Science.gov

Sample records for secondary mineral microtextures

  1. Chronostratigraphy of Monte Vulture volcano (southern Italy): secondary mineral microtextures and 39Ar-40Ar systematics

    NASA Astrophysics Data System (ADS)

    Villa, Igor M.; Buettner, Annett

    2009-12-01

    The eruptive history of Monte Vulture has been the subject of several geochronological investigations during the past decades, which reliably dated only a small number of eruptions. Understanding the causes of sub-optimum data yield in the past requires an interdisciplinary approach. We re-analyzed samples from previous works and present new data on samples from the main volcano-stratigraphic units of Monte Vulture, so as to provide an improved, consistent chronostratigraphic database. Imaging of minerals by cathodoluminescence and backscattered electrons reveals that heterochemical, high-temperature deuteric reaction textures are ubiquitous. Such observations are common in metamorphic rocks but had not frequently been reported from volcanic rocks. In view of the mineralogical complexity, we base our chronological interpretation on isochemical steps, defined as steps for which the Cl/K and/or the Ca/K ratios are constant. Isochemical steps carry the isotopic signature of chemically homogeneous mineral phases and therefore allow a well-constrained age interpretation. Comparison of old and new 39Ar-40Ar data proves the reproducibility of age spectra and their shapes. This quantifies the analytical reliability of the irradiation and mass-spectrometric analyses. Anomalous age spectra are a reproducible property of some specific samples and correlate with mineralogical anomalies. The present data allow us to fine-tune the age of the volcanostratigraphic units of Monte Vulture during the known interval of main volcanic activity from ca. 740 to 610 ka. After a very long stasis, the volcanic activity in the Monte Vulture area resumed with diatremic eruptions, one of which (Lago Piccolo di Monticchio, the site of a palynological-paleoclimatological drilling) was dated at ca. 140 ka.

  2. Heavy Minerals in Palaeotsunami Deposits: Assemblages, Spatial Distribution and Microtextural Imprints

    NASA Astrophysics Data System (ADS)

    Costa, P. J.; Andrade, C.; Cascalho, J.; Dawson, A. G.; Freitas, M. C.; Dawson, S.; Mahaney, W. C.

    2013-12-01

    more likely source areas. In addition, preliminary results of SEM analysis of microtextural features imprinted in the surface of heavy minerals indicate an increase in the number of mechanical marks in the surface of palaeotsunami grains when compared with potential source materials (beach, dune, inshore and offshore samples). This work further reveals the potential to use heavy minerals as a complementary sedimentological tool in the study of palaeotsunami deposits.

  3. Weathering and Secondary Minerals in the Martian Meteorite Shergotty

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; Thomas-Keprta, Kathie L.; McKay, David S.

    2000-01-01

    The Shergotty martian meteorite contains weathering features and secondary minerals much like those in Nakhla, including secondary silicates, NaCl, and Ca-sulfate. It is likely that the weathering occurred on Mars.

  4. Mars weathering analogs - Secondary mineralization in Antarctic basalts

    NASA Technical Reports Server (NTRS)

    Berkley, J. L.

    1982-01-01

    Alkalic basalt samples from Ross Island, Antarctica, are evaluated as terrestrial analogs to weathered surface materials on Mars. Secondary alteration in the rocks is limited to pneumatolytic oxidation of igneous minerals and glass, rare groundmass clay and zeolite mineralization, and hydrothermal minerals coating fractures and vesicle surfaces. Hydrothermal mineral assemblages consist mainly of K-feldspar, zeolites (phillipsite and chabazite), calcite, and anhydrite. Low alteration rates are attributed to cold and dry environmental factors common to both Antarctica and Mars. It is noted that mechanical weathering (aeolian abrasion) of Martian equivalents to present Antarctic basalts would yield minor hydrothermal minerals and local surface fines composed of primary igneous minerals and glass but would produce few hydrous products, such as palagonite, clay or micas. It is thought that leaching of hydrothermal vein minerals by migrating fluids and redeposition in duricrust deposits may represent an alternate process for incorporating secondary minerals of volcanic origin into Martian surface fines.

  5. Ion beam microtexturing and enhanced surface diffusion

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1982-01-01

    Ion beam interactions with solid surfaces are discussed with particular emphasis on microtexturing induced by the deliberate deposition of controllable amounts of an impurity material onto a solid surface while simultaneously sputtering the surface with an ion beam. Experimental study of the optical properties of microtextured surfaces is described. Measurements of both absorptance as a function of wavelength and emissivity are presented. A computer code is described that models the sputtering and ion reflection processes involved in microtexture formation.

  6. Raman Study of Secondary Minerals in a Recent Lava Tube

    NASA Astrophysics Data System (ADS)

    Guimbretière, G.; Canizarès, A.; Finizola, A.; Delcher, E.; Raimboux, N.; Veron, E.; Simon, P.; Devouard, B.; Bertil, A.

    2014-06-01

    We present here the technical adaptations made for a field use of a laboratory in situ Raman spectrometer, and the characterization of secondary mineral phases growing in a recent, still hot on some spots, lava tube (2007 Piton de la Fournaise).

  7. Bisphosphonates do not alter the rate of secondary mineralization

    SciTech Connect

    Fuchs R. K.; Miller L.; Faillace M.E.; Allen M.R.; Phipps R.J. and Burr D.B.

    2011-05-18

    Bisphosphonates function to reduce bone turnover, which consequently increases the mean degree of tissue mineralization at an organ level. However, it is not clear if bisphosphonates alter the length of time required for an individual bone-modeling unit (BMU) to fully mineralize. We have recently demonstrated that it takes {approx}350 days (d) for normal, untreated cortical bone to fully mineralize. The aim of this study was to determine the rate at which newly formed trabecular BMUs become fully mineralized in rabbits treated for up to 414 d with clinical doses of either risedronate (RIS) or alendronate (ALN). Thirty-six, 4-month old virgin female New Zealand white rabbits were allocated to RIS (n = 12; 2.4 {micro}g/kg body weight), ALN (n = 12; 2.4 {micro}g/kg body weight), or volume-matched saline controls (CON; n = 12). Fluorochrome labels were administered at specific time intervals to quantify the rate and level of mineralization of trabecular bone from the femoral neck (FN) by Fourier transform infrared microspectroscopy (FTIRM). The organic (collagen) and inorganic (phosphate and carbonate) IR spectral characteristics of trabecular bone from undecalcified 4 micron thick tissue sections were quantified from fluorescently labels regions that had mineralized for 1, 8, 18, 35, 70, 105, 140, 210, 280, and 385 d (4 rabbits per time point and treatment group). All groups exhibited a rapid increase in mineralization over the first 18 days, the period of primary mineralization, with no significant differences between treatments. Mineralization continued to increase, at a slower rate up, to 385 days (secondary mineralization), and was not different among treatments. There were no significant differences between treatments for the rate of mineralization within an individual BMU; however, ALN and RIS both increased global tissue mineralization as demonstrated by areal bone mineral density from DXA. We conclude that increases in tissue mineralization that occur

  8. Bisphosphonates do not Alter the Rate of Secondary Mineralization

    SciTech Connect

    R Fuchs; M Faillace; M Allen; R Phipps; L Miller; D Burr

    2011-12-31

    Bisphosphonates function to reduce bone turnover, which consequently increases the mean degree of tissue mineralization at an organ level. However, it is not clear if bisphosphonates alter the length of time required for an individual bone-modeling unit (BMU) to fully mineralize. We have recently demonstrated that it takes {approx}350 days (d) for normal, untreated cortical bone to fully mineralize. The aim of this study was to determine the rate at which newly formed trabecular BMUs become fully mineralized in rabbits treated for up to 414 d with clinical doses of either risedronate (RIS) or alendronate (ALN). Thirty-six, 4-month old virgin female New Zealand white rabbits were allocated to RIS (n=12; 2.4 {mu}g/kg body weight), ALN (n=12; 2.4 {mu}g/kg body weight), or volume-matched saline controls (CON; n=12). Fluorochrome labels were administered at specific time intervals to quantify the rate and level of mineralization of trabecular bone from the femoral neck (FN) by Fourier transform infrared microspectroscopy (FTIRM). The organic (collagen) and inorganic (phosphate and carbonate) IR spectral characteristics of trabecular bone from undecalcified 4 micron thick tissue sections were quantified from fluorescently labels regions that had mineralized for 1, 8, 18, 35, 70, 105, 140, 210, 280, and 385 d (4 rabbits per time point and treatment group). All groups exhibited a rapid increase in mineralization over the first 18 days, the period of primary mineralization, with no significant differences between treatments. Mineralization continued to increase, at a slower rate up, to 385 days (secondary mineralization), and was not different among treatments. There were no significant differences between treatments for the rate of mineralization within an individual BMU; however, ALN and RIS both increased global tissue mineralization as demonstrated by areal bone mineral density from DXA. We conclude that increases in tissue mineralization that occur following a period

  9. Secondary sulfate minerals from Alum Cave Bluff: Microscopy and microanalysis

    SciTech Connect

    Lauf, R.J.

    1997-07-01

    Microcrystals of secondary sulfate minerals from Alum Cave Bluff, Great Smoky Mountains National Park, were examined by scanning electron microscopy and identified by X-ray fluorescence (XRF) in the SEM. Among the samples the author discovered three new rare-earth sulfates: coskrenite-(Ce), levinsonite-(Y), and zugshunstite-(Ce). Other minerals illustrated in this report include sulfur, tschermigite, gypsum, epsomite, melanterite, halotrichite, apjohnite, jarosite, slavikite, magnesiocopiapite, and diadochite. Additional specimens whose identification is more tentative include pickeringite, aluminite, basaluminite, and botryogen. Alum Cave is a ``Dana locality`` for apjohnite and potash alum, and is the first documented North American occurrence of slavikite.

  10. Post microtextures accelerate cell proliferation and osteogenesis.

    PubMed

    Kim, Eun Jung; Boehm, Cynthia A; Mata, Alvaro; Fleischman, Aaron J; Muschler, George F; Roy, Shuvo

    2010-01-01

    The influence of surface microtexture on osteogenesis was investigated in vitro by examining the proliferation and differentiation characteristics of a class of adult stem cells and their progeny, collectively known as connective tissue progenitor cells (CTPs). Human bone marrow-derived CTPs were cultured for up to 60 days on smooth polydimethylsiloxane (PDMS) surfaces and on PDMS with post microtextures that were 10 microm in diameter and 6 microm in height, with 10 microm separation. DNA quantification revealed that the numbers of CTPs initially attached to both substrates were similar. However, cells on microtextured PDMS transitioned from lag phase after 4 days of culture, in contrast to 6 days for cells on smooth surfaces. By day 9 cells on the smooth surfaces exhibited arbitrary flattened shapes and migrated without any preferred orientation. In contrast, cells on the microtextured PDMS grew along the array of posts in an orthogonal manner. By days 30 and 60 cells grew and covered all surfaces with extracellular matrix. Western blot analysis revealed that the expression of integrin alpha5 was greater on the microtextured PDMS compared with smooth surfaces. Real time reverse transcription-polymerase chain reaction revealed that gene expression of alkaline phosphatase had decreased by days 30 and 60, compared with that on day 9, for both substrates. Gene expression of collagen I and osteocalcin was consistently greater on post microtextures relative to smooth surfaces at all time points. PMID:19539062

  11. Post microtextures accelerate cell proliferation and osteogenesis

    PubMed Central

    Kim, Eun Jung; Boehm, Cynthia A.; Mata, Alvaro; Fleischman, Aaron J.; Muschler, George F.; Roy, Shuvo

    2013-01-01

    The influence of surface microtexture on osteogenesis was investigated in vitro by examining the proliferation and differentiation characteristics of a class of adult stem cells and their progeny, collectively known as connective tissue progenitor cells (CTPs). Human bone marrow-derived CTPs were cultured for up to 60 days on smooth polydimethylsiloxane (PDMS) surfaces and on PDMS with post microtextures that were 10 µm in diameter and 6 µm in height, with 10 µm separation. DNA quantification revealed that the numbers of CTPs initially attached to both substrates were similar. However, cells on microtextured PDMS transitioned from lag phase after 4 days of culture, in contrast to 6 days for cells on smooth surfaces. By day 9 cells on the smooth surfaces exhibited arbitrary flattened shapes and migrated without any preferred orientation. In contrast, cells on the microtextured PDMS grew along the array of posts in an orthogonal manner. By days 30 and 60 cells grew and covered all surfaces with extracellular matrix. Western blot analysis revealed that the expression of integrin α5 was greater on the microtextured PDMS compared with smooth surfaces. Real time reverse transcription-polymerase chain reaction revealed that gene expression of alkaline phosphatase had decreased by days 30 and 60, compared with that on day 9, for both substrates. Gene expression of collagen I and osteocalcin was consistently greater on post microtextures relative to smooth surfaces at all time points. PMID:19539062

  12. Secondary hydrothermal mineral system in the Campi Flegrei caldera, Italy

    NASA Astrophysics Data System (ADS)

    Mormone, A.; Piochi, M.; Di Vito, M. A.; Troise, C.; De Natale, G.

    2012-04-01

    Mineral systems generally develop around the deep root of the volcanoes down to the degassing magma chamber due the selective enrichment process of elements within the host-rock. The mineralization process depends on i) volcanic structure, ii) magma and fluid chemistry, iii) host-rock type and texture, iv) temperature and pressure conditions, and v) action timing that affect the transport and precipitation conditions of elements in the solution. Firstly, it generates a hydrothermal system that in a later phase may generate considerable metallogenic mineralization, in terms of both spatial extension and specie abundance. The study of secondary assemblages through depth and, possibly, through time, together with the definition of the general geological, structural, mineralogical and petrological context is the background to understand the genesis of mineral-to-metallogenic systems. We report our study on the Campi Flegrei volcano of potassic Southern Italy belt. It is a sub-circular caldera characterized by an active high-temperature and fluid-rich geothermal system affected by seismicity and ground deformation in the recent decades. The circulating fluids originate at deeper level within a degassing magma body and give rise at the surface up to 1500 tonnes/day of CO2 emissions. Their composition is intermediate between meteoric water and brines. Saline-rich fluids have been detected at ~3000 in downhole. The hydrothermal alteration varies from argillitic to phillitic, nearby the caldera boundary, to propilitic to thermo-metamorphic facies towards its centre. The Campi Flegrei caldera was defined as analogue of mineralized system such as White Island (New Zealand) that is an example of an active magmatic and embryonic copper porphyry system. In order to enhance the knowledge of such a type of embryonic-like metallogenic system, we have carried out macroscopic and microscopic investigations, SEM-EDS and electron microprobe analyses on selected samples from deep wells

  13. Origin of secondary sulfate minerals on active andesitic stratovolcanoes

    USGS Publications Warehouse

    Zimbelman, D.R.; Rye, R.O.; Breit, G.N.

    2005-01-01

    Sulfate minerals in altered rocks on the upper flanks and summits of active andesitic stratovolcanoes result from multiple processes. The origin of these sulfates at five active volcanoes, Citlalte??petl (Mexico), and Mount Adams, Hood, Rainier, and Shasta (Cascade Range, USA), was investigated using field observations, petrography, mineralogy, chemical modeling, and stable-isotope data. The four general groups of sulfate minerals identified are: (1) alunite group, (2) jarosite group, (3) readily soluble Fe- and Al-hydroxysulfates, and (4) simple alkaline-earth sulfates such as anhydrite, gypsum, and barite. Generalized assemblages of spatially associated secondary minerals were recognized: (1) alunite+silica??pyrite??kaolinite?? gypsum??sulfur, (2) jarosite+alunite+silica; (3) jarosite+smectite+silica??pyrite, (4) Fe- and Al-hydroxysulfates+silica, and (5) simple sulfates+silica??Al-hydroxysulfates??alunite. Isotopic data verify that all sulfate and sulfide minerals and their associated alteration assemblages result largely from the introduction of sulfur-bearing magmatic gases into meteoric water in the upper levels of the volcanoes. The sulfur and oxygen isotopic data for all minerals indicate the general mixing of aqueous sulfate derived from deep (largely disproportionation of SO2 in magmatic vapor) and shallow (oxidation of pyrite or H2S) sources. The hydrogen and oxygen isotopic data of alunite indicate the mixing of magmatic and meteoric fluids. Some alunite-group minerals, along with kaolinite, formed from sulfuric acid created by the disproportionation of SO2 in a condensing magmatic vapor. Such alunite, observed only in those volcanoes whose interiors are exposed by erosion or edifice collapse, may have ??34S values that reflect equilibrium (350??50 ??C) between aqueous sulfate and H2S. Alunite with ??34S values indicating disequilibrium between parent aqueous sulfate and H2S may form from aqueous sulfate created in higher level low

  14. Formation of secondary minerals in a lysimeter approach - A mineral-microbe interaction

    NASA Astrophysics Data System (ADS)

    Schäffner, F.; Merten, D.; De Giudici, G.; Beyer, A.; Akob, D. M.; Ricci, P. C.; Küsel, K.; Büchel, G.

    2012-04-01

    Heavy metal contamination of large areas due to uranium mining operations poses a serious long-term environmental problem. In the Ronneburg district (eastern Thuringia, Germany), leaching of low grade uranium bearing ores (uranium content < 300 g/t) occurred from 1972 to 1990 using acid mine drainage (AMD; pH 2.7-2.8) and diluted sulphuric acid (10 g/l). Secondary mineral phases like birnessite, todorokite and goethite occur within a natural attenuation process associated with enrichment of heavy metals, especially Cd, Ni, Co, Cu and Zn due to a residual contamination even after remediation efforts. To reveal the processes of secondary mineral precipitation in the field a laboratory lysimeter approach was set up under in situ-like conditions. Homogenized soil from the field site and pure quartz sand were used as substrates. In general, in situ measurements of redox potentials in the substrates showed highly oxidizing conditions (200-750 mV). Water was supplied to the lysimeter from below via a mariottés bottle containing contaminated groundwater from the field. Evaporation processes were allowed, providing a continuous flow of water. This led to precipitation of epsomite and probably aplowite on the top layer of substrate, similar to what is observed in field investigations. After 4 weeks, the first iron and manganese bearing secondary minerals became visible. Soil water samples were used to monitor the behaviour of metals within the lysimeter. Saturation indices (SI) for different secondary minerals were calculated with PHREEQC. The SI of goethite showed oversaturation with respect to the soil solution. SEM-EDX analyses and IR spectroscopy confirmed the formation of goethite. Geochemical data revealed that goethite formation was mainly dominated by Eh/pH processes and that heavy metals, e.g. Zn and U, could be enriched in this phase. Although Eh/pH data does not support formation of manganese minerals, Mn(II)-oxidizing bacteria (MOB) could be isolated from field

  15. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    SciTech Connect

    Carey, JE; Mazur, E

    2005-05-19

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  16. TEM observation of bacteria-induced plagioclase dissolution and secondary mineral formation

    NASA Astrophysics Data System (ADS)

    Tamura, T.; Kyono, A.; Nishimiya, Y.

    2015-12-01

    Silicate minerals are the most common minerals in the earth's crust. Bacteria are also distributed throughout the earth's surface environment. The silicate minerals are known to be dissolved by organic acids and polysaccharides known as bacteria metabolites. The metabolic activity of bacteria therefore plays an important role in the interaction between dissolution of the silicate minerals and formation of secondary minerals. However, little is known about the secondary mineral formation process associated with the bacterial metabolism. To clarify the bacterial effect on the mineral dissolution and the secondary mineral formation, we closely investigated the effect of bacterial activity on surface texture modification and chemical composition changes of plagioclase which is the most abundant silicate mineral in the earth's crust. The bacteria were isolated from soil and then added in a suitable medium with several plagioclase fragments (Ab100% and An100%). It was incubated for 10 days. Al and Si concentrations in the medium were measured by ICP-AES to monitor the dissolution of the plagioclase. Secondary mineral formation during the incubation was observed by TEM, EDS and SAED methods. The authors will give the experiment results and discuss the effect of bacterial activity on the plagioclase dissolution and the secondary mineral formation in detail.

  17. Nuclear Melt Glass Dissolution and Secondary Mineral Precipitation at 40 to 200C

    SciTech Connect

    Zavarin, M; Roberts, S; Viani, B; Pawloski, G; Rose, T

    2004-06-14

    Most long-lived radionuclides associated with an underground nuclear test are initially incorporated into melt glass and become part of the hydrologic source term (HST) only upon their release via glass dissolution (Pawloski et al., 2001). As the melt glass dissolves, secondary minerals precipitate. The types of secondary minerals that precipitate influence the water chemistry in and around the melt glass. The secondary minerals also provide a sorption sink to the released radionuclides. The changing water chemistry affects the rate of glass dissolution; it also affects the sorption behavior of the released radionuclides. This complex nature of glass dissolution and its important role in defining the HST requires a thorough understanding of glass dissolution and secondary mineral precipitation. The identity of secondary minerals formed at temperatures from 40 to 200 C are evaluated in this report to assist in that understanding.

  18. Hydrothermal Alteration in the Logatchev Hydrothermal Field: Implications From Secondary Mineral Assemblages and Mineral Chemistry

    NASA Astrophysics Data System (ADS)

    Lackschewitz, K. S.; Augustin, N.; Devey, C. W.; Eisenhauer, A.; Garbe-Schoenberg, D.; James, R.

    2005-12-01

    We present new data on secondary mineral assemblages, clay and whole rock chemistry and clay mineral strontium and lithium isotopic compositions of altered rocks and sediments from the active, ultramafic-hosted Logatchev hydrothermal field reflecting various alteration conditions (e.g. fluid mixing, water-rock interaction). The altered ultramafic rocks are mainly consist of lizardite, chrysotile whereas magnetite and pyrite are minor minerals. Chlorite, chlorite-smectite mixed-layer (e.g., corrensite), smectite and talc are additional common phases in the clay fraction of most of these samples.Iron-hydroxides and iron sulfides are the main components of the hydrothermal crusts, with some amounts of pyroxene, chlorite, illite and pyrite. The hydrothermal sediments beneath the crusts are characterized by quartz, smectite and chlorite as main minerals. Analyses of clay separates representing a variety of alteration styles demonstrates that significant and characteristic changes in the bulk rock chemical composition are associated with various alteration conditions. The elements Cr, Cu, Pb and U appears to have a general enrichment in the lizardite and chlorite concentrates in comparison to a depleted mantle. 87Sr/86Sr ratios of clay concentrates vary between 0.7083 and 0.7096 suggesting that the clays either formed as a result of seawater alteration or hydrothermal alteration with various portions of seawater. The strontium isotopic ratio of a chlorite sample from hydrothermal sediments beneath the hydrothermal crust is much lower than the isotopic data reported for the lizardites suggesting precipitation from fluid with lower seawater content. The Li isotopic composition (δ7Li) of the clay separates varies between -5.4 and +6.4‰. Thus, the clays are enriched in 6Li relative to both seawater (~31‰) and hydrothermal vent fluids from the Logatchev field (~6‰) suggesting that 6Li is preferentially retained in alteration products. When considered together with the

  19. Mandrels For Microtextured Small-Vessel Implants

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Gabriel, Stephen B.

    1989-01-01

    Research shows artificial blood-vessel and heart-valve implants made more compatible with their biological environments by use of regularly microtextured surfaces. In new manufacturing process, ion beam etches patterned array of small pillars on mandrel used to mold tubular plastic implant. Pillars create tiny regularly spaced holes in inner surface of tube. Holes expected to provide sites for attachment of healthy lining. Polytetrafluoroethylene (PTFE) used as mandrel material because it can be etched by ion beam.

  20. The role of secondary mineral precipitates on radionuclide sequestration at the Hanford Site

    SciTech Connect

    Um, Wooyong; Serne, R. Jeffrey; Yabusaki, Steven B.; Freedman, Vicky L.; Samson, Sherry D.; Nagy, Kathryn L.

    2004-06-27

    The effects of secondary mineral precipitates on radionuclide sequestration at the Hanford Site were investigated by reacting quartz and Hanford sediment (Warden Soil) with caustic solution of high ionic strength (2 M NaNO3), high pH (~13), high temperature (~90oC), and dissolved Al(0.01 M Al(NO3)3). Continuous Si dissolution and concomitant secondary mineral precipitation were the principal reactions observed. Nitrate-cancrinite was the dominant secondary precipitate on mineral surfaces after 3-10 days reaction time. The presence of dissolved Al in the simulated tank fluid was found to depress the net Si dissolved concentration. Based on batch equilibrium sorption results, secondary precipitates (cancrinite) at the primary mineral surfaces enhanced the sorption capacity of typical Hanford sediment for radionuclides of major concern at the Hanford Site such as 129I, 79Se, 99Tc, and 90Sr.

  1. The Chronology of Asteroid Accretion, Differentiation, and Secondary Mineralization

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Kleine, T.; Shih, C.-Y.; Reese, Y. D.

    2008-01-01

    ) and a Pb-207/Pb-206 age of 4558.6 Ma for the LEW86010 angrite. However. the (Mn-53/Mn-55)(sub I) and Pb-207/Pb-206 ages of "intermediate" age D'Orbigny-clan angrites and Asuka 881394 are inconsistent with radioactive decay from CAI values with a Mn-55 half-life of 3.7+/-0.4 Ma. in spite of consistency between (Mn-53/Mn-55)(sub I) and (Al-26/Al-27)(sub I). Nevertheless, it appears that the Mn-Cr method with I(Mn)(sub CAI) = 9.1+/-1.7 x 10(exp -6) can be used to date primary igneous events and also secondary mineralization on asteroid parent bodies. We summarize ages thus determined for igneous events on differentiated asteroids and for carbonate and fayalite formation on carbonaceous asteroids.

  2. Clinical Use of Laser-Microtextured Abutments: A Case Series.

    PubMed

    Shapoff, Cary A; Babushkin, Jeffrey A; Wohl, David J

    2016-01-01

    This article discusses the clinical use of laser-microtextured abutments on dental implant restorations. Four cases are presented, each using one of the four commercially available laser-microtextured abutment styles. Numerous preclinical and clinical studies have shown the positive effects of laser microtexturing on the implant platform in limiting crestal bone loss and benefiting soft tissue stability. Other histologic studies of laser microtexturing on the implant abutment have demonstrated the ability of this specific feature to block epithelial downgrowth and provide a functional connective tissue attachment to the abutment surface. Other abutment designs, styles, and materials have only demonstrated a soft tissue seal with epithelial adhesion and a circular ring of connective tissue fibers around the abutment without direct contact. This article presents clinical and radiographic case examples from a private practice perspective on the longterm successful use of microtextured abutments with respect to crestal bone levels, exceptional soft tissue health, and stability with minimal sulcular depth. PMID:27560683

  3. Alkali feldspar dissolution and secondary mineral precipitation in batch systems: 3. Saturation states of product minerals and reaction paths

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lu, Peng

    2009-06-01

    In order to evaluate the complex interplay between dissolution and precipitation reaction kinetics, we examined the hypothesis of partial equilibria between secondary mineral products and aqueous solutions in feldspar-water systems. Speciation and solubility geochemical modeling was used to compute the saturation indices (SI) for product minerals in batch feldspar dissolution experiments at elevated temperatures and pressures and to trace the reaction paths on activity-activity diagrams. The modeling results demonstrated: (1) the experimental aqueous solutions were supersaturated with respect to product minerals for almost the entire duration of the experiments; (2) the aqueous solution chemistry did not evolve along the phase boundaries but crossed the phase boundaries at oblique angles; and (3) the earlier precipitated product minerals did not dissolve but continued to precipitate even after the solution chemistry had evolved into the stability fields of minerals lower in the paragenesis sequence. These three lines of evidence signify that product mineral precipitation is a slow kinetic process and partial equilibria between aqueous solution and product minerals were not held. In contrast, the experimental evidences are consistent with the hypothesis of strong coupling of mineral dissolution/precipitation kinetics [e.g., Zhu C., Blum A. E. and Veblen D. R. (2004a) Feldspar dissolution rates and clay precipitation in the Navajo aquifer at Black Mesa, Arizona, USA. In Water-Rock Interaction (eds. R. B. Wanty and R. R. I. Seal). A.A. Balkema, Saratoga Springs, New York. pp. 895-899]. In all batch experiments examined, the time of congruent feldspar dissolution was short and supersaturation with respect to the product minerals was reached within a short period of time. The experimental system progressed from a dissolution driven regime to a precipitation limited regime in a short order. The results of this study suggest a complex feedback between dissolution and

  4. Boundaries of intergrowths between mineral individuals: A zone of secondary mineral formation in aggregates

    NASA Astrophysics Data System (ADS)

    Brodskaya, R. L.; Bil'Skaya, I. V.; Lyakhnitskaya, V. D.; Markovsky, B. A.; Sidorov, E. G.

    2007-12-01

    Intergrowth boundaries between mineral individuals in dunite of the Gal’moenan massif in Koryakia was studied in terms of crystal morphology, crystal optics, and ontogenesis. The results obtained allowed us to trace the staged formation of olivine and chromite and four generations of these minerals. Micro-and nanotopography of boundary surfaces between intergrown mineral individuals of different generations was examined with optic, electron, and atomic force microscopes. The boundaries between mineral individuals of different generations are distinguished by their microsculpture for both olivine and chromite grains. Both minerals demonstrate a compositional trend toward refinement from older to younger generations. The decrease in the iron mole fraction in olivine and chromite is accompanied by the crystallization of magnetite along weakened zones in olivine of the first generation and as outer rims around the chromite grains of the second generation observable under optic and electronic microscopes. The subsequent refinement of chromite results in the release of PGE from its lattice, as established by atomic power microscopy. The newly formed PGM are localized at the boundaries between mineral individuals and, thus, mark a special stage in the ontogenetic evolution of mineral aggregates. Further recrystallization is expressed in the spatial redistribution of grain boundaries and the formation of monomineralic intergrowth boundaries, i.e., the glomerogranular structure of rock and substructures of PGM, chromite, and olivine grains as intermediate types of organization of the granular assemblies in the form of reticulate, chain, and cellular structures and substructures of aggregates.

  5. Sorption of trace constituents from aqueous solutions onto secondary minerals. II. Radium

    SciTech Connect

    Ames, L.L.; McGarrah, J.E.; Walker, B.A.

    1983-01-01

    Radium sorption efficiencies as a function of temperature, Ra concentration, and secondary mineral sorbate were determined in a 0.01 M NaCl solution. Radium sorption on a characterized clinoptilolite, montmorillonite, nontronite, opal, silica gel, illite, kaolinite, and glauconite under comparable experimental conditions allowed determination of Ra sorption efficiency curves for each, through use of Freundlich constants, over the same temperature and initial Ra solution concentration range Similar sorption data for U on the same secondary minerals over the same temperatures allowed comparison of sorption efficiencies for Ra and U. Clinoptilolite, illite, and nontronite were the most efficient Ra sorbents, while opal and silica gel were the poorest Ra sorbents. Generally, Ra sorption on secondary minerals was much greater than U sorption under the same experimental conditions. 13 references, 9 figures, 5 tables.

  6. Secondary phosphate mineralization in a karstic environment in Central Sri Lanka

    NASA Astrophysics Data System (ADS)

    Dahanayake, Kapila; Subasinghe, S. M. N. D.

    1989-07-01

    At Eppawala in central Sri Lanka secondary phosphate mineralization is intimately associated with laminated fabrics within depressions (sinkholes and smaller cavities) formed in the thick weathering profiles of a hilly terrain underlain by a Precambrian apatite-bearing formation. The lowermost levels of the profile show extensive zones of leaching where derived apatite crystals occur within fine-grained, laminated stromatolite sequences. The stromatolitic groundmass, which diagenetically formed by percolating oxygenated phosphate and carbonate-rich groundwaters, is impregnated by the phosphate minerals francolite and collophane. Scanning electron microscopy (SEM) reveals that fine filaments, characteristic of microorganisms, are associated with the secondary phosphate mineralization. Continuous degradation and fragmentation of the stromatolitic mat has produced pellets, peloids, and intraclasts all enriched in secondary apatite. Degrading recrystallization around the edges of the primary apatite crystals has developed coated grains. The widespread occurrence of phosphate-enriched allochems in stromatolitic groundmasses is a unique development of a modern phosphorite in a karstic environment.

  7. [Gigantomastia secondary to mineral oil injection. A case report].

    PubMed

    Meza-Pérez, Alfredo; Rodíguez Patiño, Enrique

    2004-01-01

    Use injections of illicit material to improve body contour is still a health problem in Mexico. Most commonly used are oily materials that in many patients may cause aesthetic and incapacitating functional complications. The case of a 32-year-old homosexual male patient is reported; he was injected with 80 cc of mineral oil in each mamma, which caused an important inflammatory reaction, growth, and severe ptosis of these. He was in apparent general good shape; thus, he was treated with bilateral subcutaneous mastectomy and free full-thickness nipple-areola complex graft. We consider that this pathology remains a current health problem that should alert health authorities to take preventive measures with regard to its administration. PMID:15162952

  8. Method of making a coating of a microtextured surface

    DOEpatents

    Affinito, John D [Tucson, AZ; Graff, Gordon L [West Richland, WA; Martin, Peter M [Kennewick, WA; Gross, Mark E [Pasco, WA; Burrows, Paul E [Kennewick, WA; Sapochak, Linda S [Henderson, NV

    2004-11-02

    A method for conformally coating a microtextured surface. The method includes flash evaporating a polymer precursor forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, cryocondensing the glow discharge polymer precursor plasma on the microtextured surface and crosslinking the glow discharge polymer precursor plasma thereon, wherein the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma.

  9. Microbial Composition in Decomposing Pine Litter Shifts in Response to Common Soil Secondary Minerals

    NASA Astrophysics Data System (ADS)

    Welty-Bernard, A. T.; Heckman, K.; Vazquez, A.; Rasmussen, C.; Chorover, J.; Schwartz, E.

