cl-, 0.90 for NO3-, 0.85 for SO42-, 0.91 for NH4+ , 0.49 for Na+, 3.0 for Mg2+, and 3.0 for Ca2+ and 0.90 for the MARGA vs. SO2 monitor. For K+ there were not enough data points to calculate a statistically significant linear regression. There were clear seasonal cycles in the concentrations of the nitrogen-containing gases: the median concentrations of HNO3, HONO, and NH3 were 0.09 ppb, 0.37 ppb, and 0.01 ppb in winter, respectively, and 0.15, 0.15, and 0.14 in spring, respectively. The gas-phase fraction of nitrogen decreased roughly with decreasing temperature, so that in the coldest period from January to February the median contribution was 28% but in April to May was 53%. There were also large fractionation variations that temperature alone cannot explain. HONO correlated well with NOx but a large fraction of the HONO-to-NOx ratios were larger than published ratios in a road traffic tunnel, suggesting that a large amount of HONO had other sources than vehicle exhaust. Aerosol acidity was estimated by calculating ion equivalent ratios. The sources of acidic aerosols were studied with trajectory statistics that showed that continental aerosol is mainly neutralized and marine aerosol acidic.

  19. Laboratory studies on secondary organic aerosol formation from terpenes.

    PubMed

    Iinuma, Yoshiteru; Bge, Olaf; Miao, Yunkun; Sierau, Berko; Gnauk, Thomas; Herrmann, Hartmut

    2005-01-01

    The formation of secondary organic aerosol (SOA) following the ozonolysis of terpene has been investigated intensively in recent years. The enhancement of SOA yields from the acid catalysed reactions of organics on aerosol surfaces or in the bulk particle phase has been receiving great attention. Recent studies show that the presence of acidic seed particles increases the SOA yield significantly (M. S. Jang and R. M. Kamens, Environ. Sci. Technol., 2001, 35, 4758, ref. 1; M. S. Jang, N. M. Czoschke, S. Lee and R. M. Kamens, Science, 2002, 298, 814, ref. 2; N. M. Czoschke, M. Jang and R. M. Kamens, Atmos. Environ., 2003, 37, 4287, ref. 3; M. S. Jang, B. Carroll, B. Chandramouli and R. M. Kamens, Environ. Sci. Technol., 2003, 37, 3828, ref. 4; Y. Iinuma, O. Bge, T. Gnauk and H. Herrmann, Atmos. Environ., 2004, 38, 761, ref. 5; S. Gao, M. Keywood, N. L. Ng, J. Surratt, V. Varutbangkul, R. Bahreini, R. C. Flagan and J. H. Seinfeld, J. Phys. Chem. A, 2004, 108, 10147, ref. 6). More detailed studies report the formation of higher molecular weight products in SOA (refs. 5 and 6; M. P. Tolocka, M. Jang, J. M. Ginter, F. J. Cox, R. M. Kamens and M. V. Johnston, Environ. Sci. Technol., 2004, 38, 1428, ref. 7; S. Gao, N. L. Ng, M. Keywood, V. Varutbangkul, R. Bahreini, A. Nenes, J. He, K. Y. Yoo, J. L. Beauchamp, R. P. Hodyss, R. C. Flagan and J. H. Seinfeld, Environ. Sci. Technol., 2004, 38, 6582, ref. 8) which could result in a non-reversible uptake of organics into the particle phase. Most of the past studies concentrated on the characterisation of the yields of enhanced SOA and its composition from ozonolysis of terpenes in the presence or absence of acidic and neutral seed particles. Recent findings from cyclohexene ozonolysis show that the presence of OH scavengers can also significantly influence the SOA yield. Our new results from the IfT chemistry department aerosol chamber on terpene ozonolysis in the presence of OH scavengers show that the presence of hydroxyl radical scavengers clearly reduces the amount of formed SOA. The OH scavenger strongly depletes the formation of oligomeric compounds in the particle phase in contrast to previous findings (M. D. Keywood, J. H. Kroll, V. Varatbangkul, R. Bahreini, R. C. Flagan and J. H. Seinfeld, Environ. Sci. Technol., 2004, 38, 3343, ref. 9). This result indicates that hydroxyl radicals play an important role in the formation of precursor compounds (e.g., hydroxy pinonaldehyde) for the particle phase heterogeneous acid catalysed reactions leading to the higher molecular weight compounds and thus the enhancement of SOA yields. Better understanding of the role of hydroxyl radicals in the formation of SOA is necessary to distinguish between the contribution of ozonolysis and hydroxyl radicals to the SOA yield. If the recent findings are a ubiquitous phenomenon in the atmosphere, current atmospheric and climate models might underestimate SOA formation yields, particle phase OC contents and its impact on the atmospheric radiation budget. PMID:16161789

  20. Parameterising secondary organic aerosol from ?-pinene using a detailed oxidation and aerosol formation model

    NASA Astrophysics Data System (ADS)

    Ceulemans, K.; Compernolle, S.; Mller, J.-F.

    2011-08-01

    A new 10-product parameter model for ?-pinene secondary organic aerosol (SOA) is presented, based on simulations with the detailed model BOREAM (Biogenic hydrocarbon Oxidation and Related Aerosol formation Model). The parameterisation takes into account the influence of temperature, type of oxidant, NOx-regime, photochemical ageing and water uptake, and is suitable for use in global chemistry transport models. BOREAM is validated against recent photooxidation smog chamber experiments, for which it reproduces SOA yields to within a factor of 2 in most cases. In the simple chemical mechanism of the parameter model, oxidation of ?-pinene generates peroxy radicals, which, upon reaction with NO or HO2, yield products corresponding to high or low-NOx conditions, respectively. The model parameters - i.e. the temperature-dependent stoichiometric coefficients and partitioning coefficients of the 10 semi-volatile products - are obtained from simulations with BOREAM, including a prescribed diurnal cycle for the radiation, oxidant and emission levels, as well as a deposition sink for the particulate and gaseous products. The effects of photooxidative ageing are implicitly included in the parameterisation, since it is based on near-equilibrium SOA concentrations, obtained through simulations of a two-week period. Modelled SOA mass yields are about ten times higher in low-NOx than in high-NOx conditions, with yields of about 50 % in the low-NOx OH-initiated oxidation of ?-pinene, considerably more than in previous parameterisations based on smog chamber experiments. The parameterisation is only moderately sensitive to the assumed oxidant levels. However, photolysis of species in the particulate phase is found to strongly reduce SOA yields. Water uptake is parameterised using fitted activity coefficients, resulting in a good agreement with the full model.

  1. Secondary Organic Aerosol Formation from Glyoxal: Effects of Seed Aerosol on Particle Composition

    NASA Astrophysics Data System (ADS)

    Slowik, Jay; Waxman, Eleanor; Coburn, Sean; Klein, Felix; Koenig, Theodore; Krapf, Manuel; Kumar, Nivedita; Wang, Siyuan; Baltensperger, Urs; Dommen, Josef; Prvt, Andre; Volkamer, Rainer

    2014-05-01

    Conventional models of secondary organic aerosol (SOA) production neglect aqueous-phase processing mechanisms, thereby excluding potentially important SOA formation pathways. These missing pathways may be an important factor in the inability of current models to fully explain SOA yields and oxidation states. Molecules identified as important precursors to SOA generated through aqueous-phase include glyoxal, which is an oxidation product of numerous organic gases. Glyoxal SOA formation experiments were conducted in the PSI smog chamber as a function of seed composition, relative humidity (RH, 60 to 85%), and the presence/absence of gaseous ammonia, affecting particle acidity. In a typical experiment, the chamber was filled with the selected seed aerosol (NaCl, (NH4)2SO4, NaNO3, or K2SO4), after which glyoxal was generated by the brief (i.e. a few minutes) exposure of acetylene to UV light. The experiment was then allowed to proceed undisturbed for several hours. Each experiment consisted of several UV exposures, followed by a dilution phase at constant RH to investigate the gas/particle partitioning behavior of the generated SOA. Gas-phase glyoxal was monitored by an LED-CE-DOAS system, while the particle composition was measured using online aerosol mass spectrometry (Aerodyne HR-ToF-AMS) and offline analysis of collected filter samples. SOA composition was observed to depend strongly on seed type, with increased imidazole formation evident during experiments with (NH4)2SO4 and K2SO4 seeds relative to those with NaCl and NaNO3. Additionally, experiments conducted in the presence of ammonia showed large enhancements in both imidazole content and total SOA yield. Analysis of mass spectral markers indicates reversible uptake of glyoxal but irreversible particle-phase production of the imidazole-containing SOA. Positive matrix factorization (PMF) using the Multilinear Engine (ME-2) was applied to the AMS mass spectral time series to quantify factors related to reaction progress and product formation (e.g. glyoxal and different types of irreversibly-generated SOA). We will discuss glyoxal SOA yields and product distributions in terms of seed composition and ammonia effects.

  2. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics - Part 2: Product identification using Aerosol-CIMS

    NASA Astrophysics Data System (ADS)

    Sareen, N.; Shapiro, E. L.; Schwier, A. N.; McNeill, V. F.

    2009-07-01

    We used chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS) to characterize secondary organic material formed by methylglyoxal with ammonium sulfate in aqueous aerosol mimics. Bulk reaction mixtures were diluted and atomized to form submicron aerosol particles. Organics were detected using Aerosol-CIMS in positive and negative ion mode using I- and H3O+(H2O)n as reagent ions. The results are consistent with aldol condensation products, carbon-nitrogen species, sulfur-containing compounds, and oligomeric species up to 759 amu. These results support previous observations by us and others that ammonium sulfate plays a critical role in the SOA formation chemistry of dicarbonyl compounds.

  3. Experimental determination of chemical diffusion within secondary organic aerosol particles.

    PubMed

    Abramson, Evan; Imre, Dan; Bernek, Josef; Wilson, Jacqueline; Zelenyuk, Alla

    2013-02-28

    Formation, properties, transformations, and temporal evolution of secondary organic aerosol (SOA) particles depend strongly on SOA phase. Recent experimental evidence from both our group and several others indicates that, in contrast to common models' assumptions, SOA constituents do not form a low-viscosity, well-mixed solution, yielding instead a semisolid phase with high, but undetermined, viscosity. We find that when SOA particles are made in the presence of vapors of semi-volatile hydrophobic compounds, such molecules become trapped in the particles' interiors and their subsequent evaporation rates and thus their rates of diffusion through the SOA can be directly obtained. Using pyrene as the tracer molecule and SOA derived from ?-pinene ozonolysis, we find that it takes ~24 hours for half the pyrene to evaporate. Based on the observed pyrene evaporation kinetics we estimate a diffusivity of 2.5 10(-21) m(2) s(-1) for pyrene in SOA. Similar measurements on SOA doped with fluoranthene and phenanthrene yield diffusivities comparable to that of pyrene. Assuming a Stokes-Einstein relation, an approximate viscosity of 10(8) Pa s can be calculated for this SOA. Such a high viscosity is characteristic of tars and is consistent with published measurements of SOA particle bounce, evaporation kinetics, and the stability of two reverse-layered morphologies. We show that a viscosity of 10(8) Pa s implies coalescence times of minutes, consistent with the findings that SOA particles formed by coagulation are spherical on the relevant experimental timescales. Measurements on aged SOA particles doped with pyrene yield an estimated diffusivity ~3 times smaller, indicating that hardening occurs with time, which is consistent with the increase in SOA oligomer content, decrease in water uptake, and decrease in evaporation rates previously observed with aging. PMID:23340901

  4. Aqueous phase processing of secondary organic aerosol from isoprene photooxidation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Monod, A.; Tritscher, T.; Praplan, A. P.; DeCarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.

    2012-07-01

    Transport of reactive air masses into humid and wet areas is highly frequent in the atmosphere, making the study of aqueous phase processing of secondary organic aerosol (SOA) very relevant. We have investigated the aqueous phase processing of SOA generated from gas-phase photooxidation of isoprene using a smog chamber. The SOA collected on filters was extracted by water and subsequently oxidized in the aqueous phase either by H2O2 under dark conditions or by OH radicals in the presence of light, using a photochemical reactor. Online and offline analytical techniques including SMPS, HR-AMS, H-TDMA, TD-API-AMS, were employed for physical and chemical characterization of the chamber SOA and nebulized filter extracts. After aqueous phase processing, the particles were significantly more hygroscopic, and HR-AMS data showed higher signal intensity at m/z 44 and a lower signal intensity at m/z 43, thus showing the impact of aqueous phase processing on SOA aging, in good agreement with a few previous studies. Additional offline measurement techniques (IC-MS, APCI-MS2 and HPLC-APCI-MS) permitted the identification and quantification of sixteen individual chemical compounds before and after aqueous phase processing. Among these compounds, small organic acids (including formic, glyoxylic, glycolic, butyric, oxalic and 2,3-dihydroxymethacrylic acid (i.e. 2-methylglyceric acid)) were detected, and their concentrations significantly increased after aqueous phase processing. In particular, the aqueous phase formation of 2-methylglyceric acid and trihydroxy-3-methylbutanal was correlated with the consumption of 2,3-dihydroxy-2-methyl-propanal, and 2-methylbutane-1,2,3,4-tetrol, respectively, and an aqueous phase mechanism was proposed accordingly. Overall, the aging effect observed here was rather small compared to previous studies, and this limited effect could possibly be explained by the lower liquid phase OH concentrations employed here, and/or the development of oligomers observed during aqueous phase processing.

  5. Modelling secondary organic aerosol in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Redington, A. L.; Derwent, R. G.

    2013-01-01

    The Lagrangian atmospheric dispersion model, NAME, has been used to model the formation and transport of anthropogenic and biogenic secondary organic aerosol (SOA) over North-West Europe in 2008. The model has been tested against daily organic carbon measurements at Harwell, a rural site in southern UK, where it was able to represent adequately the observed values in summer, with some under-prediction in winter. The model has been used to look at the contribution of SOA to total measured PM10 at four selected UK sites. The site with the greatest contribution (32%) of SOA to PM10 was Auchencorth, a rural site in Scotland and least (9%) at London Bloomsbury. The biogenic SOA (BSOA) dominated over the anthropogenic SOA (ASOA) in the UK and showed a strong seasonal cycle peaking in the summer. There was also a slight summer increase in ASOA. The model has been employed to provide source attribution between UK sources and sources in the rest of Europe. The contribution from Europe was generally small but varied considerably due to meteorology. The UK component showed a seasonal cycle, peaking in the summer months. On an annual basis, considering the four measurement sites, the percentage of SOA arriving from outside the UK was least at Auchencorth (9.8%) and most at London (28.4%). Total modelled SOA had a maximum contribution of 2-3 ?g m-3 as a monthly average. (It should be noted that in addition there will be a small contribution from background SOA to these figures.) Emission sensitivity studies revealed that the response of ASOA was highly non-linear, showing both positive and negative responses to a 30% reduction in all man-made NOx sources and the response was greater than 1:1 to a 30% reduction in all man-made VOC sources. BSOA showed only a small negative response to a 30% NOx reduction and no change to a 30% VOC reduction.

  6. Photolytic processing of secondary organic aerosols dissolved in cloud droplets

    SciTech Connect

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2011-05-26

    The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05 - 1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300 - 400 nm radiation for up to 24 hours. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly reduced by photolysis relative to the monomeric compounds. Direct pH measurements showed that compounds containing carboxylic acids increased upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonylswas confirmed by the UV-Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl nπ* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ~ 0.03. The concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content.

  7. Atmospheric oxidation of isoprene and 1,3-butadiene: influence of aerosol acidity and relative humidity on secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Lewandowski, M.; Jaoui, M.; Offenberg, J. H.; Krug, J. D.; Kleindienst, T. E.

    2015-04-01

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA) have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ m-3 air sample volume) and the percent change in secondary organic carbon (SOC). The measurements have used several precursor compounds representative of different classes of biogenic hydrocarbons including isoprene, monoterpenes, and sesquiterpenes. To date, isoprene has displayed the most pronounced increase in SOC, although few measurements have been conducted with anthropogenic hydrocarbons. In the present study, we examine several aspects of the effect of aerosol acidity on the secondary organic carbon formation from the photooxidation of 1,3-butadiene, and extend the previous analysis of isoprene. The photooxidation products measured in the absence and presence of acidic sulfate aerosols were generated either through photochemical oxidation of SO2 or by nebulizing mixtures of ammonium sulfate and sulfuric acid into a 14.5 m3 smog chamber system. The results showed that, like isoprene and β-caryophyllene, 1,3-butadiene SOC yields linearly correlate with increasing acidic sulfate aerosol. The observed acid sensitivity of 0.11% SOC increase per nmol m-3 increase in H+ was approximately a factor of 3 less than that measured for isoprene. The results also showed that the aerosol yield decreased with increasing humidity for both isoprene and 1,3-butadiene, although to different degrees. Increasing the absolute humidity from 2 to 12 g m-3 reduced the 1,3-butadiene yield by 45% and the isoprene yield by 85%.

  8. Atmospheric oxidation of isoprene and 1,3-butadiene: influence of aerosol acidity and relative humidity on secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Lewandowski, M.; Jaoui, M.; Offenberg, J. H.; Krug, J. D.; Kleindienst, T. E.

    2014-11-01

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA) have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ per m3 air sample volume) and the percent change of secondary organic carbon (SOC). The measurements have used several precursor compounds representative of different classes of biogenic hydrocarbons including isoprene, monoterpenes, and sesquiterpenes. To date, isoprene has displayed the most pronounced increase in SOC, although few measurements have been conducted with anthropogenic hydrocarbons. In the present study, we examine several aspects of the effect of aerosol acidity on the secondary organic carbon formation from the photooxidation of 1,3-butadiene, as well as extending the previous analysis of isoprene. The photooxidation products measured in the absence and presence of acidic sulfate aerosols were generated either through photochemical oxidation of SO2 or by nebulizing mixtures of ammonium sulfate and sulfuric acid into a 14.5 m3 smog chamber system. The results showed that, like isoprene and β-caryophyllene, 1,3-butadiene SOC yields linearly correlate with increasing acidic sulfate aerosol. The observed acid sensitivity of 0.11% SOC increase per nmol m-3 increase in H+ was approximately a factor of three less than that measured for isoprene. The results also showed that the aerosol yield decreased with increasing humidity for both isoprene and 1,3-butadiene, although to different degrees. Increasing the absolute humidity from 2 to 12 g m-3 reduced the 1,3-butadiene yield by 45% and the isoprene yield by 85%.

  9. The influence of meteorology on the organic and inorganic properties of aerosols in Hong Kong

    NASA Astrophysics Data System (ADS)

    Zheng, Mei; Guo, Zhigang; Fang, Ming; Kester, Dana R.

    2007-06-01

    The organic and inorganic species in total suspended particulates (TSP) collected from June to December in 1998 in Hong Kong were identified by gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS) to investigate the sources of Hong Kong aerosols and the mechanisms that control the chemical compositions and variations in the atmosphere. These samples were classified according to the climate: wet, dry under the influence of southerly winds from the sea (Dry-S) and dry under the influence of northerly winds from the continent (Dry-N). There were significant increases of materials from crustal, biogenic and pollution sources in the Dry-N period by a factor of 5, 4, and 2, respectively. Since the crustal tracers (e.g., Al, Fe) could be from coal flyash, the estimate of crustal material in the Dry-N period may include some materials from pollution source. Therefore, a positive correlation between crustal and pollution elements was observed. From the analysis of solvent-extractable organics (SEOC), microbial and meat cooking sources showed slight increase (1.2-fold). Higher levels of plant wax materials in the Dry-N period were probably due to the higher wind speed during the winter monsoon. The percentage of crustal material in TSP was 47% in the Dry-N period, and only 22% in the wet season and the Dry-S period. Plant wax materials (biogenic source) had a higher percentage in the Dry-N period (39% of SEOC) while microbial and meat cooking sources accounted for 49% of SEOC in the wet season. This study revealed that wind direction and precipitation had a significant influence not only on the concentrations but also on the chemical compositions and sources of Hong Kong aerosols.

  10. Mechanisms of Formation of Secondary Organic Aerosols and Implications for Global Radiative Forcing

    SciTech Connect

    John H. Seinfeld

    2011-12-08

    Organic material constitutes about 50% of global atmospheric aerosol mass, and the dominant source of organic aerosol is the oxidation of volatile hydrocarbons, to produce secondary organic aerosol (SOA). Understanding the formation of SOA is crucial to predicting present and future climate effects of atmospheric aerosols. The goal of this program is to significantly increase our understanding of secondary organic aerosol (SOA) formation in the atmosphere. Ambient measurements indicate that the amount of SOA in the atmosphere exceeds that predicted in current models based on existing laboratory chamber data. This would suggest that either the SOA yields measured in laboratory chambers are understated or that all major organic precursors have not been identified. In this research program we are systematically exploring these possibilities.

  11. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States

    EPA Science Inventory

    Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles,...

  12. Contribution of Primary and Secondary Sources to Organic Aerosol and PM2.5 at SEARCH Network Sites

    EPA Science Inventory

    Chemical tracer methods for determining contributions to primary organic aerosol (POA) are fairly well established, whereas similar techniques for secondary organic aerosol (SOA), inherently complicated by time-dependent atmospheric processes, are only beginning to be studied. La...

  13. Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Sopajaree, Khajornsak; Chotruksa, Auranee; Wu, Hsin-Ching; Kuo, Su-Ching

    2013-10-01

    PM10 aerosol was collected between February and April 2010 at an urban site (CMU) and an industrial site (TOT) in Chiang Mai, Thailand, and characteristics and provenance of water-soluble inorganic species, carboxylates, anhydrosugars and sugar alcohols were investigated with particular reference to air quality, framed as episodic or non-episodic pollution. Sulfate, a product of secondary photochemical reactions, was the major inorganic salt in PM10, comprising 25.9% and 22.3% of inorganic species at CMU and TOT, respectively. Acetate was the most abundant monocarboxylate, followed by formate. Oxalate was the dominant dicarboxylate. A high acetate/formate mass ratio indicated that primary traffic-related and biomass-burning emissions contributed to Chiang Mai aerosols during episodic and non-episodic pollution. During episodic pollution carboxylate peaks indicated sourcing from photochemical reactions and/or directly from traffic-related and biomass burning processes and concentrations of specific biomarkers of biomass burning including water-soluble potassium, glutarate, oxalate and levoglucosan dramatically increased. Levoglucosan, the dominant anhydrosugar, was highly associated with water-soluble potassium (r = 0.75-0.79) and accounted for 93.4% and 93.7% of anhydrosugars at CMU and TOT, respectively, during episodic pollution. Moreover, levoglucosan during episodic pollution was 14.2-21.8 times non-episodic lows, showing clearly that emissions from biomass burning are the major cause of PM10 episodic pollution in Chiang Mai. Additionally, the average levoglucosan/mannosan mass ratio during episodic pollution was 14.1-14.9, higher than the 5.73-7.69 during non-episodic pollution, indicating that there was more hardwood burning during episodic pollution. Higher concentrations of glycerol and erythritol during episodic pollution further indicate that biomass burning activities released soil biota from forest and farmland soils.

  14. Deposition ice nucleation on fresh, cloud processed, internally mixed and oxidatively aged ?-pinene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Ladino Moreno, L.; Zhou, S.; Aljawhary, D.; Yakobi-Hancock, J.; Abbatt, J.

    2013-12-01

    There are many uncertainties related to role of organic aerosol (OA) as ice nuclei (IN). To that end, the ice nucleating abilities of fresh, cloud processed, internally mixed, and oxidatively aged secondary organic aerosol (SOA) particles were investigated with the University of Toronto continuous flow diffusion chamber (UT-CFDC) at temperatures relevant for cirrus cloud formation. Our SOA particles were produced by ?-pinene ozonolysis which took place in a flow tube (FT) and a smog chamber (SC). The FT-SOA particles mimicked freshly formed particles while the water soluble organic compound (WSOC) experiments from both the flow tube (FT-WSOC-SOA) and the smog chamber (SC-WSOC-SOA) capture the character of aged and cloud processed SOA particles. The FT-SOA particles exhibited low ice nucleation efficiency, i.e. relative humidities with respect to ice (RHi) of 1524% and 1574% were required to activate 0.1% of the aerosol particles in deposition mode at 223K and 218K, respectively. Similarly, the IN efficiencies of the FT-WSOC-SOA and SC-WSOC-SOA particles were found to be comparably low between 233K and 214K. However, if both the FT-WSOC-SOA and the SC-WSOC-SOA particles were pre-cooled at 233K prior to entering the UT-CFDC they nucleate ice at between 6 to 9% lower relative humidities, probably due to decreased viscosity. We also observed that an increase in the oxygen to carbon ratio (from 0.39 to 0.78) of the SC-WSOC-SOA particles from aqueous oxidative processing did not modify IN abilities. Finally, given that SOA is commonly mixed with inorganic salts, especially when arising through cloud processing, it was found that internally mixed particles of SC-WSOC-SOA and ammonium sulfate (AS) had a significantly higher RHi (1405% at 219K) than pure AS particles of the same size (1254%). Overall conclusions are that SOA-containing particles may act as IN only in regions where more efficient are not present. The SOA component will serve to suppress the IN abilities of efficient IN when internally mixed.

  15. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-06-01

    Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N- line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.

  16. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-10-01

    Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes in physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard, in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased, the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces adsorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the Arctic atmosphere, which need to be incorporated into atmospheric chemical models in the Arctic troposphere.

  17. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Schmitt-Kopplin, P.; Platt, U.; Zetzsch, C.

    2012-01-01

    Reactive halogen species (RHS), such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA) and organic aerosol derived from biomass-burning (BBOA) has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols. Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS released from simulated natural halogen sources like salt pans. Subsequently the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which result in new functional groups, changed UV/VIS absorption, or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  18. A Study of Stratospheric Aerosols and Their Effect on Inorganic Chlorine Partitioning Using Balloon, In Situ, and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Osterman, G. B.; Salawitch, R. J.; Sen, B.; Toon, G. C.

    1999-01-01

    Heterogeneous reactions on the surface of aerosols lead to a decrease in the concentration of nitrogen radicals and an increase in the concentration of chlorine and hydrogen radical species. As a consequence, enhanced sulfate aerosol levels in the lower stratosphere resulting from volcanic eruptions lead to lower concentrations of ozone due to more rapid loss by chlorine and hydrogen radicals. This study focuses on continuing the effort to quantify the effect of sulfate aerosols on the partitioning of inorganic chlorine species at midlatitudes. The study begins with an examination of balloon-borne measurements of key chlorine species obtained by the JPL MkIV interferometer for different aerosol loading conditions. A detailed comparison of the response of HCl to variations in aerosol surface area observed by MkIV, ER-2 instruments, HALOE, and ATMOS is carried out by examining HCl vs CH4 correlation diagrams, since CH4 is the only tracer measured on each platform. Finally, the consistency between theory and observed changes in ClO and HCl due to variations in aerosol surface area is examined.

  19. PRODUCTION OF SECONDARY ORGANIC AEROSOL FROM MULTIPHASE TERPENE PHOTOOXIDATION

    EPA Science Inventory

    This project involves a field and laboratory study of the production of aerosol from the atmospheric photooxidation of biogenic volatile organic compounds (BVOCs), specifically the terpenes ?- and ?-pinene, using a unique combination of approaches that rely on produ...

  20. Photochemical aging of light-absorbing secondary organic aerosol material.

    PubMed

    Sareen, Neha; Moussa, Samar G; McNeill, V Faye

    2013-04-11

    Dark reactions of methylglyoxal with NH4(+) in aqueous aerosols yield light-absorbing and surface-active products that can influence the physical properties of the particles. Little is known about how the product mixture and its optical properties will change due to photolysis as well as oxidative aging by O3 and OH in the atmosphere. Here, we report the results of kinetics and product studies of the photochemical aging of aerosols formed by atomizing aqueous solutions of methylglyoxal and ammonium sulfate. Experiments were performed using aerosol flow tube reactors coupled with an aerosol chemical ionization mass spectrometer (Aerosol-CIMS) for monitoring gas- and particle-phase compositions. Particles were also impacted onto quartz windows in order to assess changes in their UV-visible absorption upon oxidation. Photooxidation of the aerosols leads to the formation of small, volatile organic acids including formic acid, acetic acid, and glyoxylic acid. The atmospheric lifetime of these species during the daytime is predicted to be on the order of minutes, with photolysis being an important mechanism of degradation. The lifetime with respect to O3 oxidation was observed to be on the order of hours. O3 oxidation also leads to a net increase in light absorption by the particles due to the formation of additional carbonyl compounds. Our results are consistent with field observations of high brown carbon absorption in the early morning. PMID:23506538

  1. Parameterising secondary organic aerosol from ?-pinene using a detailed oxidation and aerosol formation model

    NASA Astrophysics Data System (ADS)

    Ceulemans, K.; Compernolle, S.; Mller, J.-F.

    2012-06-01

    A new parameter model for ?-pinene secondary organic aerosol (SOA) is presented, based on simulations with the detailed model BOREAM (Biogenic hydrocarbon Oxidation and Related Aerosol formation Model). The parameterisation takes into account the influence of temperature, type of oxidant, NOx-regime, photochemical ageing and water uptake, and is suitable for use in global chemistry transport models. BOREAM is validated against recent photooxidation smog chamber experiments, for which it reproduces SOA yields to within a factor of 2 in most cases. In the simple chemical mechanism of the parameter model, oxidation of ?-pinene generates peroxy radicals, which, upon reaction with NO or HO2, yield products corresponding to high or low-NOx conditions, respectively. The model parameters - i.e. the temperature-dependent stoichiometric coefficients and partitioning coefficients of 10 semi-volatile products - are obtained from simulations with BOREAM, including a prescribed diurnal cycle for the radiation, oxidant and emission levels, as well as a deposition sink for the particulate and gaseous products. The effects of photooxidative ageing are implicitly included in the parameterisation, since it is based on near-equilibrium SOA concentrations, obtained through simulations of a two-week period. In order to mimic the full BOREAM model results both during SOA build-up and when SOA has reached an equilibrium concentration, the revolatilisation of condensable products due to photochemical processes is taken into account through a fitted pseudo-photolysis reaction of the lumped semi-volatile products. Modelled SOA mass yields are about ten times higher in low-NOx than in high-NOx conditions, with yields of more than 50% in the low-NOx OH-initiated oxidation of ?-pinene, considerably more than in previous parameterisations based on smog chamber experiments. Sensitivity calculations indicate that discrepancies between the full model and the parameterisation due to variations in assumed oxidant levels are limited, but that changes in the radiation levels can lead to larger deviations. Photolysis of species in the particulate phase is found to strongly reduce SOA yields in the full model. Simulations of ambient conditions at 17 different sites (using oxidant, radiation and meteorological data from a global chemistry-transport model) show that overall, the parameterisation displays only little bias (2%) compared with the full model, whereas averaged relative deviations amount to about 11%. Water uptake is parameterised using fitted activity coefficients, resulting in a good agreement with the full model.

  2. Studies of aerosol formation in power plant plumesII. Secondary aerosol formation in the Navajo generating station plume

    NASA Astrophysics Data System (ADS)

    Wilson, J. C.; McMurry, P. H.

    Aerosol and gas measurements were made with the University of Minnesota Mobile Laboratory (UMML) during the VISTTA program (26 June, 1979 to 13 July, 1979) near Page, Arizona. The UMML was stationed on Zilnez Mesa (36.79N, 110.63W, elevation 2,200 m) approx. 65 km east of the Navajo coal-hred power plant. Measurements were made both in and out of the power plant plume and were made during the day and night. Measured parameters included aerosol size distributions, Aitken nuclei count, ozone and sulfur dioxide concentrations, the aerosol light scattering coefficient and meteorological parameters including ultraviolet radiation intensity. Concentrations of NO and NO x were occasionally measured. Data show clear evidence of gas-to-particle conversion in the plume with aerosol volume being added in the 0.01 ?m-0.32 ?m dia. range and new particles being formed. The observed excess aerosol volume depends strongly upon the SO 2 concentrations and the time of day with none observed in plume parcels which were not exposed to sunlight. This implies that the excess aerosol in the plume was secondary and was not due to primary particulate emissions from the stack. The fraction of sulfur appearing in the aerosol was inferred from the measurements of SO 2 concentrations and excess aerosol volume concentrations in the plume and was found to correlate with the time integral of the UV flux density received by the plume parcels since pollutant emission. The observed rate of SO 2 conversion was found to be 1.9 0.8% h-1 at noon, with a diurnal average of 0.9 0.4 % h-1.

  3. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.

    PubMed

    Tkacik, Daniel S; Lambe, Andrew T; Jathar, Shantanu; Li, Xiang; Presto, Albert A; Zhao, Yunliang; Blake, Donald; Meinardi, Simone; Jayne, John T; Croteau, Philip L; Robinson, Allen L

    2014-10-01

    Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ? 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ? 2.9 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas. PMID:25188317

  4. Individual Aerosol Particles from Biomass Burning in Southern Africa Compositions and Aging of Inorganic Particles. 2; Compositions and Aging of Inorganic Particles

    NASA Technical Reports Server (NTRS)

    Li, Jia; Posfai, Mihaly; Hobbs, Peter V.; Buseck, Peter R.

    2003-01-01

    Individual aerosol particles collected over southern Africa during the SAFARI 2000 field study were studied using transmission electron microscopy and field-emission scanning electron microscopy. The sizes, shapes, compositions, mixing states, surface coatings, and relative abundances of aerosol particles from biomass burning, in boundary layer hazes, and in the free troposphere were compared, with emphasis on aging and reactions of inorganic smoke particles. Potassium salts and organic particles were the predominant species in the smoke, and most were internally mixed. More KCl particles occur in young smoke, whereas more K2SO4 and KNO3 particles were present in aged smoke. This change indicates that with the aging of the smoke, KCl particles from the fires were converted to K2SO4 and KNO3 through reactions with sulfur- and nitrogen- bearing species from biomass burning as well as other sources. More soot was present in smoke from flaming grass fires than bush and wood fires, probably due to the predominance of flaming combustion in grass fires. The high abundance of organic particles and soluble salts can affect the hygroscopic properties of biomass-burning aerosols and therefore influence their role as cloud condensation nuclei. Particles from biomass burning were important constituents of the regional hazes.

  5. Secondary Aerosol: Precursors and Formation Mechanisms. Technical Report on Grant

    SciTech Connect

    Weinstein-Lloyd, Judith B

    2009-05-04

    This project focused on studying trace gases that participate in chemical reactions that form atmospheric aerosols. Ammonium sulfate is a major constituent of these tiny particles, and one important pathway to sulfate formation is oxidation of dissolved sulfur dioxide by hydrogen peroxide in cloud, fog and rainwater. Sulfate aerosols influence the number and size of cloud droplets, and since these factors determine cloud radiative properties, sulfate aerosols also influence climate. Peroxide measurements, in conjunction with those of other gaseous species, can used to distinguish the contribution of in-cloud reaction to new sulfate aerosol formation from gas-phase nucleation reactions. This will lead to more reliable global climate models. We constructed and tested a new 4-channel fluorescence detector for airborne detection of peroxides. We integrated the instrument on the G-1 in January, 2006 and took a test flight in anticipation of the MAX-Mex field program, where we planned to fly under pressurized conditions for the first time. We participated in the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) - Megacity Aerosol EXperiment – Mexico City (MAX-Mex) field measurement campaign. Peroxide instrumentation was deployed on the DOE G-1 research aircraft based in Veracruz, and at the surface site at Tecamac University.

  6. Absorption of Visible and Long-wave Radiation by Primary and Secondary Biogenic Aerosols.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.

    2008-12-01

    Field results for the 14C content of carbonaceous aerosols are presented that indicate significant biogenic sources of both primary and secondary aerosols in urban and regional environments. Samples collected in Mexico City and downwind of the urban area during the MILAGRO field study are compared with results reported previously in the literature indicating a significant amount of biogenic aerosols from both biomass burning and secondary photochemical production (e.g. terpene oxidations) are contributing to the overall carbonaceous aerosols in the optically active region of 0.1 to 1.0 micron. Samples in this size range collected on quartz fiber filters were also examined using an integrating sphere and FTIR diffuse reflectance techniques to obtain absorption spectra from 280 to the mid-IR. These data clearly indicate that the biogenic derived primary aerosols from agricultural and trash-burning, as well as secondary organic aerosols from isoprene and terpene oxidations will produce both UV-Visible (short-wave) absorbing substances as well as IR (long-wave) absorbing compounds including humic-like-substances (HULIS). With the anticipated increases in growing seasons (i.e. earlier springs and longer summers) the likely hood of increased fires (forest and grassland) as well as the continuing growth in agricultural burning activities, these primary sources are expected to increase and may play a role in heating of the atmosphere. The compound effects of these primary and secondary biogenic sources of absorbing aerosols to the total aerosol loading and regional climate will be discussed. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328 as part of the Atmospheric Science Program.

  7. Liquid-liquid phase separation in mixed organic/inorganic single aqueous aerosol droplets.

    PubMed

    Stewart, D J; Cai, C; Nayler, J; Preston, T C; Reid, J P; Krieger, U K; Marcolli, C; Zhang, Y H

    2015-05-01

    Direct measurements of the phase separation relative humidity (RH) and morphology of aerosol particles consisting of liquid organic and aqueous inorganic domains are presented. Single droplets of mixed phase composition are captured in a gradient force optical trap, and the evolving size, refractive index (RI), and morphology are characterized by cavity-enhanced Raman spectroscopy. Starting at a RH above the phase separation RH, the trapped particle is dried to lower RH and the transition to a phase-separated structure is inferred from distinct changes in the spectroscopic fingerprint. In particular, the phase separation RHs of droplets composed of aqueous solutions of polyethylene glycol (PEG-400)/ammonium sulfate and a mixture of C6-diacids/ammonium sulfate are probed, inferring the RH from the RI of the droplet immediately prior to phase separation. The observed phase separation RHs occur at RH marginally higher (at most 4%) than reported in previous measurements made from studies of particles deposited on hydrophobic surfaces by brightfield imaging. Clear evidence for the formation of phase-separated droplets of core-shell morphology is observed, although partially engulfed structures can also be inferred to form. Transitions between the different spectroscopic signatures of phase separation suggest that fluctuations in morphology can occur. For droplets that are repeatedly cycled through the phase separation RH, the water activity at phase separation is found to be remarkably reproducible (within 0.0013) and is the same for the 1-phase to 2-phase transition and the 2-phase to 1-phase transition. By contrast, larger variation between the water activities at phase separation is observed for different droplets (typically 0.02). PMID:25879138

  8. Secondary Organic Aerosol formation from the gas-phase ozonolysis of 3-methylcatechol and 4-methylcatechol

    NASA Astrophysics Data System (ADS)

    Coeur-Tourneur, Ccile; Foulon, Valentine; Laral, Michel; Cassez, Andy; Zhao, Weixiong

    2010-05-01

    Secondary Organic Aerosol (SOA) formation during the ozonolysis of 3-methylcatechol (3-methyl-1,2-dihydroxybenzene) and 4-methylcatechol (3-methyl-1,2-dihydroxybenzene) was investigated using a simulation chamber (8 m3) at atmospheric pressure, room temperature (294 2 K) and low relative humidity (5-10%). The initial mixing ratios were as follows (in ppb): 3-methylcatechol (194-1059), 4-methylcatechol (204-1188) and ozone (93-531). The ozone and methylcatechol concentrations were followed by UV photometry and GC-FID (Gas Chromatography - Flame ionization detector), respectively and the aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer). The SOA yields (Y) were determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted methylcatechol concentrations assuming a particle density of 1.4 g cm-3. The aerosol formation yield increases as the initial methylcatechol concentration increases, and leads to aerosol yields ranging from 32% to 67% and from 30% to 64% for 3-methylcatechol and 4-methylcatechol, respectively. Y is a strong function of Mo and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. These data are comparable to those published in a recent study on secondary organic aerosol formation from catechol ozonolysis. To our knowledge, this work represents the first investigation of SOA formation from the ozone reaction with methylcatechols.

  9. Field Study of Filter Sampling Artifacts for Inorganic and Organic Aerosol Species

    NASA Astrophysics Data System (ADS)

    Maenhaut, W.; Wang, W.; Chi, X.

