Science.gov

Sample records for secondary standard dosimetry

  1. [Secondary Standard Dosimetry Laboratory at the Ruder Bosković Institute, Zagreb].

    PubMed

    Vekić, Branko; Ban, Renata; Miljanić, Saveta

    2006-06-01

    The Secondary Standard Dosimetry Laboratory at the Ruder Bosković Institute (SSDL), Zagreb, Croatia, was set up over the last few years with a strong support by the International Atomic Energy Agency (IAEA) through the Technical Cooperation Project CRO/1/004, Establishing Calibration Services. The SSDL occupies two calibration rooms, each 9.6 m long and 6 m wide and each with proper air conditioning. Their walls are concrete and 1 m thick, and the entrance doors are plated with lead to protect the control rooms and the surroundings against radiation. In the first calibration room in the basement, there are two sealed sources which share the same, 6 m long calibration bench. A 30 TBq 60Co source on one side of the bench is used for calibrating ionising chambers and other high-dose radiation equipment. The irradiation unit on the other side of the bench combines two sealed sources, that is, a 740 MBq 137Cs source and a 185 MBq 60Co source, and is used for radiation protection purposes. It has three attenuators with nominal attenuations of x10, x100, and x1000. The second calibration room, which is just above the first, accommodates an X-ray unit (ISOVOLT 420, 40 kV to 300 kV, 1 mA to 20 mA) with a 5 m long calibration bench, aperture wheel assembly designed to modify the X-ray beam diameter to meet various configuration requirements for calibration instruments, a set of filter assemblies to control beam definition according to ISO 4037-3, and a half-value layer kit. PMID:16832975

  2. Proficiency Testing as a tool to monitor consistency of measurements in the IAEA/WHO Network of Secondary Standards Dosimetry Laboratories

    NASA Astrophysics Data System (ADS)

    Meghzifene, Ahmed; Czap, Ladislav; Shortt, Ken

    2008-08-01

    The International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) established a Network of Secondary Standards Dosimetry Laboratories (IAEA/WHO SSDL Network) in 1976. Through SSDLs designated by Member States, the Network provides a direct link of national dosimetry standards to the international measurement system of standards traceable to the Bureau International des Poids et Mesures (BIPM). Within this structure and through the proper calibration of field instruments, the SSDLs disseminate S.I. quantities and units. To ensure that the services provided by SSDL members to end-users follow internationally accepted standards, the IAEA has set up two different comparison programmes. One programme relies on the IAEA/WHO postal TLD service and the other uses comparisons of calibrated ionization chambers to help the SSDLs verify the integrity of their national standards and the procedures used for the transfer of the standards to the end-users. The IAEA comparisons include 60Co air kerma (NK) and absorbed dose to water (ND,W) coefficients. The results of the comparisons are confidential and are communicated only to the participants. This is to encourage participation of the laboratories and their full cooperation in the reconciliation of any discrepancy. This work describes the results of the IAEA programme comparing calibration coefficients for radiotherapy dosimetry, using ionization chambers. In this programme, ionization chambers that belong to the SSDLs are calibrated sequentially at the SSDL, at the IAEA, and again at the SSDL. As part of its own quality assurance programme, the IAEA has participated in several regional comparisons organized by Regional Metrology Organizations. The results of the IAEA comparison programme show that the majority of SSDLs are capable of providing calibrations that fall inside the acceptance level of 1.5% compared to the IAEA.

  3. The Importance of Dosimetry Standardization in Radiobiology

    PubMed Central

    Desrosiers, Marc; DeWerd, Larry; Deye, James; Lindsay, Patricia; Murphy, Mark K; Mitch, Michael; Macchiarini, Francesca; Stojadinovic, Strahinja; Stone, Helen

    2013-01-01

    Radiation dose is central to much of radiobiological research. Precision and accuracy of dose measurements and reporting of the measurement details should be sufficient to allow the work to be interpreted and repeated and to allow valid comparisons to be made, both in the same laboratory and by other laboratories. Despite this, a careful reading of published manuscripts suggests that measurement and reporting of radiation dosimetry and setup for radiobiology research is frequently inadequate, thus undermining the reliability and reproducibility of the findings. To address these problems and propose a course of action, the National Cancer Institute (NCI), the National Institute of Allergy and Infectious Diseases (NIAID), and the National Institute of Standards and Technology (NIST) brought together representatives of the radiobiology and radiation physics communities in a workshop in September, 2011. The workshop participants arrived at a number of specific recommendations as enumerated in this paper and they expressed the desirability of creating dosimetry standard operating procedures (SOPs) for cell culture and for small and large animal experiments. It was also felt that these SOPs would be most useful if they are made widely available through mechanism(s) such as the web, where they can provide guidance to both radiobiologists and radiation physicists, be cited in publications, and be updated as the field and needs evolve. Other broad areas covered were the need for continuing education through tutorials at national conferences, and for journals to establish standards for reporting dosimetry. This workshop did not address issues of dosimetry for studies involving radiation focused at the sub-cellular level, internally-administered radionuclides, biodosimetry based on biological markers of radiation exposure, or dose reconstruction for epidemiological studies. PMID:26401441

  4. National and international standards and calibration of thermoluminescence dosimetry systems.

    PubMed

    Soares, C G

    2002-01-01

    Radiation protection for radiation workers, the public, and the environment is of international concern. The use of thermoluminescence dosemeters (TLD) is an acceptable method for dose recording in most countries. For reasons of consistency and data gathering (research) it is important that a Sievert (Sv) in one part of the world equals an Sv on the other side of the globe. To this end, much work has gone into the development of standards and calibration practices for TLD systems so that they compare not only with similar systems, but also with other forms of radiation measurement. While most national laboratories provide calibration services for these systems some, as in the United States, depend on services of secondary calibration laboratories that are traceable to the national laboratories through accreditation programmes. The purpose of this paper is to explain how TLD measurements are traceable to their respective national standards for both personnel and environmental dosimetry. PMID:12382728

  5. Secondary Contribution Effects on BNCT Dosimetry

    SciTech Connect

    Monteiro, E.; Goncalves, M.; Pereira, W.

    2004-10-03

    The aimed of this work consists of evaluating the influence of the dose secondary components (thermal neutrons dose, epithermal neutrons dose, fast neutrons dose and photon dose) in treatment planning with BNCT. MCNP4B Code was used to calculate RBE-Gy doses through the irradiation of the modified Snyder head phantom. A reduction of the therapeutical gain of monoenergetic neutron beans was observed in non invasive treatments, provoked for the predominance of the fast neutron dose component in the skin, showing that the secondary components of dose can to contribute more for to raise the healthy-tissue dose of that in the tumor, reducing the treatment efficiency.

  6. Twenty new ISO standards on dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Farrar, H., IV

    2000-03-01

    Twenty standards on essentially all aspects of dosimetry for radiation processing were published as new ISO standards in December 1998. The standards are based on 20 standard practices and guides developed over the past 14 years by Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). The transformation to ISO standards using the 'fast track' process under ISO Technical Committee 85 (ISO/TC85) commenced in 1995 and resulted in some overlap of technical information between three of the new standards and the existing ISO Standard 11137 Sterilization of health care products — Requirements for validation and routine control — Radiation sterilization. Although the technical information in these four standards was consistent, compromise wording in the scopes of the three new ISO standards to establish precedence for use were adopted. Two of the new ISO standards are specifically for food irradiation applications, but the majority apply to all forms of gamma, X-ray, and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruit, vegetables, meats, spices, processed foods, plastics, inks, medical wastes, and paper. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties using the new ISO Type A and Type B evaluations. Unfortunately, nine of the 20 standards just adopted by the ISO are not the most recent versions of these standards and are therefore already out of date. To help solve this problem, efforts are being made to develop procedures to coordinate the ASTM and ISO development and revision processes for these and future ASTM-originating dosimetry standards. In the meantime, an additional four dosimetry standards have recently been published by the ASTM but

  7. ASTM Standards for Reactor Dosimetry and Pressure Vessel Surveillance

    SciTech Connect

    GRIFFIN, PATRICK J.

    1999-09-14

    The ASTM standards provide guidance and instruction on how to field and interpret reactor dosimetry. They provide a roadmap towards understanding the current ''state-of-the-art'' in reactor dosimetry, as reflected by the technical community. The consensus basis to the ASTM standards assures the user of an unbiased presentation of technical procedures and interpretations of the measurements. Some insight into the types of standards and the way in which they are organized can assist one in using them in an expeditious manner. Two example are presented to help orient new users to the breadth and interrelationship between the ASTM nuclear metrology standards. One example involves the testing of a new ''widget'' to verify the radiation hardness. The second example involves quantifying the radiation damage at a pressure vessel critical weld location through surveillance dosimetry and calculation.

  8. International cooperative effort to establish dosimetry standardization for radiation processing

    SciTech Connect

    Farrar, H. IV

    1989-01-01

    Radiation processing is a rapidly developing technology with numerous applications in food treatment, sterilization, and polymer modification. The effectiveness of the process depends, however, on the proper application of dose and its measurement. These aspects are being considered by a wide group of experts from around the world who have joined together to write a comprehensive set of standards for dosimetry for radiation processing. Originally formed in 1984 to develop standards for food processing dosimetry, the group has now expanded into a full subcommittee of the American Society for Testing and Materials (ASTM), with 97 members from 19 countries. The scope of the standards now includes dosimetry for all forms of radiation processing. The group has now completed and published four standards, and is working on an additional seven. Three are specifically for food applications and the others are for all radiation applications, including food processing. Together, this set of standards will specify acceptable guidelines and methods for accomplishing the required irradiation treatment, and will be available for adoption by national regulatory agencies in their procedures and protocols. 1 tab.

  9. Standard Practice for Dosimetry of Proton Beams for use in Radiation Effects Testing of Electronics

    SciTech Connect

    McMahan, Margaret A.; Blackmore, Ewart; Cascio, Ethan W.; Castaneda, Carlos; von Przewoski, Barbara; Eisen, Harvey

    2008-07-25

    Representatives of facilities that routinely deliver protons for radiation effect testing are collaborating to establish a set of standard best practices for proton dosimetry. These best practices will be submitted to the ASTM International for adoption.

  10. The MCART Radiation Physics Core: The Quest for Radiation Dosimetry Standardization

    PubMed Central

    Kazi, Abdul M.; MacVittie, Thomas J.; Lasio, Giovanni; Lu, Wei; Prado, Karl L.

    2013-01-01

    Dose-related radiobiological research results can only be meaningfully compared when radiation dosimetry is standardized. To this purpose, the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Medical Countermeasures Against Radiological Threats (MCART) consortium recently created a Radiation Physics Core (RPC) as an entity to assume responsibility of standardizing radiation dosimetry practices among its member laboratories. The animal research activities in these laboratories utilize a variety of ionizing photon beams from several irradiators such as 250–320 kVp x-ray generators, 137Cs irradiators, 60Co teletherapy machines, and medical linear accelerators (LINACs). In addition to this variety of sources, these centers utilize a range of irradiation techniques and make use of different dose calculation schemes to conduct their experiments. An extremely important objective in these research activities is to obtain a Dose Response Relationship (DRR) appropriate to their respective organ-specific models of acute and delayed radiation effects. A clear and unambiguous definition of the DRR is essential for the development of medical countermeasures. It is imperative that these DRRs are transparent between centers. The MCART RPC has initiated the establishment of standard dosimetry practices among member centers and is introducing a Remote Dosimetry Monitoring Service (RDMS) to ascertain ongoing quality assurance. In this paper we will describe the initial activities of the MCART RPC toward implementing these standardization goals. It is appropriate to report a summary of initial activities with the intent of reporting the full implementation at a later date. PMID:24276553

  11. Pilot test of ANSI draft standard N13.29 environmental dosimetry -- Performance criteria for testing

    SciTech Connect

    Klemic, G.; Shebell, P.; Monetti, M.; Raccah, F.; Shobe, J.; Lamperti, P.; Soares, C.; Sengupta, S.

    1998-09-01

    American National Standards Institute Draft N13.29 describes performance tests for environmental radiation dosimetry providers. If approved it would be the first step toward applying the types of performance testing now required in personnel dosimetry to environmental radiation monitoring. The objective of this study was to pilot test the draft standard, before it undergoes final balloting, on a small group of dosimetry providers that were selected to provide a mix of facility types, thermoluminescent dosimeter designs and monitoring program applications. The first phase of the pilot test involved exposing dosimeters to laboratory photon, beta, and x-ray sources at routine and accident dose levels. In the second phase, dosimeters were subjected to ninety days of simulated environmental conditions in an environmental chamber that cycled through extremes of temperature and humidity. Two out of seven participants passed all categories of the laboratory testing phase, and all seven passed the environmental test phase. While some relatively minor deficiencies were uncovered in the course of the pilot test, the results show that draft N13.29 describes useful tests that could be appropriate for environmental dosimetry providers. An appendix to this report contains recommendations that should be addressed by the N13.29 working group before draft N13.29 is submitted for balloting.

  12. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    PubMed Central

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  13. A survey of physical dosimetry to date and in the near future: Part 1. Review of standards and regulatory issues.

    PubMed

    Cassata, James R

    2002-02-01

    This article summarizes the status of the relevant standards and current regulatory issues for use of physical dosimetry devices for the occupational worker in the United States. Included is a summary of relevant standards from the International Organization for Standardization (ISO), the International Electrotechnical Commission (IEC), the American National Standards Institute (ANSI), the United States Nuclear Regulatory Commission NUREG-Series, the National Voluntary Laboratory Accreditation Program (NVLAP), the Department of Energy Laboratory Accreditation Program (DOELAP), and the U.S. Military Specifications and Standards (MIL-STD). Proposed changes to ANSI N13.11-1993, "American National Standard for Dosimetry-Personnel Dosimetry Performance Criteria for Testing," are listed. The strategic changes that the United States Nuclear Regulatory Commission (NRC) is making in rulemaking activities related to dosimetry and standards are given. The status of Measurement Program Description (MPD) C.18, "Implementation of Electronic Dosimetry for Primary Dosimetry," from the Council on Ionizing Radiation Measurements and Standards (CIRMS) is given. PMID:11873507

  14. Korean standard nuclear plant ex-vessel neutron dosimetry program Ulchin 4

    SciTech Connect

    Duo, J.I.; Chen, J.; Kulesza, J.A.; Fero, A.H.; Yoo, C.S.; Kim, B.C.

    2011-07-01

    A comprehensive ex-vessel neutron dosimetry (EVND) surveillance program has been deployed in 16 pressurized water reactors (PWR) in South Korea and EVND dosimetry sets have already been installed and analyzed in Westinghouse reactor designs. In this paper, the unique features of the design, training, and installation in the Korean standard nuclear plant (KSNP) Ulchin Unit 4 are presented. Ulchin Unit 4 Cycle 9 represents the first dosimetry analyzed from the EVND design deployed in KSNP plants: Yonggwang Units 3 through 6 and Ulchin Units 3 through 6. KSNP's cavity configuration precludes a conventional installation from the cavity floor. The solution, requiring the installation crew to access the cavity at an elevation of the active core, places a premium on rapid installation due to high area dose rates. Numerous geometrical features warranted the use of a detailed design in true 3D mechanical design software to control interferences. A full-size training mockup maximized the crew ability to correctly install the instrument in minimum time. The analysis of the first dosimetry set shows good agreements between measurement and calculation within the associated uncertainties. A complete EVND system has been successfully designed, installed, and analyzed for a KNSP plant. Current and future EVND analyses will continue supporting the successful operation of PWR units in South Korea. (authors)

  15. SECONDARY STANDARD CALIBRATION, MEASUREMENT AND IRRADIATION CAPABILITIES OF THE INDIVIDUAL MONITORING SERVICE AT THE HELMHOLTZ ZENTRUM MÜNCHEN: ASPECTS OF UNCERTAINTY AND AUTOMATION.

    PubMed

    Greiter, M B; Denk, J; Hoedlmoser, H

    2016-09-01

    The individual monitoring service at the Helmholtz Zentrum München has adopted the recommendations of the ISO 4037 and 6980 standards series as base of its dosimetric systems for X-ray, gamma and beta dosimetry. These standards define technical requirements for radiation spectra and measurement processes, but leave flexibility in the implementation of irradiations as well as in the resulting uncertainty in dose or dose rate. This article provides an example for their practical implementation in the Munich IAEA/WHO secondary standard dosimetry laboratory. It focusses on two aspects: automation issues and uncertainties in calibration. PMID:26838065

  16. Progress on standardization of electron beam dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Chenghua, Li; Yanli, Zhang; Ruicao, Pang; Zhimian, Liu; Xuan, Xia; Jingmin, Wu

    1993-10-01

    The high dose standards and dissemination system of electron beams are being established at NIM. The graphite and/ or water calorimeters and liquid chemical dosimeter are to be accepted as standards. The transfer dosimeter selected are alanine/ESR dosimeter and radiochromic film (FWT - 60). Several kinds of radiochromic films, undyed cellulose triacetate, polyethylene and blue cellophane will be recommended as working dosimeter. A series of intercomparison studies are conducted between calorimeter and dichromate dosimeter. Agreement is found within 2%. Water calorimeters and dichromate dosimeters are used to make absolute dosimetric measurements of electron beams. These calibrated beams are then used to calibrate several types of dosimeters, such as alanine, radiochromic films, undyed and dyed polyethylene. Preliminary studies show that water calorimeter and dichromate dosimeter are reproducible and sufficiently accurate for electron beam calibration. The estimated overall uncertainty of the measurement is better than 5% at 95% confidence level.

  17. A Feasibility Study of Fricke Dosimetry as an Absorbed Dose to Water Standard for 192Ir HDR Sources

    PubMed Central

    deAlmeida, Carlos Eduardo; Ochoa, Ricardo; de Lima, Marilene Coelho; David, Mariano Gazineu; Pires, Evandro Jesus; Peixoto, José Guilherme; Salata, Camila; Bernal, Mario Antônio

    2014-01-01

    High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future. PMID:25521914

  18. Department of Energy standard for the performance testing of personnel dosimetry systems

    SciTech Connect

    Not Available

    1986-12-01

    This standard is intended to be used in the Department of Energy Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems. It is based on the American National Standards Institute's (ANSI) ''Criteria for Testing Personnel Dosimetry Performance,'' ANSI N13.11-1983, recommendations made to DOE in ''Guidelines for the Calibration of Personnel Dosimeters,'' Pacific Northwest Laboratory (PNL)-4515 and comments received during peer review by DOE and DOE contractor personnel. The recommendations contained in PNL-4515 were based on an evaluation of ANSI N13.11 conducted for the Office of Nuclear Safety, DOE, by PNL. Parts of ANSI N13.11 that did not require modification were used essentially intact in this standard to maintain consistency with nationally recognized standards. Modifications to this standard have resulted from several DOE/DOE contractor reviews and a pilot testing session. An initial peer review by selected DOE and DOE contractor representatives on technical content was conducted in 1983. A review by DOE field offices, program offices, and contractors was conducted in mid-1984. A pilot performance testing session sponsored by the Office of Nuclear Safety was conducted in early 1985 by the Radiological and Environmental Sciences Laboratory, Idaho Falls. Results of the pilot test were reviewed in late 1985 by a DOE and DOE contractor committee. 11 refs., 4 tabs.

  19. Outcome Standards for Secondary Marketing Education.

    ERIC Educational Resources Information Center

    Stone, James R., III

    A national panel consisting of marketing education advisory committee members, former marketing education students, and marketing education teacher-coordinators reacted to a list of 34 outcome standards developed through a literature review. The 34 standards focused on program quality, program relevance, individual transition to and growth in the…

  20. Extensions to the Beta Secondary Standard BSS 2

    NASA Astrophysics Data System (ADS)

    Behrens, R.; Buchholz, G.

    2011-11-01

    Since several years, the irradiation facility for beta radiation, the Beta Secondary Standard BSS 2 developed at PTB, has been in worldwide use for the performance of irradiations with calibrated beta sources. Due to recent developments in eye tumor therapy, in eye lens dosimetry, and in soft- and hardware technology, several extensions have been added to the BSS 2. These extensions are described in this paper: 1. The possibility of using a 106Ru/106Rh beta source was added as this radionuclide is often used in tumor therapy. 2. The (small) contribution due to photon radiation was included in the dose (rate) reported by the BSS 2, as this was missing in the past. 3. The quantity personal dose equivalent at a depth of 3 mm, Hp(3), was implemented due to recent findings on the radio sensitivity of the eye lens regarding cataract induction and the subsequent lowering of the dose limit from 150 mSv down to 20 mSv per year; 4. The correction for ambient conditions (air temperature, pressure, and relative humidity) was improved in order to adequately handle the quantity Hp(3) and in order to extend the range of use beyond 25°C. 5. A checksum test was added to the software to secure the calibration data against (un)intended changes. 6. The connection of the PC and the BSS 2 has been changed to a network interface (TCP/IP) in order to be able to use up-to-date computers not containing a parallel and a serial port. 7. A rod phantom was added in order to make sure the mechanical set-up is of high quality. All these extensions have been implemented in the PTB's BSS 2 model. The routine implementation of extension 1 is still under investigation by the manufacturer. The commercially available BSS 2 will contain extensions 2 to 6 starting approximately in 2012, while extension 7 has already been incorporated since 2011. Extensions 2 to 4 will also be available for old BSS 2 versions via a software update, starting approximately at the beginning of 2012. Extension 6 will be

  1. Alanine-EPR as a transfer standard dosimetry system for low energy X radiation

    NASA Astrophysics Data System (ADS)

    Khoury, H. J.; da Silva, E. J.; Mehta, K.; de Barros, V. S.; Asfora, V. K.; Guzzo, P. L.; Parker, A. G.

    2015-11-01

    The purpose of this paper is to evaluate the use of alanine-EPR as a transfer standard dosimetry system for low energy X radiation, such as that in RS-2400, which operates in the range from 25 to 150 kV and 2 to 45 mA. Two types of alanine dosimeters were investigated. One is a commercial alanine pellets from Aérial-Centre de Ressources Technologiques, France and one was prepared in our laboratory (LMRI-DEN/UFPE). The EPR spectra of the irradiated dosimeters were recorded in the Nuclear Energy Department of UFPE, using a Bruker EMX10 EPR spectrometer operating in the X-band. The alanine-EPR dosimetry system was calibrated in the range of 20-220 Gy in this X-ray field, against an ionization chamber calibrated at the relevant X-ray energy with traceability to PTB. The results showed that both alanine dosimeters presented a linear dose response the same sensitivity, when the EPR signal was normalized to alanine mass. The total uncertainty in the measured dose was estimated to be about 3%. The results indicate that it is possible to use the alanine-EPR dosimetry system for validation of a low-energy X ray irradiator, such as RS-2400.

  2. Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry

    SciTech Connect

    Brady, S. L.; Kaufman, R. A.