    2011-12-01

    A range of environmental and biotic factors have been identified that drive microbial community structure in soils - carbon substrates, redox conditions, mineral nutrients, salinity, pH, and species interactions. However, soil mineralogy has been largely ignored as a candidate in spite of recent studies that indicate that minerals have a substantial impact on soil organic matter stores and subsequent fluxes from soils. Given that secondary minerals and organic colloids govern a soil's biogeochemical activity due to surface area and electromagnetic charge, we propose that secondary minerals are a strong determinant of the communities that are responsible for process rates. To test this, we created three microcosms to study communities during decomposition using pine forest litter mixed with two common secondary minerals in soils (goethite and gibbsite) and with quartz as a control. Changes in bacterial and fungal communities were tracked over the 154-day incubation by pyrosequencing fragments of the bacterial 16S and fungal 18S rRNA genes. Ordination using nonmetric multidimensional scaling showed that bacterial communities separated on the basis of minerals. Overall, a single generalist - identified as an Acidobacteriaceae isolate - dominated all treatments over the course of the experiment, representing roughly 25% of all communities. Fungal communities discriminated between the quartz control alone and mineral treatments as a whole. Again, several generalists dominated the community. Coniochaeta ligniaria dominated communities with abundances ranging from 29 to 40%. The general stability of generalist populations may explain the similarities between treatment respiration rates. Variation between molecular fingerprints, then, were largely a function of unique minor members with abundances ranging from 0.01 to 8%. Carbon availability did not surface as a possible mechanism responsible for shifts in fingerprints due to the relatively large mass of needles in the

  10. Mineral phases and metals in baghouse dust from secondary aluminum production

    EPA Science Inventory

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78...

  11. Weathering features and secondary minerals in Antarctic Shergottites ALHA77005 and LEW88516

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; Gooding, James L.

    1993-01-01

    Previous work has shown that all three sub-groups of the shergottite, nakhlite, and chassignite (SNC) clan of meteorites contain aqueous precipitates of probable pre-terrestrial origin. In the context of secondary minerals, the most thoroughly studied shergottite has been Elephant Moraine, Antarctica A79001 (EETA79001). The recognition of LEW88516 as the latest SNC specimen, and its close similarity with ALHA77005, invite a comparative study of the latter two meteorites, and with EETA79001, from the perspective of aqueous alteration. The fusion crusts of the two meteorites are quite similar except that ALHA77005 is more vesicular (possibly indicating a higher indigenous volatile content). Secondary aluminosilicates (and salts on LEW88516) of definite Antarctic origin partially fill vesicles and fractures on both fusion crusts. Interior samples of the two meteorites are grossly similar in that traces of secondary minerals are present in both.

  12. Electrically conducting superhydrophobic microtextured carbon nanotube nanocomposite

    NASA Astrophysics Data System (ADS)

    Caffrey, Paul O.; Gupta, Mool C.

    2014-09-01

    We report a simple and inexpensive method of producing an electrically conductive superhydrophobic polymer surface by adding multiwall carbon nanotubes directly into the polymer poly(dimethylsiloxane) (PDMS) matrix and replicating micro/nanotexture using a replication master prepared by ultrafast-laser microtexturing process. No additional coatings on conducting PDMS are required to achieve water contact angles greater than 161°. The conductivity can be controlled by changing the percent MWCNT added to PDMS and at a bulk loading of 4.4 wt% we report a conductivity improvement over pure PDMS by a factor of more than 1011 with electrical resistivity ρ = 761 Ω cm. This combined behavior of a conductive, superhydrophobic nanocomposite has exciting applications for allowing a new class of enclosures providing EMI shielding, water repellency and sensing to provide built-in temperature feedback. The effect of temperature on the nanocomposite was investigated and a negative temperature coefficient of resistance (-0.037 Ω/K) similar to that of a thermistor was observed.

  13. Hydrothermal Alteration in the PACMANUS Hydrothermal Field: Implications From Secondary Mineral Assemblages and Mineral Chemistry, OPD Leg 193

    NASA Astrophysics Data System (ADS)

    Lackschewitz, K. S.; Kummetz, M.; Kummetz, M.; Ackermand, D.; Botz, R.; Devey, C. W.; Singer, A.; Stoffers, P.

    2001-12-01

    Leg 193 of the Ocean Drilling Program investigated the subsurface nature of the active PACMANUS hydrothermal field in the Manus backarc basin near Papua New Guinea. Drilling in different areas on the felsic neovolcanic Pual Ridge, including the high-temperature black smoker complex of Roman Ruins and the low-temperature Snowcap site with diffusive discharge yielded a complex alteration history with a regional primary alteration being overprinted by a secondary mineralogy. The intense hydrothermal alteration at both sites shows significant differences in the secondary mineralogy. At Roman Ruins, the upper 25 m of hydrothermally altered rocks are characterized by a rapid change from secondary cristobalite to quartz, implying a high temperature gradient. From 10 to 120 mbsf the clay mineralogy is dominated by illite and chlorite. The chlorite formation temperature calculated from oxygen isotope data lies at 250° C in 116 mbsf which is similar to the present fluid outflow temperatures of 240-250° C (Douville et al., 1999, Geochim. Cosmochim. Acta, 63, 627-643). Drilling in the Snowcap field recovered evidence for several stages of hydrothermal alteration. Between 50 and 150 mbsf, cristobalite and chlorite are the most abundant alteration minerals while hydrothermal pyrophyllite becomes abundant in some places At 67 mbsf, the isotopic composition of pyrophyllite gives a temperature for ist formation at 260° C whereas at 77 and 116 mbsf the pyrophyllite displays the highest temperatures of formation (>300° C). These temperatures are close to the maximum measured borehole temperatures of 313° C. The appearance of assemblages of chlorite, chlorite-vermiculite, chlorite-vermiculite-smectite and illite-smectite as well as the local development of corrensite below 150 mbsf suggests that the alteration at Snowcap may be more complex than that beneath Roman Ruins. Detailed geochemical studies of the authigenic clay mineral phases will provide further insights into the

  14. Minerals

    MedlinePlus

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including building bones, making ... regulating your heartbeat. There are two kinds of minerals: macrominerals and trace minerals. Macrominerals are minerals your ...

  15. Form and composition of secondary mineralization in fractures in Columbia River basalts

    SciTech Connect

    McKinley, J.P.; Rawson, S.A.; Horton, D.G.

    1986-05-01

    Examination of basalt alteration rinds suggests that pyroxene is altered, along with mesostasis, from the inception of hydrothermal alteration along cooling fractures in Columbia River basalts. The only phyllosilicate secondary mineral in fractures is trioctahedral smectite of Fe-saponite composition, throughout the examined thickness of the basalt column. This smectite is compositionally distinct from the minor amounts of mesostasis smectite found in otherwise unaltered outcrop samples of basalt.

  16. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow

    NASA Astrophysics Data System (ADS)

    Hansel, Colleen M.; Benner, Shawn G.; Neiss, Jim; Dohnalkova, Alice; Kukkadapu, Ravi K.; Fendorf, Scott

    2003-08-01

    Iron (hydr)oxides not only serve as potent sorbents and repositories for nutrients and contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and the subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe as well as associated metals. Here we elucidate the pathways and mechanisms of secondary mineralization during dissimilatory iron reduction by a common iron-reducing bacterium, Shewanella putrefaciens (strain CN32), of 2-line ferrihydrite under advective flow conditions. Secondary mineralization of ferrihydrite occurs via a coupled, biotic-abiotic pathway primarily resulting in the production of magnetite and goethite with minor amounts of green rust. Operating mineralization pathways are driven by competing abiotic reactions of bacterially generated ferrous iron with the ferrihydrite surface. Subsequent to the initial sorption of ferrous iron on ferrihydrite, goethite (via dissolution/reprecipitation) and/or magnetite (via solid-state conversion) precipitation ensues resulting in the spatial coupling of both goethite and magnetite with the ferrihydrite surface. The distribution of goethite and magnetite within the column is dictated, in large part, by flow-induced ferrous Fe profiles. While goethite precipitation occurs over a large Fe(II) concentration range, magnetite accumulation is only observed at concentrations exceeding 0.3 mmol/L (equivalent to 0.5 mmol Fe[II]/g ferrihydrite) following 16 d of reaction. Consequently, transport-regulated ferrous Fe profiles result in a progression of magnetite levels downgradient within the column. Declining microbial reduction over time results in lower Fe(II) concentrations and a subsequent shift in magnetite precipitation mechanisms from nucleation to crystal growth. While the initial precipitation rate of goethite exceeds that of magnetite, continued growth is inhibited by

  17. Reduction of jarosite by Shewanella oneidensis MR-1 and secondary mineralization

    NASA Astrophysics Data System (ADS)

    Bingjie, Ouyang; Xiancai, Lu; Huan, Liu; Juan, Li; Tingting, Zhu; Xiangyu, Zhu; Jianjun, Lu; Rucheng, Wang

    2014-01-01

    Jarosite is a common mineral in a variety of environments formed by the oxidation of iron sulfide normally accompanying with the generation of acid mine drainage (AMD) in mining areas or acid rock drainages (ARD) in many localities. Decomposition of jarosite by dissimilatory iron reducing bacteria (DIRB) influences the mobility of many heavy metals generally accommodated in natural jarosite. This study examined the anaerobic reduction of synthesized jarosite by Shewanella oneidensis strain MR-1, a typical facultative bacteria. The release of ferrous and ferric ion, as well as sulfate and potassium, in the inoculated experimental group lasting 80 days is much higher than that in abiotic control groups. The detection of bicarbonate and acetate in experimental solution further confirms the mechanism of microbial reduction of jarosite, in which lactate acts as the electron donor. The produced ferrous iron stimulates the subsequent secondary mineralization, leading to precipitation and transformation of various iron-containing minerals. Green rust and goethite are the intermediate minerals of the microbial reduction process under anoxic conditions, and the end products include magnetite and siderite. In aerobic environments, goethite, magnetite and siderite were also detected, but the contents were relatively lower. While in abiotic experiments, only goethite has been detected as a product. Thus, the microbial reduction and subsequent mineral transformation can remarkably influence the geochemical cycling of iron and sulfur in supergene environments, as well as the mobility of heavy metals commonly accommodated in jarosite.

  18. Mineral Dissolution and Secondary Precipitation on Quartz Sand in Simulated Hanford Tank Solutions Affecting Subsurface Porosity

    SciTech Connect

    Wang, Guohui; Um, Wooyong

    2012-11-23

    Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the U.S. Department of Energy’s Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89°C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineral phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.

  19. Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals

    SciTech Connect

    Grey, Ian E. . E-mail: ian.grey@csiro.au; Birch, William D.; Bougerol, Catherine

    2006-12-15

    Structural relations between secondary tungsten minerals with general composition A{sub x}[(W,Fe)(O,OH){sub 3}]{sub .y}H{sub 2}O are described. Phyllotungstite (A=predominantly Ca) is hexagonal, a=7.31(3)A, c=19.55(1)A, space group P6{sub 3}/mmc. Pittongite, a new secondary tungsten mineral from a wolframite deposit near Pittong in Victoria, southeastern Australia (A=predominantly Na) is hexagonal, a=7.286(1)A, c=50.49(1)A, space group P-6m2. The structures of both minerals can be described as unit-cell scale intergrowths of (111){sub py} pyrochlore slabs with pairs of hexagonal tungsten bronze (HTB) layers. In phyllotungstite, the (111){sub py} blocks have the same thickness, 6A, whereas pittongite contains pyrochlore blocks of two different thicknesses, 6 and 12A. The structures can alternatively be described in terms of chemical twinning of the pyrochlore structure on (111){sub py} oxygen planes. At the chemical twin planes, pairs of HTB layers are corner connected as in hexagonal WO{sub 3}.

  20. Dynamics of Spreading on Micro-Textured Surfaces

    NASA Astrophysics Data System (ADS)

    Mohammad Karim, Alireza; Rothstein, Jonathan; Kavehpour, Pirouz

    2015-11-01

    Ultrahydrophobic surfaces, due to their large water-repellency characteristic, have a vast variety of applications in technology and nature, such as de-icing of airplane wings, efficiency increase of power plants, and efficiency of pesticides on plants, etc. The significance of ultrahydrophobic surfaces requires enhancing the knowledge on the spreading dynamics on such surfaces. The best way to produce an ultrahydrophobic surface is by patterning of smooth hydrophobic surfaces with micron sized posts. In this research, the micro-textured surfaces have been fabricated by patterning several different sizes of micro-textured posts on Teflon plates. The experimental study has been performed using forced spreading with Tensiometer to obtain the dependencw of dynamic contact angle to the contact line velocity to describe the spreading dynamics of Newtonian liquids on the micro-textured surfaces. The effect of the geometrical descriptions of the micro-posts along with the physical properties of liquids on the spreading dynamics on micro-textured Teflon plates have been also studied.

  1. Lithologic Control on Secondary Clay Mineral Formation in the Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Caylor, E.; Rasmussen, C.; Dhakal, P.

    2015-12-01

    Understanding the transformation of rock to soil is central to landscape evolution and ecosystem function. The objective of this study was to examine controls on secondary mineral formation in a forested catchment in the Catalina-Jemez CZO. We hypothesized landscape position controls the type of secondary minerals formed in that well-drained hillslopes favor Si-poor secondary phases such as kaolinite, whereas poorly drained portions of the landscape that collect solutes from surrounding areas favor formation of Si-rich secondary phases such as smectite. The study focused on a catchment in Valles Caldera in northern New Mexico where soils are derived from a mix of rhyolitic volcanic material, vegetation includes a mixed conifer forest, and climate is characterized by a mean annual precipitation of ~800 mm yr-1 and mean annual temperature of 4.5°C. Soils were collected at the soil-saprolite boundary from three landscape positions, classified as well drained hillslope, poorly drained convergent area, and poorly drained hill slope. Clay fractions were isolated and analyzed using a combination of quantitative and qualitative x-ray diffraction (XRD) analyses and thermal analysis. Quantitative XRD of random powder mounts indicated the presence of both primary phases such as quartz, and alkali and plagioclase feldspars, and secondary phases that include illite, Fe-oxyhydroxides including both goethite and hematite, kaolinite, and smectite. The clay fractions were dominated by smectite ranging from 36-42%, illite ranging from 21-35%, and kaolinite ranging from 1-8%. Qualitative XRD of oriented mounts confirmed the presence of smectite in all samples, with varying degrees of interlayering and interstratification. In contrast to our hypothesis, results indicated that secondary mineral assemblage was not strongly controlled by landscape position, but rather varied with underlying variation in lithology. The catchment is underlain by a combination of porphorytic rhyolite and

  2. Inhibition Effect of Secondary Phosphate Mineral Precipitation on Uranium Release from Contaminated Sediments

    SciTech Connect

    Shi, Zhenqing; Liu, Chongxuan; Zachara, John M.; Wang, Zheming; Deng, Baolin

    2009-11-01

    The inhibitory effect of phosphate mineral precipitation on uranium release was evaluated using a U(VI)-contaminated sediment collected from the US Department of Energy (DOE) Hanford site. The sediment contained U(VI) that was associated with diffusion-limited intragrain regions within its mm-size granitic lithic fragments. The sediment was first treated to promote phosphate mineral precipitation in batch suspensions spiked with 1 and 50 mM aqueous phosphate, and calcium in a stoichiometric ratio of mineral hydroxyapatite. The phosphate-treated sediment was then leached to solubilize contaminant U(VI) in a column system using a synthetic groundwater that contained chemical components representative of Hanford groundwater. Phosphate treatment significantly decreased the extent of U(VI) release from the sediment. Within the experimental duration of about 200 pore volumes, the effluent U(VI) concentrations were consistently lower by over one and two orders of magnitude after the sediment was treated with 1 and 50 mM of phosphate, respectively. Measurements of solid phase U(VI) using various spectroscopes and chemical extraction of the sediment collectively indicated that the inhibition of U(VI) release from the sediment was caused by: 1) U(VI) adsorption to the secondary phosphate precipitates and 2) the transformation of initially present U(VI) mineral phases to less soluble forms.

  3. Bone mineral density evaluation among patients with neuromuscular scoliosis secondary to cerebral palsy☆

    PubMed Central

    Rezende, Rodrigo; Cardoso, Igor Machado; Leonel, Rayana Bomfim; Perim, Larissa Grobério Lopes; Oliveira, Tarcísio Guimarães Silva; Jacob Júnior, Charbel; Júnior, José Lucas Batista; Lourenço, Rafael Burgomeister

    2014-01-01

    Objective To evaluate bone mineral density among patients with neuromuscular scoliosis secondary to quadriplegic cerebral palsy. Methods This was a descriptive prospective study in which both bone densitometric and anthropometric data were evaluated. The inclusion criteria used were that the patients should present quadriplegic cerebral palsy, be confined to a wheelchair, be between 10 and 20 years of age and present neuromuscular scoliosis. Results We evaluated 31 patients (20 females) with a mean age of 14.2 years. Their mean biceps circumference, calf circumference and body mass index were 19.4 cm, 18.6 cm and 16.9 kg/m2, respectively. The mean standard deviation from bone densitometry was −3.2 (z-score), which characterizes osteoporosis. Conclusion There is high incidence of osteoporosis in patients with neuromuscular scoliosis secondary to quadriplegic cerebral palsy. PMID:26229882

  4. Genesis of secondary uranium minerals associated with jasperoid veins, El Erediya area, Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Abd El-Naby, Hamdy H.

    2008-11-01

    Uranium mineralization in the El Erediya area, Egyptian Eastern Desert, has been affected by both high temperature and low temperature fluids. Mineralization is structurally controlled and is associated with jasperoid veins that are hosted by a granitic pluton. This granite exhibits extensive alteration, including silicification, argillization, sericitization, chloritization, carbonatization, and hematization. The primary uranium mineral is pitchblende, whereas uranpyrochlore, uranophane, kasolite, and an unidentified hydrated uranium niobate mineral are the most abundant secondary uranium minerals. Uranpyrochlore and the unidentified hydrated uranium niobate mineral are interpreted as alteration products of petscheckite. The chemical formula of the uranpyrochlore based upon the Electron Probe Micro Analyzer (EPMA) is A {left( {{text{U}}_{{1.07}} {text{Ca}}_{{0.28}} {text{Pb}}_{{0.03}} {text{Na}}_{{0.21}} {text{Mg}}_{{0.02}} } right)}_{{Σ 1.6}} B {left( {{text{Nb}}_{{0.57}} {text{Si}}_{{0.62}} {text{Zr}}_{{0.35}} {text{P}}_{{0.20}} {text{Fe}}_{{0.17}} {text{Al}}_{{0.06}} {text{Ti}}_{{0.03}} } right)}_{{Σ 2}} . It is characterized by a relatively high Zr content (average ZrO2 = 6.6 wt%). The average composition of the unidentified hydrated uranium niobate mineral is ^{{text{U}}} {left( {{text{U}}_{{1.89}} {text{Ca}}_{{0.49}} {text{Pb}}_{{0.13}} {text{Na}}_{{0.06}} {text{Mg}}_{{0.02}} } right)}_{{Σ 2.59}} ^{{{text{Nb}}}} {left( {{text{Nb}}_{{1.31}} {text{Fe}}_{{0.34}} {text{Si}}_{{0.14}} {text{P}}_{{0.10}} {text{Ti}}_{{0.05}} {text{Zr}}_{{0.03}} {text{Al}}_{{0.03}} } right)}_{{Σ 2.0}} , where U and Nb represent the dominant cations in the U and Nb site, respectively. Uranophane is the dominant U6+ silicate phase in oxidized zones of the jasperoid veins. Kasolite is less abundant than uranophane and contains major U, Pb, and Si but only minor Ca, Fe, P, and Zr. A two-stage metallogenetic model is proposed for the alteration processes and uranium mineralization at

  5. Control of mineral scale deposition in cooling systems using secondary-treated municipal wastewater.

    PubMed

    Li, Heng; Hsieh, Ming-Kai; Chien, Shih-Hsiang; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D

    2011-01-01

    Secondary-treated municipal wastewater (MWW) is a promising alternative to freshwater as power plant cooling system makeup water, especially in arid regions. A prominent challenge for the successful use of MWW for cooling is potentially severe mineral deposition (scaling) on pipe surfaces. In this study, theoretical, laboratory, and field work was conducted to evaluate the mineral deposition potential of MWW and its deposition control strategies under conditions relevant to power plant cooling systems. Polymaleic acid (PMA) was found to effectively reduce scale formation when the makeup water was concentrated four times in a recirculating cooling system. It was the most effective deposition inhibitor of those studied when applied at 10 mg/L dosing level in a synthetic MWW. However, the deposition inhibition by PMA was compromised by free chlorine added for biogrowth control. Ammonia present in the wastewater suppressed the reaction of the free chlorine with PMA through the formation of chloramines. Monochloramine, an alternative to free chlorine, was found to be less reactive with PMA than free chlorine. In pilot tests, scaling control was more challenging due to the occurrence of biofouling even with effective control of suspended bacteria. Phosphorous-based corrosion inhibitors are not appropriate due to their significant loss through precipitation reactions with calcium. Chemical equilibrium modeling helped with interpretation of mineral precipitation behavior but must be used with caution for recirculating cooling systems, especially with use of MWW, where kinetic limitations and complex water chemistries often prevail. PMID:20851443

  6. Hydrothermal alteration in Oregon's Newberry Volcano No. 2: fluid chemistry and secondary-mineral distribution

    SciTech Connect

    Keith, T.E.C.; Mariner, R.H.; Bargar, K.E.; Evans, W.C.; Presser, T.S.

    1984-04-01

    Newberry 2 was drilled in the caldera floor of Newberry Volcano, Oregon, by the US Geological Survey during 1979-81. The maximum temperature measured was 265C at the bottom of the hole, 932 m below the surface. Rocks recovered fr9om the drill hole are divided into three intervals on the basis of hydrothermal alteration and mineral deposition: (1) 0-290 m consists of unaltered, largely glassy volcanic material, with present temperatures ranging from 20 to 40C; (2) 290-700 m consists of permeable tuff layers, tuff breccia units, and brecciated and fractured rhyodacitic to dacitic lava flows, with temperatures ranging from 40 to 100C; (3) 700-932 m consists of impermeable andesitic to basaltic lava flows that generally show little effect of alteration, interlayered with permeable hydrothermally altered flow breccia, with temperatures gradually increasing from 100 at 700 m to 265C at 932 m. Hydrothermal alteration throughout the system is controlled by rock permeability, temperature, composition of geothermal fluids, and composition and crystallinity of host rocks. Rock alteration consists mainly of replacement of glass by clay minerals and, locally, zeolites, partial replacement of plagioclase phenocrysts by calcite +/- epidote +/- illite, and whole-rock leaching adjacent to fluids channels. Open-space deposition of hydrothermal minerals in fractures, vesicles, and interbreccia pore space is far more abundant than replacement. A cooling shallow convection system in the upper 700 m is indicated by the occurrence of hydrothermal minerals that were deposited in a slightly higher temperature environment than presently exists. Below 700 m, the heat flow is conductive, and fluid flow is controlled by horizontal lava flows. Homogenization temperatures of secondary quartz fluid inclusions were as high as 370C.

  7. Lava Cave Microbial Communities Within Mats and Secondary Mineral Deposits: Implications for Life Detection on Other Planets

    PubMed Central

    Melim, L.A.; Spilde, M.N.; Hathaway, J.J.M.; Garcia, M.G.; Moya, M.; Stone, F.D.; Boston, P.J.; Dapkevicius, M.L.N.E.; Riquelme, C.

    2011-01-01

    Abstract Lava caves contain a wealth of yellow, white, pink, tan, and gold-colored microbial mats; but in addition to these clearly biological mats, there are many secondary mineral deposits that are nonbiological in appearance. Secondary mineral deposits examined include an amorphous copper-silicate deposit (Hawai‘i) that is blue-green in color and contains reticulated and fuzzy filament morphologies. In the Azores, lava tubes contain iron-oxide formations, a soft ooze-like coating, and pink hexagons on basaltic glass, while gold-colored deposits are found in lava caves in New Mexico and Hawai‘i. A combination of scanning electron microscopy (SEM) and molecular techniques was used to analyze these communities. Molecular analyses of the microbial mats and secondary mineral deposits revealed a community that contains 14 phyla of bacteria across three locations: the Azores, New Mexico, and Hawai‘i. Similarities exist between bacterial phyla found in microbial mats and secondary minerals, but marked differences also occur, such as the lack of Actinobacteria in two-thirds of the secondary mineral deposits. The discovery that such deposits contain abundant life can help guide our detection of life on extraterrestrial bodies. Key Words: Biosignatures—Astrobiology—Bacteria—Caves—Life detection—Microbial mats. Astrobiology 11, 601–618. PMID:21879833

  8. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets.

    PubMed

    Northup, D E; Melim, L A; Spilde, M N; Hathaway, J J M; Garcia, M G; Moya, M; Stone, F D; Boston, P J; Dapkevicius, M L N E; Riquelme, C

    2011-09-01

    Lava caves contain a wealth of yellow, white, pink, tan, and gold-colored microbial mats; but in addition to these clearly biological mats, there are many secondary mineral deposits that are nonbiological in appearance. Secondary mineral deposits examined include an amorphous copper-silicate deposit (Hawai'i) that is blue-green in color and contains reticulated and fuzzy filament morphologies. In the Azores, lava tubes contain iron-oxide formations, a soft ooze-like coating, and pink hexagons on basaltic glass, while gold-colored deposits are found in lava caves in New Mexico and Hawai'i. A combination of scanning electron microscopy (SEM) and molecular techniques was used to analyze these communities. Molecular analyses of the microbial mats and secondary mineral deposits revealed a community that contains 14 phyla of bacteria across three locations: the Azores, New Mexico, and Hawai'i. Similarities exist between bacterial phyla found in microbial mats and secondary minerals, but marked differences also occur, such as the lack of Actinobacteria in two-thirds of the secondary mineral deposits. The discovery that such deposits contain abundant life can help guide our detection of life on extraterrestrial bodies. PMID:21879833

  9. Secondary Sulfate Mineralization and Basaltic Chemistry of Craters of the Moon National Monument, Idaho: Potential Martian Analog

    SciTech Connect

    C. Doc Richardson; Nancy W. Hinman; Lindsay J. McHenry; J. Michelle Kotler; Jill R. Scott

    2012-05-01

    Secondary deposits associated with the basaltic caves of Craters of the Moon National Monument (COM) in southern Idaho were examined using X-ray powder diffraction, X-ray fluorescence spectrometry, Fourier transform infrared spectrometry, and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The secondary mineral assemblages are dominated by Na-sulfate minerals (thenardite, mirabilite) with a small fraction of the deposits containing minor concentrations of Na-carbonate minerals. The assemblages are found as white, efflorescent deposits in small cavities along the cave walls and ceilings and as localized mounds on the cave floors. Formation of the deposits is likely due to direct and indirect physiochemical leaching of meteoritic water through the overlying basalts. Whole rock data from the overlying basaltic flows are characterized by their extremely high iron concentrations, making them good analogs for martian basalts. Understanding the physiochemical pathways leading to secondary mineralization at COM is also important because lava tubes and basaltic caves are present on Mars. The ability of FTICR-MS to consistently and accurately identify mineral species within these heterogeneous mineral assemblages proves its validity as a valuable technique for the direct fingerprinting of mineral species by deductive reasoning or by comparison with reference spectra.

  10. Microtextures and grain boundary misorientation distributions in controlled heat input titanium alloy fusion welds

    NASA Astrophysics Data System (ADS)

    Leary, R.; Merson, E.; Brydson, R.

    2010-07-01

    Microstructures, macrotextures and microtextures in commercial purity titanium and Ti-6Al-4V fusion welds produced by the InterPulse gas tungsten constricted arc welding (GTCAW) technique have been characterised. At the cooling rates associated with the InterPulse technique, α variants sharing a common 1120 pole are found to cluster together into groups within prior β grains, leading to large areas where all variants are separated by a misorientation of 60°. These present potential easy slip paths, hence increasing the "effective structural unit size." Characterisation of these microtextures may provide new insight into microtexture-properties relations and the mechanisms of microtextural evolution.

  11. Secondary Mineralization of Components in CV3 Chondrites: Nebular and Asteroidal Models

    NASA Astrophysics Data System (ADS)

    Scott, E. R. D.; Krot, A. N.; Zolensky, M. E.

    1995-09-01

    Our review of mineralogical variations among CV3 chondrites suggests that all components, chondrules, matrices, and CAIs, were affected by various degrees of secondary mineralization. Chondrules and CAIs are rimmed with fayalitic olivine [1, 2]; metal in all components is oxidized and sulfidized to magnetite, Ni-rich metal and sulfides [3]; silicates in all components are aqueously altered to phyllosilicates [4]; and nepheline, sodalite, wollastonite, and hedenbergite replace primary minerals in CAIs [5]. In those CV3s with altered CAIs, nepheline etc. are also present in chondrule mesostases [6] and in matrices [7]. Correlated occurrences of secondary minerals indicate that they have related origins. CV3 chondrites can be divided into three kinds according to their secondary features. Reduced CV3s (e.g., Efremovka) lack magnetite [8] and show minimal secondary features. Oxidized CV3s [8] generally show all features: those like Mokoia contain minor fayalitic rims, nepheline, etc, whereas those like Allende lack phyllosilicates but contain well developed fayalite rims and abundant nepheline, etc. Allende-like CV3 chondrites also contain abundant plate-like matrix olivine (Fa(sub)45-55). Similarities in chemistry and O isotopic composition and petrographic observations suggest that fayalitic rims and plate-like matrix olivine have related origins [1, 9]. The presence of secondary minerals in all components implies that alteration postdated component formation. The absence of secondary minerals in reduced CV3s indicates that CV3 oxidized formed from CV3 reduced-like material. Oxidized and reduced materials coexist in some breccias indicating a common parent asteroid. Nebular origins are widely accepted for most secondary features. To form fayalitic rims and matrix , Palme and colleagues [10, 11] suggest that chondritic components were briefly exposed to a hot (>1500 K), highly oxidizing nebula with H2O/H2 to about 1. Such an environment could have resulted from

  12. Minerals salt composition and secondary metabolites of Euphorbia hirta Linn., an antihyperglycemic plant

    PubMed Central

    Yvette Fofie, N’Guessan Bra; Sanogo, Rokia; Coulibaly, Kiyinlma; Kone-Bamba, Diénéba

    2015-01-01

    Phytochemical study and research on acute toxicity were performed on the aerial parts (leaves and stems) of Euphorbia hirta Linn. The phytochemical screening and chromatography revealed the presence of saponin, sterol, terpene, alkaloids, polyphenols, tannins and flavonoids and especially mucilage. The evaluation of total polyphenols and total flavonoids gave 120.97 ± 7.07 gallic acid equivalents (GAE) mg/g (mg of GAE/g of extract) of dry extract and 41.4 ± 0.5 mg quercetin equivalent per gram (QE/g) (mg of QE/g of plant extract) of dry extract respectively. The physicochemical study revealed moisture content of 7.73% ± 0.00%, total ash 7.48% ± 0.03%. Sulfuric ash 9.05% ± 0.01%, hydrochloric acid insoluble ash of 0.8% ± 0.02%. The search for minerals salt revealed the presence of Cr, Zn, K, Ca and Mg having an important role in glucose metabolism. The acute toxicity study showed that the toxic dose may be above 3000 mg/kg. The results of these studies indicate that extracts from the leaves and stem of E. hirta Linn. contains trace elements and minerals salt and bioactive secondary metabolites which explain their therapeutic uses for treating diabetes mellitus. PMID:25598628

  13. Evidence for an unsaturated-zone origin of secondary minerals in Yucca Mountain, Nevada

    SciTech Connect

    Whelan, Joseph F.; Roedder, Edwin; Paces, James B.

    2001-04-29

    The unsaturated zone (UZ) in Miocene-age welded tuffs at Yucca Mountain, Nevada, is under consideration as a potential site for the construction of a high-level radioactive waste repository. Secondary calcite and silica minerals deposited on fractures and in cavities in the UZ tuffs are texturally, isotopically, and geochemically consistent with UZ deposition from meteoric water infiltrating at the surface and percolating through the UZ along fractures. Nonetheless, two-phase fluid inclusions with small and consistent vapor to liquid (V:L) ratios that yield consistent temperatures within samples and which range from about 35 to about 80 C between samples have led some to attribute these deposits to formation from upwelling hydrothermal waters. Geochronologic studies have shown that calcite and silica minerals began forming at least 10 Ma and continued to form into the Holocene. If their deposition were really from upwelling water flooding the UZ, it would draw into question the suitability of the site as a waste repository.

  14. Minerals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish require the same minerals or inorganic elements as terrestrial animals for tissue formation, osmoregulation and various metabolic functions. Those required in large quantities are termed macro- or major minerals and those required in small quantities are called micro- or trace minerals. Fish ca...

  15. Diagenesis of basalts from the Pasco Basin, Washington. I. Distribution and composition of secondary mineral phases

    SciTech Connect

    Benson, L.V.; Teague, L.S.

    1982-01-01

    The principal components of secondary mineral assemblages found in Pasco Basin basalts are iron-rich smectite (nontronite), clinoptilolite, and silica. Silica occurs as quartz, cristobalite, tridymite, and opal-CT. Extractable iron within the nontronite suggests the presence of an iron-bearing oxyhydroxide phase intercalated with the nontronite. Other components present in minor or trace amounts are mordenite, celadonite, apatite, pyrite, phillipsite, gypsum, crionite, and chabazite. The generalized precipitation sequence with time and/or depth was found to be clay (usually nontronite) ..-->.. clinoptilolite ..-->.. silica and/or clay. Nontronite, the first phase to form, is present at nearly all sampled depths. Clinoptilolite is apparently restricted to depths below about 350 m. Quartz is ubiquitous whereas opal and cristobalite appear to be abundant only below 600 m. Mordenite occurs only at depths below about 900 m, which correlates roughly with the first occurrence of dissolution-etched clinoptilolite. These observations as well as comparisons with data on secondary minearl assemblages from other basaltic and felsic systems suggest that the geochemical evolution of Pasco Basin basalts probably occurred under conditions similar to those existing today.