    2009-12-01

    It is well-known that the collection of carbonaceous aerosols on quartz fibre filters is prone to both positive and negative artifacts (e.g., Turpin et al., 2000). In studies on these artifacts, one normally concentrates on organic carbon (OC) as a whole or occasionally on water-soluble OC (WSOC). It is rare that studies are carried on individual organic species. Examples of the latter type of study are those by Limbeck et al. (2001; 2005), who used a low-volume tandem filter set-up at a rural background site in South Africa and at the urban site Vienna in Austria, and measured dicarboxylic acids (DCAs) on the front and back filters. We conducted a similar study as those of Limbeck et al. (2001; 2005). For our study we collected high-volume PM2.5 samples during summer field campaigns at three European forested sites, i.e., in Hungary, Belgium, and Finland. The front and back filters of our samples were analysed for OC with a thermal-optical transmission technique (Birch & Cary, 1996), for WSOC as described by Viana et al. (2006), and for water-soluble inorganic cationic and anionic species and organic anionic species by suppressed ion chromatography with conductometric detection. The organic species measured included methanesulphonic acid (MSA) and the four major DCAs, i.e., oxalic, malonic, succinic, and glutaric. The median back/front percentage ratios for ammonium and sulphate were low, below 5% and 1%, respectively, but for nitrate they were around 25-30%. That undenuded filter samplings for nitrate are prone to artifacts is well-documented (e.g., Schaap et al., 2004). For OC the median back/front percentage ratios were around 15% and for WSOC around 20%. For MSA and the four DCAs, they increased in the following order: oxalic (1.5%), succinic (3%), MSA (4%), malonic (2-9%), glutaric (7-26%). Our back/front ratios for three of the four DCAs are lower to much lower than these found by Limbeck et al. (2001; 2005); for malonic, however, we found higher back/front ratios. There were a number of differences between the sampling conditions in the earlier studies and ours; the collection time per sample was one week in Limbeck et al. (2001) and 36 h in Limbeck et al. (2005), but only 12 h in our study; besides, the sampling face velocity was substantially larger in our study; on the other hand, in both the earlier studies and ours, use was made of pre-fired Pallfex 2500 QAT-UP quartz fibre filters. It is clear that results from one site and sampler cannot be generalised to all sites and sampler types and perhaps also not to other quartz fibre filter types or to non-fired filters. Birch, M. E., & Cary, R. A. (1996). Aerosol Sci. Technol. 25, 221-241. Limbeck, A., Puxbaum, H., Otter, L., & Scholes, M. C. (2001). Atmos. Environ. 35, 1853-1862. Limbeck, A., Kraxner, Y. & Puxbaum, H. (2005). J. Aerosol Sci. 36, 991-1005. Schaap, M., et al. (2004). Atmos. Environ. 38, 6487-6496. Turpin, B. J., Saxena, P., & Andrews, E. (2000). Atmos. Environ. 34, 2983-3013. Viana, M., et al. (2006). Atmos. Environ. 40, 2180-2193.

  10. PRODUCTION OF SECONDARY ORGANIC AEROSOL FROM MULTIPHASE TERPENE PHOTOOXIDATION

    EPA Science Inventory

    This project involves a field and laboratory study of the production of aerosol from the atmospheric photooxidation of biogenic volatile organic compounds (BVOCs), specifically the terpenes α- and β-pinene, using a unique combination of approaches that rely on produ...

  11. Real-time, controlled OH-initiated oxidation of biogenic secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Slowik, J. G.; Wong, J. P. S.; Abbatt, J. P. D.

    2012-10-01

    The chemical complexity of atmospheric organic aerosol (OA) requires novel methods for characterization of its components and description of its atmospheric processing-induced transformations. We present the first field deployment of the Toronto Photooxidation Tube (TPOT), a field-deployable flow reactor for the controlled exposure of ambient aerosol to OH radicals. The system alternates between sampling of (1) (unreacted) ambient aerosol, (2) aerosol exposed to UV light and subjected to a ~4 to 10 C temperature increase, and (3) aerosol that is oxidized by OH (in addition to the aforementioned UV exposure/temperature increase). This allows both characterization of the aging process and classification of aerosol in terms of its volatility and reaction-based properties. Summertime measurements by an aerosol mass spectrometer coupled to the TPOT were performed in the remote forest of western Canada, resulting in aerosol dominated by biogenic secondary organic aerosol. Volatilization/UV exposure resulted in an approximately 10 to 25% decrease in organic mass and resulted in a slight increase in oxygenation. OH oxidation resulted in a further organic mass decrease (additional ~25%) and yielded an aerosol with O:C values comparable to those characteristic of low volatility, highly oxygenated OA. Most OH-induced changes occurred within ~3 day-equivalents of atmospheric processing, with further reactions generally proceeding at a greatly reduced rate. Positive matrix factorization (PMF) analysis of the TPOT data yielded five factors. One factor is related to primary biomass burning organic aerosol, while the others describe oxygenated organic aerosol (OOA) components in terms of reactivity and volatility: (1) volatile and reactive; (2) non-volatile and reactive; (3) non-volatile and reactive early-generation product; (4) non-volatile and non-reactive product. This PMF classification of aerosol components directly in terms of reactivity and volatility is enabled by the TPOT-modulated perturbation of aerosol composition, and is not otherwise accessible. The particle-phase reaction end products have mass spectra similar to the low-volatility oxygenated organic aerosol (LV-OOA) factors widely reported in the literature, providing supporting evidence for aged organic aerosol formation from OH-driven oxidation processes.

  12. Real-time, controlled OH-initiated oxidation of biogenic secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Slowik, J. G.; Wong, J. P. S.; Abbatt, J. P. D.

    2012-03-01

    The chemical complexity of atmospheric organic aerosol (OA) requires novel methods for characterization of its components and description of its atmospheric processing-induced transformations. We present the first field deployment of the Toronto Photooxidation Tube (TPOT), a field-deployable flow reactor for the controlled exposure of ambient aerosol to OH radicals. The system alternates between sampling of (1) unreacted ambient aerosol, (2) aerosol subjected to a ~4 C temperature increase, and (3) aerosol that is both heated and oxidized by OH. This allows both characterization of the aging process and classification of aerosol in terms of its volatility and reaction-based properties. Summertime measurements by an aerosol mass spectrometer coupled to the TPOT were performed in the remote forest of Western Canada, resulting in aerosol dominated by biogenic secondary organic aerosol. Volatilization resulted in an approximately 10 to 25% decrease in organic mass and resulted in a slight increase in oxygenation. OH oxidation resulted in a further organic mass decrease (additional ~25%) and yielded an aerosol with O:C values comparable to those characteristic of low volatility, highly oxygenated OA. Most OH-induced changes occurred within the equivalent of ~3 days of atmospheric processing, with further reactions generally proceeding at a greatly reduced rate. Positive matrix factorization (PMF) analysis of the TPOT data yielded five factors. One factor is related to primary biomass burning organic aerosol, while the others describe oxygenated organic aerosol (OOA) components in terms of reactivity and volatility: (1) volatile and reactive; (2) non-volatile and reactive; (3) non-volatile and reactive early-generation product; (4) non-volatile and non-reactive product. This PMF classification of aerosol components directly in terms of reactivity and volatility is enabled by the TPOT-modulated perturbation of aerosol composition, and is not otherwise accessible. The particle-phase reaction end products have mass spectra similar to the low-volatility oxygenated organic aerosol (LV-OOA) factors widely reported in the literature, providing supporting evidence for aged organic aerosol formation from OH-driven oxidation processes.

  13. Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Madronich, S.; Kasibhatla, P. S.; Tyndall, G.; Aumont, B.; Jimenez, J. L.; Lee-Taylor, J.; Orlando, J.

    2015-08-01

    This study presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOAs). Typically only photolysis of smaller organic molecules (e.g., formaldehyde) for which explicit data exist is included in chemistry-climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from ?-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low and high NOx. Simulations are conducted for typical mid-latitude conditions and a solar zenith angle of 45 (permanent daylight). The results show that after 4 days of chemical aging under those conditions (equivalent to 8 days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields, i.e., ~15 % (low NOx) to ~45 % (high NOx) for ?-pinene, ~15 % for toluene, ~25 % for C12 n-alkane, and ~10 % for C16 n-alkane. The small effect of gas-phase photolysis on low-volatility n-alkanes such as C16 n-alkane is due to the rapid partitioning of early-generation products to the particle phase, where they are protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass is increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an empirically estimated SOA photolysis rate of JSOA = 4 10-4 JNO2. Modeling results indicate that this photolytic loss rate would decrease SOA mass by 40-60 % for most species after 10 days of equivalent atmospheric aging at mid-latitudes in the summer. It should be noted that in our simulations we do not consider in-particle or aqueous-phase reactions which could modify the chemical composition of the particle and thus the quantity of photolabile species. The atmospheric implications of our results are significant for both the SOA global distribution and lifetime. GEOS-Chem global model results suggest that particle-phase photolytic reactions could be an important loss process for SOA in the atmosphere, removing aerosols from the troposphere on timescales of less than 7 days that are comparable to wet deposition.

  14. Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Madronich, S.; Kasibhatla, P. S.; Tyndall, G.; Aumont, B.; Jimenez, J. L.; Lee-Taylor, J.; Orlando, J.

    2015-03-01

    This study presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOA). Typically only photolysis of smaller organic molecules (e.g. formaldehyde) for which explicit data exist is included in chemistry-climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from ?-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low- and high-NOx. Simulations are conducted for typical mid-latitude conditions and a solar zenith angle of 45 (permanent daylight). The results show that after four days of chemical aging under those conditions (equivalent to eight days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields i.e ~15% (low-NOx) to ~45% (high-NOx) for ?-pinene, ~15% for toluene, ~25% for C12-alkane, and ~10% for C16-alkane. The small effect on low volatility n-alkanes such as C16-alkane is due to the rapid partitioning of early-generation products to the particle phase where they are assumed to be protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass seems increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas-phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an estimated SOA photolysis rate of JSOA=4 x 10-4JNO2. Modeling results indicate that this photolytic loss rate would decrease SOA mass by 40-60% for most species after ten days of equivalent atmospheric aging at mid-latitudes in the summer. It should be noted that in our simulations we do not consider in-particle or aqueous-phase reactions which could modify the chemical composition of the particle, and thus the amount of photolabile species. The atmospheric implications of our results are significant for both the SOA global distribution and lifetime. GEOS-Chem global model results suggest that particle-phase photolytic reactions could be an important loss process for SOA in the atmosphere, removing aerosols from the troposphere on timescales (less than 7 days) that are comparable to wet deposition.

  15. Inorganic and carbonaceous aerosols during the Southern African Regional Science Initiative (SAFARI 2000) experiment: Chemical characteristics, physical properties, and emission data for smoke from African biomass burning

    NASA Astrophysics Data System (ADS)

    Formenti, P.; Elbert, W.; Maenhaut, W.; Haywood, J.; Osborne, S.; Andreae, M. O.

    2003-07-01

    We collected filter samples of the atmospheric aerosol during the Southern African Regional Science Initiative (SAFARI 2000) experiment onboard the UK Met Office C-130 aircraft. The main operational area was the Atlantic Ocean offshore of Namibia and Angola, where biomass-smoke haze at least 1-2 days old was widespread. The size-fractionated aerosol samples were analyzed for the major inorganic ions, carbonaceous material (elemental and organic carbon), and elements with atomic numbers between 11 (Na) and 82 (Pb). The regional haze aerosol was composed mostly of carbonaceous aerosols (on the average, 81% of the submicron mass), with secondary inorganic aerosols (sulfate, ammonium, and nitrate) accounting for another 14%. K+ and Cl-, typical pyrogenic species, constituted only 2% of the mass. The aerosol chemical data were used to estimate mass emission fluxes for various aerosol components. For African savanna/grassland burning, the estimated emission flux of carbonaceous particles (particulate organic matter plus elemental carbon) is 14 ± 1 Tg yr-1, and that of the nitrogen species (nitrate and ammonium) is 2 ± 2 Tg yr-1. For the flight segments in regional haze, the mean particle scattering coefficient at 550 nm was σs = 101 ± 56 Mm-1 and the mean particle absorption coefficient σa at 565 nm averaged 8 ± 5 Mm-1 (mean single scattering albedo of 0.93 ± 0.06 at 550 nm). The dry mass scattering efficiency αs, calculated from the linear regression of the mean scattering versus the estimated submicron mass, is estimated to be between 4.2 ± and 4.6 ± 0.6 m2 g-1, depending on the assumptions made in calculating the aerosol mass. The dependence of the scattering enhancement ratios Δσs/ΔCO on the distance from the burning regions suggests that the evolution of particle size with time influences the light scattering efficiency. Fresh smoke was sampled during a dedicated flight in the proximity and within the plume of an active biomass burning fire. Here the enhancement ratio with respect to CO of particles in the Aitken-size range (5-100 nm diameter) was ΔNAitken/ΔCO ˜25 cm-3 (STP) ppb-1. These particles were removed rapidly after emission, and they were not detectable in the regional haze. The enhancement ratio for accumulation mode particles (0.1-1 μm diameter) ΔNAcc/ΔCO was ˜26-30 cm-3 (STP) ppb-1 in young smoke, and 16 ± 3 cm-3 (STP) ppb-1 in aged haze, suggesting that the number concentration of accumulation mode particles was reduced by about 41% during aging.

  16. Cloud forming potential of oligomers relevant to secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Guo, Song; Gomez-Hernandez, Mario; Zamora, Misti L.; Secrest, Jeremiah; Marrero-Ortiz, Wilmarie; Zhang, Annie L.; Collins, Don R.; Zhang, Renyi

    2014-09-01

    The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity are measured for surrogates that mimic atmospherically relevant oligomers, including glyoxal trimer dihydrate, methyl glyoxal trimer dihydrate, sucrose, methyl glyoxal mixtures with sulfuric acid and glycolic acid, and 2,4-hexandienal mixtures with sulfuric acid and glycolic acid. For the single-component aerosols, the measured HGF ranges from 1.3 to 1.4 at a relative humidity of 90%, and the hygroscopicity parameter (?) is in the range of 0.06 to 0.19 on the basis of the measured CCN activity and 0.13 to 0.22 on the basis of the measured HGF, compared to the calculated values of 0.08 to 0.16. Large differences exist in the ? values derived using the measured HGF and CCN data for the multi-component aerosols. Our results reveal that, in contrast to the oxidation process, oligomerization decreases particle hygroscopicity and CCN activity and provides guidance for analyzing the organic species in ambient aerosols.

  17. Size-segregated mass concentration and water soluble inorganic ions in an urban aerosol of the Central Balkans (Belgrade)

    NASA Astrophysics Data System (ADS)

    ?or?evi?, D.; Mihajlidi-Zeli?, A.; Reli?, D.; Ignjatovi?, Lj.; Huremovi?, J.; Stortini, A. M.; Gambaro, A.

    2012-01-01

    The distribution of nano/micron inorganic main ions in the size-segregated urban aerosol of Belgrade center was studied during the summer-autumn of 2008. The particle size distribution in the size ranges Dp ? 0.49 ?m, 0.49 ? Dp ? 0.95 ?m, 0.95 ? Dp ? 1.5 ?m, 1.5 ? Dp ? 3.0 ?m, 3.0 ? Dp ? 7.2 ?m and Dp ? 7.2 ?m was measured. The aerosol samples were submitted to gravimetric and chemical analyses. The obtained mean mass concentration of the PM fractions was in accordance with an urban aerosol distribution. The aerosol mass concentrations were determined by gravimetric measurements ( mGM) and, analyzed by ion chromatography for Na +, NH 4+, K +, Mg 2+, Ca 2+, Cl -, NO 3-, PO 43- and SO 42-. The mean random uncertainties associated with the determinations of Na +, NH 4+, K +, Mg 2+, Ca 2+, Cl -, NO 3- and SO 42- were assessed. The absolute highest concentration is found for SO 42- (1555.8 973.6 ng m -3) in the range of Dp ? 0.49 ?m with an average participation of 8.19% to the total mass of the particles. The highest coefficients of correlation were found between NH 4+ and SO 42-. Principal component analysis, PCA, was used for the identification and evaluation of the contributions of the main emission sources to the contents of water soluble ions in the urban aerosol. The formation of (NH 4) 2SO 4 was found to be the dominant process. The influences of local urban (traffic) and regional industrial sources (nearby city Pan?evo) were identified and a contribution of marine aerosol was observed.

  18. Analysis of Limonene-Derived Secondary Organic Aerosol via High-Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Walser, M. L.; Dessiaterik, Y.; Laskin, J.; Laskin, A.; Nizkorodov, S.

    2007-05-01

    Aerosol particles have a major impact on atmospheric chemistry, climate, and human health. Up to 90% of urban aerosol has been shown to be organic in nature, and a significant fraction of such organic aerosol particles are formed as secondary organic aerosol (SOA) by condensation of partially-oxidized volatile organic compounds (VOC). Monoterpenes are a class of VOC that have been shown to form SOA in impressively large yields. Once such SOA particles are formed, they age via physical transformations and heterogeneous atmospheric chemistry, often with profound effects on the physical and chemical properties of the particles. This research focuses on secondary organic aerosol (SOA) particles formed from the ozone-induced oxidation of limonene. Artificial SOA particles are generated in the laboratory by reacting limonene and ozone in a Teflon reaction chamber. The resulting particles are collected on glass fiber filters for analysis with high-resolution mass spectrometry. Mass spectra obtained in both the positive and negative electrospray modes show evidence for the formation of oligomers. Elemental compositions were assigned to more than 90% of peaks less than 500 amu. Kendrick and van Krevelen plots, common tools in the analysis of mass spectra of complex mixtures, are applied to the analysis of SOA for the first time. Additionally, a mechanism for the formation of first generation SOA molecular components and their oligomers is proposed. Implications for photochemical aging of organic aerosol will also be discussed.

  19. Atmospheric Behavior of Inorganic Water-Soluble Gas and Aerosol Species at a Rural Site in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Trebs, I.; Meixner, F. X.; Slanina, J.; Moura, M. A.; da Silva, R. S.; Artaxo, P.; Andreae, M. O.

    2003-12-01

    We investigated diel and seasonal variations of ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), hydrochloric acid (HCl) and the water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), chloride (Cl-) and sulfate (SO42-) on a pasture site in the Amazon Basin (Rondnia, Brazil) from September to November 2002 (LBA-SMOCC). Measurements were performed on-line using a wet-annular denuder in combination with a Steam-Jet Aerosol Collector (SJAC) supported by monitoring of meteorological quantities (e.g., relative humidity, air temperature, wind speed). Widespread biomass burning resulted in a significant enhancement of soluble trace gas levels, of which ammonia showed the highest abundance. We found a strong dependence of ammonia, nitric acid, and aerosol ammonium nitrate on meteorological parameters (especially air temperature and relative humidity) as well as on boundary layer conditions during day and nighttime. Deposition of soluble gases on wet surfaces at night was promoted by the increase of relative humidity to nearly 100 %. Obviously, re-evaporation of ammonia and nitric acid contributed effectively to increased mixing ratios in the turbulent boundary layer at daytime. Additionally, our measurements support the assumption of a continuous HONO source since a complete depletion at daytime was not found. Under clean conditions (wet season), HONO photolysis at daytime was very low and it is expected that its contribution to OH radical production was most likely small compared to the dry season (biomass burning). Our results provide important information about gas-aerosol interactions in a tropical region and the influence of meteorological parameters on emission and deposition processes of inorganic water-soluble species under biomass burning and clean conditions.

  20. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Schmitt-Kopplin, Ph.; Platt, U.; Zetzsch, C.

    2012-07-01

    Reactive halogen species (RHS), such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA) and organic aerosol derived from biomass-burning (BBOA) has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols. Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS, released from simulated natural halogen sources like salt pans. Subsequently, the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which results in new functional groups (FTIR spectroscopy), changes UV/VIS absorption, chemical composition (ultrahigh resolution mass spectroscopy (ICR-FT/MS)), or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  1. Inorganic trace element content of aerosols at puy de Dme, France

    NASA Astrophysics Data System (ADS)

    Vlastelic, I.; Sellegri, K.; Colomb, A.; Suchroski, K.; Bouvier, L.; Nauret, F.

    2012-04-01

    The puy de Dme research station is located at 1465 m above sea level in central France (45 46' N, 2 57' E, 1465 m a.s.l.). The station is surrounded by a protected area where agriculture and forests are predominant. The city of Clermont-Ferrand (150 000 inhabitants) is located 16 km east of the station. At the pdD site, the dominant westerly winds bring background or aged air masses. Despite its relatively low elevation, long-term records of gases and meteorological parameters indicate that in winter the site is mainly located in the free troposphere. Aerosol physical and chemical properties (particle size, black carbon mass), and gas-phase mixing ratios (SO2, CO, CO2, O3, NO, and NO2) are measured continuously throughout the year. Since October 2011, inorganic trace element content of aerosols is also monitored weekly. Precisely measured air volumes (typically from 15 to 20 m3) are filtered during two consecutive days and two consecutive nights on high purity teflon filters (47 mm diameter and 1.0 micrometer porosity). The Teflon filters are leached in savillex beakers using HNO3(0.4M) - HF (0.05M) and trace elements concentrations are analyzed by ICPMS (Agilent 7500, Laboratoire Magmas et Volcans). Preliminary data were analyzed in logarithmic plots sorting elements according to their decreasing abundance in the upper continental crust. A first group of elements (Al, Na, Fe, Mg, Ti, Mn, Ba, Sr, Zr, V, Cr, Rb, Li, Y, Ga, Co, Sc, Nb, Th, Hf, Cs, U, Be, Ta and Rare Earth Elements) shows a progressive decreasing trend, which suggests a crustal origin. A second group of elements (Zn, Ni, Cu, B, Pb, As, Sn, W, Ge, Mo, Tl, Sb, Bi, Se, Cd, In and Ag) shows strong positive anomalies that superimpose on the smooth trend. With the exception of Ni, all elements from this second group are volatile to some degree. The excess element concentration (i.e., unsupported by crustal input) decreases in the following order: Zn (7.75 ng/m3), B (1.2 ng/m3), Ni (0.44 ng/m3), Pb (0.34 ng/m3), Sn and Ag (0.18 ng/m3), W (0.13 ng/m3), Sb, As, Mo, Bi, Se, Cd, Ge (<0.1 ng/m3). Over the limited time-period yet investigated, the large variations of concentration ratios, such as Al/Ti (5 to 338) and Zn/Pb (0.5 to 196), point to important and rapid changes in element sources. These changes are currently examined in the light of air mass back-trajectories.

  2. Constraining condensed-phase formation kinetics of secondary organic aerosol components from isoprene epoxydiols

    NASA Astrophysics Data System (ADS)

    Riedel, T. P.; Lin, Y.-H.; Zhang, Z.; Chu, K.; Thornton, J. A.; Vizuete, W.; Gold, A.; Surratt, J. D.

    2016-02-01

    Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.

  3. Constraining condensed-phase formation kinetics of secondary organic aerosol components from isoprene epoxydiols

    NASA Astrophysics Data System (ADS)

    Riedel, T. P.; Lin, Y.-H.; Zhang, Z.; Chu, K.; Thornton, J. A.; Vizuete, W.; Gold, A.; Surratt, J. D.

    2015-10-01

    Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall-losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.

  4. Contributions of Acid-Catalysed Processes to Secondary Organic Aerosol Mass - A Modelling pproach

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Feingold, G.; Kreidenweis, S. M.

    2005-12-01

    A significant fraction of secondary organic aerosol (SOA) mass is formed by chemical and/or physical processes. However, the amount of organic material found in ambient organic aerosols cannot be explained with current models. Recently, several laboratory studies have been published which suggest that also acid-catalyzed processes that occur either in particles or at their surfaces (heterogeneous) might contribute significantly to mass formation. However, to date there is no general conclusion about the efficiency of such processes due to the great diversity of species and experimental conditions. We present a compilation of literature data (thermodynamic and kinetic) of these processes. The aerosol yields of (i) additional species which are thought previously not contribute to SOA formation (e.g. isoprene, aliphatic aldehydes) and (ii) species which form apparently higher SOA masses on acidic seed aerosols are reported and compared to input data of previous SOA models. Available kinetic data clearly exclude aldol condensation as a significant process for SOA formation on a time scale of typical aerosol life times. Using aerosol size distributions and gas phase concentrations measured during NEAQS2002 as model input data, we show that (even under assumption of equilibrium conditions) these additional processes only contribute a minor fraction to the organic aerosol mass.

  5. -CARYOPHYLLINIC ACID: AN ATMOSPHERIC TRACER FOR -CARYOPHYLLENE SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    The chemical compositions of ambient PM2.5 samples, collected in Research Triangle Park, North Carolina, USA, and a sample of secondary organic aerosol, formed by irradiating a mixture of the sesquiterpene, -caryophyllene, and oxides of nitrogen in a smog chamber, wer...

  6. The Formation of Secondary Organic Aerosol from the Isoprene + OH Reaction in the Absence of NOx

    EPA Science Inventory

    The reaction of isoprene (C5H8) with hydroxyl radicals has been studied in the absence of nitrogen oxides (NOx) to determine physical and chemical characteristics of the secondary organic aerosol formed. Experiments were conducted using a smog ch...

  7. SEMI-VOLATILE SECONDARY AEROSOLS IN URBAN ATMOSPHERES: MEETING A MEASURED CHALLENGE

    EPA Science Inventory

    This presentation compares the results from various particle measurement methods as they relate to semi-volatile secondary aerosols in urban atmospheres. The methods include the PM2.5 Federal Reference Method; Particle Concentrator - BYU Organic Sampling System (PC-BOSS); the Re...

  8. SOURCE APPORTIONMENT OF PRIMARY AND SECONDARY CARBONACEOUS AEROSOL IN THE UNITED STATES USING MODELS AND MEASUREMENTS

    EPA Science Inventory

    In this presentation, three diagnostic evaluation methods of model performance for carbonaceous aerosol are reviewed. The EC-tracer method is used to distinguish primary and secondary carbon, radiocarbon data are used to distinguish fossil-fuel and contemporary carbon, and organ...

  9. Investigating the use of secondary organic aerosol as seed particles in simulation chamber experiments

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Rami Alfarra, M.; Wyche, K. P.; Ward, M. W.; Lewis, A. C.; McFiggans, G. B.; Good, N.; Monks, P. S.; Carr, T.; White, I. R.; Purvis, R. M.

    2011-06-01

    The use of ?-caryophyllene secondary organic aerosol particles as seeds for smog chamber simulations has been investigated. A series of experiments were carried out in the Manchester photochemical chamber as part of the Aerosol Coupling in the Earth System (ACES) project to study the effect of seed particles on the formation of secondary organic aerosol (SOA) from limonene photo-oxidation. Rather than use a conventional seed aerosol containing ammonium sulfate or diesel particles, a method was developed to use in-situ chamber generated seed particles from ?-caryophyllene photo-oxidation, which were then diluted to a desired mass loading (in this case 4-13 ?g m-3). Limonene was then introduced into the chamber and oxidised, with the formation of SOA seen as a growth in the size of oxidised organic seed particles from 150 to 325 nm mean diameter. The effect of the partitioning of limonene oxidation products onto the seed aerosol was assessed using aerosol mass spectrometry during the experiment and the percentage of m/z 44, an indicator of degree of oxidation, increased from around 5 to 8 %. The hygroscopicity of the aerosol also changed, with the growth factor for 200 nm particles increasing from less than 1.05 to 1.25 at 90 % RH. The detailed chemical composition of the limonene SOA could be extracted from the complex ?-caryophyllene matrix using two-dimensional gas chromatography (GC GC) and liquid chromatography coupled to mass spectrometry. High resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) was used to determine exact molecular formulae of the seed and the limonene modified aerosol. The average O:C ratio was seen to increase from 0.32 to 0.37 after limonene oxidation products had condensed onto the organic seed.

  10. Contribution of Organic Vapors to the Growth of Secondary Aerosols

    NASA Astrophysics Data System (ADS)

    Wang, L.; Khalizov, A.; Zhang, R.

    2008-12-01

    Processes governing the growth of atmospheric aerosols represent an important aspect of anthropogenic climate forcing but remain poorly understood. Condensation of organic vapors onto the pre-existing atmospheric aerosols, potentially followed by chemical reactions within the particles medium, is believed to be one of the major pathways that contribute to particle growth. Recent research has focused on the total mass increase on pre-existing seed particles, but the chemistry that determines the efficiency of organic uptake remains to be elucidated. In this study, attenuated total reflection- Fourier transform infrared spectroscopy (ATR-FT-IR) was used to study the formation of new chemical bonds in the sub-micron sulfuric acid droplets deposited on ATR crystal and subjected to exposure to organic vapors (2,4-hexadienal and glyoxal). The observation of new functional groups, together with the dependence of the absorption intensity on the relative humidity, indicates that the uptake of 2,4-hexadienal is through an aldol condensation reaction and uptake of glyoxal is an acid-catalyzed hydration followed by self-reaction of hydrated and carbonyl forms to form cyclic acetal structures. The evolvement of infrared absorption features also suggests that the uptake of both compounds is at least partly reversible.

  11. Impacts of oxidation aging on secondary organic aerosol formation, particle growth rate, cloud condensation nuclei abundance, and aerosol climate forcing

    NASA Astrophysics Data System (ADS)

    Yu, F.; Luo, G.

    2014-12-01

    Particle composition measurements indicate that organic aerosol (OA) makes up ~20-90% of submicron particulate mass and secondary OA (SOA) accounts for a large fraction (~ 72 21%) of these OA masses at many locations around the globe. The volatility changes of secondary organic gases (SOG) associated with oxidation aging as well as the contribution of highly oxidized low volatile SOG (LV-SOG) to the condensational growth of secondary particles have been found to be important in laboratory and field measurements but are poorly represented in global models. A novel scheme to extend the widely used two-product SOA formation model, by adding a third product arising from the oxidation aging (i.e., LV-SOG) and considering the dynamic transfer of mass from higher to lower volatile products, has been developed and implemented into a global chemical transport model (GEOS-Chem) and a community atmosphere model (CESM-CAM5). The scheme requires only minor changes to the existing two-product SOA formation model and is computationally efficient. With the oxidation rate constrained by laboratory measurements, we show that the new scheme predicts a much higher SOA mass concentrations, improving the agreement with aerosol mass spectrometer SOA measurements. The kinetic condensation of LV-SOG on ultrafine particles, simulated by a size-resolved (sectional) advanced particle microphysics (APM) model incorporated into in GEOS-Chem and CAM5, increases the particle growth rate substantially and improves the agreement of simulated cloud condensation nuclei (CCN) concentrations with observations. Based on GEOS-Chem-APM simulations, the new SOA formation scheme increases global mean low troposphere SOA mass concentration by ~130% and CCN abundance by ~ 15%, and optical depth of secondary particles and coated black carbon and primary organic carbon particles by ~10%. As a result, aerosol radiative cooling effect (direct + first indirect) is enhanced by -0.9 W/m2, with large spatial variations. CAM5-APM simulations show similar magnitude of impacts. The implication of oxidation aging to net direct and indirect radiative forcing of anthropogenic aerosols based on both GEOS-Chem-APM and CAM5-APM will be discussed.

  12. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    NASA Astrophysics Data System (ADS)

    Yee, L. D.; Kautzman, K. E.; Loza, C. L.; Schilling, K. A.; Coggon, M. M.; Chhabra, P. S.; Chan, M. N.; Chan, A. W. H.; Hersey, S. P.; Crounse, J. D.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.

    2013-02-01

    The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol), major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NOx (<10 ppb) conditions using H2O2 as the OH source. Secondary organic aerosol (SOA) yields (ratio of mass of SOA formed to mass of primary organic reacted) greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O:C) ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) measurements of the SOA in all three systems are ~0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010). An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach.

  13. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    NASA Astrophysics Data System (ADS)

    Yee, L. D.; Kautzman, K. E.; Loza, C. L.; Schilling, K. A.; Coggon, M. M.; Chhabra, P. S.; Chan, M. N.; Chan, A. W. H.; Hersey, S. P.; Crounse, J. D.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.

    2013-08-01

    The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol), major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NOx (< 10 ppb) conditions using H2O2 as the OH source. Secondary organic aerosol (SOA) yields (ratio of mass of SOA formed to mass of primary organic reacted) greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O : C) ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) measurements of the SOA in all three systems are ~ 0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010). An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach.

  14. Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.

    PubMed

    Tiwary, Abhishek; Colls, Jeremy

    2010-01-01

    This paper demonstrates secondary aerosol generation potential of biofuel use in the energy sector from the photochemical interactions of precursor gases on a life cycle basis. The paper is divided into two parts-first, employing life cycle analysis (LCA) to evaluate the extent of the problem for a typical biofuel based electricity production system using five baseline scenarios; second, proposing adequate mitigation options to minimise the secondary aerosol generation potential on a life cycle basis. The baseline scenarios cover representative technologies for 2010 utilising energy crop (miscanthus), short rotation coppiced chips and residual/waste wood in different proportions. The proposed mitigation options include three approaches-biomass gasification prior to combustion, delaying the harvest of biomass, and increasing the geographical distance between the biomass plant and the harvest site (by importing the biofuels). Preliminary results indicate that the baseline scenarios (assuming all the biomass is sourced locally) bear significant secondary aerosol formation potential on a life cycle basis from photochemical neutralisation of acidic emissions (hydrogen chloride and sulphur dioxide) with ammonia. Our results suggest that gasification of miscanthus biomass would provide the best option by minimising the acidic emissions from the combustion plant whereas the other two options of delaying the harvest or importing biofuels from elsewhere would only lead to marginal reduction in the life cycle aerosol loadings of the systems. PMID:19878969

  15. Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions

    PubMed Central

    Donahue, Neil M.; Henry, Kaytlin M.; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Spindler, Christian; Bohn, Birger; Brauers, Theo; Dorn, Hans P.; Fuchs, Hendrik; Tillmann, Ralf; Wahner, Andreas; Saathoff, Harald; Naumann, Karl-Heinz; Möhler, Ottmar; Leisner, Thomas; Müller, Lars; Reinnig, Marc-Christopher; Hoffmann, Thorsten; Salo, Kent; Hallquist, Mattias; Frosch, Mia; Bilde, Merete; Tritscher, Torsten; Barmet, Peter; Praplan, Arnaud P.; DeCarlo, Peter F.; Dommen, Josef; Prévôt, Andre S.H.; Baltensperger, Urs

    2012-01-01

    The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models. PMID:22869714

  16. Markers of heterogeneous reaction products in ?-pinene ozone secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Czoschke, Nadine M.; Jang, Myoseon

    A gas chromatograph iontrap mass spectrometer (GC-ITMS) was used to analyze the gas-and particle-phase products of ?-pinene ozone oxidation in the presence of three different inorganic seed aerosols: sodium chloride, ammonium sulfate only, and ammonium sulfate with sulfuric acid. Products of ?-pinene ozone oxidation common to the literature showed little difference in gas or particle-phase concentrations between seed types within the precision of the measurements even though significantly different aerosol yields were found between seed types. Small amounts of ring-opening products of four-membered cyclic oxygenates and markers of aldol condensation products were tentatively identified in the particle-phase for all seed types. These tentatively identified products are thought to be the result of acid-catalyzed heterogeneous reactions in the particle-phase or during sampling processes or analysis. The mechanisms for their formation are also proposed in this study.

  17. Characterization of secondary organic aerosol particles using aerosol laser time-of-flight mass spectrometer coupled with FCM clustering algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Mingqiang; Hao, Liqing; Guo, Xiaoyong; Hu, Changjin; Gu, Xuejun; Zhao, Weixiong; Wang, Zhenya; Fang, Li; Zhang, Weijun

    2013-01-01

    Experiments for formation of secondary organic aerosol (SOA) from photooxidation of 1,3,5-trimethylbenzene in the CH3ONO/NO/air mixture were carried out in the laboratory chamber. The size and chemical composition of the resultant individual particles were measured in real-time by an aerosol laser time of flight mass spectrometer (ALTOFMS) recently designed in our group. We also developed Fuzzy C-Means (FCM) algorithm to classify the mass spectra of large numbers of SOA particles. The study first started with mixed particles generated from the standards benzaldehyde, phenol, benzoic acid, and nitrobenzene solutions to test the feasibility of application of the FCM. The FCM was then used to extract out potential aerosol classes in the chamber experiments. The results demonstrate that FCM allowed a clear identification of ten distinct chemical particle classes in this study, namely, 3,5-dimethylbenzoic acid, 3,5-dimethylbenzaldehyde, 2,4,6-trimethyl-5-nitrophenol, 2-methyl-4-oxo-2-pentenal, 2,4,6-trimethylphenol, 3,5-dimethyl-2-furanone, glyoxal, and high-molecular-weight (HMW) components. Compared to offline method such as gas chromatography-mass spectrometry (GC-MS) measurement, the real-time ALTOFMS detection approach coupled with the FCM data processing algorithm can make cluster analysis of SOA successfully and provide more information of products. Thus ALTOFMS is a useful tool to reveal the formation and transformation processes of SOA particles in smog chambers.

  18. Structural characterization of 2-hydroxyterpenylic acid, an abundant oxygenated marker compound for ?-pinene secondary organic aerosol in ambient fine aerosol

    NASA Astrophysics Data System (ADS)

    Kahnt, Ariane; Iinuma, Yoshiteru; Blockhuys, Frank; van Alsenoy, Christian; Mutzel, Anke; Vermeylen, Reinhilde; Offenberg, John; Lewandowski, Michael; Jaoui, Mohammed; Kleindienst, Tadeusz; Bge, Olaf; Herrmann, Hartmut; Maenhaut, Willy; Claeys, Magda

    2014-05-01

    A highly hydrophilic and oxygenated MW 188 compound is commonly observed in substantial abundance in atmospheric aerosol samples and was proposed in previous studies as an ?-pinene-related marker compound that is associated with ageing processes (1). Paradoxically, the MW 188 compound is usually observed at low abundance in chamber-generated ?-pinene-secondary organic aerosol (SOA) (2), pointing to a non-achievement in crucial reaction conditions. Furthermore, the occurrence of several isobaric isomers did not lead to a complete assignment for individual MW 188 compounds from laboratory generated SOA samples in former studies. For the most abundant MW 188 compound two structures have been proposed, i.e., a C8-monohydroxycarboxylic acid structure (2-hydroxyterpenylic acid) (3), and a C8-hydroxydicarboxylic acid structure (hydroxynorpinic acid) (4). Results will be presented here from a comprehensive mass spectrometric analysis of the most abundant MW 188 compound as 2-hydroxyterpenylic acid. The application of liquid chromatographic/electrospray ionization - ion trap mass spectrometry in both negative and positive ion modes in combination with collision-induced dissociation, as well as the utilisation of a soft derivatisation technique followed by analysis of the formed methyl ester derivatives using the latter technique and gas chromatography/electron ionization mass spectrometry enabled a comprehensive characterization of MW 188 isomers. Theoretical calculations were performed to support the assignment of 2-hydroxyterpenylic acid diastereoisomers. In addition, a positional isomer of 2-hydroxyterpenylic acid, the 4-hydroxyterpenylic acid, was tentatively identified, which is also of atmospheric relevance as it could be detected in ambient fine aerosol. Results from a time-resolved ?-pinene photooxidation experiment do not support that the 2 hydroxyterpenylic acid is a marker compound for aged SOA. Compared to terpenylic acid it should rather be regarded as a higher-generation product of the ?-pinene oxidation cascade. This study presents a comprehensive chemical data set for a more complete structural characterization of hydroxyterpenylic acids in ambient fine aerosol, which sets the foundation to better understand the atmospheric fate of ?-pinene in future studies. This work was supported by the Belgian Federal Science Policy Office through the network project "Biogenic Influence on Oxidants and Secondary Organic Aerosol: theoretical, laboratory and modeling investigations (BIOSOA)", the Research Foundation - Flanders (FWO), and the European Commission through the EUROCHAMP-2 project (228335). References: (1) Gmez-Gonzlez et al., Atmos. Chem. Phys, 2012, 12, (1), 125-138. (2) Vogel et al., Atmos. Chem. Phys. Discuss., 2013, 13, (7), 17901-17952. (3) Claeys et al., Environ. Sci. & Technol., 2009, 43, (18), 6976-6982. (4) Yasmeen et al., J. Mass Spectrom., 2011, 46, (4), 425-442.