    2012-06-15

    Purpose: The use of metal-oxide-semiconductor field-effect transistor (MOSFET) detectors for patient dosimetry has increased by {approx}25% since 2005. Despite this increase, no standard calibration methodology has been identified nor calibration uncertainty quantified for the use of MOSFET dosimetry in CT. This work compares three MOSFET calibration methodologies proposed in the literature, and additionally investigates questions relating to optimal time for signal equilibration and exposure levels for maximum calibration precision. Methods: The calibration methodologies tested were (1) free in-air (FIA) with radiographic x-ray tube, (2) FIA with stationary CT x-ray tube, and (3) within scatter phantom with rotational CT x-ray tube. Each calibration was performed at absorbed dose levels of 10, 23, and 35 mGy. Times of 0 min or 5 min were investigated for signal equilibration before or after signal read out. Results: Calibration precision was measured to be better than 5%-7%, 3%-5%, and 2%-4% for the 10, 23, and 35 mGy respective dose levels, and independent of calibration methodology. No correlation was demonstrated for precision and signal equilibration time when allowing 5 min before or after signal read out. Differences in average calibration coefficients were demonstrated between the FIA with CT calibration methodology 26.7 {+-} 1.1 mV cGy{sup -1} versus the CT scatter phantom 29.2 {+-} 1.0 mV cGy{sup -1} and FIA with x-ray 29.9 {+-} 1.1 mV cGy{sup -1} methodologies. A decrease in MOSFET sensitivity was seen at an average change in read out voltage of {approx}3000 mV. Conclusions: The best measured calibration precision was obtained by exposing the MOSFET detectors to 23 mGy. No signal equilibration time is necessary to improve calibration precision. A significant difference between calibration outcomes was demonstrated for FIA with CT compared to the other two methodologies. If the FIA with a CT calibration methodology was used to create calibration

  3. Standardizing clinical laboratory data for secondary use.

    PubMed

    Abhyankar, Swapna; Demner-Fushman, Dina; McDonald, Clement J

    2012-08-01

    Clinical databases provide a rich source of data for answering clinical research questions. However, the variables recorded in clinical data systems are often identified by local, idiosyncratic, and sometimes redundant and/or ambiguous names (or codes) rather than unique, well-organized codes from standard code systems. This reality discourages research use of such databases, because researchers must invest considerable time in cleaning up the data before they can ask their first research question. Researchers at MIT developed MIMIC-II, a nearly complete collection of clinical data about intensive care patients. Because its data are drawn from existing clinical systems, it has many of the problems described above. In collaboration with the MIT researchers, we have begun a process of cleaning up the data and mapping the variable names and codes to LOINC codes. Our first step, which we describe here, was to map all of the laboratory test observations to LOINC codes. We were able to map 87% of the unique laboratory tests that cover 94% of the total number of laboratory tests results. Of the 13% of tests that we could not map, nearly 60% were due to test names whose real meaning could not be discerned and 29% represented tests that were not yet included in the LOINC table. These results suggest that LOINC codes cover most of laboratory tests used in critical care. We have delivered this work to the MIMIC-II researchers, who have included it in their standard MIMIC-II database release so that researchers who use this database in the future will not have to do this work. PMID:22561944

  4. Standards in biological dosimetry: A requirement to perform an appropriate dose assessment.

    PubMed

    Voisin, Philippe

    2015-11-01

    Every year, many countries perform a significant number of investigations based on biological radiation dose assessment to check suspected or true overexposure by irradiation of radiation workers and individuals of the general population. The scoring of dicentrics in peripheral blood lymphocytes has gradually become the "gold standard" for the biodosimetry-based assessment of accidental situations. Nevertheless, other "classical" biodosimetric methods such as micronuclei, prematurely condensed chromosomes (PCC) and FISH translocations are relevant in some exposure situations, also for surveillance of groups of populations at risk. Historical international intercomparison studies have shown discrepancies among dose-effect curves used to estimate doses from blood samples irradiated between 0 and 4Gy. Recent experimental work performed by the biological dosimetry laboratory of the French Institute for Radiation Protection and Nuclear Safety (IRSN) has shown the impact of some blood harvesting parameters on the mitotic index, and consequently on the quality of dose assessment. Therefore, it was relevant to define the best Quality Assurance (QA) and Quality Control (QC) criteria to harmonize protocols among biodosimetry laboratories. Complementary with several editions of an IAEA technical manual, ISO standards were written with the view of considering the most used chromosome aberrations assays: dicentrics and micronuclei. An important feature of these standards is to address the organization of population triage and laboratories networking that would be required in case of a large nuclear event or malicious act involving radioactive material. These ISO standards are relevant and helpful to implement a coordinated response of several biodosimetry networks in Europe, Japan, Canada, and to support European programs such as MULTIBIODOSE and RENEB. A new important ISO standard on the use of FISH translocations in retrospective dosimetry is now being drafted. PMID:26520381

  5. A prototype, glassless densitometer traceable to primary optical standards for quantitative radiochromic film dosimetry

    SciTech Connect

    Rosen, B. S. Hammer, C. G.; Kunugi, K. A.; DeWerd, L. A.; Soares, C. G.

    2015-07-15

    Purpose: To evaluate a prototype densitometer traceable to primary optical standards and compare its performance to an EPSON Expression{sup ®} 10000XL flatbed scanner (the Epson) for quantitative radiochromic film (RCF) dosimetry. Methods: A prototype traceable laser densitometry system (LDS) was developed to mitigate common film scanning artifacts, such as positional scan dependence and high noise in low-dose regions, by performing point-based measurements of RCF suspended in free-space using coherent light. The LDS and the Epson optical absorbance scales were calibrated up to 3 AU, using reference materials calibrated at a primary standards laboratory and a scanner calibration factor (SCF). Calibrated optical density (OD) was determined for 96 Gafchromic{sup ®} EBT3 film segments before and after irradiation to one of 16 dose levels between 0 and 10 Gy, exposed to {sup 60}Co in a polymethyl-methacrylate (PMMA) phantom. The sensitivity was determined at each dose level and at two rotationally orthogonal readout orientations to obtain the sensitometric response of each RCF dosimetry system. LDS rotational scanning dependence was measured at nine angles between 0°and 180°, due to the expected interference between coherent light and polarizing EBT3 material. The response curves were fit to the analytic functions predicted by two physical response models: the two-parameter single-hit model and the four-parameter percolation model. Results: The LDS and the Epson absorbance measurements were linear to primary optical standards to within 0.2% and 0.3% up to 2 and 1 AU, respectively. At higher densities, the LDS had an over-response (2.5% at 3 AU) and the Epson an under-response (3.1% and 9.8% at 2 and 3 AU, respectively). The LDS and the Epson SCF over the applicable range were 0.968% ± 0.2% and 1.561% ± 0.3%, respectively. The positional scan dependence was evaluated on each digitizer and shown to be mitigated on the LDS, as compared to the Epson. Maximum EBT3

  6. Postimplant Dosimetry Using a Monte Carlo Dose Calculation Engine: A New Clinical Standard

    SciTech Connect

    Carrier, Jean-Francois . E-mail: jean-francois.carrier.chum@ssss.gouv.qc.ca; D'Amours, Michel; Verhaegen, Frank; Reniers, Brigitte; Martin, Andre-Guy; Vigneault, Eric; Beaulieu, Luc

    2007-07-15

    Purpose: To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. Methods and Materials: An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. Results: For the clinical target volume (CTV) D{sub 90} parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. Conclusions: The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future.

  7. Characterization of halogen lamps as secondary standard of luminous flux

    NASA Astrophysics Data System (ADS)

    Marques, A. A. R.; Sanchez, O., Jr.; Ferreira, A. F. G., Jr.

    2011-09-01

    This work presents a study of lamps characterization concerning its lamp output, current and voltage drift during seasoning and regarding the use of theses lamps as luminous flux secondary standard. The 200W halogen lamps are seasoned for 30 hours and during the seasoning period the relative drift of the lamp illuminance, current and voltage are measured at each 3 minutes. The illuminance is measured using a photometer with detector head, the lamp voltage is measured using a 6.5 digits voltmeter and the current is measured using a 6.5 digits voltmeter and 0.1 Ohms standard resistor. The lamp current is controlled by a calibrated current power source with stability better than 1 mA. To reduce the stray light, baffles are positioned between the lamp and the detector head. The alignment of experimental assembly is made by a He-Ne Laser. Data of illuminance, current and voltage is acquired by software built in Labview database. Among the 5 lamps seasoned, the best result presents the variation of illuminance of 0.04% per hour. This lamp is chosen to become the secondary standard and its luminous flux is measured using an Ulbricht integrating sphere. This method allows the laboratory to create secondary standard of luminous flux for its routine test and measurements and to supply theses standards for Brazilian industry.

  8. An automated secondary standard for calibrating liquid flowmeters

    NASA Technical Reports Server (NTRS)

    Hobart, H. F.

    1976-01-01

    A secondary working standard of flow calibration has been developed to be used in place of a primary weight-time standard, and which can thereby effect a 75 percent reduction in calibration time while maintaining acceptable accuracies. The secondary standard uses six previously calibrated turbine-type flowmeters built into two manifold systems containing automatically switched flow valves. The pair of systems is capable of covering the flow range of 0.0004 to 19 l/s (0.007 to 300 gpm) with the uncertainty in volume flow rate not exceeding + or - 0.25 percent over the range of 0.06 to 19 l/s and not exceeding + or - 0.5 percent over the range 0.0004 to 0.06 1/s. Data reduction and plotting of results are by computer.

  9. A new standard cylindrical graphite-walled ionization chamber for dosimetry in 60Co beams at calibration laboratories

    NASA Astrophysics Data System (ADS)

    Neves, Lucio P.; Perini, Ana P.; Caldas, Linda V. E.

    2014-11-01

    60Co sources are used mostly at dosimetry laboratories for calibration of ionization chambers utilized for radiotherapy dosimetry, mainly in those laboratories where there is no linear accelerator available. In this work, a new cylindrical ionization chamber was developed and characterized to be used as a reference dosimeter at the Calibration Laboratory of the IPEN. The characterization tests were performed according to the IEC 60731 standard, and all tests presented results within its recommended limits. Furthermore, the correction factors for the wall, stem, central collecting electrode, nonaxial uniformity and the mass-energy absorption coefficient were determined using the EGSnrc Monte Carlo code. The air kerma rate determined with this new dosimeter was compared to the one obtained with the IPEN standard, presenting a difference of 1.5%. Therefore, the new ionization chamber prototype developed and characterized in this work presents potential use as a primary standard dosimeter at radiation metrology laboratories.

  10. EPR dosimetry of whole deciduous tooth using a constant rotation goniometer and background subtraction with a dentine standard

    SciTech Connect

    Haskell, E.H.; Hayes, R.B.; Kenner, G.H.

    1996-01-01

    We report here a rapid method of electron paramagnetic resonance (EPR) dosimetry of dental enamel which will allow screening of whole deciduous teeth of children following a nuclear accident. The technique requires virtually no sample preparation and is capable of measuring doses of less than 100 mGy. Teeth may be scanned for threshold dose levels without the need for added calibration doses and those of particular interest may be more accurately examined using the additive dose method. The success of the technique lies in the elimination of anisotropic effects by rotation of spectra from the empty cavity and a standard background tooth. Normalization using in- cavity Mn++ standards is also employed.

  11. Extensions in Pen Ink Dosimetry: Ultraviolet Calibration Applications for Primary and Secondary Schools

    ERIC Educational Resources Information Center

    Downs, Nathan; Parisi, Alfio; Powell, Samantha; Turner, Joanna; Brennan, Chris

    2010-01-01

    A technique has previously been described for secondary school-aged children to make ultraviolet (UV) dosimeters from highlighter pen ink drawn onto strips of paper. This technique required digital comparison of exposed ink paper strips with unexposed ink paper strips to determine a simple calibration function relating the degree of ink fading to…

  12. Dosimetry and kVp standardization for quality assurance of mammography

    NASA Astrophysics Data System (ADS)

    Chu, Chien-Hau; Yuan, Ming-Chen; Huang, Wen-Sheng; Hsieh, Bor-Tsung

    2014-11-01

    Breast cancer mortality rates were significantly reduced in Taiwan after achieving early-stage monitoring with mammography screening. This study establishes an appropriate and traceable calibration infrastructure, which offers calibration services for mammography X-ray quality assurance instrumentation, which is performed clinically on a regular basis. The entrance air kerma, HVL, and kVp of mammography equipment with five different target/filter combinations can be taken as adequate indicators for the level of average glandular dose (AGD). The primary dose standard in mammography uses a free-air ionization chamber to estimate the rate of air kerma. Several correction factors were determined by Monte Carlo simulations and experiments. A secondary kVp standard in mammography is in accordance with the IEC 61676 recommendations. The calibration system of kVp meter uses a high-voltage divider, which is traceable to ITRI primary standard in Taiwan. Dose and kVp verifications were conducted by mammography instruments, which were previously calibrated by NIST and PTB. The evaluation results indicate that the capabilities of this irradiation system met the ISO 4037-1 requirements. The expanded uncertainties (k=2) were 1.03% and 1.6% when the mammography X-ray air kerma rate and kVp meter calibration factors were evaluated using ISO GUM. Experimental verification and a comparison with NIST using transfer ionization chambers yielded differences in calibration factors. Comparison with the PTB using kVp meter indicated a less than 1% difference. The results showed that dose and kVp standards were in reasonable agreement with standard uncertainty. The low uncertainties associated with the obtained results in this work show that the standardization employed can be accurately used for calibration of instrument in mammography in Taiwan.

  13. Testing the performance of dosimetry measurement standards for calibrating area and personnel dosimeters

    NASA Astrophysics Data System (ADS)

    Walwyn-Salas, G.; Czap, L.; Gomola, I.; Tamayo-García, J. A.

    2016-07-01

    The cylindrical NE2575 and spherical PTW32002 chamber types were tested in this paper to determine their performance at different source-chamber distances, field sizes and two radiation qualities. To ensure an accurate measurement, there is a need to apply a correction factor to NE2575 measurements at different distances because of differences found between the reference point defined by the manufacturer and the effective point of measurements. This correction factor for NE2575 secondary standard from the Center for Radiation Protection and Hygiene of Cuba was assessed with a 0.3% uncertainty using the results of three methods. Those laboratories that use the NE2575 chambers should take into consideration the performance characteristics tested in this paper to obtain accurate measurements.

  14. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts...

  15. 40 CFR 50.16 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for lead. 50.16 Section 50.16 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for lead. (a) The national primary and secondary ambient air quality standards for lead (Pb) and its compounds are 0.15 micrograms per cubic...

  16. 40 CFR 50.12 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air quality standards for lead. 50.12 Section 50.12 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for lead. (a) National primary and secondary ambient air quality standards for lead and its compounds, measured as elemental lead by a reference...

  17. 40 CFR 50.12 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for lead. 50.12 Section 50.12 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for lead. (a) National primary and secondary ambient air quality standards for lead and its compounds, measured as elemental lead by a reference...

  18. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts...

  19. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts...

  20. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts...

  1. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts...

  2. 40 CFR 50.16 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air quality standards for lead. 50.16 Section 50.16 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for lead. (a) The national primary and secondary ambient air quality standards for lead (Pb) and its compounds are 0.15 micrograms per cubic...

  3. 40 CFR 50.12 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air quality standards for lead. 50.12 Section 50.12 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for lead. (a) National primary and secondary ambient air quality standards for lead and its compounds, measured as elemental lead by a reference...

  4. Use of channel electron multipliers as secondary standard detectors at EUV wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Lapson, L. B.

    1974-01-01

    The procedures available for photometric calibration at extreme ultraviolet (EUV) wavelengths are outlined and the requirements for a secondary standard EUV photomultiplier defined. The performance of a number of commercially available channel electron multipliers over the 304-1350-A wavelength range is described, and their suitability for use as secondary standards is discussed in detail. Although none of the multipliers evaluated fully met the requirements for a secondary standard, it proved possible to calibrate absolutely a Mullard cone channel over the required wavelength range to an accuracy of plus or minus 9% and to employ it as a secondary standard in the calibration of a series of sounding rocket spectrometers.

  5. Use of Channel Electron Multipliers as Secondary Standard Detectors at EUV Wavelengths.

    PubMed

    Timothy, J G; Lapson, L B

    1974-06-01

    The procedures available for photometric calibration at extreme ultraviolet (EUV) wavelengths are outlined and the requirements for a secondary standard EUV photomultiplier defined. The performance of a number of commercially available channel electron multipliers over the 304-1350-A wavelength range is described and their suitability for use as secondary standards discussed in detail. Although none of the multipliers evaluated fully met the requirements for a secondary standard it proved possible to calibrate absolutely a Mullard cone channel over the required wavelength range to an accuracy of +/-9% and to employ it as a secondary standard in the calibration of a series of sounding rocket spectrometers. PMID:20126208

  6. Standard Operating Procedure for Prospective Individualised Dosimetry for ([131])I-rituximab Radioimmunotherapy of Non-Hodgkin's Lymphoma.

    PubMed

    Calais, Phillipe J; Turner, J Harvey

    2012-09-01

    Radioimmunotherapy (RIT) is an attractive therapy for non-Hodgkin's lymphoma (NHL) as it allows targeted tumor irradiation which provides a cytotoxic effect significantly greater than that of the immune-mediated effects of a non-radioactive, or 'cold', antibody alone. Anti-CD20 antibodies such as rituximab are ideal for RIT, as not only is it easily iodinated, but the CD20 antigen is found on more than 95% of B-cell NHL. A standard operating procedure (SOP) has been formulated for personalized prospective dosimetry for safe, effective outpatient (131)I-rituximab RIT of NHL. Over five years, experience of treatment of outpatients with (131)I-rituximab was analyzed with respect to critical organ radiation dose in patients and radiation exposure of their carers. This radiation safety methodology has been refined; and offers the potential for safe, practical application to outpatient (131)I-rituximab RIT of lymphoma in general and in developing countries in particular. Given endorsement and sanction of this SOP by local regulatory authorities the personalized dosimetry paradigm will facilitate incorporation of RIT into the routine clinical practice of therapeutic nuclear oncology worldwide. PMID:23372448

  7. Secondary standards laboratories for ionizing radiation calibrations: The national laboratory interests

    NASA Astrophysics Data System (ADS)

    Roberson, P. I.; Campbell, G. W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary.

  8. 40 CFR 50.16 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary ambient air quality standards for lead (Pb) and its compounds are 0.15 micrograms per cubic meter, arithmetic mean concentration over a 3-month period, measured in the ambient air as Pb either by: (1) A... primary and secondary ambient air quality standards for Pb are met when the maximum arithmetic...

  9. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS §...

  10. State Secondary Career and Technical Education Standards: Creating a Framework from a Patchwork of Policies

    ERIC Educational Resources Information Center

    Castellano, Marisa; Harrison, Linda; Schneider, Sherrie

    2008-01-01

    Many states are currently working to define secondary career and technical education (CTE) content standards that specify the knowledge and skills students are expected to master in CTE program areas. This study explores the progress and status of states in developing statewide secondary CTE standards systems. An exhaustive online query of CTE…

  11. 76 FR 38591 - National Emission Standards for Hazardous Air Pollutants: Secondary Lead Smelting; Extension of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... the National Emissions Standards for Hazardous Air Pollutants for Secondary Lead Smelting (76 FR 29032... current rule. DATES: Comments on the proposed rule published May 19, 2011 (76 FR 29032) must be received... Standards for Hazardous Air Pollutants: Secondary Lead Smelting, was published May 19, 2011 (76 FR...

  12. Time dependent pre-treatment EPID dosimetry for standard and FFF VMAT

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; Nijsten, Sebastiaan M. J. J. G.; Persoon, Lucas C. G. G.; Scheib, Stefan G.; Baltes, Christof; Verhaegen, Frank

    2014-08-01

    Methods to calibrate Megavoltage electronic portal imaging devices (EPIDs) for dosimetry have been previously documented for dynamic treatments such as intensity modulated radiotherapy (IMRT) using flattened beams and typically using integrated fields. While these methods verify the accumulated field shape and dose, the dose rate and differential fields remain unverified. The aim of this work is to provide an accurate calibration model for time dependent pre-treatment dose verification using amorphous silicon (a-Si) EPIDs in volumetric modulated arc therapy (VMAT) for both flattened and flattening filter free (FFF) beams. A general calibration model was created using a Varian TrueBeam accelerator, equipped with an aS1000 EPID, for each photon spectrum 6 MV, 10 MV, 6 MV-FFF, 10 MV-FFF. As planned VMAT treatments use control points (CPs) for optimization, measured images are separated into corresponding time intervals for direct comparison with predictions. The accuracy of the calibration model was determined for a range of treatment conditions. Measured and predicted CP dose images were compared using a time dependent gamma evaluation using criteria (3%, 3 mm, 0.5 sec). Time dependent pre-treatment dose verification is possible without an additional measurement device or phantom, using the on-board EPID. Sufficient data is present in trajectory log files and EPID frame headers to reliably synchronize and resample portal images. For the VMAT plans tested, significantly more deviation is observed when analysed in a time dependent manner for FFF and non-FFF plans than when analysed using only the integrated field. We show EPID-based pre-treatment dose verification can be performed on a CP basis for VMAT plans. This model can measure pre-treatment doses for both flattened and unflattened beams in a time dependent manner which highlights deviations that are missed in integrated field verifications.

  13. Secondary Social Studies Teachers' Time Commitment When Addressing the Common Core State Standards

    ERIC Educational Resources Information Center

    Kenna, Joshua L.; Russell, William Benedict, III

    2015-01-01

    In 2010 the Common Core State Standards (CCSS) were officially released in America for mathematics and English language arts and soon adopted by 45 of the 50 states. However, within the English langue arts domain there were standards intended for secondary social studies teachers under the title, Common Core State Standards for English Language…

  14. Dosimetry for Neutrons from 0.25 to 15 MeV by the Measurement of Linear Energy Transfer Distributions for Secondary Charged Particles in CR-39 Plastic

    NASA Astrophysics Data System (ADS)

    Tawara, Hiroko; Eda, Kazuyoshi; Sanami, Toshiya; Sasaki, Shinichi; Takahashi, Kazutoshi; Sonkawade, Rajendra; Nagamatsu, Aiko; Kitajo, Keiichi; Kumagai, Hidenori; Doke, Tadayoshi

    2008-03-01

    In the radiation fields of high energy accelerator facilities, high-altitude aircraft and space flights, high-energy neutron dosimetry of ˜20 MeV or more is a significant issue for radiological protection. We studied the feasibility of experimental measurements of linear energy transfer (LET) distributions for secondary charged particles induced by fast neutrons using CR-39 plastic nuclear track detectors. In order to investigate a method of analyzing the CR-39 detectors that is appropriate for fast neutron dosimetry, two-layer CR-39 stacks were exposed to monochromatic neutrons (0.25, 0.55, 5, and 15 MeV) at the Fast Neutron Laboratory of Tohoku University in Japan. We also conducted Monte Carlo calculations to estimate the detection efficiency of the CR-39 detector for recoil protons. The CR-39 detectors treated by single-step chemical etching were used to obtain LET distributions for LET > 10 keV/µm-water. The results indicated that measurements of short-range particles are very important for obtaining the correct LET distributions. Using the measured LET distributions, we calculated neutron sensitivities, absorbed doses and dose equivalents based on the ICRP 60 Q-L relation and averaged quality factors. The dose equivalents were compared with the neutron fluence-to-dose equivalent conversion factors given by ICRP 74 and the averaged quality factors were compared with weighting factors given by ICRP 60 and ICRP 92.

  15. 76 FR 46083 - Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ...This proposed rule is being issued as required by a consent decree governing the schedule for completion of this review of the air quality criteria and the secondary national ambient air quality standards (NAAQS) for oxides of nitrogen and oxides of sulfur. Based on its review, EPA proposes to retain the current nitrogen dioxide (NO2) and sulfur dioxide (SO2) secondary......

  16. Secondary Social Studies Teachers' Experiences Implementing Common Core State Literacy Standards: A Phenomenological Study

    ERIC Educational Resources Information Center

    Webb, Krista Faith Huskey

    2014-01-01

    The purpose of this phenomenological study was to examine the experiences of secondary social studies teachers who implemented Common Core State Standards for English Language Arts & Literacy in history/social studies, science and technical subjects in social studies courses requiring End of Course Tests at secondary schools in one suburban…

  17. Secondary Student Motivation Orientations and Standards-Based Achievement Outcomes

    ERIC Educational Resources Information Center

    Meyer, Luanna H.; McClure, John; Walkey, Frank; Weir, Kirsty F.; McKenzie, Lynanne

    2009-01-01

    Background: Individual student characteristics such as competence motivation, achievement values, and goal orientations have been related in meaningful ways to task attainment. The standards-based National Certificate of Educational Achievement (NCEA) was developed in New Zealand with the intention of strengthening connections between student…

  18. FCS National Standards: Do They Underpin Secondary Curriculum?

    ERIC Educational Resources Information Center

    Smith, Bettye P.; Hall, Helen C.; Jones, Karen H.

    2005-01-01

    This study focuses on the seven standards that are included in a comprehensive (family-oriented) FCS program: (1) Family; (2) Nutrition and Wellness; (3) Human Development; (4) Interpersonal relationships; (5) Career, Community, and Family Connections; (6) Parenting; and (7) Family and Community Services. The study was conducted to better…

  19. Setting the Standard: Role Definition for a Secondary Literacy Coach

    ERIC Educational Resources Information Center

    DiMeglio, Rachele A.; Mangin, Melinda M.

    2010-01-01

    This case introduces Karen, a middle school literacy coach attempting to navigate the myriad tasks she performs. As she aims to satisfy everyone's needs Karen struggles to prioritize and focus her work. The accompanying teaching notes utilize the International Reading Association's "Standards for Middle and High School Literacy Coaches" to…

  20. 77 FR 555 - National Emissions Standards for Hazardous Air Pollutants From Secondary Lead Smelting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ...This action finalizes the residual risk and technology review conducted for the secondary lead smelting source category regulated under national emission standards for hazardous air pollutants. These final amendments include revisions to the emissions limits for lead compounds; revisions to the standards for fugitive emissions; the addition of total hydrocarbon and dioxin and furan emissions......

  1. 40 CFR 50.6 - National primary and secondary ambient air quality standards for PM10.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air quality standards for PM10. 50.6 Section 50.6 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for PM10. (a) The level of the national... PM10 (particles with an aerodynamic diameter less than or equal to a nominal 10 micrometers) by: (1)...

  2. 40 CFR 50.6 - National primary and secondary ambient air quality standards for PM10.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for PM10. 50.6 Section 50.6 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for PM10. (a) The level of the national... PM10 (particles with an aerodynamic diameter less than or equal to a nominal 10 micrometers) by: (1)...

  3. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  4. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  5. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  6. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  7. Design of organic scintillators for non-standard radiation field dosimetry: experimental setup.