  16. Origin, timing, and temperature of secondary calcite-silica mineral formation at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Wilson, Nicholas S. F.; Cline, Jean S.; Amelin, Yuri V.

    2003-03-01

    The origin of secondary calcite-silica minerals in primary and secondary porosity of the host Miocene tuffs at Yucca Mountain has been hotly debated during the last decade. Proponents of a high-level nuclear waste repository beneath Yucca Mountain have interpreted the secondary minerals to have formed from cool, descending meteoric fluids in the vadose zone; critics, citing the presence of two-phase fluid inclusions, argued that the minerals could only have formed in the phreatic zone from ascending hydrothermal fluids. Understanding the origin, temperature, and timing of these minerals is critical in characterizing geologically recent fluid flux at the site, and has significant implications to whether waste should be stored at Yucca Mountain. Petrographic and paragenetic studies of 155 samples collected from the Exploratory Studies Facility (ESF) and repository block cross drift (ECRB) tunnels indicate that heterogeneously distributed calcite with lesser chalcedony, quartz, opal, and fluorite comprise the oldest secondary minerals. These are typically overgrown by intermediate-aged calcite, often exhibiting distinctive bladed habits. The youngest event recorded across the site is the deposition of Mg-enriched (up to ˜1 wt%) and depleted, growth-zoned calcite intergrown with U-enriched opal. The cyclical variation in Mg enrichment and depletion is probably related to climate changes that have occurred during the last few million years. The distribution of secondary minerals is consistent with precipitation in the vadose zone. Fluid inclusion petrography of sections from the 155 samples determined that 96% of the fluid inclusion assemblages (FIAs) contained liquid-only inclusions that formed at ambient temperatures (<35°C). However, 50% of the samples (n = 78) contained relatively rare FIA that contain both liquid-only and liquid plus vapor inclusions (herein termed two-phase FIAs) that formed at temperatures above 35°C. Virtually all of these two-phase FIAs

  17. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    SciTech Connect

    Maher, K.; Steefel, C. I.; White, A.F.; Stonestrom, D.A.

    2009-02-25

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total

  18. Martian surface microtexture from orbital CRISM multi-angular observations: A new perspective for the characterization of the geological processes

    NASA Astrophysics Data System (ADS)

    Fernando, J.; Schmidt, F.; Douté, S.

    2016-09-01

    The surface of Mars has a high morphological and mineralogical diversity due to the intricacy of external, internal processes, and exchanges with the atmosphere, the hydrosphere and the cryosphere. In particular, liquid water played an important role in surface evolution. However, the origin, duration and intensity of those wet events have been highly debated, especially in the clay-bearing geological units. Similarly, questions still remain about magma crystallization and volatile quantity of the dominant basaltic crust. In this work, six sites having hydrated minerals, salts and basaltic signatures (i.e., Mawrth Vallis, Holden crater, Eberswalde crater, Capri mensa, Eridania basin, Terra Sirenum) are investigated in order to better characterize the geological processes responsible for their formation and evolution (e.g., fluvial, lacustrine, in situ weathering, evaporitic, volcanic and aeolian processes). For that purpose, we use orbital multi-angular measurements from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on-board the Mars Reconnaissance Orbiter spacecraft to analyze the manner in which light is scattered by the surface materials (photometry) in the near-infrared range (at 750 nm). The surface bidirectional reflectance depends on the composition but also on the surface microtexture such as the grain size distribution, morphology, internal structure and surface roughness, tracers of the geological processes. The Hapke semi-analytical model of radiative transfer in granular medium is used to model the surface bidirectional reflectance estimated at 750 nm from the orbital measurements after an atmospheric correction. The model depends on different radiative properties (e.g., single scattering albedo, grain phase function and regolith roughness) related to the surface composition and microtexture. In particular previous laboratory works showed that the particle phase function parameters, which describe the characteristics of the

  19. Mineral phases and metals in baghouse dust from secondary aluminum production.

    PubMed

    Huang, Xiao-Lan; El Badawy, Amro M; Arambewela, Mahendranath; Adkins, Renata; Tolaymat, Thabet

    2015-09-01

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 μg L(-1) As; >1000 μg L(-1) Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). PMID:25898346

  20. 9 M.y. record of southern Nevada climate from Yucca Mountain secondary minerals

    SciTech Connect

    Whelan, J.F.; Moscati, R.J.

    1998-12-01

    Yucca Mountain, Nevada, is presently the object of intense study as a potential permanent repository for the Nation`s high-level radioactive wastes. The mountain consists of a thick sequence of volcanic tuffs within which the depth to water table ranges from 500 to 700 meters below the land surface. This thick unsaturated zone (UZ), which would host the projected repository, coupled with the present day arid to semi-arid climate, is considered a favorable attribute of the site. Evaluation of the site includes defining the relation between climate variability, as the input function or driver of site- and regional-scale ground-water flow, and the possible future transport and release of radionuclides to the accessible environment. Secondary calcite and opal have been deposited in the UZ by meteoric waters that infiltrated through overlying soils and percolated through the tuffs. The oxygen isotopic composition ({delta}{sup 18}O values) of these minerals reflect contemporaneous meteoric waters and the {delta}{sup 13}C values reflect soil organic matter, and hence the resident plant community, at the time of infiltration. Recent U/Pb age determinations of opal in these occurrences, coupled with the {delta}{sup 13}C values of associated calcite, allow broadbrush reconstructions of climate patterns during the past 9 M.y.

  1. Minerals

    MedlinePlus

    ... your body needs in larger amounts. They include calcium, phosphorus, magnesium, sodium, potassium, chloride and sulfur. Your body needs just small amounts of trace minerals. These include iron, manganese, copper, iodine, zinc, cobalt, fluoride and selenium. The best way to ...

  2. Fibroblast extracellular matrix and adhesion on microtextured polydimethylsiloxane scaffolds.

    PubMed

    Stanton, Morgan M; Parrillo, Allegra; Thomas, Gawain M; McGimpsey, W Grant; Wen, Qi; Bellin, Robert M; Lambert, Christopher R

    2015-05-01

    The immediate physical and chemical surroundings of cells provide important biochemical cues for their behavior. Designing and tailoring biomaterials for controlled cell signaling and extracellular matrix (ECM) can be difficult due to the complexity of the cell-surface relationship. To address this issue, our research has led to the development of a polydimethylsiloxane (PDMS) scaffold with defined microtopography and chemistry for surface driven ECM assembly. When human fibroblasts were cultured on this microtextured PDMS with 2-6 µm wide vertical features, significant changes in morphology, adhesion, actin cytoskeleton, and fibronectin generation were noted when compared with cells cultured on unmodified PDMS. Investigation of cellular response and behavior was performed with atomic force microscopy in conjunction with fluorescent labeling of focal adhesion cites and fibronectin in the ECM. Changes in the surface topography induced lower adhesion, an altered actin cytoskeleton, and compacted units of fibronectin similar to that observed in vivo. Overall, these findings provide critical information of cell-surface interactions with a microtextured, polymer substrate that can be used in the field of tissue engineering for controlling cellular ECM interactions. PMID:25142015

  3. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium.

    PubMed

    Banik, Brittany L; Riley, Thomas R; Platt, Christina J; Brown, Justin L

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6-18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  4. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium

    PubMed Central

    Banik, Brittany L.; Riley, Thomas R.; Platt, Christina J.; Brown, Justin L.

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6–18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  5. Volcanic stratigraphy and secondary mineralization of U. S. G. S. Pucci geothermal test well, Mount Hood, Oregon

    SciTech Connect

    Gannett, M.W.; Bargar, K.E.

    1981-01-01

    Ninety-one sample splits of drill cuttings from approximately 6.1 m intervals in the 610 m hole that was completed in 1979 were provided for this study. An additional 225 sample splits (3.05 m intervals) from 536 m to the bottom of the drill hole at 1220 m were added to the study following the deepening of the drill hole. Stratigraphic and petrologic observations of the cuttings were made. Scanning electron microscope and x-ray diffractometer examinations were made of alteration minerals. The lithology and secondary mineralization are discussed.

  6. Sorption and redox reactions of As(III) and As(V) within secondary mineral coatings on aquifer sediment grains.

    PubMed

    Singer, David M; Fox, Patricia M; Guo, Hua; Marcus, Matthew A; Davis, James A

    2013-10-15

    Important reactive phenomena that affect the transport and fate of many elements occur at the mineral-water interface (MWI), including sorption and redox reactions. Fundamental knowledge of these phenomena are often based on observations of ideal mineral-water systems, for example, studies of molecular scale reactions on single crystal faces or the surfaces of pure mineral powders. Much less is understood about MWI in natural environments, which typically have nanometer to micrometer scale secondary mineral coatings on the surfaces of primary mineral grains. We examined sediment grain coatings from a well-characterized field site to determine the causes of rate limitations for arsenic (As) sorption and redox processes within the coatings. Sediments were obtained from the USGS field research site on Cape Cod, MA, and exposed to synthetic contaminated groundwater solutions. Uptake of As(III) and As(V) into the coatings was studied with a combination of electron microscopy and synchrotron techniques to assess concentration gradients and reactive processes, including electron transfer reactions. Transmission electron microscopy (TEM) and X-ray microprobe (XMP) analyses indicated that As was primarily associated with micrometer- to submicrometer aggregates of Mn-bearing nanoparticulate goethite. As(III) oxidation by this phase was observed but limited by the extent of exposed surface area of the goethite grains to the exterior of the mineral coatings. Secondary mineral coatings are potentially both sinks and sources of contaminants depending on the history of a contaminated site, and may need to be included explicitly in reactive transport models. PMID:24041305

  7. Radionuclide Incorporation in Secondary Crystalline Minerals Resulting from Chemical Weathering of Selected Waste Glasses: Progress Report for Subtask 3d

    SciTech Connect

    SV Mattigod; DI Kaplan; VL LeGore; RD Orr; HT Schaef; JS Young

    1998-10-23

    Experiments were conducted in fiscal year 1998 by Pacific Northwest National Laboratory to evaluate potential incorporation of radionuclides in secondary mineral phases that form from weathering vitrified nuclear waste glasses. These experiments were conducted as part of the Immobilized Low- Activity Waste-Petiormance Assessment (ILAW-PA) to generate data on radionuclide mobilization and transport in a near-field enviromnent of disposed vitrified wastes. An initial experiment was conducted to identify the types of secondary minerals that form from two glass samples of differing compositions, LD6 and SRL202. Chemical weathering of LD6 glass at 90oC in contact with an aliquot of uncontaminated Hanford Site groundwater resulted in the formation of a Crystalline zeolitic mineral, phillipsite. In contrast similar chemical weathering of SRL202 glass at 90"C resulted in the formation of a microcrystalline smectitic mineral, nontronite. A second experiment was conducted at 90"C to assess the degree to which key radionuclides would be sequestered in the structure of secondary crystalline minerals; namely, phillipsite and nontronite. Chemical weathering of LD6 in contact with radionuclide-spiked Hanford Site groundwater indicated that substantial ilactions of the total activities were retained in the phillipsite structure. Similar chemical weathering of SRL202 at 90"C, also in contact with radionuclide-spiked Hanford Site groundwater, showed that significant fractions of the total activities were retained in the nontronite structure. These results have important implications regarding the radionuclide mobilization aspects of the ILAW-PA. Additional studies are required to confkm the results and to develop an improved under- standing of mechanisms of sequestration and attenuated release of radionuclides to help refine certain aspects of their mobilization.

  8. Preliminary bounds on the water composition and secondary mineral development that may influence the near-field environment

    SciTech Connect

    Whitbeck, M.; Glassley, W.

    1998-02-01

    The evolution of the water chemistry and secondary mineral development in the vicinity of the near-field of a potential Yucca Mountain high level nuclear waste repository will be controlled by temperature, and interaction of water with rock over time. This report describes initial bounds on water composition and secondary mineral development, as a function of time, temperature, and rock type (devitrified, welded tuff and vitrophyre). The code EQ3/6 was used in the calculations, with explicit use of transition state theory models for mineral dissolution rates for the framework minerals of the tuff. Simulations were run for time durations sufficient to achieve steady state conditions. Uncertainty in the calculations, due to uncertainty in the measured dissolution rates, was considered by comparing results in simulations in which rates were varied within the range of known uncertainties for dissolution rate constants. The results demonstrate that the steady state mineralogy and water compositions are relatively insensitive to the rock unit modeled, which is consistent with the fact that the compositions of the rock units in the vicinity if the potential repository are similar, and will tend toward similar thermodynamic free energy minima, for similar rock:water ratios. Significant differences are observed, however, for large differences in rock: water ratios. The rates at which this end point condition are approached are a function of the rate parameters used, and can vary by orders of magnitude.

  9. Comparison of microstructure of superplastically deformed synthetic materials and ultramylonite: Coalescence of secondary mineral grains via grain boundary sliding

    NASA Astrophysics Data System (ADS)

    Hiraga, T.; Miyazaki, T.; Tasaka, M.; Yoshida, H.

    2011-12-01

    Using very fine-grained aggregates of forsterite containing ~10vol% secondary mineral phase such as periclase and enstatite, we have been able to demonstrate their superplascity, that is, achievement of more than a few 100 % tensile strain (Hiraga et al. 2010). Superplastic deformation is commonly considered to proceed via grain boundary sliding (GBS) which results in grain switching in the samples. Hiraga et al. (2010) succeeded in detecting the operation of GBS from observing the coalescence of grains of secondary phase in superplastically deformed samples. The secondary phase pins the motion of grain boundaries of the primary phase; however, the reduction of the number of the grains of secondary phase due to their coalescence allows grain growth of the primary phase. We analyzed the relationships between grain size of the primary and secondary phases, between strain and grain size, and between strain and the number of coalesced grains in the superplastically deformed samples. The results supports participation of all the grains of the primary phase in grain switching process indicating that the grain boundary sliding accommodates almost entire strain during the deformation. Mechanical properties of these materials such as their stress and grain size exponents of 1-2 do not conflict this conclusion. We applied the relationships obtained from analyzing superplastic materials to the microstructure of the natural samples, which has been considered to have deformed via grain boundary sliding, that is, ultramylonite. The microstructure of greenschist-grade ultramylonite reported by Fliervoet et al. (1997) was analyzed. Distributions of the mineral phases (i.e., quartz, plagioclase, K-feldspar and biotite) show distinct coalescence of the same mineral phases in the direction almost perpendicular to the foliation of the rock. The number of coalesced grains indicates that the strain that rock experienced is > 2. [reference] Hiraga et al. (2010) Nature 468, 1091

  10. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    NASA Astrophysics Data System (ADS)

    Maher, Kate; Steefel, Carl I.; White, Art F.; Stonestrom, Dave A.

    2009-05-01

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2008) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. I: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta58 (9), 2011-2024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Additionally, observed maximum clay abundances in the argillic horizons occur at the

  11. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    USGS Publications Warehouse

    Maher, K.; Steefel, Carl; White, A.F.; Stonestrom, D.A.

    2009-01-01

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2008) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. I: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta 72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta 70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta 58 (9), 2011-2024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Additionally, observed maximum clay abundances in the argillic horizons occur at

  12. Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lu, Peng; Zheng, Zuoping; Ganor, Jiwchar

    2010-07-01

    This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fourth paper in our series of "Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems". In our third paper, we demonstrated via speciation-solubility modeling that partial equilibrium between secondary minerals and aqueous solutions was not attained in feldspar hydrolysis batch reactors at 90-300 °C and that a strong coupling between dissolution and precipitation reactions follows as a consequence of the slower precipitation of secondary minerals ( Zhu and Lu, 2009). Here, we develop this concept further by using numerical reaction path models to elucidate how the dissolution and precipitation reactions are coupled. Modeling results show that a quasi-steady state was reached. At the quasi-steady state, dissolution reactions proceeded at rates that are orders of magnitude slower than the rates measured at far from equilibrium. The quasi-steady state is determined by the relative rate constants, and strongly influenced by the function of Gibbs free energy of reaction ( ΔG) in the rate laws. To explore the potential effects of fluid flow rates on the coupling of reactions, we extrapolate a batch system ( Ganor et al., 2007) to open systems and simulated one-dimensional reactive mass transport for oligoclase dissolution and kaolinite precipitation in homogeneous porous media. Different steady states were achieved at different locations along the one-dimensional domain. The time-space distribution and saturation indices (SI) at the steady states were a function of flow rates for a given kinetic model. Regardless of the differences in SI, the ratio between oligoclase dissolution rates and kaolinite precipitation rates remained 1.626, as in the batch system case ( Ganor et al., 2007). Therefore, our simulation results demonstrated coupling among dissolution, precipitation, and flow rates

  13. Minerals and rocks, what a passion! A CLIL unit in an Italian lower secondary class

    NASA Astrophysics Data System (ADS)

    Papini, Piera; Fiorineschi, Beatrice

    2015-04-01

    CLIL means Content and Language Integrated Learning. Since September 2014 the teaching of a discipline in a foreign language has been compulsory in the final year of all high schools of Italy and recommended in lower secondary schools. So I decided to take part in a training course about "CLIL in Sciences teaching " that ANISN (Associazione Nazionale Insegnanti di Scienze Naturali ) was being held in Bologna from October to December 2014. There I learned that CLIL is much more than the translation of a traditional lecture to a foreign language. It is actually a set of new methodologies, largely based on Bloom's taxonomy, and making use of many kinds of technical support often referred to as "scaffolding" . It provides a context to improve communication because "natural language is never learned divorced from meaning". But CLIL is even more effective in order to learn the content, which is more important here than in immersion methodology. In the course we had to chose a subject , develop it in a structured unit, experiment the unit in a class of ours, using just English, and finally present it to the colleagues in Bologna. I decided to do the activity with 13 year old students. We had started the science lessons with chemistry, this year and I needed a subject consistent with that. So the choice was: Minerals! Because they belong to chemistry, being chemical compounds. Subsequently, even when the course in Bologna had come to an end, we continued with: Rocks! Since the pupils were pleased to do it and I was satisfied with their results. I worked together with my colleague who teaches English in the same class. We developed the subject following the instructions I had been given at the course: we showed the students videos found on line, providing them with the script; we made the text easier for them; we made them work in couples; I organized lab activities to improve learning skills to which they could apply their knowledge . Cross - curricolar links are an

  14. Spectroscopic vibrations of austinite (CaZnAsO4⋅OH) and its mineral structure: implications for identification of secondary arsenic-containing mineral.

    PubMed

    Liu, Jing; Ming, Dengshi; Cheng, Hongfei; Xu, Zhiqiang; Frost, Ray L

    2015-01-25

    Austinite (CaZnAsO4⋅OH) is a unique secondary mineral in arsenic-contaminated mine wastes. The infrared and Raman spectroscopies were used to characterize the austenite vibrations. The IR bands at 369, 790 and 416 cm(-1) are assigned to the ν2, ν3 and ν4 vibrations of AsO4(3-) unit, respectively. The Raman bands at 814, 779 and 403 cm(-1) correspond to the ν1, ν3 and ν4 vibrations of AsO4(3(-) unit respectively. The sharp bands at 3265 cm(-1) for IR and 3270 cm(-(1) both reveals that the structural hydroxyl units exist in the austenite structure. The IR and Raman spectra both show that some SO4 units isomorphically replace AsO4 in austinite. X-ray single crystal diffraction provides the arrangement of each atom in the mineral structure, and also confirms that the conclusions made from the vibrational spectra. Micro-powder diffraction was used to confirm our mineral identification due to the small quantity of the austenite crystals. PMID:25087167

  15. Spectroscopic vibrations of austinite (CaZnAsO4ṡOH) and its mineral structure: Implications for identification of secondary arsenic-containing mineral

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Ming, Dengshi; Cheng, Hongfei; Xu, Zhiqiang; Frost, Ray L.

    2015-01-01

    Austinite (CaZnAsO4ṡOH) is a unique secondary mineral in arsenic-contaminated mine wastes. The infrared and Raman spectroscopies were used to characterize the austenite vibrations. The IR bands at 369, 790 and 416 cm-1 are assigned to the ν2, ν3 and ν4 vibrations of AsO43- unit, respectively. The Raman bands at 814, 779 and 403 cm-1 correspond to the ν1, ν3 and ν4 vibrations of AsO43- unit respectively. The sharp bands at 3265 cm-1 for IR and 3270 cm-1 both reveals that the structural hydroxyl units exist in the austenite structure. The IR and Raman spectra both show that some SO4 units isomorphically replace AsO4 in austinite. X-ray single crystal diffraction provides the arrangement of each atom in the mineral structure, and also confirms that the conclusions made from the vibrational spectra. Micro-powder diffraction was used to confirm our mineral identification due to the small quantity of the austenite crystals.

  16. Preservation of primary mineral inclusions and secondary mineralization in igneous zircon: a case study in orthogneiss from the Blue Ridge, Virginia

    NASA Astrophysics Data System (ADS)

    Bell, Elizabeth A.

    2016-03-01

    A wide variety of minerals occur as inclusions in igneous zircon and can provide valuable evidence of source magma composition from originally magmatic zircons in metamorphic and clastic sedimentary rocks. However, it is not clear the extent to which zircons preserve the primary composition of their inclusions through a variety of geologic processes. This paper documents a case study of inclusion-rich, originally igneous zircon from an orthogneiss in the Blue Ridge of southwest Virginia. Zircon inclusions isolated from cracks contain 4 % clearly metamorphic phases (mainly in hosts with disturbed U-Pb systems) and otherwise retain distinct plagioclase chemistry, K-feldspar/plagioclase pairs, and biotite with much wider-ranging Mg/(Mg + Fe) than biotite in the rock matrix. A clearly secondary mineralization suite filling cracks in the zircons consists of quartz, biotite, albite, and epidote. Overall, these zircons preserve mineral inclusions distinct from their current host rock (except when exposed to external environments via cracks), demonstrating that non-metamict zircons may preserve their primary inclusion assemblages through later amphibolite to lower granulite facies metamorphism.

  17. A granulometry and secondary mineral fingerprint of chemical weathering in periglacial landscapes and its application to blockfield origins

    NASA Astrophysics Data System (ADS)

    Goodfellow, Bradley W.

    2012-12-01

    A review of published literature was undertaken to determine if there was a fingerprint of chemical weathering in regoliths subjected to periglacial conditions during their formation. If present, this fingerprint would be applied to the question of when blockfields in periglacial landscapes were initiated. These blocky diamicts are usually considered to represent remnants of regoliths that were chemically weathered under a warm, Neogene climate and therefore indicate surfaces that have undergone only a few metres to a few 10s of metres of erosion during the Quaternary. Based on a comparison of clay and silt abundances and secondary mineral assemblages from blockfields, other regoliths in periglacial settings, and regoliths from non-periglacial settings, a fingerprint of chemical weathering in periglacial landscapes was identified. A mobile regolith origin under, at least seasonal, periglacial conditions is indicated where clay(%) ≤ 0.5*silt(%) + 8 across a sample batch. This contrasts with a mobile regolith origin under non-periglacial conditions, which is indicated where clay(%) ≥ 0.5*silt(%) - 6 across a sample batch with clay(%) ≥ 0.5*silt(%) + 8 in at least one sample. A range of secondary minerals, which frequently includes interstratified minerals and indicates high local variability in leaching conditions, is also commonly present in regoliths exposed to periglacial conditions during their formation. Clay/silt ratios display a threshold response to temperature, related to the freezing point of water, but there is little response to precipitation or regolith residence time. Lithology controls clay and silt abundances, which increase from felsic, through intermediate, to mafic compositions, but does not control clay/silt ratios. Use of a sedigraph or Coulter Counter to determine regolith granulometry systematically indicates lower clay abundances and intra-site variability than use of a pipette or hydrometer. In contrast to clay/silt ratios, secondary

  18. Secondary Mineral Deposits and Evidence of Past Seismicity and Heating of the Proposed Repository Horizon at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Whelan, Josheph F.

    2004-01-01

    The Drift Degradation Analysis (DDA) (BSC, 2003) for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, describes model simulations of the effects of pre- and post-closure seismicity and waste-induced heating on emplacement drifts. Based on probabilistic seismic hazard analyses of the intensity and frequency of future seismic events in the region (CRWMS M&O, 1998), the DDA concludes that future seismicity will lead to substantial damage to emplacement drifts, particularly those in the lithophysal tuffs, where some simulations predict complete collapse of the drift walls. Secondary mineral studies conducted by the U.S. Geological Survey since 1995 indicate that secondary calcite and silica have been deposited in some fractures and lithophysal cavities in the unsaturated zone (UZ) at Yucca Mountain during at least the past 10 million years (m.y.), and probably since the tuffs cooled to less than 100?C. Tuff fragments, likely generated by past seismic activity, have commonly been incorporated into the secondary mineral depositional sequences. Preliminary observations indicate that seismic activity has generated few, if any, tuff fragments during the last 2 to 4 m.y., which may be inconsistent with the predictions of drift-wall collapse described in the DDA. Whether or not seismicity-induced tuff fragmentation occurring at centimeter to decimeter scales in the fracture and cavity openings relates directly to failure of tuff walls in the 5.5-m-diameter waste emplacement drifts, the deposits do provide a potential record of the spatial and temporal distribution of tuff fragments in the UZ. In addition, the preservation of weakly attached coatings and (or) delicate, upright blades of calcite in the secondary mineral deposits provides an upper limit for ground motion during the late stage of deposition that might be used as input to future DDA simulations. Finally, bleaching and alteration at a few of the secondary mineral sites indicate that

  19. Coupled alkai fieldspar dissolution and secondary mineral precipatation in batch systems-2: New experiments with supercritical CO2 and implications for carbon sequestration

    SciTech Connect

    Lu, Peng; Fu, Qi; Seyfried, William E. Jr.; Hedges, Sheila W.; Soong, Yee; Jones, Kyle; Zhua, Chen

    2013-01-01

    In order to evaluate the extent of CO{sub 2}–water–rock interactions in geological formations for C sequestration, three batch experiments were conducted on alkali feldspars–CO{sub 2}–brine interactions at 150–200 °C and 300 bars. The elevated temperatures were necessary to accelerate the reactions to facilitate attainable laboratory measurements. Temporal evolution of fluid chemistry was monitored by major element analysis of in situ fluid samples. SEM, TEM and XRD analysis of reaction products showed extensive dissolution features (etch pits, channels, kinks and steps) on feldspars and precipitation of secondary minerals (boehmite, kaolinite, muscovite and paragonite) on feldspar surfaces. Therefore, these experiments have generated both solution chemistry and secondary mineral identity. The experimental results show that partial equilibrium was not attained between secondary minerals and aqueous solutions for the feldspar hydrolysis batch systems. Evidence came from both solution chemistry (supersaturation of the secondary minerals during the entire experimental duration) and metastable co-existence of secondary minerals. The slow precipitation of secondary minerals results in a negative feedback in the dissolution–precipitation loop, reducing the overall feldspar dissolution rates by orders of magnitude. Furthermore, the experimental data indicate the form of rate laws greatly influence the steady state rates under which feldspar dissolution took place. Negligence of both the mitigating effects of secondary mineral precipitation and the sigmoidal shape of rate–ΔG{sub r} relationship can overestimate the extent of feldspar dissolution during CO{sub 2} storage. Finally, the literature on feldspar dissolution in CO{sub 2}-charged systems has been reviewed. The data available are insufficient and new experiments are urgently needed to establish a database on feldspar dissolution mechanism, rates and rate laws, as well as secondary mineral

  20. Secondary minerals of weathered orpiment-realgar-bearing tailings in Shimen carbonate-type realgar mine, Changde, Central China

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangyu; Wang, Rucheng; Lu, Xiancai; Liu, Huan; Li, Juan; Ouyang, Bingjie; Lu, Jianjun

    2015-02-01

    The formation and dissolution of arsenic minerals commonly controls the mobility of As in sulfide mines. Here, we present the results of research based on X-ray powder diffraction (XRD), Raman microprobe spectrum, scanning electron microscope (SEM), and transmission electron microscope (TEM) analyses, Scanning transmission X-ray microscope (STXM) and X-ray absorption fine structure (XAFS) analyses to further understand the weathering of orpiment- and realgar-bearing tailings from the Shimen realgar deposit, the largest realgar deposit in Asia. These analyses indicate that four different types of As-bearing secondary minerals are present in the tailings, including arsenic oxides, arsenates, As-gypsum, and As-Fe minerals, and that arsenic in the tailings is present in +3 and +5 valence states. The precipitation of arsenates is attributed to the interaction between As-enriched run-off waters and carbonate minerals. The Ca-arsenates in the tailings are dominantly weilite and pharmacolite, both of which have Ca/As atomic ratios of 1. In addition, SO4 2-/HAsO4 2- substitution in gypsum is another important mechanism of arsenic precipitation.

  1. Identification of secondary minerals crystallized by low and high temperature alteration in the Northern Kyushu-Palau Ridge volcanic rocks

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.

    2008-12-01

    Seafloor rocks were affected by hydrothermal alteration and low temperature seawater weathering display various elemental behaviors, necessitating detailed investigations to evaluate primary bulk rock compositions without the effect of elemental behaviors during alteration. Seafloor alteration entails primary minerals being changed into hydrous minerals. Bulk chemical compositions of seafloor igneous rocks are changed by high- temperature hydrothermal alteration and low-temperature seafloor weathering. In this study, I report the secondary mineral identifications by XRD analyses in the rocks from the northern Kyushu-Palau Ridge, and consider to condition of alteration processes. Volcanic rocks dredged from the Northern Kyushu Palau Ridge during cruise by Tansei-maru, ORI, University of Tokyo show petrological and geochemical characteristics of low and high temperature alterations. These rocks are classified into bulk water content, that is, low H2O- and LOI samples at the Miyazaki Seamount, high H2O- samples at the Nichinan Seamount, and high LOI samples at the Komahashi-Daini Seamount. The Nichinan Seamount samples show flesh phenocrysts, low altered groundmass minerals, and high degree alteration of groundmass glass, assumed to replace into clay minerals. These altered phenocrysts are identified by XRD to be serpentine, saponite, and talc. And these altered groundmasses are identified by XRD to be saponite with primary plagioclase and clinopyroxene. These results are assumed to replacement of glass into clay minerals under low temperature seafloor weathering. Nichinan Seamount rocks show high alkali-elements contents. The remarkable movement of bulk composition is not occur under the low temperature seafloor weathering except for K and Rb, and these enrichments reflect secondary deposition of celadonite, K-rich smectite (e.g. Nakamura, 2001). Saponite is typical identified, but celadonite is not identified in the Nichinan Seamount rocks. Therefore, the

  2. MDD Analysis of Microtexturally Characterized K-Feldspar Fragments

    NASA Astrophysics Data System (ADS)

    Short, C. H.; Heizler, M. T.; Parsons, I.; Heizler, L.

    2011-12-01

    Multiple diffusion domain (MDD) analysis of K-feldspar 40Ar/39Ar age spectra is a powerful thermochronological tool dating back 25 years, but continued validation of the basic assumptions of the model can be afforded by microanalysis of K-feldspar crystal fragments. MDD theory assumes that diffusion of Ar in K-feldspars is controlled by domains of varying size bounded by infinitely fast diffusion pathways. However, the physical character of these domain boundaries is not fully understood and this issue remains a point of criticism of the MDD model. We have evaluated the relationship between texture, age, and thermal history via step heating and modeling of texturally characterized K-feldspar crystal fragments (250-500 μm). K-feldspar phenocrysts from the Shap granite, chosen for their well-studied and relatively simple microtextures, contain large areas of homogenous regular strain-controlled film perthite with periodicities on the order of ~1 μm and abundant misfit dislocations, as well as areas of much coarser, irregular, slightly turbid, patch and vein perthite. Total gas ages (TGA) for all Shap fragments, regardless of texture, show less than 2% variation, but the shape of the age spectra varies with microtexture. Film perthites produce flat spectra whereas patch/vein perthite spectra have initial steps 5 - 25% older than the age of the emplacement with younger plateau or gently rising steps afterward. Patch/vein perthites have substantial microporosity and their spectral shapes may be a consequence of trapped 40Ar* that has diffused into micropores or other defects that have no continuity with the crystal boundaries. Correlations between spectral shape and heating schedule suggest that initial old ages are produced by the early release of trapped 40Ar* separated from the K parent rather than degassing of excess 40Ar*. The MH-42 K-feldspar from the Chain of Ponds Pluton has two primary microtextures: a coarse patch/vein perthite with lamellae 1-20 μm in

  3. Feldspar microtextures and multistage thermal history of syenites from the Coldwell Complex, Ontario

    NASA Astrophysics Data System (ADS)

    Waldron, Kim A.; Parsons, Ian

    1992-06-01

    Optical and TEM (transmission electron microscopy) observations of perthites from augite syenites in the Coldwell Complex (Ontario) reveal a complex set of microtextures that outline a multistage thermal history. Regular microtextures (linear or braid texture, straincontrolled, coherent intergrowths) show a progressive evolution from the margin of the intrusion inwards with lamellar spacings in the range 40 100 nm. The textures evolve in a manner similar to those for the Klokken intrusion and reflect differences in cooling rates and bulk composition. Superimposed upon the regular microtexture are 10 μm scale compositional fluctuations which we call “ripples”. The boundary relationships and bulk composition of ripples, which are themselves Ab-rich and Or-rich linear coherent cryptoperthites, suggest that they formed by coarsening during a phase of high-temperature (˜530°C) fluid-feldspar interaction. This was followed by a return to coherent exsolution in which fluid was not involved. Coarse, irregular, patch microperthite cross-cuts all other microtextures. These final “deuteric” intergrowths are believed to result from a further low-temperature (< 380° C) fluid-feldspar interaction and are associated with subgrain formation and the presence of micropores. The outermost syenite sample, against a gabbro ring structure, has distinctive, modified microtextures, indicating that the gabbro is, at least in part, a later intrusion. Our findings show that TEM work on alkali feldspar microtextures can identify discrete thermal events in the cooling history of igneous plutons and illustrates the potential of such microtextures for establishing the relative ages of intrusive rocks.