  19. Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Seinfeld, J. H.

    2012-01-01

    The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA). Gas-particle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH), as well as temperature and organic loading levels. We introduce a novel combination of the thermodynamic models AIOMFAC (for liquid mixture non-ideality) and EVAPORATION (for pure compound vapor pressures) with oxidation product information from the Master Chemical Mechanism (MCM) for the computation of gas-particle partitioning of organic compounds and water. The presence and impact of a liquid-liquid phase separation in the condensed phase is calculated as a function of variations in relative humidity, organic loading levels, and associated changes in aerosol composition. We show that a complex system of water, ammonium sulfate, and SOA from the ozonolysis of ?-pinene exhibits liquid-liquid phase separation over a wide range of relative humidities (simulated from 30% to 99% RH). Since fully coupled phase separation and gas-particle partitioning calculations are computationally expensive, different simplified model approaches are tested with regards to computational costs and accuracy of predictions compared to the benchmark calculation. Both forcing a liquid one-phase aerosol considering non-ideal mixing or assuming an ideal mixture bear the potential for vastly incorrect partitioning predictions. Assuming an ideal mixture leads to substantial overestimation of the particulate organic mass, at high RH by more than 200%. Moreover, the simplified one-phase cases stress two key points for accurate gas-particle partitioning calculations: (1) non-ideality in the condensed phase needs to be considered and (2) liquid-liquid phase separation is a consequence of considerable deviations from ideal mixing in solutions containing inorganic ions and organics that cannot be ignored. Computationally much more efficient calculations relying on the assumption of a complete organic/electrolyte phase separation below a certain RH successfully reproduce gas-particle partitioning in systems in which the average oxygen-to-carbon (O:C) ratio is lower than ~0.6, as in the case of ?-pinene SOA, and bear the potential for implementation in atmospheric chemical transport models and chemistry-climate models. A full equilibrium calculation is the method of choice for accurate offline (box model) computations, where high computational costs are acceptable. Such a calculation enables the most detailed predictions of phase compositions and provides necessary information on whether assuming a complete organic/electrolyte phase separation is a good approximation for a given aerosol system. Based on the group-contribution concept of AIOMFAC and O:C ratios as a proxy for polarity and hygroscopicity of organic mixtures, the results from the ?-pinene system are also discussed from a more general point of view.

  20. Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Seinfeld, J. H.

    2012-05-01

    The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA). Gas-particle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH), as well as temperature and organic loading levels. We introduce a novel combination of the thermodynamic models AIOMFAC (for liquid mixture non-ideality) and EVAPORATION (for pure compound vapor pressures) with oxidation product information from the Master Chemical Mechanism (MCM) for the computation of gas-particle partitioning of organic compounds and water. The presence and impact of a liquid-liquid phase separation in the condensed phase is calculated as a function of variations in relative humidity, organic loading levels, and associated changes in aerosol composition. We show that a complex system of water, ammonium sulfate, and SOA from the ozonolysis of ?-pinene exhibits liquid-liquid phase separation over a wide range of relative humidities (simulated from 30% to 99% RH). Since fully coupled phase separation and gas-particle partitioning calculations are computationally expensive, several simplified model approaches are tested with regard to computational costs and accuracy of predictions compared to the benchmark calculation. It is shown that forcing a liquid one-phase aerosol with or without consideration of non-ideal mixing bears the potential for vastly incorrect partitioning predictions. Assuming an ideal mixture leads to substantial overestimation of the particulate organic mass, by more than 100% at RH values of 80% and by more than 200% at RH values of 95%. Moreover, the simplified one-phase cases stress two key points for accurate gas-particle partitioning calculations: (1) non-ideality in the condensed phase needs to be considered and (2) liquid-liquid phase separation is a consequence of considerable deviations from ideal mixing in solutions containing inorganic ions and organics that cannot be ignored. Computationally much more efficient calculations relying on the assumption of a complete organic/electrolyte phase separation below a certain RH successfully reproduce gas-particle partitioning in systems in which the average oxygen-to-carbon (O:C) ratio is lower than ~0.6, as in the case of ?-pinene SOA, and bear the potential for implementation in atmospheric chemical transport models and chemistry-climate models. A full equilibrium calculation is the method of choice for accurate offline (box model) computations, where high computational costs are acceptable. Such a calculation enables the most detailed predictions of phase compositions and provides necessary information on whether assuming a complete organic/electrolyte phase separation is a good approximation for a given aerosol system. Based on the group-contribution concept of AIOMFAC and O:C ratios as a proxy for polarity and hygroscopicity of organic mixtures, the results from the ?-pinene system are also discussed from a more general point of view.

  1. Secondary Organic Aerosol Formation in the Captive Aerosol Growth and Evolution (CAGE) Chambers during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL

    NASA Astrophysics Data System (ADS)

    Leong, Y.; Karakurt Cevik, B.; Hernandez, C.; Griffin, R. J.; Taylor, N.; Matus, J.; Collins, D. R.

    2013-12-01

    Secondary organic aerosol (SOA) represents a large portion of sub-micron particulate matter on a global scale. The composition of SOA and its formation processes are heavily influenced by anthropogenic and biogenic activity. Volatile organic compounds (VOCs) that are emitted naturally from forests or from human activity serve as precursors to SOA formation. Biogenic SOA (BSOA) is formed from biogenic VOCs and is prevalent in forested regions like the Southeastern United States. The formation and enhancement of BSOA under anthropogenic influences such as nitrogen oxides (NOx), sulfur dioxide (SO2), and oxygen radicals are still not well understood. The lack of information on anthropogenic BSOA enhancement and the reversibility of SOA formation could explain the underprediction of SOA in current models. To address some of these gaps in knowledge, this study was conducted as part of the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL during the summer of 2013. SOA growth experiments were conducted in two Captive Aerosol Growth and Evolution (CAGE) outdoor chambers located at the SEARCH site. Ambient trace gas concentrations were maintained in these chambers using semi-permeable gas-exchange membranes, while studying the growth of injected monodisperse seed aerosol. The control chamber was operated under ambient conditions; the relative humidity and oxidant and NOx levels were perturbed in the second chamber. This design allows experiments to capture the natural BSOA formation processes in the southeastern atmosphere and to study the influence of anthropogenic activity on aerosol chemistry. Chamber experiments were periodically monitored with physical and chemical instrumentation including a scanning mobility particle sizer (SMPS), a cloud condensation nuclei counter (CCNC), a humidified tandem differential mobility analyzer (H-TDMA), and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The CAGE experiments focused on SOA reversibility and the sensitivity of SOA reactions to oxidant or NOx enhancement and aerosol liquid water content. Available ambient trace gas concentrations include VOCs, NOx, SO2, ozone, peroxyaxyl nitrates, and ammonia. Chamber data will also be compared to ambient aerosol measurements collected by the instruments mentioned above as well as those from other research groups.

  2. Emissions of Black Carbon, Organic, and Inorganic Aerosols From Biomass Burning in North America and Asia in 2008

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Matsui, H.; Moteki, N.; Sahu, L.; Takegawa, N.; Kajino, M.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.; Diskin, G. S.; Anderson, B.; Wisthaler, A.; Mikoviny, T.; Fuelberg, H. E.; Blake, D. R.; Huey, G.; Weinheimer, A. J.; Knapp, D. J.; Brune, W. H.

    2011-01-01

    Reliable assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates improved understanding of emissions and the microphysical properties of carbonaceous (black carbon (BC) and organic aerosols (OA)) and inorganic aerosols. The size distributions of BC were measured by an SP2 based on the laser-induced incandescence technique on board the DC-8 aircraft during the NASA ARCTAS campaign. Aircraft sampling was made in fresh plumes strongly impacted by wildfires in North America (Canada and California) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We extracted biomass burning plumes using particle and tracer (CO, CH3CN, and CH2Cl2) data. OA constituted the dominant fraction of aerosols mass in the submicron range. The large majority of the emitted particles did not contain BC. We related the combustion phase of the fire as represented by the modified combustion efficiency (MCE) to the emission ratios between BC and other species. In particular, we derived the average emission ratios of BC/CO = 2.3 +/- 2.2 and 8.5 +/- 5.4 ng/cu m/ppbv for BB in North America and Asia, respectively. The difference in the BC/CO emission ratios is likely due to the difference in MCE. The count median diameters and geometric standard deviations of the lognormal size distribution of BC in the BB plumes were 136-141 nm and 1.32-1.36, respectively, and depended little on MCE. These BC particles were thickly coated, with shell/core ratios of 1.3-1.6. These parameters can be used directly for improving model estimates of the impact of BB in the Arctic.

  3. Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic

    PubMed Central

    Hu, Qi-Hou; Xie, Zhou-Qing; Wang, Xin-Ming; Kang, Hui; He, Quan-Fu; Zhang, Pengfei

    2013-01-01

    Isoprene and monoterpenes are important precursors of secondary organic aerosols (SOA) in continents. However, their contributions to aerosols over oceans are still inconclusive. Here we analyzed SOA tracers from isoprene and monoterpenes in aerosol samples collected over oceans during the Chinese Arctic and Antarctic Research Expeditions. Combined with literature reports elsewhere, we found that the dominant tracers are the oxidation products of isoprene. The concentrations of tracers varied considerably. The mean average values were approximately one order of magnitude higher in the Northern Hemisphere than in the Southern Hemisphere. High values were generally observed in coastal regions. This phenomenon was ascribed to the outflow influence from continental sources. High levels of isoprene could emit from oceans and consequently have a significant impact on marine SOA as inferred from isoprene SOA during phytoplankton blooms, which may abruptly increase up to 95 ng/m3 in the boundary layer over remote oceans. PMID:23880782

  4. Secondary Organic Aerosol Formation from the Photooxidation of p- and o-Xylene

    SciTech Connect

    Song, Chen; Na, Kwangsam; Warren, Bethany; Malloy, Quentin; Cocker, David R.

    2007-11-01

    The formation of secondary organic aerosol (SOA) from the photooxidation of xylene isomers (m-, p-, and o-xylenes) has been extensively investigated. The dependence of SOA aerosol formation on the structure of xylene isomers in the presence of NO was confirmed. Generally, SOA formation of p-xylene was less than that ofm- and o-xylenes. This discrepancy varies significantly with initial NOx levels. In a NOx-free environment, the difference of aerosol formation between o- and p-xylenes becomes insignificant. Several chemical pathways for the SOA dependence on structure and NOx are explored, with the experimental findings indicating that organic peroxides may be a major key to explaining SOA formation from aromatic hydrocarbons.

  5. Evaluating Simulated Primary Anthropogenic and Biomass Burning Organic Aerosols during MILAGRO: Implications for Assessing Treatments of Secondary Organic Aerosols

    SciTech Connect

    Fast, Jerome D.; Aiken, Allison; Allan, James D.; Alexander, M. L.; Campos, Teresa; Canagaratna, Manjula R.; Chapman, Elaine G.; DeCarlo, Peter; de Foy, B.; Gaffney, Jeffrey; de Gouw, Joost A.; Doran, J. C.; Emmons, L.; Hodzic, Alma; Herndon, Scott C.; Huey, L. G.; Jayne, John T.; Jimenez, Jose L.; Kleinman, Lawrence I.; Kuster, W. C.; Marley, Nancy A.; Russell, Lynn M.; Ochoa, Carlos; Onasch, Timothy B.; Pekour, Mikhail S.; Song, Chen; Ulbrich, Ingrid M.; Warneke, Carsten; Welsh-Bon, Daniel; Wiedinmyer, Christine; Worsnop, Douglas R.; Yu, Xiao-Ying; Zaveri, Rahul A.

    2009-08-31

    Simulated primary organic aerosols (POA), as well as other particulates and trace gases, in the vicinity of Mexico City are evaluated using measurements collected during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaigns. Since the emission inventories and dilution will affect predictions of total organic matter and consequently total particulate matter, our objective is to assess the uncertainties in predicted POA before testing and evaluating the performance of secondary organic aerosol (SOA) treatments. Carbon monoxide (CO) is well simulated on most days both over the city and downwind, indicating that transport and mixing processes were usually consistent with the meteorological conditions observed during MILAGRO. Predicted and observed elemental carbon (EC) in the city was similar, but larger errors occurred at remote locations since the CO/EC emission ratios in the national emission inventory were lower than in the metropolitan emission inventory. Components of organic aerosols derived from Positive Matrix Factorization and data from several Aerodyne Aerosol Mass Spectrometer instruments deployed both at ground sites and on research aircraft are used to evaluate the model. Predicted POA was consistently lower than the measured organic matter at the ground sites, which is consistent with the expectation that SOA should be a large fraction of the total organic matter mass. A much better agreement was found when predicted POA was compared with the sum of "primary anthropogenic" and "primary biomass burning" components on days with relatively low biomass burning, suggesting that the overall magnitude of primary organic particulates released was reasonable. The predicted POA was greater than the total observed organic matter when the aircraft flew directly downwind of large fires, suggesting that biomass burning emission estimates from some large fires may be too high. Predicted total observed organic carbon (TOOC) was also analyzed to assess how emission inventory estimates of volatile organic compounds may impact predictions of SOA.

  6. The pH-dependent leaching of inorganic contaminants from secondary lead smelter fly ash.

    PubMed

    Vítková, Martina; Ettler, Vojtech; Sebek, Ondrej; Mihaljevic, Martin; Grygar, Tomás; Rohovec, Jan

    2009-08-15

    The leaching behaviour of fly ash (FA) from a secondary Pb smelter was assessed using the pH-static leaching experiment according to prEN 14997 (pH range 3-11) coupled with mineralogical investigation of the leached FA by XRD and Rietveld analyses and thermodynamic modelling using PHREEQC-2. The procedure was performed on fresh FA and FA washed at a cumulative L/S ratio of 60l/kg to remove readily soluble salts. For both fresh and washed FA, high amounts of inorganic contaminants were released under acidic conditions, exhibiting L-shaped leaching patterns: up to 300g Pb/kg, 4.5g Cd/kg, 4g Zn/kg, 1.05g As/kg and 70mg Sb/kg. The washing of soluble salts significantly decreased the leachability of Cd, Zn, As and Sb and increased the release of Pb, especially under acidic conditions. The leaching of fresh FA removed part of primary caracolite and all the KPb(2)Cl(5) and NaCl. The Pb release was controlled by the precipitation of anglesite and PbSO(3) under acidic conditions and of laurionite and carbonates (hydrocerussite and phosgenite) under alkaline conditions. In contrast, the washed FA was composed mainly of anglesite and PbSO(3), both phases being the main solubility-controlling phases for Pb over the whole studied pH range. PMID:19195776

  7. Water uptake by organic aerosol and its influence on gas/particle partitioning of secondary organic aerosol in the United States

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu H.; Mahmud, Abdullah; Barsanti, Kelley C.; Asher, William E.; Pankow, James F.; Kleeman, Michael J.

    2016-03-01

    Organic aerosol (OA) is at least partly hygroscopic, i.e., water partitions into the organic phase to a degree determined by the relative humidity (RH), the organic chemical composition, and the particle size. This organic-phase water increases the aerosol mass and provides a larger absorbing matrix while decreasing its mean molecular weight, which can encourage additional condensation of semi-volatile organic compounds. Most regional and global atmospheric models account for water uptake by inorganic salts but do not explicitly account for organic-phase water and its subsequent impact on gas/particle partitioning of semi-volatile OA. In this work, we incorporated the organic-phase water model described by Pankow et al. (2015) into the UCD/CIT air quality model to simulate water uptake by OA and assessed its influence on total OA mass concentrations. The model was run for one summer month over two distinct regions: South Coast Air Basin (SoCAB) surrounding Los Angeles, California and the eastern United States (US). In SoCAB where the OA was dominated by non-hygroscopic primary OA (POA), there was very little organic-phase water uptake (0.1-0.2 μg m-3) and consequently very little enhancement (or growth) in total OA concentrations (OA + organic-phase water): a 3% increase in total OA mass was predicted for a 0.1 increase in relative humidity. In contrast, in the eastern US where secondary OA (SOA) from biogenic sources dominated the OA, substantial organic-phase water uptake and enhancement in total OA concentrations was predicted, even in urban locations. On average, the model predicted a 20% growth in total OA mass for a 0.1 increase in relative humidity; the growth was equivalent to a 250 nm particle with a hygroscopicity parameter (κ) of 0.15. Further, for the same relative humidity, the exact extent of organic-phase water uptake and total OA enhancement was found to be dependent on the particle mixing state. When the source-oriented mixing state of aerosols was considered, generally, less organic-phase water uptake was predicted than when simple internal mixing approximations were made. Overall, the results indicated that organic-phase water can significantly influence predicted total OA concentrations under certain conditions. Regional models applied in areas with high humidity and significant SOA formation should include calculations for organic-phase water in order to capture this effect.

  8. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multi-layer model ADCHAM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; Pagels, J.

    2014-01-01

    We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: (1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), (2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and (3) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. These salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar like amorphous phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if low-volatility and viscous oligomerized SOA material accumulates in the particle surface layer upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass transfer limited uptake of condensable organic compounds onto wall deposited particles or directly onto the Teflon chamber walls of smog chambers can have profound influence on the observed SOA formation. During the early stage of the SOA formation the wall deposited particles and walls themselves serve as a SOA sink from the air to the walls. However, at the end of smog chamber experiments the semi-volatile SOA material may start to evaporate from the chamber walls. With these three model applications, we demonstrate that several poorly quantified processes, i.e. mass transport limitations within the particle phase, oligomerization, heterogeneous oxidation, organic salt formation, and chamber wall effects can have substantial influence on the SOA formation, lifetime, chemical and physical particle properties, and their evolution. In order to constrain the uncertainties related to these processes, future experiments are needed where as many of the influential variables as possible are varied. ADCHAM can be a valuable model tool in the design and analysis of such experiments.

  9. Size distributions of secondary and primary aerosols in Asia: A 3-D modeling

    NASA Astrophysics Data System (ADS)

    Yu, F.; Luo, G.; Wang, Z.

    2009-12-01

    Asian aerosols have received increasing attention because of their potential health and climate effects and the rapid increasing of Asian emissions associated with accelerating economic expansion. Aerosol particles appear in the atmosphere due to either in-situ nucleation (i.e, secondary particles) or direct emissions (i.e., primary particles), and their environmental impacts depend strongly on their concentrations, sizes, compositions, and mixing states. A size-resolved (sectional) particle microphysics model with a number of computationally efficient schemes has been incorporated into a global chemistry transport model (GEOS-Chem) to simulate the number size distributions of secondary and primary particles in the troposphere (Yu and Luo, Atmos. Chem. Phys. Discuss., 9, 10597-10645, 2009). The growth of nucleated particles through the condensation of sulfuric acid vapor and equilibrium uptake of nitrate, ammonium, and secondary organic aerosol is explicitly simulated, along with the coating of primary particles (dust, black carbon, organic carbon, and sea salt) by volatile components via condensation and coagulation with secondary particles. Here we look into the spatiotemporal variations of the size distributions of secondary and primary aerosols in Asia. The annual mean number concentration of the accumulation mode particles (dry diameter > ~ 100 nm) in the lower troposphere over Asia (especially China) is very high and is dominated (~70-90%) by carbonaceous primary particles (with coated condensable species). Coagulation and condensation turn the primary particles into mixed particles and on average increase the dry sizes of primary particles by a factor of ~ 2-2.5. Despite of high condensation sink, sulfuric acid vapor concentration in many parts of Asian low troposphere is very high (annual mean values above 1E7/cm3) and significant new particle formation still occurs. Secondary particles generally dominate the particles small than 100 nm and the equilibrium uptake of nitrate, ammonium, and secondary organic aerosol contributes significantly to the growth of these particles. The vertical profiles of particle number size distributions at representative locations show significant spatial variations (both horizontally and vertically). Our simulations also indicate substantial seasonal variations of particle size distributions.

  10. Formation of secondary aerosols from gasoline vehicle exhausts when mixing with SO2

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, X.; Hu, Q.; Deng, W.; Zhang, Y.; Ding, X.; Fu, X.; Bernard, F.; Zhang, Z.; Lü, S.; He, Q.; Bi, X.; Chen, J.; Sun, Y.; Yu, J.; Peng, P.; Sheng, G.; Fu, J.

    2015-09-01

    Sulfur dioxide (SO2) can enhance the formation of secondary aerosols from biogenic volatile organic compounds (VOCs), but its influence on secondary aerosol formation from anthropogenic VOCs, particularly complex mixtures like vehicle exhausts, is still poorly understood. Here we directly co-introduced gasoline vehicles exhausts (GVE) and SO2, a typical pollutant from coal burning, into a smog chamber to investigate the formation of secondary organic aerosols (SOA) and sulfate aerosols through photooxidation. In the presence of high concentration of SO2, new particle formation was enhanced while substantial sulfate was formed through the oxidation of SO2. The homogenous oxidation by OH radicals contributed a negligible fraction to the conversion of SO2 to sulfate, and instead the oxidation by stabilized Criegee intermediates (sCIs), formed from alkenes in the exhaust reacting with ozone, dominated the conversion of SO2. After 5 h of photochemical aging, GVE's SOA production factor revealed an increase by 60-200 % in the presence of high concentration of SO2. This increase could largely be attributed to acid-catalyzed SOA formation, which was evidenced by the strong positive linear correlation (R2 = 0.97) between the SOA production factor and in-situ particle acidity calculated by AIM-II model. A high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) resolved OA's relatively lower oxygen-to-carbon (O : C) and higher hydrogen-to-carbon (H : C) molar ratios for the GVE/SO2 mixture, with a much lower estimated average carbon oxidation state (OSc) of -0.51 ± 0.06 than that of -0.19 ± 0.08 for GVE alone. The relative higher mass loading of OA in the experiments with SO2 might be the major reason for the lower oxidation degree of SOA.

  11. Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO2

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, X.; Hu, Q.; Deng, W.; Zhang, Y.; Ding, X.; Fu, X.; Bernard, F.; Zhang, Z.; Lü, S.; He, Q.; Bi, X.; Chen, J.; Sun, Y.; Yu, J.; Peng, P.; Sheng, G.; Fu, J.

    2016-01-01

    Sulfur dioxide (SO2) can enhance the formation of secondary aerosols from biogenic volatile organic compounds (VOCs), but its influence on secondary aerosol formation from anthropogenic VOCs, particularly complex mixtures like vehicle exhaust, remains uncertain. Gasoline vehicle exhaust (GVE) and SO2, a typical pollutant from coal burning, are directly co-introduced into a smog chamber, in this study, to investigate the formation of secondary organic aerosols (SOA) and sulfate aerosols through photooxidation. New particle formation was enhanced, while substantial sulfate was formed through the oxidation of SO2 in the presence of high concentration of SO2. Homogenous oxidation by OH radicals contributed a negligible fraction to the conversion of SO2 to sulfate, and instead the oxidation by stabilized Criegee intermediates (sCIs), formed from alkenes in the exhaust reacting with ozone, dominated the conversion of SO2. After 5 h of photochemical aging, GVE's SOA production factor revealed an increase by 60-200 % in the presence of high concentration of SO2. The increase could principally be attributed to acid-catalyzed SOA formation as evidenced by the strong positive linear correlation (R2 = 0.97) between the SOA production factor and in situ particle acidity calculated by the AIM-II model. A high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) resolved OA's relatively lower oxygen-to-carbon (O : C) (0.44 ± 0.02) and higher hydrogen-to-carbon (H : C) (1.40 ± 0.03) molar ratios for the GVE / SO2 mixture, with a significantly lower estimated average carbon oxidation state (OSc) of -0.51 ± 0.06 than -0.19 ± 0.08 for GVE alone. The relative higher mass loading of OA in the experiments with SO2 might be a significant explanation for the lower SOA oxidation degree.

  12. Time-resolved inorganic chemical composition of fine aerosol and associated precursor gases over an urban environment in western India: Gas-aerosol equilibrium characteristics

    NASA Astrophysics Data System (ADS)

    Sudheer, A. K.; Rengarajan, R.

    2015-05-01

    Inorganic ionic constituents (Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3- and SO42-) of PM2.5 and associated trace gases (NH3, HNO3 and HCl) were measured simultaneously by Ambient Ion Monitor - Ion Chromatograph (AIM-IC) system with a time resolution of one hour at an urban location in semi-arid region of western India during summer and winter. The average NH3, HNO3 and HCl concentrations were 11.6 5.0, 2.9 0.8 and 0.15 ?g m-3, respectively, during winter. During summer, NH3 and HNO3 concentrations were of similar magnitude, whereas HCl concentration was less than ?0.03 ?g m-3. NH3 concentration exhibited a distinct diurnal variation during both seasons. However, HNO3 did not show a specific diurnal trend during the observation period in both seasons. The data obtained were used to study gas-aerosol equilibrium characteristics using a thermodynamic equilibrium model, ISORROPIA II. The results suggest that NH3 exists in equilibrium between measured fine-mode particle and gas phase with a systematic bias of ?14%, whereas HCl and HNO3 deviate significantly from the modelled data. These observations have implications on thermodynamic equilibrium assumptions used for estimating various aerosol parameters such as liquid water content, pH, etc., thus causing significant bias in chemical transport model results over the study region.

  13. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-01

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels. PMID:22732009

  14. Representation of secondary organic aerosol laboratory chamber data for the interpretation of mechanisms of particle growth.

    PubMed

    Kroll, Jesse H; Seinfeld, John H

    2005-06-01

    Absorptive models of gas-particle partitioning have been shown to be successful in describing the formation and growth of secondary organic aerosol (SOA). Here the expression for particle growth derived by Odum et al. (Odum, J. R.; Hoffmann, T.; Bowman, F.; Collins, D.; Flagan, R. C.; Seinfeld, J. H. Gas/particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol. 1996, 30, 2580-2585) is extended to facilitate interpretation of SOA growth data measured in the laboratory in terms of the underlying chemistry, even when details of the reactions are not well-constrained. A simple (one-component) expression for aerosol growth (deltaM) as a function of the amount of hydrocarbon reacted (deltaHC) is derived, and the effects of changes to three key parameters, stoichiometric yield of condensable species, gas-particle partitioning coefficient, and concentration of preexisting aerosol, are discussed. Two sets of laboratory chamber data on SOA growth are examined in this context: the ozonolysis of alpha-pinene and the OH-initiated photooxidation of aromatic compounds. Even though these two systems have a number of significant differences, both are described well within this framework. From the shapes of the deltaM versus deltaHC curves in each case, the importance of poorly constrained chemistry such as heterogeneous reactions and gas-phase reactions of oxidation products is examined. PMID:15984795

  15. Secondary organic aerosol formation initiated from reactions between ozone and surface-sorbed squalene

    NASA Astrophysics Data System (ADS)

    Wang, Chunyi; Waring, Michael S.

    2014-02-01

    Previous research has shown that ozone reactions on surface-sorbed D-limonene can promote gas phase secondary organic aerosol (SOA) formation indoors. In this work, we conducted 13 steady state chamber experiments to measure the SOA formation entirely initiated by ozone reactions with squalene sorbed to glass, at chamber ozone of 57-500 ppb for two relative humidity (RH) conditions of 21% and 51%, in the absence of seed particles. Squalene is a nonvolatile compound that is a component of human skin oil and prevalent on indoor surfaces and in settled dust due to desquamation. The size distributions, mass and number secondary emission rates (SER), aerosol mass fractions (AMF), and aerosol number fractions (ANF) of formed SOA were quantified. The surface AMF and ANF are defined as the change in SOA mass or number formed, respectively, per ozone mass consumed by ozone-squalene reactions. All experiments but one exhibited nucleation and mass formation. Mass formation was relatively small in magnitude and increased with ozone, most notably for the RH = 51% experiments. The surface AMF was a function of the chamber aerosol concentration, and a multi-product model was fit using the 'volatility basis set' framework. Number formation was relatively strong at low ozone and low RH conditions. Though we cannot extrapolate our results because experiments were conducted at high air exchange rates, we speculate that this process may enhance particle number more than mass concentrations indoors.

  16. Significant Contributions of Isoprene to Summertime Secondary Organic Aerosol in Eastern United States.

    PubMed

    Ying, Qi; Li, Jingyi; Kota, Sri Harsha

    2015-07-01

    A modified SAPRC-11 (S11) photochemical mechanism with more detailed treatment of isoprene oxidation chemistry and additional secondary organic aerosol (SOA) formation through surface-controlled reactive uptake of dicarbonyls, isoprene epoxydiol and methacrylic acid epoxide was incorporated in the Community Multiscale Air Quality Model (CMAQ) to quantitatively determine contributions of isoprene to summertime ambient SOA concentrations in the eastern United States. The modified model utilizes a precursor-origin resolved approach to determine secondary glyoxal and methylglyoxal produced by oxidation of isoprene and other major volatile organic compounds (VOCs). Predicted OC concentrations show good agreement with field measurements without significant bias (MFB ? 0.07 and MFE ? 0.50), and predicted SOA reproduces observed day-to-day and diurnal variation of Oxygenated Organic Aerosol (OOA) determined by an aerosol mass spectrometer (AMS) at two locations in Houston, Texas. On average, isoprene SOA accounts for 55.5% of total predicted near-surface SOA in the eastern U.S., followed by aromatic compounds (13.2%), sesquiterpenes (13.0%) and monoterpenes (10.9%). Aerosol surface uptake of isoprene-generated glyoxal, methylglyoxal and epoxydiol accounts for approximately 83% of total isoprene SOA or more than 45% of total SOA. A domain wide reduction of NOx emissions by 40% leads to a slight decrease of domain average SOA by 3.6% and isoprene SOA by approximately 2.6%. Although most of the isoprene SOA component concentrations are decreased, SOA from isoprene epoxydiol is increased by ?16%. PMID:26029963

  17. Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Wang, G.; Xie, M.; Hu, S.; Gao, S.; Tachibana, E.; Kawamura, K.

    2010-07-01

    Dicarboxylic acids (C2-C10), metals, elemental carbon (EC), organic carbon (OC), and stable isotopic compositions of total carbon (TC) and total nitrogen (TN) were determined for PM10 samples collected at three urban and one suburban sites of Baoji, an inland city of China, during winter and spring 2008. Oxalic acid (C2) was the dominant diacid, followed by succinic (C4) and malonic (C3) acids. Total diacids in the urban and suburban areas were 1546203 and 1728495 ng m-3 during winter and 1236335 and 1028193 ng m-3 during spring. EC in the urban and the suburban atmospheres were 173.8 and 8.02.1 ?g m-3 during winter and 205.9 and 7.12.7 ?g m-3 during spring, while OC at the urban and suburban sites were 7414 and 517.9 ?g m-3 in winter and 5120 and 236.1 ?g m-3 in spring. Secondary organic carbon (SOC) accounted for 3816% of OC in winter and 2818% of OC in spring, suggesting an enhanced photochemical production of secondary organic aerosols in winter under an inversion layer development. Total metal elements in winter and spring were 3410 and 6127 ?g m-3 in the urban air and 187 and 3223 ?g m-3 in the suburban air. A linear correlation (r2>0.8 in winter and r2>0.6 in spring) was found between primary organic carbon (POC) and Ca2+/Fe, together with a strong dependence of pH value of sample extracts on water-soluble inorganic carbon, suggesting fugitive dust as an important source of the airborne particles. Polycyclic aromatic hydrocarbons (PAHs), sulfate, and Pb in the samples well correlated each other (r2>0.6) in winter, indicating an importance of emissions from coal burning for house heating. Stable carbon isotope compositions of TC (?13C) became higher with an increase in the concentration ratios of C2/OC due to aerosol aging. In contrast, nitrogen isotope compositions of TN (?15N) became lower with an increases in the mass ratios of NH4+/PM10 and NO3-/PM10, which is possibly caused by an enhanced adsorption and/or condensation of gaseous NH3 and HNO3 onto particles.

  18. Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Wang, G.; Xie, M.; Hu, S.; Tachibana, E.; Kawamura, K.

    2010-03-01

    Dicarboxylic acids (C2-C10), metals, elemental carbon (EC), organic carbon (OC), and stable isotopic compositions of total carbon (TC) and total nitrogen (TN) were determined for PM10 samples collected at three urban and one suburban sites of Baoji, an inland city of China, during winter and spring 2008. Oxalic acid (C2) was the dominant diacid, followed by succinic (C4) and malonic (C3) acids. Total diacids in the urban and suburban areas are 1546203 and 1728495 ng m-3 during winter and 1236335 and 1028193 ng m-3 during spring. EC in the urban and the suburban atmospheres are 173.8 and 8.02.1 ?g m-3 during winter and 205.9 and 7.12.7 ?g m-3 during spring whereas OC at the urban and suburban sites are 7414 and 517.9 ?g m-3 in winter and 5120 and 236.1 ?g m-3 in spring. Secondary organic carbon (SOC) accounted for 3816% of OC in winter and 2818% of OC in spring, suggesting an enhanced photochemical production of secondary organic aerosols in winter under an inversion layer development. Total metal elements in winter and spring are 3410 and 6127 ?g m-3 in the urban air and 187 and 3223 ?g m-3 in the suburban air. A linear correlation (r2>0.8 in winter and r2>0.6 in spring) was found between primary organic carbon (POC) and Ca2+/Fe, together with a strong dependence of pH value on water-soluble inorganic carbon, suggesting fugitive dust as a major source of the airborne particles. Polycyclic aromatic hydrocarbons (PAHs), sulfate, and Pb in the samples well correlated each other (r2>0.6) in winter samples, suggesting an importance of emissions from coal burning for house heating. Stable carbon isotope compositions of TC (?13C) became higher with an increase in the concentration ratios of C2/OC due to aerosol aging. In contrast, nitrogen isotope compositions of TN (?15N) became lower with an increases in the mass ratios of NH4+/PM10 and NO3-/PM10 due to an enhanced adsorption and/or condensation of NH3 and HNO3 from gas phase onto solid phase.

  19. Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber

    NASA Astrophysics Data System (ADS)

    Tritscher, T.; Dommen, J.; Decarlo, P. F.; Gysel, M.; Barmet, P. B.; Praplan, A. P.; Weingartner, E.; Prvt, A. S. H.; Riipinen, I.; Donahue, N. M.; Baltensperger, U.

    2011-11-01

    The evolution of secondary organic aerosols (SOA) during (photo-)chemical aging processes was investigated in a smog chamber. Fresh SOA from ozonolysis of 10 to 40 ppb ?-pinene was formed followed by aging with OH radicals. The particles' volatility and hygroscopicity (expressed as volume fraction remaining (VFR) and hygroscopicity parameter ?) were measured in parallel with a volatility and hygroscopicity tandem differential mobility analyzer (V/H-TDMA). An aerosol mass spectrometer (AMS) was used for the chemical characterization of the aerosol. These measurements were used as sensitive parameters to reveal the mechanisms possibly responsible for the changes in the SOA composition during aging. A change of VFR and/or ? during processing of atmospheric aerosols may occur either by addition of SOA mass (by condensation) or by a change of SOA composition leading to different aerosol properties. The latter may occur either by heterogeneous reactions on the surface of the SOA particles, by condensed phase reactions like oligomerization or by an evaporation - gas-phase oxidation - recondensation cycle. The condensation mechanism showed to be dominant when there is a substantial change in the aerosol mass by addition of new molecules to the aerosol phase with time. Experiments could be divided into four periods based on the temporal evolution (qualitative changes) of VFR, ? and organic mass: O3 induced condensation, ripening, and OH induced chemical aging first with substantial mass gain and then without significant mass gain. During the O3 induced condensation the particles' volatility decreased (increasing VFR) while the hygroscopicity increased. Thereafter, in the course of ripening volatility continued to decrease, but hygroscopicity stayed roughly constant. After exposing the SOA to OH radicals an OH induced chemical aging with substantial mass gain started resulting in the production of at least 50 % more SOA mass. This new SOA mass was highly volatile and oxidized. This period was then followed by further OH induced chemical aging without significant mass gain leading to a decrease of volatility while hygroscopicity and SOA mass stayed roughly constant.

  20. Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources

    NASA Astrophysics Data System (ADS)

    Presto, A. A.; Gordon, T. D.; Robinson, A. L.

    2013-09-01

    A series of smog chamber experiments were conducted to investigate the transformation of primary organic aerosol (POA) and formation of secondary organic aerosol (SOA) during the photo-oxidation of dilute gasoline and diesel motor vehicle exhaust. In half of the experiments POA was present in the chamber at the onset of photo-oxidation. In these experiments positive matrix factorization (PMF) was used to determine separate POA and SOA factors from aerosol mass spectrometer data. A two-factor solution, with one POA factor and one SOA factor, was sufficient to describe the organic aerosol in all but one experiment. In the other half of the experiments, POA was not present at the onset of photo-oxidation; these experiments are considered "pure SOA" experiments. The POA mass spectrum was similar to the mass spectra of the hydrocarbon-like organic aerosol factor determined from ambient datasets with one exception, a diesel vehicle equipped with a diesel oxidation catalyst. The SOA in all experiments had a constant composition over the course of photo-oxidation, and did not appear to age with continued oxidation. The SOA mass spectra for the various gasoline and diesel vehicles were similar to each other, but markedly different than ambient oxidized organic aerosol factors. Van Krevelen analysis of the POA and SOA factors for gasoline and diesel experiments reveal slopes of -0.68 and -0.43, respectively. This suggests that the oxidation chemistry in these experiments is a combination of carboxylic acid and alcohol/peroxide formation, consistent with ambient oxidation chemistry. These experiments also provide insight to the mixing behavior of the POA and SOA. Analysis of the time series of the POA factor concentration and a basis-set model both indicate that for all but one of the vehicles tested here, the POA and SOA seem to mix and form a single organic aerosol phase.

  1. Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest

    NASA Astrophysics Data System (ADS)

    Robinson, N. H.; Hamilton, J. F.; Allan, J. D.; Langford, B.; Oram, D. E.; Chen, Q.; Docherty, K.; Farmer, D. K.; Jimenez, J. L.; Ward, M. W.; Hewitt, C. N.; Barley, M. H.; Jenkin, M. E.; Rickard, A. R.; Martin, S. T.; McFiggans, G.; Coe, H.

    2010-11-01

    Isoprene is the most abundant non-methane biogenic volatile organic compound (BVOC), but the processes governing secondary organic aerosol (SOA) formation from isoprene oxidation are only beginning to become understood and selective quantification of the atmospheric particulate burden remains difficult. Organic aerosol above a tropical rainforest located in Danum Valley, Borneo, Malaysia, a high isoprene emission region, was studied during Summer 2008 using Aerosol Mass Spectrometry and offline detailed characterisation using comprehensive two dimensional gas chromatography. Observations indicate that a substantial fraction (up to 15% by mass) of atmospheric sub-micron organic aerosol was observed as methylfuran (MF) after thermal desorption. This observation was associated with the simultaneous measurements of established gas-phase isoprene oxidation products methylvinylketone (MVK) and methacrolein (MACR). Observations of MF were also made during experimental chamber oxidation of isoprene. Positive matrix factorisation of the AMS organic mass spectral time series produced a robust factor which accounts for an average of 23% (0.18 ?g m-3), reaching as much as 53% (0.50 ?g m-3) of the total oraganic loading, identified by (and highly correlated with) a strong MF signal. Assuming that this factor is generally representative of isoprene SOA, isoprene derived aerosol plays a significant role in the region. Comparisons with measurements from other studies suggest this type of isoprene SOA plays a role in other isoprene dominated environments, albeit with varying significance.

  2. Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest

    NASA Astrophysics Data System (ADS)

    Robinson, N. H.; Hamilton, J. F.; Allan, J. D.; Langford, B.; Oram, D. E.; Chen, Q.; Docherty, K.; Farmer, D. K.; Jimenez, J. L.; Ward, M. W.; Hewitt, C. N.; Barley, M. H.; Jenkin, M. E.; Rickard, A. R.; Martin, S. T.; McFiggans, G.; Coe, H.