    PubMed

    Norman H, Machado R; Maximiliano, Trujillo T; Javier E, García G; Diana C, Narvaez G; Paula A, Marín M; Róbinson A, Torres V

    2013-01-01

    This paper describes an experimental setup designed for sensing the luminescent light coming from an organic plastic scintillator stimulated with ionizing radiation. This device is intended to be a part of a complete dosimeter system for characterization of small radiation fields which is the project of the doctoral thesis of the medical physicist at the Radiation Oncology facility of Hospital San Vicente Fundación in conjunction with the Universidad de Antioquia of Medellín Colombia. Some preliminary results predict a good performance of the unit, but further studies must be conducted in order to have a completed evaluation of the system. This is the first step in the development of an accuracy tool for measurement of non-standard fields in the Radiotherapy or Radiosurgery processes. PMID:24110369

  8. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient... PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.11 National primary and secondary ambient air... national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion...

  9. Environmental standards for primary and secondary containment systems and transfer stations

    SciTech Connect

    Maguire, D.M.

    1995-04-01

    Environmental Standards for Primary and Secondary Containment Systems and Transfer Stations will supersede all previous requirements for design of dikes, storage tanks, and transfer stations in order to maintain consistency throughout the Y-12 Plant. This document is organized into six distinct sections, each with a specific purpose. Section I outlines the objectives of the document along with its applications and limitations; this section should be of interest to all readers for essential background information. Section II lists all definitions and is consistent with definitions outlined by environmental regulations. Section III discusses primary containment standards. Section IV outlines secondary containment standards; this section contains the actual standards for the diking of storage tanks and storage containers. Section V discusses transfer station standards. Section VI of this document outlines how exemptions may be granted for specific cases.

  10. Calculations of two new dose metrics proposed by AAPM Task Group 111 using the measurements with standard CT dosimetry phantoms

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2013-08-15

    Purpose: AAPM Task Group 111 proposed to measure the equilibrium dose-pitch product D-caret{sub eq} for scan modes involving table translation and the midpoint dose D{sub L}(0) for stationary-table modes on the central and peripheral axes of sufficiently long (e.g., at least 40 cm) phantoms. This paper presents an alternative approach to calculate both metrics using the measurements of scanning the standard computed tomographic (CT) dosimetry phantoms on CT scanners.Methods: D-caret{sub eq} was calculated from CTDI{sub 100} and ε(CTDI{sub 100}) (CTDI{sub 100} efficiency), and D{sub L}(0) was calculated from D-caret{sub eq} and the approach to equilibrium function H(L) =D{sub L}(0)/D{sub eq}, where D{sub eq} was the equilibrium dose. CTDI{sub 100} may be directly obtained from several sources (such as medical physicist's CT scanner performance evaluation or the IMPACT CT patient dosimetry calculator), or be derived from CTDI{sub Vol} using the central to peripheral CTDI{sub 100} ratio (R{sub 100}). The authors have provided the required ε(CTDI{sub 100}) and H(L) data in two previous papers [X. Li, D. Zhang, and B. Liu, Med. Phys. 39, 901–905 (2012); and ibid. 40, 031903 (10pp.) (2013)]. R{sub 100} was assessed for a series of GE, Siemens, Philips, and Toshiba CT scanners with multiple settings of scan field of view, tube voltage, and bowtie filter.Results: The calculated D{sub L}(0) and D{sub L}(0)/D{sub eq} in PMMA and water cylinders were consistent with the measurements on two GE CT scanners (LightSpeed 16 and VCT) by Dixon and Ballard [Med. Phys. 34, 3399–3413 (2007)], the measurements on a Siemens CT scanner (SOMATOM Spirit Power) by Descamps et al. [J. Appl. Clin. Med. Phys. 13, 293–302 (2012)], and the Monte Carlo simulations by Boone [Med. Phys. 36, 4547–4554 (2009)].Conclusions: D-caret{sub eq} and D{sub L}(0) can be calculated using the alternative approach. The authors have provided the required ε(CTDI{sub 100}) and H(L) data in two previous

  11. "Standards"-based Mathematics Curricula and Secondary Students' Performance on Standardized Achievement Tests

    ERIC Educational Resources Information Center

    Harwell, Michael R.; Post, Thomas R.; Maeda, Yukiko; Davis, Jon D.; Cutler, Arnold L.; Andersen, Edwin; Kahan, Jeremy A.

    2007-01-01

    The current study examined the mathematical achievement of high school students enrolled for 3 years in one of three NSF funded "Standards"-based curricula (IMP, CMIC, MMOW). The focus was on traditional topics in mathematics as measured by subtests of a standardized achievement test and a criterion-referenced test of mathematics achievement.…

  12. 40 CFR 50.10 - National 8-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ambient air quality standards for ozone. 50.10 Section 50.10 Protection of Environment ENVIRONMENTAL....10 National 8-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone, measured by...

  13. 40 CFR 50.10 - National 8-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ambient air quality standards for ozone. 50.10 Section 50.10 Protection of Environment ENVIRONMENTAL....10 National 8-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone, measured by...

  14. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 1-hour primary and secondary ambient air quality standards for ozone measured by...

  15. 40 CFR 50.10 - National 8-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ambient air quality standards for ozone. 50.10 Section 50.10 Protection of Environment ENVIRONMENTAL....10 National 8-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone, measured by...

  16. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 1-hour primary and secondary ambient air quality standards for ozone measured by...

  17. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 1-hour primary and secondary ambient air quality standards for ozone measured by...

  18. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 1-hour primary and secondary ambient air quality standards for ozone measured by...

  19. 40 CFR 50.10 - National 8-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ambient air quality standards for ozone. 50.10 Section 50.10 Protection of Environment ENVIRONMENTAL....10 National 8-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone, measured by...

  20. 40 CFR 50.10 - National 8-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ambient air quality standards for ozone. 50.10 Section 50.10 Protection of Environment ENVIRONMENTAL....10 National 8-hour primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone, measured by...

  1. The Main Reasons of Declining Educational Standards at Secondary Level in Karachi, Pakistan

    ERIC Educational Resources Information Center

    Faizi, Waqar-un-Nisa; Shakil, Anila Fatima; Lodhi, Farida Azim

    2011-01-01

    The cause of this investigation was to identify the main reasons which decline the educational standards at secondary level in Karachi, Pakistan. It was carried out through survey. The population of the study was both "government and private" schools students and teachers. The views of male and female students and teachers were sought out. One…

  2. Constructing Assessment Model of Primary and Secondary Educational Quality with Talent Quality as the Core Standard

    ERIC Educational Resources Information Center

    Chen, Benyou

    2014-01-01

    Quality is the core of education and it is important to standardization construction of primary and secondary education in urban (U) and rural (R) areas. The ultimate goal of the integration of urban and rural education is to pursuit quality urban and rural education. Based on analysing the related policy basis and the existing assessment models…

  3. Language Arts Core Curriculum: Secondary Core Curriculum Standards. Levels 7-12, Language Arts (Drama). Revised.

    ERIC Educational Resources Information Center

    Utah State Board of Education, Salt Lake City.

    This curriculum guide presents the core standards and objectives for level 7-12 language arts instruction in Utah. The curriculum guide begins with a statement of the elementary and secondary school program of studies and high school graduation requirements. After a brief statement on the importance of language arts and core curriculum standards…

  4. Applying Standards for Leaders to the Selection of Secondary School Principals

    ERIC Educational Resources Information Center

    Wildy, Helen; Pepper, Coral; Guanzhong, Luo

    2011-01-01

    Purpose: The purpose of this paper is to report innovative research aimed at ascertaining whether standards for school leaders could be applied to the process of selecting senior secondary school principals for appointment. Specifically, psychometrically robust measures of performance are sought that would sufficiently differentiate performance to…

  5. State Secondary CTE Standards: Developing a Framework out of a Patchwork of Policies

    ERIC Educational Resources Information Center

    Castellano, Marisa; Harrison, Linda; Schneider, Sherrie

    2007-01-01

    Many state educational administrators are currently working to define secondary career and technical education (CTE) content standards that specify the knowledge and skills students are expected to master in CTE program areas. The two-phase project on which this report is based explored (a) the progress and status of states in developing statewide…

  6. Jordanian Vocational, Secondary Education Teachers and Acquisition of the National Professional Standards

    ERIC Educational Resources Information Center

    Al-Dajeh, Hesham I.

    2012-01-01

    The main purpose of this study was to estimate the level of acquisition of the Jordanian national professional standards by vocational, secondary education teachers. Two hundred teachers participated in the study. The data were collected by questionnaire and analyzed using SPSS version 15.0. Questionnaire validity was assessed by content validity,…

  7. Initial radiation dosimetry at Hiroshima and Nagasaki

    SciTech Connect

    Loewe, W.E.

    1983-09-01

    The dosimetry of A-bomb survivors at Hiroshima and Nagasaki is discussed in light of the new dosimetry developed in 1980 by the author. The important changes resulting from the new dosimetry are the ratios of neutron to gamma doses, particularly at Hiroshima. The implications of these changes in terms of epidemiology and radiation protection standards are discussed. (ACR)

  8. Preservice Secondary Teachers Perceptions of College-Level Mathematics Content Connections with the Common Core State Standards for Mathematics

    ERIC Educational Resources Information Center

    Olson, Travis A.

    2016-01-01

    Preservice Secondary Mathematics Teachers (PSMTs) were surveyed to identify if they could connect early-secondary mathematics content (Grades 7-9) in the Common Core State Standards for Mathematics (CCSSM) with mathematics content studied in content courses for certification in secondary teacher preparation programs. Respondents were asked to…

  9. Computational dosimetry

    SciTech Connect

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  10. Use and qualification of primary and secondary standards employed in quantitative ¹H NMR spectroscopy of pharmaceuticals.

    PubMed

    Rundlöf, Torgny; McEwen, Ian; Johansson, Monika; Arvidsson, Torbjörn

    2014-05-01

    Standards are required in quantitative NMR (qNMR) to obtain accurate and precise results. In this study acetanilide was established and used as a primary standard. Six other chemicals were selected as secondary standards: 3,4,5-trichloropyridine, dimethylterephthalate, maleic acid, 3-sulfolene, 1,4-bis(trimethylsilyl)benzene, and 1,3,5-trimethoxybenzene. The secondary standards were quantified using the primary standard acetanilide. A protocol for qualification and periodic checks of these secondary standards was developed, and used for evaluation of the stability of the compounds. Periodic monitoring of purity was performed for several years. The purity was higher than 99% for all secondary standards. All standards maintained the initial purity during the time period of monitoring, with very small variations in purity (0.3-0.4%). The selected secondary standards were shown to be suitable qNMR standards and that periodic requalification of the standards by qNMR ensures reliable analytical results. These standards have been used in our laboratory for compliance testing of pharmaceutical active substances and approved medicinal products as well as for analysis of suspected illegal medicines. In total more than 1000 samples have been tested using both internal and external standardization and examples are given. PMID:24206940

  11. Epid Dosimetry

    NASA Astrophysics Data System (ADS)

    Greer, Peter B.; Vial, Philip

    2011-05-01

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  12. Epid Dosimetry

    SciTech Connect

    Greer, Peter B.; Vial, Philip

    2011-05-05

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  13. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hour standards are codified in 40 CFR part 81. (c) EPA's authority under paragraph (b) of this section... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level...

  14. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment... Air Quality Standards for Ozone 1. General (a) This appendix explains the data handling conventions... air quality standards for ozone (O3) specified in § 50.15 are met at an ambient O3 air...

  15. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment... Air Quality Standards for Ozone 1. General (a) This appendix explains the data handling conventions... air quality standards for ozone (O3) specified in § 50.15 are met at an ambient O3 air...

  16. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment... Air Quality Standards for Ozone 1. General (a) This appendix explains the data handling conventions... air quality standards for ozone (O3) specified in § 50.15 are met at an ambient O3 air...

  17. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment... Air Quality Standards for Ozone 1. General (a) This appendix explains the data handling conventions... air quality standards for ozone (O3) specified in § 50.15 are met at an ambient O3 air...

  18. Reference dosimetry on TomoTherapy: an addendum to the 1990 UK MV dosimetry code of practice

    NASA Astrophysics Data System (ADS)

    Thomas, S. J.; Aspradakis, M. M.; Byrne, J. P.; Chalmers, G.; Duane, S.; Rogers, J.; Thomas, R. A. S.; Tudor, G. S. J.; Twyman, N.

    2014-03-01

    The current UK code of practice for high-energy photon therapy dosimetry (Lillicrap et al 1990 Phys. Med. Biol. 35 1355-60) gives instructions for measuring absorbed dose to water under reference conditions for megavoltage photons. The reference conditions and the index used to specify beam quality require that a machine be able to set a 10 cm × 10 cm field at the point of measurement. TomoTherapy machines have a maximum collimator setting of 5 cm × 40 cm at a source to axis distance of 85 cm, making it impossible for users of these machines to follow the code. This addendum addresses the specification of reference irradiation geometries, the choice of ionization chambers and the determination of dosimetry corrections, the derivation of absorbed dose to water calibration factors and choice of appropriate chamber correction factors, for carrying out reference dosimetry measurements on TomoTherapy machines. The preferred secondary standard chamber remains the NE2611 chamber, which with its associated secondary standard electrometer, is calibrated at the NPL through the standard calibration service for MV photon beams produced on linear accelerators with conventional flattening filters. Procedures are given for the derivation of a beam quality index specific to the TomoTherapy beam that can be used in the determination of a calibration coefficient for the secondary standard chamber from its calibration certificate provided by the NPL. The recommended method of transfer from secondary standard to field instrument is in a static beam, at a depth of 5 cm, by sequential substitution or by simultaneous side by side irradiation in either a water phantom or a water-equivalent solid phantom. Guidance is given on the use of a field instrument in reference fields.

  19. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    SciTech Connect

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  20. 75 FR 20595 - Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... for Oxides of Nitrogen and Oxides of Sulfur: First External Review Draft (75 FR 11877; March 12, 2010... AGENCY Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides... a proposal addressing the nitrogen oxides (NO X ) and sulfur oxides (SO X ) secondary...

  1. (Depth-dose curves of the beta reference fields (147)Pm, (85)Kr and (90)Sr/(90)Y produced by the beta secondary standard BSS2.

    PubMed

    Brunzendorf, Jens

    2012-08-01

    The most common reference fields in beta dosimetry are the ISO 6980 series 1 radiation fields produced by the beta secondary standard BSS2 and its predecessor BSS. These reference fields require sealed beta radiation sources ((147)Pm, (85)Kr or (90)Sr/(90)Y) in combination with a source-specific beam-flattening filter, and are defined only at a given distance from the source. Every radiation sources shipped with the BSS2 is sold with a calibration certificate of the Physikalisch-Technische Bundesanstalt. The calibration workflow also comprises regular depth-dose measurements. This work publishes complete depth-dose curves of the series 1 sources (147)Pm, (85)Kr and (90)Sr/(90)Y in ICRU tissue up to a depth of 11 mm,when all electrons are stopped. For this purpose, the individual depth-dose curves of all BSS2 sources calibrated so far have been determined, i.e. the complete datasets of all BSS2 beta sources have been re-evaluated. It includes 191 depth-dose curves of 116 different sources comprising more than 2200 data points in total. Appropriate analytical representations of the nuclide-specific depth-dose curves are provided for the first time. PMID:22267274

  2. 40 CFR Appendix I to Part 50 - Interpretation of the 8-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Secondary National Ambient Air Quality Standards for Ozone I Appendix I to Part 50 Protection of... Secondary National Ambient Air Quality Standards for Ozone 1. General. This appendix explains the data... secondary ambient air quality standards for ozone specified in § 50.10 are met at an ambient ozone...

  3. 40 CFR Appendix I to Part 50 - Interpretation of the 8-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Secondary National Ambient Air Quality Standards for Ozone I Appendix I to Part 50 Protection of... Secondary National Ambient Air Quality Standards for Ozone 1. General. This appendix explains the data... secondary ambient air quality standards for ozone specified in § 50.10 are met at an ambient ozone...

  4. 40 CFR Appendix I to Part 50 - Interpretation of the 8-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Secondary National Ambient Air Quality Standards for Ozone I Appendix I to Part 50 Protection of... Secondary National Ambient Air Quality Standards for Ozone 1. General. This appendix explains the data... secondary ambient air quality standards for ozone specified in § 50.10 are met at an ambient ozone...

  5. 40 CFR Appendix I to Part 50 - Interpretation of the 8-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Secondary National Ambient Air Quality Standards for Ozone I Appendix I to Part 50 Protection of... Secondary National Ambient Air Quality Standards for Ozone 1. General. This appendix explains the data... secondary ambient air quality standards for ozone specified in § 50.10 are met at an ambient ozone...

  6. 40 CFR Appendix I to Part 50 - Interpretation of the 8-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Secondary National Ambient Air Quality Standards for Ozone I Appendix I to Part 50 Protection of... Secondary National Ambient Air Quality Standards for Ozone 1. General. This appendix explains the data... secondary ambient air quality standards for ozone specified in § 50.10 are met at an ambient ozone...

  7. Source geometry factors for HDR 192Ir brachytherapy secondary standard well-type ionization chamber calibrations

    NASA Astrophysics Data System (ADS)

    Shipley, D. R.; Sander, T.; Nutbrown, R. F.

    2015-03-01

    Well-type ionization chambers are used for measuring the source strength of radioactive brachytherapy sources before clinical use. Initially, the well chambers are calibrated against a suitable national standard. For high dose rate (HDR) 192Ir, this calibration is usually a two-step process. Firstly, the calibration source is traceably calibrated against an air kerma primary standard in terms of either reference air kerma rate or air kerma strength. The calibrated 192Ir source is then used to calibrate the secondary standard well-type ionization chamber. Calibration laboratories are usually only equipped with one type of HDR 192Ir source. If the clinical source type is different from that used for the calibration of the well chamber at the standards laboratory, a source geometry factor, ksg, is required to correct the calibration coefficient for any change of the well chamber response due to geometric differences between the sources. In this work we present source geometry factors for six different HDR 192Ir brachytherapy sources which have been determined using Monte Carlo techniques for a specific ionization chamber, the Standard Imaging HDR 1000 Plus well chamber with a type 70010 HDR iridium source holder. The calculated correction factors were normalized to the old and new type of calibration source used at the National Physical Laboratory. With the old Nucletron microSelectron-v1 (classic) HDR 192Ir calibration source, ksg was found to be in the range 0.983 to 0.999 and with the new Isodose Control HDR 192Ir Flexisource ksg was found to be in the range 0.987 to 1.004 with a relative uncertainty of 0.4% (k = 2). Source geometry factors for different combinations of calibration sources, clinical sources, well chambers and associated source holders, can be calculated with the formalism discussed in this paper.

  8. Teaching a Standard-Based Communicative English Textbook Series to Secondary School Students in Egypt: Investigating Teachers' Practices and Beliefs

    ERIC Educational Resources Information Center

    Abdel Latif, Muhammad M. Mahmoud

    2012-01-01

    Since any standards-based reform is made to bring about an improvement in students' learning, it requires changes in teachers' practices as well. This study examined how a standards-based communicative curricular reform in general secondary school English in Egypt has changed teachers' classroom practices, and the factors influencing such…

  9. The Implementation of Standards-Based Teacher Evaluation in Vietnamese Secondary Schools: A Case Study in Dong Thap

    ERIC Educational Resources Information Center

    Pham, Huy Q.

    2013-01-01

    Teacher quality has become a critical area of concern in Vietnamese education. Recently, new professional standards for teachers in secondary schools have been developed, piloted, and implemented. This study explores the perceptions of teachers, school principals, and other administrators about the new teacher professional standards, the…

  10. 40 CFR 50.13 - National primary and secondary ambient air quality standards for PM2.5.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air quality standards for PM2.5. 50.13 Section 50.13 Protection of Environment ENVIRONMENTAL....13 National primary and secondary ambient air quality standards for PM2.5. (a) The national primary... the ambient air as PM2.5 (particles with an aerodynamic diameter less than or equal to a nominal...

  11. 40 CFR 50.13 - National primary and secondary ambient air quality standards for PM2.5.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air quality standards for PM2.5. 50.13 Section 50.13 Protection of Environment ENVIRONMENTAL....13 National primary and secondary ambient air quality standards for PM2.5. (a) The national primary... the ambient air as PM2.5 (particles with an aerodynamic diameter less than or equal to a nominal...

  12. 40 CFR 50.7 - National primary and secondary ambient air quality standards for PM2.5.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air quality standards for PM2.5. 50.7 Section 50.7 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for PM2.5. (a) The national primary and... air as PM2.5 (particles with an aerodynamic diameter less than or equal to a nominal 2.5...

  13. 40 CFR 50.13 - National primary and secondary ambient air quality standards for PM2.5.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for PM2.5. 50.13 Section 50.13 Protection of Environment ENVIRONMENTAL....13 National primary and secondary ambient air quality standards for PM2.5. (a) The national primary... the ambient air as PM2.5 (particles with an aerodynamic diameter less than or equal to a nominal...

  14. 40 CFR 50.7 - National primary and secondary ambient air quality standards for PM2.5.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air quality standards for PM2.5. 50.7 Section 50.7 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for PM2.5. (a) The national primary and... air as PM2.5 (particles with an aerodynamic diameter less than or equal to a nominal 2.5...

  15. 40 CFR 50.13 - National primary and secondary ambient air quality standards for PM2.5.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air quality standards for PM2.5. 50.13 Section 50.13 Protection of Environment ENVIRONMENTAL....13 National primary and secondary ambient air quality standards for PM2.5. (a) The national primary... the ambient air as PM2.5 (particles with an aerodynamic diameter less than or equal to a nominal...

  16. 40 CFR 50.7 - National primary and secondary ambient air quality standards for PM2.5.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air quality standards for PM2.5. 50.7 Section 50.7 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for PM2.5. (a) The national primary and... air as PM2.5 (particles with an aerodynamic diameter less than or equal to a nominal 2.5...

  17. 40 CFR 50.7 - National primary and secondary ambient air quality standards for PM2.5.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for PM2.5. 50.7 Section 50.7 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for PM2.5. (a) The national primary and... air as PM2.5 (particles with an aerodynamic diameter less than or equal to a nominal 2.5...

  18. 40 CFR 50.13 - National primary and secondary ambient air quality standards for PM2.5.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air quality standards for PM2.5. 50.13 Section 50.13 Protection of Environment ENVIRONMENTAL....13 National primary and secondary ambient air quality standards for PM2.5. (a) The national primary... the ambient air as PM2.5 (particles with an aerodynamic diameter less than or equal to a nominal...

  19. 40 CFR 50.7 - National primary and secondary ambient air quality standards for PM2.5.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air quality standards for PM2.5. 50.7 Section 50.7 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for PM2.5. (a) The national primary and... air as PM2.5 (particles with an aerodynamic diameter less than or equal to a nominal 2.5...

  20. (Biological dosimetry)

    SciTech Connect

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  1. Assessment of national dosimetry quality audits results for teletherapy machines from 1989 to 2015.

    PubMed

    Muhammad, Wazir; Ullah, Asad; Mahmood, Khalid; Matiullah

    2016-01-01

    The purpose of this study was to ensure accuracy in radiation dose delivery, external dosimetry quality audit has an equal importance with routine dosimetry performed at clinics. To do so, dosimetry quality audit was organized by the Secondary Standard Dosimetry Laboratory (SSDL) of Pakistan Institute of Nuclear Science and Technology (PINSTECH) at the national level to investigate and minimize uncertainties involved in the measurement of absorbed dose, and to improve the accuracy of dose measurement at different radiotherapy hospitals. A total of 181 dosimetry quality audits (i.e., 102 of Co-60 and 79 of linear accelerators) for teletherapy units installed at 22 different sites were performed from 1989 to 2015. The percent deviation between users’ calculated/stated dose and evaluated dose (in the result of on-site dosimetry visits) were calculated and the results were analyzed with respect to the limits of ± 2.5% (ICRU "optimal model") ± 3.0% (IAEA on-site dosimetry visits limit) and ± 5.0% (ICRU minimal or "lowest acceptable" model). The results showed that out of 181 total on-site dosimetry visits, 20.44%, 16.02%, and 4.42% were out of acceptable limits of ± 2.5% ± 3.0%, and ± 5.0%, respectively. The importance of a proper ongoing quality assurance program, recommendations of the followed protocols, and properly calibrated thermometers, pressure gauges, and humidity meters at radiotherapy hospitals are essential in maintaining consistency and uniformity of absorbed dose measurements for precision in dose delivery. PMID:27538269

  2. Development of an alanine dosimetry system for radiation dose measurements in the radiotherapy range

    NASA Astrophysics Data System (ADS)

    Gago-Arias, A.; González-Castaño, D. M.; Gómez, F.; Peteiro, E.; Lodeiro, C.; Pardo-Montero, J.

    2015-08-01

    Alanine/ESR systems provide an interesting alternative to standard dosimetry systems like solid state or gas ionization chambers for dosimetry in radiotherapy. This is primarily due to the negligible energy dependence, high stability, and the possibility of using small pellets that are especially suitable for the dosimetry of small fields. In order to obtain acceptable dose uncertainties in the radiotherapy dose range, the setup, operational parameters and quantification methods need to be carefully investigated and optimized. In this work we present the development of an alanine/ESR dosimetry system, traced to the secondary standard laboratory of absorbed dose to water at the Radiation Physics Laboratory of the Universidade de Santiago de Compostela (Spain). We focus on the setup, the optimization of the operational parameters of the ESR spectrometer, the quantification of the readout signal and the construction of a calibration curve. The evaluation of the uncertainty budget is also a key component of an alanine/ESR system for radiotherapy dosimetry, and is presented in detail.After the optimization of the procedures, we have achieved a relative uncertainty of 1.7% (k=2) for an absorbed dose of 10 Gy, decreasing to 0.9% for 50 Gy.