  4. Radionuclide Incorporation in Secondary Crystalline Minerals Resulting from Chemical Weathering of Selected Waste Glasses: Progress Report: Task kd.5b

    SciTech Connect

    Mattigod, Shas V.; Serne, R. Jeffrey; Legore, Virginia L.; Parker, Kent E.; Orr, Robert D.; McCready, David E.; Young, James S.

    2003-09-29

    Experiments were conducted by Pacific Northwest National Laboratory to evaluate potential incorporation of radionuclides in secondary mineral phases that form from weathering vitrified nuclear waste glasses. These experiments were conducted as part of the Immobilized Low-Activity Waste-Performance Assessment (ILAW-PA) to generate data on radionuclide mobilization and transport in a near-field environment of disposed vitrified wastes. The results of these experiments demonstrated that radionuclide sequestration can be significantly enhanced by promoting the formation of cage structured minerals such as sodalite from weathering glasses. These results have important implications regarding radionuclide sequestration/mobilization aspects that are not currently accounted for in the ILAW PA. Additional studies are required to confirm the results and to develop an improved understanding of the mechanisms of sequestration of radionuclides into the secondary and tertiary weathering products of the ILAW glass to help refine how contaminants are released from the near-field disposal region out into the accessible environment. Of particular interest is to determine whether the contaminants remain sequestered in the glass weathering products for hundreds to thousands of years. If the sequestration can be shown to continue for long periods, another immobilization process can be added to the PA analysis and predicted risks should be lower than past predictions.

  5. Spatial distributions of secondary minerals in the Martian meteorite MIL 03346,168 determined by Raman spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Ling, Zongcheng; Wang, Alian

    2015-06-01

    Miller Range (MIL) 03346 is a nakhlite meteorite that has been extensively studied due to its unique complex secondary mineral phases and their potential implications for the hydrologic history of Mars. We conducted a set of Raman spectroscopic and Raman imaging studies of MIL 03346,168, focusing on the secondary mineral phases and their spatial distributions, with a goal to better understand the possible processes by which they were generated on Mars. This study revealed three types of calcium sulfates, a solid solution of (K, Na)-jarosite and two groups of hydrated species with low crystallinity (HSLC) in the veins and/or mesostasis areas of the meteorite. The most abundant Ca-sulfate is bassanite that suggests two possible paths for its direct precipitation from a Ca-S-H2O brine, either having low water activity or with incomplete development (producing bassanite with gypsum microcrystals) on Mars. The second most abundant Ca-sulfate is soluble γ-CaSO4 which raises a new question on the origins of this phase in the Martian meteorite, since γ-CaSO4 readily hydrates in the laboratory but is apparently stable in Atacama Desert. The close spatial relationship of (K, Na)-jarosite solid solutions with rasvumite (KFe2S3), magnetite, HSLC, and fine-grained low-crystallinity alkali feldspar in mesostasis suggests a potential in situ formation of mesostasis jarosite from these Fe-K,Na-S-O-H2O species.

  6. Secondary mineral growth in fractures in the Miravalles geothermal system, Costa Rica

    SciTech Connect

    Rochelle, C.A. . Dept. of Earth Sciences); Milodowski, A.E.; Savage, D. . Fluid Processes Research Group); Corella, M. )

    1989-01-01

    A mineralogical, fluid-chemical, and theoretical study of hydrothermal alteration in veins from drillcore from the Miravalles geothermal field, Costa Rica has revealed a complex history of mineral-fluid reaction which may be used to characterize changes in temperature and fluid composition with time. Mineralogical and mineral-chemical data are consistent with hydrothermal alteration in the temperature range 200{sup 0}-270{sup 0}C, with deeper portions of the system having undergone temperatures in excess of 300{sup 0}C. Thermodynamic calculations suggest that the observed alteration assemblage is not equilibrium with current well fluids, unless estimates of reservoir pH are incorrect. Fe-Al zoning of prehnite and epidote in veins is consistent with rapid, isothermal fluctuations in fluid composition at current reservoir temperatures, and may be due to changes in volatile content of the fluid due to tectonic activity.

  7. The Effects of Secondary Mineral Precipitates on 90Sr Mobility at the Hanford Site, USA

    SciTech Connect

    Um, Wooyong; Wang, Guohui; Serne, R. Jeffrey

    2013-06-03

    The effects of secondary precipitates on 90Sr transport at the Hanford Site were investigated using quartz column experiments with simulated caustic tank waste leachates (STWL). Significantly enhanced retardation of Sr transport was observed in the column contacted with STWL due to Sr sorption and co-precipitation with neo-formed nitratecancrinite. However, the column results also suggest that neo-formed secondary precipitates could behave like native mobile colloids that can enhance Sr transport. Initially immobilized Sr within secondary precipitates could remobilize given a change in the porewater background conditions. The mobility of the neo-formed Sr-bearing precipitates increased with increased solution flow rate. In the field, porewater contents and flow rates can be changed by snowmelt (or storm water) events or artificial infiltration. The increased porewater flow rate caused by these events could affect the mobility of 90Sr-containing secondary precipitates, which can be a potential source for facilitated Sr transport in Hanford Site subsurface environments.

  8. Collagen type-I leads to in vivo matrix mineralization and secondary stabilization of Mg-Zr-Ca alloy implants.

    PubMed

    Mushahary, Dolly; Wen, Cuie; Kumar, Jerald Mahesh; Lin, Jixing; Harishankar, Nemani; Hodgson, Peter; Pande, Gopal; Li, Yuncang

    2014-10-01

    Biodegradable magnesium-zirconia-calcium (Mg-Zr-Ca) alloy implants were coated with Collagen type-I (Coll-I) and assessed for their rate and efficacy of bone mineralization and implant stabilization. The phases, microstructure and mechanical properties of these alloys were analyzed using X-ray diffraction (XRD), optical microscopy and compression test, respectively, and the corrosion behavior was established by their hydrogen production rate in simulated body fluid (SBF). Coll-I extracted from rat tail, and characterized using fourier transform infrared (FT-IR) spectroscopy, was used for dip-coating the Mg-based alloys. The coated alloys were implanted into the femur bones of male New Zealand white rabbits. In vivo bone formation around the implants was quantified by measuring the bone mineral content/density (BMC/BMD) using dual-energy X-ray absorptiometry (DXA). Osseointegration of the implant and new bone mineralization was visualized by histological and immunohistochemical analysis. Upon surface coating with Coll-I, these alloys demonstrated high surface energy showing enhanced performance as an implant material that is suitable for rapid and efficient new bone tissue induction with optimal mineral content and cellular properties. The results demonstrate that Coll-I coated Mg-Zr-Ca alloys have a tendency to form superior trabecular bone structure with better osteoinduction around the implants and higher implant secondary stabilization, through the phenomenon of contact osteogenesis, compared to the control and uncoated ones in shorter periods of implantation. Hence, Coll-I surface coating of Mg-Zr-Ca alloys is a promising method for expediting new bone formation in vivo and enhancing osseointegration in load bearing implant applications. PMID:25179112

  9. Mineral Association Changes the Secondary Structure and Dynamics of Murine Amelogenin

    SciTech Connect

    Lu, J. X.; Xu, Y. S.; Buchko, G. W.; Shaw, W. J.

    2013-10-15

    Biomineralization proteins, present during the formation of hard tissues including bones, teeth, egg shells and nacre, result in the exquisite structures and properties of the resulting materials.[1] The structure of these proteins is often implicated in the control of the mineral properties, however very little structural data is available for the bulk of these proteins due to the difficulty in determining structures of immobilized proteins. Solid-state NMR is uniquely suited to the study of the structure of proteins bound to surfaces, demonstrated with the structural and orientation insights provided for the hydroxyapatite mineralization proteins statherin and the amelogenin, LRAP.[2] While these data are some of the only structural data available for this important class of protein, the experiments are often expensive and time consuming, due to the need to prepare and measure samples with isolated spin pairs, and are limited to a size of ~60 residues. In this work, we utilized a combination of 1D and recent 2D[3] solid-state NMR techniques along with a sparsely labelled sample to characterize the structure and dynamics of potential HAP binding residues of the 180 residue enamel protein, amelogenin. Amelogenin nanospheres and mineral bound amelogenin were investigated and a shift from unstructured to β-sheet structure was observed, along with a decrease in protein flexibility. This work provides the first molecular level structure and dynamic information of full-length amelogenin on the surface of hydroxyapatite (HAP) and within nanospheres, and demonstrates the ability to evaluate structural characteristics of large biomineralization proteins bound to their physiologically relevant surface. The research was performed at the Pacific Northwest National Laboratory (PNNL), a facility operated by Battelle for the U.S. Department of Energy, with a portion of it performed at the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user

  10. Exchangeable and secondary mineral reactive pools of aluminium in coastal lowland acid sulfate soils.

    PubMed

    Yvanes-Giuliani, Yliane A M; Waite, T David; Collins, Richard N

    2014-07-01

    The use of coastal floodplain sulfidic sediments for agricultural activities has resulted in the environmental degradation of many areas worldwide. The generation of acidity and transport of aluminium (Al) and other metals to adjacent aquatic systems are the main causes of adverse effects. Here, a five-step sequential extraction procedure (SEP) was applied to 30 coastal lowland acid sulfate soils (CLASS) from north-eastern New South Wales, Australia. This enabled quantification of the proportion of aluminium present in 'water-soluble', 'exchangeable', 'organically-complexed', 'reducible iron(III) (oxyhydr)oxide/hydroxysulfate-incorporated' and 'amorphous Al mineral' fractions. The first three extractions represented an average of 5% of 'aqua regia' extractable Al and their cumulative concentrations were extremely high, reaching up to 4000 mg·kg(-1). Comparison of Al concentrations in the final two extractions indicated that 'amorphous Al minerals' are quantitatively a much more important sink for the removal of aqueous Al derived from the acidic weathering of these soils than reducible Fe(III) minerals. Correlations were observed between soil pH, dissolved and total organic carbon (DOC and TOC) and Al concentrations in organic carbon-rich CLASS soil horizons. These results suggest that complexation of Al by dissolved organic matter significantly increases soluble Al concentrations at pH values >5.0. As such, present land management practices would benefit with redefinition of an 'optimal' soil from pH ≥5.5 to ~4.8 for the preservation of aquatic environments adjacent to organic-rich CLASS where Al is the sole or principle inorganic contaminant of concern. Furthermore, it was observed that currently-accepted standard procedures (i.e. 1 M KCl extraction) to measure exchangeable Al concentrations in these types of soils severely underestimate exchangeable Al and a more accurate representation may be obtained through the use of 0.2 M CuCl2. PMID:24727041

  11. Characterization of Secondary Mineral Grain Coatings and their Role as Diffusion-controlled Sinks and Sources for Metal Contaminants

    NASA Astrophysics Data System (ADS)

    Davis, J. A.; Guo, H.; Lai, B.; Kemner, K. M.; Ercius, P.; Fox, P. M.; Singer, D. M.; Minor, A.; Waychunas, G.

    2012-12-01

    Many important geochemical reactions occur at the mineral-water interface, including sorption and desorption reactions of contaminants. Fundamental knowledge of the kinetics of these processes is based primarily on experimental observations of reactions at faces of single crystals or macroscopic data from pure mineral powder suspensions. Sorption reactions at crystal faces are generally very fast, on the order of microseconds or less, with reaction times often limited only by film diffusion at the mineral-water interface. In well-stirred suspensions of aquifer sediments, however, sorptive equilibrium can take many hours or days to achieve steady-state concentrations. We have examined the potential reasons for sorption rate limitation using uranium(VI) sorption by sediments from a sandy aquifer in Savannah River, South Carolina (USA). U(VI) sorption by sand-sized grains from the aquifer is dominated by reaction with secondary mineral coatings on quartz and feldspar grains. The coatings studied were on the order of 15 microns in thickness (i.e., from quartz grain to aqueous solution) and composed primarily of clay minerals and hematite of varying particle size. Microfocused-XRF imaging of elemental concentrations (e.g., U, Fe) of polished cross-sections of the grain/coating contact showed strong spatial correlations of U and Fe within the coatings, regardless of the length of reaction time (30 minutes to 4 weeks). The spatial resolution of the μ-XRF technique is of the order of 2 microns in horizontal directions, but the uncertainty of the observed spatial gradients is high due to grain curvature away from the polished surface and fluorescence contributed from the entire 30 micron thickness of a typical grain/epoxy thin section. TEM characterization of focused-ion-beam (FIB), vertically-extracted samples of the grain-coating contact shows that complex pore networks exist within the coatings of variable dimensions and unknown connectivity. Using scanning TEM (STEM

  12. Experimental investigation of cesium mobility in the course of secondary mineral formations in Hanford sediment columns at 50 degrees C.

    PubMed

    Mashal, Kholoud Y; Cetiner, Ziya S

    2010-10-01

    Formation of secondary minerals and Cs mobility in Hanford sediments were investigated under conditions similar to the Hanford tank leak in a dynamic flow system at 50 degrees C. The objectives were to (1) examine the nature and locations of secondary mineral phases precipitated in the sediments and (2) quantify the amount of Cs retained by the sediment matrix at 50 degrees C. To this end, Hanford sediments were packed into 10-cm long columns and leached with simulated tank waste consisting of 1.4 M NaOH, 0.125 M NaAlO(2), 3.7 M NaNO(3), and 1.3 x 10(-4) M Cs at 50 degrees C. Compositions of outflow solution were monitored with time for up to 25 days, and the columns were then segmented into four 2.5-cm long layers. The colloidal fraction in these segments was characterized in terms of mineralogy, particle morphology, Cs content, and short-range Al and Si structure. It was observed that cancrinite and sodalite precipitated at 50 degrees C. Approximately 53% Cs was retained in the column treated by the simulated tank waste at this temperature. Cesium retention in the column was lowered in the high ionic strength solution due to competition from Na for the exchange sites. This can be explained by alteration of distribution and number of sorption sites which reduces the selectivity of Cs for Na, and through the formation of cancrinite and sodalite. The formation of hydroxide complexes in highly alkaline solutions could also contribute to relatively poor retention of Cs by hindering ion exchange mechanism. PMID:19757110

  13. Fractionation of Stable Si Isotopes During in-situ Dissolution of Feldspars and Formation of Secondary Clay Minerals

    NASA Astrophysics Data System (ADS)

    Georg, R. B.; Reynolds, B. C.; Halliday, A. N.; Zhu, C.

    2005-12-01

    It has been proposed that weathering of igneous silicate minerals may fractionate Si isotopes (Douthitt 1982, de la Rocha et al. 2000). This is supported by the observation that clays yield δ30Si compositions between +0.5‰ and -2.5‰ compared to the igneous range for δ30Si between +0.1‰ and -1‰ respectively (Douthitt 1982). The difference may relate to a discrimination against heavier Si isotopes during clay mineral formation. However, no study has yet shown a direct Si isotope fractionation between coexisting primary igneous and secondary clay mineral phases. We have measured the stable Si isotope fractionation during in-situ feldspar dissolution and formation of secondary clay minerals in the Navajo Sandstone, Black Mesa, Arizona. The Jurassic Navajo Sandstone is composed of about 94% quartz and 2-4% K-feldspar. The K-feldspar grains are covered with kaolinite, and both quartz and feldspars are covered with a mantle of smectite coating. Petrographic studies demonstrate that the clay minerals formed in situ as alteration products of feldspar, and the smectite is of a low-temperature variety (Zhu, 2005). Therefore, the Si isotope fractionation at low temperature (15-35°C) can be evaluated - something that is difficult to replicate in the laboratory. For the Si isotope analyses we used 20-30 mg of 5 separated clay samples, and 0.36 mg of hand picked feldspars. The silicates were fused with an alkaline flux and dissolved in a weak HCl acid. The dissolved Si was then separated by ion-exchange chromatography. The relative Si isotope compositions were measured using a high-resolution MC-ICP-MS (The Nu1700 at ETH Zurich) and are reported in δ notation relative to the international Si standard NBS 28. The bulk rock and separated feldspar fraction have Si isotope compositions are -0.09 ± 0.03‰ and -0.15 ±0.03 ‰ (±2σSEM) δ30Si, respectively. The clay samples have δ30Si values of -0.24 ±0.05‰, -0.16 ±0.03‰, -0.30 ±0.03‰, -0.42 ±0.03‰ and -0

  14. Syntrophic Effects in a Subsurface Clostridial Consortium on Fe(III)-(Oxyhydr)oxide Reduction and Secondary Mineralization

    SciTech Connect

    Shah, Madhavi; Lin, Chu-Ching; Kukkadapu, Ravi K.; Engelhard, Mark H.; Zhao, Xiuhong; Wang, Yangping; Barkay, Tamar; Yee, Nathan

    2013-07-09

    In this study, we cultivated from subsurface sediments an anaerobic Clostridia 25 consortium that was composed of a fermentative Fe-reducer Clostridium species (designated as 26 strain FGH) and a novel sulfate-reducing bacterium belonging to the Clostridia family 27 Vellionellaceae (designated as strain RU4). In pure culture, Clostridium sp. strain FGH mediated 28 the reductive dissolution/transformation of iron oxides during growth on peptone. When 29 Clostridium sp. FGH was grown with strain RU4 on peptone, the rates of iron oxide reduction 30 were significantly higher. Iron reduction by the consortium was mediated by multiple 31 mechanisms, including biotic reduction by Clostridium sp. FGH and biotic/abiotic reactions 32 involving biogenic sulfide by strain RU4. The Clostridium sp. FGH produced hydrogen during 33 fermentation, and the presence of hydrogen inhibited growth and iron reduction activity. The 34 sulfate-reducing partner strain RU4 was stimulated by the presence of H2 gas and generated 35 reactive sulfide which promoted the chemical reduction of the iron oxides. Characterization of 36 Fe(II) mineral products showed the formation of magnetite during ferrihydrite reduction, and 37 the precipitation of iron sulfides during goethite and hematite reduction. The results suggest an 38 important pathway for iron reduction and secondary mineralization by fermentative sulfate-39 reducing microbial consortia is through syntrophy-driven biotic/abiotic reactions with biogenic 40 sulfide.

  15. Evidence for biological activity in mineralization of secondary sulphate deposits in a basaltic environment: implications for the search for life in the Martian subsurface

    SciTech Connect

    C. Doc Richardson; Nancy W. Hinman; Jill R. Scott

    2013-10-01

    Evidence of microbial activity associated with mineralization of secondary Na-sulphate minerals (thenardite, mirabilite) in the basaltic subsurface of Craters of the Moon National Monument (COM), Idaho were examined by scanning electron microscopy, X-ray diffraction, laser desorption Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS), Fourier transform infrared spectroscopy (FTIR) and isotope ratio mass spectrometry. Peaks suggestive of bio/organic compounds were observed in the secondary Na-sulphate deposits by LD-FTICR-MS. FTIR provided additional evidence for the presence of bio/organic compounds. Sulphur fractionation was explored to assist in determining if microbes may play a role in oxidizing sulphur. The presence of bio/organic compounds associated with Na-sulphate deposits, along with the necessity of oxidizing reduced sulphur to sulphate, suggests that biological activity may be involved in the formation of these secondary minerals. The secondary Na-sulphate minerals probably form from the overlying basalt through leached sodium ions and sulphate ions produced by bio-oxidation of Fe-sulphide minerals. Since the COM basalts are one of the most comparable terrestrial analogues for their Martian counterparts, the occurrence of biological activity in the formation of sulphate minerals at COM has direct implications for the search for life on Mars. In addition, the presence of caves on Mars suggests the importance of these environments as possible locations for growth and preservation of microbial activity. Therefore, understanding the physiochemical pathways of abiotic and biotic mineralization in the COM subsurface and similar basaltic settings has direct implications for the search for extinct or extant life on Mars.

  16. A patterned microtexture to reduce friction and increase longevity of prosthetic hip joints

    PubMed Central

    Chyr, Anthony; Qiu, Mingfeng; Speltz, Jared; Jacobsen, Ronald L.; Sanders, Anthony P.; Raeymaekers, Bart

    2014-01-01

    More than 285,000 total hip replacement surgeries are performed in the US each year. Most prosthetic hip joints consist of a cobalt-chromium (CoCr) femoral head that articulates with a polyethylene acetabular component, lubricated with synovial fluid. The statistical survivorship of these metal-on-polyethylene prosthetic hip joints declines significantly after 10 to 15 years of use, primarily as a result of polyethylene wear and wear debris incited disease. The current engineering paradigm to increase the longevity of prosthetic hip joints is to improve the mechanical properties of the polyethylene component, and to manufacture ultra-smooth articulating surfaces. In contrast, we show that adding a patterned microtexture to the ultra-smooth CoCr femoral head reduces friction when articulating with the polyethylene acetabular liner. The microtexture increases the load-carrying capacity and the thickness of the joint lubricant film, which reduces contact between the articulating surfaces. As a result, friction and wear is reduced. We have used a lubrication model to design the geometry of the patterned microtexture, and experimentally demonstrate reduced friction for the microtextured compared to conventional smooth surrogate prosthetic hip joints. PMID:25013240

  17. Teasing apart the contributions of hard dietary items on 3D dental microtextures in primates.

    PubMed

    Calandra, Ivan; Schulz, Ellen; Pinnow, Mona; Krohn, Susanne; Kaiser, Thomas M

    2012-07-01

    3D dental microtexture analysis is a powerful tool for reconstructing the diets of extinct primates. This method is based on the comparison of fossils with extant species of known diet. The diets of primates are highly diversified and include fruits, seeds, grass, tree leaves, bark, roots, tubers, and animal resources. Fruits remain the main component in the diets of most primates. We tested whether the proportion of fruit consumed is correlated with dental microtexture. Two methods of microtexture analysis, the scale-sensitive fractal analysis (SSFA) and the Dental Areal Surface Texture Analysis (DASTA; after ISO/FDIS 25178-2), were applied to specimens of eight primate species (Alouatta seniculus, Gorilla gorilla, Lophocebus albigena, Macaca fascicularis, Pan troglodytes, Papio cynocephalus, Pongo abelii, Theropithecus gelada). These species largely differ in the mean annual proportion of fruit (from 0 to 90%) in their diet, as well as in their consumption of other hard items (seeds, bark, and insect cuticles) and of abrasive plants. We find the complexity and heterogeneity of textures (SSFA) to correlate with the proportion of fruits consumed. Textural fill volume (SSFA) indicates the proportion of both fruits and other hard items processed. Furthermore, anisotropy (SSFA) relates to the consumption of abrasive plants like grass and other monocots. ISO parameters valley height, root mean square height, material volume, density of peaks, and closed hill and dale areas (DASTA) describe the functional interaction between food items and enamel facets during mastication. The shallow, plastic deformation of enamel surfaces induced by small hard particles, such as phytoliths or dust, results in flat microtexture relief, whereas the brittle, deep fracture caused by large hard items such as hard seeds creates larger relief. PMID:22705031

  18. Fabrication of Highly-Oleophobic and Superhydrophobic Surfaces on Microtextured al Substrates

    NASA Astrophysics Data System (ADS)

    Liu, Changsong; Zhou, Jigen; Zheng, Dongmei; Wan, Yong; Li, Zhiwen

    2011-06-01

    Theoretical calculations suggest that creating highly-oleophobic surfaces would require a surface energy lower than that of any known materials. In the present work, we demonstrate microtextured Al substrate surfaces with veins-like micro/nanostructures displaying apparent contact angles (CA) greater than 120°, even with nitromethane (surface tension γ1 = 37 mN/m). The Al substrate was microtextured by a chemical solution mixed by zinc nitrate hexahydrate, hexamethyltetramine and a little of hydrofluoric acid. A fluoroalkylsilane (FAS) agent was used to tune the surface wettability. The Al substrates were microtextured by veins-like micro/nanostructures and generating a solid-liquid-vapor composite interface. Combination with FAS modification, the Al surfaces resulted in an oleophobicity with CA for nitromethane was 126.3° (152.7° for diethylene glycol, γ1 = 45.2 mN/m). In addition, the Al surfaces demonstrated a low rolling-off angle with < 6° even for diethylene glycol. However, nitromethane droplet favored to pin on the sample surface even the sample stage is tilted to 90°. It is noted that this highly-oleophobic behavior is induced mainly by topography, which form a composite surface of air and solid with oil drop sitting partially on air. The results are expected to promote the study on self-cleaning applications, especially in the condition with oil contaminations.

  19. Recurrent neomorphic and cement microtextures from different diagenetic environments, Quaternary to Late Neogene carbonates, Great Bahama Bank

    NASA Astrophysics Data System (ADS)

    Maliva, Robert G.

    1995-06-01

    The cores Clino and Unda, taken near the western margin of Great Bahama Bank, contain a diverse suite of Quaternary to Late Neogene carbonates that have a variety of neomorphic and cement microtextures. The microtextures of each of the different neomorphosed aragonitic grain types, such as corals, mollusks, and plates of the calcareous green algae Halimeda, are very similar wherever the neomorphosed grains are present in the cores. Limestone samples that contain neomorphosed aragonitic fossils are cemented predominantly with blocky calcite. Despite the similar neomorphic and cement microtextures, light-stable isotope data reveal that these calcites precipitated in different diagenetic environments in different parts of the cores. The neomorphic calcites and associated calcite cements in the upper parts of Clino and Unda precipitated in meteoric-influenced pore waters, as indicated by δ18O values ranging from -1.9%. to -3.7%., whereas in the lower part of Clino the calcites precipitated in marine pore waters, as indicated by δ18O values ranging from -0.1%. to +2.4‰. Essentially identical diagenetic microtextures were thus produced in different diagenetic environments, revealing a significant limitation in the use of microtextural data to determine the diagenetic histories of carbonate rocks.

  20. Micro-textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tan, Hairen; Psomadaki, Efthymia; Isabella, Olindo; Fischer, Marinus; Babal, Pavel; Vasudevan, Ravi; Zeman, Miro; Smets, Arno H. M.

    2013-10-01

    Micro-textures with large opening angles and smooth U-shape are applied to nanocrystalline silicon (nc-Si:H) solar cells. The micro-textured substrates result in higher open-circuit-voltage (Voc) and fill-factor (FF) than nano-textured substrates. For thick solar cells, high Voc and FF are maintained. Particularly, the Voc only drops from 564 to 541 mV as solar cell thickness increases from 1 to 5 μm. The improvement in electrical performance of solar cells is ascribed to the growth of dense nc-Si:H layers free from defective filaments on micro-textured substrates. Thereby, micromorph tandem solar cells with an initial efficiency of 13.3%, Voc = 1.464 V, and FF = 0.759 are obtained.

  1. Towards near-permanent CoCrMo prosthesis surface by combining micro-texturing and low temperature plasma carburising.

    PubMed

    Dong, Yangchun; Svoboda, Petr; Vrbka, Martin; Kostal, David; Urban, Filip; Cizek, Jan; Roupcova, Pavla; Dong, Hanshan; Krupka, Ivan; Hartl, Martin

    2015-03-01

    An advanced surface engineering process combining micro-texture with a plasma carburising process was produced on CoCrMo femoral head, and their tribological properties were evaluated by the cutting-edge pendulum hip joint simulator coupled with thin film colorimetric interferometry. FESEM and GDOES showed that precipitation-free C S-phase with a uniform case depth of 10μm was formed across the micro-textures after duplex treatment. Hip simulator tests showed that the friction coefficient was reduced by 20% for micro-metre sized texture, and the long-term tribological property of microtexture was enhanced by the C-supersaturated crystalline microstructure formed on the surface of duplex treated CoCrMo, thereby enhancing biotribological durability significantly. In-situ colorimetric interferometry confirmed that the maximum film thickness around texture area was 530nm, indicating that the additional lubricant during sliding motion might provide exceptional bearing life. PMID:26594781

  2. Heavy minerals in surficial sediments from lower Cook Inlet, Alaska

    USGS Publications Warehouse

    Wong, F.L.

    1984-01-01

    Amphiboles, orthopyroxenes, and clinopyroxenes dominate the heavy mineral suite of surficial sediments in lower Cook Inlet, Alaska. Sources for these sediments include the igneous arc terrane of the northeast Alaska Range, reworked intrabasinal sediments, and local drainages in lower Cook Inlet. The distribution of these deposits is a reflection of both the tidal currents and the prevailing southerly net movement from the head of Cook Inlet. The heavy mineral studies concur with similar findings from gravel analyses, clay mineral investigations, and quartz microtexture observations. ?? 1984 Springer-Verlag New York Inc.

  3. Study of dolomite dissolution at various temperatures - Evidence for the formation of nanocrystalline secondary phases at dolomite surface and influence on dolomite interactions with other minerals

    NASA Astrophysics Data System (ADS)

    Debure, M.; Andreazza, P.; Grangeon, S.; Lerouge, C.; Montes-Hernandez, G.; MADE, B.; Tournassat, C.

    2015-12-01

    In most clay-rock geological formation studied for the storage of nuclear waste, pore water compositions are expected to be at equilibrium with carbonate minerals, which are always included in predictive models for pore water composition calculations [1]. Among the carbonates known to be present, dolomite may be problematic in the pore water composition calculation because its solubility spans a large range of values as a function of its crystallinity in thermodynamic databases. In addition, the composition of dolomite minerals observed in clay-rock formations such as Callovian-Oxfordian or Opalinus clay formation differs from this of a pure dolomite: the Ca/Mg stoichiometry is not ideal, and the minerals contain minor amounts of Fe and traces of many other elements [2]. To understand the influence of secondary phases precipitation during dolomite dissolution on pore water chemistry, the dissolution of monocrystals of dolomite were investigated at 25 °C and at 80 °C in a pH range 3 to 8 for various time periods (30 minutes to 21 days) in sealed PTFE reactors. Solution analyses evidenced a stoichiometric release of Ca and Mg in solution during dolomite dissolution. Scanning Electron Microscopy (SEM), Raman and X-Ray Diffraction (XRD) analyses did not evidence secondary Mg-bearing minerals precipitation, but revealed the formation of Fe-bearing particles on the dolomite surface. Morphological characterizations performed with Small-angle X-ray scattering (SAXS) evidenced that the precipitation occurs along a specific crystallographic plane of the dolomite monocrystal. Thus, the precipitated nanoparticles clustered on specific surface sites, and are made of Fe-rich phases poorly crystallized (carbonates, oxides and hydroxides). [1] Tournassat et al. 2015. Ch. 3: Chemical Conditions in Clay-Rocks. Natural and Engineered Clay Barriers, Elsevier. [2] Lerouge et al. 2011. Geochim. et Cosmoch. Acta, 2011, 75, 2633-2663.

  4. Weathering of sulfidic shale and copper mine waste: Secondary minerals and metal cycling in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA

    USGS Publications Warehouse

    Hammarstrom, J.M.; Seal, R.R., II; Meier, A.L.; Jackson, J.C.

    2003-01-01

    Metal cycling via physical and chemical weathering of discrete sources (copper mines) and regional (non-point) sources (sulfide-rich shale) is evaluated by examining the mineralogy and chemistry of weathering products in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA. The elements in copper mine waste, secondary minerals, stream sediments, and waters that are most likely to have negative impacts on aquatic ecosystems are aluminum, copper, zinc, and arsenic because these elements locally exceed toxicity guidelines for surface waters or for stream sediments. Acid-mine drainage has not developed in streams draining inactive copper mines. Acid-rock drainage and chemical weathering processes that accompany debris flows or human disturbances of sulfidic rocks are comparable to processes that develop acid-mine drainage elsewhere. Despite the high rainfall in the mountain range, sheltered areas and intermittent dry spells provide local venues for development of secondary weathering products that can impact aquatic ecosystems.

  5. O-triple Isotopes of Primary and Secondary Minerals Provide Clues to the Past and Present Hydrosphere of Mars: New Experimental Evidence

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Thiemens, M. H.; Khachatryan, A.; Smirnova, V.; Jackson, T. L.

    2015-12-01

    Oxygen, the most abundant element in terrestrial planets link their lithospheres, hydrospheres and atmospheres, thus providing a powerful tool to fingerprint the physical and chemical processes involved in the exchange of material between these reservoirs (1). The oxygen triple isotopic composition of SNC Martian meteorites minerals provided a record of this unique interaction. Martian silicates showed an O-isotope anomaly (Δ17O = 0.4 ‰) unlike earth's silicate (Δ17O = 0‰). Additionally, there is a signficant variation in the oxygen isotopic composition of primary and secondary minerals both in the oldest (ALH84001: Δ17OCO3 = 0.7‰, Δ17Osilicates = 0.3‰)(2) and younger martian rocks (NWA7034: Δ17OCO3 = 0.0‰, Δ17Osilicates = 0.6‰)(3) indicating substantial changes in the global aqueous chemistry of Mars and its formation. These variations in oxygen isotope anomalies are important, but puzzling due to the lack of knoweldege of the intial conditions and relevant experiments. To understand the origin and nature of heterogeneity in the oxygen triple isotopes of various minerals, laboratory experiments were conducted by simulating current Martian conditions. Ozone, a martian atmospheric constituent, was used as a tracer to identify molecular reactions occurring on the mineral surfaces. The oxygen isotopic composition of decomposed ozone and water was measured following reaction over extended time under defined conditions . The decomposed O2 defines an array with a slope δ17O = 0.87 x δ18O + 5 (r2 = 0.99). The left over ozone after 18hours showed a decrease in slope (δ17O = 0.7 x δ18O + 5 (r2 = 0.97) and significant variations in Δ17O= 20 - 31‰ depending on the mineral used in the experiment. The slope did not pass through the initial ozone and water suggesting the formation of an intermediate species and its reaction and removal that is responsible for the exchange of O-isotopes between water-ozone and mineral oxides. These results coupled with

  6. Geochemical, microtextural and petrological studies of the Samba prospect in the Zambian Copperbelt basement: a metamorphosed Palaeoproterozoic porphyry Cu deposit.

    NASA Astrophysics Data System (ADS)

    Master, Sharad; Mirrander Ndhlovu, N.