    2011-02-01

    Isoprene is the most abundant non-methane biogenic volatile organic compound (BVOC), but the processes governing secondary organic aerosol (SOA) formation from isoprene oxidation are only beginning to become understood and selective quantification of the atmospheric particulate burden remains difficult. Organic aerosol above a tropical rainforest located in Danum Valley, Borneo, Malaysia, a high isoprene emission region, was studied during Summer 2008 using Aerosol Mass Spectrometry and offline detailed characterisation using comprehensive two dimensional gas chromatography. Observations indicate that a substantial fraction (up to 15% by mass) of atmospheric sub-micron organic aerosol was observed as methylfuran (MF) after thermal desorption. This observation was associated with the simultaneous measurements of established gas-phase isoprene oxidation products methylvinylketone (MVK) and methacrolein (MACR). Observations of MF were also made during experimental chamber oxidation of isoprene. Positive matrix factorisation of the AMS organic mass spectral time series produced a robust factor which accounts for an average of 23% (0.18 ?g m-3), reaching as much as 53% (0.50 ?g m-3) of the total oraganic loading, identified by (and highly correlated with) a strong MF signal. Assuming that this factor is generally representative of isoprene SOA, isoprene derived aerosol plays a significant role in the region. Comparisons with measurements from other studies suggest this type of isoprene SOA plays a role in other isoprene dominated environments, albeit with varying significance.

  3. Secondary Organic Aerosol Formation from m-Xylene in the Absence of NOx

    SciTech Connect

    Song, Chen; Na, Kwangsam; Warren, Bethany; Malloy, Quentin; Cocker, David R.

    2007-11-01

    Formation of secondary organic aerosol (SOA) from m-xylene photoxidation in the absence of NOx was investigated in a series of smog chamber experiments. Experiments were performed in dry air and in the absence of seed aerosol with H2O2 photolysis providing a stable hydroxyl radical (OH radical) source. SOA formation from this study is exceptionally higher than experiments with existence of NOx. The experiments with elevated HO2 levels indicate that organic hydroperoxide compounds should contribute to SOA formation. Nitrogen oxide (NO) is shown to reduce aerosol formation; the constant aerosol formation rate obtained before addition of NO and after consumption of NO strongly suggests that aerosol formation is mainly through reactions with OH and HO2 radicals. In addition, a density of 1.40 ± 0.1 g cm-3 for the SOA from the photooxidation of m-xylene in the absence of NOx has been measured, which is significantly higher than the currently used unit density.

  4. Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics

    NASA Astrophysics Data System (ADS)

    Guo, S.; Hu, M.; Guo, Q.; Zhang, X.; Schauer, J. J.; Zhang, R.

    2013-08-01

    To assess the primary and secondary sources of fine organic aerosols after the aggressive implementation of air pollution controls during the 2008 Beijing Olympic Games, 12 h PM2.5 values were measured at an urban site at Peking University (PKU) and an upwind rural site at Yufa during the CAREBEIJING-2008 (Campaigns of Air quality REsearch in BEIJING and surrounding region) summer field campaign. The average PM2.5 concentrations were 72.5 43.6 ?g m-3 and 64.3 36.2 ?g m-3 (average standard deviation, below as the same) at PKU and Yufa, respectively, showing the lowest concentrations in recent years. Combining the results from a CMB (chemical mass balance) model and secondary organic aerosol (SOA) tracer-yield model, five primary and four secondary fine organic aerosol sources were compared with the results from previous studies in Beijing. The relative contribution of mobile sources to PM2.5 concentrations was increased in 2008, with diesel engines contributing 16.2 5.9% and 14.5 4.1% and gasoline vehicles contributing 10.3 8.7% and 7.9 6.2% to organic carbon (OC) at PKU and Yufa, respectively. Due to the implementation of emission controls, the absolute OC concentrations from primary sources were reduced during the Olympics, and the contributions from secondary formation of OC represented a larger relative source of fine organic aerosols. Compared with the non-controlled period prior to the Olympics, primary vehicle contributions were reduced by 30% at the urban site and 24% at the rural site. The reductions in coal combustion contributions were 57% at PKU and 7% at Yufa. Our results demonstrate that the emission control measures implemented in 2008 significantly alleviated the primary organic particle pollution in and around Beijing. However, additional studies are needed to provide a more comprehensive assessment of the emission control effectiveness on SOA formation.

  5. Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools

    NASA Astrophysics Data System (ADS)

    Rivas, I.; Viana, M.; Moreno, T.; Bouso, L.; Pandolfi, M.; Alvarez-Pedrerol, M.; Forns, J.; Alastuey, A.; Sunyer, J.; Querol, X.

    2015-04-01

    Infiltration of outdoor-sourced particles into indoor environments in 39 schools in Barcelona was assessed during school hours. Tracers of road traffic emissions (NO2, Equivalent Black Carbon (EBC), Ultrafine Particles (UFP), Sb), secondary inorganic aerosols (SO42-, NO3-, NH4+) and a number of PM2.5 trace elements showed median indoor/outdoor (I/O) ratios ≤ 1, indicating that outdoor sources importantly contributed to indoor concentrations. Conversely, OC and mineral components had I/O ratios>1. Different infiltration factors were found for traffic and secondary components (0.31-0.75 and 0.50-0.92, cold and warm season respectively), with maxima corresponding to EBC and Cd. Higher concentrations of indoor-generated particles were observed when closed windows hindered dispersion (cold season). Building age was not a major determinant of indoor levels. Neither were the window's material, except for NO2 (with an increase of 8 μg m-3 for wood framed windows) and the mineral components (also dependent on the presence of sand in a distance <20 m) that reach the indoor environment via soil adhering to footwear with their dispersion being more barred by Aluminium/PVC framed windows than the wooden ones. Enlarged indoor concentrations of some trace elements suggest the presence of indoor sources that should be further investigated in order to achieve a healthier school indoor environment.

  6. Effect of Hydrophilic Organic Seed Aerosols on the Formation of Secondary Organic Aerosol from ?-Pinene Ozonolysis in Dry and Humid Conditions

    NASA Astrophysics Data System (ADS)

    Song, C.; Zaveri, R. A.; Alexander, L.; Newburn, M.

    2009-12-01

    Our previous study (Song et al., 2007) showed that hydrophobic primary organic aerosols (POA) could not enhance secondary organic aerosol (SOA) mass yield from ?-pinene ozonolysis, indicating that SOA species may not be well mixed with hydrophobic POA species. However, aerosol composition and properties of urban hydrophobic POA will change in the atmosphere. POA can be oxidized via heterogeneous uptake of oxidants such as hydroxyl radical (OH), ozone and nitrate radical (NO3). Some aerosol-phase organic monomers may undertake condensed-phase chemistry to form oligomers. As a result, urban POAs can gradually become hydrophilic over time. On the other hand, some atmospheric organic aerosols are already somewhat hydrophilic. For example, POA formed from biomass burning are already somewhat hydrophilic. These hydrophilic organic aerosols may act contrastingly to those hydrophobic POAs and could enhance the absorption of SOA species into the aerosol-phase by providing additional absorptive mass. In this study, we investigate the SOA formation from ?-pinene ozonolysis in the presence of various surrogates of oxidized/hydrophilic POAs such as fulvic acid, levoglucosan and glycerol. Fulvic acid serves as surrogates for aged oligomeric or polymeric substances in ambient organic aerosols; levoglucosan is used to resemble hydrophilic POAs from biomass burning; glycerol serves as a model hydrophilic organic aerosol. Each seed aerosol will be tested in both dry or humid conditions. Humidity will also be varied to exame the extent of the effect of aerosol-phase water on SOA yield. Organic species in the gas phase are measured with a Proton Transfer Reaction-Mass Spectrometer (PTR-MS) while the growth of aerosols and their composition are analyzed using a Scanning Mobility Particle Sizer (SMPS) and an Aerosol Mass Spectrometer (AMS), respectively. The data will be interpreted with the gas-particle partitioning theory, and the implications of our results on modeling SOA formation will be discussed.

  7. MODELING THE EFFECT OF CHLORINE EMISSIONS ON ATMOSPHERIC OZONE AND SECONDARY ORGANIC AEROSOL CONCENTRATIONS ACROSS THE UNITED STATES

    EPA Science Inventory

    This paper presents the modeled effects of natural and anthropogenic chlorine emissions on the atmospheric concentrations of ozone and secondary organic aerosol across the United States. The model calculations include anthropogenic molecular chlorine emissions, anthropogenic hypo...

  8. DETERMINATION OF SECONDARY ORGANIC AEROSOL PRODUCTS FROM THE PHOTOOXIDATION OF TOLUENE AND THEIR IMPLICATIONS IN AMBIENT PM2.5

    EPA Science Inventory

    Laboratory study was carried out to investigate the secondary organic aerosol products from photooxidation of the aromatic hydrocarbon toluene. The laboratory experiments consisted of irradiating toluene/propylene/NOX/air mixtures in a smog chamber operated in the dynamic mode...

  9. Contrasting diurnal variations in fossil and nonfossil secondary organic aerosol in urban outflow, Japan.

    PubMed

    Morino, Yu; Takahashi, Katsuyuki; Fushimi, Akihiro; Tanabe, Kiyoshi; Ohara, Toshimasa; Hasegawa, Shuichi; Uchida, Masao; Takami, Akinori; Yokouchi, Yoko; Kobayashi, Shinji

    2010-11-15

    Diurnal variations of fossil secondary organic carbon (SOC) and nonfossil SOC were determined for the first time using a combination of several carbonaceous aerosol measurement techniques, including radiocarbon (?C) determinations by accelerator mass spectrometry, and a receptor model (chemical mass balance, CMB) at a site downwind of Tokyo during the summer of 2007. Fossil SOC showed distinct diurnal variation with a maximum during daytime, whereas diurnal variation of nonfossil SOC was relatively small. This behavior was reproduced by a chemical transport model (CTM). However, the CTM underestimated the concentration of anthropogenic secondary organic aerosol (ASOA) by a factor of 4-7, suggesting that ASOA enhancement during daytime is not explained by production from volatile organic compounds that are traditionally considered major ASOA precursors. This result suggests that unidentified semivolatile organic compounds or multiphase chemistry may contribute largely to ASOA production. As our knowledge of production pathways of secondary organic aerosol (SOA) is still limited, diurnal variations of fossil and nonfossil SOC in our estimate give an important experimental constraint for future development of SOA models. PMID:20886860

  10. Comparison of abundances, compositions and sources of elements, inorganic ions and organic compounds in atmospheric aerosols from Xi'an and New Delhi, two megacities in China and India.

    PubMed

    Li, Jianjun; Wang, Gehui; Aggarwal, Shankar G; Huang, Yao; Ren, Yanqin; Zhou, Bianhong; Singh, Khem; Gupta, Prabhat K; Cao, Junji; Zhang, Rong

    2014-04-01

    Wintertime TSP samples collected in the two megacities of Xi'an, China and New Delhi, India were analyzed for elements, inorganic ions, carbonaceous species and organic compounds to investigate the differences in chemical compositions and sources of organic aerosols. The current work is the first time comparing the composition of urban organic aerosols from China and India and discussing their sources in a single study. Our results showed that the concentrations of Ca, Fe, Ti, inorganic ions, EC, PAHs and hopanes in Xi'an are 1.3-2.9 times of those in New Delhi, which is ascribed to the higher emissions of dust and coal burning in Xi'an. In contrast, Cl(-), levoglucosan, n-alkanes, fatty alcohols, fatty acids, phthalates and bisphenol A are 0.4-3.0 times higher in New Delhi than in Xi'an, which is attributed to strong emissions from biomass burning and solid waste incineration. PAHs are carcinogenic while phthalates and bisphenol A are endocrine disrupting. Thus, the significant difference in chemical compositions of the above TSP samples may suggest that residents in Xi'an and New Delhi are exposed to environmental hazards that pose different health risks. Lower mass ratios of octadecenoic acid/octadecanoic acid (C18:1/C18:0) and benzo(a)pyrene/benzo(e)pyrene (BaP/BeP) demonstrate that aerosol particles in New Delhi are photochemically more aged. Mass closure reconstructions of the wintertime TSP indicate that crustal material is the most abundant component of ambient particles in Xi'an and New Delhi, accounting for 52% and 48% of the particle masses, respectively, followed by organic matter (24% and 23% in Xi'an and New Delhi, respectively) and secondary inorganic ions (sulfate, nitrate plus ammonium, 16% and 12% in Xi'an and New Delhi, respectively). PMID:24496022

  11. Size-resolved airborne particulate oxalic and related secondary organic aerosol species in the urban atmosphere of Chengdu, China

    NASA Astrophysics Data System (ADS)

    Cheng, Chunlei; Wang, Gehui; Meng, Jingjing; Wang, Qiyuan; Cao, Junji; Li, Jianjun; Wang, Jiayuan

    2015-07-01

    Size-segregated (9-stages) airborne particles during winter in Chengdu city of China were collected on a day/night basis and determined for dicarboxylic acids (diacids), ketocarboxylic acids (ketoacids), ?-dicarbonyls, inorganic ions, and water-soluble organic carbon and nitrogen (WSOC and WSON). Diacid concentration was higher in nighttime (1831 607 ng m- 3) than in daytime (1532 196 ng m- 3), whereas ketoacids and dicarbonyls showed little diurnal difference. Most of the organic compounds were enriched in the fine mode (< 2.1 ?m) with a peak at the size range of 0.7-2.1 ?m. In contrast, phthalic acid (Ph) and glyoxal (Gly) presented two equivalent peaks in the fine and coarse modes, which is at least in part due to the gas-phase oxidation of precursors and a subsequent partitioning into pre-existing particles. Liquid water content (LWC) of the fine mode particles was three times higher in nighttime than in daytime. The calculated in-situ pH (pHis) indicated that all the fine mode aerosols were acidic during the sampling period and more acidic in daytime than in nighttime. Robust correlations of the ratios of glyoxal/oxalic acid (Gly/C2) and glyoxylic acid/oxalic acid (?C2/C2) with LWC in the samples suggest that the enhancement of LWC is favorable for oxidation of Gly and ?C2 to produce C2. Abundant K+ and Cl- in the fine mode particles and the strong correlations of K+ with WSOC, WSON and C2 indicate that secondary organic aerosols in the city are significantly affected by biomass burning emission.

  12. Fog scavenging of organic and inorganic aerosol in the Po Valley

    NASA Astrophysics Data System (ADS)

    Gilardoni, S.; Massoli, P.; Giulianelli, L.; Rinaldi, M.; Paglione, M.; Pollini, F.; Lanconelli, C.; Poluzzi, V.; Carbone, S.; Hillamo, R.; Russell, L. M.; Facchini, M. C.; Fuzzi, S.

    2014-07-01

    The interaction of aerosol with atmospheric water affects the processing and wet removal of atmospheric particles. Understanding such interaction is mandatory to improve model description of aerosol lifetime and ageing. We analyzed the aerosol-water interaction at high relative humidity during fog events in the Po Valley within the framework of the Agenzia Regionale per la Prevenzione e l'Ambiente (ARPA) - Emilia Romagna supersite project. For the first time in this area, the changes in particle chemical composition caused by fog are discussed along with changes in particle microphysics. During the experiment, 14 fog events were observed. The average mass scavenging efficiency was 70% for nitrate, 68% for ammonium, 61% for sulfate, 50% for organics, and 39% for black carbon. After fog formation, the interstitial aerosol was dominated by particles smaller than 200 nm Dva (vacuum aerodynamic diameter) and enriched in carbonaceous aerosol, mainly black carbon and water-insoluble organic aerosol. For each fog event, the size-segregated scavenging efficiency of nitrate and organic aerosol (OA) was calculated by comparing chemical species size distribution before and after fog formation. For both nitrate and OA, the size-segregated scavenging efficiency followed a sigmoidal curve, with values close to zero below 100 nm Dva and close to 1 above 700 nm Dva. OA was able to affect scavenging efficiency of nitrate in particles smaller than 300 nm Dva. A linear correlation between nitrate scavenging and particle hygroscopicity (?) was observed, indicating that 44-51% of the variability of nitrate scavenging in smaller particles (below 300 nm Dva) was explained by changes in particle chemical composition. The size-segregated scavenging curves of OA followed those of nitrate, suggesting that organic scavenging was controlled by mixing with water-soluble species. In particular, functional group composition and OA elemental analysis indicated that more oxidized OA was scavenged more efficiently than less oxidized OA. Nevertheless, the small variability of organic functional group composition during the experiment did not allow us to discriminate the effect of different organic functionalities on OA scavenging.

  13. Influence of Soluble Surfactant Properties on the Activation of Aerosol Particles Containing Inorganic Solute.

    NASA Astrophysics Data System (ADS)

    Li, Zhidong; Williams, Allen L.; Rood, Mark J.

    1998-05-01

    Atmospheric aerosol particles consisting of ammonium sulfate [(NH4)2SO4] or sodium chloride (NaCl) have reasonably well-defined hygroscopic properties compared to other materials in aerosol particles, such as organic material. The effect of internally mixing organic compounds with these salts is not clear when considering the hygroscopic properties of the resulting particles, including activation of particles in clouds. This research describes the activation of aerosol particles consisting of sodium dodecyl sulfate (SDS) and NaCl solute. SDS is used as a surrogate for soluble atmospheric surfactants. Khler theory is used to model droplet activation while considering droplet properties such as surface tension (), surface excess surfactant concentration, and critical micelle concentration (CMC).Reduction in critical supersaturation (Sc) caused by the reduction in (Kelvin effect) associated with the surfactant is dominated by the increase in Sc with the decreasing number of moles of solute in the droplet (Raoult effect) as surfactant displaces NaCl solute mass. For an initially dry 0.1-m diameter particle, Sc increases from 0.10 to 0.25 as NaCl solute mass changes from 100% (0% SDS solute) to 0% (100% SDS solute). Such dependence of cloud droplet activation on mixed solute composition is important when considering atmospheric chemistry and physics. The partitioning of materials between aerosol particles and cloud drops are influenced by mixing the surfactant with NaCl. Also, inhibition of droplet activation when displacing NaCl solute with a high molecular weight soluble surfactant could significantly influence the indirect effects aerosols have on climate change.

  14. Airborne Measurements of Secondary Organic Aerosol Formation in the Oil Sands Region of Alberta

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Hayden, K.; Liu, P.; Leithead, A.; Moussa, S. G.; Staebler, R. M.; Gordon, M.; O'brien, J.; Li, S. M.

    2014-12-01

    The Alberta oil sands (OS) region represents a strategic natural resource and is a key driver of economic development. Its rapid expansion has led to a need for a more comprehensive understanding of the associated potential cumulative environmental impacts. In summer 2013, airborne measurements of various gaseous and particulate substances were made in the Athabasca oil sands region between August 13 and Sept 7, 2013. In particular, organic aerosol mass and composition measurements were performed with a High Resolution Time of flight Aerosol Mass Spectrometer (HR-ToF-AMS) supported by gaseous measurements of organic aerosol precursors with Proton Transfer Reaction (PTR) and Chemical Ionization (CI) mass spectrometers. These measurement data on selected flights were used to estimate the potential for local anthropogenic OS emissions to form secondary organic aerosol (SOA) downwind of precursor sources, and to investigate the importance of the surrounding biogenic emissions to the overall SOA burden in the region. The results of several flights conducted to investigate these transformations demonstrate that multiple distinct plumes were present downwind of OS industrial sources, each with differing abilities to form SOA depending upon factors such as NOx level, precursor VOC composition, and oxidant concentration. The results indicate that approximately 100 km downwind of an OS industrial source most of the measured organic aerosol (OA) was secondary in nature, forming at rates of ~6.4 to 13.6 μgm-3hr-1. Positive matrix factor (PMF) analysis of the HR-ToF-AMS data suggests that the SOA was highly oxidized (O/C~0.6) resulting in a measured ΔOA (difference above regional background OA) of approximately 2.5 - 3 despite being 100 km away from sources. The relative contribution of biogenic SOA to the total SOA and the factors affecting SOA formation during a number of flights in the OS region will be described.

  15. Using multidimensional gas chromatography to group secondary organic aerosol species by functionality

    NASA Astrophysics Data System (ADS)

    Flores, Rosa M.; Doskey, Paul V.

    2014-10-01

    A carbon number-functionality grid (CNFG) for a complex mixture of secondary organic aerosol (SOA) precursors and oxidation products was developed from the theoretical retention index diagram of a multidimensional gas chromatographic (GC 2GC) analysis of a mixture of SOA precursors and derivatized oxidation products. In the GC 2GC analysis, comprehensive separation of the complex mixture was achieved by diverting the modulated effluent from a polar primary column into 2 polar secondary columns. Column stationary phases spanned the widest range of selectivity of commercially available GC analytic columns. In general, separation of the species by the polar primary column was by the number of carbon atoms in the molecule (when the homologous series of reference compounds was selected to have molecular volumes and functionalities similar to the target analytes) and the polar secondary columns provided additional separation according to functionality. An algebraic transformation of the Abraham solvation parameter model was used to estimate linear retention indices of solutes relative to elution of a homologous series of methyl diesters on the primary and secondary columns to develop the theoretical GC 2GC retention diagram. Retention indices of many of the oxidation products of SOA precursors were estimated for derivatized forms of the solutes. The GC stationary phases selected for the primary column [(50%-Trifluoropropyl)-methylpolysiloxane] and secondary columns (90% Cyanopropyl Polysilphenylene-siloxane and Polyethylene Glycol in a Sol-Gel matrix) provided a theoretical separation of 33 SOA precursors and 98 derivatized oxidation products into 35 groups by molecular volume and functionality. Comprehensive analysis of extracts of vapor and aerosol samples containing semivolatile SOA precursors and oxidation products, respectively, is best accomplished by (1) separating the complex mixture of the vapor and underivatized aerosol extracts with a (50%-Trifluoropropyl)-methylpolysiloxane 90% Cyanopropyl Polysilphenylene-siloxane Polyethylene Glycol in a Sol-Gel matrix arrangement and (2) derivatizing the aerosol extract and reanalyzing the sample on the GC 2GC column combination. Quantifying groupings and organic molecular species in time series of collections of vapor- and aerosol-phase atmospheric organic matter is a promising analytic technique for measuring production of SOA and evaluating transformations of SOA precursors.

  16. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petj, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2012-01-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytil, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from laboratory experiments of terpenes photo-oxidation. The second NMR factor associated with western air masses was linked to biogenic marine sources, and was enriched in low-molecular weight aliphatic amines. Such findings provide evidence of at least two independent sources originating biogenic organic aerosols in Hyytil by oxidation and condensation mechanisms: reactive terpenes emitted by the boreal forest and compounds of marine origin, with the latter relatively more important when predominantly polar air masses reach the site. This study is an example of how spectroscopic techniques, such as proton NMR, can add functional group specificity for certain chemical features (like aromatics) of OA with respect to AMS. They can therefore be profitably exploited to complement aerosol mass spectrometric measurements in organic source apportionment studies.

  17. Limited Effect of Anthropogenic Nitrogen Oxides on Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Knote, C. J.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Yu, P.

    2014-12-01

    Globally secondary organic aerosol (SOA) is mostly formed from biogenic vegetation emissions and as such is regarded as natural aerosol that cannot be reduced by emission control legislation. However, recent research implies that human activities facilitate SOA formation by affecting the amount of precursor emission, the chemical processing and the partitioning into the aerosol phase. Among the multiple human influences, nitrogen oxides (NO + NO2 = NOx) have been assumed to play a critical role in the chemical formation of low volatile compounds. The goal of this study is to improve the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-Chem) by implementing an updated 4-product Volatility Basis Set (VBS) scheme, and apply it to investigate the impact of anthropogenic NOx on SOA. We first compare three different SOA parameterizations: a 2-product model and the updated VBS model both with and without a SOA aging parameterization. Secondly we evaluate predicted organic aerosol amounts against surface measurement from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network and Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns. We then perform sensitivity experiments to examine how the SOA loading responds to a 50% reduction in anthropogenic NOx in different regions. We find limited SOA reductions of -2.3%, -5.6% and -4.0% for global, southeastern U.S. and Amazon NOx perturbations, respectively. To investigate the chemical processes in more detail, we also use a simplified box model with the same gas-phase chemistry and gas-aerosol partitioning mechanism as in CAM4-Chem to examine the SOA yields dependence on initial precursor emissions and background NOx level. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- versus high-NOx pathways, OH versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.

  18. Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Preunkert, S.; Legrand, M.

    2013-07-01

    Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps), are here used to reconstruct past aerosol load and composition of the free European troposphere from before World War II to present. Available ice core records include inorganic (Na+, Ca2+, NH4+, Cl-, NO3-, and SO42-) and organic (carboxylates, HCHO, humic-like substances, dissolved organic carbon, water-insoluble organic carbon, and black carbon) compounds and fractions that permit reconstructing the key aerosol components and their changes over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921-1951 to 1971-1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). Thus, not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water-soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarios dealing with climate forcing by atmospheric aerosol.

  19. Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Preunkert, S.; Legrand, M.

    2013-02-01

    Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps) are here revisited in view to reconstruct past aerosol load of the free European troposphere from prior World War II to present. The extended array of inorganic (Na+, Ca2+, NH4+, Cl-, NO3-, and SO42-) and organic (carboxylates, HCHO, HUmic LIke Substances, dissolved organic carbon, water insoluble organic carbon, and black carbon) compounds and fractions already investigated permit to examine the overall aerosol composition and its change over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921-1951 to 1971-1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). It is shown that not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarii dealing with climate forcing by atmospheric aerosol.

  20. Hexagonal ice stability and growth in the presence of glyoxal and secondary organic aerosols.

    PubMed

    Daskalakis, Vangelis; Hadjicharalambous, Marios

    2014-09-01

    The presence of ice dominates the microphysics of formation of high altitude cirrus and polar stratospheric clouds, as well as the maturity of thunderstorms. We report on the hexagonal (1h) ice stability and growth in binary as well as multi-compound aerosols in atmospherically relevant conformations. The ubiquitous atmospheric trace gas glyoxal along with secondary organic aerosol (SOA) also in the presence of CO2 interacts with large ice 1h crystals of 1300-2000 water molecules. The crystals are subjected to phase transitions under superheating and supercooling conditions by Molecular Dynamics (MD) simulations. Density Functional Theory (DFT) based geometry optimization and vibrational frequency analysis are also employed for a smaller ice 1h cell of 12 water molecules. The interaction of the latter with each organic molecule reveals the extent of the mechanical stress exerted on the ordered ice structure. Full hydration of glyoxal promotes ice 1h stability and growth in wet aerosols, while partial hydration or full oxidation exerts a destabilizing effect on the ice 1h lattice. This behavior is associated with the ability of each organic phase to match the order of the ice 1h crystal. We propose that aqueous chemistry in wet aerosols may also have a strong effect on the microphysics of cloud formation. PMID:25033409

  1. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Maso, M. D.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-03-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Secondary organic aerosols (SOA) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOC) emitted by vegetation are a major source of SOA. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed SOA, and possibly their climatic effects. This raises questions whether stress-induced changes in SOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on SOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical SOA formation for infested plants in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify SOA formation. While sesquiterpenes, methyl salicylate, and C17-BVOC increase SOA yield, green leaf volatiles suppress SOA formation. By classifying emission types, stressors and SOA formation potential, we propose possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  2. Evidence for the existence of organosulfates from beta-pinene ozonolysis in ambient secondary organic aerosol.

    PubMed

    Iinuma, Yoshiteru; Müller, Conny; Berndt, Torsten; Böge, Olaf; Claeys, Magda; Herrmann, Hartmut

    2007-10-01

    The formation of organosulfates from the gas-phase ozonolysis of beta-pinene in the presence of neutral or acidic sulfate particles was investigated in a series of indoor aerosol chamber experiments. The organosulfates were analyzed using high-performance liquid chromatography (LC) coupled to electrospray ionization-time-of-flight mass spectrometry (MS) in parallel to ion trap MS. Organosulfates were only found in secondary organic aerosol from beta-pinene ozonolysis in the presence of acidic sulfate seed particles. One of the detected organosulfates also occurred in ambient aerosol samples that were collected at a forest site in northeastern Bavaria, Germany. beta-Pinene oxide, an oxidation product in beta-pinene/O3 and beta-pinene/NO3 reactions, is identified as a possible precursor for the beta-pinene-derived organosulfate. Furthermore, several nitroxy-organosulfates originating from monoterpenes were found in the ambient samples. These nitroxy-organosulfates were only detected in the nighttime samples, suggesting a role for nighttime chemistry in their formation. Their LC/MS chromatographic peak intensities suggest that they represent an important fraction of the organic mass in ambient aerosols, especially at night. PMID:17969680

  3. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Dal Maso, M.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-09-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs) emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4-6% yield). Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  4. Direct evidence of atmospheric secondary organic aerosol formation in forest atmosphere through heteromolecular nucleation.

    PubMed

    Kavouras, Ilias G; Stephanou, Euripides G

    2002-12-01

    Atmospheric aerosols play a central role in climate and atmospheric chemistry. Organic matter frequently composes aerosol major fraction over continental areas. Reactions of natural volatile organic compounds, with atmospheric oxidants, are a key formation pathway of fine particles. The gas and particle atmospheric concentration of organic compounds directly emitted from conifer leaf epicuticular wax and of those formed through the photooxidation of alpha- and beta-pinene were simultaneously collected and measured in a conifer forest by using elaborated sampling and GC/ MS techniques. The saturation concentrations of acidic and carbonyl photooxidation products were estimated, by taking into consideration primary gas- and particle-phase organic species. Primary organic aerosol components represented an important fraction of the atmospheric gas-phase organic content Consequently, saturation concentrations of photooxidation products have been lowered facilitating new particle formation between molecules of photooxidation products and semi-volatile organic compounds. From the measured concentrations of the above-mentioned compounds, saturation concentrations (Csat,i) of alpha- and beta-pinene photooxidation products were calculated for nonideal conditions using a previously developed absorptive model. The results of these calculations indicated that primarily emitted organic species and ambient temperature play a crucial role in secondary organic aerosol formation. PMID:12523424

  5. Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations

    NASA Astrophysics Data System (ADS)

    Lihavainen, Heikki; Asmi, Eija; Aaltonen, Veijo; Makkonen, Ulla; Kerminen, Veli-Matti

    2015-10-01

    We used more than five years of continuous aerosol measurements to estimate the direct radiative feedback parameter associated with the formation of biogenic secondary organic aerosol (BSOA) at a remote continental site at the edge of the boreal forest zone in Northern Finland. Our upper-limit estimate for this feedback parameter during the summer period (ambient temperatures above 10 °C) was -97 ± 66 mW m-2 K-1 (mean ± STD) when using measurements of the aerosol optical depth (fAOD) and -63 ± 40 mW m-2 K-1 when using measurements of the ‘dry’ aerosol scattering coefficient at the ground level (fσ). Here STD represents the variability in f caused by the observed variability in the quantities used to derive the value of f. Compared with our measurement site, the magnitude of the direct radiative feedback associated with BSOA is expected to be larger in warmer continental regions with more abundant biogenic emissions, and even larger in regions where biogenic emissions are mixed with anthropogenic pollution.

  6. Time-resolved distributions of bulk parameters, diacids, ketoacids and α-dicarbonyls and stable carbon and nitrogen isotope ratios of TC and TN in tropical Indian aerosols: Influence of land/sea breeze and secondary processes

    NASA Astrophysics Data System (ADS)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.

    2015-02-01

    To better understand the photochemical production and diurnal distributions of organic and inorganic aerosols in the tropical coastal Indian atmosphere, the aerosol (TSP) samples were collected every 3 h during 30-31 January, 14-15 February and 28-29 May 2007 from Chennai and studied for total carbon (TC) and nitrogen (TN) and their stable isotope ratios (δ13CTC and δ15NTN), carbonaceous components, inorganic ions, diacids, ketoacids and α-dicarbonyls. Time-resolved distributions of bulk parameters, inorganic ions, and diacids and related compounds, except for few species, did not show any clear diurnal trend but showed peaks at 6-9 h during all the study periods, except for the peak at 15-18 h on 28 May. SO42-, C2 - C6 diacids, ketoacids and α-dicarbonyls in February and on 29 May showed a diurnal trend. δ13CTC and δ15NTN stayed relatively constant during the study periods but showed 13C depletion (in January) and 15 N enrichment when TC and TN peaked. Based on these results together with air mass trajectories, we found that the diurnal distributions of Chennai aerosols are mainly influenced by land/sea breeze and the aged (photochemically processed) air masses, although in situ photochemical production and nighttime chemistry of secondary aerosol species, particularly C2-C4 diacids and SO42-, are significant. The characteristics of seasonal variations of carbonaceous components, and diacids and related compounds and comparisons of δ13CTC and δ15NTN of Chennai aerosols with the isotopic signatures of the point sources inferred that biofuel/biomass burning in South and Southeast Asia are the major sources of aerosols (TSP).

  7. Industrial sources of primary and secondary organic aerosols in two urban environments in Spain.

    PubMed

    Escudero, M; Viana, M; Querol, X; Alastuey, A; Dez Hernndez, P; Garca Dos Santos, S; Anzano, J

    2015-07-01

    In urban areas, primary and secondary organic aerosols are typically considered to originate from vehicular traffic emissions. However, industrial emissions within or in the vicinity of urban areas may also be significant contributors to carbonaceous aerosol concentrations. This hypothesis was tested and validated in two urban areas in Spain. The observed unusual dominance of organic carbon (OC) over elemental carbon (EC), the analysis of the variability of OC, EC and OC/EC and their correlation with transport patterns suggested the presence of OC sources associated with industrial activities. A methodology based on chemical speciation of particulate matter (PM) followed by the application of receptor modelling techniques allowed for the identification of the specific industrial sources of OC, which were linked to primary OC emissions from a grain drying plant (cereal) and to secondary OC formation from paper production activities (paper mills), as well as from urban sources and biogenic emissions. This work presents an integrated approach to identifying and characterizing of industrial sources of carbonaceous aerosols in urban areas, aiming to improve the scarce body of literature currently available on this topic. PMID:25721527

  8. Chamber studies to simulate secondary organic aerosol formation from the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Daumit, K. E.; Carrasquillo, A. J.; Cross, E. S.; Hunter, J. F.; Bahreini, R.; Middlebrook, A. M.; De Gouw, J. A.; Williams, L. R.; Worsnop, D. R.; Kroll, J. H.

    2011-12-01

    Because atmospheric organic species are generally emitted from a large number of sources, over wide spatial and temporal scales, it is generally challenging to ascribe ambient organic aerosol (OA) to the oxidation of specific secondary organic aerosol (SOA) precursors. However, the Deepwater Horizon (DWH) oil spill (April 20-July 15, 2010), provided the unique circumstance of a large, well-defined source of gas-phase organics introduced into a relatively clean atmosphere. Here we describe a laboratory simulation of SOA formation downwind of the DWH spill, via the oxidation of South Louisiana-light (SL) crude oil by OH radicals in an environmental chamber. Intermediate and semi-volatile fractions of the SL crude oil are vaporized and oxidized by gas-phase OH radicals (formed from the photolysis of HONO). The chemical composition is monitored as a function of OH exposure. When OH exposures are approximately matched, laboratory-generated SOA and OA measured downwind of the oil spill exhibit extremely similar aerosol mass spectra, in strong support of the hypothesis that the OA measured downwind of the DWH oil spill was secondary in nature. More generally, this agreement indicates that in cases when SOA precursors are well-constrained, chamber experiments can reasonably reproduce key properties of ambient OA. Results of chamber studies on sub-fractions of the SL crude oil, aimed at identifying the classes of oil components most responsible for SOA formation, will be discussed.

  9. Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity

    DOE PAGESBeta

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; Nenes, A.; Donahue, N. M.; Pandis, S. N.

    2015-07-24

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OSc), and mass yield. The OA oxidation state generally increased duringmore » photo-oxidation, and the final OA OSc ranged from -0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  10. Modeling Organic Aerosols during MILAGRO: Application of the CHIMERE Model and Importance of Biogenic Secondary Organic Aerosols

    SciTech Connect

    Hodzic, Alma; Jimenez, Jose L.; Madronich, Sasha; Aiken, Allison; Bessagnet, Bertrand; Curci, Gabriele; Fast, Jerome D.; Lamarque, J.-F.; Onasch, Timothy B.; Roux, Gregory; Schauer, James J.; Stone, Elizabeth A.

    2009-09-22

    The meso-scale chemistry-transport model CHIMERE is used to assess our understanding of major sources and formation processes leading to a fairly large amount of organic aerosols [OA, including primary OA (POA) and secondary OA (SOA)] observed in Mexico City during the MILAGRO field project (March 2006). Chemical analyses of submicron aerosols from aerosol mass spectrometers (AMS) indicate that organic particles found in the Mexico City basin have a large fraction of oxygenated organic species (OOA), which have strong correspondence with SOA, and that their production actively continues downwind of the city. The SOA formation is modeled here by the first-generation oxidation of anthropogenic (i.e., aromatics, alkanes) and biogenic (i.e., monoterpenes and isoprene) precursors and their partitioning into both organic and aqueous phases. The near-surface model evaluation shows that predicted OA correlates reasonably well with measurements during the campaign, however it remains a factor of 2 lower than the measured total OA. Fairly good agreement is found between predicted and observed POA within the city suggesting that anthropogenic and biomass burning emissions are reasonably captured. Consistent with previous studies in Mexico City, large discrepancies are encountered for SOA species, with a factor of 5-10 model underestimate. When only anthropogenic SOA precursors were considered, the model was able to reproduce within a factor of two the sharp increase in SOA concentrations during the late morning at both urban and near-urban locations. However, predicted SOA concentrations were unrealistically low when photochemistry was not active, especially overnight. These nighttime discrepancies were not significantly reduced when greatly enhanced partitioning to the aerosol phase was assumed. Model sensitivity results suggest that observed nighttime SOA concentrations are strongly influenced by the regional background (~2µg/m3) from biogenic origin, which is transported from the coastal regions into the Mexico City basin. The relative contribution of biogenic SOA to monthly mean SOA levels is estimated to be more than 30% within the city and up to 65-90% at the regional scale (even in the immediate vicinity of the city), which is consistent with measurements of modern carbon during low biomass burning periods. The anthropogenic emissions of isoprene and its nighttime oxidation by NO3 were also found to enhance the SOA mean concentrations within the city by an additional 15%. Our results confirm the large underestimation of the SOA production by traditional models in polluted regions (estimated to 10-20 Tons within the Mexico City metropolitan area during the daytime), and emphasize for the first time the role of biogenic precursors in this region, indicating that they cannot be neglected in modeling studies.

  11. Carbonaceous components, levoglucosan and inorganic ions in tropical aerosols from Tanzania, East Africa: implication for biomass burning contribution to organic aerosols

    NASA Astrophysics Data System (ADS)

    Mkoma, S. L.; Kawamura, K.; Fu, P.

    2012-11-01

    Atmospheric aerosol samples of PM2.5 and PM10 were collected at a rural site in Tanzania in 2011 during wet and dry seasons and they were analysed for carbonaceous components, levoglucosan and water-soluble inorganic ions. The mean mass concentrations of PM2.5 and PM10 were 28.26.4 ?g m-3 and 478.2 ?g m-3 in wet season, and 39.19.8 ?g m-3 and 61.419.2 ?g m-3 in dry season, respectively. Total carbon (TC) accounted for 16-19% of the PM2.5 mass and 13-15% of the PM10 mass. On average, 85.9 to 88.7% of TC in PM2.5 and 87.2 to 90.1% in PM10 was organic carbon (OC), of which 67-72% and 63% was found to be water-soluble organic carbon (WSOC) in PM2.5 and PM10, respectively. Water-soluble potassium (K+) and sulphate (SO42-) in PM2.5 and, sodium (Na+) and SO42- in PM10 were the dominant ionic species. We found, that concentrations of biomass burning tracers (levoglucosan and mannosan) well correlated with non-sea-salt-K+, WSOC and OC in the aerosols from Tanzania, East Africa. Mean contributions of levoglucosan to OC ranged between 3.9-4.2% for PM2.5 and 3.5-3.8% for PM10. This study demonstrates that emissions from biomass- and biofuel-burning activities followed by atmospheric photochemical processes mainly control the air quality in Tanzania.