  3. Neutron personnel dosimetry

    SciTech Connect

    Griffith, R.V.

    1981-06-16

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments. (ACR)

  4. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    NASA Astrophysics Data System (ADS)

    Williamson, Jeffrey F.

    2006-09-01

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  5. Hanford External Dosimetry Program

    SciTech Connect

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs.

  6. Dosimetry tools and techniques for IMRT

    SciTech Connect

    Low, Daniel A.; Moran, Jean M.; Dempsey, James F.; Dong Lei; Oldham, Mark

    2011-03-15

    dosimeters, from secondary standards to field instruments, is established to assure the quantitative nature of the tests. This report is intended to describe the characteristics of the components of these systems; dosimeters, phantoms, and dose evaluation algorithms. This work is the report of AAPM Task Group 120.

  7. Dosimetry tools and techniques for IMRT.

    PubMed

    Low, Daniel A; Moran, Jean M; Dempsey, James F; Dong, Lei; Oldham, Mark

    2011-03-01

    dosimeters, from secondary standards to field instruments, is established to assure the quantitative nature of the tests. This report is intended to describe the characteristics of the components of these systems; dosimeters, phantoms, and dose evaluation algorithms. This work is the report of AAPM Task Group 120. PMID:21520843

  8. Radiation dosimetry.

    PubMed Central

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists. PMID:2040250

  9. A Comparison of Secondary Principals' Use of Data Systems to Increase Student Achievement in Mathematics as Measured by Standardized Assessments

    ERIC Educational Resources Information Center

    Williams, Joshua

    2011-01-01

    The pressure to meet the demands of "No Child Left Behind" (NCLB) Act coupled with poor results by secondary students on national assessments in mathematics have forced school principals to develop skill sets in the use of data in efforts to increase student performance on standardized assessments. The effective use of data by school principals…

  10. Bypass, Augment, or Integrate: How Secondary Mathematics Teachers Address the Literacy Demands of Standards-Based Curriculum Materials

    ERIC Educational Resources Information Center

    Chandler-Olcott, Kelly; Doerr, Helen M.; Hinchman, Kathleen A.; Masingila, Joanna O.

    2015-01-01

    This 3-year qualitative study examined how 26 teachers in four U.S. secondary schools addressed the literacy demands of curriculum materials based on standards from the National Council of Teachers of Mathematics. It was grounded in sociocultural perspectives that encourage study of language in local contexts, including classrooms, communities,…

  11. Workshop in Support of the Secondary National Ambient Air Quality Standards for Nitrogen (NOx) and Sulfur Oxides (SOx)

    EPA Science Inventory

    EPA is announcing a workshop to discuss policy-relevant science to Inform EPA’s "Review of the Secondary National Ambient Air Quality Standards (NAAQS) for Oxides of Nitrogen and Sulfur" report. The workshop is being organized by EPA’s Office of Research and Development’s, Nation...

  12. Handbook on Tentative Standards and Procedures for the Registration of Secondary Schools. 1979-80 Field Trial Edition.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    This handbook contains the tentative secondary school registration standards and procedures approved by the New York State Board of Regents for the 1979-80 school year. It explains the program providing for the registration (or accreditation) of New York schools and outlines the steps that will make up the registration procedure. Most of the…

  13. Investigation and Development of Competency Standards and Certification Requirements for Secondary-Level Vocational Foodservice Programs. Final Report.

    ERIC Educational Resources Information Center

    Usiewicz, Ronald A.

    An investigation ascertained, analyzed, and documented competency standards and certification requirements for secondary-level vocational food service programs. A literature review produced no instruments used in past studies to measure the attitudes of food service professionals toward task competencies. Six occupations were selected for the…

  14. The Relationship between Computer and Internet Use and Performance on Standardized Tests by Secondary School Students with Visual Impairments

    ERIC Educational Resources Information Center

    Zhou, Li; Griffin-Shirley, Nora; Kelley, Pat; Banda, Devender R.; Lan, William Y.; Parker, Amy T.; Smith, Derrick W.

    2012-01-01

    Introduction: The study presented here explored the relationship between computer and Internet use and the performance on standardized tests by secondary school students with visual impairments. Methods: With data retrieved from the first three waves (2001-05) of the National Longitudinal Transition Study-2, the correlational study focused on…

  15. Ozone dosimetry predictions for humans and rats

    SciTech Connect

    Overton, J.H.; Graham, R.C.; McCurdy, T.R.; Richmond, H.M.

    1990-11-01

    The report summarizes ozone (O3) dosimetry model predictions for rats and humans under several different scenarios based on the most recent empirical data and theoretical considerations in the field of O3 dosimetry. The report was prepared at the request of the Office of Air Quality Planning and Standards (OAQPS) as an input to be considered by scientists participating in a chronic lung injury risk assessment project for O3. As indicated in the report a number of judgments and assumptions had to be made to obtain the dosimetry predictions. In addition to presenting the simulation results, the O3 dosimetry model used to make the predictions is discussed and the choice or method of selecting important physiological parameters explained. This includes anatomical dimensions, choices of rat and human ventilatory parameters, and the method of estimating human and rat upper respiratory tract uptake. Finally, a comparison of simulation results to recent experimental dosimetry results is discussed.

  16. Fourth Personnel Dosimetry Intercomparison Study

    SciTech Connect

    Dickson, H.W.

    1980-02-01

    The fourth Personnel Dosimetry Intercomparison Study was held at the Oak Ridge National Laboratory's Dosimetry Applications Research Facility during March 15-23, 1978. The Health Physics Research Reactor (HPRR) used unshielded, with a 12-cm-thick Lucite shield, a 20-cm-thick concrete shield, or a 5-cm-thick steel and 15-cm-thick concrete shield, and provided four neutron and gamma-ray spectra. Then the dose was calculated based on the HPRR neutron spectra and dose conversion factors which had been determined previously for the four spectra. The results of these personnel dosimetry intercomparison studies reveal that estimates of dose equivalent vary over a wide range. The standard deviation of the mean of participants data for gamma measurements was in the range of 29 to 43%; for neutrons it was 57 to 188%. (PCS)

  17. 40 CFR 52.1875 - Attainment dates for achieving the sulfur dioxide secondary standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....; Interlake, Inc.; Austin Power Co.; Diamond Crystal Salt Co.; The Goodyear Tire & Rubber Co.; The Gulf Oil Co... to achieve the secondary SO2 NAAQS by January 4, 1983: Diamond Crystal Salt; Firestone Tire &...

  18. 40 CFR 52.1875 - Attainment dates for achieving the sulfur dioxide secondary standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....; Interlake, Inc.; Austin Power Co.; Diamond Crystal Salt Co.; The Goodyear Tire & Rubber Co.; The Gulf Oil Co... to achieve the secondary SO2 NAAQS by January 4, 1983: Diamond Crystal Salt; Firestone Tire &...

  19. 40 CFR 52.1875 - Attainment dates for achieving the sulfur dioxide secondary standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....; Interlake, Inc.; Austin Power Co.; Diamond Crystal Salt Co.; The Goodyear Tire & Rubber Co.; The Gulf Oil Co... to achieve the secondary SO2 NAAQS by January 4, 1983: Diamond Crystal Salt; Firestone Tire &...

  20. 40 CFR 52.1875 - Attainment dates for achieving the sulfur dioxide secondary standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....; Interlake, Inc.; Austin Power Co.; Diamond Crystal Salt Co.; The Goodyear Tire & Rubber Co.; The Gulf Oil Co... to achieve the secondary SO2 NAAQS by January 4, 1983: Diamond Crystal Salt; Firestone Tire &...

  1. 40 CFR 52.1875 - Attainment dates for achieving the sulfur dioxide secondary standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....; Interlake, Inc.; Austin Power Co.; Diamond Crystal Salt Co.; The Goodyear Tire & Rubber Co.; The Gulf Oil Co... to achieve the secondary SO2 NAAQS by January 4, 1983: Diamond Crystal Salt; Firestone Tire &...

  2. Intercomparison of personal dosimetry for service providers in Pakistan.

    PubMed

    Jabeen, Akhter; Salman, Syed Ahmad

    2009-02-01

    An intercomparison exercise for personal dosimetry service providers within Pakistan was conducted by the Health Physics Division of the Pakistan Institute of Nuclear Science and Technology. Participation in the exercise was on voluntary basis. The exercise was carried out to harmonize individual dose monitoring techniques for high energy photons in terms of a new operational quantity, namely personal dose equivalent Hp(10), for personal dosimetry in accordance with the recommendations of the International Commission on Radiation Units and Measurements. Each laboratory submitted 25 dosimeters for participation in the intercomparison exercise. Protection level Co and Cs sources were used for irradiation of dosimeters on a water phantom according to International Atomic Energy Agency protocol at the Secondary Standard Dosimetry Laboratory. Hp(10) doses for five different dose levels were measured by the participating laboratories. The ratios of measured dose/true dose (Hm/Ht) remained in the range of 0.66 to 1.11 for the Co source and 0.84 to 1.17 for the Cs source. Performance of service providers' laboratories to measure Hp(10) doses was analyzed and evaluated in terms of trumpet curves plotted for photons at a 95% confidence level. PMID:19125056

  3. 77 FR 20217 - Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... 1971. These standards were set at a level of 0.053 parts per million (ppm) as an annual average (36 FR... EPA proposed to retain the standards set in 1971 (49 FR 6866). After taking into account public comments, the EPA published the final decision to retain these standards in June 1985 (50 FR 25532)....

  4. Experimental analysis of a novel and low-cost pin photodiode dosimetry system for diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Nazififard, Mohammad; Suh, Kune Y.; Mahmoudieh, Afshin

    2016-07-01

    Silicon PIN photodiode has recently found broad and exciting applications in the ionizing radiation dosimetry. In this study a compact and novel dosimetry system using a commercially available PIN photodiode (BPW34) has been experimentally tested for diagnostic radiology. The system was evaluated with clinical beams routinely used for diagnostic radiology and calibrated using a secondary reference standard. Measured dose with PIN photodiode (Air Kerma) varied from 10 to 430 μGy for tube voltages from 40 to 100 kVp and tube current from 0.4 to 40 mAs. The minimum detectable organ dose was estimated to be 10 μGy with 20% uncertainty. Results showed a linear correlation between the PIN photodiode readout and dose measured with standard dosimeters spanning doses received. The present dosimetry system having advantages of suitable sensitivity with immediate readout of dose values, low cost, and portability could be used as an alternative to passive dosimetry system such as thermoluminescent dosimeter for dose measurements in diagnostic radiology.

  5. 77 FR 16987 - National Emission Standards for Hazardous Air Pollutants: Secondary Aluminum Production

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... for hazardous air pollutants for secondary aluminum production (77 FR 8576). The EPA is extending the... the proposed rule published February 14, 2012, (77 FR 8576) is being extended for 14 days to April 13... Aluminum Production AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of extension of...

  6. Addressing the English Language Arts Technology Standard in a Secondary Reading Methodology Course.

    ERIC Educational Resources Information Center

    Merkley, Donna J.; Schmidt, Denise A.; Allen, Gayle

    2001-01-01

    Describes efforts to integrate technology into a reading methodology course for secondary English majors. Discusses the use of e-mail, multimedia, distance education for videoconferences, online discussion technology, subject-specific software, desktop publishing, a database management system, a concept mapping program, and the use of the World…

  7. Teacher-Reported Use of Empirically Validated and Standards-Based Instructional Approaches in Secondary Mathematics

    ERIC Educational Resources Information Center

    Gagnon, Joseph Calvin; Maccini, Paula

    2007-01-01

    A random sample of 167 secondary special and general educators who taught math to students with emotional and behavioral disorders (EBD) and learning disabilities (LD) responded to a mail survey. The survey examined teacher perceptions of (a) definition of math; (b) familiarity with course topics; (c) effectiveness of methods courses; (d)…

  8. 25 CFR 36.24 - Standard IX-Secondary instructional program.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... 69.) (d) The high school program shall provide program coordination with feeder schools, career... that lead to high school completion for secondary students who do not function successfully in the... instructional program shall reflect the philosophy of the student, tribe, community, and school, and...

  9. 25 CFR 36.24 - Standard IX-Secondary instructional program.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... 69.) (d) The high school program shall provide program coordination with feeder schools, career... that lead to high school completion for secondary students who do not function successfully in the... instructional program shall reflect the philosophy of the student, tribe, community, and school, and...

  10. 25 CFR 36.24 - Standard IX-Secondary instructional program.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... 69.) (d) The high school program shall provide program coordination with feeder schools, career... that lead to high school completion for secondary students who do not function successfully in the... instructional program shall reflect the philosophy of the student, tribe, community, and school, and...

  11. WATER EXERCISE COMPARED TO LAND EXERCISE OR STANDARD CARE IN FEMALE CANCER SURVIVORS WITH SECONDARY LYMPHEDEMA.

    PubMed

    Lindquist, H; Enblom, A; Dunberger, G; Nyberg, T; Bergmark, K

    2015-06-01

    There are few studies showing that physical exercise can improve secondary lymphedema. We hypothesized that water exercise would be more effective than land exercise in reducing limb volume. Secondary objectives were joint movement, BMI, daily function, well-being, and body image. Limb volume was measured with circumference or was volumetric. Well-being and body image were measured with a study-specific questionnaire and daily function with DASH and HOOS questionnaires. Eighty-eight eligible patients with secondary lymphedema after breast or gynecological cancer participated in this controlled clinical intervention study. There was a higher proportion of women who participated in water exercises who reduced their secondary arm limb volume (p = 0.029), and there were also significant differences for BMI (p = 0.047) and self-reported frequency of swelling (p = 0.031) in the water exercise group after intervention. Women with arm lymphedema in the land exercise group improved DASH scores (p = 0.047) and outer rotation in the shoulder (p = 0.001). Our results suggest that to reduce objective and self-reported swelling, lymphedema patients may be offered water exercise training while to improve daily shoulder function, land exercises are preferred. To guide female cancer survivors with lymphedema to effective exercise resulting in reduced limb volume and improved function, adequate evidenced-based programs are needed. PMID:26714371

  12. Critical Supports for Secondary Educators in Common Core State Standard Implementation

    ERIC Educational Resources Information Center

    Ruchti, Wendy P.; Jenkins, Susan J.; Agamba, Joachim

    2013-01-01

    Teacher professional development (PD) is a complex, ongoing challenge as educational systems attempt to deliver excellent programming in pursuit of increased student achievement (Opfer and Pedder 2011). This article examines Idaho Total Instructional Alignment (TIA), a model for teacher PD that is currently being utilized in secondary schools…

  13. Personnel neutron dosimetry

    SciTech Connect

    Hankins, D.

    1982-04-01

    This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs. (ACR)

  14. Quantification of xanthohumol, isoxanthohumol, 8-prenylnaringenin, and 6-prenylnaringenin in hop extracts and derived capsules using secondary standards.

    PubMed

    Dhooghe, Liene; Naessens, Tania; Heyerick, Arne; De Keukeleire, Denis; Vlietinck, Arnold J; Pieters, Luc; Apers, Sandra

    2010-12-15

    Hop is a well-known and already frequently used estrogenic phytotherapeutic, containing the interesting prenylflavonoids, xanthohumol (XN), isoxanthohumol (IXN), 8- and 6-prenylnaringenin (8-PN and 6-PN). Since the use of secondary standards can form a solution whenever the determination is required of certain components, not commercially available or too expensive, it was decided to develop an accessible HPLC-DAD method for the determination of these prenylflavonoids. The amounts were determined in hop extract and capsules, using quercetin and naringenin as secondary standards. After optimization of the sample preparation and HPLC conditions, the analysis was validated according to the ICH guidelines. The response function of XN, 8-PN, quercetin and naringenin showed a linear relationship. For the determination of XN, a calibration line of at least three concentrations of quercetin has to be constructed. The correction factors for XN (quercetin) and for 8-PN (naringenin) were validated and determined to be 0.583 for XN, and 1.296 for IXN, 8-PN and 6-PN. The intermediate precision was investigated and it could be concluded that the standard deviation of the method was equal considering time and concentration (RSD of 2.5-5%). By means of a recovery experiment, it was proven that the method is accurate (recoveries of 96.1-100.1%). Additionally, by analysing preparations containing hop extracts on the Belgian market, it was shown that the method is suitable for its use, namely the determination of XN, IXN, 8-PN and 6-PN in hop extract and capsules, using quercetin and naringenin as secondary standards. PMID:21111159

  15. Path forward for dosimetry cross sections

    SciTech Connect

    Griffin, P.J.; Peters, C.D.

    2011-07-01

    In the 1980's the dosimetry community embraced the need for a high fidelity quantification of uncertainty in nuclear data used for dosimetry applications. This led to the adoption of energy-dependent covariance matrices as the accepted manner of quantifying the uncertainty data. The trend for the dosimetry community to require high fidelity treatment of uncertainty estimates has continued to the current time where requirements on nuclear data are codified in standards such as ASTM E 1018. This paper surveys the current state of the dosimetry cross sections and investigates the quality of the current dosimetry cross section evaluations by examining calculated-to-experimental ratios in neutron benchmark fields. In recent years more nuclear-related technical areas are placing an emphasis on uncertainty quantification. With the availability of model-based cross sections and covariance matrices produced by nuclear data codes, some nuclear-related communities are considering the role these covariance matrices should play. While funding within the dosimetry community for cross section evaluations has been very meager, other areas, such as the solar-related astrophysics community and the US Nuclear Criticality Safety Program, have been supporting research in the area of neutron cross sections. The Cross Section Evaluation Working Group (CSEWG) is responsible for the creation and maintenance of the ENDF/B library which has been the mainstay for the reactor dosimetry community. Given the new trends in cross section evaluations, this paper explores the path forward for the US nuclear reactor dosimetry community and its use of the ENDF/B cross-sections. The major concern is maintenance of the sufficiency and accuracy of the uncertainty estimate when used for dosimetry applications. The two major areas of deficiency in the proposed ENDF/B approach are: 1) the use of unrelated covariance matrices in ENDF/B evaluations and 2) the lack of 'due consideration' of experimental data

  16. Compulsory Literacy and Numeracy Exit Standards for Senior Secondary Students: The Right Direction for Australia?

    ERIC Educational Resources Information Center

    Rice, Suzanne; Care, Esther; Griffin, Patrick

    2012-01-01

    An overview of positive and negative potential effects of the setting of compulsory exit-level standards in literacy and numeracy for students completing their final years of schooling is presented. The overview rests on studies completed primarily outside Australia, reflecting the reality of such practices not having been implemented widely in…

  17. Critical Review of Commercial Secondary Lithium-Ion Battery Safety Standards

    NASA Astrophysics Data System (ADS)

    Jones, Harry P.; Chapin, Thomas, J.; Tabaddor, Mahmod

    2010-09-01

    The development of Li-ion cells with greater energy density has lead to safety concerns that must be carefully assessed as Li-ion cells power a wide range of products from consumer electronics to electric vehicles to space applications. Documented field failures and product recalls for Li-ion cells, mostly for consumer electronic products, highlight the risk of fire, smoke, and even explosion. These failures have been attributed to the occurrence of internal short circuits and the subsequent thermal runaway that can lead to fire and explosion. As packaging for some applications include a large number of cells, the risk of failure is likely to be magnified. To address concerns about the safety of battery powered products, safety standards have been developed. This paper provides a review of various international safety standards specific to lithium-ion cells. This paper shows that though the standards are harmonized on a host of abuse conditions, most lack a test simulating internal short circuits. This paper describes some efforts to introduce internal short circuit tests into safety standards.

  18. 25 CFR 36.24 - Standard IX-Secondary instructional program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Section 36.24 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN AND NATIONAL CRITERIA FOR DORMITORY SITUATIONS Minimum... content areas: (1) Language arts (communication skills). (2) Sciences. (3) Mathematics. (4) Social...

  19. 25 CFR 36.24 - Standard IX-Secondary instructional program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Section 36.24 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN AND NATIONAL CRITERIA FOR DORMITORY SITUATIONS Minimum... content areas: (1) Language arts (communication skills). (2) Sciences. (3) Mathematics. (4) Social...

  20. QUANTITATIVE STANDARDS FOR AUDIOVISUAL PERSONNEL, EQUIPMENT AND MATERIALS (IN ELEMENTARY, SECONDARY, AND HIGHER EDUCATION).

    ERIC Educational Resources Information Center

    COBUN, TED; AND OTHERS

    THIS DOCUMENT IS A STAGE IN A STUDY TO FORMULATE QUANTITATIVE GUIDELINES FOR THE AUDIO-VISUAL COMMUNICATIONS FIELD, BEING CONDUCTED BY DOCTORS GENE FARIS AND MENDEL SHERMAN UNDER A NATIONAL DEFENSE EDUCATION ACT CONTRACT. THE STANDARDS LISTED HERE HAVE BEEN OFFICIALLY APPROVED AND ADOPTED BY SEVERAL AGENCIES, INCLUDING THE DEPARTMENT OF…

  1. Critical review and rethinking of USEPA secondary standards for maintaining organoleptic quality of drinking water.

    PubMed

    Dietrich, Andrea M; Burlingame, Gary A

    2015-01-20

    Consumers assess their tap water primarily by its taste, odor, and appearance. Starting in 1979, USEPA promulgated Secondary Maximum Contaminant Levels (SMCLs) as guidance for contaminants with organoleptic effects and also to maintain consumers’ confidence in tap water. This review assesses the basis for the 15 SMCLs (aluminum, chloride, color, copper, corrosivity, fluoride, foaming agents, iron, manganese, odor, pH, silver, sulfate, total dissolved solids, zinc) and summarizes advances in scientific knowledge since their promulgation. SMCLs for aluminum, color, pH, silver, sulfate, total dissolved solids, and zinc are appropriate at current values and remain consistent with sensory science literature. Recent advances in sensory and health sciences indicate that SMCLs for chloride, copper, fluoride, iron, and manganese are too high to minimize organoleptic effects. The SMCLs for corrosivity and foaming agents may be outdated. The SMCL for odor requires rethinking as the test does not correlate with consumer complaints. Since current stresses on source and treated waters include chemical spills, algal blooms, and increased salinization, organoleptic episodes that negatively impact consumer confidence and perception of tap water still occur and may increase. Thus, adherence to SMCLs can help maintain production of palatable water along with consumers’ confidence in their water providers. PMID:25517292

  2. Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: The SHARPn project

    PubMed Central

    Rea, Susan; Pathak, Jyotishman; Savova, Guergana; Oniki, Thomas A.; Westberg, Les; Beebe, Calvin E.; Tao, Cui; Parker, Craig G.; Haug, Peter J.; Huff, Stanley M.; Chute, Christopher G.

    2016-01-01

    The Strategic Health IT Advanced Research Projects (SHARP) Program, established by the Office of the National Coordinator for Health Information Technology in 2010 supports research findings that remove barriers for increased adoption of health IT. The improvements envisioned by the SHARP Area 4 Consortium (SHARPn) will enable the use of the electronic health record (EHR) for secondary purposes, such as care process and outcomes improvement, biomedical research and epidemiologic monitoring of the nation’s health. One of the primary informatics problem areas in this endeavor is the standardization of disparate health data from the nation’s many health care organizations and providers. The SHARPn team is developing open source services and components to support the ubiquitous exchange, sharing and reuse or ‘liquidity’ of operational clinical data stored in electronic health records. One year into the design and development of the SHARPn framework, we demonstrated end to end data flow and a prototype SHARPn platform, using thousands of patient electronic records sourced from two large healthcare organizations: Mayo Clinic and Intermountain Healthcare. The platform was deployed to (1) receive source EHR data in several formats, (2) generate structured data from EHR narrative text, and (3) normalize the EHR data using common detailed clinical models and Consolidated Health Informatics standard terminologies, which were (4) accessed by a phenotyping service using normalized data specifications. The architecture of this prototype SHARPn platform is presented. The EHR data throughput demonstration showed success in normalizing native EHR data, both structured and narrative, from two independent organizations and EHR systems. Based on the demonstration, observed challenges for standardization of EHR data for interoperable secondary use are discussed. PMID:22326800

  3. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  4. Adrenal insufficiency in a woman secondary to standard-dose inhaled fluticasone propionate therapy

    PubMed Central

    Hay, Casey M; Spratt, Daniel I

    2014-01-01

    Summary A 55-year-old woman with asthma presented with adrenal insufficiency of unknown origin. She was referred to our Division of Reproductive Endocrinology to further evaluate an undetectable morning cortisol level discovered during the evaluation of a low serum DHEA-S level. She was asymptomatic other than having mild fatigue and weight gain. Her medication list included 220 μg of inhaled fluticasone propionate twice daily for asthma, which she was taking as prescribed. On presentation, the undetectable morning cortisol level was confirmed. A urinary measurement of fluticasone propionate 17β-carboxylic acid was markedly elevated. Fluticasone therapy was discontinued and salmeterol therapy initiated with supplemental hydrocortisone. Hydrocortisone therapy was discontinued after 2 months. A repeat urinary fluticasone measurement 4 months after the discontinuation of fluticasone therapy was undetectably low and morning cortisol level was normal at 18.0 μg/dl. Inhaled fluticasone is generally considered to be minimally systemically absorbed. This patient's only clinical evidence suggesting adrenal insufficiency was fatigue accompanying a low serum DHEA-S level. This case demonstrates that adrenal insufficiency can be caused by a routine dose of inhaled fluticasone. Missing this diagnosis could potentially result in adrenal crisis upon discontinuation of fluticasone therapy. Learning points Standard-dose inhaled fluticasone can cause adrenal insufficiency.Adrenal insufficiency should be considered in patients taking, or who have recently discontinued, inhaled fluticasone therapy and present with new onset of nonspecific symptoms such as fatigue, weakness, depression, myalgia, arthralgia, unexplained weight loss, and nausea that are suggestive of adrenal insufficiency.Adrenal insufficiency should be considered in postoperative patients who exhibit signs of hypoadrenalism after fluticasone therapy has been withheld in the perioperative setting.Routine screening

  5. Survey of international personnel radiation dosimetry programs

    SciTech Connect

    Swaja, R.E.