    2015-04-01

    Ever since Wakefield (1978, IMM Trans., B87, 43-52) described a porphyry-type meta-morphosed Cu prospect, the ca 50 Mt, 0.5% Cu Samba deposit (12.717°S, 27.833°E), hosted by porphyry-associated quartz-sericite-biotite schists in northern Zambia, there has been controversy about its origin and significance. This is because it is situated in the basement to the world's largest stratabound sediment-hosted copper province, the Central African Copperbelt, which is hosted by rocks of the Neoproterozoic Katanga Supergroup. Mineralization in the pre-Katangan basement has long played a prominent role in ore genetic models, with some authors suggesting that basement Cu mineralization may have been recycled into the Katangan basin through erosion and redeposition, while others have suggested that the circulation of fluids through Cu-rich basement may have leached out the metals which are found concentrated in the Katangan orebodies. On the basis of ca 490-460 Ma Ar-Ar ages, Hitzman et al. (2012, Sillitoe Vol., SEG Spec. Publ., 16, 487-514) suggested that Samba represents late-stage impregnation of copper mineralization into the basement, and that it was one of the youngest copper deposits known in the Central African Copperbelt. If the Samba deposit really is that young, then it would have post-dated regional deformation and metamorphism (560-510 Ma), and it ought to be undeformed and unmetamorphosed. The Samba mineralization consists of chalcopyrite and bornite, occurring as disseminations, stringers and veinlets, found in a zone >1 km along strike, in steeply-dipping lenses up to 10m thick and >150m deep. Our new major and trace element XRF geochemical data (14 samples) show that the host rocks are mainly calc-alkaline metadacites. Cu is correlated with Ag (Cu/Ag ~10,000:1) with no Au or Mo. Our study focused on the microtextures and petrology of the Samba ores. We confirm that there is alteration of similar style to that accompanying classical porphyry Cu mineralization

  7. Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments

    USGS Publications Warehouse

    Hammarstrom, J.M.; Seal, R.R., II; Meier, A.L.; Kornfeld, J.M.

    2005-01-01

    Weathering of metal-sulfide minerals produces suites of variably soluble efflorescent sulfate salts at a number of localities in the eastern United States. The salts, which are present on mine wastes, tailings piles, and outcrops, include minerals that incorporate heavy metals in solid solution, primarily the highly soluble members of the melanterite, rozenite, epsomite, halotrichite, and copiapite groups. The minerals were identified by a combination of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron-microprobe. Base-metal salts are rare at these localities, and Cu, Zn, and Co are commonly sequestered as solid solutions within Fe- and Fe-Al sulfate minerals. Salt dissolution affects the surface-water chemistry at abandoned mines that exploited the massive sulfide deposits in the Vermont copper belt, the Mineral district of central Virginia, the Copper Basin (Ducktown) mining district of Tennessee, and where sulfide-bearing metamorphic rocks undisturbed by mining are exposed in Great Smoky Mountains National Park in North Carolina and Tennessee. Dissolution experiments on composite salt samples from three minesites and two outcrops of metamorphic rock showed that, in all cases, the pH of the leachates rapidly declined from 6.9 to 30 mg L-1), Fe (>47 mg L-1), sulfate (>1000 mg L-1), and base metals (>1000 mg L-1 for minesites, and 2 mg L-1 for other sites). Geochemical modeling of surface waters, mine-waste leachates, and salt leachates using PHREEQC software predicted saturation in the observed ochre minerals, but significant concentration by evaporation would be needed to reach saturation in most of the sulfate salts. Periodic surface-water monitoring at Vermont minesites indicated peak annual metal loads during spring runoff. At the Virginia site, where no winter-long snowpack develops, metal loads were highest during summer months when salts were dissolved periodically by rainstorms following sustained evaporation during dry

  8. Test of the microtextural analysis of quartz grains of tsunami and non-tsunami deposits in Tirúa (Chile) - an unsuitable method for a valid tsunami identification

    NASA Astrophysics Data System (ADS)

    Bellanova, P.; Bahlburg, H.; Nentwig, V.

    2015-12-01

    The tsunami caused by the 2010 Maule earthquake (MW 8.8) significantly affected the village of Tirúa (Central Chile). In order to estimate the hazard potential of tsunami events it is essential to reliably identify and differentiate tsunami deposits from deposits of other high-energy events like storms. Recently, the microtextural analysis of quartz grain surfaces was introduced as a method to differentiate between tsunami and other deposits. We tested the microtextural analysis method for its capability to identify tsunami deposits using paleotsunami intercalations from a bank profile of the Tirúa river. A total of 815 quartz grains of 4 river bank samples (2 tsunamigenic, 2 non-tsunamigenic) and of 3 reference samples from nearby beach, dune and river were analyzed. In order to generate a valid statistical basis even within individual grain size fractions a large number of grains was studied. Another reason was to compensate the error of the operator's subjectivity during random picking and microtexture observation. Grain surfaces were analyzed using SEM. We detected 30 individual microtextures grouped into five microtextural families according to angularity, fresh surfaces, percussion marks, adhering particles and dissolution. The grains from the tsunami deposits have high numbers of fresh surfaces and percussion marks. However, in comparison with the non-tsunamigenic deposits and all reference samples (beach, dune and river) the tsunamigenic deposits do not show statistically significant differences in characteristics and abundances in all microtextural families. The homogeneity in microtextural results of all samples indicate the absence of differences between tsunamigenic, beach dune and river deposits. A distinct tsunami signature could not be identified from our microtextural analysis. Our study indicates that the microtextural analysis of quartz grains may not be a suitable method to identify tsunami deposits.

  9. Reaction path modelling used to explore the relationship between secondary mineral precipitation and low Si content in the meltwaters of a polythermal surge-type glacier

    NASA Astrophysics Data System (ADS)

    Crompton, J. W.; Flowers, G. E.; Kirste, D. M.; Hagedorn, B.

    2014-12-01

    The subglacial chemical weathering environment is characterized by low temperatures and the hydrolysis and carbonation of freshly comminuted mineral surfaces. Such conditions motivate the hypothesis that relatively low silica fluxes should be found in glacierized basins. Additionally, it is often assumed that glacier meltwaters are far from saturation and that the water chemistry is controlled solely by the dissolution of primary silicates and trace quantities of sulphide and carbonate minerals. Alternatively, we propose that the formation of secondary minerals and precipitates in the delayed drainage system play an important role in controlling the low silica fluxes observed in subglacial envrionments. Borehole and proglacial meltwater samples were collected from a polythermal surge-type glacier overlying granodiorite bedrock in the St. Elias Mountains of Yukon, Canada. The meltwater chemistry, along with the mineralogy of the bedrock and suspended sediments indicate the presence of mineral precipitation accompanied by substantial basal freeze-on. This is supported by field evidence of debris rich basal ice at the terminus and at the base of a borehole. The surplus of Cl- above the supraglacial input is used to calculate the amount of basal freeze-on in the delayed drainage system, and the amount of mixing between the delayed and fast drainage systems. We use Geochemist's Workbench for reaction path modelling with a focus on the silica composition to simulate the chemical evolution of glacial meltwater from (1) the initial water rock contact, (2) basal freeze on, and (3) mixing and post mixing reactions. Unless there is a substantial degree of non-stoichiometric dissolution, we find that the observed proglacial water chemistry at the terminus is largely controlled by the hydrochemistry of water in the delayed drainage system. Lastly, we use this model to explore the relationship between the proglacial water chemistry and the daily glacier surface velocities for

  10. Commentary: assessment of past infiltration fluxes through Yucca Mountain on the basis of the secondary mineral record-is it a viable methodology?

    PubMed

    Dublyansky, Yuri V; Smirnov, Sergey Z

    2005-04-01

    Two papers recently published in the Journal of Contaminant Hydrology by Marshall et al. [Marshall, B.D., Neymark, L.A., Peterman, Z.E., 2003. Estimation of past seepage volumes from calcite distribution in the Topopah Spring Tuff, Yucca Mountain, Nevada. J. Contam. Hydrol. 62-63, 237-247] and Xu et al. [Xu, T., Sonnenthal, E., Bodvarsson, G., 2003. A reaction-transport model for calcite precipitation and evaluation of infiltration fluxes in unsaturated fractured rock. J. Contam. Hydrol. 64, 113-127] attempt to assess past volumes of seepage and infiltration fluxes through the vadose zone of Yucca Mountain, Nevada, on the basis of the modeling of the spatial distribution of secondary calcite. In this commentary, we argue that the employed methodology is not viable. In addition, the thermal boundary conditions used in simulations do not correspond to the temperatures of the mineral forming fluids established on the basis of the fluid inclusion studies. PMID:15763356

  11. Commentary: Assessment of past infiltration fluxes through Yucca Mountain on the basis of the secondary mineral record—is it a viable methodology?

    NASA Astrophysics Data System (ADS)

    Dublyansky, Yuri V.; Smirnov, Sergey Z.

    2005-04-01

    Two papers recently published in the Journal of Contaminant Hydrology by Marshall et al. [Marshall, B.D., Neymark, L.A., Peterman, Z.E., 2003. Estimation of past seepage volumes from calcite distribution in the Topopah Spring Tuff, Yucca Mountain, Nevada. J. Contam. Hydrol. 62-63, 237-247] and Xu et al. [Xu, T., Sonnenthal, E., Bodvarsson, G., 2003. A reaction-transport model for calcite precipitation and evaluation of infiltration fluxes in unsaturated fractured rock. J. Contam. Hydrol. 64, 113-127] attempt to assess past volumes of seepage and infiltration fluxes through the vadose zone of Yucca Mountain, Nevada, on the basis of the modeling of the spatial distribution of secondary calcite. In this commentary, we argue that the employed methodology is not viable. In addition, the thermal boundary conditions used in simulations do not correspond to the temperatures of the mineral forming fluids established on the basis of the fluid inclusion studies.

  12. Microtexture of constituent phases in a heavily warm- rolled and annealed duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Zaid, M.; Bhattacharjee, P. P.

    2015-04-01

    Evolution of microtexture during isothermal annealing of a heavily warm-rolled Fe- 0.08%C-24.18%Cr-10.5%Ni duplex stainless steel (DSS) having approximately equal volume fraction of ferrite and austenite was investigated in the present work. The DSS was warm-rolled to ∼90% reduction in thickness at three different temperatures, namely, 225°C, 425°C and 625°C followed by isothermal annealing at 1175°C for different length of time. Austenite showed pure metal or copper type texture at different warm-rolling temperatures. In contrast, the texture of ferrite in different warm-rolled DSS revealed the presence of RD (RD//<110>) and ND (ND//<111>) fibers. The annealing texture of austenite showed retention of the deformation texture components while ferrite revealed strong RD-fiber.

  13. Shock-thermal history of Kavarpura IVA iron: Evidences from microtextures and nickel profiling

    NASA Astrophysics Data System (ADS)

    Ray, Dwijesh; Ghosh, S.; Murty, S. V. S.

    2015-11-01

    We classify Kavarpura iron (fell in August, 2006, in Rajasthan, India), an inclusion-free member of high-Ni IVA group. Widmanstätten pattern and finger-cellular plessites textures characteristic of IVA group are present in Kavarpura. Symmetric and asymmetric textural zoning within the cloudy taenite and plessite refer to long term martensitisation process with mean metallographic cooling rate of 200 °C/Ma. Imprints of variable shock pressure domains (Neumann bands and shock hatched ε kamacite) suggest alteration by up to 600 kb shock pressure. Degeneration of cellular plessites, bending of finger plessites and plastic flowage of taenites bear textural evidences corresponding to post-shock annealing which is further confirmed by Ni profiles across the cloudy taenites and plessites under high shock pressure domains. Based on microtextural evidences and Ni profiling, we suggest Kavarpura had cooled at steady state and subsequently suffered multiple impacts.

  14. Microtexture and Nanoindentation Study of Delamination Cracking in Al-Cu-Li-X Alloys

    NASA Technical Reports Server (NTRS)

    Crooks, R.; Domack, M. S.; Wagner, J. A.

    2005-01-01

    Commercial Al-Li alloys have strength and weight advantages over non-Li aluminum alloys. The fracture behavior of these alloys is unusual and has limited their use. The fracture mode, described as delamination, is intergranular, along the broad grain boundaries parallel to the rolling plane of the plate. Microtexture analyses have shown that delaminations occur along boundaries with greater than 30 misorientation. However, it was observed that relatively few of the high angle boundaries exhibited this behavior. Some grains of the retained deformation texture show high internal misorientation, which is a measure of stored strain energy. Delamination tends to occur between these grains and adjacent, recrystallized grains. Nanoindentation studies indicate a higher hardness for the high internal misorientation grains. These results suggest that the delamination could be reduced by processing the alloys to minimize grain-to-grain property disparities.

  15. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite ({gamma}-FeOOH) and the formation of secondary mineralization products.

    SciTech Connect

    O'Loughlin, E. J.; Gorski, C. A.; Scherer, M. M.; Boyanov, M. I.; Kemner, K. M.; Biosciences Division; Univ. of Iowa

    2010-06-15

    Microbial reduction of Fe(III) oxides results in the production of Fe(II) and may lead to the subsequent formation of Fe(II)-bearing secondary mineralization products including magnetite, siderite, vivianite, chukanovite (ferrous hydroxy carbonate (FHC)), and green rust; however, the factors controlling the formation of specific Fe(II) phases are often not well-defined. This study examined effects of (i) a range of inorganic oxyanions (arsenate, borate, molybdate, phosphate, silicate, and tungstate), (ii) natural organic matter (citrate, oxalate, microbial extracellular polymeric substances [EPS], and humic substances), and (iii) the type and number of dissimilatory iron-reducing bacteria on the bioreduction of lepidocrocite and formation of Fe(II)-bearing secondary mineralization products. The bioreduction kinetics clustered into two distinct Fe(II) production profiles. 'Fast' Fe(II) production kinetics [19-24 mM Fe(II) d-1] were accompanied by formation of magnetite and FHC in the unamended control and in systems amended with borate, oxalate, gellan EPS, or Pony Lake fulvic acid or having 'low' cell numbers. Systems amended with arsenate, citrate, molybdate, phosphate, silicate, tungstate, EPS from Shewanella putrefaciens CN32, or humic substances derived from terrestrial plant material or with 'high' cell numbers exhibited comparatively slow Fe(II) production kinetics [1.8-4.0 mM Fe(II) d-1] and the formation of green rust. The results are consistent with a conceptual model whereby competitive sorption of more strongly bound anions blocks access of bacterial cells and reduced electron-shuttling compounds to sites on the iron oxide surface, thereby limiting the rate of bioreduction.

  16. Oxygen-isotope composition of ground water and secondary minerals in Columbia Plateau basalts: implications for the paleohydrology of the Pasco Basin

    USGS Publications Warehouse

    Hearn, P.P., Jr.; Steinkampf, W.C.; Horton, D.G.; Solomon, G.C.; White, L.D.; Evans, J.R.

    1989-01-01

    Concentrations of 18O and deuterium in ground waters beneath the Hanford Reservation, Washington State, suggest that the meteoric waters recharging the basalt aquifers have been progressively depleted in these isotopes since at least Pleistocene time. This conclusion is supported by oxygen-isotope analyses of low-temperature secondary minerals filling vugs and fractures in the basalts, which are used to approximate the 18O content of ground water at the time the mineral assemblage formed. A fossil profile of ??18O values projected for ground water in a 1500 m vertical section beneath the reservation suggests that the vertical mixing of shallow and deep ground water indicated by present-day hydrochemical data was also occurring during Neogene time. These data also suggest that a unidirectional depletion of 18O and deuterium recorded in Pleistocene ground waters may have extended considerably further back in time. This shift is tentatively attributed to the orographic depletion of 18O associated with the progressive uplift of the Cascade Range since the middle Miocene. -Authors

  17. Lemon-flavored cod liver oil and a multivitamin-mineral supplement for the secondary prevention of otitis media in young children: pilot research.

    PubMed

    Linday, Linda A; Dolitsky, Jay N; Shindledecker, Richard D; Pippenger, C E

    2002-07-01

    We measured blood levels of fatty acids, vitamin A, and trace metals in children undergoing ambulatory surgery for placement of tympanostomy tubes and a comparison group having other ambulatory surgical procedures. We then performed a small, outpatient, secondary prevention study using nutritional supplements chosen on the basis of those blood levels. The study subjects had lower levels of red blood cell eicosapentaenoic acid (EPA) than did adult controls. Consistent with previous reports, the levels of vitamin A were < or = 40 microg/dL for 69% of our subjects, and the plasma selenium levels for children were lower than published values for adults. We then studied one otitis media (OM) season; 8 children (0.8 to 4.4 years of age) received 1 teaspoon of lemon-flavored cod liver oil (containing both EPA and vitamin A) and 1 half-tablet of a selenium-containing children's chewable multivitamin-mineral tablet per day. During this OM season, study subjects received antibiotics for OM for 12.3% +/- 13.4% (SD; p < .05) fewer days during supplementation than before supplementation. Larger, controlled trials are warranted to assess the utility of cod liver oil (of acceptable purity and taste) and a children's multivitamin-mineral preparation containing selenium, both for the prevention of OM and for the acceptance of delayed prescription of antibiotics for this disorder. PMID:12126022

  18. DOE FG02-03ER63557: Final Technical Report: Reactivity of Primary Soil Minerals and Secondary Precipitates Beneath Leaking Hanford Waste Tanks

    SciTech Connect

    Kathryn L. Nagy

    2009-05-04

    The purpose of the project was to investigate rates and mechanisms of reactions between primary sediment minerals and key components of waste tank solutions that leaked into the subsurface at the Hanford Site. Results were expected to enhance understanding of processes that cause (1) changes in porosity and permeability of the sediment and resultant changes in flow paths of the contaminant plumes, (2) formation of secondary precipitates that can take up contaminants in their structures, and (3) release of mineral components that can drive redox reactions affecting dissolved contaminant mobility. Measured rates can also be used directly in reactive transport models. Project tasks included (1) measurement of the dissolution rates of biotite mica from low to high pH and over a range of temperature relevant to the Hanford subsurface, (2) measurement of dissolution rates of quartz at high pH and in the presence of dissolved alumina, (3) measurement of the dissolution rates of plagioclase feldspar in high pH, high nitrate, high Al-bearing solutions characteristic of the BX tank farms, (4) incorporation of perrhenate in iron-oxide minerals as a function of pH, and (5) initiation of experiments to measure the formation of uranium(VI)-silicate phases under ambient conditions. Task 2 was started under a previous grant from the Environmental Management Science Program and Task 4 was partially supported by a grant to the PI from the Geosciences Program, Office of Basic Energy Sciences. Task 5 was continued under a subsequent grant from the Environmental Remediation Sciences Program, Office of Biological and Environmental Research.

  19. Mechanisms for transition in eruptive style at a monogenetic scoria cone revealed by microtextural analyses (Lathrop Wells volcano, Nevada, U.S.A.)

    NASA Astrophysics Data System (ADS)

    Genareau, Kimberly; Valentine, Greg A.; Moore, Gordon; Hervig, Richard L.

    2010-07-01

    Explosive activity at Lathrop Wells volcano, Nevada, U.S.A. originated with weak Strombolian (WS) eruptions along a short fissure, and transitioned to violent Strombolian (VS) activity from a central vent, with lava effusion during both stages. The cause for this transition is unknown; it does not reflect a compositional change, as evidenced by the consistent bulk geochemistry of all the eruptive products. However, comparison of agglutinate samples from the early, WS events with samples of scoria from the later, VS events reveal differences in the abundance and morphology of groundmass phases and variable textures in the rims of olivine phenocrysts. Scanning electron microscope (SEM) examination of thin sections from the WS samples show euhedral magnetite microlites in the groundmass glass and olivine phenocrysts show symplectite lamellae in their rims. Secondary ion mass spectrometry (SIMS) depth profiles of these symplectites indicate they are diffusion-controlled. The calculated DFe-Mg allows an estimation of the oxygen fugacity ( fO2) and indicates an increased fO2 during eruption of the WS products. Conversely, the VS samples show virtually no magnetite microlites in the groundmass glass, a lack of symplectites in the olivines, and a lower calculated fO2. These microtextural features suggest that the Lathrop Wells trachybasalt experienced increased oxidation during WS activity. As magma ascended through the original fissure, exsolved bubbles were concentrated in the wider part(s) (the protoconduit) and this bubble flux drove convective circulation that oxidized the magma through exposure to atmosphere and recirculation. This oxidation resulted in groundmass crystallization of magnetite within the melt and formation of symplectites within the olivine phenocrysts. Bubble-driven convection mixed magma vertically within the protoconduit, keeping it fluid and driving Strombolian bursts, while microlite crystallization in narrower parts of the fissure helped to

  20. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    SciTech Connect

    Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin; Jantzen, Carol; Crawford, Charles

    2012-07-01

    Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  1. Effect of Pad Surface Micro-Texture on Removal Rate during Interlayer Dielectric Chemical Mechanical Planarization Process

    NASA Astrophysics Data System (ADS)

    Liao, Xiaoyan; Zhuang, Yun; Borucki, Leonard J.; Cheng, Jiang; Theng, Siannie; Ashizawa, Toranosuke; Philipossian, Ara

    2013-01-01

    The effect of pad surface micro-texture on removal rate in interlayer dielectric chemical mechanical planarization was investigated. Blanket 200-mm oxide wafers were polished on a Dow® IC1000TM K-groove pad conditioned at two different conditioning forces. The coefficient of friction increased slightly (by 7%) while removal rate increased dramatically (by 65%) when conditioning force was increased from 26.7 to 44.5 N. Pad surface micro-texture analysis results showed that pad surface contact area decreased dramatically (by 71%) at the conditioning force of 44.5 N, leading to a sharp increase in the local contact pressure and resulting in a significantly higher removal rate.

  2. Wetting state on hydrophilic and hydrophobic micro-textured surfaces: Thermodynamic analysis and X-ray visualization

    SciTech Connect

    Yu, Dong In; Kwak, Ho Jae; Doh, Seung Woo; Park, Hyun Sun Kiyofumi, Moriyama; Kang, Hie Chan; Ahn, Ho Seon; Kim, Moo Hwan

    2015-04-27

    In this study, the wetting state on hydrophobic and hydrophilic micro-textured surfaces was investigated. High spatial resolution synchrotron X-ray radiography was used to overcome the limitations in visualization in previous research and clearly visualize the wetting state for each droplet under quantified surface conditions. Based on thermodynamic characteristics, a theoretical model for wetting state depending on the chemical composition (intrinsic contact angle) and geometrical morphology (roughness ratio) of the surfaces was developed.

  3. Nanotexturing process on microtextured surfaces of silicon solar cells by SF6/O2 reactive ion etching.

    PubMed

    Ji, Hyungyong; Choi, Jaeho; Lim, Gyoungho; Parida, Bhaskar; Kim, Keunjoo; Jo, Jung Hee; Kim, Hong Seub

    2013-12-01

    We investigated a nanotexturing process on the microtextured surface of single crystalline silicon solar cell by the reactive ion etching process in SF6/O2 mixed gas ambient. P-type Si wafer samples were prepared using a chemical wet etching process to address saw damage removal and achieve microtexturing. The microtextured wafers were further processed for nanotexturing by exposure to reactive ions within a circular tray of wafer carrier containing many small holes for uniform etching. As the dry etching times were increased to 2, 4 and finally to 8 min, surface structures were observed in a transition from nanoholes to nanorods, and a variation in wafer color from dark blue to black. The surface nanostructures showed a lowered photoreflectance and enhanced quantum efficiency within the visible light region with wavelengths of less than 679 nm. The nanohole structure etched for 2 min showed enhanced conversion efficiency when compared to the bare sample; however, the nanorod structure etched for 8 min exhibited the decreased efficiency with a reduced short circuit current, indicating that the surface nanostructural damage with the enlarged nanoperimetric surface area is sensitive to surface passivation from the surface recombination process. PMID:24266144

  4. Transformation of heavy metals and the formation of secondary iron minerals during pig manure bioleaching by the co-inoculation acidophilic thiobacillus.

    PubMed

    Zhou, Jun; Zhou, Lixiang; Liu, Fenwu; Zheng, Chaocheng; Deng, Wenjing

    2012-12-01

    Bioleaching of heavy metals from pig manure using a mixture of harmless iron- and sulfur-oxidizing bacteria in an air-lift reactor was conducted. The transformation of heavy metals and the formation of secondary Fe minerals during bioleaching were also investigated in the present study. The removal efficiencies of Zn, Cu, and Mn from pig manure were 95.1%, 80.9%, and 87.5%, respectively. Zn mainly existed in the form of Fe-Mn oxides in fresh pig manure; most of the pig manure-borne Cu was in organic matter form; Mn existed mainly in Fe-Mn oxides, carbonates, and residual forms. The pig manure can be applied to land more safely after bioleaching because the heavy metals mainly existed in stable forms. The removal efficiencies Zn, Cu, and Mn had good relationships with pH and oxidation reduction potential during bioleaching. A mixture ofjarosite and schwertmannite was found in the bioleached pig manure, which might have an adverse effect on the solubilization efficiency of toxic metals from pig manure. The bioleaching process using a mixture of harmless iron- and sulfur-oxidizing bacteria was shown to be a very feasible technology for the removal of heavy metals from pig manure. PMID:23437654

  5. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  6. Microtextural evolution of different TRC AA8006 alloy sections with homogenization

    NASA Astrophysics Data System (ADS)

    Chen, Zhong-wei; Shen, Long-fei; Zhao, Jing

    2015-03-01

    Grain microtexture evolution in twin-roll cast AA8006 alloy sheets subjected to different treatments was investigated using electron backscatter diffraction. The textures of rolling-transverse and normal-transverse sections were characterized in original as-cast twin-roll casting and cold-rolled samples as well as samples homogenized at 500°C for 8 h and at 580°C for 4 h. It is found that grains on both the rolling-transverse and normal-transverse sections of cold-rolled samples are made finer by rolling deformation and coarsened after homogenization. Annealing temperature has a stronger effect on the microstructural evolution than annealing time. The grain growth direction is parallel to the normal-transverse section, while grain deformation is more stable on the rolling direction than on the normal direction. The rolling orientations display more obvious anisotropy on the normal-transverse sections than on the rolling-transverse sections. Grain recrystallization and growth occur much easier on the normal-transverse section than on the rolling-transverse section for samples homogenized at 500°C for 8 h. A special misorientation relationship between cold deformation texture, such as S orientation {123}<634> and cube orientation <110>‖ X axis [cubic], and recrystallization texture after homogenization, such as R orientation {124}<211> and P orientation {011}<122>, is observed.

  7. Metal nanoparticle-enhanced photocurrent in GaAs photovoltaic structures with microtextured interfaces.

    PubMed

    Dmitruk, Nicolas L; Borkovskaya, Olga Yu; Mamontova, Iryna B; Mamykin, Sergii V; Malynych, Sergii Z; Romanyuk, Volodymyr R

    2015-01-01

    The photocurrent enhancement effect caused by Au and Ag nanoparticles for GaAs-based photovoltaic structures of surface barrier or p-n junction type with microtextured interfaces has been investigated in dependence on the conditions of nanoparticles deposition and, respectively, on the shape and local dielectric environment of obtained nanoparticle arrays. Three nanoparticle deposition methods have been checked: 1) photoinduced chemical deposition of Au from aqueous AuCl3 solution forming nanowires on the ridges of quasigrating-type surface microrelief, 2) deposition of Ag nanoparticles from colloidal suspension on the GaAs substrate covered with poly(vinylpyridine), and 3) drop and dry deposition of Au/SiO2 core-shell nanoparticles from aqueous colloid solution. The comprehensive investigation of optical reflectance, photoelectric, and electrical characteristics of the fabricated barrier structures has shown the highest photovoltaic parameters for surface microrelief of quasigrating-type and electroless Au nanoparticle deposition. The analysis of characteristics obtained allowed us also to define the mechanisms of the total photocurrent enhancement. PMID:25852368

  8. Flexible silver nanowire meshes for high-efficiency microtextured organic-silicon hybrid photovoltaics.

    PubMed

    Chen, Ting-Gang; Huang, Bo-Yu; Liu, Hsiao-Wei; Huang, Yang-Yue; Pan, Huai-Te; Meng, Hsin-Fei; Yu, Peichen

    2012-12-01

    Hybrid organic-silicon heterojunction solar cells promise a significant reduction on fabrication costs by avoiding energy-intensive processes. However, their scalability remains challenging without a low-cost transparent electrode. In this work, we present solution-processed silver-nanowire meshes that uniformly cover the microtextured surface of hybrid heterojunction solar cells to enable efficient carrier collection for large device area. We systematically compare the characteristics and device performance with long and short nanowires with an average length/diameter of 30 μm/115 nm and 15 μm/45 nm, respectively, to those with silver metal grids. A remarkable power conversion efficiency of 10.1% is achieved with a device area of 1 × 1 cm(2) under 100 mW/cm(2) of AM1.5G illumination for the hybrid solar cells employing long wires, which represents an enhancement factor of up to 36.5% compared to the metal grid counterpart. The high-quality nanowire network displays an excellent spatial uniformity of photocurrent generation via distributed nanowire meshes and low dependence on efficient charge transport under a high light-injection condition with increased device area. The capability of silver nanowires as flexible transparent electrodes presents a great opportunity to accelerate the mass deployment of high-efficiency hybrid silicon photovoltaics via simple and rapid soluble processes. PMID:23167527

  9. Mineralogical and microtextural characterization of ``gel-zircon`` from the Manibay uranium mine, Kazakhstan

    SciTech Connect

    Helean, K.B.; Ewing, R.C.; Burakov, B.E.; Anderson, E.B.; Strykanova, E.E.; Ushakov, S.V.

    1997-12-31

    Gel-zircon, an unusual Zr-silicate phase from the Manibay uranium mine, northern Kazakhstan, was studied using X-ray diffraction (XRD), electron microprobe energy dispersive X-ray spectroscopy (EDS) and high resolution transmission electron microscopy (HRTEM). XRD results indicate that gel-zircon is mostly amorphous and occurs with numerous impurity phases. Microprobe EDS results indicate a UO{sub 2} content up to 9.14 wt.% HRTEM images revealed that the microtexture of gel-zircon consists of nanocrystallites of zircon, 2--10 nm in size, in a dominantly amorphous matrix. Despite the U-Pb age of 420 {+-} 25 my and the lack of significant crystallinity, the gel-zircon is an apparently chemically durable phase. Leaching of uranium ores which contain gel-zircon as the major U-bearing phase is impossible using existing uranium plant technologies. The alpha-decay dose, 2.64 displacements per atom (dpa), corresponding to the age of gel-zircon is much higher than that (0.5 dpa) required to cause metamictization of crystalline zircon. However, the morphology of gel-zircon which occurs as veins up to 5 mm thick and tens of mm long does not indicate initial crystallinity. Initially crystalline natural zircons often preserve their crystal morphology after metamictization. This amorphous phase is analogous to the highly damaged state characteristic of zircon proposed as a waste form for the disposition of excess weapons plutonium.

  10. Numerical modelling of microdroplet self-propelled jumping on micro-textured surface

    NASA Astrophysics Data System (ADS)

    Attarzadeh, S. M. Reza; Dolatabadi, Ali; Chun Kim, Kyung

    2015-11-01

    Understanding various stages of single and multiple droplet impact on a super-hydrophobic surface is of interest for many industrial applications such as aerospace industry. In this study, the phenomenon of coalescence induced droplets self-propelled jumping on a micro-textured super-hydrophobic surface is numerically simulated using Volume of Fluid (VOF) method. This model mimics the scenario of coalescing cloud-sized particles over the surface structure of an aircraft. The VOF coupled with a dynamic contact angle model is used to simulate the coalescence of two equal size droplets, that are initially placed very closed to each other with their interface overlapping with each other's which triggers the incipience of their coalescence. The textured surface is modeled as a series of equally spaced squared pillars, with 111° as the intrinsic contact angle all over the solid contact area. It is shown that the radial velocity of coalescing liquid bridge is reverted to upward direction due to the counter action of the surface to the basal area of droplet in contact. The presence of air beneath the droplet inside micro grooves which aimed at repelling water droplet is also captured in this model. The simulated results are found in good agreement with experimental observations. The authors gratefully acknowledge the financial support from Natural Sciences and Engineering Research Council of Canada (NSERC), Consortium de Recherche et d'innovation en Aerospatiale au Quebec (CRIAQ), Bombardier Aerospace, Pratt Whitney Canada.

  11. Microtextured metals for stray-light suppression in the Clementine startracker

    NASA Technical Reports Server (NTRS)

    Johnson, E. A.

    1993-01-01

    Anodized blacks for suppressing stray light in optical systems can now be replaced by microscopically textured metal surfaces. An application of these black surfaces to the Clementine star-tracker navigational system, which will be launched in early 1994 to examine the Moon, en route to intercept an asteroid, is detailed. Rugged black surfaces with Lambertian BRDF less than 10(exp -2) srad(sup -1) are critical for suppressing stray light in the star-tracker optical train. Previously available materials spall under launch vibrations to contaminate mirrors and lenses. Microtextured aluminum is nearly as dark, but much less fragile. It is made by differential ion beam sputtering, which generates light-trapping pores and cones slightly smaller than the wavelength to be absorbed. This leaves a sturdy but light-absorbing surface that can survive challenging conditions without generating debris or contaminants. Both seeded ion beams and plasma immersion (from ECR plasmas) extraction can produce these microscopic textures without fragile interfaces. Process parameters control feature size, spacing, and optical effects (THR, BRDF). Both broad and narrow absorption bands can be engineered with tuning for specific wavelengths and applications. Examples are presented characterized by FTIR in reflection librators (0.95 normal emissivity), heat rejection, and enhanced nucleate boiling.

  12. Pan-Spectral Analysis of Classic Martian Low-Albedo Regions: Updates on the Nature and Distribution of Primary and Secondary Mineral Phases

    NASA Astrophysics Data System (ADS)

    Salvatore, M. R.; Mustard, J. F.; Head, J. W.; Rogers, D.