  12. Secondary Aerosol Formation from Oxidation of Aromatics Hydrocarbons by Cl atoms

    NASA Astrophysics Data System (ADS)

    Cai, X.; Griffin, R.

    2006-12-01

    Aerosol Formation From the Oxidation of Aromatic Hydrocarbons by Chlorine Atmospheric secondary organic aerosol (SOA) affects regional and global air quality. The formation mechanisms of SOA via the oxidation of volatile organic compounds by hydroxyl radicals, ozone, and nitrate radicals have been studied intensively during the last decade. Chlorine atoms (Cl) also have been hypothesized to be effective oxidants in marine and industrially influenced areas. Recent work by the authors has indicated that significant amounts of SOA are formed from the oxidation of monoterpenes by Cl. Aromatic hydrocarbons are important for generation of both SOA and ozone in urban areas because of their large emission rates and high reactivity. The goal of this work was to quantify the SOA formation potentials of two representative aromatic hydrocarbons through laboratory chamber experiments in which oxidation was initiated by Cl. The system constructed for this study includes an experimental chamber, a gas chromatograph for quantification of aromatic mixing ratios, a Scanning Mobility Particle Spectrometer to measure SOA size distributions, a zero air generator, and an illuminating system. The model aromatic hydrocarbons chosen for this study are toluene and m-xylene. Aerosol yields are estimated based on measured aerosol volume concentration, the concentration of consumed hydrocarbon, and estimation of wall loss of the newly formed aerosol. Toluene and m-xylene exhibit similar SOA yields from the oxidation initiated by Cl. The toluene SOA yield from Cl-initiated oxidation, however, depends on the ratio between the mixing ratios of the initial chlorine source and toluene in the chamber. For toluene experiments with higher such ratios, SOA yields vary from 0.05 to 0.079 for generated aerosol ranging from 4.2 to12.0 micrograms per cubic meter. In the lower ratio experiments, SOA yields are from 0.033 to 0.064, corresponding to generated aerosol from 3.0 to 11.0 micrograms per cubic meter. The m-xylene SOA yield ranges from 0.04 to 0.08 for aerosol in the range of 4.0 to 12.0 micrograms per cubic meter. These yields are generally comparable to those from photooxidation. In marine and industrial areas, SOA formation from the Cl- initiated oxidation of the studied common aromatics is likely to be most important in the early morning.

  13. No evidence for acid-catalyzed secondary organic aerosol formation in power plant plumes over metropolitan Atlanta, Georgia - article no. L06801

    SciTech Connect

    Peltier, R.E.; Sullivan, A.P.; Weber, R.J.; Wollny, A.G.; Holloway, J.S.; Brock, C.A.; de Gouw, J.A.; Atlas, E.L.

    2007-03-15

    Aircraft-based measurements of the water-soluble fraction of fine PM organic carbon (WSOC) and inorganic salt composition in the Atlanta, GA region were conducted in the summer of 2004. Five notable plumes of SO{sub 2}, apparently from coal-fired power plants, were intercepted, and had NH{sub 4}{sup +}/SO4{sup 2-} molar ratios ranging from approximately 0.8 to 1.4 compared to molar ratios near 2 outside of the plumes. Sulfate aerosol concentrations increased from a regional background of 5 - 8 {mu} g m{sup -3} to as high as 19.5 {mu} g m{sup -3} within these plumes. No increase in WSOC concentrations was observed in plumes compared to out-of-plumes within a WSOC measurement uncertainty of 8%. These measurements suggest that secondary organic aerosol formation via heterogeneous acid-catalyzed reactions within power plant plumes are not likely a significant contributor to the ambient aerosol mass loading in Atlanta and the surrounding region. Because this region is rich in both biogenic and anthropogenic volatile organic carbon (VOC), the results may be widely applicable.

  14. Dimer esters in ?-pinene secondary organic aerosol: effect of hydroxyl radical, ozone, relative humidity and aerosol acidity

    NASA Astrophysics Data System (ADS)

    Kristensen, K.; Cui, T.; Zhang, H.; Gold, A.; Glasius, M.; Surratt, J. D.

    2013-12-01

    The formation of secondary organic aerosol (SOA) from both ozonolysis and hydroxyl radical (OH)-initiated oxidation of ?-pinene under conditions of high nitric oxide (NO) concentrations with varying relative humidity (RH) and aerosol acidity was investigated in the University of North Carolina dual outdoor smog chamber facility. SOA formation from ozonolysis of ?-pinene was enhanced relative to that from OH-initiated oxidation in the presence of initially high NO conditions. However, no effect of RH on SOA mass was evident. Ozone (O3)-initiated oxidation of ?-pinene in the presence of ammonium sulfate (AS) seed coated with organic aerosol from OH-initiated oxidation of ?-pinene showed reduced nucleation compared to ozonolysis in the presence of pure AS seed aerosol. The chemical composition of ?-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), with a focus on the formation of carboxylic acids and high-molecular weight dimer esters. A total of eight carboxylic acids and four dimer esters were identified, constituting between 8 and 12% of the total ?-pinene SOA mass. OH-initiated oxidation of ?-pinene in the presence of nitrogen oxides (NOx) resulted in the formation of highly oxidized carboxylic acids, such as 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). The formation of dimer esters was observed only in SOA produced from the ozonolysis of ?-pinene in the absence of NOx, with increased concentrations by a~factor of two at higher RH (50-90%) relative to lower RH (30-50%). The increased formation of dimer esters correlates with an observed increase in new particle formation at higher RH due to nucleation. Increased aerosol acidity was found to have a negligible effect on the formation of the dimer esters. SOA mass yield did not influence the chemical composition of SOA formed from ?-pinene ozonolysis with respect to carboxylic acids and dimer esters. The results support the formation of the high-molecular weight dimer esters through gas-phase reactions of the stabilized Criegee Intermediate (sCI) formed from the ozonolysis of ?-pinene. The high molecular weight and polar nature of dimer esters formed in the gas-phase may explain increased particle number concentration as a~result of homogenous nucleation. Since three of these dimer esters (i.e., pinyl-diaterpenyl ester (MW 358), pinyl-diaterebyl ester (MW 344) and pinonyl-pinyl ester (MW 368)) have been observed in both laboratory-generated and ambient fine organic aerosol samples, we conclude that the dimer esters observed in this study can be used as tracers for the O3-initiated oxidation of ?-pinene, and are therefore indicative of enhanced anthropogenic activities, and that the high molecular weight and low volatility esters result in homogenous nucleation under laboratory conditions, increasing the particle number concentration.

  15. Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol

    SciTech Connect

    O'Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.

    2014-06-17

    The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory generated secondary organic aerosols (SOA). Scanning transmission x-ray microscopy (STXM) was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Because they flatten less upon impaction, particles with higher viscosity and surface tension can be identified by a steeper slope on a plot of TCA vs. size. The slopes of the ambient data are statistically similar indicating a small range of average viscosities and surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory generated SOA. This comparison indicates that ambient organic particles have higher viscosities and surface tensions than those typically generated in laboratory SOA studies.

  16. Biogenic potassium salt particles as seeds for secondary organic aerosol in the Amazon.

    PubMed

    Pöhlker, Christopher; Wiedemann, Kenia T; Sinha, Bärbel; Shiraiwa, Manabu; Gunthe, Sachin S; Smith, Mackenzie; Su, Hang; Artaxo, Paulo; Chen, Qi; Cheng, Yafang; Elbert, Wolfgang; Gilles, Mary K; Kilcoyne, Arthur L D; Moffet, Ryan C; Weigand, Markus; Martin, Scot T; Pöschl, Ulrich; Andreae, Meinrat O

    2012-08-31

    The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest. PMID:22936773

  17. Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon

    NASA Astrophysics Data System (ADS)

    Phlker, Christopher; Wiedemann, Kenia T.; Sinha, Brbel; Shiraiwa, Manabu; Gunthe, Sachin S.; Smith, Mackenzie; Su, Hang; Artaxo, Paulo; Chen, Qi; Cheng, Yafang; Elbert, Wolfgang; Gilles, Mary K.; Kilcoyne, Arthur L. D.; Moffet, Ryan C.; Weigand, Markus; Martin, Scot T.; Pschl, Ulrich; Andreae, Meinrat O.

    2012-08-01

    The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.

  18. Evidence of aqueous secondary organic aerosol formation from biogenic emissions in the North American Sonoran Desert

    PubMed Central

    Youn, Jong-Sang; Wang, Zhen; Wonaschütz, Anna; Arellano, Avelino; Betterton, Eric A.; Sorooshian, Armin

    2013-01-01

    This study examines the role of aqueous secondary organic aerosol formation in the North American Sonoran Desert as a result of intense solar radiation, enhanced moisture, and biogenic volatile organic compounds (BVOCs). The ratio of water-soluble organic carbon (WSOC) to organic carbon (OC) nearly doubles during the monsoon season relative to other seasons of the year. When normalized by mixing height, the WSOC enhancement during monsoon months relative to preceding dry months (May–June) exceeds that of sulfate by nearly a factor of 10. WSOC:OC and WSOC are most strongly correlated with moisture parameters, temperature, and concentrations of O3 and BVOCs. No positive relationship was identified between WSOC or WSOC:OC and anthropogenic tracers such as CO over a full year. This study points at the need for further work to understand the effect of BVOCs and moisture in altering aerosol properties in understudied desert regions. PMID:24115805

  19. Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol

    PubMed Central

    Zhang, Xuan; Cappa, Christopher D.; Jathar, Shantanu H.; McVay, Renee C.; Ensberg, Joseph J.; Kleeman, Michael J.; Seinfeld, John H.

    2014-01-01

    Secondary organic aerosol (SOA) constitutes a major fraction of submicrometer atmospheric particulate matter. Quantitative simulation of SOA within air-quality and climate modelsand its resulting impactsdepends on the translation of SOA formation observed in laboratory chambers into robust parameterizations. Worldwide data have been accumulating indicating that model predictions of SOA are substantially lower than ambient observations. Although possible explanations for this mismatch have been advanced, none has addressed the laboratory chamber data themselves. Losses of particles to the walls of chambers are routinely accounted for, but there has been little evaluation of the effects on SOA formation of losses of semivolatile vapors to chamber walls. Here, we experimentally demonstrate that such vapor losses can lead to substantially underestimated SOA formation, by factors as much as 4. Accounting for such losses has the clear potential to bring model predictions and observations of organic aerosol levels into much closer agreement. PMID:24711404

  20. Chemical composition and size distribution of secondary organic aerosol formed from the photooxidation of isoprene.

    PubMed

    Liu, Xianyun; Zhang, Weijun; Wang, Zhenya; Zhao, Weixiong; Tao, Ling; Yang, Xibin

    2009-01-01

    Photooxidation of isoprene leads to the formation of secondary organic aerosol (SOA). In this study, the chemical composition of SOA formed from OH-initiated photooxidation of isoprene has been investigated with gas chromatography/mass spectrometry (GC/MS) and a home-made aerosol time-of-flight mass spectrometer. Sampling particles generated in a home-made smog chamber. The size distribution of SOA particles was detected by a TSI 3321 aerodynamic particle size spectrometer in real time. Results showed that SOA created by isoprene photooxidation was predominantly in the form of fine particles, which have diameters less than 2.5 microm. The obtained mass spectra of individual particles show that products of the OH-initiated oxidation of isoprene contain methyl vinyl ketone, methacrolein, formaldehyde, and some other hydroxycarbonyls. The possible reaction mechanisms leading to these products were also discussed. PMID:20108685

  1. Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction

    NASA Astrophysics Data System (ADS)

    Aggarwal, Shankar Gopala; Kawamura, Kimitaka

    To better understand the influence of sources and atmospheric processing on aerosol chemical composition, we collected atmospheric particles in Sapporo, northern Japan during spring and early summer 2005 under the air mass transport conditions from Siberia, China and surrounding seas. The aerosols were analyzed for inorganic ions, organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and the major water-soluble organic compound classes (i.e., dicarboxylic acids and sugars). SO 42- is the most abundant inorganic constituent (average 44% of the identified inorganic ion mass) followed by NH 4+ (21%) and NO 3- (13%). Concentrations of OC, EC, and WSOC ranged from 2.0-16, 0.24-2.9, and 0.80-7.9 ?g m -3 with a mean of 7.4, 1.0, and 3.1 ?g m -3, respectively. High OC/EC ratios (range: 3.6-19, mean: 8.7) were obtained, however WSOC/OC ratios (0.23-0.69, 0.44) do not show any significant diurnal changes. These results suggest that the Sapporo aerosols were already aged, but were not seriously affected by local photochemical processes. Identified water-soluble organic compounds (diacids + sugars) account for <10% of WSOC. Based on some marker species and air mass back trajectory analyses, and using stable carbon isotopic compositions of shorter-chain diacids (i.e., C 2-C 4) as photochemical aging factor of organic aerosols, the present study suggests that a fraction of WSOC in OC is most likely influenced by aerosol aging, although the OC loading in aerosols may be more influenced by their sources and source regions.

  2. Sources of primary and secondary organic aerosol and their diurnal variations.

    PubMed

    Zheng, Mei; Zhao, Xiuying; Cheng, Yuan; Yan, Caiqing; Shi, Wenyan; Zhang, Xiaolu; Weber, Rodney J; Schauer, James J; Wang, Xinming; Edgerton, Eric S

    2014-01-15

    PM(2.5), as one of the criteria pollutants regulated in the U.S. and other countries due to its adverse health impacts, contains more than hundreds of organic pollutants with different sources and formation mechanisms. Daytime and nighttime PM2.5 samples from the August Mini-Intensive Gas and Aerosol Campaign (AMIGAS) in the southeastern U.S. were collected during summer 2008 at one urban site and one rural site, and were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC), and various individual organic compounds including some important tracers for carbonaceous aerosol sources by gas chromatography-mass spectrometry. Most samples exhibited higher daytime OC concentration, while higher nighttime OC was found in a few events at the urban site. Sources, formation mechanisms and composition of organic aerosol are complicated and results of this study showed that it exhibited distinct diurnal variations. With detailed organic tracer information, sources contributing to particulate OC were identified: higher nighttime OC concentration occurring in several occasions was mainly contributed by the increasing primary emissions at night, especially diesel exhaust and biomass burning; whereas sources responsible for higher daytime OC concentration included secondary organic aerosol (SOA) formation (e.g., cis-pinonic acid and non-biomass burning WSOC) together with traffic emissions especially gasoline engine exhaust. Primary tracers from combustion related sources such as EC, polycyclic aromatic hydrocarbons, and hopanes and steranes were significantly higher at the urban site with an urban to rural ratio between 5 and 8. However, this urban-rural difference for secondary components was less significant, indicating a relatively homogeneous distribution of SOA spatially. We found cholesterol concentrations, a typical tracer for meat cooking, were consistently higher at the rural site especially during the daytime, suggesting the likely additional sources for this tracer at rural site and that it should be used with caution as meat cooking tracer in rural areas in the future. PMID:24262212

  3. Primary and Secondary Aerosol Investigation from Different Sea-Waters in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    D'anna, B.; Marchand, N.; Sellegri, K.; Sempr, R.; Mas, S.; George, C.; Meme, A.; Frihi, A.; Pey, J.; Schwier, A.; Delmont, A.

    2014-12-01

    The Mediterranean Sea is a special marine environment characterized by low biological activity and high anthropogenic pressure. It is often difficult to discriminate the contribution of Primary and Secondary Aerosol formed at the sea-air interface from background level of the aerosol. We therefore decided to study the sea-air exchanges in a controlled environment provided by a 2m3simulation chamber, using freshly collected sea-water samples from the SEMEX site (4315'64 N, 0520'01 E) near Marseille bay. Two types of experiments were conducted for 4 weeks testing 3 different sea-waters. Primary sea-aerosol was generated by bubble-bursting method, then introduced in the simulation chamber and exposed to atmospheric oxidants (O3, OH) and light to simulated primary aerosol aging. A second set of experiments focused on secondary particle formation upon illumination and/or ozone exposure of the sea-water surface (15l of sea-water were deposited in a pyrex container located inside the simulation chamber). New particle formation was only observed for relatively high DOC level of the sea-water sample. Particles detection and analysis was followed by a PSM (1nm size), a CPC (2.5nm size), a SMPS (granulometry), a CCN chamber for hygroscopicity studies, a TOF-AMS (Aerodyne) for chemical analysis of the sub-micrometer fraction. Off-line analysis included TEM-EDX samples for morphology and size distribution studies and a hybrid quadrupole-orbitrap mass spectrometer (Thermo Fischer) for the molecular identification of the organic fraction. VOCs were measured on-line by PTR-HR-MS. The seawater samples were filtered at 60?m before use and were daily analyzed for chemical (colored dissolved organic matter, particulate matter and related polar compounds, transparent polysaccharides and nutrients concentration) and biological (chlorophyll a, virus, phytoplankton and zooplankton) analyses.

  4. Investigating Primary Marine Aerosol Properties: CCN Activity of Sea Salt and Mixed InorganicOrganic Particles

    PubMed Central

    2012-01-01

    Sea spray particles ejected as a result of bubbles bursting from artificial seawater containing salt and organic matter in a stainless steel tank were sampled for size distribution, morphology, and cloud condensation nucleus (CCN) activity. Bubbles were generated either by aeration through a diffuser or by water jet impingement on the seawater surface. Three objectives were addressed in this study. First, CCN activities of NaCl and two types of artificial sea salt containing only inorganic components were measured to establish a baseline for further measurements of mixed organicinorganic particles. Second, the effect of varying bubble residence time in the bulk seawater solution on particle size and CCN activity was investigated and was found to be insignificant for the organic compounds studied. Finally, CCN activities of particles produced from jet impingement were compared with those produced from diffuser aeration. Analyses indicate a considerable amount of organic enrichment in the jet-produced particles relative to the bulk seawater composition when sodium laurate, an organic surfactant, is present in the seawater. In this case, the production of a thick foam layer during impingement may explain the difference in activation and supports hypotheses that particle production from the two methods of generating bubbles is not equal. PMID:22809370

  5. Calculating Equilibrium Phase Distribution during the Formation of Secondary Organic Aerosol Using COSMOtherm.

    PubMed

    Wang, Chen; Goss, Kai-Uwe; Lei, Ying Duan; Abbatt, Jonathan P D; Wania, Frank

    2015-07-21

    Challenges in the parametrization of compound distribution between the gas and particle phase contribute significantly to the uncertainty in the prediction of secondary organic aerosol (SOA) formation and are rooted in the complexity and variability of atmospheric condensed matter, which includes water, salts, and a multitude of organic oxidation products, often in two separated phases. Here, we explore the use of the commercial quantum-chemistry-based software COSMOtherm to predict equilibrium partitioning and Setchenow coefficients of a suite of oxidation products of ?-pinene ozonolysis in an aerosol that is assumed to separate into an organic-enriched phase and an electrolyte-enriched aqueous phase. The predicted coefficients are used to estimate the phase distribution of the organic compounds, water and ammonium sulfate, the resulting phase composition, and the SOA yield. Four scenarios that differ in terms of organic loading, liquid water content, and chemical aging are compared. The organic compounds partition preferentially to the organic phase rather than the aqueous phase for the studied aerosol scenarios, partially due to the salting-out effect. Extremely low volatile organic compounds are predicted to be the dominant species in the organic aerosols at low loadings and an important component at higher loadings. The highest concentration of oxidation products in the condensed phase is predicted for a scenario assuming the presence of non-phase-separated cloud droplets. Partitioning into an organic aerosol phase composed of the oxidation products is predicted to be similar to partitioning into a phase composed of a single organic surrogate molecule, suggesting that the calculation procedure can be simplified without major loss of accuracy. COSMOtherm is shown to produce results that are comparable to those obtained using group contribution methods. COSMOtherm is likely to have a much larger application domain than those group contribution methods because it is based on fundamental principles with little calibration. PMID:26079409

  6. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vásquez, M.; Borrás, E.; Ródenas, M.

    2013-12-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high performance liquid chromatography mass spectrometry (HPLC-ITMS), high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18-29% depending on initial precursor (VOC : NOx) mixing ratios. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O : C ratios, where functionalisation rather than fragmentation is mainly observed as a~result of the stability of the ring. The SOA species observed can be characterized as semi-volatile to low volatile oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  7. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vázquez, M.; Borrás, E.; Ródenas, M.

    2014-06-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound (VOC) that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high-performance liquid chromatography mass spectrometry (HPLC-ITMS), high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18 and 29% for an initial VOC mixing ratio of 212 and 460 ppbv (parts per billion by volume) respectively; using a VOC:NOx ratio of ~5:1. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high-resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro-functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O:C ratios, where functionalisation rather than fragmentation is mainly observed as a result of the stability of the ring. The SOA species observed can be characterised as semi-volatile to low-volatility oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  8. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber

    NASA Astrophysics Data System (ADS)

    Platt, S. M.; El Haddad, I.; Zardini, A. A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J. G.; Temime-Roussel, B.; Marchand, N.; Jeek, I.; Drinovec, L.; Mo?nik, G.; Mhler, O.; Richter, R.; Barmet, P.; Bianchi, F.; Baltensperger, U.; Prvt, A. S. H.

    2013-09-01

    We present a new mobile environmental reaction chamber for the simulation of the atmospheric aging of different emission sources without limitation from the instruments or facilities available at any single site. Photochemistry is simulated using a set of 40 UV lights (total power 4 KW). Characterisation of the emission spectrum of these lights shows that atmospheric aging of emissions may be simulated over a range of temperatures (-7 to 25 C). A photolysis rate of NO2, JNO2, of (8.0 0.7) 10-3 s-1 was determined at 25 C. We demonstrate the utility of this new system by presenting results on the aging (OH = 12 106 cm-3 h) of emissions from a modern (Euro 5) gasoline car operated during a driving cycle (New European Driving Cycle, NEDC) on a chassis dynamometer in a vehicle test cell. Emissions from the entire NEDC were sampled and aged in the chamber. Total organic aerosol (OA; primary organic aerosol (POA) emission + secondary organic aerosol (SOA) formation) was (369.8-397.5)10-3 g kg-1 fuel, or (13.2-15.4) 10-3 g km-1, after aging, with aged OA/POA in the range 9-15. A thorough investigation of the composition of the gas phase emissions suggests that the observed SOA is from previously unconsidered precursors and processes. This large enhancement in particulate matter mass from gasoline vehicle aerosol emissions due to SOA formation, if it occurs across a wider range of gasoline vehicles, would have significant implications for our understanding of the contribution of on-road gasoline vehicles to ambient aerosols.

  9. New tracer compounds for secondary organic aerosol formation from ?-caryophyllene oxidation

    NASA Astrophysics Data System (ADS)

    van Eijck, Anna; Opatz, Till; Taraborrelli, Domenico; Sander, Rolf; Hoffmann, Thorsten

    2013-12-01

    Five products from ?-caryophyllene oxidation (?-caryophyllonic acid (I), 3,3-dimethyl-2-(3-oxobutyl)cyclobutanecarboxylic acid (?CA198) (II), ?-nocaryophyllonic acid (III), ?-caryophyllinic acid (IV), and 2-(2-carboxyethyl)-3,3-dimethylcyclobutanecarboxylic acid (?CA200) (V)) were synthesized and their structures confirmed by nuclear magnetic resonance spectroscopy. Reaction chamber experiments with ?-caryophyllene at two different ozone mixing ratios were performed and the carboxylic acid oxidation products in the particle phase were characterized by APCI-MS and HPLC-ESI-MS. All five synthesized acids were found as ?-caryophyllene oxidation products in the reaction chamber aerosol. The main oxidation products of the reaction chamber experiments were ?-14-hydroxynocaryophyllonic acid, ?-nocaryophyllonic acid (III) and ?CA198 (II). Product yields of the acids were estimated based on the chamber experiments and the application of the atmospheric chemistry box model CAABA/MECCA. Finally, ambient aerosol samples taken during the HUMPPA campaign in Hyytil, Finland in summer 2010 were analysed for the carboxylic acid ?-caryophyllene oxidation products. All five synthesized compounds were detected and were quantified in the ambient aerosol samples. The major ?-caryophyllene carboxylic acid oxidation products in the ambient air samples were ?-nocaryophyllonic acid (III) and ?CA198 (II) with concentrations in the range of about 0.2-14 ng m-3 and 0.8-6.8 ng m-3. The fact that the concentrations of these two acids in ambient aerosol are generally higher than the concentration of ?-caryophyllinic acid (IV) (often used in previous studies as oxidation tracer) with a concentration of about 0.16 ng m-3 leads to the conclusion that these two acids are better suited as tracer compounds for ?-caryophyllene secondary organic aerosol formation.

  10. Acute Decreases in Proteasome Pathway Activity after Inhalation of Fresh Diesel Exhaust or Secondary Organic Aerosol

    PubMed Central

    Kipen, Howard M.; Gandhi, Sampada; Rich, David Q.; Ohman-Strickland, Pamela; Laumbach, Robert; Fan, Zhi-Hua; Chen, Li; Laskin, Debra L.; Zhang, Junfeng; Madura, Kiran

    2011-01-01

    Background Epidemiologic studies consistently demonstrate an association between acute cardiopulmonary events and changes in air pollution; however, the mechanisms that underlie these associations are not completely understood. Oxidative stress and inflammation have been suggested to play a role in human responses to air pollution. The proteasome is an intracellular protein degradation system linked to both of these processes and may help mediate air pollution effects. Objectives In these studies, we determined whether acute experimental exposure to two different aerosols altered white blood cell (WBC) or red blood cell (RBC) proteasome activity in human subjects. One aerosol was fresh diesel exhaust (DE), and the other freshly generated secondary organic aerosol (SOA). Methods Thirty-eight healthy subjects underwent 2-hr resting inhalation exposures to DE and separate exposures to clean air (CA); 26 subjects were exposed to DE, CA, and SOA. CA responses were subtracted from DE or SOA responses, and mixed linear models with F-tests were used to test the effect of exposure to each aerosol on WBC and RBC proteasome activity. Results WBC proteasome activity was reduced 8% (p = 0.04) after exposure to either DE or SOA and decreased by 11.5% (p = 0.03) when SOA was analyzed alone. RBCs showed similar 8–10% declines in proteasome activity (p = 0.05 for DE alone). Conclusions Air pollution produces oxidative stress and inflammation in many experimental models, including humans. Two experimental aerosols caused rapid declines in proteasome activity in peripheral blood cells, supporting a key role for the proteasome in acute human responses to air pollution. PMID:21163722

  11. Formation and Processing of Secondary Organic Aerosol from Catechol as a Model for Atmospheric HULIS

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Krger, Heinz-Ulrich; Grothe, Hinrich; Zetzsch, Cornelius

    2010-05-01

    A particular fraction of the secondary organic aerosol (SOA) termed HUmic Like Substances (HULIS) attracted attention only recently in atmospheric aerosol, initiating a discourse about their aromaticity and other properties, such as reactivity and hygroscopicity. A major portion of HULIS originates from volatile organic compounds, which are formed by abiotic oxidation reactions involving mainly OH radicals, ozone, nitrogen oxides and possibly halogens. Subsequently, the particles provide surface for heterogeneous reactions with atmospheric trace gases. Thus, aerosol smog-chamber studies with appropriate precursors are needed to generate SOA with HULIS qualities in situ inside the smog chamber and study their possible interactions. Catechol and guaiacol were chosen as aromatic precursors for synthetic HULIS production. The SOA was produced in a 700 L aerosol smog chamber, equipped with a solar simulator. SOA formation from each precursor was investigated at simulated environmental conditions (humidity, light, and presence of oxidizers) and characterized with respect to HULIS properties by particle classifiers, Fourier Transform IR spectroscopy (by long-path absorption and attenuated total reflection), UV/VIS spectroscopy, high-resolution mass-spectroscopy and temperature-programmed-desorption mass-spectrometry. High-resolution imaging was obtained using Field Emission Gun Scanning Electron Microscopy (FEGSEM). After HULIS formation the aerosol particles were exposed to atmospheric halogen species to study their processing with those trace gases, released by sea salt-activation. Those investigations show that aromatic precursors like catechol and guaiacol are suitable to form synthetic HULIS for laboratory-scale measurements with physical and chemical properties described in literature. However, sunlight and relative humidity play a major role in particle production and composition of functional groups, which are the anchor points for heterogeneous atmospheric chemistry. Possible reaction pathways of those synthetic particles with atmospheric halogen species could be identified forming gaseous and solid halogenated compounds.

  12. Semi-volatile secondary organic aerosol in urban atmospheres: meeting a measurement challenge

    NASA Astrophysics Data System (ADS)

    Eatough, Delbert J.; Long, Russell W.; Modey, William K.; Eatough, Norman L.

    Ammonium nitrate and semi-volatile organic compounds are significant components of fine particles in urban atmospheres. These components, however, are not properly determined with current US EPA accepted methods such as the PM 2.5 FRM or other single filter samplers due to significant losses of semi-volatile material (SVM) from particles collected on the filter during sampling. Continuous PM 2.5 mass measurements are attempted using methods such as the R&P TEOM monitor. This method, however, heats the sample to remove particle-bound water which also results in evaporation of SVM. Research at Brigham Young University has resulted in samplers for both the integrated and continuous measurement of total PM 2.5, including the SVM. The PC-BOSS is a charcoal diffusion denuder based sampler for the determination of fine particulate chemical composition including the semi-volatile organic material. The RAMS is a modified TEOM monitor which includes diffusion denuders and Nafion dryers to remove gas phase material which can be absorbed by a charcoal sorbent filter. The RAMS then uses a "sandwich filter" consisting of a conventional particle collecting Teflon coated TX40 filter, followed by an activated charcoal sorbent filter which retains any semi-volatile ammonium nitrate or organic material lost from the particles collected on the TEOM monitor Teflon coated filter, thus allowing for determination of total PM 2.5 mass including the SVM. Recent research conducted by Brigham Young University using these two samplers has indicated the following about semi-volatile organic aerosol: The majority of semi-volatile fine particulate organic material is secondary organic aerosol. This semi-volatile organic aerosol is not retained on the heated filter of a regular TEOM monitor and hence is not measured by this sampling technique. In addition, secondary ammonium nitrate is also lost. Much of the semi-volatile organic aerosol is also lost during sampling from single filter samplers such as the PM 2.5 FRM sampler. The amount of semi-volatile organic aerosol lost from single filter samplers can vary from less than 1/3 that lost from heated TEOM filters during cold winter conditions to essentially all during warm summer conditions. Semi-volatile organic aerosol can only be reliably collected using an appropriate denuder sampler. Either a PM 2.5 FRM sampler or the IMPROVE sampler can be easily modified to a denuder sampler with filters which can be analyzed for semi-volatile OC, nonvolatile OC and EC using existing OC/EC analytical techniques. The research upon which these statements are based is summarized in this document.

  13. Global aerosol modeling with the online NMMB/BSC Chemical Transport Model: sensitivity to fire injection height prescription and secondary organic aerosol schemes

    NASA Astrophysics Data System (ADS)

    Spada, Michele; Jorba, Oriol; Pérez García-Pando, Carlos; Tsigaridis, Kostas; Soares, Joana; Obiso, Vincenzo; Janjic, Zavisa; Baldasano, Jose M.

    2015-04-01

    We develop and evaluate a fully online-coupled model simulating the life-cycle of the most relevant global aerosols (i.e. mineral dust, sea-salt, black carbon, primary and secondary organic aerosols, and sulfate) and their feedbacks upon atmospheric chemistry and radiative balance. Following the capabilities of its meteorological core, the model has been designed to simulate both global and regional scales with unvaried parameterizations: this allows detailed investigation on the aerosol processes bridging the gap between global and regional models. Since the strong uncertainties affecting aerosol models are often unresponsive to model complexity, we choose to introduce complexity only when it clearly improves results and leads to a better understanding of the simulated aerosol processes. We test two important sources of uncertainty - the fires injection height and secondary organic aerosol (SOA) production - by comparing a baseline simulation with experiments using more advanced approaches. First, injection heights prescribed by Dentener et al. (2006, ACP) are compared with climatological injection heights derived from satellite measurements and produced through the Integrated Monitoring and Modeling System For Wildland Fires (IS4FIRES). Also global patterns of SOA produced by the yield conversion of terpenes as prescribed by Dentener et al. (2006, ACP) are compared with those simulated by the two-product approach of Tsigaridis et al. (2003, ACP). We evaluate our simulations using a variety of observations and measurement techniques. Additionally, we discuss our results in comparison to other global models within AEROCOM and ACCMIP.

  14. Apportionment of primary and secondary organic aerosols in southern California during the 2005 study of organic aerosols in riverside (SOAR-1).

    PubMed

    Docherty, Kenneth S; Stone, Elizabeth A; Ulbrich, Ingrid M; DeCarlo, Peter F; Snyder, David C; Schauer, James J; Peltier, Richard E; Weber, Rodney J; Murphy, Shane M; Seinfeld, John H; Grover, Brett D; Eatough, Delbert J; Jimenez, Jose L

    2008-10-15

    Ambient sampling was conducted in Riverside, California during the 2005 Study of Organic Aerosols in Riverside to characterize the composition and sources of organic aerosol using a variety of state-of-the-art instrumentation and source apportionmenttechniques. The secondary organic aerosol (SOA) mass is estimated by elemental carbon and carbon monoxide tracer methods, water soluble organic carbon content, chemical mass balance of organic molecular markers, and positive matrix factorization of high-resolution aerosol mass spectrometer data. Estimates obtained from each ofthese methods indicate that the organic fraction in ambient aerosol is overwhelmingly secondary in nature during a period of several weeks with moderate ozone concentrations and that SOA is the single largest component of PM1 aerosol in Riverside. Average SOA/OA contributions of 70-90% were observed during midday periods, whereas minimum SOA contributions of approximately 45% were observed during peak morning traffic periods. These results are contraryto previous estimates of SOAthroughout the Los Angeles Basin which reported that, other than during severe photochemical smog episodes, SOA was lower than primary OA. Possible reasons for these differences are discussed. PMID:18983089

  15. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    NASA Astrophysics Data System (ADS)

    Liu, Shang; Ahlm, Lars; Day, Douglas A.; Russell, Lynn M.; Zhao, Yunliang; Gentner, Drew R.; Weber, Robin J.; Goldstein, Allen H.; Jaoui, Mohammed; Offenberg, John H.; Kleindienst, Tadeusz E.; Rubitschun, Caitlin; Surratt, Jason D.; Sheesley, Rebecca J.; Scheller, Scott

    2012-12-01

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemical and physical properties of SOA at Bakersfield, California, a site influenced by anthropogenic and terrestrial biogenic emissions. Factor analysis was applied to the infrared and mass spectra of fine particles to identify sources and atmospheric processing that contributed to the organic mass (OM). We found that OM accounted for 56% of submicron particle mass, with SOA components contributing 80% to 90% of OM from 15 May to 29 June 2010. SOA formed from alkane and aromatic compounds, the two major classes of vehicle-emitted hydrocarbons, accounted for 65% OM (72% SOA). The alkane and aromatic SOA components were associated with 200 nm to 500 nm accumulation mode particles, likely from condensation of daytime photochemical products of VOCs. In contrast, biogenic SOA likely formed from condensation of secondary organic vapors, produced from NO3radical oxidation reactions during nighttime hours, on 400 nm to 700 nm sized primary particles, and accounted for less than 10% OM. Local petroleum operation emissions contributed 13% to the OM, and the moderate O/C (0.2) of this factor suggested it was largely of secondary origin. Approximately 10% of organic aerosols in submicron particles were identified as either vegetative detritus (10%) or cooking activities (7%), from Fourier transform infrared spectroscopic and aerosol mass spectrometry measurements, respectively. While the mass spectra of several linearly independent SOA components were nearly identical and external source markers were needed to separate them, each component had distinct infrared spectrum, likely associated with the source-specific VOCs from which they formed.

  16. Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources

    NASA Astrophysics Data System (ADS)

    Presto, A. A.; Gordon, T. D.; Robinson, A. L.

    2014-05-01

    A series of smog chamber experiments were conducted to investigate the transformation of primary organic aerosol (POA) and formation of secondary organic aerosol (SOA) during the photooxidation of dilute exhaust from a fleet of gasoline and diesel motor vehicles and two gas-turbine engines. In experiments where POA was present in the chamber at the onset of photooxidation, positive matrix factorization (PMF) was used to determine separate POA and SOA factors from aerosol mass spectrometer data. A 2-factor solution, with one POA factor and one SOA factor, was sufficient to describe the organic aerosol for gasoline vehicles, diesel vehicles, and one of the gas-turbine engines. Experiments with the second gas-turbine engine required a 3-factor PMF solution with a POA factor and two SOA factors. Results from the PMF analysis were compared to the residual method for determining SOA and POA mass concentrations. The residual method apportioned a larger fraction of the organic aerosol mass as POA because it assumes that all mass at m / z 57 is associated with POA. The POA mass spectrum for the gasoline and diesel vehicles exhibited high abundances of the CnH2n+1 series of ions (m / z 43, 57, etc.) and was similar to the mass spectra of the hydrocarbon-like organic aerosol factor determined from ambient data sets with one exception, a diesel vehicle equipped with a diesel oxidation catalyst. POA mass spectra for the gas-turbine engines are enriched in the CnH2n-1 series of ions (m / z 41, 55, etc.), consistent with the composition of the lubricating oil used in these engines. The SOA formed from the three sources exhibits high abundances of m / z 44 and 43, indicative of mild oxidation. The SOA mass spectra are consistent with less-oxidized ambient SV-OOA (semivolatile oxygenated organic aerosols) and fall within the triangular region of f44 versus f43 defined by ambient measurements. However there is poor absolute agreement between the experimentally derived SOA mass spectra and ambient OOA factors, though this poor agreement should be expected based on the variability of ambient OOA factors. Van Krevelen analysis of the POA and SOA factors for gasoline and diesel experiments reveal slopes of -0.50 and -0.40, respectively. This suggests that the oxidation chemistry in these experiments is a combination of carboxylic acid and alcohol/peroxide formation, consistent with ambient oxidation chemistry.

  17. [Characteristics of aerosol water-soluble inorganic ions in three types air-pollution incidents of Nanjing City].

    PubMed

    Zhang, Qiu-Chen; Zhu, Bin; Su, Ji-Feng; Wang, Hong-Lei

    2012-06-01

    In order to compare aerosol water-soluble inorganic species in different air-pollution periods, samples of PM10, PM2.1, PM1.1 and the main water-soluble ions (NH4+, Mg2+, Ca2+, Na+, K+, NO2(-), F(-), NO3(-), Cl(-), SO4(2-)) were measured, which were from 3 air-pollution incidents (continued pollution in October 16-30 of 2009, sandstorm pollution in April 27-30 of 2010, and crop burning pollution in June 14 of 2010. The results show that aerosol pollution of 3 periods is serious. The lowest PM2.1/PM10 is only 0.27, which is from sandstorm pollution period, while the largest is 0. 7 from crop burning pollution period. In continued pollution periods, NO3(-) and SO4(2-) are the dominant ions, and the total anions account for an average of 18.62%, 32.92% and 33.53% of PM10, PM2.1 and PM1.1. Total water-soluble ions only account for 13.36%, 23.72% and 28.54% of PM10, PM2.1 and PM1.1 due to the insoluble species is increased in sandstorm pollution period. The mass concentration of Ca2+ in sandstorm pollution period is higher than the other two pollution periods, and which is mainly in coarse particles with diameter larger than 1 microm. All the ten water-soluble ions are much higher in crop burning pollution especially K+ which is the tracer from crop burning. The peak mass concentrations of NO3(-), SO4(2-) and NH4+ are in 0.43-0.65 microm. PMID:22946180

  18. Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds

    NASA Astrophysics Data System (ADS)

    Nguyen, T. B.; Coggon, M. M.; Bates, K. H.; Zhang, X.; Schwantes, R. H.; Schilling, K. A.; Loza, C. L.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2014-04-01

    The reactive partitioning of cis and trans β-IEPOX was investigated on hydrated inorganic seed particles, without the addition of acids. No organic aerosol (OA) formation was observed on dry ammonium sulfate (AS); however, prompt and efficient OA growth was observed for the cis and trans β-IEPOX on AS seeds at liquid water contents of 40-75% of the total particle mass. OA formation from IEPOX is a kinetically limited process, thus the OA growth continues if there is a reservoir of gas-phase IEPOX. There appears to be no differences, within error, in the OA growth or composition attributable to the cis / trans isomeric structures. Reactive uptake of IEPOX onto hydrated AS seeds with added base (NaOH) also produced high OA loadings, suggesting the pH dependence for OA formation from IEPOX is weak for AS particles. No OA formation, after particle drying, was observed on seed particles where Na+ was substituted for NH4+. The Henry's Law partitioning of IEPOX was measured on NaCl particles (ionic strength ~9 M) to be 3 × 107 M atm-1 (-50 / +100%). A small quantity of OA was produced when NH4+ was present in the particles, but the chloride (Cl-) anion was substituted for sulfate (SO42-), possibly suggesting differences in nucleophilic strength of the anions. Online time-of-flight aerosol mass spectrometry and offline filter analysis provide evidence of oxygenated hydrocarbons, organosulfates, and amines in the particle organic composition. The results are consistent with weak correlations between IEPOX-derived OA and particle acidity or liquid water observed in field studies, as the chemical system is nucleophile-limited and not limited in water or catalyst activity.