    1985-04-01

    In September of 1983, a mail survey was conducted to determine the status of external personnel gamma and neutron radiation dosimetry programs at international agencies. A total of 130 agencies participated in this study including military, regulatory, university, hospital, laboratory, and utility facilities. Information concerning basic dosimeter types, calibration sources, calibration phantoms, corrections to dosimeter responses, evaluating agencies, dose equivalent reporting conventions, ranges of typical or expected dose equivalents, and degree of satisfaction with existing systems was obtained for the gamma and neutron personnel monitoring programs at responding agencies. Results of this survey indicate that to provide the best possible occupational radiation monitoring programs and to improve dosimetry accuracy in performance studies, facility dosimetrists, regulatory and standards agencies, and research laboratories must act within their areas of responsibility to become familiar with their radiation monitoring systems, establish common reporting guidelines and performance standards, and provide opportunities for dosimetry testing and evaluation. 14 references, 10 tables.

  6. Proton beam dosimetry: a comparison between the Faraday cup and an ionization chamber.

    PubMed

    Cambria, R; Hérault, J; Brassart, N; Silari, M; Chauvel, P

    1997-06-01

    From the theoretical point of view, the Faraday cup (FC) is an absolute instrument for fluence measurements of proton beams. As the FC is easily manufactured it can be considered an 'in-house' calibration system. Moreover, at the moment no national standards for proton dosimetry are available. Up to now the experimental tests of these instruments show that much study still has to be done to better understand their use in reference dosimetry. To investigate the possibility of using an FC as a secondary standard, an FC was jointly designed by the 'TERA Collaboration' and 'Centre Antoine-Lacassagne' (Nice, France) to evaluate the main parameters of the instrument. A comparison between two FCs of different designs--the 'TERA FC' and the 'Nice FC'--and an ionization chamber (IC) used for routine proton dosimetry was carried out. Results show that the two FCs agree to within 1.5-3.6%. While the differences between FC and IC are larger--6% for the 'TERA FC' and 8.2% for the 'Nice FC', the FC giving a lower dose evaluation--they follow the same trend shown by the calorimetric measurements. The data show that once the beam characteristics are defined, the fluence measurements are reproducible and show a good accuracy. PMID:9194137

  7. International Reactor Dosimetry Data.

    Energy Science and Technology Software Center (ESTSC)

    1982-06-28

    Version 00 IRDF-82 contains 620 neutron group cross sections (SAND-II format) based on the ENDF/B-V Special Purpose Dosimetry File as well as other reaction cross sections important for dosimetry applications. In addition, multigroup spectra for ten reference benchmarks are also provided.

  8. Possible secondary apatite fission track age standard from altered volcanic ash beds in the middle Jurassic Carmel Formation, Southwestern Utah

    USGS Publications Warehouse

    Kowallis, B.J.; Christiansen, E.H.; Everett, B.H.; Crowley, K.D.; Naeser, C.W.; Miller, D.S.; Deino, A.L.

    1993-01-01

    Secondary age standards are valuable in intra- and interlaboratory calibration. At present very few such standards are available for fission track dating that is older than Tertiary. Several altered volcanic ash beds occur in the Middle Jurassic Carmel Formation in southwestern Utah. The formation was deposited in a shallow marine/sabhka environment. Near Gunlock, Utah, eight ash beds have been identified. Sanidines from one of the ash beds (GUN-F) give a single-crystal laser-probe 40Ar/39Ar age of 166.3??0.8 Ma (2??). Apatite and zircon fission track ages range from 152-185 Ma with typically 15-20 Ma errors (2??). Track densities in zircons are high and most grains are not countable. Apatites are fairly common in most of the ash beds and have reasonable track densities ranging between 1.2-1.5 ?? 106 tracks/cm2. Track length distributions in apatites are unimodal, have standard deviations <1??m, and mean track lengths of about 14-14.5 ??m. High Cl apatites (F:Cl:OH ratio of 39:33:28) are particularly abundant and large in ash GUN-F, and are fairly easy to concentrate, but the concentrates contain some siderite, most of which can be removed by sieving. GUN-F shows evidence of some reworking and detriaal contamination based on older single grain 40Ar/39Ar analyses and some rounding of grains, but the apatite population appears to be largely uncontaminated. At present BJK has approximately 12 of apatite separate from GUN-F. ?? 1993.

  9. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... system or source traceable to the National Institute of Standards and Technology (NIST) and...

  10. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... system or source traceable to the National Institute of Standards and Technology (NIST) and...

  11. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... system or source traceable to the National Institute of Standards and Technology (NIST) and...

  12. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... system or source traceable to the National Institute of Standards and Technology (NIST) and...

  13. HSE performance tests for dosimetry services.

    PubMed

    Birch, R; Simpson, J A; Hedley, R P; Wardle, J

    2000-12-01

    In the United Kingdom a dosimetry service that measures and assesses whole-body or part-body doses arising from external radiation must successfully complete a performance test. Results of the performance tests for routine whole-body, routine extremity/skin and special accident dosimetry, carried out over the past six years by the AEA Technology Calibration Service at Winfrith, and DRaStaC, the AWE Calibration Service at Aldermaston, are presented. The test involves irradiating groups of dosemeters to known doses of gamma radiation and determining the bias and relative standard deviations for each dose group. The results are compared with the pass criteria specified by the UK Health and Safety Executive. For routine whole-body dosimetry, both the film badge and thermoluminescent dosemeter (TLD) perform adequately for irradiations between 0.6 and 30 mSv. For higher doses up to 250 mSv, where the slow emulsion of the film is used, the film badge shows poorer performance with a tendency to overestimate the dose. For routine extremity/skin dosimetry there is a wider spread of relative standard deviation results than is seen for routine whole-body dosimetry. This is to be expected since the results will include dosemeters that are based on 'disposable' TLDs and ones based on lithium fluoride powder in sachets. For special accident dosimetry the dosemeters are tested between 0.26 and 6 Gy. For the highest dose group the film badge invariably underestimates the true dose, whereas the TLD has a tendency to overestimate it. PMID:11140715

  14. 40 CFR Appendix H to Part 50 - Interpretation of the 1-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waiver of the ozone monitoring requirement would be handled under provisions of 40 CFR, part 58. Some... year unless the appropriate Regional Administrator has granted a waiver under the provisions of 40 CFR... and Secondary National Ambient Air Quality Standards for Ozone H Appendix H to Part 50 Protection...

  15. 40 CFR Appendix H to Part 50 - Interpretation of the 1-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waiver of the ozone monitoring requirement would be handled under provisions of 40 CFR, part 58. Some... year unless the appropriate Regional Administrator has granted a waiver under the provisions of 40 CFR... and Secondary National Ambient Air Quality Standards for Ozone H Appendix H to Part 50 Protection...

  16. 40 CFR Appendix H to Part 50 - Interpretation of the 1-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waiver of the ozone monitoring requirement would be handled under provisions of 40 CFR, part 58. Some... year unless the appropriate Regional Administrator has granted a waiver under the provisions of 40 CFR... and Secondary National Ambient Air Quality Standards for Ozone H Appendix H to Part 50 Protection...

  17. 40 CFR Appendix H to Part 50 - Interpretation of the 1-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waiver of the ozone monitoring requirement would be handled under provisions of 40 CFR, part 58. Some... year unless the appropriate Regional Administrator has granted a waiver under the provisions of 40 CFR... and Secondary National Ambient Air Quality Standards for Ozone H Appendix H to Part 50 Protection...

  18. Common Pressures, Same Results? Recent Reforms in Professional Standards and Competences in Teacher Education for Secondary Teachers in England, France and Germany

    ERIC Educational Resources Information Center

    Page, Tina M.

    2015-01-01

    Over the last decade, the introduction of professional standards and competences in initial teacher education for secondary teachers in England, France and Germany has provided the cornerstone of education reform in all three countries. The precise number and specific content of a measurable set of skills for teachers have offered challenges for…

  19. 40 CFR Appendix H to Part 50 - Interpretation of the 1-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waiver of the ozone monitoring requirement would be handled under provisions of 40 CFR, part 58. Some... year unless the appropriate Regional Administrator has granted a waiver under the provisions of 40 CFR... and Secondary National Ambient Air Quality Standards for Ozone H Appendix H to Part 50 Protection...

  20. Dosimetry of ionising radiation in modern radiation oncology

    NASA Astrophysics Data System (ADS)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  1. Dosimetry of ionising radiation in modern radiation oncology.

    PubMed

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B

    2016-07-21

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these. PMID:27351409

  2. Practical CT dosimetry

    SciTech Connect

    Yoshizumi, T.T.; Suneja, S.K.; Teal, J.S. )

    1989-07-01

    The dose from computed tomography (CT) examinations is not negligible from a radiation safety standpoint. Occasionally, one encounters a case in which an unsuspected pregnant woman undergoes a CT pelvic scan, and the radiologist is required to estimate the dose to the fetus. This article addresses practical methods of CT dosimetry with a specific discussion on fetal dose estimate. Three methods are described: (1) the use of a dose chart, (2) the pencil ionization chamber method, and (3) the thermoluminescence dosimetry (TLD) method.

  3. 40 CFR 241.3 - Standards and procedures for identification of non-hazardous secondary materials that are solid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... identification of non-hazardous secondary materials that are solid wastes when used as fuels or ingredients in...) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion...

  4. 40 CFR 241.3 - Standards and procedures for identification of non-hazardous secondary materials that are solid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... identification of non-hazardous secondary materials that are solid wastes when used as fuels or ingredients in...) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion...

  5. 40 CFR 241.3 - Standards and procedures for identification of non-hazardous secondary materials that are solid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... identification of non-hazardous secondary materials that are solid wastes when used as fuels or ingredients in...) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion...

  6. Proceedings of the third conference on radiation protection and dosimetry

    SciTech Connect

    Swaja, R.E.; Sims, C.S.; Casson, W.H.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  7. Secondary Malignancy Risk Following Proton Radiation Therapy

    PubMed Central

    Eaton, Bree R.; MacDonald, Shannon M.; Yock, Torunn I.; Tarbell, Nancy J.

    2015-01-01

    Radiation-induced secondary malignancies are a significant, yet uncommon cause of morbidity and mortality among cancer survivors. Secondary malignancy risk is dependent upon multiple factors including patient age, the biological and genetic predisposition of the individual, the volume and location of tissue irradiated, and the dose of radiation received. Proton therapy (PRT) is an advanced particle therapy with unique dosimetric properties resulting in reduced entrance dose and minimal to no exit dose when compared with standard photon radiation therapy. Multiple dosimetric studies in varying cancer subtypes have demonstrated that PRT enables the delivery of adequate target volume coverage with reduced integral dose delivered to surrounding tissues, and modeling studies taking into account dosimetry and radiation cell biology have estimated a significantly reduced risk of radiation-induced secondary malignancy with PRT. Clinical data are emerging supporting the lower incidence of secondary malignancies after PRT compared with historical photon data, though longer follow-up in proton treated cohorts is awaited. This article reviews the current dosimetric and clinical literature evaluating the incidence of and risk factors associated with radiation-induced secondary malignancy following PRT. PMID:26636040

  8. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  9. The Next Generation Science Standards, Common Core State Standards, and English Learners: Using the SSTELLA Framework to Prepare Secondary Science Teachers

    ERIC Educational Resources Information Center

    Tolbert, Sara; Stoddart, Trish; Lyon, Edward G.; Solis, Jorge

    2014-01-01

    This article focuses on a critical issue in STEM education: preparing novice secondary school teachers to provide effective science instruction to the rapidly growing population of students from language minority groups who traditionally have been underserved in STEM education and who are underrepresented in STEM degrees and careers (National…

  10. TOPICAL REVIEW Dosimetry for ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Karger, Christian P.; Jäkel, Oliver; Palmans, Hugo; Kanai, Tatsuaki

    2010-11-01

    Recently, ion beam radiotherapy (including protons as well as heavier ions) gained considerable interest. Although ion beam radiotherapy requires dose prescription in terms of iso-effective dose (referring to an iso-effective photon dose), absorbed dose is still required as an operative quantity to control beam delivery, to characterize the beam dosimetrically and to verify dose delivery. This paper reviews current methods and standards to determine absorbed dose to water in ion beam radiotherapy, including (i) the detectors used to measure absorbed dose, (ii) dosimetry under reference conditions and (iii) dosimetry under non-reference conditions. Due to the LET dependence of the response of films and solid-state detectors, dosimetric measurements are mostly based on ion chambers. While a primary standard for ion beam radiotherapy still remains to be established, ion chamber dosimetry under reference conditions is based on similar protocols as for photons and electrons although the involved uncertainty is larger than for photon beams. For non-reference conditions, dose measurements in tissue-equivalent materials may also be necessary. Regarding the atomic numbers of the composites of tissue-equivalent phantoms, special requirements have to be fulfilled for ion beams. Methods for calibrating the beam monitor depend on whether passive or active beam delivery techniques are used. QA measurements are comparable to conventional radiotherapy; however, dose verification is usually single field rather than treatment plan based. Dose verification for active beam delivery techniques requires the use of multi-channel dosimetry systems to check the compliance of measured and calculated dose for a representative sample of measurement points. Although methods for ion beam dosimetry have been established, there is still room for developments. This includes improvement of the dosimetric accuracy as well as development of more efficient measurement techniques.

  11. Investigation of a 0.6 hub-tip radius-ratio transonic turbine designed for secondary-flow study I : design and experimental performance of standard turbine

    NASA Technical Reports Server (NTRS)

    Rohlik, Harold E; Wintucky, William T; Scibbe, Herbert W

    1957-01-01

    Detailed design information including overall performance parameters, velocity diagrams, and blade surface velocities is presented. Experimental performance includes maps based on rating as well as total-pressure ratios showing the effect of exit whirl. Also included are results of surveys at the stator exit and downstream of the rotor at design speed and specific work. This information will be used as a standard for comparison with subsequent secondary-flow work.

  12. Internal dosimetry of tritium

    SciTech Connect

    LaBone, T.R.

    1992-01-01

    Tritium is an interesting radionuclide from the perspective of internal dosimetry because of the wide variety of chemical compounds in which it can appear, its unusual routes of entry into the body, and its ability to exchange with stable hydrogen in surrounding material. In this report the internal dosimetry of tritium compounds is reviewed, with emphasis on methods of evaluating bioassay data following chronic and acute intakes. The assumptions and models used in the derivation of Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) for tritium are also discussed.

  13. Internal dosimetry of tritium

    SciTech Connect

    LaBone, T.R.

    1992-06-01

    Tritium is an interesting radionuclide from the perspective of internal dosimetry because of the wide variety of chemical compounds in which it can appear, its unusual routes of entry into the body, and its ability to exchange with stable hydrogen in surrounding material. In this report the internal dosimetry of tritium compounds is reviewed, with emphasis on methods of evaluating bioassay data following chronic and acute intakes. The assumptions and models used in the derivation of Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) for tritium are also discussed.

  14. Dosimetry with diamond detectors

    NASA Astrophysics Data System (ADS)

    Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.

    2010-05-01

    In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.

  15. New dosimetry of atomic bomb radiations.

    PubMed

    Fry, R J; Sinclair, W K

    1987-10-10

    The reassessment of the radiation dosimetry from the Hiroshima and Nagasaki atomic bombs is almost complete. Since atomic bomb survivors provide a major source of data for estimates of risk of cancer induction by radiation the impact of the new dosimetry on risk estimates and radiation protection standards is important. The changes include an increase of about 20% in the estimated yield of the Hiroshima bomb and a reduction in the estimated doses from neutrons in both cities. The estimated neutron dose for Hiroshima is about 10% of the previous estimate. The neutron doses are now so small that direct estimates of neutron relative biological effectiveness may be precluded or be much more difficult. There is little change in most of the gamma ray organ doses because various changes in the new estimates tend to cancel each other out. The new estimate of the attenuation of the free-in-air kerma by the walls of the homes is about twice that used in the previous dosimetry. But the transmission of gamma radiation to the deep organs such as bone marrow is significantly greater than earlier estimates. Probably future risk estimates for radiogenic cancer will be somewhat higher because of both the new dosimetry and the new cancer mortality data. New risk estimates should be available in 1988. PMID:2889042

  16. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion...

  17. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion...

  18. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion...

  19. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion...

  20. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    nuclides - 2008 / T. Golashvili -- Oral session 6: Test reactors, accelerators and advanced systems. Neutronic analyses in support of the HFIR beamline modifications and lifetime extension / I. Remec and E. D. Blakeman. Characterization of neutron test facilities at Sandia National Laboratories / D. W. Vehar ... [et al.]. LYRA irradiation experiments: neutron metrology and dosimetry / B. Acosta and L. Debarberis. Calculated neutron and gamma-ray spectra across the prismatic very high temperature reactor core / J. W. Sterbentz. Enhancement of irradiation capability of the experimental fast reactor joyo / S. Maeda ... [et al.]. Neutron spectrum analyses by foil activation method for high-energy proton beams / C. H. Pyeon ... [et al.] -- Oral session 7: Cross sections, nuclear data, damage correlations. Investigation of new reaction cross-section evaluations in order to update and extend the IRDF-2002 reactor dosimetry library / É. M. Zsolnay, H. J. Nolthenius and A. L. Nichols. A novel approach towards DPA calculations / A. Hogenbirk and D. F. Da Cruz. A new ENDFIB-VII.O based multigroup cross-section library for reactor dosimetry / F. A. Alpan and S. L. Anderson. Activities at the NEA for dosimetry applications / H. Henriksson and I. Kodeli. Validation and verification of covariance data from dosimetry reaction cross-section evaluations / S. Badikov. Status of the neutron cross section standards / A. D. Carlson -- Oral session 8: transport calculations. A dosimetry assessment for the core restraint of an advanced gas cooled reactor / D. A. Thornton ... [et al.]. Neutron dosimetry study in the region of the support structure of a VVER-1000 type reactor / G. Borodkin ... [et al.]. SNS moderator poison design and experiment validation of the moderator performance / W. Lu ... [et al.]. Analysis of OSIRIS in-core surveillance dosimetry for GONDOLE steel irradiation program by using TRIPOLI-4 Monte Carlo code / Y. K. Lee and F. Malouch.Reactor dosimetry applications using RAPTOR

  1. Radiation dosimetry for quality control of food preservation and disinfestation

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. L.; Miller, A.; Uribe, R. M.

    In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters that are sufficiently stable and reproducible, it is possible to monitor minimum and maximum radiation absorbed dose levels and dose uniformity for a given processed foodstuff. The dosimetry procedure is especially important in the commisioning of a process and in making adjustments of process parameters (e.g. conveyor speed) to meet changes that occur in product and source parameters (e.g. bulk density and radiation spectrum). Routine dosimetry methods and certain corrections of dosimetry data may be selected for the radiations used in typical food processes.

  2. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  3. Ion storage dosimetry

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  4. Investigation of practical approaches to evaluating cumulative dose for cone beam computed tomography (CBCT) from standard CT dosimetry measurements: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Abuhaimed, Abdullah; Martin, Colin J.; Sankaralingam, Marimuthu; Gentle, David J.

    2015-07-01

    A function called Gx(L) was introduced by the International Commission on Radiation Units and Measurements (ICRU) Report-87 to facilitate measurement of cumulative dose for CT scans within long phantoms as recommended by the American Association of Physicists in Medicine (AAPM) TG-111. The Gx(L) function is equal to the ratio of the cumulative dose at the middle of a CT scan to the volume weighted CTDI (CTDIvol), and was investigated for conventional multi-slice CT scanners operating with a moving table. As the stationary table mode, which is the basis for cone beam CT (CBCT) scans, differs from that used for conventional CT scans, the aim of this study was to investigate the extension of the Gx(L) function to CBCT scans. An On-Board Imager (OBI) system integrated with a TrueBeam linac was simulated with Monte Carlo EGSnrc/BEAMnrc, and the absorbed dose was calculated within PMMA, polyethylene (PE), and water head and body phantoms using EGSnrc/DOSXYZnrc, where the body PE body phantom emulated the ICRU/AAPM phantom. Beams of width 40-500 mm and beam qualities at tube potentials of 80-140 kV were studied. Application of a modified function of beam width (W) termed Gx(W), for which the cumulative dose for CBCT scans f (0) is normalized to the weighted CTDI (CTDIw) for a reference beam of width 40 mm, was investigated as a possible option. However, differences were found in Gx(W) with tube potential, especially for body phantoms, and these were considered to be due to differences in geometry between wide beams used for CBCT scans and those for conventional CT. Therefore, a modified function Gx(W)100 has been proposed, taking the form of values of f (0) at each position in a long phantom, normalized with respect to dose indices f 100(150)x measured with a 100 mm pencil ionization chamber within standard 150 mm PMMA phantoms, using the same scanning parameters, beam widths and positions within the phantom. f 100(150)x averages the dose resulting from

  5. Investigation of practical approaches to evaluating cumulative dose for cone beam computed tomography (CBCT) from standard CT dosimetry measurements: a Monte Carlo study.

    PubMed

    Abuhaimed, Abdullah; Martin, Colin J; Sankaralingam, Marimuthu; Gentle, David J

    2015-07-21

    A function called Gx(L) was introduced by the International Commission on Radiation Units and Measurements (ICRU) Report-87 to facilitate measurement of cumulative dose for CT scans within long phantoms as recommended by the American Association of Physicists in Medicine (AAPM) TG-111. The Gx(L) function is equal to the ratio of the cumulative dose at the middle of a CT scan to the volume weighted CTDI (CTDIvol), and was investigated for conventional multi-slice CT scanners operating with a moving table. As the stationary table mode, which is the basis for cone beam CT (CBCT) scans, differs from that used for conventional CT scans, the aim of this study was to investigate the extension of the Gx(L) function to CBCT scans. An On-Board Imager (OBI) system integrated with a TrueBeam linac was simulated with Monte Carlo EGSnrc/BEAMnrc, and the absorbed dose was calculated within PMMA, polyethylene (PE), and water head and body phantoms using EGSnrc/DOSXYZnrc, where the body PE body phantom emulated the ICRU/AAPM phantom. Beams of width 40-500 mm and beam qualities at tube potentials of 80-140 kV were studied. Application of a modified function of beam width (W) termed Gx(W), for which the cumulative dose for CBCT scans f (0) is normalized to the weighted CTDI (CTDIw) for a reference beam of width 40 mm, was investigated as a possible option. However, differences were found in Gx(W) with tube potential, especially for body phantoms, and these were considered to be due to differences in geometry between wide beams used for CBCT scans and those for conventional CT. Therefore, a modified function Gx(W)100 has been proposed, taking the form of values of f (0) at each position in a long phantom, normalized with respect to dose indices f 100(150)x measured with a 100 mm pencil ionization chamber within standard 150 mm PMMA phantoms, using the same scanning parameters, beam widths and positions within the phantom. f 100(150)x averages the dose resulting from

  6. EPID dosimetry for pretreatment quality assurance with two commercial systems.

    PubMed

    Bailey, Daniel W; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Malhotra, Harish K; Podgorsak, Matthew B

    2012-01-01

    This study compares the EPID dosimetry algorithms of two commercial systems for pretreatment QA, and analyzes dosimetric measurements made with each system alongside the results obtained with a standard diode array. 126 IMRT fields are examined with both EPID dosimetry systems (EPIDose by Sun Nuclear Corporation, Melbourne FL, and Portal Dosimetry by Varian Medical Systems, Palo Alto CA) and the diode array, MapCHECK (also by Sun Nuclear Corporation). Twenty-six VMAT arcs of varying modulation complexity are examined with the EPIDose and MapCHECK systems. Optimization and commissioning testing of the EPIDose physics model is detailed. Each EPID IMRT QA system is tested for sensitivity to critical TPS beam model errors. Absolute dose gamma evaluation (3%, 3 mm, 10% threshold, global normalization to the maximum measured dose) yields similar results (within 1%-2%) for all three dosimetry modalities, except in the case of off-axis breast tangents. For these off-axis fields, the Portal Dosimetry system does not adequately model EPID response, though a previously-published correction algorithm improves performance. Both MapCHECK and EPIDose are found to yield good results for VMAT QA, though limitations are discussed. Both the Portal Dosimetry and EPIDose algorithms, though distinctly different, yield similar results for the majority of clinical IMRT cases, in close agreement with a standard diode array. Portal dose image prediction may overlook errors in beam modeling beyond the calculation of the actual fluence, while MapCHECK and EPIDose include verification of the dose calculation algorithm, albeit in simplified phantom conditions (and with limited data density in the case of the MapCHECK detector). Unlike the commercial Portal Dosimetry package, the EPIDose algorithm (when sufficiently optimized) allows accurate analysis of EPID response for off-axis, asymmetric fields, and for orthogonal VMAT QA. Other forms of QA are necessary to supplement the limitations of the

  7. Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-09-01

    A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which

  8. Handbook for the Department of Energy Laboratory Accreditation Program for personnel dosimetry systems

    SciTech Connect

    Not Available

    1986-12-01

    The program contained in this Handbook provides a significant advance in the field of radiation protection through a structured means for assuring the quality of personnel dosimetry performance. Since personnel dosimetry performance is directly related to the assurance of worker safety, it has been of key interest to the Department of Energy. Studies conducted over the past three decades have clearly demonstrated a need for personnel dosimetry performance criteria, related testing programs, and improvements in dosimetry technology. In responding to these needs, the DOE Office of Nuclear Safety (EH) has developed and initiated a DOE Laboratory Accreditation Program (DOELAP) which is intended to improve the quality of personnel dosimetry through (1) performance testing, (2) dosimetry and calibration intercomparisons, and (3) applied research. In the interest of improving dosimetry technology, the DOE Laboratory Accreditation Program (DOELAP) is also designed to encourage cooperation and technical interchange between DOE laboratories. Dosimetry intercomparison programs have been scheduled which include the use of transport standard instruments, transport standard radioactive sources and special dosimeters. The dosimeters used in the intercomparison program are designed to obtain optimum data on the comparison of dosimetry calibration methodologies and capabilities. This data is used in part to develop enhanced calibration protocols. In the interest of overall calibration update, assistance and guidance for the calibration of personnel dosimeters is available through the DOELAP support laboratories. 20 refs., 1 tab.