    2013-12-01

    In this study, we investigate the primary and secondary mineralogy of martian low-albedo regions using a combination of visible/near-infrared (VNIR) reflectance and thermal infrared (TIR) emission datasets. TIR data were originally derived using the Thermal Emission Spectrometer (TES) instrument by [1,2], who interpreted these low-albedo regions to contain variable amounts of both basaltic and high-silica components; however, the nature of these high-silica phases remains uncertain, and both primary (e.g., volcanic glass) and secondary (e.g., hydrated alteration minerals) origins have been proposed. The mineralogical signatures of the evolving martian geologic, hydrologic, and climatic systems are recorded in these low-albedo regions, making the characterization of the identified high-silica phases critical towards better understanding the history of Mars. Consequently, we have completed a pan-spectral (VNIR and TIR) investigation of the nine low-albedo regions characterized by [2] in order to further constrain the composition of these martian landscapes. We derived regional VNIR spectra using Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) data. Data were acquired, processed, atmospherically corrected, and weighted based on their relative areal contributions, resulting in nine representative regional spectra. The primary mineral phases identified in VNIR spectra are consistent with a dominantly basaltic composition and are in good agreement with previous TIR analyses. The variability in the shape and position of the broad 2 micron crystal field absorption feature, classically attributed to variations in pyroxene composition, is quantitatively assessed using modified Gaussian modeling (MGM) approaches. The position of this 2 micron band, though, can also be influenced by oxidative weathering processes like those identified in Antarctica, which result in more negative spectral slopes in the near-infrared as well as apparent shifts of the

  13. Micro-textures and in situ sulfur isotopic analysis of spheroidal and zonal sulfides in the giant Jinding Zn-Pb deposit, Yunnan, China: Implications for biogenic processes

    NASA Astrophysics Data System (ADS)

    Xue, Chunji; Chi, Guoxiang; Fayek, Mostafa

    2015-05-01

    The Jinding deposit in Yunnan, southwest China, is the largest sandstone- and conglomerate-hosted Zn-Pb deposit in the world. In this paper, we report various micro-textures of spheroidal and zonal sulfides, such as pellet-shaped and colloform aggregates of pyrite and sphalerite, from the deposit and interpret them to be possibly related to micro-colonies of sulfate reducing bacteria, probably supporting an in situ BSR hypothesis. Micro-scale sulfur isotope analysis in different parts of the spheroidal and zonal sulfide aggregates, using secondary ion mass spectrometry (SIMS), revealed δ34S (VCDT) values as low as -48.4‰ for sulfides formed in the early-main stage disseminated ores in the western part of the deposit, possibly suggesting maximum sulfur isotopic fractionation through BSR. Relatively elevated δ34S (VCDT) values (-7.7‰ to -34.8‰, mainly from -10‰ to -20‰) for the late-stage, cavity-filling ores in the eastern part of the deposit, are interpreted to be possibly related to elevated temperatures close to the hydrothermal conduit and elevated δ34S values of the remaining sulfates resulting from the preceding BSR processes. The apparent discrepancy between the low temperatures required for BSR and the high temperatures indicated by fluid inclusions (>120 °C) may be reconciled through invoking episodic influx of ore-forming hydrothermal fluids into a shallow, relatively cool environment. It is proposed that the host rocks of the Jinding deposit have not been buried to great depths (⩽1 km), which, combined with the availability of hydrocarbons in the Jinding dome (a paleo-oil and gas reservoir), provides an ideal environment for BSR. Episodic influx of metal-carrying hydrothermal fluids temporarily and locally suppressed BSR and promoted thermo-chemical sulfate reduction (TSR), resulting in deposit- and micro-scale variations of δ34S.

  14. The influence of the microtexture, corrugation inclination angle, and perforation of corrugated surfaces on the character of liquid spreading

    NASA Astrophysics Data System (ADS)

    Pavlenko, A. N.; Li, X.; Li, H.; Gao, X.; Volodin, O. A.; Surtaev, A. S.; Serdyukov, V. S.

    2015-08-01

    The spreading of liquid nitrogen film over the surface of single structured packing elements has been experimentally studied. Comparative analysis of experimental data showed the influence of a horizontal microtexture, perforation, and inclination angle of large corrugation ribs on the character of liquid film spreading over the corrugated surface at various values of the film-flow Reynolds number. Experimental data are also presented on the dependence of the relative fraction of liquid retained in a single irrigated channel in corrugated plates of various thicknesses on the extent of irrigation.

  15. A three dimensional scaffold with precise micro-architecture and surface micro-textures

    PubMed Central

    Mata, Alvaro; Kim, Eun Jung; Boehm, Cynthia A.; Fleischman, Aaron J.; Muschler, George F.; Roy, Shuvo

    2013-01-01

    A three-dimensional (3D) structure comprising precisely defined microarchitecture and surface micro-textures, designed to present specific physical cues to cells and tissues, may provide an efficient scaffold in a variety of tissue engineering and regenerative medicine applications. We report a fabrication technique based on microfabrication and soft lithography that permits for the development of 3D scaffolds with both precisely engineered architecture and tailored surface topography. The scaffold fabrication technique consists of three key steps starting with microfabrication of a mold using an epoxy-based photoresist (SU-8), followed by dual-sided molding of a single layer of polydimethylsiloxane (PDMS) using a mechanical jig for precise motion control; and finally, alignment, stacking, and adhesion of multiple PDMS layers to achieve a 3D structure. This technique was used to produce 3D Texture and 3D Smooth PDMS scaffolds, where the surface topography comprised 10 μm-diameter/height posts and smooth surfaces, respectively. The potential utility of the 3D microfabricated scaffolds, and the role of surface topography, were subsequently investigated in vitro with a combined heterogeneous population of adult human stem cells and their resultant progenitor cells, collectively termed connective tissue progenitors (CTPs), under conditions promoting the osteoblastic phenotype. Examination of bone-marrow derived CTPs cultured on the 3D Texture scaffold for 9 days revealed cell growth in three dimensions and increased cell numbers compared to those on the 3D Smooth scaffold. Furthermore, expression of alkaline phosphatase mRNA was higher on the 3D Texture scaffold, while osteocalcin mRNA expression was comparable for both types of scaffolds. PMID:19524292

  16. High cesium concentrations in groundwater in the upper 1.2 km of fractured crystalline rock - Influence of groundwater origin and secondary minerals

    NASA Astrophysics Data System (ADS)

    Mathurin, Frédéric A.; Drake, Henrik; Tullborg, Eva-Lena; Berger, Tobias; Peltola, Pasi; Kalinowski, Birgitta E.; Åström, Mats E.

    2014-05-01

    Dissolved and solid phase cesium (Cs) was studied in the upper 1.2 km of a coastal granitoid fracture network on the Baltic Shield (Äspö Hard Rock Laboratory and Laxemar area, SE Sweden). There unusually high Cs concentrations (up to 5-6 μg L-1) occur in the low-temperature (<20 °C) groundwater. The material includes water collected in earlier hydrochemical monitoring programs and secondary precipitates (fracture coatings) collected on the fracture walls, as follows: (a) hydraulically pristine fracture groundwater sampled through 23 surface boreholes equipped for the retrieval of representative groundwater at controlled depths (Laxemar area), (b) fracture groundwater affected by artificial drainage collected through 80 boreholes drilled mostly along the Äspö Hard Rock Laboratory (underground research facility), (c) surface water collected in local streams, a lake and sea bay, and shallow groundwater collected in 8 regolith boreholes, and (d) 84 new specimens of fracture coatings sampled in cores from the Äspö HRL and Laxemar areas. The groundwater in each area is different, which affects Cs concentrations. The highest Cs concentrations occurred in deep-seated saline groundwater (median Äspö HRL: 4.1 μg L-1; median Laxemar: 3.7 μg L-1) and groundwater with marine origin (Äspö HRL: 4.2 μg L-1). Overall lower, but variable, Cs concentrations were found in other types of groundwater. The similar concentrations of Cs in the saline groundwater, which had a residence time in the order of millions of years, and in the marine groundwater, which had residence times in the order of years, shows that duration of water-rock interactions is not the single and primary control of dissolved Cs in these systems. The high Cs concentrations in the saline groundwater is ascribed to long-term weathering of minerals, primarily Cs-enriched fracture coatings dominated by illite and mixed-layer clays and possibly wall rock micaceous minerals. The high Cs concentrations in the

  17. The role of extremophile in the redox reaction of Fe and As relating with the formation of secondary phase mineral in extreme environment, Norris Geyser Basin, Yellowstone National Park, USA

    NASA Astrophysics Data System (ADS)

    Koo, T. H.; Kim, J. Y.; Park, K. R.; Jung, D. H.; Geesey, G. G.; Kim, J. W.

    2015-12-01

    Redox reaction associated with microbial elemental respiration is a ubiquitous process in sediments and suspended particles at various temperatures or pH/Eh conditions. Particularly, changes in elemental redox states (structural or dissolved elemental form) induced by microbial respiration result in the unexpected biogeochemical reactions in the light of biotic/abiotic mineralization. The objective of the present study is, therefore to investigate the secondary phase mineralization through a-/biogeochemical Fe and As redox cycling in the acido-hyperhtermal Norris Geyser Basin (NGB) in Yellowstone National Park, USA, typical of the extreme condition. X-ray diffraction, scanning electron microscope with energy dispersive x-ray spectroscopy, X-ray absorption near edge structure, inductively coupled plasma-atomic emission spectrometer and liquid chromatography with ICP-mass spectroscopy with filtrated supernatant were performed for the mineralogical and hydro-geochemical analysis. The clay slurry collected from the active hot-spring of the NGB area (pH=3.5 and Temperature=78 ℃) was incubated with ("enrichment") or without the growth medium ("natural"). The control was prepared in the same condition except adding the glutaraldehyde to eliminate the microbial activity. The secondary phase mineral formation of the oxidative phase of Fe and As, and K identified as 'Pharmacosiderite' only appeared in the enrichment set suggesting a role of extremophiles in the mineral formation. The considerable population of Fe-oxidizer (Metallosphera yellowstonensis MK-1) and As-oxidizer (Sulfurihydrogenibium sp.) was measured by phylogenetic analysis in the present study area. The inhibition of As-oxidation in the low pH conditions was reported in the previous study, however the As-redox reaction was observed and consequently, precipitated the Pharmacosiderite only in the enrichment set suggesting a biotic mineralization. The present study collectively suggests that the microbial

  18. EBSD Study on Grain Boundary and Microtexture Evolutions During Friction Stir Processing of A413 Cast Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Shamanian, Morteza; Mostaan, Hossein; Safari, Mehdi; Szpunar, Jerzy A.

    2016-07-01

    The as-cast Al alloys contain heterogeneous distributions of non-deforming particles due to non-equilibrium solidification effects. Therefore, these alloys have poor tribological and mechanical behaviors. It is well known that using friction stir processing (FSP), very fine microstructure is created in the as-cast Al alloys, while their wear resistance can be improved. In this research work, FSP is used to locally refine a surface layer of the coarse as-cast microstructure of cast A413 Al alloy. The main objective of this study is to investigate the effect of FSP on microstructure and microtexture evolutions in A413 cast Al alloy. The grain boundary character distribution, grain structure, and microtexture evolutions in as-cast and friction stir processed A413 Al alloy are analyzed by electron back scatter diffraction technique. It is found that with the FSP, the fraction of low ∑boundary such as ∑3, 7, and 9 are increased. The obtained results show that there are no deformation texture components in the structure of friction stir processed samples. However, some of the main recrystallization texture components such as BR and cubeND are formed during FSP which indicate the occurrence of dynamic recrystallization phenomenon due to the severe plastic deformation induced by the rotation of tool.

  19. EBSD Study on Grain Boundary and Microtexture Evolutions During Friction Stir Processing of A413 Cast Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Shamanian, Morteza; Mostaan, Hossein; Safari, Mehdi; Szpunar, Jerzy A.

    2016-05-01

    The as-cast Al alloys contain heterogeneous distributions of non-deforming particles due to non-equilibrium solidification effects. Therefore, these alloys have poor tribological and mechanical behaviors. It is well known that using friction stir processing (FSP), very fine microstructure is created in the as-cast Al alloys, while their wear resistance can be improved. In this research work, FSP is used to locally refine a surface layer of the coarse as-cast microstructure of cast A413 Al alloy. The main objective of this study is to investigate the effect of FSP on microstructure and microtexture evolutions in A413 cast Al alloy. The grain boundary character distribution, grain structure, and microtexture evolutions in as-cast and friction stir processed A413 Al alloy are analyzed by electron back scatter diffraction technique. It is found that with the FSP, the fraction of low ∑boundary such as ∑3, 7, and 9 are increased. The obtained results show that there are no deformation texture components in the structure of friction stir processed samples. However, some of the main recrystallization texture components such as BR and cubeND are formed during FSP which indicate the occurrence of dynamic recrystallization phenomenon due to the severe plastic deformation induced by the rotation of tool.

  20. Effect of pad surface micro-texture on dishing and erosion during shallow trench isolation chemical mechanical planarization

    NASA Astrophysics Data System (ADS)

    Liao, Xiaoyan; Zhuang, Yun; Borucki, Leonard J.; Cheng, Jiang; Theng, Siannie; Ashizawa, Toranosuke; Philipossian, Ara

    2014-08-01

    The effect of pad surface micro-texture on dishing and erosion during shallow trench isolation (STI) chemical mechanical planarization was investigated. To generate different pad surface micro-textures, a 3M A2810 disc (3M) and a Mitsubishi Materials Corporation disc (MMC) were used to condition a Dow® IC1000™ K-groove pad. For each disc, 200-mm blanket TEOS wafers and SKW3-2 STI wafers were polished. Results showed that the two discs generated similar blanket wafer removal rates, while the MMC disc generated significantly higher dishing and erosion compared to the 3M disc during patterned wafer polishing. Pad surface topography was analyzed using laser confocal microscopy after patterned wafer polishing. Results showed that the MMC disc generated a pad surface with significantly higher mean pad summit curvatures than the 3M disc. As the MMC disc generated more and sharper pad asperities, it resulted in higher dishing and erosion as these sharp asperities make greater direct contact with the “down” features.

  1. Effects of bound phosphate on the bioreduction of lepidocrocite (γ-FeOOH) and maghemite (γ-Fe2O3) and formation of secondary minerals.

    PubMed

    O'Loughlin, Edward J; Boyanov, Maxim I; Flynn, Theodore M; Gorski, Christopher A; Hofmann, Scott M; McCormick, Michael L; Scherer, Michelle M; Kemner, Kenneth M

    2013-08-20

    Natural Fe(III) oxides typically contain a range of trace elements including P. Although solution phase and adsorbed P (as phosphate) have been shown to impact the bioreduction of Fe(III) oxides and the formation of "biogenic" secondary minerals, little is known about the potential effects of occluded/incorporated phosphate. We have examined the bioreduction of Fe(III) oxides (lepidocrocite (γ-FeOOH) and maghemite (γ-Fe2O3)) containing 0-3 mass% P as "bound" (a term we use to include both adsorbed and occluded/incorporated) phosphate. Kinetic dissolution studies showed congruent release of Fe and P, suggesting that the phosphate in these materials was incorporated within the particles; however, 53% or 86% of the total phosphate associated with the lepidocrocites containing 0.7 or 3 mass% P, respectively, was extracted with 0.1 M NaOH and can be considered to be adsorbed, both to exterior surfaces and within micropores. In the absence of phosphate, lepidocrocite was rapidly reduced to magnetite by Shewanella putrefaciens CN32, and over time the magnetite was partially transformed to ferrous hydroxy carbonate (FHC). The presence of 0.2-0.7 mass% P significantly inhibited the initial reduction of lepidocrocite but ultimately resulted in greater Fe(II) production and the formation of carbonate green rust. The bioreduction of maghemite with and without bound phosphate resulted in solid-state conversion to magnetite, with subsequent formation of FHC. We also examined the potential redox cycling of green rust under alternating Fe(III)-reducing and oxic conditions. Oxidation of biogenic green rust by O2 resulted in conversion to ferric green rust, which was readily reduced back to green rust by S. putrefaciens CN32. These results indicate the potential for cycling of green rust between reduced and oxidized forms under redox dynamics similar to those encountered in environments that alternate between iron-reducing and oxic conditions, and they are consistent with the

  2. Cathodoluminescence (CL) of Lunar Minerals and Rocks

    NASA Astrophysics Data System (ADS)

    Götze, J.

    2009-08-01

    Selected material from the lunar surface (Luna 16, 20, 24 missions) was investigated using a combination of CL microscopy and spectroscopy with locally resolved microanalytical methods (Micro-Raman, microprobe, SEM, PIXE) to get information about the mineralogy and the luminescence behavior. Although the general high iron content of most lunar minerals and rocks prevents luminescence activation, certain species on the moon show visible CL. The dominant luminescent minerals are plagioclases and minerals of the SiO2 group, but K-feldspar, zircon and Ca-phosphates show also CL emissions. The application of CL imaging reveals microtextures such as zonation, brecciation or deformation features, which are not discernable by other analytical methods. Spectral CL measurements show that the main luminescence activators in lunar minerals are structural defects, Mn2+, REE3+ and Fe3+. The results show principle similarities with terrestrial material but also significant differences (e.g., mineral association, no weathering, impact damage). The close relationship between specific conditions of formation/alteration, the defect structure, and the luminescence properties may provide important genetic information.

  3. Time-temperature evolution of microtextures and contained fluids in a plutonic alkali feldspar during heating

    NASA Astrophysics Data System (ADS)

    Parsons, Ian; Fitz Gerald, John D.; Lee, James K. W.; Ivanic, Tim; Golla-Schindler, Ute

    2010-08-01

    Microtextural changes brought about by heating alkali feldspar crystals from the Shap granite, northern England, at atmospheric pressure, have been studied using transmission and scanning electron microscopy. A typical unheated phenocryst from Shap is composed of about 70 vol% of tweed orthoclase with strain-controlled coherent or semicoherent micro- and crypto-perthitic albite lamellae, with maximum lamellar thicknesses <1 μm. Semicoherent lamellae are encircled by nanotunnel loops in two orientations and cut by pull-apart cracks. The average bulk composition of this microtexture is Ab27.6Or71.8An0.6. The remaining 30 vol% is deuterically coarsened, microporous patch and vein perthite composed of incoherent subgrains of oligoclase, albite and irregular microcline. The largest subgrains are ~3 μm in diameter. Heating times in the laboratory were 12 to 6,792 h and T from 300°C into the melting interval at 1,100°C. Most samples were annealed at constant T but two were heated to simulate an 40Ar/39Ar step-heating schedule. Homogenisation of strain-controlled lamellae by Na↔K inter-diffusion was rapid, so that in all run products at >700°C, and after >48 h at 700°C, all such regions were essentially compositionally homogeneous, as indicated by X-ray analyses at fine scale in the transmission electron microscope. Changes in lamellar thickness with time at different T point to an activation energy of ~350 kJmol-1. A lamella which homogenised after 6,800 h at 600°C, therefore, would have required only 0.6 s to do so in the melting interval at 1,100°C. Subgrains in patch perthite homogenised more slowly than coherent lamellae and chemical gradients in patches persisted for >5,000 h at 700°C. Homogenisation T is in agreement with experimentally determined solvi for coherent ordered intergrowths, when a 50-100°C increase in T for An1 is applied. Homogenisation of lamellae appears to proceed in an unexpected manner: two smooth interfaces, microstructurally sharp

  4. Assessment of the molecular structure of natrodufrénite - NaFeFe53+()4(·2(HO), a secondary pegmatite phosphate mineral from Minas Gerais, Brazil

    NASA Astrophysics Data System (ADS)

    López, Andrés; Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Belotti, Fernanda Maria; Ribeiro, Érika

    2013-11-01

    The mineral natrodufrénite a secondary pegmatite phosphate mineral from Minas Gerais, Brazil, has been studied by a combination of scanning electron microscopy and vibrational spectroscopic techniques. Electron probe analysis shows the formula of the studied mineral as (Na0.88Ca0.12)∑1.00(Fe0.722+Mn0.11Mg0.08Ca0.04Zr0.01Cu0.01)∑0.97(Fe4.893+Al0.02)∑4.91(PO4)3.96(OH6.15F0.07)6.22ṡ2.05(H2O). Raman spectroscopy identifies an intense peak at 1003 cm-1 assigned to the PO43- ν1 symmetric stretching mode. Raman bands are observed at 1059 and 1118 cm-1 and are attributed to the PO43- ν3 antisymmetric stretching vibrations. A comparison is made with the spectral data of other hydrate hydroxy phosphate minerals including cyrilovite and wardite. Raman bands at 560, 582, 619 and 668 cm-1 are assigned to the ν4PO43- bending modes and Raman bands at 425, 444, 477 and 507 cm-1 are due to the ν2PO43- bending modes. Raman bands in the 2600-3800 cm-1 spectral range are attributed to water and OH stretching vibrations. Vibrational spectroscopy enables aspects of the molecular structure of natrodufrénite to be assessed.

  5. Grain structure and microtexture evolution during superplastic forming of a high strength Al-Zn-Mg-Cu alloy

    SciTech Connect

    Liu, J.; Chakrabarti, D.J.

    1996-12-01

    Grain structure and microstructure evolution during superplastic forming were studied on an unrecrystallized sheet of a modified 7050 superplastic alloy. A SEM-based local orientation technique was used to cover a large number of (sub)grain boundaries in combination with other metallographic techniques. The gradual boundary misorientation and microtexture evolution during superplastic forming (SPF) confirmed that a continuous evolutionary process was occurring. There was no evidence of dynamic recrystallization at the stress maximum. The fraction of high angle boundaries increased rapidly once the mean misorientation reached a critical value. These and other results suggest that both grain boundary sliding (GBS) and dislocation slip were operative initially until the stress maximum was approached, beyond which GBS was predominant. The results of quantitative orientation distribution function (ODF) analyses suggest that grain rotation, which resulted in texture randomization, became important from slightly beyond the stress maximum through most of the stress-strain curve.

  6. Enumeration of Thiobacilli within pH-Neutral and Acidic Mine Tailings and Their Role in the Development of Secondary Mineral Soil

    PubMed Central

    Southam, G.; Beveridge, T. J.

    1992-01-01

    The Lemoine tailings of Chibougamau, Quebec, Canada, were deposited as a pH-neutral mineral conglomerate consisting of aluminum-silicates, iron-aluminum-silicates, pyrite, chalcopyrite, and sphalerite. These tailings are colonized by an active population of Thiobacillus ferrooxidans which is localized to an acid zone occupying 40% of the tailings' surface. This population peaked at 7 × 108 most probable number per gram of tailings during July and August 1990 and extended to a depth of 40 cm from the surface. Examination of samples over this depth profile by transmission electron microscopy and electron dispersive spectroscopy revealed a microbially mediated mineral transition from sulfides (below 40 cm) to chlorides and phosphates (at the surface). Silicate minerals were unaltered by microbial action. Transmission electron microscopy showed a tight association between Thiobacillus species and the sulfide minerals, which helps account for their prominence in tailings environments. Accurate enumeration of T. ferrooxidans from tailings required the disruption of their bonding to the mineral interface. Vortexing of a 10% aqueous suspension of the tailings material prior to most-probable-number analysis best facilitated this release. Even though heavy metals were highly mobile under acidic conditions at the Lemoine tailings, it was evident by transmission electron microscopy and electron dispersive spectroscopy that they were being immobilized as bona fide fine-grain minerals containing iron, copper, chlorine, phosphorus, and oxygen on bacterial surfaces and exopolymers. This biomineralization increased with increasing bacterial numbers and was most evident in the upper 3 cm of the acidic zone. Images PMID:16348721

  7. Dynamics of the Barents-Kara ice sheet as revealed by quartz sand grain microtextures of the late Pleistocene Arctic Ocean sediments

    NASA Astrophysics Data System (ADS)

    Strand, Kari; Immonen, Ninna

    2010-12-01

    During the entire Quaternary, ice sheets advanced and retreated across the circum-Arctic margins in a series of climate related glacial-interglacial cycles. It is critical to obtain evaluation of the nature of initiated glaciers at the Arctic margins after the pronounced interglacial periods. In this study this will be done by inferring from glacially generated quartz sand grain surface microtextures and related sedimentology extracted from the central Arctic Ocean sediments. These microtextures can be correlated with the generation and fluctuations in the extent of the late Pleistocene Eurasian Ice Sheet i.e. Barents-Kara Ice Sheet. The central Arctic Ocean sediments in the Lomonosov Ridge, having been deposited after the late Pleistocene interglaciations and having had no internal hiatuses, provide an excellent time window for usage of quartz sand grain surface textures for evaluating possible evolving glaciers and continental ice sheets. This is based on the fact that iceberg and sea-ice transported quartz sand grains and their mechanically formed surface textures, created under high cryostatic stress, are diagnostic for glacier thickness and dynamics having been existed in sediment source areas. Sand-sized quartz grains in deep marine sediments favour iceberg or sea-ice transportation with characteristic content of microtextures formed prior this transportation. The sand grain surface microtextures and their frequencies of the selected submarine Lomonosov Ridge sediments during Marine Isotope Stage (MIS) 5 to MIS 3 are analysed using a scanning electron microscope (SEM). Coring during the Arctic Ocean 96 expedition (core 96/12-1pc) provided alternating clay to silty clay sediments which are characterised by prominent silt to sand-size containing intervals. The specific glacial crushing and high cryostatic stress generated features, such as high angularity, conchoidal fractures, steps and sub-parallel linear fractures, were observed from quartz sand grain

  8. Mathematical model for bone mineralization

    PubMed Central

    Komarova, Svetlana V.; Safranek, Lee; Gopalakrishnan, Jay; Ou, Miao-jung Yvonne; McKee, Marc D.; Murshed, Monzur; Rauch, Frank; Zuhr, Erica

    2015-01-01

    Defective bone mineralization has serious clinical manifestations, including deformities and fractures, but the regulation of this extracellular process is not fully understood. We have developed a mathematical model consisting of ordinary differential equations that describe collagen maturation, production and degradation of inhibitors, and mineral nucleation and growth. We examined the roles of individual processes in generating normal and abnormal mineralization patterns characterized using two outcome measures: mineralization lag time and degree of mineralization. Model parameters describing the formation of hydroxyapatite mineral on the nucleating centers most potently affected the degree of mineralization, while the parameters describing inhibitor homeostasis most effectively changed the mineralization lag time. Of interest, a parameter describing the rate of matrix maturation emerged as being capable of counter-intuitively increasing both the mineralization lag time and the degree of mineralization. We validated the accuracy of model predictions using known diseases of bone mineralization such as osteogenesis imperfecta and X-linked hypophosphatemia. The model successfully describes the highly nonlinear mineralization dynamics, which includes an initial lag phase when osteoid is present but no mineralization is evident, then fast primary mineralization, followed by secondary mineralization characterized by a continuous slow increase in bone mineral content. The developed model can potentially predict the function for a mutated protein based on the histology of pathologic bone samples from mineralization disorders of unknown etiology. PMID:26347868

  9. Chemical composition, plant secondary metabolites, and minerals of green and black teas and the effect of different tea-to-water ratios during their extraction on the composition of their spent leaves as potential additives for ruminants.

    PubMed

    Ramdani, Diky; Chaudhry, Abdul Shakoor; Seal, Chris J

    2013-05-22

    This study characterized the chemical composition of green and black teas as well as their spent tea leaves (STL) following boiling in water with different tea-to-water ratios. The green and black tea leaves had statistically similar (g/kg dry matter (DM), unless stated otherwise) DM (937 vs 942 g/kg sample), crude protein (240 vs 242), and ash (61.8 vs 61.4), but green tea had significantly higher (g/kg DM) total phenols (231 vs 151), total tannins (204 vs 133), condensed tannins (176 vs 101), and total saponins (276 vs 86.1) and lower neutral detergent fiber (254 vs 323) and acid detergent fiber (211 vs 309) than the black tea leaves. There was no significant difference between the green and black tea leaves for most mineral components except Mn, which was significantly higher in green tea leaves, and Na and Cu, which were significantly higher in black tea leaves. A higher tea-to-water ratio during extraction significantly reduced the loss of soluble compounds into water and hence yielded more nutrient-rich STL. On the basis of these analyses it appears that the green and black tea leaves alongside their STL have the potential for use as sources of protein, fiber, secondary metabolites, and minerals in ruminant diets. The presence of high levels of plant secondary metabolites in either tea leaves or their STL suggests that they may have potential for use as natural additives in ruminant diets. PMID:23621359

  10. Characterization of the sulphate mineral coquimbite, a secondary iron sulphate from Javier Ortega mine, Lucanas Province, Peru - Using infrared, Raman spectroscopy and thermogravimetry

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Gobac, Željka Žigovečki; López, Andrés; Xi, Yunfei; Scholz, Ricardo; Lana, Cristiano; Lima, Rosa Malena Fernandes

    2014-04-01

    The mineral coquimbite has been analysed using a range of techniques including SEM with EDX, thermal analytical techniques and Raman and infrared spectroscopy. The mineral originated from the Javier Ortega mine, Lucanas Province, Peru. The chemical formula was determined as ()∑2.00()3·9HO. Thermal analysis showed a total mass loss of ˜73.4% on heating to 1000 °C. A mass loss of 30.43% at 641.4 °C is attributed to the loss of SO3. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of sulphate tetrahedra, aluminium oxide/hydroxide octahedra, water molecules and hydroxyl ions. The Raman spectrum shows well resolved bands at 2994, 3176, 3327, 3422 and 3580 cm-1 attributed to water stretching vibrations. Vibrational spectroscopy combined with thermal analysis provides insight into the structure of coquimbite.

  11. Secondary osteoporosis.

    PubMed

    Sheu, Angela; Diamond, Terry

    2016-06-01

    Secondary osteoporosis is less common than primary osteoporosis. It may be suspected in patients who present with a fragility fracture despite having no risk factors for osteoporosis. In addition, secondary osteoporosis should be considered if the bone density Z-score is -2.5 or less. Consider the fracture site and presence of other clinical clues to guide investigations for an underlying cause. The tests to use are those that are indicated for the suspected cause. Baseline investigations include tests for bone and mineral metabolism (calcium, phosphate, alkaline phosphatase, 25-hydroxyvitamin D, parathyroid hormone), liver and kidney function, full blood count and thyroid-stimulating hormone. More detailed testing may be required in patients with severe osteoporosis. PMID:27346916

  12. Secondary osteoporosis

    PubMed Central

    Sheu, Angela; Diamond, Terry

    2016-01-01

    SUMMARY Secondary osteoporosis is less common than primary osteoporosis. It may be suspected in patients who present with a fragility fracture despite having no risk factors for osteoporosis. In addition, secondary osteoporosis should be considered if the bone density Z-score is –2.5 or less. Consider the fracture site and presence of other clinical clues to guide investigations for an underlying cause. The tests to use are those that are indicated for the suspected cause. Baseline investigations include tests for bone and mineral metabolism (calcium, phosphate, alkaline phosphatase, 25-hydroxyvitamin D, parathyroid hormone), liver and kidney function, full blood count and thyroid-stimulating hormone. More detailed testing may be required in patients with severe osteoporosis. PMID:27346916

  13. Reply to “Commentary: Assessment of past infiltration fluxes through Yucca Mountain on the basis of the secondary mineral record—is it a viable methodology?”, by Y.V. Dublyansky and S.Z. Smirnov

    NASA Astrophysics Data System (ADS)

    Sonnenthal, Eric; Xu, Tianfu; Bodvarsson, Gudmundur

    2005-04-01

    Xu et al. (2003) [Xu, T., Sonnenthal, E., Bodvarsson, G., 2003. A reaction-transport model for calcite precipitation and evaluation of infiltration-percolation fluxes in unsaturated fractured rock. J. Contam. Hydrol., 64, 113-127.] presented results of a reaction-transport model for calcite deposition in the unsaturated zone at Yucca Mountain, and compared the model results to measured abundances in core from a surface-based borehole. Marshall et al. (2003) [Marshall, B.D., Neymark, L.A., Peterman, Z.E., 2003. Estimation of past seepage volumes from calcite distribution in the Topopah Spring Tuff, Yucca Mountain, Nevada. J. Contam. Hydrol., 62-63, 237-247.] used the calcite distribution in the Topopah Spring Tuff to estimate past seepage into lithophysal cavities as an analog for seepage into the potential repository waste emplacement drifts at Yucca Mountain in southern Nevada (USA). Dublyansky and Smirnov (2005) [Dublyansky, Y.V., Smirnov, S.Z., 2005. Commentary: assessment of past infiltration fluxes through Yucca mountain on the basis of the secondary mineral record—is it a viable methodology? J. Contam. Hydrol. (this issue).] wrote a commentary paper to Marshall et al. (2003) [Marshall, B.D., Neymark, L.A., Peterman, Z.E., 2003. Estimation of past seepage volumes from calcite distribution in the Topopah Spring Tuff, Yucca Mountain, Nevada. J. Contam. Hydrol., 62-63, 237-247.] and Xu et al. (2003) [Xu, T., Sonnenthal, E., Bodvarsson, G., 2003. A reaction-transport model for calcite precipitation and evaluation of infiltration-percolation fluxes in unsaturated fractured rock. J. Contam. Hydrol., 64, 113-127.], containing two points: (1) questionable phenomenological model for the secondary mineral deposits and (2) inappropriate thermal boundary conditions. In this reply we address primarily the modeling approach by showing results of a sensitivity simulation regarding the effect of an elevated temperature history that approximates the temperature history

  14. Estimation of martensite feature size in a low-carbon alloy steel by microtexture analysis of boundaries.

    PubMed

    Karthikeyan, T; Dash, Manmath Kumar; Saroja, S; Vijayalakshmi, M

    2015-01-01

    A methodology for classifying the hierarchy of martensite boundaries from the EBSD microtexture data of low-carbon steel is presented. Quaternion algebra has been used to calculate the ideal misorientation between product α variants for Kurdjumov-Sachs (KS) and its nearby orientation relationships, and arrive at the misorientation angle-axis set corresponding to packet (12 types), block (3 types) and sub-block boundaries. Analysis of proximity of experimental misorientation between data points from the theoretical misorientation set is found to be useful for identifying the different types of martensite boundaries. The optimal OR in the alloy system and the critical deviation threshold for identification of martensite boundaries could both be ascertained by invoking the 'Enhancement Factor' concept. The prior-γ grain boundaries, packet, block and sub-block boundaries could be identified reasonably well, and their average intercept lengths in a typical tempered martensite microstructure of 9Cr-1Mo-0.1C steel was estimated as 31 μm, 14 μm, 9 μm and 4 μm respectively. PMID:25464145

  15. Numerical and analytical study of the impinging and bouncing phenomena of droplets on superhydrophobic surfaces with microtextured structures.