  19. Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds

    NASA Astrophysics Data System (ADS)

    Nguyen, T. B.; Coggon, M. M.; Bates, K. H.; Zhang, X.; Schwantes, R. H.; Schilling, K. A.; Loza, C. L.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2013-10-01

    The reactive partitioning of cis and trans β-IEPOX was investigated on hydrated inorganic seed particles, without the addition of acids. No organic aerosol (OA) formation was observed on dry ammonium sulfate (AS); however, prompt and efficient OA growth was observed for the cis and trans β-IEPOX on AS seeds with liquid water contents of 40-75% of the total particle mass. OA formation from IEPOX is a kinetically-limited process; thus the OA growth continues if there is a reservoir of gas-phase IEPOX. There appears to be no differences, within error, in the OA growth or composition attributable to the cis/trans isomeric structures. Reactive uptake of IEPOX onto hydrated AS seeds with added base (NaOH) also produced high OA loadings, suggesting the pH-dependence for OA formation from IEPOX is weak for AS particles. No OA formation, after particle drying, was observed on seed particles where Na+ was substituted for NH4+. The Henry's Law partitioning of IEPOX was measured on NaCl particles (ionic strength ~9 M) to be 3 × 107 M atm-1. A small quantity of OA was produced when NH4+ was present in the particles, but the chloride (Cl-) anion was substituted for sulfate (SO42-), suggesting differences in nucleophilic strength of the anions. Online time-of-flight aerosol mass spectrometry and offline filter analysis provide evidence of oxygenated hydrocarbons, organosulfates and, notably, amines in the particle organic composition. The results help explain the substantial quantities of ambient IEPOX-derived OA observed under neutralized conditions. Experiments and models aimed at understanding OA production from IEPOX, or other epoxides, should consider the NH4+ activity, in conjunction with H+ activity (i.e., particle acidity) and nucleophile activity.

  20. Effect of Humidity on the Composition of Isoprene Photooxidation Secondary Organic Aerosol

    SciTech Connect

    Nguyen, Tran B.; Roach, Patrick J.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Serguei

    2011-07-18

    The effect of relative humidity (RH) on the composition and concentrations of gas-phase products and secondary organic aerosol (SOA) generated from the photooxidation of isoprene under high-NOx conditions was investigated. The yields of most gas-phase products were the same regardless of initial water vapor concentration with exception of hydroxyacetone and glycolaldehyde, which were considerably affected by RH. A significant change was observed in the SOA composition, with many unique condensed-phase products formed under humid (90% RH) vs. dry (<2% RH) conditions, without any observable effect on the rate and extent of the SOA mass growth.

  1. Effects of ecological factors on secondary metabolites and inorganic elements of Scutellaria baicalensis and analysis of geoherblism.

    PubMed

    Guo, Lanping; Wang, Sheng; Zhang, Ji; Yang, Guang; Zhao, Manxi; Ma, Weifeng; Zhang, Xiaobo; Li, Xuan; Han, Bangxing; Chen, Naifu; Huang, Luqi

    2013-11-01

    This study analyzed the effects of ecological factors on secondary metabolites of Scutellaria baicalensis using two sources: 92 individual roots of S. baicalensis from all over China, and secondary metabolites, medicinal materials and inorganic element contents obtained from the testing of 92 S. baicalensis rhizosphere soil samples. The study used environmental data from the Genuine Medicinal Material Spatial Analysis Database. Most of the chemical constituents of S. baicalensis were negatively correlated to latitude and positively correlated to temperature; generally, the contents of 21 chemical constituents were higher at low latitudes than that at high latitudes. By gradual regression analysis, it was found that the content of baicalin in S. baicalensis was negatively correlated to latitude and generally the content of inorganic elements in soil was excessively high (excluding Mg and Ca), which has a negative effect on the accumulation of chemical constituents in S. baicalensis. Based on the cluster analysis of 21 constituents, S. baicalensis from different places of origin was divided into two groups, and S. baicalensis was not genuine only in a specific small region. Within the zone from Chifeng, Inner Mongolia to Taibai, Shaanxi is suitable for accumulation of secondary metabolites of S. baicalensis and such a zone represents a suitable distribution and potential genuine producing area. PMID:24203454

  2. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass burning smoke in a flow reactor during FLAME-3

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Day, D. A.; Cubison, M. J.; Brune, W. H.; Bon, D.; de Gouw, J. A.; Jimenez, J. L.

    2013-05-01

    We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A potential aerosol mass "PAM" flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~ 1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days aging in the atmosphere. VOC observations show aromatics and terpenes decrease with aging, while formic acid and other unidentified oxidation products increase. Unidentified gas-phase oxidation products, previously observed in atmospheric and laboratory measurements, were observed here, including evidence of multiple generations of photochemistry. Substantial new organic aerosol (OA) mass ("net SOA"; secondary OA) was observed from aging biomass-burning smoke, resulting in an total OA average of 1.42 0.36 times the initial primary OA (POA) after oxidation. This study confirms that the net SOA to POA ratio of biomass burning smoke is far lower on average than that observed for urban emissions. Although most fuels were very reproducible, significant differences were observed among the biomasses, with some fuels resulting in a doubling of the OA mass, while for others a very small increase or even a decrease was observed. Net SOA formation in the photochemical reactor increased with OH exposure (OHexp), typically peaking around three days of equivalent atmospheric photochemical age (OHexp ~ 3.9 1011 molecules cm-3 s-1), then leveling off at higher exposures. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeds the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility species, and possibly of unidentified VOCs as SOA precursors in biomass burning smoke. Chemical transformations continue even after mass concentration stabilizes. Changes in the biomass-burning tracer f60 ranged from substantially decreasing to remaining constant with increased aging. With increased OHexp, oxidation was always detected (as indicated by f44 and O/C). POA O/C ranged 0.15-0.5, while aged OA O/C reached up to 0.87. The rate of oxidation and maximum O/C achieved differs for each biomass and appears to increase with the initial O/C of the POA.

  3. Online measurements of ammonia, acidic trace gases and aerosol inorganic ionic species in the Amazon Basin under biomass burning and background conditions

    NASA Astrophysics Data System (ADS)

    Trebs, I.; Meixner, F. X.; Otjes, R. P.; Slanina, J. J.; Jongejan, P. A. C.; Moura, M. A. L.; da Silva, R. S., Jr.; Mayol-Bracero, O. L.; Artaxo, P.; Andreae, M. O.

    2003-04-01

    We have measured diurnal and seasonal variations in the mixing ratios of ammonia (NH_3), nitric acid (HNO_3), nitrous acid (HNO_2), hydrochloric acid (HCl) and water-soluble inorganic aerosol species as ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), chloride (Cl_-) and sulfate (SO_42-) on a pasture site in the Amazon Basin (Rondnia, Brazil) from September to November 2002 (LBA-SMOCC). Sampling was performed using a wet-annular denuder in combination with a Steam-Jet Aerosol Collector (SJAC) followed by online analysis using a mobile ion chromatograph for anions and flow injection analysis for ammonium. Measurements were supported by monitoring of meteorological parameters (e.g., relative humidity, air temperature, wind speed). Results from the biomass burning season, transition period and wet season will be presented. Preliminary evaluations show that ammonia levels were found to be highest (median values of 2.0 ppb during the biomass burning season), whereas median values for acidic trace gases were found to be an order of magnitude lower (0.2 ppb for nitric acid and 0.14 ppb for hydrochloric acid under biomass burning conditions). Preliminary results of aerosol species show that the mixing ratios were highest during the burning season (median values for ammonium ? 1.0 ppb, for nitrate ? 0.3 ppb, for nitrite ? 0.05 ppb, for chloride ? 0.1 ppb and for sulfate ? 0.25 ppb). The calculated median mixing ratio levels decreased steadily from the biomass burning season through the transition period to the wet season, by approximately 75% for trace gases and by 50% and 75% for aerosol ammonium and other inorganic aerosol species respectively. We found a strong dependence of ammonia, nitric acid, and aerosol ammonium nitrate on meteorological parameters (especially air temperature and relative humidity) as well as on daily/ nocturnal boundary layer conditions during day and night time. The diurnal data sets suggest that evaporation of ammonia and nitric acid from the aerosol surface contributes effectively to increased mixing ratios in the turbulent boundary layer at day time. Additionally, we found that a sharp increase of relative humidity to nearly 100% and a decrease of temperature from day to night time promotes the formation of aerosol ammonium nitrate due to gas-aerosol interactions. Both the soluble inorganic ionic species and soluble gases, such as NH_3 and HNO_3, are expected to play a major role in the nucleation and growth of cloud droplets under clean and polluted conditions.

  4. Spatial and temporal variability of ammonia and other inorganic aerosol species

    NASA Astrophysics Data System (ADS)

    Day, D. E.; Chen, X.; Gebhart, K. A.; Carrico, C. M.; Schwandner, F. M.; Benedict, K. B.; Schichtel, B. A.; Collett, J. L.

    2012-12-01

    Nitrogen deposition to the sensitive ecosystems in Rocky Mountain National Park (RMNP) has been increasing. Ammonia has been shown to be a large fraction of this nitrogen deposition, and sources in northeastern Colorado were found to be a significant contributor. In this work we report on the results from a small network of Radiello passive samplers to investigate the temporal and spatial variability of ammonia gas concentrations in northeastern Colorado. A URG denuder/filter-pack sampler was collocated with a Radiello passive sampler to provide a check on the accuracy of passive ammonia measurements and to provide information about complementary aerosol and trace gas species. These measurements showed seasonal variations in the concentrations of both particulate- and gas-phase aerosol components. The highest concentrations of ammonia occurred during summer months. These were almost twice the lowest concentrations, which occurred during spring and fall months. Ammonia also exhibited higher than expected concentrations during winter. There was considerable spatial variability in average ammonia concentrations, with May-August averages ranging from 3 μg m-3 in rural grasslands to 4-11 μg m-3 at suburban-urban sites to almost 30 μg m-3 in an area of intensive livestock feeding and farming operations. The large ammonia gradients near sources are expected for this primary pollutant with high deposition rates. The overall concentrations in this region are significantly larger than those measured in RMNP, which were around 0.5 μg m-3, and represent a large reservoir of ammonia that can be transported to RMNP with easterly winds.

  5. Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Y.-L.; Zhang, Q.; Schwab, J. J.; Demerjian, K. L.; Chen, W.-N.; Bae, M.-S.; Hung, H.-M.; Hogrefe, O.; Frank, B.; Rattigan, O. V.; Lin, Y.-C.

    2011-02-01

    Submicron aerosol particles (PM1) were measured in-situ using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer during the summer 2009 Field Intensive Study at Queens College in New York, NY. Organic aerosol (OA) and sulfate are the two dominant species, accounting for 54% and 24%, respectively, of the total PM1 mass. The average mass-based size distribution of OA presents a small mode peaking at ~150 nm (Dva) and an accumulation mode (~550 nm) that is internally mixed with sulfate, nitrate, and ammonium. The diurnal cycles of both sulfate and OA peak between 01:00-02:00 p.m. EST due to photochemical production. The average (±σ) oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), and nitrogen-to-carbon (N/C) ratios of OA in NYC are 0.36 (±0.09), 1.49 (±0.08), and 0.012 (±0.005), respectively, corresponding to an average organic mass-to-carbon (OM/OC) ratio of 1.62 (±0.11). Positive matrix factorization (PMF) of the high resolution mass spectra identified two primary OA (POA) sources, traffic and cooking, and three secondary OA (SOA) components including a highly oxidized, regional low-volatility oxygenated OA (LV-OOA; O/C = 0.63), a less oxidized, semi-volatile SV-OOA (O/C = 0.38) and a unique nitrogen-enriched OA (NOA; N/C = 0.053) characterized with prominent CxH2x + 2N+ peaks likely from amino compounds. Our results indicate that cooking and traffic are two distinct and mass-equivalent POA sources in NYC, together contributing ~30% of the total OA mass during this study. The OA composition is dominated by secondary species, especially during high PM events. SV-OOA and LV-OOA on average account for 34% and 30%, respectively, of the total OA mass. The chemical evolution of SOA in NYC appears to progress with a continuous oxidation from SV-OOA to LV-OOA, which is further supported by a gradual increase of O/C ratio and a simultaneous decrease of H/C ratio in total OOA. Detailed analysis of NOA (5.8% of OA) presents evidence that organic nitrogen species such as amines might have played an important role in the atmospheric processing of OA in NYC, likely involving both acid-base chemistry and photochemistry. In addition, analysis of air mass trajectories and satellite imagery of aerosol optical depth (AOD) indicates that the high potential source regions of secondary sulfate and aged OA are mainly located in regions to the west and southwest of the city.

  6. Seasonal variation of water-soluble inorganic species in the coarse and fine atmospheric aerosols at Dar es Salaam, Tanzania

    NASA Astrophysics Data System (ADS)

    Mkoma, Stelyus L.; Wang, Wan; Maenhaut, Willy

    2009-09-01

    The ionic composition of coarse, fine and total PM10 was investigated in aerosol samples collected from a kerbside in Dar es Salaam during the 2005 dry season and 2006 wet season. A "Gent" PM10 stacked filter unit sampler with sequential Nuclepore polycarbonate filters, providing coarse (8 ?m) and fine (0.4 ?m) size fractions, was deployed. The mean concentrations and associated standard deviation of fine, coarse and PM10 were, respectively, 17 4, 52 27, and 69 29 ?g/m 3 during the 2005 dry season campaign and 13 5, 34 23 and 47 25 ?g/m 3 for the 2006 wet season campaign. The higher PM mass concentrations during the dry season campaign are essentially due to soil dust dispersal, much biomass burning and temperature inversions. Chloride, Na + and Mg 2+ were the dominant ions in coarse fraction, indicating a significant influence of sea-salt aerosols. In the fine fraction, SO42- and NH4+ and K + were the most important ions. The mean equivalent PM2 NO3- concentration in the 2005 dry season campaign was two times higher than in the 2006 wet season campaign, probably due to reaction of NaCl (sea-salt) with HNO 3 as a result of higher levels of NO x during the dry season and/or reduced volatilization of NH 4NO 3 due to lower temperature in the dry season. The results from our water-soluble ions study strongly suggests that biomass burning and secondary aerosols make a significant contribution to fine particulate mass in Dar es Salaam atmosphere. Thus, burning of waste and biomass are thought to be the major causes for the atmospheric particulate pollution in Dar es Salaam during the dry season.

  7. Formation of secondary organic aerosols from biogenic precursors: A case study over an Isoprene emitting forest.

    NASA Astrophysics Data System (ADS)

    Freney, Evelyn; Sellegri, Karine; Borbon, Agns; Colomb, Aurelie; Delon, Claire; Jambert, Corinne; Durand, Pierre; Bourianne, Thierry; Gaimoz, Cecile; Feron, Anais; Triquette, Sylvain; Beekmann, Matthias; Sartelet, Karine; Dulcac, Francois

    2015-04-01

    Characterising the sources and formation patterns of atmospheric aerosols is fundamental to understanding the impact of anthropogenic emissions on the composition and physical properties of the atmosphere. Although, the contribution of urban anthropogenic aerosol particles is important (10 Tg C yr-1), the contribution of biogenic aerosols has been estimated to be as much as 90 Tg C yr-1 (Hallquist et al., 2009.). This large difference highlights the importance of understanding the formation mechanisms and sources of the biogenic aerosol in the atmosphere. An increasing number of studies have shown that the submicron aerosol mass concentration is dominated by organic aerosols in both rural and urban environments. In addition, there have been several studies showing that the combined emissions of both biogenic and anthropogenic VOC emissions can result in a higher yield of secondary organic aerosol (SOA) formation. Biogenic SOA is formed from the oxidation of biogenic volatile organic compounds that are emitted naturally from terrestrial vegetation. The most commonly emitted BVOCs include isoprene and monoterpenes (Kesslmeier and Staudt, 1999, Arneth et al., 2008). Despite their importance, the characterisation of BSOA from laboratory and field experiments is still poor and it is only recently that advances in measurement techniques providing more detailed analysis of these species is being provided. One of the reasons for the difficulty in characterising the abundance of these species, is their high temporal and spatial scales. As part of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr) experiment (SOP2a/SAFMED+) in July 2014, a number of research flights were performed over two forested areas in the south of France. These forested areas had different characteristics where one has mainly isoprene emitting vegetation, and the other is known to have more monoterpene emitting vegetation. The aims of these research flights were to characterise the gas-phase precursors responsible for the formation of biogenic SOA. The French ATR-42 aircraft was equipped with both gas-phase and aerosol phase measurements providing detailed measurements of aerosol chemistry (PTRMS, AMS) and physical properties (SMPS, CPC). During these measurements, we encountered suitable meteorological conditions to allow us to observe the formation of SOA from isoprene emissions and new particle formation from monoterpene emissions. These results provide an ideal case study that can be used to validate numerical models on the formation of SOA and new particles from biogenic emissions. Acknowledgements: ChArMEx is supported by CNRS/INSU, ADEME, Mto-France and CEA in the framework of the multidisciplinary programme MISTRALS (Mediterranean Integrated Studies aT Regional And Local Scales; http://www.mistrals-home.org). The contribution of OMP/SEDOO for the ChArMEx campaign web site (http://choc.sedoo.fr) was greatly appreciated. Franois Dulac and Eric Hamonou from LSCE are acknowledged for the campaign coordination and management.

  8. Laboratory studies on secondary organic aerosol formation from crude oil vapors.

    PubMed

    Li, R; Palm, B B; Borbon, A; Graus, M; Warneke, C; Ortega, A M; Day, D A; Brune, W H; Jimenez, J L; de Gouw, J A

    2013-01-01

    Airborne measurements of aerosol composition and gas phase compounds over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico in June 2010 indicated the presence of high concentrations of secondary organic aerosol (SOA) formed from organic compounds of intermediate volatility. In this work, we investigated SOA formation from South Louisiana crude oil vapors reacting with OH in a Potential Aerosol Mass flow reactor. We use the dependence of evaporation time on the saturation concentration (C*) of the SOA precursors to separate the contribution of species of different C* to total SOA formation. This study shows consistent results with those at the DWH oil spill: (1) organic compounds of intermediate volatility with C* = 10(5)-10(6) μg m(-3) contribute the large majority of SOA mass formed, and have much larger SOA yields (0.37 for C* = 10(5) and 0.21 for C* = 10(6) μg m(-3)) than more volatile compounds with C*≥10(7) μg m(-3), (2) the mass spectral signature of SOA formed from oxidation of the less volatile compounds in the reactor shows good agreement with that of SOA formed at DWH oil spill. These results also support the use of flow reactors simulating atmospheric SOA formation and aging. PMID:24088179

  9. Soft ionization chemical analysis of secondary organic aerosol from green leaf volatiles emitted by turf grass.

    PubMed

    Jain, Shashank; Zahardis, James; Petrucci, Giuseppe A

    2014-05-01

    Globally, biogenic volatile organic compound (BVOC) emissions contribute 90% of the overall VOC emissions. Green leaf volatiles (GLVs) are an important component of plant-derived BVOCs, including cis-3-hexenylacetate (CHA) and cis-3-hexen-1-ol (HXL), which are emitted by cut grass. In this study we describe secondary organic aerosol (SOA) formation from the ozonolysis of dominant GLVs, their mixtures and grass clippings. Near-infrared laser desorption/ionization aerosol mass spectrometry (NIR-LDI-AMS) was used for chemical analysis of the aerosol. The chemical profile of SOA generated from grass clippings was correlated with that from chemical standards of CHA and HXL. We found that SOA derived from HXL most closely approximated SOA from turf grass, in spite of the approximately 5 lower emission rate of HXL as compared to CHA. Ozonolysis of HXL results in formation of low volatility, higher molecular weight compounds, such as oligomers, and formation of ester-type linkages. This is in contrast to CHA, where the hydroperoxide channel is the dominant oxidation pathway, as oligomer formation is inhibited by the acetate functionality. PMID:24666343

  10. Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke

    NASA Astrophysics Data System (ADS)

    Sleiman, Mohamad; Destaillats, Hugo; Smith, Jared D.; Liu, Chen-Lin; Ahmed, Musahid; Wilson, Kevin R.; Gundel, Lara A.

    2010-11-01

    We used controlled laboratory experiments to evaluate the aerosol-forming potential of ozone reactions with nicotine and secondhand smoke. Special attention was devoted to real-time monitoring of the particle size distribution and chemical composition of SOA as they are believed to be key factors determining the toxicity of SOA. The experimental approach was based on using a vacuum ultraviolet photon ionization time-of-flight aerosol mass spectrometer (VUV-AMS), a scanning mobility particle sizer (SMPS) and off-line thermal desorption coupled to mass spectrometry (TD-GC-MS) for gas-phase byproducts analysis. Results showed that exposure of SHS to ozone induced the formation of ultrafine particles (<100 nm) that contained high molecular weight nitrogenated species ( m/ z 400-500), which can be due to accretion/acid-base reactions and formation of oligomers. In addition, nicotine was found to contribute significantly (with yields 4-9%) to the formation of secondary organic aerosol through reaction with ozone. The main constituents of the resulting SOA were tentatively identified and a reaction mechanism was proposed to elucidate their formation. These findings identify a new component of thirdhand smoke that is associated with the formation of ultrafine particles (UFP) through oxidative aging of secondhand smoke. The significance of this chemistry for indoor exposure and health effects is highlighted.

  11. Molecular corridors represent the multiphase chemical evolution of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Berkemeier, T.; Schilling-Fahnestock, K. A.; Seinfeld, J. H.; Pschl, U.

    2014-03-01

    The dominant component of atmospheric organic aerosol is that derived from the oxidation of volatile organic compounds (VOCs), so-called secondary organic aerosol (SOA). SOA consists of a multitude of organic compounds, only a small fraction of which has historically been identified. Formation and evolution of SOA is a complex process involving coupled chemical reaction and mass transport in the gas and particle phases. Current SOA models do not embody the full spectrum of reaction and transport processes nor do they identify the dominant rate-limiting steps in SOA formation. The recent advent of soft ionization mass spectrometry methods now facilitates a more complete molecular identification of SOA than heretofore possible. Based on such novel measurements, we show here that the chemical evolution of SOA from a variety of VOC precursors adheres to characteristic "molecular corridors" with a tight inverse correlation between volatility and molar mass. Sequential and parallel reaction oxidation and dimerization pathways progress along these corridors through characteristic regimes of reaction-, diffusion-, or accommodation-limited multiphase chemical kinetics that can be classified according to reaction location, degree of saturation, and extent of heterogeneity of gas and particle phases. These molecular corridors constrain the properties of unidentified products and reaction pathways and rates of SOA evolution, thereby facilitating the further development of aerosol models for air quality and climate.

  12. OH-initiated heterogeneous oxidation of internally-mixed squalane and secondary organic aerosol.

    PubMed

    Kolesar, Katheryn R; Buffaloe, Gina; Wilson, Kevin R; Cappa, Christopher D

    2014-03-18

    Recent work has established that secondary organic aerosol (SOA) can exist as an amorphous solid, leading to various suggestions that the addition of SOA coatings to existing particles will decrease the reactivity of those particles toward common atmospheric oxidants. Experimental evidence suggests that O3 is unable to physically diffuse through an exterior semisolid or solid layer thus inhibiting reaction with the core. The extent to which this suppression in reactivity occurs for OH has not been established, nor has this been demonstrated specifically for SOA. Here, measurements of the influence of adding a coating of ?-pinene+O3 SOA onto squalane particles on the OH-initiated heterogeneous oxidation rate are reported. The chemical composition of the oxidized internally mixed particles was monitored online using a vacuum ultraviolet-aerosol mass spectrometer. Variations in the squalane oxidation rate with particle composition were quantified by measurement of the effective uptake coefficient, ?eff, which is the loss rate of a species relative to the oxidant-particle collision rate. Instead of decreasing, the measured ?eff increased continuously as the SOA coating thickness increased, by a factor of ?2 for a SOA coating thickness of 42 nm (corresponding to ca. two-thirds of the particle mass). These results indicate that heterogeneous oxidation of ambient aerosol by OH radicals is not inhibited by SOA coatings, and further that condensed phase chemical pathways and rates in organic particles depend importantly on composition. PMID:24555558

  13. Transboundary secondary organic aerosol in western Japan: An observed limitation of the f44 oxidation indicator

    NASA Astrophysics Data System (ADS)

    Irei, Satoshi; Takami, Akinori; Sadanaga, Yasuhiro; Miyoshi, Takao; Arakaki, Takemitsu; Sato, Kei; Kaneyasu, Naoki; Bandow, Hiroshi; Hatakeyama, Shiro

    2015-11-01

    To obtain evidence for secondary organic aerosol formation during the long-range transport of air masses over the East China Sea, we conducted field measurements in March 2012 at the Fukue atmospheric monitoring station, Nagasaki, in western Japan. The relative abundance of m/z 44 in fine organic aerosol (f44) was measured by an Aerodyne aerosol chemical speciation monitor. The stable carbon isotope ratio (δ13C) of low-volatile water-soluble organic carbon (LV-WSOC) in the daily filter samples of total suspended particulate matter was also analyzed using an elemental-analyzer coupled with an isotope ratio mass spectrometer. Additionally, in situ measurements of NOx and NOy were performed using NOx and NOy analyzers. The measurements showed that, unlike the systematic trends observed in a previous field study, a scatter plot for δ13C of LV-WSOC versus f44 indicated a random variation. Comparison of f44 with the estimated photochemical age by the NOx/NOy ratio revealed that the random distribution of f44 values near 0.2 is likely an indication of saturation already. Such f44 values were significantly lower than the observed f44 (∼0.3) at Hedo in the previous study. These findings imply that the saturation point of f44, and the use of f44 as an oxidation indicator, is case dependent.

  14. Using proton transfer reaction mass spectrometry for online analysis of secondary organic aerosols.

    PubMed

    Hellén, Heidi; Dommen, Josef; Metzger, Axel; Gascho, Astrid; Duplissy, Jonathan; Tritscher, Torsten; Prevot, Andre S H; Baltensperger, Urs

    2008-10-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a useful tool in ambient trace gas analysis, especially for the analysis of oxygenated volatile organic compounds (OVOC). Many OVOCs are produced during photooxidation of volatile organic compounds and contribute to both the gas phase and secondary organic aerosols (SOA). The inlet system of the PTR-MS instrument was modified to allow also for the measurement of the particulate phase of an aerosol with a high time resolution. The new inlet consists mainly of a denuder to strip off the gas phase, and a heater (120/150 degrees C) to vaporize the aerosol particles. This inlet system was tested with pinonic acid particles generated with a nebulizer and SOA particles formed during the photooxidation of 1,3,5-trimethylbenzene and alpha-pinene with NO(x) in a smog chamber. The performance of this new technique is discussed and the partitioning coefficients for the oxidation products are estimated. PMID:18939569

  15. Secondary organic aerosol and the burning question of gasoline vs. diesel

    NASA Astrophysics Data System (ADS)

    Gentner, D. R.; Isaacman, G.; Worton, D. R.; Chan, A. W.; Dallmann, T. R.; Davis, L.; Liu, S.; Day, D. A.; Russell, L. M.; Wilson, K. R.; Weber, R.; Guha, A.; Harley, R. A.; Goldstein, A. H.

    2012-12-01

    Emissions from gasoline and diesel vehicles are predominant anthropogenic sources of reactive gas-phase organic carbon and key precursors to Secondary Organic Aerosol (SOA) in urban areas. Their relative importance for aerosol formation is a controversial issue with implications for air quality control policy and public health. Using novel gas chromatography and mass spectrometry methods, we analyzed liquid gasoline and diesel fuel collected across the state of California during Summer 2010 and used it to assess field data from the CalNex (California at the Nexus of Air Quality and Climate Change) Bakersfield supersite and the Caldecott Tunnel in Oakland, CA. We present the most comprehensive data to date on the chemical composition, mass distribution, emissions, and SOA formation potential of gasoline and diesel sources. We find that diesel exhaust is 7 times more efficient at forming aerosol than gasoline exhaust and emits twice as much gas-phase organic carbon per liter of fuel burned. Yet, both sources are important for air quality; depending on a region's fuel use, diesel is responsible for 65-90% of vehicular-derived SOA, with substantial contributions from both aromatic and aliphatic hydrocarbons. We assess our results in the context of other studies and discuss their implications for regional air pollution policies, fuel regulations, and methodologies for future measurement, laboratory, and modeling studies.

  16. Chemical insights, explicit chemistry and yields of secondary organic aerosol from methylglyoxal and glyoxal

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Tan, Y.; Turpin, B. J.

    2013-02-01

    Atmospherically abundant, volatile water soluble organic compounds formed through gas phase chemistry (e.g., glyoxal (C2), methylglyoxal (C3) and acetic acid) have great potential to form secondary organic aerosol (SOA) via aqueous chemistry in clouds, fogs and wet aerosols. This paper (1) provides chemical insights into aqueous-phase OH radical-initiated reactions leading to SOA formation from methylglyoxal and (2) uses this and a previously published glyoxal mechanism (Lim et al., 2010) to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012). This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010), and is used to simulate the profiles of products and to estimate SOA yields. At cloud relevant concentrations (∼ 10-6-∼ 10-3 M; Munger et al., 1995) of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass) are ∼ 120% for glyoxal and ∼ 80% for methylglyoxal. Oligomerization of unreacted aldehydes during droplet evaporation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (∼ 10 M), the major products are oligomers formed via organic radical-radical reactions, and simulated SOA yields (by mass) are ∼ 90% for both glyoxal and methylglyoxal.

  17. Aqueous chemistry and yields of secondary organic aerosol formed from glyoxal and methylglyoxal in atmospheric waters

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Tan, Y.; Ortiz-Montalvo, D. L.; Turpin, B. J.

    2012-12-01

    Atmospherically abundant, volatile, water soluble organic compounds formed through gas-phase oxidation (e.g., glyoxal, methylglyoxal, and acetic acid) have great potential to form secondary organic aerosol via aqueous chemistry (SOAaq) in clouds, fogs and wet aerosols. In this work, detailed reaction mechanisms and a full kinetic model were developed for aqueous OH radical oxidation of methylglyoxal and acetic acid; they were validated, in part, with laboratory experiments (Tan et al., 2012). This new model was combined with the previous glyoxal model (Lim et al., 2010), and used to simulate atmospheric concentration dynamics and estimate SOAaq yields. At cloud relevant concentrations, the major photooxidation products are oxalic and pyruvic acids, and simulated molar SOA yields are ~76-77% for glyoxal and ~64-65% for methylglyoxal, regardless of our assumptions regarding the continued production of precursor (i.e., for both batch and continuously stirred tank reactor assumptions). In the presence of ammonium ion, organic acid salt formation is expected to decrease product vapor pressures and increase SOA yields. In the concentrated solutions encountered in wet aerosols, oligomers form via organic radical-radical reactions; simulated molar SOA yields are ~40% for both glyoxal and methylglyoxal.

  18. Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber

    SciTech Connect

    Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh; Jung, Hee-Jung; Cocker, David R.

    2011-04-14

    Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours, underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.

  19. Effects of Chemical Aging on Global Secondary Organic Aerosol using the Volatility Basis Set Approach

    NASA Astrophysics Data System (ADS)

    Park, R.; Jo, D.; Kim, M.; Spracklen, D. V.; Hodzic, A.

    2014-12-01

    Organic aerosol (OA) constitutes significant mass fractions (20-90%) of total dry fine aerosols in the atmosphere. However, global models of OA have shown large discrepancies when compared to the observations because of the limited capability to simulate secondary OA (SOA). For reducing the discrepancies between observations and models, recent studies have shown that chemical aging reactions in the atmosphere are important because they can lead to decreases in organic volatility, resulting in increase of SOA mass yields. To efficiently simulate chemical aging of SOA in the atmosphere, we implemented the volatility basis set approach in a global 3-D chemical transport model (GEOS-Chem). We present full-year simulations and their comparisons with multiple observations - global aerosol mass spectrometer dataset, the Interagency Monitoring of Protected Visual Environments from the United States, the European Monitoring and Evaluation Programme dataset and water-soluble organic carbon observation data collected over East Asia. Using different input parameters in the model, we also explore the uncertainty of the SOA simulation for which we use an observational constraint to find the optimized values with which the model reduces the discrepancy from the observations. Finally, we estimate the effect of OA on climate using our best simulation results.

  20. Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO3 Oxidation of Biogenic Hydrocarbons

    PubMed Central

    2014-01-01

    The secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m–3, suggesting that model mechanisms that treat all NO3 + monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed. PMID:25229208

  1. Relating cloud condensation nuclei activity and oxidation level of ?-pinene secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Frosch, M.; Bilde, M.; Decarlo, P. F.; JurNyi, Z.; Tritscher, T.; Dommen, J.; Donahue, N. M.; Gysel, M.; Weingartner, E.; Baltensperger, U.

    2011-11-01

    During a series of smog chamber experiments, the effects of chemical and photochemical aging on the ability of organic aerosols generated from ozonolysis of ?-pinene to act as cloud condensation nuclei (CCN) were investigated. In particular, the study focused on the relation between oxygenation and the CCN-derived single hygroscopicity parameter ? for different experimental conditions: varying precursor concentrations (10-40 ppb), different OH sources (photolysis of HONO either with or without the addition of NO or ozonolysis of tetramethylethylene), and exposure to light. Oxygenation was described by the contribution of the aerosol mass spectrometer (AMS) mass fragment m/z 44 to the total organic signal (f44) and the oxygen to carbon molar ratio (O/C), likewise determined with AMS. CCN activity, described by the hygroscopicity parameter ?, was determined with a CCN counter. It was found that f44 increases with decreasing precursor concentration and with chemical aging, whereas neither of these affects CCN activity. Overall, ? is largely independent of O/C in the range 0.3 < O/C < 0.6 (0.07 < f44 < 0.12), although an empirical unweighted least squares fit was determined: ? = (0.071 0.02) (O/C) + (0.0785 0.009) for particles with diameter in the range 59-200 nm. Growth kinetics of activating secondary organic aerosols were found to be comparable to those of ammonium sulfate and were not influenced by chemical aging.

  2. Effects of NOx on the volatility of secondary organic aerosol from isoprene photooxidation

    SciTech Connect

    Xu, Lu; Kollman, Matthew S.; Song, Chen; Shilling, John E.; Ng, L. N.

    2014-01-28

    The effects of NOx on the volatility of the secondary organic aerosol (SOA) formed from isoprene photooxidation are investigated in environmental chamber experiments. Two types of experiments are performed. In HO2-dominant experiments, organic peroxy radicals (RO2) primarily react with HO2. In mixed experiments, RO2 reacts through multiple pathways. The volatility and oxidation state of isoprene SOA is sensitive to and displays a non-linear dependence on NOx levels. When initial NO/isoprene ratio is approximately 3 (ppbv:ppbv), SOA are shown to be most oxidized and least volatile, associated with the highest SOA yield. A High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) is applied to characterize the key chemical properties of aerosols. While the composition of SOA in mixed experiments does not change substantially over time, SOA become less volatile and more oxidized as oxidation progresses in HO2-dominant experiments. Analysis of the SOA composition suggests that the further reactions of organic peroxides and alcohols may produce carboxylic acids, which might play a strong role in SOA aging.

  3. Formation and evolution of molecular products in α-pinene secondary organic aerosol.

    PubMed

    Zhang, Xuan; McVay, Renee C; Huang, Dan D; Dalleska, Nathan F; Aumont, Bernard; Flagan, Richard C; Seinfeld, John H

    2015-11-17

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58-72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA. PMID:26578760

  4. Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions

    NASA Astrophysics Data System (ADS)

    Elbert, W.; Taylor, P. E.; Andreae, M. O.; Pschl, U.

    2007-09-01

    Biogenic aerosols play important roles in atmospheric chemistry physics, the biosphere, climate, and public health. Here, we show that fungi which actively discharge their spores with liquids into the air, in particular actively wet spore discharging Ascomycota (AAM) and actively wet spore discharging Basidiomycota (ABM), are a major source of primary biogenic aerosol particles and components. We present the first estimates for the global average emission rates of fungal spores. Measurement results and budget calculations based on investigations in Amazonia (Balbina, Brazil, July 2001) indicate that the spores of AAM and ABM may account for a large proportion of coarse particulate matter in tropical rainforest regions during the wet season (0.7-2.3 ?g m-3). For the particle diameter range of 1-10 ?m, the estimated proportions are ~25% during day-time, ~45% at night, and ~35% on average. For the sugar alcohol mannitol, the budget calculations indicate that it is suitable for use as a molecular tracer for actively wet discharged basidiospores (ABS). ABM emissions seem to account for most of the atmospheric abundance of mannitol (10-68 ng m-3), and can explain the observed diurnal cycle (higher abundance at night). ABM emissions of hexose carbohydrates might also account for a significant proportion of glucose and fructose in air particulate matter (7-49 ng m-3), but the literature-derived ratios are not consistent with the observed diurnal cycle (lower abundance at night). AAM emissions appear to account for a large proportion of potassium in air particulate matter over tropical rainforest regions during the wet season (17-43 ng m-3), and they can also explain the observed diurnal cycle (higher abundance at night). The results of our investigations and budget calculations for tropical rainforest aerosols are consistent with measurements performed at other locations. Based on the average abundance of mannitol reported for extratropical continental boundary layer air (~25 ng m-3), we have also calculated a value of ~17 Tg yr-1 as a first estimate for the global average emission rate of ABS over land surfaces, which is consistent with the typically observed concentrations of ABS (~10-104 m-3; ~0.1-1 ?g m-3). The global average atmospheric abundance and emission rate of total fungal spores, including wet and dry discharged species, are estimated to be higher by a factor of about three, i.e. 1 ?g m-3 and ~50 Tg yr-1. Comparisons with estimated rates of emission and formation of other major types of organic aerosol (~47 Tg yr-1 of anthropogenic primary organic aerosol; 12-70 Tg yr-1 of secondary organic aerosol) indicate that emissions from fungi should be taken into account as a significant global source of organic aerosol. The effects of fungal spores and related chemical components might be particularly important in tropical regions, where both physicochemical processes in the atmosphere and biological activity at the Earth's surface are particularly intense, and where the abundance of fungal spores and related chemical compounds are typically higher than in extratropical regions.

  5. Surface Tension and Critical Supersaturations for Mixed Aerosol Particles Composed of Inorganic and Organic Compounds of Atmospheric Relevance

    NASA Astrophysics Data System (ADS)

    Zamora, I. R.; Jacobson, M. Z.