  9. Comparison of Real-Time Intraoperative Ultrasound-Based Dosimetry With Postoperative Computed Tomography-Based Dosimetry for Prostate Brachytherapy

    SciTech Connect

    Nag, Subir; Shi Peipei; Liu Bingren; Gupta, Nilendu; Bahnson, Robert R.; Wang, Jian Z.

    2008-01-01

    or postoperative CT-based dosimetry can better predict patient outcomes, the American Brachytherapy Society recommendation of CT-based postimplant dosimetry should remain the standard of care.

  10. Dosimetry for Radiopharmaceutical Therapy

    PubMed Central

    Sgouros, George; Hobbs, Robert F.

    2014-01-01

    Radiopharmaceutical therapy (RPT) involves the use of radionuclides that are either conjugated to tumor-targeting agents (eg, nanoscale constructs, antibodies, peptides, and small molecules) or concentrated in tissue through natural physiological mechanisms that occur predominantly in neoplastic or otherwise targeted cells (eg, Graves disease). The ability to collect pharmacokinetic data by imaging and use this to perform dosimetry calculations for treatment planning distinguishes RPT from other systemic treatment modalities. Treatment planning has not been widely adopted, in part, because early attempts to relate dosimetry to outcome were not successful. This was partially because a dosimetry methodology appropriate to risk evaluation rather than efficacy and toxicity was being applied to RPT. The weakest links in both diagnostic and therapeutic dosimetry are the accuracy of the input and the reliability of the radiobiological models used to convert dosimetric data to the relevant biologic end points. Dosimetry for RPT places a greater demand on both of these weak links. To date, most dosimetric studies have been retrospective, with a focus on tumor dose-response correlations rather than prospective treatment planning. In this regard, transarterial radioembolization also known as intra-arterial radiation therapy, which uses radiolabeled (90Y) microspheres of glass or resin to treat lesions in the liver holds much promise for more widespread dosimetric treatment planning. The recent interest in RPT with alpha-particle emitters has highlighted the need to adopt a dosimetry methodology that specifically accounts for the unique aspects of alpha particles. The short range of alpha-particle emitters means that in cases in which the distribution of activity is localized to specific functional components or cell types of an organ, the absorbed dose will be equally localized and dosimetric calculations on the scale of organs or even voxels (~5 mm) are no longer sufficient

  11. In vivo dosimetry for IMRT

    SciTech Connect

    Vial, Philip

    2011-05-05

    In vivo dosimetry has a well established role in the quality assurance of 2D radiotherapy and 3D conformal radiotherapy. The role of in vivo dosimetry for IMRT is not as well established. IMRT introduces a range of technical issues that complicate in vivo dosimetry. The first decade or so of IMRT implementation has largely relied upon pre-treatment phantom based dose verification. During that time, several new devices and techniques for in vivo dosimetry have emerged with the promise of providing the ultimate form of IMRT dose verification. Solid state dosimeters continue to dominate the field of in vivo dosimetry in the IMRT era. In this report we review the literature on in vivo dosimetry for IMRT, with an emphasis on clinical evidence for different detector types. We describe the pros and cons of different detectors and techniques in the IMRT setting and the roles that they are likely to play in the future.

  12. 75 FR 61486 - Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Standards for Oxides of Nitrogen and Oxides of Sulfur: Second External Review Draft (75 FR 57463, September... an atmospheric chemistry perspective as well as from an environmental effects perspective,...

  13. Electron Paramagnetic Resonance Retrospective Dosimetry

    SciTech Connect

    Romanyukha, Alex; Trompier, Francois

    2011-05-05

    Necessity for, principles of, and general concepts of the electron paramagnetic resonance (EPR) retrospective dosimetry are presented. Also presented and given in details are examples of EPR retrospective dosimetry applications in tooth enamel, bone, and fingernails with focus on general approaches for solving technical and methodological problems. Advantages, drawbacks, and possible future developments are discussed and an extensive bibliography on EPR retrospective dosimetry is provided.

  14. Performance testing of personnel dosimetry services. Final report of a two-year pilot study, October 1977-September 1979

    SciTech Connect

    Plato, P.; Hudson, G.

    1980-01-01

    A two-year pilot study was conducted of the Health Physics Society Standards Committee (HPSSC) Standard titled, Criteria for Testing Personnel Dosimetry Performance. The objectives of the pilot study were: to give processors an opportunity to correct any problems that are uncovered; to develop operational and administrative prodedures to be used later by a permanent testing laboratory; and to determine whether the proposed HPSSC Standard provides an adequate and practical test of dosimetry performance. Fifty-nine dosimetry processors volunteered to submit dosimeters for test irradiations according to the requirements of the HPSSC Standard. The feasibility of using the HPSSC Standard for a future mandatory testing program for personnel dosimetry processors is discussed. This report shows the results of the pilot study and contains recommendations for revisions in the Standard that will make a mandatory testing program useful to regulatory agencies, dosimetry processors, and radiation workers that use personnel dosimeters.

  15. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  16. Prostate PDT dosimetry

    PubMed Central

    Zhu, Timothy C.; Finlay, Jarod C.

    2015-01-01

    Summary We provide a review of the current state of dosimetry in prostate photodynamic therapy (PDT). PDT of the human prostate has been performed with a number of different photosensitizers and with a variety of dosimetry schemes. The simplest clinical light dose prescription is to quantify the total light energy emitted per length (J/cm) of cylindrical diffusing fibers (CDF) for patients treated with a defined photosensitizer injection per body weight. However, this approach does not take into account the light scattering by tissue and usually underestimates the local light fluence rate, and consequently the fluence. Techniques have been developed to characterize tissue optical properties and light fluence rates in vivo using interstitial measurements during prostate PDT. Optical methods have been developed to characterize tissue absorption and scattering spectra, which in turn provide information about tissue oxygenation and drug concentration. Fluorescence techniques can be used to quantify drug concentrations and photobleaching rates of photosensitizers. PMID:25046988

  17. Third conference on radiation protection and dosimetry. Program and abstracts

    SciTech Connect

    Not Available

    1991-12-31

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  18. Third conference on radiation protection and dosimetry. Program and abstracts

    SciTech Connect

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  19. Cosmic Ray Dosimetry

    NASA Astrophysics Data System (ADS)

    Si Belkhir, F.; Attallah, R.

    2010-10-01

    Radiation levels at aircraft cruising altitudes are twenty times higher than at sea level. Thus, on average, a typical airline pilot receives a larger annual radiation dose than some one working in nuclear industry. The main source of this radiation is from galactic cosmic radiation, high energy particles generated by exploding stars within our own galaxy. In this work we study cosmic rays dosimetry at various aviation altitudes using the PARMA model.

  20. Bioinformatics in the secondary science classroom: A study of state content standards and students' perceptions of, and performance in, bioinformatics lessons

    NASA Astrophysics Data System (ADS)

    Wefer, Stephen H.

    The proliferation of bioinformatics in modern Biology marks a new revolution in science, which promises to influence science education at all levels. This thesis examined state standards for content that articulated bioinformatics, and explored secondary students' affective and cognitive perceptions of, and performance in, a bioinformatics mini-unit. The results are presented as three studies. The first study analyzed secondary science standards of 49 U.S States (Iowa has no science framework) and the District of Columbia for content related to bioinformatics at the introductory high school biology level. The bionformatics content of each state's Biology standards were categorized into nine areas and the prevalence of each area documented. The nine areas were: The Human Genome Project, Forensics, Evolution, Classification, Nucleotide Variations, Medicine, Computer Use, Agriculture/Food Technology, and Science Technology and Society/Socioscientific Issues (STS/SSI). Findings indicated a generally low representation of bioinformatics related content, which varied substantially across the different areas. Recommendations are made for reworking existing standards to incorporate bioinformatics and to facilitate the goal of promoting science literacy in this emerging new field among secondary school students. The second study examined thirty-two students' affective responses to, and content mastery of, a two-week bioinformatics mini-unit. The findings indicate that the students generally were positive relative to their interest level, the usefulness of the lessons, the difficulty level of the lessons, likeliness to engage in additional bioinformatics, and were overall successful on the assessments. A discussion of the results and significance is followed by suggestions for future research and implementation for transferability. The third study presents a case study of individual differences among ten secondary school students, whose cognitive and affective percepts were

  1. Secondary analysis of anthropometric data from a South African national food consumption survey, using different growth reference standards.

    PubMed

    Bosman, L; Herselman, M G; Kruger, H S; Labadarios, D

    2011-11-01

    The National Center for Health Statistics (NCHS) references were used to analyse anthropometric data from the 1999 National Food Consumption Survey (NFCS) of South Africa. Since then, however, The Centers for Disease Control and Prevention (CDC) 2000 reference and the World Health Organization (WHO) 2006 standards were released. It was anticipated that these reference and standards may lead to differences in the previous estimates of stunting, wasting, underweight and obesity in the study population. The aim was to compare the anthropometric status of children using the 1977 NCHS, the 2000 CDC growth references and the 2006 WHO standards. All children 12-60 months of age with a complete set of anthropometric data were included in the analyses. Data for 1,512 children were analysed with SAS 9.1 for Windows. A Z-score was calculated for each child for weight-for-age (W/A), weight-for-length/height (W/H), length/height-for-age (H/A) and body mass index (BMI)-for-age, using each of the three reference or standards for comparison. The prevalence of stunting, obesity and overweight were significantly higher and the prevalence of underweight and wasting were lower when using the WHO standards compared to the NCHS and the CDC references. The higher than previously established prevalence of stunting at 20.1% and combined overweight/obesity at 30% poses a challenge to South African policy makers to implement nutrition programmes to decrease the prevalence of both stunting and overweight. The 2006 WHO growth standard should be the standard used for assessment of growth of infants and children younger than 5 years in developing countries. PMID:20859760

  2. 76 FR 48073 - Public Hearing for Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... airport security procedures. After passing through the equipment, all persons must sign in at the guard... the notice of proposed rulemaking published in the Federal Register on August 1, 2011, (76 FR 46084....epa.gov/ttn/naaqs/standards/no2so2sec/cr_fr.html . FOR FURTHER INFORMATION CONTACT: If you would...

  3. An Examination of Intervention Research with Secondary Students with EBD in Light of Common Core State Standards for Mathematics

    ERIC Educational Resources Information Center

    Mulcahy, Candace A.; Maccini, Paula; Wright, Kenneth; Miller, Jason

    2014-01-01

    In this review, the authors offer a critical analysis of published interventions for improving mathematics performance among middle and high school students with EBD in light of the Common Core State Standards. An exhaustive review of literature from 1975 to December 2012 yielded 20 articles that met criteria for inclusion. The authors analyzed…

  4. Preservice Secondary Teachers' Conceptions from a Mathematical Modeling Activity and Connections to the Common Core State Standards

    ERIC Educational Resources Information Center

    Stohlmann, Micah; Maiorca, Cathrine; Olson, Travis A.

    2015-01-01

    Mathematical modeling is an essential integrated piece of the Common Core State Standards. However, researchers have shown that mathematical modeling activities can be difficult for teachers to implement. Teachers are more likely to implement mathematical modeling activities if they have their own successful experiences with such activities. This…

  5. The Impact of Curriculum Changes and Implementation of Secondary Mathematics Georgia Performance Standards on Teacher Self-Efficacy

    ERIC Educational Resources Information Center

    Ramsey, John Phillip

    2012-01-01

    Teachers generally experience a decline in self-efficacy levels during a curriculum change, and Georgia converted from a Quality Core Curriculum (QCC) to Georgia Performance Standards (GPS) the last several years. Middle and high school math teachers experienced an annual tiered rollout of the mathematics curriculum, and this qualitative study was…

  6. 76 FR 59599 - Extension of Comment Period for Secondary National Ambient Air Quality Standards for Oxides of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ..., 2011, (76 FR 46084) and is available on the following Web site: http://www.epa.gov/ttn/naaqs/standards/no2so2sec/cr_fr.html . How can I get copies of this document and other related information? The EPA has... Federal Register on August 1, 2011, (76 FR 46084) for detailed information on accessing...

  7. The International Reactor Dosimetry File.

    Energy Science and Technology Software Center (ESTSC)

    1994-01-19

    Version 01 The International Reactor Dosimetry File (IRDF-90) contains recommended neutron cross-section data to be used for reactor neutron dosimetry by foil activation. It also contains selected recommended values for radiation damage cross-sections and benchmark neutron spectra. This library supersedes all earlier versions of IRDF.

  8. Bayesian Methods for Radiation Detection and Dosimetry

    SciTech Connect

    Peter G. Groer

    2002-09-29

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model.

  9. Effects of temperature variation on MOSFET dosimetry.

    PubMed

    Cheung, Tsang; Butson, Martin J; Yu, Peter K N

    2004-07-01

    This note investigates temperature effects on dosimetry using a metal oxide semiconductor field effect transistor (MOSFET) for radiotherapy x-ray treatment. This was performed by analysing the dose response and threshold voltage outputs for MOSFET dosimeters as a function of ambient temperature. Results have shown that the clinical semiconductor dosimetry system (CSDS) MOSFET provides stable dose measurements with temperatures varying from 15 degrees C up to 40 degrees C. Thus standard irradiations performed at room temperature can be directly compared to in vivo dose assessments performed at near body temperature without a temperature correction function. The MOSFET dosimeter threshold voltage varies with temperature and this level is dependent on the dose history of the MOSFET dosimeter. However, the variation can be accounted for in the measurement method. For accurate dosimetry, the detector should be placed for approximately 60 s on a patient to allow thermal equilibrium before measurements are taken with the final reading performed whilst still attached to the patient or conversely left for approximately 120 s after removal from the patient if initial readout was measured at room temperature to allow temperature equilibrium to be established. PMID:15285264

  10. Thermoluminescence characteristics of Israeli household salts for retrospective dosimetry in radiological events

    NASA Astrophysics Data System (ADS)

    Druzhyna, S.; Datz, H.; Horowitz, Y. S.; Oster, L.; Orion, I.

    2016-06-01

    Following a nuclear accident or terror attack involving the dispersal of radioactive substances, radiation dose assessment to first responders and the members of the public is essential. The need for a retrospective assessment of the radiation dose to those possibly affected is, therefore, obligatory. The present study examines the potential use of Israeli household salt as a retrospective dosimeter (RD). The experiments were carried out on Israeli salt samples (NaCl) following a Nielsen market track survey based on scanning data representing the barcoded market, including organized and independent retail chains and a sample of private minimarkets and supermarkets. The technique used was thermoluminescence (TL) dosimetry. Salt samples were exposed to levels of dose from 0.5 mGy to 300 Gy at the Israeli Secondary Standard Dosimetry Laboratory of the Soreq Nuclear Research Center using a calibrated 137Cs source. Our emphasis has been on a detailed investigation of the basic dosimetric characteristics of the salts including: (i) glow curve analysis (ii) individual glow peak dose response (iii) reproducibility (iv) estimation of minimal measurable dose (v) effect of nitrogen readout, (vi) influence of humidity during pre-irradiation storage and (vii) light induced fading. The results are sufficiently favorable to lead to the conclusion that the Israeli household salts can serve as a pragmatic potential candidate for RD under certain restricted conditions. Occasional pre-calibration of the major salt brands in a dedicated laboratory may be essential depending on the required accuracy in the estimation of dose and consequent clinical evaluation.

  11. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  12. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  13. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  14. Uranium Dispersion & Dosimetry Model.

    Energy Science and Technology Software Center (ESTSC)

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for applicationmore » to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.« less

  15. Thermoluminescence characteristics of Ge-doped optical fibers with different dimensions for radiation dosimetry.

    PubMed

    Begum, Mahfuza; Rahman, A K M Mizanur; Abdul-Rashid, H A; Yusoff, Z; Begum, Mahbuba; Mat-Sharif, K A; Amin, Y M; Bradley, D A

    2015-06-01

    Important thermoluminescence (TL) properties of five (5) different core sizes Ge-doped optical fibers have been studied to develop new TL material with better response. These are drawn from same preform applying different speed and tension during drawing phase to produce Ge-doped optical fibers with five (5) different core sizes. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge-doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (SEM) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in Secondary Standard Dosimetry Lab (SSDL) was used for irradiation covering dose range from 1Gy to 10Gy. The essential dosimetric parameters that have been studied are TL linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5cm length are annealed at temperature of 400°C for 1h period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1h at 400°C and subsequently 2h at 100°C to yield the highest sensitivity. TL responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Zeff) is found in the range (13.25-13.69) which is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. TL properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation

  16. Liquid radiochromic dosimetry

    NASA Astrophysics Data System (ADS)

    Rativanich, N.; Radak, B. B.; Miller, A.; Uribe, R. M.; McLaughlin, W. L.

    By strategic combination of weak acid, mild oxidizing agent, and polar organic solvents containing millimolar concentrations of leucocyanides of certain triphenylmethane dyes, fairly broad ranges of absorbed doses of ionizing radiation can be determined. The yield of dye ions as determined by spectrophotometry can be made essentially constant with dose (i.e. linear response) from 0.01 to 30 kGy and it does not vary with dose rate upto 10 11 Gy·s -1. The radiation-induced color is stable and offers fast-retrieval dosimetry if N-vinyl-2-pyrrolidone is used as solvent. Other possible polar solvents are 2-propanol, 2-methoxy ethanol, N, N-dimethyl formamide, dimethyl sulfoxide, and triethyl phosphate. Dimethyl sulfoxide is found to give the widest and most linear response. Suitable dye precursors are leucocyanides of pararosaniline, new fuchsin, hexa (hydroxyethyl) pararosaniline, crystal violet, malachite green, setoglaucine, ethyl violet, helvetia green, basic violet-14, and formyl violet. Low concentrations of carboxylic acids contribute stability to the system. Typical mild oxidizing agents are nitrobenzene, and atmospheric oxygen, or oxygen released radiolytically from the solvents. The dosimetry systems do not require high-purity of ingredients or ultracleanliness of containers, although, for reproducibility of dye yields (G-values), thoroughly purified and uniform dye derivates are recommended.

  17. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  18. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  19. Investigating the impact of course-taking on the standardized test performance of secondary science students in Texas

    NASA Astrophysics Data System (ADS)

    Bailey, Bryan Scott

    2007-12-01

    The latest reform efforts in American education have called for the improvement of science education and greater accountability for results. Standardization of schools, curriculum, and testing has emerged as the preferred method of addressing the increasing pressures of accountability systems designed to ensure student achievement. Increasing course-taking requirements has been a popular response intended to maximize student potential. Texas, like other states, has pursued that course. Texas students must take a minimum of two science courses to graduate; most, however, take three. Students must also pass a science assessment in the eleventh grade, which is similar to a test taken in the tenth grade, and measures mastery of objectives covered primarily in the ninth- and tenth-grades, meaning the instruction most students receive in the eleventh grade amounts to enrichment instruction. This study was designed to investigate the impact of completing an extra science course on student achievement in terms of improvement on these tests. The results of the study were derived from descriptive analysis and a one-way ANOVA performed on a random sample of over 16,000 students. Based on the ANOVA, there was a significant effect of increased science instruction on mean pre-test/post-test score change (F(2,16530) = 44.903, p=.000). The descriptive analysis concluded that more students who completed a science class increased their scores than those who did not complete a class. Overall, however, the study points to a need for future research to uncover additional factors that influence student achievement.

  20. Internal dosimetry technical basis manual

    SciTech Connect

    Not Available

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  1. Radioembolization Dosimetry: The Road Ahead

    SciTech Connect

    Smits, Maarten L. J. Elschot, Mattijs; Sze, Daniel Y.; Kao, Yung H.; Nijsen, Johannes F. W.; Iagaru, Andre H.; Jong, Hugo W. A. M. de; Bosch, Maurice A. A. J. van den; Lam, Marnix G. E. H.

    2015-04-15

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  2. Medical dosimetry in Hungary

    NASA Astrophysics Data System (ADS)

    Turák, O.; Osvay, M.; Ballay, L.

    2012-09-01

    Radiation exposure of medical staff during cardiological and radiological procedures was investigated. The exposure of medical staff is directly connected to patient exposure. The aim of this study was to determine the distribution of doses on uncovered part of body of medical staff using LiF thermoluminescent (TL) dosimeters in seven locations. Individual Kodak film dosimeters (as authorized dosimetry system) were used for the assessment of medical staff's effective dose. Results achieved on dose distribution measurements confirm that wearing only one film badge under the lead apron does not provide enough information on the personal dose. The value of estimated annual doses on eye lens and extremities (fingers) were in good correlation with international publications.

  3. Fundamentals of Radiation Dosimetry

    SciTech Connect

    Bos, Adrie J. J.

    2011-05-05

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  4. Fundamentals of Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Bos, Adrie J. J.

    2011-05-01

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  5. Laser heated thermoluminescence dosimetry

    SciTech Connect

    Justus, B.L.; Huston, A.L.

    1996-06-01

    We report a novel laser-heated thermoluminescence dosimeter that is radically different from previous laser-heated dosimeters. The dosimeter is a semiconductor and metal ion doped silica glass that has excellent optical transparency. The high optical quality of the glass essentially eliminates laser power loss due to light scattering. This efficient utilization of the laser power permits operation of the dosimeter without strong absorption of the laser, as is required in traditional laser-heated dosimetry. Our laser-heated dosimeter does not rely on the diffusion of heat from a separate, highly absorbing substrate, but operates via intimate, localized heating within the glass dosimeter due to the absorption of the laser light by rare earth ion dopants in the glass. Following absorption of the laser light, the rare earth ions transfer energy to the surrounding glass via nonradiative relaxation processes, resulting in rapid, localized temperature increases sufficient to release all the filled traps near the ions. As the heat diffuses radially away from the rare earth ions the temperature plummets dramatically on a manometer distance scale and the release of additional filled traps subsides. A key distinguishing feature of this laser-heated dosimeter is the ability to read the dose information more than once. While laser-heating provides complete information about the radiation exposure experienced by the glass due to the release of locally heated traps, the process leaves the remaining filled bulk traps undisturbed. The bulk traps can be read using traditional bulk heating methods and can provide a direct determination of an accumulated dose, measured following any number of laser-heated readouts. Laser-heated dosimetry measurements have been performed using a solid state diode laser for the readout following radiation exposure with a {sup 60}Co source.

  6. Fifth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Watson, E.E.; Schlafke-Stelson, A.T.

    1992-05-01

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  7. The International Reactor Dosimetry File.