    PubMed

    Quan, Yunyun; Zhang, Li-Zhi

    2014-10-01

    The dynamics of droplets impinging on different microtextured superhydrophobic surfaces are modeled with CFD combined with VOF (Volume of Fluid) technique. The method is validated by experimental data and an analytical model (AM) that is used to predict the penetrating depth and the maximum spreading diameter of an impinging droplet. The effects of geometrical shapes and operating conditions on the spreading and bouncing behaviors of impinging droplets are investigated. Six surfaces with different shapes of pillars are considered, namely, triangular prism, square pillar, pentagonal prism, cylindrical pillar, and crisscross pillar surfaces. The bouncing ability of an impinging droplet on textured surfaces can be illustrated from three aspects, namely, the contact time, the ranges of velocities for rebound and the penetrating depth of liquid in the maximum spreading stage. The surface with crisscross pillars exhibits the best ability to rebound, which can be attributed to its large capillary pressure (PC) and its special structures that can capture air in the gaps during the impinging process. PMID:25203603

  16. A petrographic, geochemical and isotopic (O, H, C and Sr) investigation of secondary minerals in volcaniclastic rocks at Minna Bluff, Antarctica: Petrogenesis of alteration and implications for paleoenvironmental conditions

    NASA Astrophysics Data System (ADS)

    Antibus, J. V.; Panter, K. S.; Wilch, T. I.; Dunbar, N. W.; McIntosh, W. C.; Blusztajn, J.; Tripati, A. K.; Bindeman, I. N.

    2012-12-01

    The alteration of volcanic deposits is a function of eruptive style, environment of deposition and post-depositional processes. In this study we use petrographic and geochemical data on secondary minerals in volcaniclastic deposits at Minna Bluff, a 45-km-long volcanic peninsula in the southern Ross Sea active between 12 and 4 Ma, to unravel their history and study the environmental conditions responsible for their alteration. Glassy volcaniclastic deposits, including lapilli tuff, hyaloclastite breccia and volcanic sediments, have been altered to contain secondary minerals zeolite, carbonate and rare chalcedony and clay (dickite). Carbonates include calcite, Mg-calcite (MgCO3> 4 to <48 mol%), dolomite, magnesite, siderite and rhodochrosite. Zeolites include phillipsite and chabazite and have high and variable alkali contents (Na+K/Ca up to 154) relative to fresh lavas (<15). During the alteration of these deposits, phillipsite formed first followed by chabazite and/or carbonate although carbonates are still thought to be a very early diagenetic precipitate. Compositional zoning in zeolites is poorly developed while carbonates are commonly complex showing changes in Fe, Mn and Sr and Mg/Ca ratios across layers. Carbonate δ18O and δ13C values show wide variations ranging from -0.50 to 21.53‰ and -1.04 to 8.98‰, respectively. Chalcedony δ18O, measured on multiple aliquots from individual vugs and within each vug from one sample, range from 0.68 to 10.37‰ and δD values are light (-187.8 to -220.6‰), matching Antarctic meteoric water. A mean 87Sr/86Sr ratio of 0.70327 ±0.0009 (1σ, n = 12) for carbonates is comparable to values from lavas in this region (Erebus Volcanic Province), indicating that seawater even at low elevations (<40 m asl) was not involved in the alteration of these deposits. Field relationships and laboratory results indicate that alteration and associated mineral precipitation was a result of isolated, ephemeral events involving the

  17. Relationship Between Changes in Serum Urate and Bone Mineral Density During Treatment with Thiazide Diuretics: Secondary Analysis from a Randomized Controlled Trial.

    PubMed

    Dalbeth, Nicola; Gamble, Gregory D; Horne, Anne; Reid, Ian R

    2016-05-01

    In observational studies, serum urate concentrations associate with bone mineral density (BMD) and reduced risk of fractures. Thiazide diuretics slow the bone loss in healthy older adults, are associated with reduced incidence of fracture and also increase serum urate. We hypothesized that changes in serum urate are associated with changes in BMD during treatment with thiazide diuretics. We analysed data from a double-blind randomized controlled trial of hydrochlorothiazide (50 mg per day) and placebo in normal post-menopausal women. The relationship between change in serum urate and change in BMD after 2 years of treatment was examined using Spearman correlation and multiple linear regression models. Total body BMD increased in the hydrochlorothiazide group by 0.52 % and reduced in the placebo group by 0.29 % over 2 years (between group difference P = 0.0034). Serum urate increased in the hydrochlorothiazide group by 0.038 mmol/L and reduced in the placebo group by 0.004 mmol/L (between group difference P < 0.0001). At Year 2, there was a positive relationship between the change in serum urate and change in total body BMD for entire study population (r = 0.32, P = 0.0002) and for the hydrochlorothiazide group (r = 0.29, P = 0.023). The association between change in serum urate and change in total body BMD persisted after adjusting for treatment allocation, and change in weight, serum calcium, urinary calcium and serum creatinine (P change in serum urate = 0.043). These data raise the possibility that the effects of hydrochlorothiazide on BMD may be mediated, in part, by changes in serum urate concentrations. PMID:26713333

  18. Mineral Chart

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Mineral Chart KidsHealth > For Teens > Mineral Chart Print A A A Text Size en ... sources of calcium. You'll also find this mineral in broccoli and dark green, leafy vegetables. Soy ...

  19. Mineral oils

    NASA Technical Reports Server (NTRS)

    Furby, N. W.

    1973-01-01

    The characteristics of lubricants made from mineral oils are discussed. Types and compositions of base stocks are reviewed and the product demands and compositions of typical products are outlined. Processes for commercial production of mineral oils are examined. Tables of data are included to show examples of product types and requirements. A chemical analysis of three types of mineral oils is reported.

  20. Relating rheological measurements to primary and secondary skin feeling when mineral-based and Fischer-Tropsch wax-based cosmetic emulsions and jellies are applied to the skin.

    PubMed

    Bekker, M; Webber, G V; Louw, N R

    2013-08-01

    Rheology measurements were correlated to skin sensations occurring when cream and petroleum jelly cosmetic products containing different amounts of synthetic Fischer-Tropsch wax were applied to the skin. A panel of 15 people with a background in cosmetic product development were asked to rate skin feelings when a range of petroleum jelly and cream samples are applied to the skin. Primary skin feel, or the spreadability of a cosmetic product, was correlated to the product's flow onset and maximum viscosity as measured by a Anton Paar rheometer, whereas secondary skin feel or the sensation occurring at the end of application when the product was completely rubbed into the skin was correlated to the product's viscosity measured at high shear rates. The cream samples prepared with a petroleum jelly containing 10% and 20% Fischer-Tropsch wax fell within the boundary of good primary skin feeling of cream products. Predominantly, synthetic petroleum jellies were given the best assessments in terms of primary skin feeling and were used with mineral-based petroleum jellies to determine the boundary of good primary skin feeling for petroleum jelly products. The further away a product falls from this rheological boundary the poorer the skin feeling assessment appears to be by the panel. Products containing Fischer-Tropsch waxes were given the best assessment by the panel for secondary skin feeling. Comments from the panel include that these products feel silky and light on the skin. The higher the Fischer-Tropsch wax content, the lower viscosity was at high shear rate (ϒ = 500 s(-1) ) and the higher the assessment by the panel. Rheological measurements can be used to objectively determine skin sensation when products are applied to the skin; this may shorten research and development times. A rheology boundary of certain product viscosity and shear stress applied is associated with good primary skin feeling for lotions, creams and petroleum jellies. Lower product viscosity

  1. Microtexture and macrotexture formation in the containerless solidification of undercooled Ni-18.7 at.% Sn eutectic melts

    SciTech Connect

    Li Mingjun . E-mail: li.mingjun@jaxa.jp; Nagashio, Kosuke; Ishikawa, Takehiko; Yoda, Shinichi; Kuribayashi, Kazuhiko

    2005-02-01

    The microscopic orientations of Ni-18.7 at.% Sn eutectics solidified from undercooled states, in particular, within an individual eutectic colony and among neighboring eutectic colonies, have been measured with respect to the eutectic Ni{sub 3}Sn and Ni phases; this was done using a scanning electron microscope equipped with the electron backscatter diffraction pattern (EBSP) mapping technique. The EBSPs and inverse pole figures indicate that the Ni{sub 3}Sn intermetallic compound is continuous and well oriented whereas the Ni solid solution is discontinuous and randomly oriented within an anomalous eutectic grain. Further examination reveals that although Ni particulates are random from an overall view, most neighboring Ni grains have small misorientations of less than 10 deg . The specific solidification sequence and the effect of released crystallization heat on subsequent crystallization are further considered, which enables the primary Ni phase to segment into individual grains whereas Ni{sub 3}Sn does not due to higher entropy of fusion. A little rotation or floating within the constrained framework of the crystallizing Ni{sub 3}Sn compound may yield small misorientation angles. The discontinuous Ni particulates and continuous Ni{sub 3}Sn network are of great significance in revealing the anomalous eutectic formation. The orientation among independent eutectic colonies is random owing to the random appearance of nuclei throughout the volume of undercooled melts. The macrotextures of pole figures (PFs) of two eutectic phases are also mapped versus melt undercooling, which can be interpreted well when considering the nucleation frequency, variation of eutectic colony size, microtexture within a single eutectic colony, and the overall microstructure evolution as a function of melt undercooling.

  2. Secondary effects of glyphosate on plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is a unique herbicide with interesting secondary effects. Unfortunately, some have assumed that the secondary effects that occur in glyphosate-susceptible plants treated with glyphosate, such as altered mineral nutrition, reduced phenolic compound production and pathogen resistance, also ...

  3. Reply to 'Commentary: Assessment of past infiltration fluxes through Yucca Mountain on the basis of the secondary mineral record-is it a viable methodology?', by Y.V. Dublyansky and S.Z. Smirnov

    SciTech Connect

    Sonnenthal, Eric; Xu, Tianfu; Bodvarrson, Gudmundur

    2005-03-14

    Xu et al. (2003) presented results of a reaction-transport model for calcite deposition in the unsaturated zone at Yucca Mountain, and compared the model results to measured abundances in core from a surface-based borehole. Marshall et al. (2003) used the calcite distribution in the Topopah Spring Tuff to estimate past seepage into lithophysal cavities as an analog for seepage into the potential repository waste emplacement drifts at Yucca Mountain in southern Nevada (USA). Dublyansky and Smirnov (2005) wrote a commentary paper to Marshall et al. (2003) and Xu et al. (2003), containing two points: (1) questionable phenomenological model for the secondary mineral deposits and (2) inappropriate thermal boundary conditions. In this reply we address primarily the modeling approach by showing results of a sensitivity simulation regarding the effect of an elevated temperature history that approximates the temperature history inferred from fluid inclusions by Wilson et al. (2003). Modeled calcite abundances using the time-varying temperature history are similar to the results for the steady-state ambient temperature profile (Xu et al., 2003), and are still consistent with the measured abundances at the proposed repository horizon.

  4. Compositional and Microtextural Analysis of Basaltic Feedstock Materials Used for the 2010 ISRU Field Tests, Mauna Kea, Hawaii

    NASA Astrophysics Data System (ADS)

    Marin, N.; Farmer, J. D.; Zacny, K.; Sellar, R. G.; Nunez, J.

    2011-12-01

    This study seeks to understand variations in composition and texture of basaltic pyroclastic materials used in the 2010 International Lunar Surface Operation-In-Situ Resource Utilization Analogue Test (ILSO-ISRU) held on the slopes of Mauna Kea Volcano, Hawaii (1). The quantity and quality of resources delivered by ISRU depends upon the nature of the materials processed (2). We obtained a one-meter deep auger cuttings sample of a basaltic regolith at the primary site for feed stock materials being mined for the ISRU field test. The auger sample was subdivided into six, ~16 cm depth increments and each interval was sampled and characterized in the field using the Multispectral Microscopic Imager (MMI; 3) and a portable X-ray Diffractometer (Terra, InXitu Instruments, Inc.). Splits from each sampled interval were returned to the lab and analyzed using more definitive methods, including high resolution Powder X-ray Diffraction and Thermal Infrared (TIR) spectroscopy. The mineralogy and microtexture (grain size, sorting, roundness and sphericity) of the auger samples were determined using petrographic point count measurements obtained from grain-mount thin sections. NIH Image J (http://rsb.info.nih.gov/ij/) was applied to digital images of thin sections to document changes in particle size with depth. Results from TIR showed a general predominance of volcanic glass, along with plagioclase, olivine, and clinopyroxene. In addition, thin section and XRPD analyses showed a down core increase in the abundance of hydrated iron oxides (as in situ weathering products). Quantitative point count analyses confirmed the abundance of volcanic glass in samples, but also revealed olivine and pyroxene to be minor components, that decreased in abundance with depth. Furthermore, point count and XRD analyses showed a decrease in magnetite and ilmenite with depth, accompanied by an increase in Fe3+phases, including hematite and ferrihydrite. Image J particle analysis showed that the

  5. Industrial Minerals.

    ERIC Educational Resources Information Center

    Brady, Lawrence L.

    1983-01-01

    Discusses trends in and factors related to the production of industrial minerals during 1982, indicating that, as 1981 marked a downturn in production of industrial minerals, 1982 continued the trend with temporary and permanent cutbacks in mine and plant production. Includes highlights of several conferences/conference papers in this field.…

  6. Mineral Quantification.

    PubMed

    2016-01-01

    Optimal intakes of elements, such as sodium, potassium, magnesium, calcium, manganese, copper, zinc and iodine, can reduce individual risk factors including those related to cardiovascular diseases among humans and animals. In order to meet the need for vitamins, major minerals, trace minerals, fatty acids and amino acids, it is necessary to include a full spectrum programme that can deliver all of the nutrients in the right ratio. Minerals are required for normal growth, activities of muscles, skeletal development (such as calcium), cellular activity, oxygen transport (copper and iron), chemical reactions in the body, intestinal absorption (magnesium), fluid balance and nerve transmission (sodium and potassium), as well as the regulation of the acid base balance (phosphorus). The chapter discusses the chemical and instrumentation techniques used for estimation of minerals such as N, P, Ca, Mg, K, Na, Fe, Cu, Zn, B and Mb. PMID:26939263

  7. Clay Minerals

    SciTech Connect

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studies of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.

  8. Oxygen Isotope and Microtextural Evidence for Fluctuations in Fluid Pressure During Contact Metamorphism, Alta Aureole, Utah, USA

    NASA Astrophysics Data System (ADS)

    Bowman, J. R.; Valley, J. W.; Kita, N.

    2006-12-01

    values equal to and even slightly in excess of PL. Subsequent formation of a second generation of sub-vertical Dol veins with very low δ18O values (-1.9 to +1.2 permil) indicates another stage of infiltration involving even greater amounts of meteoric water, and a return to hydrostatic Pflconditions. Hence the detailed microtextures in the Per zone marbles, and their δ18O values, measureable with the spatial resolution capability of the ion microprobe, record a history of fluctuating fluid pressure between lithostatic and hydrostatic conditions in the inner Alta aureole. Such fluctuations should not be surprising. Contact metamorphic environments are characterized by strong spatial and temporal gradients in temperature, and a number of thermally-dependent factors (e.g., compaction, crystallization, reaction-generated porosity, thermally-controlled expansion and contraction) would then interact dynamically as sealing and cracking mechanisms to both increase and decrease permeability. Further, transient increases in fluid pressure would be expected from production of volatiles by metamorphic reactions and from multiple pulses of magmatic fluid produced during the assembly of an igneous intrusion.

  9. 30 CFR 57.6312 - Secondary blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Secondary blasting. 57.6312 Section 57.6312... Transportation-Surface and Underground § 57.6312 Secondary blasting. Secondary blasts fired at the same time in the same work area shall be initiated from one source. Electric Blasting—Surface and Underground...

  10. 30 CFR 56.6312 - Secondary blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Secondary blasting. 56.6312 Section 56.6312... Secondary blasting. Secondary blasts fired at the same time in the same work area shall be initiated from one source. Electric Blasting...

  11. Industrial Minerals

    ERIC Educational Resources Information Center

    Bradbury, James C.

    1978-01-01

    The past year is seen as not particularly good for industrial minerals and for industry in general. Environmental concerns continued to trouble the industry with unacceptable asbestos concentrations and chlorofluorocarbon effects on ozone. A halting U.S. economy also affected industrial progress. (MA)

  12. Mineral bioprocessing

    SciTech Connect

    Torma, A.E.

    1993-05-01

    In the last 25 years, the introduction of biotechnological methods in hydrometallurgy has created new opportunities and challenges for the mineral processing industry. This was especially true for the production of metal values from mining wastes and low-and-complex-grade mineral resources, which were considered economically not amenable for processing by conventional extraction methods. Using bio-assisted heap, dump and in-situ leaching technologies, copper and uranium extractions gained their first industrial applications. The precious metal industries were the next to adopt the bio-preoxidation technique in the extraction of gold from refractory sulfide-bearing ores and concentrates. A variety of other bioleaching opportunities exist for nickel, cobalt, cadmium and zinc sulfide leaching. Recently developed bioremediation methods and biosorption technologies have shown a good potential for industrial applications to remove trace heavy metal and radionuclide concentrations from contaminated soils, and mining and processing effluents.

  13. Secondary parkinsonism

    MedlinePlus

    Parkinsonism - secondary; Atypical Parkinson disease ... to be less responsive to medical therapy than Parkinson disease. ... Unlike Parkinson disease, some types of secondary parkinsonism may stabilize or even improve if the underlying cause is treated. Brain ...

  14. Secondary parkinsonism

    MedlinePlus

    Parkinsonism - secondary; Atypical Parkinson disease ... to be less responsive to medical therapy than Parkinson disease. ... Unlike Parkinson disease, some types of secondary parkinsonism may stabilize or even improve if the underlying cause is treated. ...

  15. Vitamins and Minerals

    MedlinePlus

    ... I Help a Friend Who Cuts? Vitamins and Minerals KidsHealth > For Teens > Vitamins and Minerals Print A ... of a good thing? What Are Vitamins and Minerals? Vitamins and minerals make people's bodies work properly. ...

  16. Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants.

    PubMed

    Obayi, Camillus Sunday; Tolouei, Ranna; Paternoster, Carlo; Turgeon, Stephane; Okorie, Boniface Adeleh; Obikwelu, Daniel Oray; Cassar, Glenn; Buhagiar, Joseph; Mantovani, Diego

    2015-04-01

    Iron-based biodegradable metals have been shown to present high potential in cardiac, vascular, orthopaedic and dental in adults, as well as paediatric, applications. These require suitable mechanical properties, adequate biocompatibility while guaranteeing a low toxicity of degradation products. For example, in cardiac applications, stents need to be made by homogeneous and isotropic materials in order to prevent sudden failures which would impair the deployment site. Besides, the presence of precipitates and pores, chemical inhomogeneity or other anisotropic microstructural defects may trigger stress concentration phenomena responsible for the early collapse of the device. Metal manufacturing processes play a fundamental role towards the final microstructure and mechanical properties of the materials. The present work assesses the effect of mode of rolling on the micro-texture evolution, mechanical properties and biodegradation behaviour of polycrystalline pure iron. Results indicated that cross-rolled samples recrystallized with lower rates than the straight-rolled ones due to a reduction in dislocation density content and an increase in intensity of {100} crystallographic plane which stores less energy of deformation responsible for primary recrystallization. The degradation resulted to be more uniform for cross-rolled samples, while the corrosion rates of cross-rolled and straight-rolled samples did not show relevant differences in simulated body solution. Finally, this work shows that an adequate compromise between biodegradation rate, strength and ductility could be achieved by modulating the deformation mode during cold rolling. PMID:25644452

  17. [Secondary diabetes].

    PubMed

    Nomiyama, Takashi; Yanase, Toshihiko

    2015-12-01

    Secondary diabetes is diabetes that results as a consequence of another medication, endocrine disease or hereditary disease. Secondary diabetes is very broad and diverted category among diabetes. Clinically, pancreatic diabetes is one of the most popular secondary diabetes, which provides insulin deficiency following pancreatic diseases, such as pancreatitis and pancreatic cancer. Among endocrine diseases, Cushing's syndrome and acromegaly are typical endocrine disorders causing secondary diabetes. They mainly induce insulin resistance in early stage, however, insulin deficiency is also observed in advanced stage. Steroid is the most popular drug-induced secondary diabetes. Importantly, not only oral administered steroid but also cutaneous and inhalation steroid could induce hyperglycemia. Major hereditary diabetes are MODY and mitochondrial diabetes. Concerning secondary diabetes, careful medical examination is required. PMID:26666145

  18. [Secondary hypertension].

    PubMed

    Yoshida, Yuichi; Shibata, Hirotaka

    2015-11-01

    Hypertension is a common disease and a crucial predisposing factor of cardiovascular diseases. Approximately 10% of hypertensive patients are secondary hypertension, a pathogenetic factor of which can be identified. Secondary hypertension consists of endocrine, renal, and other diseases. Primary aldosteronism, Cushing's syndrome, pheochromocytoma, hyperthyroidism, and hypothyroidism result in endocrine hypertension. Renal parenchymal hypertension and renovascular hypertension result in renal hypertension. Other diseases such as obstructive sleep apnea syndrome are also very prevalent in secondary hypertension. It is very crucial to find and treat secondary hypertension at earlier stages since most secondary hypertension is curable or can be dramatically improved by specific treatment. One should keep in mind that screening of secondary hypertension should be done at least once in a daily clinical practice. PMID:26619670

  19. Secondary osteoporosis: pathophysiology & diagnosis.

    PubMed

    Emkey, Gregory R; Epstein, Sol

    2014-12-01

    Osteoporosis is a skeletal disease characterized by decreased bone mass and microarchitectural changes in bone tissue that increase the susceptibility to fracture. Secondary osteoporosis is loosely defined as low bone mineral density or increased risk of fragility fracture caused by any factor other than aging or postmenopausal status. The purpose of this review is to discuss the current understanding of the pathophysiology and contribution to fracture risk of many of the more common causes of secondary osteoporosis, as well as diagnostic considerations, outlined by organ system. While not comprehensive, included are a wide array of diseases, conditions, and medications that have been associated with bone loss and susceptibility to fractures. The hope is to highlight the importance to the general clinician of screening for and treating the osteoporosis in these patients, so to limit the resultant increased morbidity associated with fractures. PMID:25432361

  20. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  1. New Minerals and Science.

    ERIC Educational Resources Information Center

    Birch, William D.

    1997-01-01

    Defines geodiversity, compares it to biodiversity, and discusses the mineral classification system. Charts the discovery of new minerals in Australia over time and focuses on uses of these minerals in technological advances. (DDR)

  2. Mineral spirits poisoning

    MedlinePlus

    Mineral spirits are liquid chemicals used to thin paint and as a degreaser. Mineral spirits poisoning occurs ... be found in: Mineral spirits ( Stoddard solvent ) Some paints Some floor and furniture waxes and polishes Some ...

  3. [Bone Cell Biology Assessed by Microscopic Approach. Bone mineralization by ultrastructural imaging].

    PubMed

    Hasegawa, Tomoka

    2015-10-01

    Bone mineralization can be divided into two phases ; one is primary mineralization associated with osteoblastic bone formation, and the other is secondary mineralization which gradually increases mineral density of bone matrix after the primary mineralization. Primary mineralization is initiated by matrix vesicles synthesized by mature osteoblasts. Crystalline calcium phosphates are nucleated inside these matrix vesicles, and then, get out of them forming spherical mineralized nodule, which can grow more by being supplied with Ca2+ and PO4(3-) (matrix vesicle mineralization). Thereafter, the mineralized nodules make contacts with surrounding collagen fibrils, extending mineralization along with their longitudinal axis from the contact points (collagen mineralization). In this review, the ultrastructural findings on bone mineralization, specially, primary mineralization will be provided. PMID:26412723

  4. Secondary Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of their name, "secondary" products are essential for plant survival. They are required for basic cell functions as well as communicating the plant's presence to the surrounding environment and defense against pests as defined in the broad sense (i.e., diseases, nematodes, insects and plan...

  5. Mineral Commodity Profiles: Selenium

    USGS Publications Warehouse

    Butterman, W.C.; Brown, R.D., Jr.

    2004-01-01

    Overview -- Selenium, which is one of the chalcogen elements in group 16 (or 6A) of the periodic table, is a semiconductor that is chemically similar to sulfur for which it substitutes in many minerals and synthetic compounds. It is a byproduct of copper refining and, to a much lesser extent, lead refining. It is used in many applications, the major ones being a decolorizer for glass, a metallurgical additive to free-machining varieties of ferrous and nonferrous alloys, a constituent in cadmium sulfoselenide pigments, a photoreceptor in xerographic copiers, and a semiconductor in electrical rectifiers and photocells. Refined selenium amounting to more than 1,800 metric tons (t) was produced by 14 countries in 2000. Japan, Canada, the United States, and Belgium, which were the four largest producers, accounted for nearly 85 percent of world production. An estimated 250 t of the world total is secondary selenium, which is recovered from scrapped xerographic copier drums and selenium rectifiers; the selenium in nearly all other uses is dissipated (not recoverable as waste or scrap). The present selenium reserve bases for the United States and the world (including the United States), which are associated with copper deposits, are expected to be able to satisfy demand for selenium for several decades without difficulty.

  6. Mineral chemical study of U-bearing minerals from the Dominion Reefs, South Africa

    NASA Astrophysics Data System (ADS)

    Rantzsch, Ulrike; Gauert, Christoph D. K.; van der Westhuizen, Willem A.; Duhamel, Isabelle; Cuney, Michel; Beukes, Gerhard J.

    2011-02-01

    The Neo-Archean Dominion Reefs (~3.06 Ga) are thin meta-conglomerate layers with concentrations of U- and Th-bearing heavy minerals higher than in the overlying Witwatersrand Reefs. Ore samples from Uranium One Africa's Rietkuil and Dominion exploration areas near Klerksdorp, South Africa, were investigated for their mineral paragenesis, texture and mineral chemical composition. The ore and heavy mineral assemblages consist of uraninite, other uraniferous minerals, Fe sulphides, Ni-Co sulfarsenides, garnet, pyrite, pyrrhotite, monazite, zircon, chromite, magnetite and minor gold. Sub-rounded uraninite grains occur associated with the primary detrital heavy mineral paragenesis. U-Ti, U-Th minerals, pitchblende (colloform uraninite) and coffinite are of secondary, re-mobilised origin as evidenced by crystal shape and texture. Most of the uranium mineralisation is represented by detrital uraninite with up to 70.2 wt.% UO2 and up to 9.3 wt.% ThO2. Re-crystallised phases such as secondary pitchblende (without Th), coffinite, U-Ti and U-Th phases are related to hydrothermal overprint during low-grade metamorphism and are of minor abundance.

  7. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    SciTech Connect

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.

  8. Bartering for Minerals.

    ERIC Educational Resources Information Center

    May, Kathie

    2002-01-01

    Presents an activity in which students are assigned occupations that rely on specific minerals. To obtain the needed minerals, students learn how to trade services and commodities. Includes details on preparation, modeling behaviors, and printed materials. (DDR)

  9. Mathematical Model for the Mineralization of Bone

    NASA Technical Reports Server (NTRS)

    Martin, Bruce

    1994-01-01

    A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. ne model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.

  10. Mathematical Model for the Mineralization of Bone

    NASA Technical Reports Server (NTRS)

    Martin, Bruce

    1994-01-01

    A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. The model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.

  11. Possible uranium mineralization, Mineral Mountains, Utah

    USGS Publications Warehouse

    Miller, W. Roger; McHugh, John B.; Ficklin, Walter H.

    1979-01-01

    The Mineral Mountains block in west-central Utah is a horst whose core stands structurally high relative to all nearby basin-and-range fault blocks. Rocks of the Mineral Mountains range from Precambrian to Quaternary in age, but mostly consist of Tertiary granitic rocks. The range lies with the Wah Wah-Tusher mineral belt. Lead, silver, gold, and tungsten have been mined commercially. During a geochemical survey conducted in the summer of 1978, 30 water samples and 29 stream-sediment samples were collected from the Mineral Mountains area. The interpretation of simple plots of uranium concentrations and the results of a Q-mode factor analysis indicate that potential exists for uranium mineral deposits within the Mineral Mountains. The most favorable areas are in the granitic pluton near its contacts with sedimentary and metamorphic rocks. The most likely source of the uranium anomalies is uraninite-bearing epigenic veins along faults and fractures within the pluton. Three hypothetical models are proposed to account for the uranium mineralization.

  12. Fungal degradation of calcium-, lead- and silicon-bearing minerals.

    PubMed

    Adeyemi, Ademola O; Gadd, Geoffrey M

    2005-06-01

    The aim of this study was to examine nutritional influence on the ability of selected filamentous fungi to mediate biogenic weathering of the minerals, apatite, galena and obsidian in order to provide further understanding of the roles of fungi as biogeochemical agents, particularly in relation to the cycling of metals and associated elements found in minerals. The impact of three organic acid producing fungi (Aspergillus niger, Serpula himantioides and Trametes versicolor) on apatite, galena and obsidian was examined in the absence and presence of a carbon and energy source (glucose). Manifestation of fungal weathering included corrosion of mineral surfaces, modification of the mineral substrate through transformation into secondary minerals (i.e. crystal formation) and hyphal penetration of the mineral substrate. Physicochemical interactions of fungal metabolites, e.g. H+ and organic acids, with the minerals are thought to be the primary driving forces responsible. All experimental fungi were capable of mineral surface colonization in the absence and presence of glucose but corrosion of the mineral surface and secondary mineral formation were affected by glucose availability. Only S. himantioides and T. versicolor were able to corrode apatite in the absence of glucose but none of the fungi were capable of doing so with the other minerals. In addition, crystal formation with galena was entirely dependent on the availability of glucose. Penetration of the mineral substrates by fungal hyphae occurred but this did not follow any particular pattern. Although the presence of glucose in the media appeared to influence positively the mineral penetrating abilities of the fungi, the results obtained also showed that some geochemical change(s) might occur under nutrient-limited conditions. It was, however, unclear whether the hyphae actively penetrated the minerals or were growing into pre-existing pores or cracks. PMID:15984571

  13. Ion beam microtexturing of surfaces

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1981-01-01

    Some recent work in surface microtecturing by ion beam sputtering is described. The texturing is accomplished by deposition of an impurity onto a substrate while simultaneously bombarding it with an ion beam. A summary of the theory regarding surface diffusion of impurities and the initiation of cone formation is provided. A detailed experimental study of the time-development of individual sputter cones is described. A quasi-liquid coating was observed that apparently reduces the sputter rate of the body of a cone compared to the bulk material. Experimental measurements of surface diffusion activation energies are presented for a variety of substrate-seed combinations and range from about 0.3 eV to 1.2 eV. Observations of apparent crystal structure in sputter cones are discussed. Measurements of the critical temperature for cone formation are also given along with a correlation of critical temperature with substrate sputter rate.

  14. Origin, Behavior and Texture of Clay Minerals in Mongolian Active Fault of Bogd and Comparison with SAFOD Fault Gouge

    NASA Astrophysics Data System (ADS)

    Wenk, H.; Buatier, M.; Chauvet, A.; Kanitpanyacharoen, W.

    2010-12-01

    Fault gouges are generally considered as the highly deformed zone corresponding to the localization of shear during seismic events. Clays are ubiquitous minerals in fault gouges but the origin is unclear. They can form as a result of break up of inherited phyllosilicates during faulting, or during co- or post- deformation events or even during interseismic creeping. In this study, we aim to characterize the origin and nature of the clay minerals, to observe the microtexture and preferred orientation of clay at various scales in order to understand the behavior of clay mineral in seismic faults. The investigation relied on x-ray powder patterns, SEM, TEM and high energy synchrotron x-ray diffraction. The major clay components are smectite, illite-smectite, illite-mica and kaolinite. Our observations suggest that the protolith and the fault rock of the Bogd and paleo-Bogd faults in Mongolia were highly altered by fluids. The fluid-rock interactions allows clay minerals to form and to precipitate kaolinite and smectite. Thus, newly formed clay minerals are heterogeneously distributed in the fault zone. The decrease of smectite component of the highly deformed samples suggests a dehydration process during deformation, leading to illite precipitation. From synchrotron diffraction images, volume fractions and preferred orientation were analyzed. Our analysis shows that texture strength of constituent clays is very weak ranging from 1.05 to 2.59 m.r.d., which is consistent with similar data from SAFOD fault gouge. The clays minerals of the Bogd fault favors the slip weakening behavior of the fault.

  15. Mineral particles, mineral fibers, and lung cancer

    SciTech Connect

    Churg, A.; Wiggs, B.