    2012-12-01

    The interaction between water vapor and aerosol particles in the atmosphere has implications on important processes. Among these are cloud droplet formation and growth, which impact cloud properties and therefore have an indirect effect on climate. A significant fraction of the dry submicron mass of atmospheric aerosols is composed of water-soluble organic carbon (WSOC). Although the WSOC fraction contains a large amount of compounds, most yet unidentified, it can be partitioned into three main categories in order to use a set of model substances to reproduce its behavior. In this study, we chose levoglucosan, succinic acid and Nordic Reference fulvic acid (NRFA) to represent the WSOC categories of neutral compounds, mono-/di-carboxylic acids, and polycarboxylic acids, respectively. We measured the surface tension of aqueous pure NRFA and of five of its mixtures at 298 K using the Wilhemy plate method. Langmuir adsorption parameters for the organic mixtures were extracted by fitting the surface tension measurements and corresponding solute concentrations to the Szyszkowski-Langmuir equation. The measured surface tension as a function of aqueous NRFA concentration was identical to that of Suwannee River (SR) and Waskish Peat fulvic acids below 0.02 g/L but up to 12% and 15% higher, respectively, at higher concentrations. Similar to previous findings by Aumann et al. (2010) with SRFA, the surface tension of a NRFA/inorganic salt solution was mainly controlled by the organic compound even when the salt comprised 75% of the added solute mass. This effect was observed for mixtures of NRFA with both sodium chloride and ammonium sulfate salts up to 5 g/L of NRFA. From 5 g/L to about 50 g/L of NRFA, the surface tension for both NRFA/salt mixtures stopped decreasing, remained constant at 52-53 mN/m and then started slowly increasing indicating that the salt component might start dominating at higher concentrations. For a solution of 25% NRFA / 75% levoglucosan, the surface tension lowering with increasing concentration was very similar to that of pure aqueous NRFA even to the maximum measured concentration of 50 g/L of NRFA. However, the surface tension of the NRFA/saccharide mixture exhibited a more linear decrease when plotted against ln(NRFA concentration) in the 0.1 to 50 g/L range. We also measured the surface tension of two additional mixtures based on chemical composition data for different aerosol types. The measured surface tension for the solution representing organic aerosols (40% NRFA / 40% succinic acid / 20% levoglucosan) was bounded by that of pure NRFA and the NRFA/levoglucosan mixture up to a concentration of ~28 g/L of NRFA, where it remained constant at around 46.6 mN/m until 80 g/L of NRFA. The solution representing biomass burning aerosols (25% NRFA/ 27% succinic acid / 18% levoglucosan / 30% ammonium sulfate) had a similar surface tension to pure NRFA up to a concentration of ~5 g/L of NRFA, from where the surface tension drop continued between that of pure NRFA and the NRFA/salt mixtures. Critical supersaturations as a function of dry particle diameter were estimated by using measured water activity as a function of concentration and surface tension data to calculate the maximum of each Khler curve for the mixtures studied.

  6. Role of stabilized Criegee Intermediate in secondary organic aerosol formation from the ozonolysis of ?-cedrene

    NASA Astrophysics Data System (ADS)

    Yao, Lei; Ma, Yan; Wang, Lin; Zheng, Jun; Khalizov, Alexei; Chen, Mindong; Zhou, Yaoyao; Qi, Lu; Cui, Fenping

    2014-09-01

    Atmospheric ozonolysis of sesquiterpenes is an important source of secondary organic aerosols (SOA). The mechanisms by which Criegee Intermediates (CIs) react to form SOA precursors and the influence of environmental conditions, however, remain unclear. On the basis of environmental chamber experiments coupled with detailed characterization of gas-phase and particle-phase products, we present evidence that a significant fraction of CIs from ozonolysis of ?-cedrene are stabilized and bimolecular reactions of these stabilized CIs (SCIs) play a key role in the formation of SOA precursors. Ozonolysis experiments were conducted in a 4.5 m3 collapsible fluoropolymer chamber under various conditions in the presence of the OH radical and SCI scavengers. The size and mass of SOA particles produced during ozonolysis were measured directly and used for calculation of particle effective density and mass yield. Gaseous and particulate products were analyzed by several mass spectrometry methods. A total of 14 compounds in gas phase and 17 compounds in particle phase were tentatively identified. The major gas-phase products are secondary ozonides (SOZ) from intramolecular reactions of SCIs. Multifunctional organic acids are dominant particle-phase products. The measured density of aerosol particles is 1.04 0.03 to 1.38 0.03 g/cm3, and the aerosol mass yield is (23.7 0.4)% to (46.4 6.5)%, depending on reaction conditions. The presence of acetic acid, an SCI scavenger, inhibits new particle formation, but leads to increased aerosol mass yield. In contrast, the addition of SO2 dramatically enhances new particle formation and total aerosol yield. The calculated OH formation yield decreases from (62.4 4.9)% to (9.0 1.6)% upon addition of SCI scavengers CH3COOH and SO2, indicating that a large fraction of excited CIs are collisionally stabilized and unimolecular decomposition of SCIs via the hydroperoxide channel can be suppressed by bimolecular reactions. The reaction of SCIs with SO2 leads to the formation of sulfuric acid, an important nucleation precursor. From the consumption of SO2 added as SCI scavenger, a lower-limit yield of SCIs from ?-cedrene ozonolysis is estimated at ?88%. Our work underscores the key role of SCIs in SOA formation and observed composition of gas- and particle-phase products from ?-cedrene ozonolysis. Bimolecular reactions of sesquiterpene CIs with atmospherically relevant species (e.g. SO2, H2O) need to be considered when assessing the atmospheric relevance of ozonolysis of sesquiterpenes.

  7. Source contributions to primary and secondary inorganic particulate matter during a severe wintertime PM2.5 pollution episode in Xi'an, China

    NASA Astrophysics Data System (ADS)

    Wang, Dexiang; Hu, Jianlin; Xu, Yong; Lv, Di; Xie, Xiaoyang; Kleeman, Michael; Xing, Jia; Zhang, Hongliang; Ying, Qi

    2014-11-01

    Average PM2.5 concentrations of 250 ?g m-3 and peak concentrations of 500 ?g m-3 were observed in Xi'an, the largest city in Northwest China during an extreme event in January 2013. The source-oriented versions of the Community Multi-scale Air Quality (CMAQ) model with anthropogenic emissions from Emissions Database for Global Atmospheric Research (EDGAR) were used to study the source contributions of six different source categories including energy production, industries, transportation, residential activities, other (agriculture, biomass, waste burning, and biogenic sources), and windblown dust to primary and secondary inorganic PM2.5 (nitrate and sulfate) during this episode. The model generally captured the variation and magnitude of PM2.5 concentrations at monitoring sites. The monthly average concentration of the predicted PM2.5 in Xi'an was >200 ?g m-3, comparing favorably with the measurement of 250 ?g m-3. Predicted concentrations of elemental carbon (EC), organic aerosol (OA), sulfate, nitrate, and ammonium were 6, 35, 18, 22, and 12 ?g m-3, respectively. Chemically unresolved PM2.5 components (PM2.5 Other) were 80 ?g m-3. Industries and residential activities dominated EC, organic carbon (OC) and PM2.5 Other, contributing 85%, 95%, and 83%, respectively. Energy production (mainly coal combustion) was the dominating source for secondary nitrate, contributing 46%. Other local and upwind sources were also important, contributing 43% and 11% of total nitrate, respectively. Primary sulfate was 10 ?g m-3 in vicinity surrounding point sources. Secondary sulfate from upwind sources was also important with concentrations of 4-5 ?g m-3. Secondary sulfate formed by SO2 emitted from local sources was dominated by energy production. Based on the contributions of different sources to primary components and secondary nitrate and sulfate, the contributions of different sources to PM2.5 total mass in Xi'an during the extremely polluted months are: energy 5%, industries 58%, transportation 2%, residential activities 16%, dust 4%, and other (including other components, inexplicit sources, and upwind sources) 15%.

  8. Molecular speciation of secondary organic aerosol from photooxidation of the higher alkenes: 1-octene and 1-decene

    NASA Astrophysics Data System (ADS)

    Forstner, Hali J. L.; Flagan, Richard C.; Seinfeld, John H.

    Outdoor smog chamber photooxidations to determine the molecular composition of secondary organic aerosol (SOA) from 1-octene and 1-decene in sunlight-irradiated hydrocarbon-NO x mixtures are reported. The observed products are consistent with the current understanding of alkene reactions with OH and O 3. Gas-phase mechanisms leading to the observed products are outlined. Heptanal, heptanoic acid, and dihydro-5-propyl-2(3H)-furanone were the dominant organics identified in 1-octene aerosol. The corresponding species in 1-decene aerosol were nonanal, nonanoic acid, and dihydro-5-pentyl-2(3H)-furanone. Measured aerosol yields from 1-octene and 1-decene experiments are also reported, and are found to correlate with organic mass concentration according to semi-volatile gas/particle partitioning theory. A new organic aerosol extraction procedure utilizing supercritical CO 2 extraction is outlined.

  9. Gas phase emissions from cooking processes and their secondary aerosol production potential

    NASA Astrophysics Data System (ADS)

    Klein, Felix; Platt, Stephen; Bruns, Emily; Termime-roussel, Brice; Detournay, Anais; Mohr, Claudia; Crippa, Monica; Slowik, Jay; Marchand, Nicolas; Baltensperger, Urs; Prevot, Andre; El Haddad, Imad

    2014-05-01

    Long before the industrial evolution and the era of fossil fuels, high concentrations of aerosol particles were alluded to in heavily populated areas, including ancient Rome and medieval London. Recent radiocarbon measurements (14C) conducted in modern megacities came as a surprise: carbonaceous aerosol (mainly organic aerosol, OA), a predominant fraction of particulate matter (PM), remains overwhelmingly non-fossil despite extensive fossil fuel combustion. Such particles are directly emitted (primary OA, POA) or formed in-situ in the atmosphere (secondary OA, SOA) via photochemical reactions of volatile organic compounds (VOCs). Urban levels of non-fossil OA greatly exceed the levels measured in pristine environments strongly impacted by biogenic emissions, suggesting a contribution from unidentified anthropogenic non-fossil sources to urban OA. Positive matrix factorization (PMF) techniques applied to ambient aerosol mass spectrometer (AMS, Aerodyne) data identify primary cooking emissions (COA) as one of the main sources of primary non-fossil OA in major cities like London (Allan et al., 2010), New York (Sun et al., 2011) and Beijing (Huang et al., 2010). Cooking processes can also emit VOCs that can act as SOA precursors, potentially explaining in part the high levels of oxygenated OA (OOA) identified by the AMS in urban areas. However, at present, the chemical nature of these VOCs and their secondary aerosol production potential (SAPP) remain virtually unknown. The approach adopted here involves laboratory quantification of PM and VOC emission factors from the main primary COA emitting processes and their SAPP. Primary emissions from deep-fat frying, vegetable boiling, vegetable frying and meat cooking for different oils, meats and vegetables were analysed under controlled conditions after ~100 times dilution. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a high resolution proton transfer time-of-flight mass spectrometer (PTR-ToF-MS) were used to quantify OA and VOC emissions, respectively. SOA production potential of the different emissions was quantified by introducing them into the PSI mobile smog chamber and a potential aerosol chamber (PAM) where they were photochemically aged. The measurements of primary emissions suggest that the COA factor identified in ambient atmospheric aerosols is mostly related to fat release from frying with vegetable oils or grilling fatty-meats. In contrast, vegetable cooking (boiling and frying) was associated with significant VOC emissions. The VOC emissions from frying consist mainly of aldehydes which are formed through breaking of fatty acids. Gas phase composition, emission factors and SAPP from all these processes will be presented. This work was supported by the Swiss National Science Foundation as well as the Swiss Federal Office for the Environment. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n.° 290605 (COFUND: PSI-FELLOW). J. Allan et al, Atmos. Chem. Phys. 10, 647-668 (2010) X.-F. Huang et al, Atmos. Chem. Phys. 10, 8933-8945 (2010) Y.-L. Sun et al, Atmos. Chem. Phys. 11, 1581-1602 (2011)

  10. Temperature dependence of secondary organic aerosol yield from the ozonolysis of ?-pinene

    NASA Astrophysics Data System (ADS)

    Stenby, C.; Pschl, U.; von Hessberg, P.; Bilde, M.; Nielsen, O. J.; Moortgat, G. K.

    2006-10-01

    The temperature dependence of secondary organic aerosol (SOA) formation from ozonolysis of ?-pinene was studied in a flow reactor at 263-303 K and 1007 hPa. The observed SOA yields were of similar magnitude as predicted by a two-product model based on detailed gas phase chemistry (Jenkin, 2004), reaching maximum values of 0.22-0.39 at high particle mass concentrations. However, the measurement data exhibited significant deviations (up to 50%) from the predicted linear dependence on inverse temperature. When fitting the measurement data with a two-product model, we found that both the partitioning coefficients (Kom,i) and the stoichiometric yields (?i) of the low-volatile and semi-volatile species vary with temperature. The results indicate that not only the reaction product vapour pressures but also the relative contributions of different gas-phase or multiphase reaction channels are dependent on temperature. We suggest that the modelling of secondary organic aerosol formation in the atmosphere needs to take into account the effects of temperature on the pathways and kinetics of the involved chemical reactions as well as on the gas-particle partitioning of the reaction products.

  11. Heterogeneous Chemistry of Carbonyls and Alcohols With Sulfuric Acid: Implications for Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Levitt, N.; Zhang, R.

    2006-12-01

    Recent environmental chamber studies have suggested that acid-catalyzed particle-phase reactions of organic carbonyls lead to multifold increases in secondary organic aerosol (SOA) mass and acid-catalyzed reactions between alcohols and aldehydes in the condensed phase lead to the formation of hemiacetals and acetals, also enhancing secondary organic aerosol growth. The kinetics and mechanism of the heterogeneous chemistry of carbonyls and alcohols with sulfuric acid, however, remain largely uncertain. In this talk, we present measurements of heterogeneous uptake of several carbonyls and alcohols on liquid H2SO4 in a wide range of acid concentrations and temperatures. The results indicate that uptake of larger carbonyls is explained by aldol condensation. For small dicarbonyls, heterogeneous reactions are shown to decrease with acidity and involve negligible formation of sulfate esters. Hydration and polymerization likely explain the measured uptake of such small dicarbonyls on H2SO4 and the measurements do not support an acid- catalyzed uptake. Atmospheric implications from our findings will be discussed.

  12. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; Pagels, J.

    2014-08-01

    We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas-phase Master Chemical Mechanism version 3.2 (MCMv3.2), an aerosol dynamics and particle-phase chemistry module (which considers acid-catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion-limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study (1) the evaporation of liquid dioctyl phthalate (DOP) particles, (2) the slow and almost particle-size-independent evaporation of α-pinene ozonolysis secondary organic aerosol (SOA) particles, (3) the mass-transfer-limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), and (4) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. In the smog chamber experiments, these salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar-like amorphous-phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if the concentration of low-volatility and viscous oligomerized SOA material at the particle surface increases upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass-transfer-limited uptake of condensable organic compounds onto wall-deposited particles or directly onto the Teflon chamber walls of smog chambers can have a profound influence on the observed SOA formation. During the early stage of the SOA formation the wall-deposited particles and walls themselves serve as an SOA sink from the air to the walls. However, at the end of smog chamber experiments the semi-volatile SOA material may start to evaporate from the chamber walls. With these four model applications, we demonstrate that several poorly quantified processes (i.e. mass transport limitations within the particle phase, oligomerization, heterogeneous oxidation, organic salt formation, and chamber wall effects) can have a substantial influence on the SOA formation, lifetime, chemical and physical particle properties, and their evolution. In order to constrain the uncertainties related to these processes, future experiments are needed in which as many of the influential variables as possible are varied. ADCHAM can be a valuable model tool in the design and analysis of such experiments.

  13. Assessing the oxidative potential of isoprene-derived epoxides and secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Kramer, Amanda J.; Rattanavaraha, Weruka; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Lin, Ying-Hsuan

    2016-04-01

    Fine particulate matter (PM2.5) is known to contribute to adverse health effects, such as asthma, cardiopulmonary disease, and lung cancer. Secondary organic aerosol (SOA) is a major component of PM2.5 and can be enhanced by atmospheric oxidation of biogenic volatile organic compounds in the presence of anthropogenic pollutants, such as nitrogen oxides (NOx) and sulfur dioxide. However, whether biogenic SOA contributes to adverse health effects remains unclear. The objective of this study was to assess the potential of isoprene-derived epoxides and SOA for generating reactive oxygen species (ROS) in light of the recent recognition that atmospheric oxidation of isoprene in the presence of acidic sulfate aerosol is a major contributor to the global SOA burden. The dithiothreitol (DTT) assay was used to characterize the ROS generation by the isoprene-derived epoxides, trans-β-isoprene epoxydiol (trans-β-IEPOX) and methacrylic acid epoxide (MAE), and their hydrolysis products, the 2-methyltetrol diastereomers (2-MT), 2-methylglyceric acid (2-MG), their organosulfate derivatives, as well as an isoprene-derived hydroxyhydroperoxide (ISOPOOH). In addition, ROS generation potential was evaluated for total SOA produced from photooxidation of isoprene and methacrolein (MACR) as well as from the reactive uptake of trans-β-IEPOX and MAE onto acidified sulfate aerosol. The high-NOx regime, which yields 2-MG-, MAE- and MACR-derived SOA has a higher ROS generation potential than the low-NOx regime, which yields 2-MT, IEPOX- and isoprene-derived SOA. ISOPOOH has an ROS generation potential similar to 1,4-naphthoquinone (1,4-NQ), suggesting a significant contribution of aerosol-phase organic peroxides to PM oxidative potential. MAE- and MACR-derived SOA show equal or greater ROS generation potential than reported in studies on diesel exhaust PM, highlighting the importance of a comprehensive investigation of the toxicity of isoprene-derived SOA.

  14. Photochemical aging of secondary organic aerosols: effects on hygroscopic growth and CCN activation

    NASA Astrophysics Data System (ADS)

    Buchholz, A.; Mentel, Th. F.; Tillmann, R.; Schlosser, E.; Mildenberger, K.; Clauss, T.; Henning, S.; Kiselev, A.; Stratmann, F.

    2009-04-01

    Plant emitted volatile organic carbons (VOCs) are a major precursor of secondary organic aerosols (SOA), an important constituent of atmospheric aerosols. The precursors are oxidized via ozonolysis, photooxidation, or by NO3 and form aerosol particles. Due to further oxidation of the organic matter the composition of the SOA may age with time. This will also change the hygroscopic growth (HG) and cloud condensation nuclei (CCN) activation of the particles. In this study we generated and aged SOA in the SAPHIR chamber at the Research Centre Juelich under near atmospheric conditions: natural sunlight, low precursor and O3 concentrations, and long reaction times. As precursor we used a mixture of 5 monoterpenes (MT) or 5 MT with 2 sesquiterpenes which had been identified as major constituents of plant emissions in previous experiments. Concentrations ranged between 4 and 100 ppb MT and the total reaction time was 36h. HG was measured at RH=10-97% by a Hygroscopic Tandem Differential Analyser (HTDMA, FZ Juelich) and at RH=97-99% by the Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile, IfT Leipzig). The agreement between HTDMA and LACIS-mobile data was generally good. CCN properties were measured with a continuous flow CCN Counter from DMT. SOA particles generated on a sunny day were more hygroscopic and had a lower activation diameter (Dcrit) than SOA formed under cloudy conditions. With aging it became more hygroscopic and Dcrit decreased. Sunlight enhanced this effect. But the change in HG and Dcrit due to aging was less than the difference between SOA generated under different conditions (i.e. sunny or cloudy). We did not observe a dependence of the HG on the precursor concentration.

  15. Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Pavuluri, C. M.; Swaminathan, T.; Chen, J.

    2010-03-01

    Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Fourteen organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, hydroxy-/polyacids, phthalate esters, hopanes, Polycyclic Aromatic Hydrocarbons (PAHs), and photooxidation products from biogenic Volatile Organic Compounds (VOCs). At daytime, phthalate esters were found to be the most abundant compound class; however, at nighttime, fatty acids were the dominant one. Di-(2-ethylhexyl) phthalate, C16 fatty acid, and levoglucosan were identified as the most abundant single compounds. The nighttime maxima of most organics in the aerosols indicate a land/sea breeze effect in tropical India, although some other factors such as local emissions and long-range transport may also influence the composition of organic aerosols. However, biogenic VOC oxidation products (e.g., 2-methyltetrols, pinic acid, 3-hydroxyglutaric acid and ?-caryophyllinic acid) showed diurnal patterns with daytime maxima. Interestingly, terephthalic acid was maximized at nighttime, which is different from those of phthalic and isophthalic acids. A positive relation was found between 1,3,5-triphenylbenzene (a tracer for plastic burning) and terephthalic acid, suggesting that the field burning of municipal solid wastes including plastics is a significant source of terephthalic acid. Organic compounds were further categorized into several groups to clarify their sources. Fossil fuel combustion (24-43%) was recognized as the most significant source for the total identified compounds, followed by plastic emission (16-33%), secondary oxidation (8.6-23%), and microbial/marine sources (7.2-17%). In contrast, the contributions of terrestrial plant waxes (5.9-11%) and biomass burning (4.2-6.4%) were relatively small. This study demonstrates that, in addition to fossil fuel combustion and biomass burning, the open-burning of plastics in urban area also contributes to the organic aerosols in South Asia.

  16. Implementing a Volatility Basis Set Approach for Simulation of Secondary Organic Aerosol and its Climatic Impacts in CESM-CAM5

    NASA Astrophysics Data System (ADS)

    Glotfelty, T.; He, J.; Gantt, B.; Zhang, Y.

    2013-12-01

    Organic aerosols (OA) affect climate by serving as cloud condensation nuclei, which impact the cloud droplet number concentration (CDNC) and ultimately the radiation budget of the planet through aerosol direct and indirect effects. Accurately quantifying OA in climate models is important as they account for 20-90% of submicron aerosols. In order to better represent the formation of OA and their impact on climate, a volatility basis set (VBS) approach for the formation of secondary organic aerosols (SOA) has been implemented into the NCSU version of the Community Atmosphere Model version 5.1 (CAM5) in the Community Earth System Model (CESM). Compared to the officially released version of CESM/CAM5, the NCSU version used in this study features advanced inorganic aerosol treatments and aerosol activation parameterizations. In addition to the typical SOA precursors, SOA formation from semi-volatile primary organic aerosol (POA), polycyclic aromatic hydrocarbons, and glyoxal are being treated. To assess the performance of the improved model, two full year simulations of 2001 and 2010 will be conducted and evaluated against available observations including the total organic carbon (TOC) measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE), total carbon (TC) measurements from Speciation Trends Network (STN), and global aerosol mass spectrometer measurements of hydrocarbon-like aerosol (HOA) and oxygenated organic aerosol (OOA). Preliminary simulations for summer 2001 show that the VBS treatment increases the SOA concentration by 0.2 μg m-3 on global average but by 0.6-9.7 μg m-3 over Europe, East Asia, and North America. There is, however, a slight decrease in the SOA formed over rainforest areas; resulting from differences in SOA production from a single lumped precursor in the default treatment verses the species-dependent treatment in the VBS treatment. Compared to the baseline simulation, the simulation with the VBS treatment tends to improve TC predictions at the STN sites but deteriorate TOC predictions at the IMPROVE sites. The discrepancy between the evaluation at the largely rural IMPROVE and largely urban STN sites indicates the emissions from urban regions may be misrepresented by spatially interpolating emissions from a finer scales to a coarse resolution (0.9° by 1.25°) used in the simulation. The TOC and TC overpredictions with the VBS treatment may be caused in part by overestimations of POA emissions, as reflected by the > 83% overprediction of global HOA concentrations. The evaluation of SOA against global OOA data shows much smaller underpredictions (by 7% vs. 88%) with the VBS treatment. The additional SOA increases the global average column aerosol diameter and thus CDNC and the absolute value of shortwave cloud forcing. These results imply that OA have a strong impact on the climate system but improvements are needed in the representations of both the natural and anthropogenic emissions of organic species as well as the SOA formation mechanisms in global climate and Earth system models in order to reduce the uncertainties in the predicted climatic effects of aerosols.

  17. Cloud Condensation Nucleus (CCN) Activation Properties of Biogenic Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Vanreken, T. M.; Ng, N. L.; Flagan, R. C.; Seinfeld, J. H.

    2004-12-01

    Organic compounds are known to comprise a significant fraction of the atmospheric aerosol population and have been found to contribute to the concentration of cloud condensation nuclei (CCN). Much of this organic material is secondary in nature; secondary organic aerosol (SOA) is formed when volatile organic compounds are oxidized to form less volatile products, which then condense into the aerosol phase. Many organic compounds found in the atmosphere, of both anthropogenic and biogenic origin, have been found to produce SOA. Such reactions typically result in complex mixtures of products, only a fraction of which have been identified. Thus while there have been several studies exploring the potential for organic particles to act as CCN (including some of the compounds identified in SOA products), there have been almost no direct investigation of the potential CCN activity of SOA. This paper presents the results of a series of experiments measuring directly the CCN activity of SOA produced by the ozonolysis of several common biogenic compounds. Six compounds were studied: five monoterpenes (α -pinene, β -pinene, Δ 3-carene, limonene, terpinolene) and one terpinoid alcohol (terpinen-4-ol). The chosen monoterpenes represent an estimated 87% of global monoterpene emissions, while the terpenoid alcohols make up approximately 25% of the other biogenic compounds capable of forming SOA. In each experiment, SOA was generated under controlled conditions at the Caltech indoor facility. Over several hours, CCN concentrations were measured at supersaturations ranging from 0.27% to 0.80%. These data are compared to simultaneous particle concentration and size distribution observations to determine the relationship between particle diameter and CCN activity. The analysis indicates considerable variation in CCN activity among the experiments; possible causes for such variability are explored.

  18. Simulation Chamber Investigations of Secondary Organic Aerosol Formation From Boreal Tree Emissions: Dependence on VOC Classes

    NASA Astrophysics Data System (ADS)

    Kiendler-Scharr, A.; Mentel, T. F.; Kleist, E.; Hohaus, T.; Mensah, A.; Spindler, C.; Tillmann, R.; Uerlings, R.; Dal Maso, M.; Rudich, Y.; Juergen, W.

    2008-12-01

    A considerable fraction of the organic aerosol component is of secondary origin, meaning it is formed through oxidation of volatile organic compounds (VOCs). Plant emissions, e.g. monoterpenes and sesquiterpenes, are a major source of VOCs in the troposphere. So far most laboratory and simulation chamber investigations on the potential to form secondary organic aerosols (SOA) from plant emissions focused on single VOCs such as a-pinene. In this study we investigated the formation and growth of SOA by ozonolysis and/or photo-oxidation of the VOCs emitted by several tree species such as spruce, pine and birch. The experiments were performed in the Plant chamber of the ICG-3 in Jlich under well defined conditions for the plant. VOC emissions were transferred to a reaction chamber which was operated as a continuously stirred tank reactor. SOA formation from the VOCs was initiated by an excess of ozone and OH radicals. The results are compared to a reference study with a-pinene as the only SOA precursor. Our results indicate that the general laboratory approach of studying the formation of SOA from single components can lead to a bias in both the mass yields and the mass spectral signatures observed. Plots of maximum SOA volumes versus the total amount of carbon fed into the reaction chamber led to approximately linear relationships. The intercepts of these plots were seen as threshold for SOA formation. It was observed that this threshold was lower for the mixture of VOCs emitted from spruce, pine, and birch than for a-pinene as single compound. We therefore conclude that the threshold for SOA formation from real plant mixtures may be much lower than the threshold obtained from laboratory experiments that were focussed on single VOCs. SOA formation from stress induced VOCs will be compared to non stress induced emissions. Possible feedbacks of climate change to VOC emissions and aerosol formation will be discussed based on our experimental observations.

  19. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prvt, A. S. H.; Baltensperger, U.

    2011-10-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 ?m) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from ?-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra in the m/z range 12-250 showing Pearson's r values >0.94 for the correlations between the different SOA types after 5 h of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxidized OA (SV-OOA) observed in the ambient aerosol. The atomic O : C ratios were found to be in the range of 0.25-0.55 with no major increase during the first 5 h of aging. On average, the diesel SOA showed the lowest O : C ratio followed by SOA from wood burning, ?-pinene and the scooter emissions. Grouping the fragment ions based on their carbon number revealed that the SOA source with the highest O : C ratio had the largest fraction of small ions. Fragment ions containing up to 3 carbon atoms accounted for 66%, 68%, 72% and 76% of the organic spectrum of the SOA produced by the diesel car, wood burner, ?-pinene and the scooter, respectively. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate experiments on the first two principal components (PCs), which explained 79% of the total variance. Projection of ambient SV-OOA spectra resolved by positive matrix factorization (PMF) showed that this approach could be useful to identify large contributions of the tested SOA sources to SV-OOA. The first results from this study indicate that the SV-OOA in Barcelona is strongly influenced by diesel emissions in winter while in summer at SIRTA at the southwestern edge of Paris SV-OOA is more similar to alpha-pinene SOA. However, contributions to the ambient SV-OOA from SOA sources that are not covered by the model can cause major interference and therefore future expansions of the PCA model with additional SOA sources is recommended.

  20. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prvt, A. S. H.; Baltensperger, U.

    2012-02-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 ?m) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from ?-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra showing Pearson's r values >0.94 for the correlations between the four different SOA types after five hours of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxygenated OA (SV-OOA) observed in the ambient aerosol. The atomic O:C ratios were found to be in the range of 0.25-0.55 with no major increase during the first five hours of aging. On average, the diesel SOA showed the lowest O:C ratio followed by SOA from wood burning, ?-pinene and the scooter emissions. Grouping the fragment ions revealed that the SOA source with the highest O:C ratio had the largest fraction of small ions. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate experiments on the first two principal components (PCs), which explained 79% of the total variance. Projection of ambient SV-OOA spectra resolved by positive matrix factorization (PMF) showed that this approach could be useful to identify large contributions of the tested SOA sources to SV-OOA. The first results from this study indicate that the SV-OOA in Barcelona is strongly influenced by diesel emissions in winter while in summer at SIRTA at the southwestern edge of Paris SV-OOA is more similar to alpha-pinene SOA. However, contributions to the ambient SV-OOA from SOA sources that are not covered by the model can cause major interference and therefore future expansions of the PCA model with additional SOA sources is recommended.

  1. Primary and secondary organics in tropical Amazonian rainforest aerosols: Chiral analysis of 2-methyltetrols

    SciTech Connect

    Gonzalez, Nelida; Borg-Karlson, Anna-Karin; Artaxo, Paulo; Guenther, Alex B.; Krejci, R.; Noziere, Barbara; Noone, Kevin

    2014-06-01

    This work presents the application of a newly developed method to facilitate the distinction between primary and secondary organic compounds in ambient aerosols based on their chiral analysis. The organic constituents chosen for chiral analysis are the four stereomers of the 2-methyltetrols, (2R,3S)- and (2S,3R)- methylerythritol and (2S,3S)- and (2R,3R)- methylthreitol. Ambient PM10 aerosol samples were collected between June 2008 and June 2009 near Manaus, Brazil, in a remote tropical rainforest environment of central Amazonia. The samples were analyzed for the presence of these four stereomers because qualitatively, in a previous study, they have been demonstrated to have partly primary origins. Thus the origin of these compounds may be primary and secondary from the biosynthesis and oxidation processes of isoprene within plants and also in the atmosphere. Using authentic standards, the quantified concentrations were in average 78.2 and 72.8 ng m-3 for (2R,3S)- and (2S,3R)- methylerythritol and 3.1 and 3.3 ng m-3 for (2S,3S)- and (2R,3R)- methylthreitol during the dry season and 7.1, 6.5, 2.0, and 2.2 ng m-3 during the wet season, respectively. Furthermore, these compounds were found to be outside the confidence interval for racemic mixtures (enantiomeric fraction, Ef = 0.5 -0.01) in nearly all the samples, with deviations of up to 32 % (Ef = 0.61) for (2R,3S)-methylerythritol and 47 % (Ef = 0.65) for (2S,3S)-methylthreitol indicating (99% confidence level) biologically-produced 2-methyltetrols. The minimum primary origin contribution ranged between 0.19 and 29.67 ng m-3 for the 2-methylerythritols and between 0.15 and 1.2 ng m-3 for the 2-methylthreitols. The strong correlation of the diatereomers (racemic 2-methylerythritol and 2-methylthreitol) in the wet season implied a secondary origin. Assuming the maximum secondary contribution in the dry season, the secondary fraction in the wet season was 81-99 % and in the dry season, 10 - 95 %. Nevertheless, from the total 2-methyltetrol mass, the secondary mass represented 31 % whereas the primary 69 %. These results could have been expected for PM10 aerosols and might be different for fine particles at the same site. In addition, correlations with isoprene emission estimates for this site only showed an anti-correlation with 2-methylthreitol suggesting their direct emission from biological activity. The present study reinforces the importance of the analysis of chiral organic compounds to correctly assess the contribution of primary biogenic emissions and isoprene oxidation products to biogenic secondary organic aerosol.

  2. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    NASA Astrophysics Data System (ADS)

    Li, Z.; Schwier, A. N.; Sareen, N.; McNeill, V. F.

    2011-07-01

    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(2) dyn cm-1 in pure water and 62(1) dyn cm-1 in AS solutions. Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9 % reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  3. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    NASA Astrophysics Data System (ADS)

    Li, Z.; Schwier, A. N.; Sareen, N.; McNeill, V. F.

    2011-11-01

    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. Acetaldehyde depresses surface tension to 65(2) dyn cm-1 in pure water (a 10% surface tension reduction from that of pure water) and 62(1) dyn cm-1 in AS solutions (a 20.6% reduction from that of a 3.1 M AS solution). Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9% reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  4. Characterization of the sources and processes of organic and inorganic aerosols in New York City with a high-resolution time-of-flight aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Y.-L.; Zhang, Q.; Schwab, J. J.; Demerjian, K. L.; Chen, W.-N.; Bae, M.-S.; Hung, H.-M.; Hogrefe, O.; Frank, B.; Rattigan, O. V.; Lin, Y.-C.

    2010-10-01

    Submicron aerosol particles (PM1) were measured in-situ using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) during the summer 2009 Field Intensive Study at Queens College in New York City. Organic aerosol (OA) and sulfate are the two dominant species, accounting for 54% and 24%, respectively, of total PM1 mass on average. The average mass size distribution of OA presents a small mode peaking at ~150 nm (Dva) in addition to an accumulation mode (~550 nm) that is internally mixed with sulfate, nitrate, and ammonium. The diurnal cycles of sulfate and OA both show pronounced peaks between 01:00-02:00 p.m. EST due to photochemical production. The average (1?) oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), and nitrogen-to-carbon (N/C) ratios of OA in NYC are 0.36 (0.09), 1.49 (0.08), and 0.012(0.005), respectively, corresponding to an average organic mass-to-carbon (OM/OC) ratio of 1.62(0.11). Positive matrix factorization (PMF) of the high resolution mass spectra identified five OA components: a hydrocarbon-like OA (HOA), two types of oxygenated OA (OOA) including a low-volatility OOA (LV-OOA) and a semi-volatile OOA (SV-OOA), a cooking-emission related OA (COA), and a unique nitrogen-enriched OA (NOA). HOA appears to represent primary OA (POA) from urban traffic emissions. It comprises primarily of reduced species (H/C=1.83; O/C=0.06) and shows a mass spectral pattern very similar to those of POA from fossil fuel combustion, and correlates tightly with traffic emission tracers including elemental carbon and NOx. LV-OOA, which is highly oxidized (O/C=0.63) and correlates well with sulfate, appears to be representative for regional, aged secondary OA (SOA). SV-OOA, which is less oxidized (O/C=0.38) and correlates well with non-refractory chloride, likely represents less photo-chemically aged, semi-volatile SOA. COA shows a similar spectral pattern to the reference spectra of POA from cooking emissions and a distinct diurnal pattern peaking around local lunch and dinner times. In addition, NOA is characterized with prominent CxH2x+2N+ peaks likely from amine compounds. Our results indicate that cooking-related activities are a major source of POA in NYC, releasing comparable amounts of POA as traffic emissions. POA=HOA+COA) on average accounts for ~30% of the total OA mass during this study while SOA dominates the OA composition with SV-OOA and LV-OOA on average accounting for 34% and 30%, respectively, of the total OA mass. The chemical evolution of SOA in NYC involves a~continuous oxidation from SV-OOA to LV-OOA, which is further supported by a gradual increase of O/C ratio and a simultaneous decrease of H/C ratio in total OOA. Detailed analysis of NOA (5.8% of OA) presents evidence that nitrogen-containing organic species such as amines might have played an important role in the atmospheric processing of OA in NYC, likely involving acid-base chemistry. Analysis of air mass trajectories and satellite imagery of aerosol optical depth (AOD) indicates that the high potential source regions of secondary sulfate and aged OA are mainly located in regions to the west and southwest of the city.

  5. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J. H.

    2010-05-01

    Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of the phase diagram. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system simulation. For simplified partitioning parametrizations, we suggest a modified definition of the effective saturation concentration, C*j, by including water and other inorganics in the absorbing phase. Such a C*j definition reduces the RH-dependency of the gas/particle partitioning of semivolatile organics in organic-inorganic aerosols by an order of magnitude as compared to the currently accepted definition, which considers the organic species only.

  6. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J. H.

    2010-08-01

    Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system simulation. For simplified partitioning parametrizations, we suggest a modified definition of the effective saturation concentration, Cj*, by including water and other inorganics in the absorbing phase. Such a Cj* definition reduces the RH-dependency of the gas/particle partitioning of semivolatile organics in organic-inorganic aerosols by an order of magnitude as compared to the currently accepted definition, which considers the organic species only.

  7. Inorganic ion and nitrogen isotopic compositions of atmospheric aerosols at Yurihonjo, Japan: Implications for nitrogen sources

    NASA Astrophysics Data System (ADS)

    Kawashima, Hiroto; Kurahashi, Takahiro

    2011-11-01

    We studied the suspended particulate matter (SPM) collected in Akita Prefecture, Japan from April 2008 to January 2009 for inorganic ion composition and nitrogen isotopic ratio ( ?15N) of NH 4+ and NO 3-. The results showed an average SPM concentration of 15.6 ?g m -3. The seasonal trend for SPM was higher values in the spring, lower in the winter. The major cations were Na +, NH 4+, Ca 2+ and major anions were SO 42-, NO 3-, Cl -. The annual correlation coefficient of ions indicates a very high value with NH 4+ and SO 42- ( R = 0.93), NO 3- and K + ( R = 0.65), NO 3- and Ca 2+ ( R = 0.62). The high springtime values are the apparent result of the dust stream from Asia. Average ?15N-NH 4+ and ?15N-NO 3- were 16.1 and -0.69, respectively. ?15N-NH 4+ increased slightly in summer, and ?15N-NO 3- increased considerably in winter. The trends indicated conversely. The heavy ?15N-NH 4+ in summer appears to be from agricultural sources such as animal waste and fertilizer. In addition, according to the difference in isotopes of NO x sources as the precursor of NO 3-, the dominant origin of heavy ?15N-NO 3- in winter could be NO x emitted from fossil fuel combustion at low temperature. Moreover, the average ?15N-NO 3- seemed to be made to baseline (approximately 0%) by vehicle emissions at high temperature. These results are considered to be very reasonable.