    Energy Science and Technology Software Center (ESTSC)

    2008-08-07

    Version 01 The International Reactor Dosimetry File (IRDF-2002) contains recommended neutron cross-section data to be used for reactor neutron dosimetry by foil activation and subsequent neutron spectrum unfolding. It also contains selected recom�mended values for radiation damage cross-sections and benchmark neutron spectra. Two related programs available from NEADB and RSICC are: SPECTER-ANL (PSR-263) & STAY’SL (PSR-113).

  8. Hanford internal dosimetry program manual

    SciTech Connect

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  9. An absorbed dose calorimeter for IMRT dosimetry

    NASA Astrophysics Data System (ADS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N. D.; Thomas, C. G.; Palmans, H.

    2012-10-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%).

  10. Simultaneous macro and micro dosimetry with MOSFETs

    SciTech Connect

    Rosenfeld, A.B.; Kaplan, G.I.; Carolan, M.G.; Allen, B.J.; Maughan, R.; Yudelev, M.; Kota, C.; Coderre, J.

    1996-12-01

    The application of MOSFET dosimeters in complicated mixed radiation fields for measurement of absorbed dose distribution in tissue equivalent phantoms has been studied. The spectra of secondary charged particles have been measured simultaneously with average absorbed doses by the same MOSFET dosimeter. A good correlation has been observed between neutron depth dose distribution in a water phantom obtained using MOSFETs in integral mode and a tissue equivalent (T.E.) ionization chamber. Such MOSFET dosimeters are a promising tool for micro-macro dosimetry in Boron Neutron Capture Therapy (BNCT) and Fast Neutron Therapy (FNT). Paired MOSFETs with one of the dosimeters covered by {sup 10}B have been applied for measuring of average boron dose distribution and microdosimetric spectra due to alpha particles and {sup 7}Li ions throughout a perspex phantom exposed in the epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR).

  11. ESR/alanine dosimetry applied to radiation processing

    NASA Astrophysics Data System (ADS)

    Mosse, D. C.

    The radiation processing of food products is specified in terms of absorbed dose, and processing quality is assessed on the basis of absorbed dose measurements. The validity of process quality control is highly dependent on the quality of the measurements and associated instrumentation; in this respect, dosimetry calibration by an Organization with official status provides an essential guarantee of validity to the quality control steps taken. The Laboratoire de Métrologie des Rayonnements Ionisants (L.M.R.I.) is the primary standards and evaluation laboratory approved by the Bureau National de Métrologie (B.N.M.), which is the French National Bureau of Standards. The LMRI implements correlation procedures in response to the various requirements which arise in connection with high doses and doserates. Such procedures are mainly based on ESR/alanine spectrometry, a dosimetry technique ideally suited to that purpose. Dosemeter geometry and design are tailored to operating conditions. "Photon" dosemeters consist of a detector material in powder or compacted form, and a wall with thickness and chemical composition consistent with the application. "Electron" dosemeters have a detector core of compacted alanine with thickness down to a few tenths of a millimeter. The ESR/alanine dosimetry technique, developed at LMRI is a flexible, reliable and accurate tool which effectively meets the various requirements arising in the field of reference dosimetry, where high doses and doserates are involved.

  12. Gastroesophageal scintiscanning in a pediatric population: dosimetry

    SciTech Connect

    Castronovo, F.P. Jr.

    1986-07-01

    The dosimetry associated with orally administered (/sup 99m/Tc)sulfur colloid for the diagnosis of gastroesophageal reflux has not been adequately described for the pediatric populations. Standard MIRD methodology was performed for the following: newborn, 1, 5, 10, and 15 yr old, and adult standard man. The critical organ for all pediatric groups was the lower large intestine with absorbed dose of 0.927, 0.380, 0.194, 0.120 and 0.0721 rad/100 microCi, respectively. For the adult the critical organ was the upper large intestine with an absorbed dose of 0.0518 rad/100 microCi. These data should be considered when administering (99mTc)sulfur colloid orally in a pediatric population.

  13. Space radiation dosimetry

    SciTech Connect

    Hanser, F.A.; Dichter, B.K. ||

    1993-12-31

    Dosimetry is the measurement of the energy deposited in matter by various forms of radiation. In space the radiation is primarily energetic electrons, protons and heavier ions from planetary radiation belts, solar flares, and interstellar cosmic rays. Experimentally, dose is frequently obtained by summing the individual energy deposits in a solid state detector. If the detector is calibrated and the sensitive mass is known, the energy sum can be converted directly to accumulated radiation dose in Gy (J/kg). Such detectors can also be used to provide an approximate separation of dose into the components due to electrons, protons, and heavier ions, which is useful if it is desired to convert the measured dose into a biological effective dose (Sv) for manned spaceflight purposes. The output can also be used to provide an essentially instantaneous dose rate for use as warning devices. This is the primary type of space radiation dosimeter to be discussed here. The MOS-type dosimeter is another solid state sensor which can be of small size and low power. These devices integrate the total dose once through, can not separate particle types, and are not suitable for instantaneous dose rate measurement at low levels. There are several additional methods of measuring space radiation dose using scintillators, etc., but are not discussed in detail. In this paper emphasis is given to descriptions of active solid state detector instruments which have successfully worked in space. Some results of in-orbit dose measurements are presented.

  14. Nuclear accident dosimetry intercomparison studies.

    PubMed

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry. PMID:2777549

  15. 4.2 Methods for Internal Dosimetry

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.2 Methods for Internal Dosimetry' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy' with the contents:

  16. EDITORIAL: Special issue on radiation dosimetry Special issue on radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Sharpe, Peter

    2009-04-01

    This special issue of Metrologia on radiation dosimetry is the second in a trilogy on the subject of ionizing radiation measurements, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The work of Section II, on radionuclide metrology, was covered in issue 44(4), published in 2007, and that of Section III, on neutron metrology, will be covered in a special issue to be published shortly. This issue covers the work of Section I (x-rays and γ rays, and charged particles). The proposal to publish special issues of Metrologia covering the work of the CCRI Sections was first made in 2003 and refined at the two subsequent meetings of the CCRI in 2005 and 2007. The overall aim is to present the work of the CCRI to a wider metrological audience and to highlight the relevance and importance of the field. The main focus of our special issue on dosimetry metrology is on the 'state of the art' in the various areas covered, with an indication of the current developments taking place and the problems and challenges that remain. Where appropriate, this is set in a brief historical context, although it is not the aim to give a historical review. The need for accurate measurement has been appreciated from the pioneering days of the use of ionizing radiation in the early 20th century, particularly in the fields of diagnostic and therapeutic medicine. Over the years, the range of applications for ionizing radiation has expanded both in scope and in the types and energies of radiation employed. This has led to the need to develop a wide variety of measurement techniques and standards covering fields ranging from the low doses experienced in environmental and protection applications to the extremely high doses used in industrial processing. The different types of radiation employed give rise to the need for dose measurements in radiation beams whose effective penetration through a material such as water ranges from a

  17. Investigation of the dosimetry of chest tomosynthesis

    NASA Astrophysics Data System (ADS)

    Svalkvist, Angelica; Zachrisson, Sara; Månsson, Lars Gunnar; Båth, Magnus

    2009-02-01

    Chest tomosynthesis has recently been introduced to healthcare as a low-dose alternative to CT or as a tool for improved diagnostics in chest radiography with only a modest increase in radiation dose to the patient. However, no detailed description of the dosimetry for this type of examination has been presented. The aim of this work was therefore to investigate the dosimetry of chest tomosynthesis. The chest tomosynthesis examination was assumed to be performed using a stationary detector and a vertically moving x-ray tube, exposing the patient from different angles. The Monte Carlo based computer software PCXMC was used to determine the effective dose delivered to a standard-sized patient from various angles using different assumptions of the distribution of the effective dose over the different projections. The obtained conversion factors between input dose measures and effective dose for chest tomosynthesis for different angular intervals were then compared with the horizontal projection. The results indicate that the error introduced by using conversion factors for the PA projection in chest radiography for estimating the effective dose of chest tomosynthesis is small for normally sized patients, especially if a conversion factor between KAP and effective dose is used.

  18. TVA's dosimetry technician training program

    SciTech Connect

    Hudson, C.G.; Faust, V.L.; Cornelius, T.W.; Regan, J.M.; Farrell, W.E. )

    1984-04-01

    In 1984, the Tennessee Valley Authority decentralized its personnel TLD program and established TLD processing facilities at each of its nuclear plant sites. This article describes the training program that was developed to aid in staffing dosimetry technician positions at each of the plants. The scope of the dosimetry technician's duties include TLD processing, operation of a computerized records system, whole-body counting system operation, and respirator mask fit-testing. The training program includes thirteen weeks of classroom and laboratory training plus a 15-month apprenticeship at a nuclear plant. Retraining and requalification are performed on an annual basis.

  19. Monte Carlo portal dosimetry

    SciTech Connect

    Chin, P.W. . E-mail: mary.chin@physics.org

    2005-10-15

    This project developed a solution for verifying external photon beam radiotherapy. The solution is based on a calibration chain for deriving portal dose maps from acquired portal images, and a calculation framework for predicting portal dose maps. Quantitative comparison between acquired and predicted portal dose maps accomplishes both geometric (patient positioning with respect to the beam) and dosimetric (two-dimensional fluence distribution of the beam) verifications. A disagreement would indicate that beam delivery had not been according to plan. The solution addresses the clinical need for verifying radiotherapy both pretreatment (without the patient in the beam) and on treatment (with the patient in the beam). Medical linear accelerators mounted with electronic portal imaging devices (EPIDs) were used to acquire portal images. Two types of EPIDs were investigated: the amorphous silicon (a-Si) and the scanning liquid ion chamber (SLIC). The EGSnrc family of Monte Carlo codes were used to predict portal dose maps by computer simulation of radiation transport in the beam-phantom-EPID configuration. Monte Carlo simulations have been implemented on several levels of high throughput computing (HTC), including the grid, to reduce computation time. The solution has been tested across the entire clinical range of gantry angle, beam size (5 cmx5 cm to 20 cmx20 cm), and beam-patient and patient-EPID separations (4 to 38 cm). In these tests of known beam-phantom-EPID configurations, agreement between acquired and predicted portal dose profiles was consistently within 2% of the central axis value. This Monte Carlo portal dosimetry solution therefore achieved combined versatility, accuracy, and speed not readily achievable by other techniques.

  20. Dosimetry for audit and clinical trials: challenges and requirements

    NASA Astrophysics Data System (ADS)

    Kron, T.; Haworth, A.; Williams, I.

    2013-06-01

    Many important dosimetry audit networks for radiotherapy have their roots in clinical trial quality assurance (QA). In both scenarios it is essential to test two issues: does the treatment plan conform with the clinical requirements and is the plan a reasonable representation of what is actually delivered to a patient throughout their course of treatment. Part of a sound quality program would be an external audit of these issues with verification of the equivalence of plan and treatment typically referred to as a dosimetry audit. The increasing complexity of radiotherapy planning and delivery makes audits challenging. While verification of absolute dose delivered at a reference point was the standard of external dosimetry audits two decades ago this is often deemed inadequate for verification of treatment approaches such as Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT). As such, most dosimetry audit networks have successfully introduced more complex tests of dose delivery using anthropomorphic phantoms that can be imaged, planned and treated as a patient would. The new challenge is to adapt this approach to ever more diversified radiotherapy procedures with image guided/adaptive radiotherapy, motion management and brachytherapy being the focus of current research.

  1. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    PubMed

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-01

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy. PMID:22572100

  2. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy

    NASA Astrophysics Data System (ADS)

    Afsharpour, H.; Landry, G.; D'Amours, M.; Enger, S.; Reniers, B.; Poon, E.; Carrier, J.-F.; Verhaegen, F.; Beaulieu, L.

    2012-06-01

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  3. AMS applied to Hiroshima and Chernobyl dosimetry

    SciTech Connect

    Straume, T.; Marchetti, A.A.; Anspaugh, L.R.

    1995-12-01

    Two projects employing AMS are summarized and updated. One project employs AMS to measure {sup 36}Cl in concrete and other mineral samples from Hiroshima and Nagasaki to help reconstruct neutron fluences received by the atom-bomb survivors. In this project, we have demonstrated a large discrepancy between the neutron activation measured in Hiroshima and predictions based on the current dosimetry system. This discrepancy has practical implications for radiation risk assessment and radiation protection standards. The other project employs AMS to measure {sup 129}I in soil and other environmental samples from Belarus, Ukraine, and Russia. This is a proof-of-principle study to determine if the long lived {sup 129}I isotope (half life, 16 x 10{sup 6} y) measured by AMS can be used to reconstruct deposition of the short lived {sup 131}I isotope from the 1986 Chernobyl reactor accident. This is required because {sup 131}I disappeared before adequate measurements could be made.

  4. Unexplained overexposures on physical dosimetry reported by biological dosimetry.

    PubMed

    Montoro, A; Almonacid, M; Villaescusa, J I; Verdu, G

    2009-01-01

    The Medical Service of the Radiation Protection Service from the University Hospital La Fe (Valencia, Spain), carries out medical examinations of the workers occupationally exposed to ionising radiation. The Biological Dosimetry Laboratory is developing its activity since 2001. Up to now, the activities have been focused in performing biological dosimetry studies of Interventionists workers from La Fe Hospital. Recently, the Laboratory has been authorized by the Health Authority in the Valencian Community. Unexplained overexposures of workers and patients are also studied. Workers suspected of being overexposed to ionising radiation were referred for investigation by cytogenetic analysis. Two of these were from Hospitals of the Valencian Community and one belonged to an uranium mine from Portugal. Hospital workers had a physical dose by thermoluminiscence dosimeters (TLD) that exceeded the established limit. The worker of the uranium mine received a dose from a lost source of Cesium 137 with an activity of 170 mCi. All three cases showed normal values after the hematological analysis. Finally, the aim of this study consist to determine whether the dose showed by the dosimeter is reliable or not. In the case of workers that wore dosimeter, it is concluded that the doses measured by dosimeter are not corresponding to real doses. Hospital worker with a physical dose of 2.6 Sv and 0.269 Sv had an estimated absorbed dose by biological dosimetry of 0.076 Gy (0-0.165 Gy) and 0 Gy (0-0.089 Gy), respectively. In case of the mine worker an estimated absorbed dose of 0.073 Gy (0-0.159 Gy) was obtained by biological dosimetry. In all cases we used the odds ratio to present the results due to a very low frequency of observed aberrations [1]. PMID:19964943

  5. EPR/PTFE dosimetry for test reactor environments

    SciTech Connect

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J.

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement of absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in

  6. Proceedings of the second conference on radiation protection and dosimetry

    SciTech Connect

    Swaja, R. E.; Sims, C. S.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base.

  7. Results from 2010 Caliban Criticality Dosimetry Intercomparison

    SciTech Connect

    Veinot, K. G.

    2011-10-12

    The external dosimetry program participated in a criticality dosimetry intercomparison conducted at the Caliban facility in Valduc, France in 2010. Representatives from the dosimetry and instrumentation groups were present during testing which included irradiations of whole-body beta/gamma (HBGT) and neutron thermoluminescent dosimeters (TLDs), a fixed nuclear accident dosimeter (FNAD), electronic alarming dosimeters, and a humanoid phantom filled with reference man concentrations of sodium. This report reviews the testing procedures, preparations, irradiations, and presents results of the tests.

  8. Dosimetry of Radiopharmaceuticals for Diagnostic and Therapeutic Nuclear Medicine

    SciTech Connect

    Smart, Richard

    2011-05-05

    A standard formalism for radionuclide internal radiation dosimetry was developed in the 1960s and continues to be refined today. Early work was based on a mathematical phantom but this is being replaced by phantoms developed from whole-body CT scans to give more realistic dose estimates. The largest contributors to the uncertainties in these dose estimates are the errors associated with in vivo activity quantitation, the variability of the biokinetics between patients and the limited information that can be obtained on these kinetics in individual patients. Despite these limitations, pre-treatment patient-specific dosimetry is being increasing used, particularly to limit the toxicity to non-target organs such as the bone marrow.

  9. ACS Algorithm in Discrete Ordinates for Pressure Vessel Dosimetry

    NASA Astrophysics Data System (ADS)

    Walters, William; Haghighat, Alireza

    2016-02-01

    The Adaptive Collision Source (ACS) method can solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. This is similar to, and essentially an extension of, the first collision source method. Previously, the ACS methodology has been implemented into the TITAN discrete ordinates code, and has shown speedups of 2-4 on a simple test problem, with very little loss of accuracy (within a provided adaptive tolerance). This work examines the use of the ACS method for a more realistic problem: pressure vessel dosimetry with the VENUS-2 MOX-fuelled reactor dosimetry benchmark. The ACS method proved to be able to obtain accurate results while being approximately twice as efficient as using a constant quadrature in a standard source iteration scheme.

  10. Dosimetry of Radiopharmaceuticals for Diagnostic and Therapeutic Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Smart, Richard

    2011-05-01

    A standard formalism for radionuclide internal radiation dosimetry was developed in the 1960s and continues to be refined today. Early work was based on a mathematical phantom but this is being replaced by phantoms developed from whole-body CT scans to give more realistic dose estimates. The largest contributors to the uncertainties in these dose estimates are the errors associated with in vivo activity quantitation, the variability of the biokinetics between patients and the limited information that can be obtained on these kinetics in individual patients. Despite these limitations, pre-treatment patient-specific dosimetry is being increasing used, particularly to limit the toxicity to non-target organs such as the bone marrow.

  11. Hanford Technical Basis for Multiple Dosimetry Effective Dose Methodology

    SciTech Connect

    Hill, Robin L.; Rathbone, Bruce A.

    2010-08-01

    The current method at Hanford for dealing with the results from multiple dosimeters worn during non-uniform irradiation is to use a compartmentalization method to calculate the effective dose (E). The method, as documented in the current version of Section 6.9.3 in the 'Hanford External Dosimetry Technical Basis Manual, PNL-MA-842,' is based on the compartmentalization method presented in the 1997 ANSI/HPS N13.41 standard, 'Criteria for Performing Multiple Dosimetry.' With the adoption of the ICRP 60 methodology in the 2007 revision to 10 CFR 835 came changes that have a direct affect on the compartmentalization method described in the 1997 ANSI/HPS N13.41 standard, and, thus, to the method used at Hanford. The ANSI/HPS N13.41 standard committee is in the process of updating the standard, but the changes to the standard have not yet been approved. And, the drafts of the revision of the standard tend to align more with ICRP 60 than with the changes specified in the 2007 revision to 10 CFR 835. Therefore, a revised method for calculating effective dose from non-uniform external irradiation using a compartmental method was developed using the tissue weighting factors and remainder organs specified in 10 CFR 835 (2007).

  12. Fifth personnel dosimetry intercomparison study

    SciTech Connect

    Sims, C.S.

    1980-02-01

    The fifth Personnel Dosimetry Intercomparison Study (PDIS) was conducted at the Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research (DOSAR) facility on March 20-22, 1979. This study is the latest PDIS in the continuing series started at the DOSAR facility in 1974. The PDIS is a three day study, typically in March, where personnel dosimeters are mailed to the DOSAR facility, exposed to a range of low-level neutron radiation doses (1 to 15 mSv or equivalently, 100 to 1500 mrem) and neutron-to-gamma ratios (1:1-10:1) using the Health Physics Research Reactor (HPRR) as the radiation source, and returned to the participants for evaluation. This report is a summary and analysis of the results reported by the various participants. The participants are able to intercompare their results with those of others who made dose measurements under identical experimental conditions.

  13. Neutron personnel dosimetry intecomparison studies

    SciTech Connect

    Sims, C.S.

    1991-01-01

    The Dosimetry Applications Research (DOSAR) Group at the Oak Ridge National Laboratory (ORNL) has conducted sixteen Neutron Personnel Dosimetry Intercomparison Studies (PDIS) since 1974. During these studies dosimeters are mailed to DOSAR, exposed to low-level (typically in the 0.3 -- 5.0 mSv range) neutron dose equivalents in a variety of mixed neutron-gamma radiation fields, and then returned to the participants for evaluation. The Health Physics Research Reactor (HPRR) was used as the primary radiation source in PDIS 1--12 and radioisotopic neutron sources at DOSAR's Radiation Calibration Laboratory (RADCAL) were mainly used, along with sources and accelerators at cooperating institutions, in PDIS 13--16. Conclusions based on 13,560 measurements made by 146 different participating organizations (102 - US) are presented.

  14. Interspecies dosimetry of reactive gases

    SciTech Connect

    Miller, F.J.; Overton, J.H.; Gerrity, T.R.; Graham, R.C.

    1987-03-01

    The development of dosimetry models that can provide a description of the uptake and distribution of inhaled compounds throughout the body and the availability of animal toxicological data are integral components for a full evaluation of potential risks associated with human exposure. Interspecies dosimetric comparisons must be approached using a model conceptualization that incorporates the major factors affecting the uptake of the gas, such as respiratory tract morphology, route of breathing, depth and rate of breathing, physicochemical properties of the gas, etc. Modeling efforts thus far have primarily focused on ozone. A comparison of theoretical predictions of delivered dose of ozone to the lower respiratory tract of man shows good agreement with dose estimates derived from experimental measurements. Applications to ozone toxicological data in animals and man have been examined that incorporate the use of dosimetry models in studying quantitative dose-response relationships.

  15. Neutron dosimetry in boron neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na/sub 2/B/sub 12/H/sub 11/SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with /sup 10/B in boron containing cells through the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction producing charged particles with a maximum range of approx. 10..mu..m in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize /sup 6/Li and /sup 10/B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the /sup 14/N(n,p)/sup 14/C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils.

  16. Feasibility of portal dosimetry for flattening filter-free radiotherapy.

    PubMed

    Chuter, Robert W; Rixham, Philip A; Weston, Steve J; Cosgrove, Vivian P

    2016-01-01

    The feasibility of using portal dosimetry (PD) to verify 6 MV flattening filter-free (FFF) IMRT treatments was investigated. An Elekta Synergy linear accelerator with an Agility collimator capable of delivering FFF beams and a standard iViewGT amorphous silicon (aSi) EPID panel (RID 1640 AL5P) at a fixed SSD of 160 cm were used. Dose rates for FFF beams are up to four times higher than for conventional flattened beams, meaning images taken at maximum FFF dose rate can saturate the EPID. A dose rate of 800 MU/min was found not to saturate the EPID for open fields. This dose rate was subsequently used to characterize the EPID for FFF portal dosimetry. A range of open and phantom fields were measured with both an ion chamber and the EPID, to allow comparison between the two. The measured data were then used to create a model within The Nederlands Kanker Instituut's (NKI's) portal dosimetry software. The model was verified using simple square fields with a range of field sizes and phantom thicknesses. These were compared to calculations performed with the Monaco treatment planning system (TPS) and isocentric ion chamber measurements. It was found that the results for the FFF verification were similar to those for flattened beams with testing on square fields, indicating a difference in dose between the TPS and portal dosimetry of approximately 1%. Two FFF IMRT plans (prostate and lung SABR) were delivered to a homogeneous phantom and showed an overall dose difference at isocenter of ~0.5% and good agreement between the TPS and PD dose distributions. The feasibility of using the NKI software without any modifications for high-dose-rate FFF beams and using a standard EPID detector has been investigated and some initial limitations highlighted. PMID:26894337

  17. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system

    NASA Astrophysics Data System (ADS)

    Hanson, Ian M.; Hansen, Vibeke N.; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients. The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min. The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%. EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  18. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system.

    PubMed

    Hanson, Ian M; Hansen, Vibeke N; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients.The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min.The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%.EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments. PMID:25211121

  19. Performance testing of extremity dosimeters against a draft standard

    SciTech Connect

    Harty, R.; Reece, W.D.; Hooker, C.D.; McDonald, J.C.

    1990-09-01

    The assurance of worker radiation safety is directly related to the performance of personnel dosimetry. The US Department of Energy (DOE) has long recognized this critical relationship and has addressed this issue by instituting the DOE Laboratory Accreditation Program (DOELAP) which strives to improve the quality of personnel dosimetry through performance testing, dosimetry calibration, intercomparisons, evaluations and accreditations. One area of personnel dosimetry that has not been specifically addressed by DOELAP is extremity dosimeter testing. This task was directed at assessing the problems of implementing extremity dosimeter performance testing. A series of performance tests were made based on a draft standard written by the Health Physics Society Standards Committee (HPSSC) using extremity dosimeters currently in use at DOE and DOE contractor facilities. The results of this study indicate the need to incorporate performance testing of extremity dosimetry systems into DOELAP. Based on the results of this study, recommendations are made for improvements to the draft standard. 20 refs., 6 figs., 3 tabs.

  20. Performance testing of personnel-dosimetry services. Final report of test No. 3

    SciTech Connect

    Plato, P.; Miklos, J.