    1985-08-01

    The total fibrous and nonfibrous mineral content of the lung has been analyzed in a series of 14 men with lung cancer but no history of occupational dust exposure, and in a series of 14 control men matched for age, smoking history, and general occupational class. The lung cancer patients had an average of 525 +/- 369 X 10(6) exogenous mineral particles and 17.4 +/- 19.6 X 10(6) exogenous mineral fibers/g dry lung, while the controls had averages of 261 +/- 175 mineral particles and 4.7 +/- 3.2 X 10(6) mineral fibers/g dry lung. These differences are statistically significant for both particles and fibers. Kaolinite, talc, mica, feldspars, and crystalline silica comprised the majority of particles of both groups. Approximately 90% of the particles were smaller than 2 micron in diameter and approximately 60% smaller than 1 micron. In both groups, patients who had smoked more than 35 pack years had greater numbers of particles than patients who had smoked less than 35 pack years. It is concluded that, in this study, lungs from patients with lung cancer had statistically greater numbers of mineral particles and fibers than lungs from controls, and that smoking influences total long-term retention of particles from all sources.

  16. Textures of Secondary Alteration Zones in Nakhla

    NASA Technical Reports Server (NTRS)

    McKay, D. S.; Wentworth, S. J.; Longazo, T. G.; Thomas-Keprta, K.; Gibson, E. K.

    2001-01-01

    Textures of secondary minerals in cracks in Nakhla are described and illustrated with high resolution Scanning Electron Microscopy (SEM) and BSE. Some Nakhla textures resemble alteration textures of glass in seafloor basalts. Criteria for inorganic vs. biogenic alteration are discussed. Additional information is contained in the original extended abstract.

  17. Scientists observe fungi-dissolving minerals

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-10-01

    Ectomycorrhizal fungi (EMF) live in moist dark recesses and never see daylight. They cling to the roots of trees in boreal forests, break down soil minerals and supply essential elements and nutrients to the trees. Along the way, they play a distinct but not yet well-understood role in bioweathering, a process in which water, air, and organisms interact to break down soil minerals within the first few meters of Earth's surface. In a synthetically designed and controlled laboratory environment, Gazzè et al. cultured EMF; the researchers monitored the process as the fungi colonized a soil mineral on a petri dish over a period of 7 months. The authors then extracted individual grains of chlorite, a common soil-forming clay mineral, and cleaned the mineral surfaces to look at how the fungi had affected the mineral surfaces they came in contact with. Using atomic force microscopy, a specialized process that allows observations of three-dimensional features at nanometer (10-9 meter) scales, the authors found numerous primary channels, of the order of a micron (10-6 meters) in width and up to 50 nanometers in depth, from which smaller secondary channels extended outward. The network of channels resembled a herringbone-like pattern—evidence of dissolution by EMF.

  18. Heavy-mineral analysis and provenance of Yellow River sediments around the China Loess Plateau

    NASA Astrophysics Data System (ADS)

    Pan, Baotian; Pang, Hongli; Gao, Hongshan; Garzanti, Eduardo; Zou, Yu; Liu, Xiaopeng; Li, Fuqiang; Jia, Yunxia

    2016-09-01

    In its upper-middle reaches the Yellow River has high sand contents after traversing through large areas of desert and the China Loess Plateau. Understanding riverbed sediment composition in the channel is critical for the interpretation of the potential provenance, aeolian sand transport and the linkage between the Loess Plateau and the Yellow River. To address these issues, we collected 52 samples from the modern riverbed, proximal deserts, and major tributaries and used analyses of grain size, grain morphology, and heavy-mineral compositions, to establish the spatial distribution and characteristics of source regions and riverbed sediments. The heavy-mineral assemblages demonstrate significant variations for the different sections of the Yellow River. The riverbed samples from the upper reach are dominated by opaque minerals (limonite and magnetite), amphibole and epidote, with minor zircon, tourmaline and rutile. Riverbed sediments from the middle reach are garnet-rich, reflecting the widespread distribution of Mesozoic sandstones. This variability closely reflects the source regions. Our data show that seasonal tributaries (the "Ten Great Gullies") carrying detritus from the Ordos Plateau may account for the localized high garnet concentrations in the Inner Mongolia section of the upper reach. Scanning electron microscope (SEM) imaging of quartz grains show that the river sediments are characterized by composite microtextures acquired in both fluvial and eolian environments of the Hedong, Ulan Buh and Kubuq Deserts. The mineralogical composition in the upper reach (Lanzhou-Yinchuan) is similar to that of sediments in the Loess Plateau and Northeast Tibet Plateau (Western Lanzhou). However, the composition differs markedly from that in the Inner Mongolia section of the upper and middle reaches. This variation indicates that in the upper reach the Northeast Tibet Plateau contributes significant volumes of sediment to the Yellow River and Loess Plateau, but

  19. Distinctive Accessory Minerals, Textures and Crystal Habits in Biofilm Associated Gypsum Deposits

    NASA Astrophysics Data System (ADS)

    Vogel, M.; Des Marais, D.; Jahnke, L.; Parenteau, M.

    2008-12-01

    Gypsum-depositing environments near Guerrero Negro, Baja California Sur, Mexico were investigated in order to differentiate the influence of microbial activity versus nonbiological processes upon sedimentary fabrics and minerals. Field sites were located in sabkhas (mudflats and anchialine pools) and in seawater concentration ponds in the salt production facility operated by Exportadora de Sal, S. A. Gypsum (CaSO4.2H2O) was classified according to sedimentary environment (e.g., mudflats, anchialine pools, saltern ponds, surface and subsurface sediments), sedimentary texture, mineral composition, crystal habit, brine composition and other geochemical and biological factors. Gypsum types that develop in the absence of biofilms include water column precipitates (pelagic grains) and subsedimentary crystalline discs that form from phreatic brine ripening. Subsedimentary gypsum forming in sabkha environments had a sinuous axial microtexture and poikilitically enclosed detrital particles whereas water column precipitates exhibited euhedral prismatic habits and extensive penetrative twinning. Gypsum that was influenced by biofilms included cumulate crusts and gypsooids / gypsolite developing in anchialine pools and in saltern concentration ponds. Gypsum precipitating within subaqueous benthic microbial mats, or biofilm/sediment surfaces offered compelling evidence of biofilm influence on crystal textures and habits. Biofilm effects include irregular high relief surface textures, accessory minerals (elemental sulfur, Ca-carbonate, Sr/Ca-sulfate, Mg-oxide and Mg- sulfate) and distinctive crystal habits. Elemental sulfur, Ca-carbonate, and Sr/Ca-sulfate are known byproducts of bacterially mediated sulfate reduction (BSR). Populations of gypsum crystals within biofilms exhibited euhedral to lensoidal morphologies with unique equant and distorted prismatic forms. These forms had been shown to arise from form- and face-specific inhibition by bioorganic functional groups (Cody

  20. Reagan issues mineral policy

    NASA Astrophysics Data System (ADS)

    The National Materials and Minerals Program plan and report that President Reagan sent to Congress on April 5 aims to ‘decrease America's minerals vulnerability’ while reducing future dependence on potentially unstable foreign sources of minerals. These goals would be accomplished by taking inventory of federal lands to determine mineral potential; by meeting the stockpile goals set by the Strategic and Critical Material Stockpiling Act; and by establishing a business and political climate that would encourage private-sector research and development on minerals.Now that the Administration has issued its plan, the Subcommittee on Mines and Mining of the House Committee on Interior and Insular Affairs will consider the National Minerals Security Act (NMSA), which was introduced 1 year ago by subcommittee chairman Jim Santini (D-Nev.) [Eos, May 19, 1981, p. 497]. The bill calls for establishing a three-member White-House-level council to coordinate the development of a national minerals policy; amending tax laws to assist the mining industry to make capital investments to locate and produce strategic materials; and creating a revolving fund for the sale and purchase of strategic minerals. In addition, the NMSA bill would allow the secretary of the interior to make previously withdrawn public lands available for mineral development. The subcommittee will hold a hearing on the Administration's plan on May 11. Interior Secretary James Watt has been invited to testify.

  1. Rocks, minerals, and a dusty world

    SciTech Connect

    Klein, C.

    1993-12-31

    The Earth`s troposphere and hydrosphere contain abundant naturally generated dust. The ultimate source materials from which the terrestrially produced dust is generated are the various rock types exposed at the Earth`s surface. Natural dust is a composite of (1) lithic, primary mineral grains; (2) mineral grains formed by secondary chemical reactions; (3) volcanic ash and dust; (4) salts from sea sprays; (5) extra-terrestrial dust; and (6) biologic materials. In this paper the various pathways to the natural generation of dust (via the hydrologic cycle) will be discussed, and two geologically well-known natural dust sources will be described, paying particular attention to quantitative measurements of the dusts from these areas. General dust studies that provide data on possibly global background levels will be presented as well.. A few general aspects of the mineralogical characterization of dust particles and a discussion of some of the mineralogy of several mineral groups are first presented. 89 refs., 39 figs.

  2. Uranium mineralization in southern Victoria Land, Antarctica

    SciTech Connect

    Dreschhoff, G.A.M.; Zeller, E.J.

    1986-01-01

    For the past 10 antarctic field seasons, an airborne gamma-ray spectrometric survey has been conducted over widely separated parts of the continent. Localized accumulations of both primary and secondary uranium minerals have been discovered at several localities scattered along the Transantarctic Mountains from the Scott Glacier to northern Victoria Land. A number of highly significant radiation anomalies have been discovered in the area between the Koettlitz Glacier and the Pyramid Trough. The occurrences consist of pegmatite vein complexes which contain an association of primary uranium and thorium minerals. Of still greater significance is the fact that abundant secondary uranium minerals were found in association with the primary deposits, and they indicate clearly that uranium is geochemically mobile under the conditions imposed by the arid polar climate that now exists in southern Victoria Land. Preliminary results of a uranium analysis performed by neutron activation indicate a concentration of 0.12% uranium in a composite sample from the two veins. Even higher levels of thorium are present. The nature of the primary uranium mineralization is currently under investigation. Preliminary results are discussed.

  3. SECONDARY OSTEOPOROSIS: PATHOPHYSIOLOGY AND MANAGEMENT

    PubMed Central

    Mirza, Faryal; Canalis, Ernesto

    2015-01-01

    Osteoporosis is a skeletal disorder characterized by decreased bone mineral density and compromised bone strength predisposing to an increased risk of fractures. Although idiopathic osteoporosis is the most common form of osteoporosis, secondary factors may contribute to the bone loss and increased fracture risk in patients presenting with fragility fractures or osteoporosis. Several medical conditions and medications significantly increase the risk for bone loss and skeletal fragility. This review focuses on some of the common causes of osteoporosis, addressing the underlying mechanisms, diagnostic approach and treatment of low bone mass in the presence of these conditions. PMID:25971649

  4. Mineralization by Inhibitor Exclusion

    PubMed Central

    Price, Paul A.; Toroian, Damon; Lim, Joo Eun

    2009-01-01

    One of our goals is to understand the mechanisms that deposit mineral within collagen fibrils, and as a first step we recently determined the size exclusion characteristics of the fibril. This study revealed that apatite crystals up to 12 unit cells in size can access the water within the fibril, whereas molecules larger than a 40-kDa protein are excluded. Based on these observations, we proposed a novel mechanism for fibril mineralization: that macromolecular inhibitors of apatite growth favor fibril mineralization by selectively inhibiting crystal growth in the solution outside of the fibril. To test this mechanism, we developed a system in which crystal formation is driven by homogeneous nucleation at high calcium phosphate concentration and the only macromolecule in solution is fetuin, a 48-kDa inhibitor of apatite growth. Our experiments with this system demonstrated that fetuin determines the location of mineral growth; in the presence of fetuin mineral grows exclusively within the fibril, whereas in its absence mineral grows in solution outside the fibril. Additional experiments showed that fetuin is also able to localize calcification to the interior of synthetic matrices that have size exclusion characteristics similar to those of collagen and that it does so by selectively inhibiting mineral growth outside of these matrices. We termed this new calcification mechanism “mineralization by inhibitor exclusion,” the selective mineralization of a matrix using a macromolecular inhibitor of mineral growth that is excluded from that matrix. Future studies will be needed to evaluate the possible role of this mechanism in bone mineralization. PMID:19414589

  5. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the...

  6. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the...

  7. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the...

  8. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the...

  9. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the...

  10. Mineral Wool Insulation Binders

    NASA Astrophysics Data System (ADS)

    Kowatsch, Stefan

    Mineral wool is considered the best known insulation type among the wide variety of insulation materials. There are three types of mineral wool, and these consist of glass, stone (rock), and slag wool. The overall manufacturing processes, along with features such as specifications and characteristics for each of these types, as well as the role of the binder within the process are described.

  11. Digging into Minnesota Minerals.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Natural Resources, St. Paul.

    This publication presents students with facts about geology and several learning activities. Topics covered include rocks and minerals, volcanoes and earthquakes, fossils, exploration geology, mining in Minnesota, environmental issues related to mining, mineral uses, mining history, and the geology of Minnesota's state parks. A geologic timetable…

  12. Vitamins, Minerals, and Mood

    ERIC Educational Resources Information Center

    Kaplan, Bonnie J.; Crawford, Susan G.; Field, Catherine J.; Simpson, J. Steven A.

    2007-01-01

    In this article, the authors explore the breadth and depth of published research linking dietary vitamins and minerals (micronutrients) to mood. Since the 1920s, there have been many studies on individual vitamins (especially B vitamins and Vitamins C, D, and E), minerals (calcium, chromium, iron, magnesium, zinc, and selenium), and vitamin-like…

  13. Mineral Fiber Toxicology

    EPA Science Inventory

    The chemical and physical properties of different forms of mineral fibers impact biopersistence and pathology in the lung. Fiber chemistry, length, aspect ratio, surface area and dose are critical factors determining mineral fiber-associated health effects including cancer and as...

  14. The Miner's Canary

    ERIC Educational Resources Information Center

    Guinier, Lani

    2005-01-01

    Miners used canaries as early warning signals: when a canary gasped for breath, the miners knew there was a problem with the atmosphere in the mine. The experience of people of color in higher education can be used similarly as a diagnostic tool.

  15. Mineral Commodity Summaries 2011

    USGS Publications Warehouse

    U.S. Geological Survey

    2011-01-01

    Each chapter of the 2011 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2010 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Mineral Commodity Summaries 2011 contains new chapters on iron oxide pigments, wollastonite, and zeolites. The chapters on mica (natural), scrap and flake and mica (natural), sheet have been combined into a single chapter - mica (natural). Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. "Appendix C - Reserves and Resources" has been divided into "Part A - Resource/Reserve Classification for Minerals" and "Part B - Sources of Reserves Data," including some information that was previously in this introduction. A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2011 are welcomed.

  16. Mineral Commodity Summaries 2003

    USGS Publications Warehouse

    U.S. Geological Survey

    2003-01-01

    Published on an annual basis, this report is the earliest Government publication to furnish estimates covering nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for over 90 individual minerals and materials.

  17. Mineral Commodity Summaries 2007

    USGS Publications Warehouse

    U.S. Geological Survey

    2007-01-01

    Published on an annual basis, this report is the earliest Government publication to furnish estimates covering nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for over 90 individual minerals and materials.

  18. Mineral Commodity Summaries 2005

    USGS Publications Warehouse

    U.S. Geological Survey

    2005-01-01

    Published on an annual basis, this report is the earliest Government publication to furnish estimates covering nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for over 90 individual minerals and materials.

  19. Mineral Commodity Summaries 2000

    USGS Publications Warehouse

    U.S. Geological Survey

    2000-01-01

    Published on an annual basis, this report is the earliest Government publication to furnish estimates covering nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for over 90 individual minerals and materials.

  20. Mineral Commodity Summaries 2002

    USGS Publications Warehouse

    U.S. Geological Survey

    2002-01-01

    Published on an annual basis, this report is the earliest Government publication to furnish estimates covering nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for over 90 individual minerals and materials.

  1. Mineral Commodity Summaries 1997

    USGS Publications Warehouse

    U.S. Geological Survey

    1997-01-01

    Published on an annual basis, this report is the earliest Government publication to furnish estimates covering nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for over 90 individual minerals and materials

  2. Mineral Commodity Summaries 2006

    USGS Publications Warehouse

    U.S. Geological Survey

    2006-01-01

    Published on an annual basis, this report is the earliest Government publication to furnish estimates covering nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for over 90 individual minerals and materials.

  3. Mineral Commodity Summaries 2001

    USGS Publications Warehouse

    U.S. Geological Survey

    2001-01-01

    Published on an annual basis, this report is the earliest Government publication to furnish estimates covering nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for over 90 individual minerals and materials.

  4. Mineral Commodity Summaries 1998

    USGS Publications Warehouse

    U.S. Geological Survey

    1998-01-01

    Published on an annual basis, this report is the earliest Government publication to furnish estimates covering nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for over 90 individual minerals and materials.

  5. Mineral Commodity Summaries 1999

    USGS Publications Warehouse

    U.S. Geological Survey

    1999-01-01

    Published on an annual basis, this report is the earliest Government publication to furnish estimates covering nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for over 90 individual minerals and materials.

  6. Mineral Commodity Summaries 2004

    USGS Publications Warehouse

    U.S. Geological Survey

    2004-01-01

    Published on an annual basis, this report is the earliest Government publication to furnish estimates covering nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for over 90 individual minerals and materials.

  7. Mineral commodity summaries 2016

    USGS Publications Warehouse

    Ober, Joyce A.

    2016-01-01

    This report is the earliest Government publication to furnish estimates covering 2015 nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for more than 90 individual minerals and materials

  8. Underground mineral extraction

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    A method was developed for extracting underground minerals such as coal, which avoids the need for sending personnel underground and which enables the mining of steeply pitched seams of the mineral. The method includes the use of a narrow vehicle which moves underground along the mineral seam and which is connected by pipes or hoses to water pumps at the surface of the Earth. The vehicle hydraulically drills pilot holes during its entrances into the seam, and then directs sideward jets at the seam during its withdrawal from each pilot hole to comminute the mineral surrounding the pilot hole and combine it with water into a slurry, so that the slurried mineral can flow to a location where a pump raises the slurry to the surface.

  9. Constraining kinetic rates of mineral reactions using reactive transport models

    NASA Astrophysics Data System (ADS)

    Bolton, E. W.; Wang, Z.; Ague, J.; Bercovici, D.; Cai, Z.; Karato, S.; Oristaglio, M. L.; Qiu, L.

    2012-12-01

    We use a reactive transport model to better understand results of experiments to obtain kinetic rates of mineral reactions in closed systems. Closed system experiments pose special challenges in that secondary minerals may form that modify the fluid composition evolution and may grow on the dissolving minerals thus armoring the surface. Even so, such closed system experiments provide critical data for what minerals would actually form in field applications and how coupled dissolution and precipitation mineral reactions are strongly linked. Comparing to experimental observations can test the reactive transport model, and the experimental observations can be better understood by comparing the results to the modeling. We apply a 0D end member of the model to understand the dissolution of single crystals of forsterite in a variety of settings (low pH, high pH, or NaHCO3 initial fluids, at 100 C and 1 bar, or 200 C and 150 bar). Depending on the initial conditions, we observe the precipitation of talc, brucite, amorphous silica, chrysotile, or magnesite, in various combinations. We compare simulation results to fluid compositions and the presence of secondary minerals experimentally sampled at various times. Insight from the simulations helped create an inverse model to extract the rates of forsterite dissolution and to create a simple forward model useful for exploring the influence of system size, secondary mineral surface areas, etc. Our reactive transport model allows secondary minerals to armor the forsterite surface, which can strongly decrease the dissolution rate as the system evolves. Tuning our model with experimentally derived rates and assuring relevant processes are included so as to reproduce experimental observations is necessary before upscaling to heterogeneous field conditions. The reactive transport model will be used for field-scale sequestration simulations and coupled with a geomechanical model that includes the influence of deformation.

  10. Why Mineral Interfaces Matter

    NASA Astrophysics Data System (ADS)

    Putnis, Andrew; Putnis, Christine V.

    2015-04-01

    While it is obvious that reactions between a mineral and an aqueous solution take place at the mineral-fluid interface it is only relatively recently that high spatial resolution studies have demonstrated how the local structure of the mineral surface and the chemical composition of the fluid at the interface control both the short-range and the long-range consequences of mineral-fluid interaction. Long-range consequences of fluid-mineral interaction control element cycles in the earth, the formation of ore-deposits, the chemical composition of the oceans through weathering of rocks and hence climate changes. Although weathering is clearly related to mineral dissolution, to what extent do experimentally measured dissolution rates of minerals help to understand weathering, especially weathering mechanisms? This question is related to the short-range, local reactions that take place when a mineral, that is not stable in the fluid, begins to dissolve. In this case the fluid composition at the interface will become supersaturated with respect to a different phase or phases. This may be a different composition of the same mineral e.g. a Ca-rich feldspar dissolving in a Na-rich solution results in a fluid at the interface which may be supersaturated with respect to an Na-rich feldspar. Alternatively, the interfacial fluid could be supersaturated with respect to a different mineral e.g. an Na-rich zeolite, depending on the temperature. Numerous experiments have shown that the precipitation of a more stable phase at the mineral-fluid interface results in a coupling between the dissolution and the precipitation, and the replacement of one mineral by another. This process separates the short-range mechanisms which depend only on the composition of the interfacial solution, and the long-range consequences that depend on the composition of the residual fluid released from the reacting parent mineral. Typically such residual fluids may carry metal ions tens to hundreds of

  11. MINER{nu}A Test Beam Commissioning

    SciTech Connect

    Higuera, A.; Castorena, J.; Urrutia, Z.; Felix, J.; Zavala, G.

    2009-12-17

    MINER{nu}A Main INjector ExpeRiment {nu}-A is a high-statistic neutrino scattering experiment that will ran in the NuMI Beam Hall at Fermilab. To calibrate the energy response of the MINER{nu}A detector, a beamline is being designed for the MINER{nu}A Test Beam Detector (TBD). The TBD is a replica of the full MINER{nu}A detector at small scale for calibration studies of the main detector. The beamline design consists of the following parts: a copper target, used to generate tertiaries from an incoming secondary beam; a steel collimator for tertiaries, which also serves as a dump for the incoming beam; a time of fight system (scintillator planes); four wire chambers, for angle measurements and tracking; and two dipole magnets, used as an spectrometer. During last October, the first commissioning run of the MINER{nu}A Test Beam took place in the Meson Test Beam Facility at Fermilab. We commissioned the target and collimator of the new tertiary beamline.

  12. Carbon dioxide sequestration by mineral carbonation

    SciTech Connect

    Gerdemann, Stephen J.; Dahlin David C.; O'Connor William K.; Penner Larry R.

    2003-11-01

    Concerns about global warming caused by the increasing concentration of carbon dioxide and other greenhouse gases in the earth’s atmosphere have resulted in the need for research to reduce or eliminate emissions of these gases. Carbonation of magnesium and calcium silicate minerals is one possible method to achieve this reduction. It is possible to carry out these reactions either in situ (storage underground and subsequent reaction with the host rock to trap CO2 as carbonate minerals) or ex situ (above ground in a more traditional chemical processing plant). Research at the Department of Energy’s Albany Research Center has explored both of these routes. This paper will explore parameters that affect the direct carbonation of magnesium silicate minerals serpentine (Mg3Si2O5(OH)4) and olivine (Mg2SiO4) to produce magnesite (MgCO3), as well as the calcium silicate mineral, wollastonite (CaSiO3), to form calcite (CaCO3). The Columbia River Basalt Group is a multi-layered basaltic lava plateau that has favorable mineralogy and structure for storage of CO2. Up to 25% combined concentration of Ca, Fe2+, and Mg cations could react to form carbonates and thus sequester large quantities of CO2. Core samples from the Columbia River Basalt Group were reacted in an autoclave for up to 2000 hours at temperatures and pressures to simulate in situ conditions. Changes in core porosity, secondary minerals, and solution chemistry were measured.

  13. Minerals Yearbook, centennial edition 1981. Volume I. Metals and minerals

    SciTech Connect

    Not Available

    1983-01-01

    This edition of the Minerals Yearbook Marks the centennial of the first annual publication of comprehensive mineral industry statistics by the Federal Government. This volume of the Minerals Yearbook, covering metals and minerals, contains 71 commodity or commodity group chapters with data on approximately 90 minerals that were obtained as a result of the mineral information gathering activities of the Bureau of Mines. In addition, the volume contains a chapter on mining and quarrying trends and a statistical summary.

  14. Minerals yearbook, 1993. Volume 1. Metals and minerals. Annual report

    SciTech Connect

    1993-12-31

    This edition of the Mineral Yearbook discusses the performance of the worlwide minerals and materials industry during 1993 and provides background information to assist in interpreting that performance. Volume 1, Metals and Minerals, contains chapters on virtually all metallic and industrial mineral commodities important to the U.S. economy. A chapter on survey methods with a statistical summary of nonfuel minerals, and a chapters on trends in mining and quarrying in the metals and industrial mineral industries are also included.

  15. Mineral facilities of Europe

    USGS Publications Warehouse

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  16. Elastic properties of minerals

    SciTech Connect

    Aleksandrov, K.S.; Prodaivoda, G.T.

    1993-09-01

    Investigations of the elastic properties of the main rock-forming minerals were begun by T.V. Ryzhova and K.S. Aleksandrov over 30 years ago on the initiative of B.P. Belikov. At the time, information on the elasticity of single crystals in general, and especially of minerals, was very scanty. In the surveys of that time there was information on the elasticity of 20 or 30 minerals. These, as a rule, did not include the main rock-forming minerals; silicates were represented only by garnets, quartz, topaz, tourmaline, zircon, beryl, and staurolite, which are often found in nature in the form of large and fairly high-quality crystals. Then and even much later it was still necessary to prove a supposition which now seems obvious: The elastic properties of rocks, and hence the velocities of elastic (seismic) waves in the earth`s crust, are primarily determined by the elastic characteristics of the minerals composing these rocks. Proof of this assertion, with rare exceptions of mono-mineralic rocks (marble, quartzite, etc.) cannot be obtained without information on the elasticities of a sufficiently large number of minerals, primarily framework, layer, and chain silicates which constitute the basis of most rocks. This also served as the starting point and main problem of the undertakings of Aleksandrov, Ryzhova, and Belikov - systematic investigations of the elastic properties of minerals and then of various rocks. 108 refs., 7 tabs.

  17. Definitions of Health Terms: Minerals

    MedlinePlus

    ... gov/definitions/mineralsdefinitions.html Definitions of Health Terms : Minerals To use the sharing features on this page, ... National Institutes of Health, Office of Dietary Supplements Minerals Minerals are those elements on the earth and ...

  18. Minerals Management Service: Strategic plan

    SciTech Connect

    1997-09-30

    This plan addresses the management of the mineral resources on the Outer Continental Shelf in an environmentally sound and safe manner and the timely collection, verification, and distribution of mineral revenues from Federal and Indian lands. The Minerals Management Service (MMS) manages the Nation`s natural gas, oil and other mineral resources on the Outer Continental Shelf (OCS), and collects, accounts for, and disburses revenues from offshore federal mineral leases and from onshore mineral leases on Federal and Indian lands.

  19. Minerals and mine drainage

    SciTech Connect

    Thomson, B.M.; Turney, W.R.

    1996-11-01

    This paper provides a review of literature published in 1995 on the subject of wastewater related to minerals and mine drainage. Topics covered include: environmental regulations and impacts; and characterization, prevention, treatment and reclamation. 65 refs.

  20. Vitamins and Minerals

    MedlinePlus

    ... Also, many nutrients interact with each other. Most nutritionists believe in designing an overall program of supplements. ... SUPPLEMENTS? In addition to vitamins and minerals, some nutritionists suggest that people with HIV take supplements of ...

  1. Mineral spirits poisoning

    MedlinePlus

    ... substances may be found in: Mineral spirits ( Stoddard solvent ) Some paints Some floor and furniture waxes and ... for recovery. Swallowing such poisons can have severe effects on many parts of the body. The ultimate ...

  2. Fluorescent minerals, a review

    USGS Publications Warehouse

    Modreski, P.J.; Aumente-Modreski, R.

    1996-01-01

    Fluorescent minerals are more than just an attractive novelty, and collecting them is a speciality for thousands of individuals who appreciate their beauty, rarity, and scientific value. Fluorescent properties can be used as an aid to mineral identification, locality determination, and distinction between natural and synthetic gemstones. This article gives an overview of those aspects of fluorescence that are of most interest to collectors, hobbyists, and mineralogists. -from Authors

  3. Mineral commodity summaries 2013

    USGS Publications Warehouse

    U.S. Geological Survey

    2013-01-01

    Each chapter of the 2013 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2012 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. “Appendix C—Reserves and Resources” includes “Part A—Resource/Reserve Classification for Minerals” and “Part B—Sources of Reserves Data.” A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2013 are welcomed.

  4. Mineral commodity summaries 2014

    USGS Publications Warehouse

    U.S. Geological Survey

    2014-01-01

    Each chapter of the 2014 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2013 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. “Appendix C—Reserves and Resources” includes “Part A—Resource/Reserve Classification for Minerals” and “Part B—Sources of Reserves Data.” A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2014 are welcomed.

  5. Minerals yearbook, 1982. volume 1. metals and minerals

    SciTech Connect

    Not Available

    1984-01-01

    This volume of the Minerals Yearbook, covering metals and minerals, contains 73 commodity or commodity group chapters with data on approximately 90 minerals that were obtained as a result of the mineral information gathering activities of the Bureau of Mines. In addition, the volume contains a chapter on mining and quarrying trends and a statistical summary.

  6. Minerals yearbook, 1983. Volume 1. Metals and minerals

    SciTech Connect

    Not Available

    1984-01-01

    This volume of the Minerals Yearbook, covering metals and minerals, contains 73 commodity or commodity group chapters with data on approximately 90 minerals that were obtained as a result of the mineral information gathering activities of the Bureau of Mines. In addition, the volume contains a chapter on mining and quarrying trends and a statistical summary.

  7. Evaluation of Water-Mineral Interaction Using Microfluidic Tests with Thin Sections

    NASA Astrophysics Data System (ADS)

    Oh, Y. S.; Ryu, J. H.; Koh, Y. K.; Jo, H. Y.

    2014-12-01

    For the geological disposal of radioactive wastes, geological settings and groundwater conditions are significantly important because of their effects on a radionuclide migration. One of the preferred host rocks for the radioactive waste disposal is crystalline rock. Fractures in crystalline rocks are main fluid pathways. Groundwater reacts with fracture filling minerals in fracture zones, resulting in physicochemical changes in the minerals and groundwater. In this study, fracture filling mineral-groundwater interactions were investigated by conducting microfluidic tests using thin sections at various conditions (i.e., fluid chemistry and flow rate). Groundwater and rock core samples collected from the KAERI Underground Research Tunnel (KURT) located in the Korea Atomic Energy Research Institute (KAERI) were used in this study. Dominant bedrock is two-mica granite, which contains both biotite and muscovite. Secondary minerals (e.g., chlorite, calcite and clay minerals) occur in fracture and alteration zones. In nature, water-mineral interactions generally take long time. Microfluidic tests were conducted to simulate water-mineral interactions in shorter time with smaller scale. Thin sections of fracture filling minerals, minerals from alteration zones, and natural and synthetic groundwater samples were used for the microfluidic tests. Results showed that water-mineral interactions at various conditions caused changes in groundwater chemistry, dissolution of minerals, precipitation of secondary minerals, and formation of colloids, which can affect radionuclide migration. In addition, the fluid chemistry and flow rate affected characteristics of water-rock interactions.

  8. Minerals Yearbook, 1989. Volume i. Metals and Minerals

    SciTech Connect

    Not Available

    1989-01-01

    The edition of the Minerals Yearbook discusses the performance of the worldwide mineral industry during 1989 and provides background information to assist in interpreting that performance. Volume I, Metals and Minerals, contains chapters on virtually all metallic and industrial mineral commodities important to the U.S. economy. A chapter on advanced materials also has been added to the Minerals Yearbook series beginning with the 1989 volume. In addition, a chapter on survey methods used in data collection with a statistical summary of nonfuel minerals and a chapter on trends in mining and quarrying in the metals and industrial mineral industries are included.

  9. Estimation of palaeohydrochemical conditions using carbonate minerals

    NASA Astrophysics Data System (ADS)

    Amamiya, H.; Mizuno, T.; Iwatsuki, T.; Yuguchi, T.; Murakami, H.; Saito-Kokubu, Y.

    2014-12-01

    The long-term evolution of geochemical environment in deep underground is indispensable research subject for geological disposal of high-level radioactive waste, because the evolution of geochemical environment would impact migration behavior of radionuclides in deep underground. Many researchers have made efforts previously to elucidate the geochemical environment within the groundwater residence time based on the analysis of the actual groundwater. However, it is impossible to estimate the geochemical environment for the longer time scale than the groundwater residence time in this method. In this case, analysis of the chemical properties of secondary minerals are one of useful method to estimate the paleohydrochemical conditions (temperature, salinity, pH and redox potential). In particular, carbonate minerals would be available to infer the long-term evolution of hydrochemical for the following reasons; -it easily reaches chemical equilibrium with groundwater and precipitates in open space of water flowing path -it reflects the chemical and isotopic composition of groundwater at the time of crystallization We reviewed the previous studies on carbonate minerals and geochemical conditions in deep underground and estimated the hydrochemical characteristics of past groundwater by using carbonate minerals. As a result, it was found that temperature and salinity of the groundwater during crystallization of carbonate minerals were evaluated quantitatively. On the other hand, pH and redox potential can only be understood qualitatively. However, it is suggested that the content of heavy metal elements such as manganese, iron and uranium, and rare earth elements in the carbonate minerals are useful indicators for estimating redox potential. This study was carried out under a contract with METI (Ministry of Economy, Trade and Industry) as part of its R&D supporting program for developing geological disposal technology.

  10. Minerals yearbook, 1993. Volume 1. Metals and minerals. Annual report

    SciTech Connect

    1993-12-31

    This edition of the Minerals Yearbook discusses the performance of the worldwide minerals and materials industry during 1993 and provides background information to assist in interpreting that performance. It contains chapters on virtually all metallic and industrial mineral commodities important to the U.S. economy. A chapter on survey methods with a statistical summary of nonfuel minerals, and a chapter on trends in mining and quarrying in the metals and industrial mineral industries are also included.