  8. Secondary organic aerosols - formation and ageing studies in the SAPHIR chamber

    NASA Astrophysics Data System (ADS)

    Spindler, Christian; Müller, Lars; Trimborn, Achim; Mentel, Thomas; Hoffmann, Thorsten

    2010-05-01

    Secondary organic aerosol (SOA) formation from oxidation products of biogenic volatile organic compounds (BVOC) constitutes an important coupling between vegetation, atmospheric chemistry, and climate change. Such secondary organic aerosol components play an important role in particle formation in Boreal regions ((Laaksonen et al., 2008)), where biogenic secondary organic aerosols contribute to an overall negative radiative forcing, thus a negative feed back between vegetation and climate warming (Spracklen et al., 2008). Within the EUCAARI project we investigated SOA formation from mixtures of monoterpenes (and sesquiterpenes) as emitted typically from Boreal tree species in Southern Finland. The experiments were performed in the large photochemical reactor SAPHIR in Juelich at natural light and oxidant levels. Oxidation of the BVOC mixtures and SOA formation was induced by OH radicals and O3. The SOA was formed on the first day and then aged for another day. The resulting SOA was characterized by HR-ToF-AMS, APCI-MS, and filter samples with subsequent H-NMR, GC-MS and HPLC-MS analysis. The chemical evolution of the SOA is characterized by a fast increase of the O/C ratio during the formation process on the first day, stable O/C ratio during night, and a distinctive increase of O/C ratio at the second day. The increase of the O/C ratio on the second day is highly correlated to the OH dose and is accompanied by condensational growth of the particles. We will present simultaneous factor analysis of AMS times series (PMF, Ulbrich et al., 2009 ) and direct measurements of individual chemical species. We found that four factors were needed to represent the time evolution of the SOA composition (in the mass spectra) if oxidation by OH plays a mayor role. Corresponding to these factors we observed individual, representative molecules with very similar time behaviour. The correlation between tracers and AMS factors is astonishingly good as the molecular tracers represented only a very small mass fraction of the factors. There is indication that some factors grow at the cost of the other suggesting a set of successive generations of oxidation products. This conversion could proceed either by direct condensed phase processes or by an evaporation-oxidation-recondensation mechanism. On the other hand it seems that the factors evolve in parallel, representing products of multiple oxidation which appear on different time scales in the particulate phase. These findings will be discussed with respect to their importance for ageing processes of atmospheric organic aerosols. References Laaksonen, A., Kulmala, M., O'Dowd, C. D., Joutsensaari, J., Vaattovaara, P., Mikkonen, S., Lehtinen, K. E. J., Sogacheva, L., Dal Maso, M., Aalto, P., Petaja, T., Sogachev, A., Yoon, Y. J., Lihavainen, H., Nilsson, D., Facchini, M. C., Cavalli, F., Fuzzi, S., Hoffmann, T., Arnold, F., Hanke, M., Sellegri, K., Umann, B., Junkermann, W., Coe, H., Allan, J. D., Alfarra, M. R., Worsnop, D. R., Riekkola, M. L., Hyotylainen, T., and Viisanen, Y.: The role of VOC oxidation products in continental new particle formation, Atmospheric Chemistry and Physics, 8, 2657-2665, 2008 Spracklen, D. V., Bonn, B., and Carslaw, K. S.: Boreal forests, aerosols and the impacts on clouds and climate, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 366, 4613-4626, 10.1098/rsta.2008.0201, 2008 Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmospheric Chemistry and Physics, 9, 2891-2918, 2009

  9. Combined volatility and mass spectrometric measurements of biogenic secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Emanuelsson, E.; Buchholz, A.; Hallquist, M.; Kiendler-Scharr, A.; Mentel, T.; Spindler, C.

    2009-04-01

    The volatility of secondary organic aerosol (SOA) from the oxidation of mixtures of biogenic Volatile Organic Compounds (VOC) has been investigated in the SAPHIR facility in Forschungszentrum Jlich, Germany, by using a Volatility Tandem Differential Mobility Analyser (VTDMA). The standard VTDMA setup comprises three main parts: 1) An initial DMA, where a nearly monodisperse size fraction of the aerosol particles is selected (typically 100 or 150 nm), 2) the oven unit, i.e. four ovens in parallel where each oven includes a heating and adsorption section where the evaporation and adsorption of the volatile fraction occurs and 3) a final SMPS (Scanning Mobility Particle Sizer) system where the residual particle number distribution is measured. For this measurement campaign the set-up also contained a Quadrupole Aerosol Mass Spectrometer (Aerodyne QAMS). The temperature of the ovens can be varied between 298 and well above 573 K. In parallel to the final SMPS the AMS was used for chemical composition and density measurements. When the system was dedicated for AMS measurements the initial DMA was bypassed to improve the aerosol concentration. However, the produced SOA has a narrow size distribution still making it possible to follow small changes in the aerosol peak diameter. A general feature of the thermo-denuder system is that a less volatile SOA gives a larger residual particle size distribution compared to more volatile SOA. The experiments conducted were based on photochemical oxidation of selected terpene mixtures. A reference boreal mixture of terpenes, consisting of ?-pinene, β-pinene, limonene, ^-3-carene, and ocimene was used as base case. Secondary organic aerosol was formed from the precursor compounds by reaction with O3/H2O/OH in SAPHIR on the first day. The particles were kept in the chamber for up to two further days and were exposed to natural sunlight and OH radicals to initiate close to natural chemical ageing. The VTDMA results show that SOA becomes less volatile during ageing and this ageing was further enhanced when the mixtures were exposed to sunlight. The volatility was also affected by changes in the terpene mixtures. With the AMS we measured mass spectra of the organic aerosol particles at a reference temperature of 298 K and two additional elevated temperatures. Size distributions of the particles were obtained from the particle-time-of-flight mode of the AMS at sixteen representative m/z values. The residual total mass measured at the elevated oven temperatures was related to the total mass at the reference temperature to obtain the mass fraction remaining (MFR), which is higher for less volatile SOA. In agreement with the decreasing volatility during aging measured with the VTDMA, the MFR increases with time. An effective density of the particles was calculated comparing the mode position of the size distributions measured with the AMS and the SMPS. The effective density increases with ongoing photochemical ageing. In addition, the density of the low volatile residual particles that passed a high-temperature oven is higher than the density of particles at reference temperature. In order to investigate if the observed changes in density and volatility can be attributed to changes of the chemical composition of the particles, the mass spectra obtained at different oven temperatures and different chemical age were compared. We found that the ratio of heavy fragments (m/z > 90) increases with higher temperatures. Furthermore the fraction of the CO2+-fragment at m/z 44 to the total mass increases during the ageing process.

  10. Atmospheric chemistry of nitrogenous aerosols in northeastern Asia: biological sources and secondary formation

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Fu, P. Q.

    2015-09-01

    To better understand the sources of nitrogenous aerosols, particularly water-soluble organic nitrogen (WSON) and water-insoluble organic nitrogen (WION), in northeastern Asia, we measured total nitrogen (TN) and water-soluble total nitrogen (WSTN) as well as nitrogen isotope ratios (δ15N) of TN (δ15NTN) and WSTN (δ15NWSTN) in the total suspended particulate (TSP) samples collected from Sapporo, northern Japan, for a 1-year period. In general, WION was more abundant (126 ± 117 ng m-3), whereas WSON was 89.7 ± 80.6 ng m-3, accounting for 14 ± 11 % and 9.2 ± 7.3 % of TN, respectively. WSON peaked in late autumn to winter (maximum 288 ng m-3) and WION peaked in mid-spring to early summer (454 ng m-3). δ15NTN (21.9 ± 4.1 ‰) and δ15NWSTN (25.8 ± 8.2 ‰) showed peaks in summer with relatively high ratios in late autumn. Based on the seasonal variations in WSON and WION together with organic tracers, fossil fuel combustion and biomass burning are found to be two major sources of WSON, whereas emissions of biological particles and secondary formation by reactions of biogenic secondary organic species (carbonyls) with NH3 are suggested as an important source of WION. The seasonality of δ15NTN and δ15NWSTN, together with the comparisons to literature values, implies that chemical aging (including gas-particle partitioning) and biomass burning are the causes of the enhanced values in summer and autumn, respectively. This study demonstrates that contributions of aerosol N from fossil fuel combustion and biomass burning dominate in autumn and/or winter, whereas emission of terrestrial biological particles and secondary formation from biogenic hydrocarbons and subsequent chemical aging in the atmosphere are important in spring and/or summer in northeastern Asia.

  11. Atmospheric chemistry of nitrogenous aerosols in Northeast Asia: biological sources and secondary formation

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Fu, P. Q.

    2015-04-01

    To better understand the sources of nitrogenous aerosols, particularly water-soluble organic nitrogen (WSON) and water-insoluble organic nitrogen (WION), in Northeast Asia, we measured total nitrogen (TN) and water-soluble total nitrogen (WSTN) as well as nitrogen isotope ratios (δ15N) of TN (δ15NTN) and WSTN (δ15NWSTN) in the total suspended particles (TSP) collected from Sapporo, northern Japan for one-year period. In general, WION was more abundant (126 ± 117 ng m-3) whereas WSON (89.7 ± 80.6 ng m-3), accounting for 14 ± 11% and 9.2 ± 7.3% of TN, respectively. WSON peaked in late autumn to winter (maximum 288 ng m-3) and WION peaked in mid spring to early summer (454 ng m-3). δ15NTN (21.9 ± 4.1‰) and δ15NWSTN (25.8 ± 8.2‰) showed peaks in summer with relatively high ratios in late autumn. Based on the seasonal variations of WSON and WION together with organic tracers, fossil fuel combustion and biomass burning are found to be two major sources of WSON whereas emissions of biological particles and secondary formation by reactions of biogenic secondary organic species (carbonyls) with NH3 are suggested as important source of WION. The seasonality of δ15NTN and δ15NWSTN, together with the comparisons to literature values, implies that chemical aging (including gas/particle partitioning) and biomass burning are the causes of the enhanced values in summer and autumn, respectively. This study demonstrates that contributions of aerosol N from fossil fuel combustion and biomass burning dominate in autumn/winter whereas emission of terrestrial biological particles and secondary formation from biogenic hydrocarbons and subsequent chemical aging in the atmosphere are important in spring/summer in Northeast Asia.

  12. Composition of Secondary Organic Aerosols Produced by Photo-Oxidation of Biomass Burning Emissions in a Smog Chamber

    NASA Astrophysics Data System (ADS)

    Desyaterik, Y.; Sullivan, A.; Hennigan, C. J.; Robinson, A. L.; Collett, J. L.

    2009-12-01

    Knowledge of the chemical composition of atmospheric organic aerosols (OA) is essential for accurate representation of OA in air quality and climate models. Both the sources of OA and their properties and effects remain poorly understood. In particular, we still know relatively little about the atmospheric formation of secondary organic aerosols (SOA). There is growing interest in the impact of biomass burning emissions on air quality, human health, and radiative forcing. Through a series of experiments, we are working to quantify changes in the chemical composition of wood smoke particles as a result of photochemical aging under well-controlled laboratory conditions. One specific objective of this study is to identify markers for biomass burning SOA and test whether these markers can be used in atmospheric samples to quantify SOA formation from aging of biomass burning emissions. We analyzed SOA generated in a smog chamber by photooxidation of smoke produced by burning oak wood. In order to initiate photochemistry, the chamber was irradiated with UV light. Aqueous extracts of collected aerosol samples were analyzed with Electrospray Ionization Time-of-Flight Mass Spectrometry. The high mass accuracy of these measurements reduces ambiguity in the assignment of elemental compositions for observed ions. Analysis has shown that primary oak smoke aerosol includes products of the thermal decomposition of cellulose (levoglucosan, cyclotene etc.) and lignin (guaiacol and syringol derivatives, mostly aldehydes and alcohols). After 2 hours of aging at typical summertime hydroxyl radical concentrations, the aerosol mass increased 2.5 fold due to the production of secondary organic aerosol. Mass spectra of the secondary organic aerosol formed are dominated by organic nitrates (nitrophenol, nitrocresol, nitrocatechol, and nitroguaiacol) and aromatic acids (benzoic acid, mono and di-hydroxybenzoic acid). Both nitrates and acids most likely are formed due to oxidation of the lignin decomposition products (guaiacol and syringol derivatives) by reaction with OH and NO2. This research highlights the dynamic nature of fire emissions and atmospheric organic aerosols in general.

  13. The Secondary Organic Aerosol Processor (SOAP v1.0) model: a unified model with different ranges of complexity based on the molecular surrogate approach

    NASA Astrophysics Data System (ADS)

    Couvidat, F.; Sartelet, K.

    2015-04-01

    In this paper the Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model determines the partitioning of organic compounds between the gas and particle phases. It is designed to be modular with different user options depending on the computation time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption into the aqueous phase of particles, activity coefficients and phase separation). Each surrogate can be hydrophilic (condenses only into the aqueous phase of particles), hydrophobic (condenses only into the organic phases of particles) or both (condenses into both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC (UNIversal Functional group Activity Coefficient; Fredenslund et al., 1975) thermodynamic model for short-range interactions and with the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) parameterization for medium- and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium representation and a dynamic representation of organic aerosols (OAs). In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol is not at equilibrium with the gas phase because the organic phases could be semi-solid (very viscous liquid phase). The condensation-evaporation of organic compounds could then be limited by the diffusion in the organic phases due to the high viscosity. An implicit dynamic representation of secondary organic aerosols (SOAs) is available in SOAP with OAs divided into layers, the first layer being at the center of the particle (slowly reaches equilibrium) and the final layer being near the interface with the gas phase (quickly reaches equilibrium). Although this dynamic implicit representation is a simplified approach to model condensation-evaporation with a low number of layers and short CPU (central processing unit) time, it shows good agreements with an explicit representation of condensation-evaporation (no significant differences after a few hours of condensation).

  14. Plant and Soil Emissions of Amines and Amino Acids: A Source of Secondary Aerosol Precursors

    NASA Astrophysics Data System (ADS)

    Jackson, M. L.; Doskey, P. V.; Pypker, T. G.

    2011-12-01

    Ammonia (NH3) is the most abundant alkaline gas in the atmosphere and forms secondary aerosol by neutralizing sulfuric and nitric acids that are released during combustion of fossil fuels. Ammonia is primarily emitted by cropping and livestock operations. However, C2 and C3 amines (pKb 3.3-3.4), which are stronger bases than NH3 (pKb 4.7) have been observed in nuclei mode aerosol that is the precursor to secondary aerosol. Mixtures of amines and amino acids have been identified in diverse environments in aerosol, fog water, cloud water, the soluble fraction of precipitation, and in dew. Glycine (pKb 4.2), serine (pKb 4.8) and alanine (pKb 3.7 and 4.1 for the D and L forms, respectively) are typically the most abundant species. The only reported values of gas-phase glycine, serine and alanine were in marine air and ranged from 6-14 pptv. The origin of atmospheric amines and amino acids has not been fully identified, although sources are likely similar to NH3. Nitrate assimilation in plants forms glycine, serine, and L-alanine, while D-alanine is present in bacterial cell walls. Glycine is converted to serine during C3 plant photorespiration, producing CO2 and NH3. Bacteria metabolize glycine and alanine to methylamine and ethylamine via decarboxylation. Likely sources of amino acids are plants and bacteria, thus concentrations near continental sources are likely greater than those measured in marine air. The overall goal of the research is to examine seasonal variations and relationships between the exchange of CO2, NH3, amines, and amino acids with a corn/soybean rotation in the Midwest Corn Belt. The study presents gaseous profiles of organic amine compounds from various species of vegetation using a mist chamber trapping technique and analysis of the derivatized species by high pressure liquid chromatography with fluorescence detection. Amino acid and amine profiles were obtained for red oak (Quercus rubra), sugar maple (Acer saccharinum), white pine (Pinus strobus), paper birch (Betula papyrifera), northern white cedar (Thuja occidentalis), cool season turfgrass (Festuca sp., Poa sp., Agrostis sp., Lolium perrene), corn (Zea mays) and soybean (Glycine max) by drawing air through a chromatographic column packed with macerated leaves. The saturated air was scrubbed using a mist chamber containing 1% hydrochloric acid in ultrapure water. Diurnal variations in ambient levels were measured above a meadow, mixed hardwood forest, and a cornfield. The preliminary experiments indicate profiles of organic amine compounds vary by specie and the most volatile species are present in the gas-phase in ambient air.

  15. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation

    NASA Astrophysics Data System (ADS)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (<1%) observed could not explain observational concentrations. Therefore heterogeneous or gaseous formation of NDMA with partitioning to droplet must be the source of aqueous NDMA. Box-model calculations tended to demonstrate a predominance of a gas phase formation mechanism followed by partitioning into the cloud droplets. The calculations were consistent with field measurements of gaseous and aqueous NDMA concentrations. Measurements and model calculations showed that while NDMA is eventually photolyzed, it might persist in the atmosphere for hours.

  16. Secondary Organic Aerosol (SOA) Formation from Hydroxyl Radical Oxidation and Ozonolysis of Monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, Defeng; Kaminski, Martin; Schlag, Patrick; Fuchs, Hendrik; Acir, Ismail-Hakki; Bohn, Birger; Haeseler, Rolf; Kiendler-Scharr, Astrid; Rohrer, Franz; Tillmann, Ralf; Wang, Mingjin; Wegner, Robert; Wahner, Andreas; Mentel, Thomas

    2014-05-01

    Hydroxyl radical (OH) oxidation and ozonolysis are the two major pathways of daytime biogenic volatile organic compounds (VOCs) oxidation and secondary organic aerosol (SOA) formation. The pure OH oxidation of monoterpenes, an important biogenic VOC class, has seldom been investigated. In order to elucidate the importance of the reaction pathyways of the OH oxidation and ozonolysis and their roles in particle formation and growth, we investigated the particle formation of several common monoterpenes (alpha-pinene, beta-pinene, and limonene) in the large atmosphere simulation chamber SAPHIR in Juelich, Germany. The experiments were conducted for both OH dominant and pure ozonolysis case (in the presence of CO as OH scavenger) at ambient relevant conditions (low OA, low VOC and low NOx concentration). OH and ozone (O3) concentrations were measured so that the oxidation rates of OH and O3 with precursors were quantified. The particle formation and growth, aerosol yield, multi-generation reaction process and aerosol composition were analyzed. Pure ozonolysis generated a large amount of particles indicating ozonolysis plays an important role in particle formation as well as OH oxidation. In individual experiments, particle growth rates did not necessarily correlate with OH or O3 oxidation rates. However, comparing the growth rates at similar OH or O3 oxidation rates shows that generally, OH oxidation and ozonolysis have similar efficiency in particle growth. Multi-generation products are shown to be important in the OH oxidation experiment based on aerosol yield "growth curve" (Ng et al., 2006). The reaction process of OH oxidation experiments was analyzed as a function of OH dose to elucidate the role of functionalization and fragmentation. A novel analysis was developed to link the particle formation with the reaction with OH, which was also used to examine the role of functionalization and fragmentation in the particle formation by OH oxidation. These analyses show that functionalization was dominant in the beginning of the reaction and fragmentation started to be dominant after that. Moreover, Aerosol Mass Spectrometer data shows that SOA from monoterpene OH oxidation follows a slope of shallower than -1 in the Van Krevelen diagram, indicative of an oxidation process of precursor without significant hydrogen loss. SOA from OH oxidation has a higher H/C than that from O3 oxidation. In ozonolysis, the process with significant hydrogen loss such as addition of carbonyl seems to play an important role in SOA formation. Reference: Ng, N. L. et al. Sci. & Tech. 40, 2283-2297, 10.1021/es052269u, 2006.

  17. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber

    NASA Astrophysics Data System (ADS)

    Platt, S. M.; El Haddad, I.; Zardini, A. A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J. G.; Temime-Roussel, B.; Marchand, N.; Jeek, I.; Drinovec, L.; Mo?nik, G.; Mhler, O.; Richter, R.; Barmet, P.; Bianchi, F.; Baltensperger, U.; Prvt, A. S. H.

    2012-10-01

    We present a new mobile environmental reaction chamber for the simulation of the atmospheric aging of aerosols from different emissions sources without limitation from the instruments or facilities available at any single site. The chamber can be mounted on a trailer for transport to host facilities or for mobile measurements. Photochemistry is simulated using a set of 40 UV lights (total power 4 KW). Characterisation of the emission spectrum of these lights shows that atmospheric photochemistry can be accurately simulated over a range of temperatures from -7-25 C. A photolysis rate of NO2, JNO2, of (8.0 0.7) 10-3 molecules cm-3 s-1 was determined at 25 C. Further, we present the first application of the mobile chamber and demonstrate its utility by quantifying primary organic aerosol (POA) emission and secondary organic aerosol (SOA) production from a Euro 5 light duty gasoline vehicle. Exhaust emissions were sampled during the New European Driving Cycle (NEDC), the standard driving cycle for European regulatory purposes, and injected into the chamber. The relative concentrations of oxides of nitrogen (NOx) and total hydrocarbon (THC) during the aging of emissions inside the chamber were controlled using an injection system developed as a part of the new mobile chamber set up. Total OA (POA + SOA) emission factors of (370 18) 10-3 g kg-1 fuel, or (14.6 0.8) 10-3 g km-1, after aging, were calculated from concentrations measured inside the smog chamber during two experiments. The average SOA/POA ratio for the two experiments was 15.1, a much larger increase than has previously been seen for diesel vehicles, where smog chamber studies have found SOA/POA ratios of 1.3-1.7. Due to this SOA formation, carbonaceous particulate matter (PM) emissions from a gasoline vehicle may approach those of a diesel vehicle of the same class. Furthermore, with the advent of emission controls requiring the use of diesel particle filters, gasoline vehicle emissions could become a far larger source of ambient PM than diesel vehicles. Therefore this large increase in the PM mass of gasoline vehicle aerosol emissions due to SOA formation has significant implications for our understanding of the contribution of on-road vehicles to ambient aerosols and merits further study.

  18. Phase state is a limiting factor in hygroscopic growth of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Pajunoja, Aki; Virtanen, Annele

    2014-05-01

    Secondary organic aerosol (SOA) particles formed from oxidation products of volatile organic compounds (VOC) form a significant fraction of the total atmospheric particulate matter affecting climate both directly and indirectly. The dependence of hygroscopicity on particle composition is often represented with the single parameter ?, commonly used in global models to describe the hygroscopic properties of atmospheric aerosol particles. The physical phase state of SOA particles affects the partitioning of organic vapors and also may affect the uptake of water vapor and particle activation into cloud droplets. Thus, hygroscopic behaviour of SOA particles is affected by composition (i.e. oxidation state and molecular size) but also by phase of particles. In this study the following three distinct studies were performed: (1) particle bounced fraction (BF) measurements, which are qualitatively related to particle phase, as a function of relative humidity using an Aerosol Bounce Instrument (ABI). We assume that the particles with BF > 0 are solid or semisolid, and that particles with BF = 0 behave mechanically as liquids (2) water uptake measured in the sub-saturated region using hygroscopicity tandem differential mobility analyzer (HTDMA) by measuring the ratio of wet to dry particle diameter following exposure to water vapor at a controlled RH (3) cloud droplet formation in the supersaturated region using a cloud condensation nuclei counter (CCNc). Particle composition and oxidation state was measured with a compact time of flight aerosol mass spectrometer (c-ToF-AMS). In this study we show that at sub-saturation conditions water uptake by SOA particles is restricted due to the kinetic limitations. Diffusion and solubility limitations inhibit water uptake until the humidity is high enough for dissolution to occur. Our studies show that this 'threshold' humidity is dependent on particle composition, oxidation state, and average molecular size. Our laboratory results explain several observations both in laboratory and in the atmosphere that have reported discrepancies between SOA particle hygroscopicity measurements in subsaturated and in supersaturated conditions. The results reported here provide new information about one of the most central aerosol processes in the atmosphere.

  19. Balloon observations of organic and inorganic chlorine in the stratosphere: the role of HClO4 production on sulfate aerosols

    NASA Technical Reports Server (NTRS)

    Jaegle, L.; Yung, Y. L.; Toon, G. C.; Sen, B.; Blavier, J. F.

    1996-01-01

    Simultaneous observations of stratospheric organic and inorganic chlorine were made in September 1993 out of Fort Sumner, New Mexico, using JPL balloon-borne MkIV interferometer. Between 15 and 20 km, a significant fraction (20-60%) of the inorganic chlorine could not be accounted for by the sum of measured HCl, ClONO2, and HOCl. Laboratory measurements of the reaction of ClO radicals on sulfuric acid solutions have indicated that, along with HCl, small amounts of perchloric acid, HClO4, were formed. Very little is known about the fate of HClO4 in the stratosphere and we use a photochemical box model to determine the impact of this new species on the partitioning of inorganic chlorine in the stratosphere. Assuming that HClO4 is photochemically stable, it is shown that in the enhanced aerosol loading conditions resulting from Mt. Pinatubo's eruption, HClO4 could represent a significant reservoir of chlorine in the lower stratosphere, sequestering up to 0.2 ppbv (or 50%) of the total inorganic chlorine at 16 km. The occurrence of this new species could bring to closure the inorganic chlorine budget deficiency made apparent by recent ER-2 aircraft in situ measurements of HCl.

  20. Ozone-driven daytime formation of secondary organic aerosol containing carboxylic acid groups and alkane groups

    NASA Astrophysics Data System (ADS)

    Liu, S.; Day, D. A.; Shields, J. E.; Russell, L. M.

    2011-08-01

    Carboxylic acids are present in substantial quantities in atmospheric particles, and they play an important role in the physical and chemical properties of aerosol particles. During measurements in coastal California in the summer of 2009, carboxylic acid functional groups were exclusively associated with a fossil fuel combustion factor derived from factor analysis of Fourier transform infrared spectroscopic measurements and closely correlated with oxygenated organic factors from aerosol mass spectrometry measurements. The high fraction of acid groups and the high ratio of oxygen to carbon in this factor suggest that this factor is composed of secondary organic aerosol (SOA) products of combustion emissions from the upwind industrial region (the ports of Los Angeles and Long Beach). Another indication of the photochemically-driven secondary formation of this combustion-emitted organic mass (OM) was the daytime increase in the concentrations of acid groups and the combustion factors. This daytime increase closely tracked the O3 mixing ratio with a correlation coefficient of 0.7, indicating O3 was closely associated with the SOA maximum and thus likely the oxidant that resulted in acid group formation. Using a pseudo-Lagrangian framework to interpret this daytime increase of carboxylic acid groups and the combustion factors, we estimate that the carboxylic acid groups formed in a 12-h daytime period of one day ("Today's SOA") accounted for 25-33 % of the measured carboxylic acid group mass, while the remaining 67-75 % (of the carboxylic acid group mass) was likely formed 1-3 days previously (the "Background SOA"). A similar estimate of the daytime increase in the combustion factors suggests that "Today's SOA" and the "Background SOA" respectively contributed 25-50 % and 50-75 % of the combustion factor (the "Total SOA"), for a "Total SOA" contribution to the OM of 60 % for the project average. Further, size-resolved spectrometric and spectroscopic characterization of the particle OM indicate that the majority of the OM formed by condensation of gas-phase oxidation products. This unique set of measurements and methods to quantify and characterize photochemically and ozone-linked carboxylic acid group formation provide independent and consistent assessments of the secondary fraction of OM, which could result from second generation products of the oxidation of gas-phase alkane (molecules).

  1. Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    SciTech Connect

    lewis, Kristen A.; Arnott, W. P.; Moosmuller, H.; Chakrabarti, Raj; Carrico, Christian M.; Kreidenweis, Sonia M.; Day, Derek E.; Malm, William C.; Laskin, Alexander; Jimenez, Jose L.; Ulbrich, Ingrid M.; Huffman, John A.; Onasch, Timothy B.; Trimborn, Achim; Liu, Li; Mishchenko, M.

    2009-11-27

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  2. Particle size distribution and inorganic aerosol characterization during DAURE 2009 winter field campaign at Montseny site

    NASA Astrophysics Data System (ADS)

    Aranzazu Revuelta, M.; Gmez-Moreno, Francisco J.; Plaza, Javier; Coz, Esther; Pey, Jorge; Cusack, Michael; Pandolfi, Marco; Rodrguez-Maroto, Jess J.; Pujadas, Manuel

    2010-05-01

    During DAURE 2009 winter field campaign, one of the sampling sites was Montseny, a rural background station located 40 km NNE from Barcelona and 25 km W from the Mediterranean Sea. It is a Natural Park and a protected area, thus with low human activity, mainly agriculture. The sampling station was located on a valley with it axis oriented on the direction NW-SE. At this site, a TSI-SMPS (DMA 3071 and CPC 3022) was installed in order to measure the particle number distribution in the size range 15-600 nm during the period March 19-27 with a measurement cycle of 12 minutes The particle mass distribution was measured by a micro-orifice uniform deposit impactor (MOUDI) using eleven size stages with aluminum substrates and a quartz fiber backup filter. Four samples were taken during the period 13-19 March, two during 24 hours and other two during 48 hours. This impactor has a wider size range allowing to measure from 56 to 18000 nm. The substrates and filters obtained were later analyzed for determining soluble ions (sulfate, nitrate, ammonium and calcium) by IC. There are mainly two different kinds of events measured with the SMPS. When the air masses were coming from SE, which meant that they could come from the park but also from the urban and industrial areas located in the pre-coastal depression, it was characterized by higher particle number concentrations and by size distributions centered on 80 nm. This meant it was an aged aerosol, which had grown up by coagulation, condensation and oxidation processes. When the air masses were coming from NW (the second valley axis side), the particle measured were much smaller, the instrument started to detect particles with 15 nm, but smaller ones could be possible. This meant that new particle nucleation could have occurred in the valley, just before arriving to the sampling point. From MOUDI samplings, two different types of events were also observed. Three of the four samplings coincided with stagnation of air masses or slight SE flows. During the 4th sampling, the air mass direction was oscillating, arriving from both possible axis sides. Comparing both situations, it was observed that there was not a big difference between them for sulfate and nitrate. Sulfate was found in the accumulation mode and in the backup filter, while nitrate also appeared in the coarse mode. Ammonium had a different behavior. It appeared in the accumulation mode and in the backup filter but not in the coarse mode during both kinds of events. When the air mass direction was oscillating, the ammonium concentration was much higher than during the other 3 samplings, more than enough to neutralize the sulfate and nitrate ions. In this case, the particulate nitrate observed in the coarse mode was neutralized by the calcium ion. Acknowledgement: Special thanks are given to X. Querol and A. Alastuey (IDAEA-CSIC) and J.L. Jimenez (U. Colorado, CO, USA) for organizing the DAURE field campaign. This part of the study has been financed by the CGL2007-3052-E/CLI, CGL2008-02817-E/CLI, PROFASE (CGL2007-64117) and GRACCIE (CSD2007-00067) projects. M.A. Revuelta acknowledges the Ministry of Science and Innovation for their economical support through the FPI predoctoral grant BES-2008-007079.

  3. Ozonolysis of a series of biogenic organic volatile compounds and secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Bernard, François; Quilgars, Alain; Cazaunau, Mathieu; Grosselin, Benoît.; Daele, Véronique; Mellouki, Abdelwahid; Winterhalter, Richard; Moortgat, Geert K.

    2010-05-01

    Secondary organic aerosols are formed via nucleation of atmospheric organic vapours on pre-existing particles observed in various rural environments where the organic fraction represents the major part of the observed nano-particle (Kavouras and Stephanou, 2002; Kulmala et al., 2004a). However, nucleation of organic vapors appears to be unlikely thermodynamically in relevant atmospheric conditions (Kulmala et al., 2004b). In this work, a systematic study has been conducted to investigate the aerosol formation through the ozonolysis of a series of monotepenes using a newly developed aerosol flow reactor and the ICARE indoor simulation chamber. The nucleation thresholds have been determined for SOA formed through the reaction of ozone with a-Pinene, sabinene, myrcene and limonene in absence of any observable existing particles. The measurements were performed using the flow reactor combined to a particle counter (CPC 3022). Number concentrations of SOA have been measured for different concentration of consumed monoterpenes. The data obtained allow us to estimate the nucleation threshold for a range of 0.2 - 45 ppb of consumed monoterpenes. The nucleation threshold values obtained here (≤ 1 ppb of the consumed monoterpenes) have been found to be lower than the previously reported ones (Berndt et al., 2003; Bonn and Moortgat, 2003; Koch et al., 2000; Lee and Kamens, 2005). The ICARE simulation chamber has been used to study the mechanism of the reaction of ozone with various acyclic terpenes (myrcene, ocimene, linalool and a-farnesene) and to derive the SOA mass formation yield. The time-concentration profiles of reactants and products in gas-phase were obtained using in-situ Fourier Transform Infrared Spectroscopy. In addition, the number and mass concentrations of SOA have been monitored with a Scanning Mobility Particle Sizer. The chemical composition of the SOA formed has been tentatively characterised using Liquid Chromatography - Mass Spectrometry. The results obtained will be compared with those from the literature when available and discussed in terms of their atmospheric impact. Berndt, T., O. Böge and F. Stratmann (2003). Gas-phase ozonolysis of a-pinene: gaseous products and particle formation. Atmospheric Environment, 37: 3933-3945. Bonn, B. and G.K. Moortgat (2003). Sesquiterpene ozonolysis: Origin of atmospheric new particle formation from biogenic hydrocarbons. Journal of Geophysical Research, 30(11). Kavouras, I. and E.G. Stephanou (2002). Direct evidence of atmospheric secondary organic aerosol formation in forest atmosphere through heteromolecular nucleation. Environmental Science and Technology, 36: 5083-5091. Koch, S., R. Winterhalter, E. Uherek, A. Kolloff, P. Neeb and G.K. Moortagt (2000). Formation of new particles in the gas-phase ozonolysis of monoterpenes. Atmospheric Environment, 34: 4031-4042. Kulmala, M., V.-M. Kerminen, T. Anttila, A. Laaksonen and C.D. O'Dowd (2004b). Organic aerosol formation via sulphate cluster activation. Journal of Geophysical Research, 109(D04205): 1-7. Kulmala, M., H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V.-M. Kerminen, W. Birmili and P.H. McMurry (2004a). Formation and growth rates of ultra-fine atmospheric particles: a review of observations. Journal of Aerosol Science, 35: 143-176. Lee, S. and R.M. Kamens (2005). Particle nucleation from the reaction of a-pinene and O3. Atmospheric Environment, 39: 6822-6832.

  4. Aerosol and gas phase organic acids during aging of secondary organic aerosol from ?-pinene in smog chamber experiments

    NASA Astrophysics Data System (ADS)

    Praplan, Arnaud P.; Tritscher, Torsten; Barmet, Peter; Mertes, Peter; Decarlo, Peter F.; Dommen, Josef; Prevot, Andre S. H.; Donahue, Neil M.; Baltensperger, Urs

    2010-05-01

    Organic acids represent an important class of organic compounds in the atmosphere for both the gas and aerosol phase. They are either emitted directly from both biogenic and anthropogenic sources or formed as oxidation products from volatile organic compounds (VOCs) and precursors in the aqueous, gaseous and particle phase (Chebbi & Carlier, 1996) Monoterpenes are a prominent class of VOCs with annual emissions of 127 Tg per year (Guenther et al., 1995). Because of their high formation potential of secondary organic aerosols, several compounds of this class, particularly a-pinene, have been investigated extensively in many laboratory studies. Among other acids, cis-pinic and cis-pinonic acid have been found as products of a-pinene ozonolysis. Ma et al. (2007) published evidence that these organic acids are formed in the gas phase via Criegee Intermediates (CIs). Recently, 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) was identified by Szmigielski et al. (2007) as a product from a-pinene photooxidation, as well as diaterpenylic acid acetate (Iinuma et al., 2009) and terpenylic acid (Claeys et al., 2009). These compounds could serve as tracers for a-pinene in ambient samples. The present work sets its focus on the fate of a-pinene SOA organic acids under different aging conditions. (1) low NOx concentration (2) high NOx concentration (3) exposure to OH radicals in both dark and lighted environments. a-pinene SOA is produced by ozonolysis without OH scavenger in the PSI smog chamber. It consists of a 27m3 Teflon bag that can be irradiated by four Xe arc lamps to simulate sunlight (Paulsen et al., 2004). The organic acids are sampled with a wet effluent diffusion denuder (WEDD) and an aerosol collector (AC) for the gas phase and the aerosol particles, respectively. WEDD and AC samples are alternatively concentrated for 30 minutes on a trace anion concentrator (TAC) column (Dionex, Switzerland) and subsequently analyzed by ion chromatography coupled to mass spectrometry (IC/MS). This system is described in more details by Fisseha et al. (2004). The results show that the cis-pinonic acid gas phase concentration increases rapidly in the presence of NOx, while it stays more or less constant upon OH exposure. On the other hand, cis-pinic acid concentration in aerosol decreases in presence of NOx but is nearly constant during OH exposure. 3-Methyl-1,2,3-butanetricarboxylic acid (MBTCA) is also formed during ozonolysis and demonstrates a strong concentration increase for all aging conditions. This partially agrees with a recent publication of Szmigielski et al. (2007), where MBTCA is thought to be formed in the presence of NOx, but this gives evidence that MBTCA can also be formed via another mechanism without NOx. Moreover, after exposure of cis-pinonic acid to OH radicals produced in the dark, MBTCA is detected, confirming that cis-pinonic acid is involved in the mechanism formation of MBTCA. The Master Chemical Mechanism (MCM) tends to overestimates the amount of organic acids formed. Therefore, inclusion of new reaction mechanisms and species that are not yet included will help to improve the present knowledge of the organic acids formation pathways. Chebbi, A., & Carlier, P. (1996). Atmos. Environ., 30, 4233-4249. Claeys, M., et al. (2009). Environ. Sci. Technol., 43, 6976-6982. Fisseha, R., et al. (2004). Anal. Chem., 76, 6535-6540. Guenther, A., et al. (1995). J Geophys Res., 100, 8873-8892. Iinuma, Y., et al. (2009). Environ. Sci. Technol., 43, 280-285. Jang, M. J., & Kamens, R. M. (1999). Atmos. Environ., 33, 459-474. Lee, S., & Kamens, R. M. (2005). Atmos Environ., 39, 6822-6832. Ma, Y., et al. (2007). Phys. Chem. Chem. Phys., 9, 5084-5087. Paulsen, D., et al. (2005). Environ. Sci. Technol., 39, 2668-2678. Szmigielski, R., et al. (2007). Geophys Res. Lett., 34, L24811, doi:10.1029/2007GL031338. Yu, J., et al. (1999). J. Atmos. Chem., 34, 207-258.

  5. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-12-01

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for the no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9-5.6, 6.4-12.0 and 0.9-2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.

  6. Role of secondary aerosols in haze formation in summer in the Megacity Beijing.

    PubMed

    Han, Tingting; Liu, Xingang; Zhang, Yuanhang; Qu, Yu; Zeng, Limin; Hu, Min; Zhu, Tong

    2015-05-01

    A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibilitysecondary organic aerosol) concentrations. The average values with standard deviation of SO4(2-), NO3-, NH4+ and SOA were 49.8 (31.6), 31.4 (22.3), 25.8 (16.6) and 8.9 (4.1)?g/m3, respectively, during the haze episodes, which were 4.3, 3.4, 4.1, and 1.7 times those in the non-haze days. The SO4(2-), NO3-, NH4+, and SOA accounted for 15.8%, 8.8%, 7.3%, and 6.0% of the total mass concentration of PM10 during the non-haze days. The respective contributions of SNA species to PM10 rose to about 27.2%, 15.9%, and 13.9% during the haze days, while the contributions of SOA maintained the same level with a slight decrease to about 4.9%. The observed mass concentrations of SNA and SOA increased with the increase of PM10 mass concentration, however, the rate of increase of SNA was much faster than that of the SOA. The SOR (sulfur oxidation ratio) and NOR (nitrogen oxidation ratio) increased from non-haze days to hazy days, and increased with the increase of RH. High concentrations of aerosols and water vapor favored the conversion of SO2 to SO4(2-) and NO2 to NO3-, which accelerated the accumulation of the aerosols and resulted in the formation of haze in Beijing. PMID:25968258

  7. Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Berkemeier, T.; Schilling-Fahnestock, K.; Seinfeld, J.; Poeschl, U.

    2014-12-01

    The dominant component of atmospheric organic aerosol is that derived from the oxidation of volatile organic compounds (VOCs), so-called secondary organic aerosol (SOA). SOA consists of a multitude of organic compounds, only a small fraction of which has historically been identified. Formation and evolution of SOA is a complex process involving coupled chemical reaction and mass transport in the gas and particle phases. Current SOA models do not embody the full spectrum of reaction and transport processes nor do they identify the dominant rate-limiting steps in SOA formation. Based on molecular identification of SOA oxidation products, we show here that the chemical evolution of SOA from a variety of VOC precursors adheres to characteristic "molecular corridors" with a tight inverse correlation between volatility and molar mass. The slope of these corridors corresponds to the increase in molar mass required to decrease volatility by one order of magnitude (-dM/dlogC0). It varies in the range of 10-30 g mol-1 depending on the molecular size of the SOA precursor and the O:C ratio of the reaction product