    1983-02-01

    In September, 1977, the University of Michigan began a pilot study of the Health Physics Society Standards Committee (HPSSC) Standard titled, Criteria for Testing Personnel Dosimetry Performance. Approximately 70 dosimetry processors volunteered to participate in one or more of three tests of the HPSSC Standard. The results from Tests No. 1 and No. 2 were used to evaluate and revise the Standard which was then adopted by the HPSSC in June, 1981. The Standard was also adopted by the American National Standards Institute as ANSI N13.11-1982 in June, 1982. Test No. 3 of the revised HPSSC Standard was conducted from November, 1981 to April, 1982. The objectives of Test No. 3 were to determine if the Standard is acceptable for future testing programs, and to provide experience with the final version of the Standard. The passing rate among all the processors for Test No. 3 was 75% compared to passing rates of 48% and 62% for Tests No. 1 and No. 2, respectively, with adjustments made for changes in the Standard following Test o. 2. Among all the individual dosimeters irradiated during Test No. 3, 89% had a reported dose within +- 50% of the delivered dose compared to 79% and 86% of the dosimeters irradiated for Test No. 1 and No. 2. The HPSSC Standard was found to be an acceptable measure of minimum performance and an appropriate basis for a regulatory program to accredit dosimetry processors.

  1. Exploring the Relationship between Access Technology and Standardized Test Scores for Youths with Visual Impairments: Secondary Analysis of the National Longitudinal Transition Study 2

    ERIC Educational Resources Information Center

    Freeland, Amy L.; Emerson, Robert Wall; Curtis, Amy B.; Fogarty, Kieran

    2010-01-01

    This article presents the findings of a secondary analysis of the National Longitudinal Transition Study 2 that explored the predictive association between training in access technology and performance on the Woodcock-Johnson Tests of Academic Achievement: III. The results indicated that the use of access technology had a limited predictive…

  2. Performance testing of personnel dosimetry services. A revised procedures manual

    SciTech Connect

    Miklos, J.; Plato, P.

    1983-02-01

    The US Nuclear Regulatory Commission's pilot study of the Health Physics Society Standards Committee Standard, Criteria for Testing Personnel Dosimetry Performance, was begun in 1977. A third test of this Standard was conducted from November, 1981 through April, 1982. The objective of this Procedures Manual is to describe the procedures used for Test No. 3 which reflect the changes in the Standard from Tests No. 1 and No. 2. This Manual describes each of the radiation sources used for Test No. 3, as well as the administrative procedures used during the test program. Methods of irradiation, quality control, data analysis, record keeping, and handling large numbers of dosimeters are presented. This Manual discusses the role of the National Bureau of Standards in verifying the validity of the calibration of each radiation source. Suggestions for improving irradiation procedures are included as well as recommendations that will facilitate the operation of the permanent testing facility.

  3. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low dose-rate remote afterloader sources...

  4. Dosimetry in Nuclear Medicine Diagnosis and Therapy

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.7 Necessity of Patient-Specific Dose Planning in Radionuclide Therapy' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy'.

  5. In vivo dosimetry for estimation of effective doses in multislice CT coronary angiography

    SciTech Connect

    De Denaro, M.; Bregant, P.; Severgnini, M.; De Guarrini, F.

    2007-10-15

    In vivo dosimetry represents a technique that has been widely employed to evaluate the dose to the patient mainly in radiotherapy. Considering the increment in dose to the population due to new high-dose multislice CT examinations, such as coronary angiography, it is becoming important to more accurately know the dose to the patient. The desire to know patient dose extends even to radiological examinations. Thermoluminescent dosimeters are considered the gold standard for in vivo dosimetry, but their use is time consuming. A rapid, less labor-intensive method has been developed to perform in vivo dosimetry using radiochromic film positioned next to the patient's skin. Multislice CT scanners allow the estimation of the effective dose to the patient from the dose length product (DLP) parameter, the value of which is displayed on the acquisition console, simply multiplying the DLP by published conversion factors. The method represents only an approximation based on standard size circular phantoms and neglects the actual size of the patient. More accurate evaluations can be carried out using software-based Monte Carlo simulations. However, these methods do not consider possible dose reduction techniques, such as automatic tube-current modulation. For 22 patients effective doses measured by in vivo dosimetry and calculated by software were compared. The technique of using in vivo dosimetry measured with radiochromic film appears a promising procedure for improving the assessment of the effective dose to the patient.

  6. Secondary parkinsonism

    MedlinePlus

    Parkinsonism - secondary; Atypical Parkinson disease ... to be less responsive to medical therapy than Parkinson disease. ... Unlike Parkinson disease, some types of secondary parkinsonism may stabilize or even improve if the underlying cause is treated. ...

  7. Secondary parkinsonism

    MedlinePlus

    Parkinsonism - secondary; Atypical Parkinson disease ... to be less responsive to medical therapy than Parkinson disease. ... Unlike Parkinson disease, some types of secondary parkinsonism may stabilize or even improve if the underlying cause is treated. Brain ...

  8. Real-time dosimetry in radiotherapy using tailored optical fibers

    NASA Astrophysics Data System (ADS)

    Rahman, A. K. M. Mizanur; Zubair, H. T.; Begum, Mahfuza; Abdul-Rashid, H. A.; Yusoff, Z.; Omar, Nasr Y. M.; Ung, N. M.; Mat-Sharif, K. A.; Bradley, D. A.

    2016-05-01

    Real-time dosimetry plays an important role for accurate patient-dose measurement during radiotherapy. A tiny piece of laboratory fabricated Ge-doped optical fiber has been investigated as a radioluminescence (RL) sensor for real-time dosimetry over the dose range from 1 Gy to 8 Gy under 6 MV photon beam by LINAC. Fiber-coupled software-based RL prototype system was used to assess essential dosimetric characteristics including dose response linearity, dose rate dependency, sensitivity, repeatability and output dependence on field sizes. The consistency level of RL photon counts versus dose rate was also compared with that of standard Al2O3:C chips. Sensitivity of Ge-doped fiber were found to be sufficiently sensitive for practical use and also provided linear dose responses for various dose rates from 100 cGy/min to 600 cGy/min using both 6 MV photon and 6 MeV electron beams. SEM-EDX analysis was performed to identify Ge-dopant concentration level within the optical fiber RL material. Accumulated doses were also estimated using simple integral technique and the error was found to be around less than 1% under dissimilar dose rates or repeat measurements. The evaluation of the Ge-doped optical fiber based RL dosimeter system indicates its potential in medical dosimetry.

  9. Development of a portable graphite calorimeter for radiation dosimetry.

    PubMed

    Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi

    2008-01-01

    We developed and performance-tested a portable graphite calorimeter designed to measure the absolute dosimetry of various beams including heavy-ion beams, based on a flexible and convenient means of measurement. This measurement system is fully remote-controlled by the GPIB system. This system uses a digital PID (Proportional, Integral, Derivative) control method based on the LabVIEW software. It was possible to attain stable conditions in a shorter time by this system. The standard deviation of the measurements using the calorimeter was 0.79% at a dose rate of 0.8 Gy/min in 17 calorimeter runs for a (60)Co photon beam. The overall uncertainties for the absorbed dose to graphite and water of the (60)Co photon beam using the developed calorimeter were 0.89% and 1.35%, respectively. Estimations of the correction factors due to vacuum gaps, impurities in the core, the dose gradient and the radiation profile were included in the uncertainties. The absorbed doses to graphite and water irradiated by the (60)Co photon beam were compared with dosimetry measurements obtained using three ionization chambers. The absorbed doses to graphite and water estimated by the two dosimetry methods agreed within 0.1% and 0.3%, respectively. PMID:21976250

  10. Verification of total body photon irradiation dosimetry techniques

    SciTech Connect

    Kirby, T.H.; Hanson, W.F.; Cates, D.A.

    1988-05-01

    A method of verifying the dosimetry of patients undergoing total body irradiation (TBI) with photon beams having energies from cobalt-60 to 25 MV is presented. A simple set of spot checks at the TBI axis has been used to verify data used for TBI dosimetry. Calculations to verify dose delivered to TBI patients are done in the same manner as those irradiated at standard treatment distances. A simple method of effective field size determination for various anatomical locations in a typical adult is presented. Measurements in an Alderson phantom with thermoluminescent dosimeters and an ion chamber at several anatomical locations indicate that this calculational method can predict the dose along the patient axis to within 4% for /sup 60/Co and 18-MV photon beams, provided the dosimetry data are appropriate (as determined by the spot checks). Results of intercomparisons of TBI beam calibration, off-axis and depth-dose data at various institutions visited by the Radiological Physics Center are also presented.

  11. Preparation, Practice, and Performance: An Empirical Examination of the Impact of Standards-Based Instruction on Secondary Students' Math and Science Achievement

    ERIC Educational Resources Information Center

    Thompson, Carla J.

    2009-01-01

    For almost two decades proponents of educational reform have advocated the use of standards-based education in maths and science classrooms for improving teacher practices, increasing student learning, and raising the quality of maths and science instruction. This study empirically examined the impact of specific standards-based teacher…

  12. Dosimetry modeling of inhaled toxic reactive gases

    SciTech Connect

    Overton, J.H.; Miller, F.J.

    1986-07-01

    This report focuses on the physical, chemical, and biological processes and factors involved in the absorption of reactive gases. Emphasis is placed on the importance of these factors in developing dosimetry models, special consideration being given to the role of lung fluids and tissues. Several dosimetry models are discussed and illustrations of predicted results presented to demonstrate the application of the models to the uptake of NO/sub 2/ and O/sub 3/, and to demonstrate the use of models in determining the effects of physical, chemical and biological parameters on dosimetry predictions. Gaps in our knowledge and understanding of the processes of dosimetry are pointed out, and research recommendations are made to increase our understanding of the processes and to enhance the development of dosimetry models.

  13. Commentary: exciting new developments in fast neutron cross sections and dosimetry

    NASA Astrophysics Data System (ADS)

    Bielajew, A. F.; Chadwick, M. B.

    1998-12-01

    The field of fast neutron therapy, and to some extent the practice of radiation protection in the vicinity of medical linear accelerators, requires accurate physical data. The paucity of physical data for neutron cross sections above about 15 MeV in low- Z materials is best exemplified (and somewhat exaggerated!) in the late Herb Attix's standard textbook Introduction to Radiological Physics and Radiation Dosimetry (Attix 1986). On page 464, the contributions to kerma in tissue from neutrons stops abruptly shortly above about 15 MeV. Photon and electron dosimetry has benefited from a well established and highly cohesive relationship between measurement and theory due to the enormous success of quantum electrodynamics. In contrast, measurements in the field of neutron radiotherapy have benefited less from theory because of the complexity of the quantum mechanics of nuclear structure, especially for light elements. This is because the nuclear levels are widely spaced at low excitation energies unlike for heavy elements where the energy level spacing is more dense and statistical assumptions can be applied with success. This means that accurate measurements are crucial for guiding and testing theoretical development. Measurements contributing to the field of fast neutron dosimetry are few and far between. Amazingly, in this issue of Physics in Medicine and Biology there are two such contributions! The paper by Benck, Slypen, Meulders and Corcalciuc (1998) entitled `Experimental double differential cross sections and derived kerma factors for oxygen at incident neutron energies from reaction thresholds to 65 MeV' reports on a set of measurements of the doubly-differential cross sections (energy and angle) for fast neutrons on for 9 energies between 25 and 65 MeV. The reaction channels measured were (n, px), (n, dx), (n, tx) and (n, x). These cross sections were then integrated to produce partial and total kerma factors. There are several features of this paper that are

  14. Shared dosimetry error in epidemiological dose-response analyses

    DOE PAGESBeta

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.« less

  15. Shared dosimetry error in epidemiological dose-response analyses

    SciTech Connect

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.

  16. Shared dosimetry error in epidemiological dose-response analyses.

    PubMed

    Stram, Daniel O; Preston, Dale L; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J; Boice, John; Beck, Harold; Till, John; Bouville, Andre

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed. PMID:25799311

  17. HDR brachytherapy with surface applicators: technical considerations and dosimetry.

    PubMed

    Sabbas, Albert M; Kulidzhanov, Fridon G; Presser, Joseph; Hayes, Mary K; Nori, Dattatreyudu

    2004-06-01

    HDR surface molds offer an alternative radiotherapy modality to electrons for the treatment of skin lesions. Treatment planning and dosimetry are discussed for two types of surface molds used in our clinic. Standard rectangular applicators are used on a variety of sites where surface curvature is minimal. In these cases an idealized planar geometry is used for treatment planning dose calculations. The calculations yield treatment dose uniformity at the prescription depth in tissue as well as skin dose, as a percentage of the treatment dose, and its dose uniformity. The availability of optimization techniques results in superior dose uniformity at depth but the dose at the skin has to be carefully evaluated. We have studied the dependence of these dosimetric parameters on the size of the surface mold and the type of optimization procedure used in the dosimetry calculations. The second type of surface applicator involves the use of a customized silicone rubber mold attached to a thermoplastic mask of the patient. We have used them to treat lesions of the face where surface curvatures are appreciable and reproducibility of setup is more critical. In these cases a CT data set is used for reconstruction of the catheters, activation of relevant dwell positions and dosimetry, including optimization. Towards establishing effective methods for quality assurance of the optimized HDR surface mold planning calculations, we have compared their dosimetry to both a classical brachytherapy system and to one based on an analytical model of the applicator. The classical system yields an independent verification of the integrated activity used in the planning calculations, whereas the analytical model is used to evaluate depth dose dependence on mold size and optimization. PMID:15161319

  18. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    SciTech Connect

    Stram, Daniel; Preston, D. L.; Sokolnkov, Mikhail; Napier, Bruce A.; Kopecky, Kenneth; Boice, John; Beck, Harold L.; Till, John E.; Bouville, A.

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.

  19. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    PubMed Central

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed. PMID:25799311

  20. Solid-State Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2005-01-01

    This document is a web site page, and a data sheet about Personal protection (i.e., space suits) presented to the Radiation and Micrometeoroid Mitigation Technology Focus Group meeting. The website describes the work of the PI to improve solid state personal radiation dosimetry. The data sheet presents work on the active personal radiation detection system that is to provide real-time local radiation exposure information during EVA. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.

  1. The Future of Medical Dosimetry

    SciTech Connect

    Adams, Robert D.

    2015-07-01

    The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values. Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given.

  2. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3–5% higher than the calorimetry, within the stated uncertainties.

  3. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers.

    PubMed

    Lye, J E; Harty, P D; Butler, D J; Crosbie, J C; Livingstone, J; Poole, C M; Ramanathan, G; Wright, T; Stevenson, A W

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties. PMID:27192396

  4. Response of lithium formate EPR dosimeters at photon energies relevant to the dosimetry of brachytherapy

    SciTech Connect

    Adolfsson, Emelie; Alm Carlsson, Gudrun; Grindborg, Jan-Erik; Gustafsson, Haakan; Lund, Eva; Carlsson Tedgren, Aasa

    2010-09-15

    Purpose: To investigate experimentally the energy dependence of the detector response of lithium formate EPR dosimeters for photon energies below 1 MeV relative to that at {sup 60}Co energies. High energy photon beams are used in calibrating dosimeters for use in brachytherapy since the absorbed dose to water can be determined with high accuracy in such beams using calibrated ion chambers and standard dosimetry protocols. In addition to any differences in mass-energy absorption properties between water and detector, variations in radiation yield (detector response) with radiation quality, caused by differences in the density of ionization in the energy imparted (LET), may exist. Knowledge of an eventual deviation in detector response with photon energy is important for attaining high accuracy in measured brachytherapy dose distributions. Methods: Lithium formate EPR dosimeters were irradiated to known levels of air kerma in 25-250 kV x-ray beams and in {sup 137}Cs and {sup 60}Co beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free in air into values of mean absorbed dose to the detectors were made using EGSnrc MC simulations and x-ray energy spectra measured or calculated for the actual beams. The signals from the detectors were measured using EPR spectrometry. Detector response (the EPR signal per mean absorbed dose to the detector) relative to that for {sup 60}Co was determined for each beam quality. Results: Significant decreases in the relative response ranging from 5% to 6% were seen for x-ray beams at tube voltages {<=}180 kV. No significant reduction in the relative response was seen for {sup 137}Cs and 250 kV x rays. Conclusions: When calibrated in {sup 60}Co or MV photon beams, corrections for the photon energy dependence of detector response are needed to achieve the highest accuracy when using lithium formate EPR dosimeters for measuring absorbed doses around brachytherapy sources emitting photons in the energy

  5. Health physics research reactor reference dosimetry

    SciTech Connect

    Sims, C.S.; Ragan, G.E.

    1987-06-01

    Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs.

  6. Use of Neutron Benchmark Fields for the Validation of Dosimetry Cross Sections

    NASA Astrophysics Data System (ADS)

    Griffin, Patrick

    2016-02-01

    The evolution of validation metrics for dosimetry cross sections in neutron benchmark fields is explored. The strength of some of the metrics in providing validation evidence is examined by applying them to the 252Cf spontaneous fission standard neutron benchmark field, the 235U thermal neutron fission reference benchmark field, the ACRR pool-type reactor central cavity reference benchmark fields, and the SPR-III fast burst reactor central cavity. The IRDFF dosimetry cross section library is used in the validation study and observations are made on the amount of coverage provided to the library contents by validation data available in these benchmark fields.

  7. [Secondary hypertension].

    PubMed

    Yoshida, Yuichi; Shibata, Hirotaka

    2015-11-01

    Hypertension is a common disease and a crucial predisposing factor of cardiovascular diseases. Approximately 10% of hypertensive patients are secondary hypertension, a pathogenetic factor of which can be identified. Secondary hypertension consists of endocrine, renal, and other diseases. Primary aldosteronism, Cushing's syndrome, pheochromocytoma, hyperthyroidism, and hypothyroidism result in endocrine hypertension. Renal parenchymal hypertension and renovascular hypertension result in renal hypertension. Other diseases such as obstructive sleep apnea syndrome are also very prevalent in secondary hypertension. It is very crucial to find and treat secondary hypertension at earlier stages since most secondary hypertension is curable or can be dramatically improved by specific treatment. One should keep in mind that screening of secondary hypertension should be done at least once in a daily clinical practice. PMID:26619670

  8. [Secondary diabetes].

    PubMed

    Nomiyama, Takashi; Yanase, Toshihiko

    2015-12-01

    Secondary diabetes is diabetes that results as a consequence of another medication, endocrine disease or hereditary disease. Secondary diabetes is very broad and diverted category among diabetes. Clinically, pancreatic diabetes is one of the most popular secondary diabetes, which provides insulin deficiency following pancreatic diseases, such as pancreatitis and pancreatic cancer. Among endocrine diseases, Cushing's syndrome and acromegaly are typical endocrine disorders causing secondary diabetes. They mainly induce insulin resistance in early stage, however, insulin deficiency is also observed in advanced stage. Steroid is the most popular drug-induced secondary diabetes. Importantly, not only oral administered steroid but also cutaneous and inhalation steroid could induce hyperglycemia. Major hereditary diabetes are MODY and mitochondrial diabetes. Concerning secondary diabetes, careful medical examination is required. PMID:26666145

  9. International intercomparison for criticality dosimetry: the case of biological dosimetry.

    PubMed

    Roy, L; Buard, V; Delbos, M; Durand, V; Paillole, N; Grégoire, E; Voisin, P

    2004-01-01

    The Institute of Radiation Protection and Nuclear Safety (IRSN) organized a biological dosimetry international intercomparison with the purpose of comparing (i) dicentrics yield produced in human lymphocytes; (ii) the gamma and neutron dose estimate according to the corresponding laboratory calibration curve. The experimental reactor SILENE was used with different configurations: bare source 4 Gy, lead shield 1 and 2 Gy and a 60Co source 2 Gy. An increasing variation of dicentric yield per cell was observed between participants when there were more damages in the samples. Doses were derived from the observed dicentric rates according to the dose-effect relationship provided by each laboratory. Differences in dicentric rate values are more important than those in the corresponding dose values. The doses obtained by the participants were found to be in agreement with the given physical dose within 20%. The evaluation of the respective gamma and neutron dose was achieved only by four laboratories, with some small variations among them. PMID:15353693

  10. Seventeenth nuclear accident dosimetry intercomparison study: August 11-15, 1980

    SciTech Connect

    Swaja, R.E.; Greene, R.T.

    1981-04-01

    The Seventeenth Nuclear Accident Dosimetry Intercomparison Study was conducted August 11-15, 1980, at the Oak Ridge National Laboratory. Nuclear criticality accidents with three different neutron and gamma ray energy spectra were simulated by operating the Health Physics Research Reactor in the pulse mode. Participants from 13 organizations exposed dosimeters set up as area monitors and mounted on phantoms for personnel monitoring. Analysis of experimental results reported by participants showed that less than 60% of the neutron dose measurements using foil activation, thermoluminescent, or sodium activation methods and less than 20% of the gamma dose measurements using thermoluminescent dosimeters met nuclear criticality accident dosimetry guidelines which suggest accuracies of +-25% for neutron dose and +-20% for gamma dose. This indicates that continued development and evaluation of criticality accident dosimetry systems for area and personnel monitoring are required to improve measurement accuracy so that existing standards can be met.

  11. Estimating the effective density of engineered nanomaterials for in vitro dosimetry.

    PubMed

    DeLoid, Glen; Cohen, Joel M; Darrah, Tom; Derk, Raymond; Rojanasakul, Liying; Pyrgiotakis, Georgios; Wohlleben, Wendel; Demokritou, Philip

    2014-01-01

    The need for accurate in vitro dosimetry remains a major obstacle to the development of cost-effective toxicological screening methods for engineered nanomaterials. An important key to accurate in vitro dosimetry is the characterization of sedimentation and diffusion rates of nanoparticles suspended in culture media, which largely depend upon the effective density and diameter of formed agglomerates in suspension. Here we present a rapid and inexpensive method for accurately measuring the effective density of nano-agglomerates in suspension. This novel method is based on the volume of the pellet obtained by benchtop centrifugation of nanomaterial suspensions in a packed cell volume tube, and is validated against gold-standard analytical ultracentrifugation data. This simple and cost-effective method allows nanotoxicologists to correctly model nanoparticle transport, and thus attain accurate dosimetry in cell culture systems, which will greatly advance the development of reliable and efficient methods for toxicological testing and investigation of nano-bio interactions in vitro. PMID:24675174

  12. Fourth conference on radiation protection and dosimetry: Proceedings, program, and abstracts

    SciTech Connect

    Casson, W.H.; Thein, C.M.; Bogard, J.S.

    1994-10-01

    This Conference is the fourth in a series of conferences organized by staff members of Oak Ridge National Laboratory in an effort to improve communication in the field of radiation protection and dosimetry. Scientists, regulators, managers, professionals, technologists, and vendors from the United States and countries around the world have taken advantage of this opportunity to meet with their contemporaries and peers in order to exchange information and ideas. The program includes over 100 papers in 9 sessions, plus an additional session for works in progress. Papers are presented in external dosimetry, internal dosimetry, radiation protection programs and assessments, developments in instrumentation and materials, environmental and medical applications, and on topics related to standards, accreditation, and calibration. Individual papers are indexed separately on EDB.

  13. An Examination of Secondary School Teachers' Technology Integration Recommended by ISTE's National Educational Technology Standards for Teachers and School Principal Support for Teacher Technology Efforts

    ERIC Educational Resources Information Center

    Esposito, Maria

    2013-01-01

    The National Educational Technology Standards for teachers (NETS-T) was adopted by New York State, and was critical to the development of students entering a global society. This study examines teachers' use of digital tools to promote student learning and reflection, promote digital citizenship, communicate and collaborate with parents and…

  14. MO-D-BRD-02: In Memoriam of Bengt Bjarngard: SBRT II: Small Field Dosimetry - TG155

    SciTech Connect

    Das, I; Reft, C

    2014-06-15

    Specialized radiation treatment such as SRS/SRT. SBRT, IMRT, VMAT, Tomotherapy, CyberKnife and Gamma Knife use small fields or combination of small fields where dosimetry is challenging and uncertain due to non-equilibrium conditions such as longitudinal and lateral disequilibrium. Additionally the primary photon fluence is greatly affected by the obstruction of the source size by the jaws creating a large dose gradient across the field. Electronic equilibrium is a phenomenon associated with the range of secondary particles which depend on the beam energy, photon spectrum and the composition of the medium. Additionally, the finite size of detectors creates volume averaging and fluence perturbations especially in small fields. The IAEA/AAPM has provided a frame work for non-compliant reference dosimetry in small fields1. The AAPM TG-1552 has adopted this frame work to provide guidelines in relative dosimetry. This course provides the insight of TG-155 that defines small field, provides recommendations for suitable detectors and associated correction factors to convert reading to dose. Recommendations of a good working practice for relative dosimetry measurements (PDD, TMR, output factor, etc.) and dose calculations based on the new formulation is are elaborated. It also discusses beam modeling and dose calculations as a critical step in clinical utilization of small field radiotherapy. Small errors in beam data, approximations in dose algorithms, or misaligned of detectors and field settings can propagate into large errors in planned and delivered dose. The modeling and treatment planning aspects of small field dosimetry are reviewed with emphasis on the most critical parts for ensuring accurate and safe radiation therapy. Discussion on k(fmsr, fclin) for commercially available detectors are also provided.1 P. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjall, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich and S. Vatnitsky, “A new

  15. Dosimetry quality assurance in Martin Marietta Energy Systems` centralized external dosimetry system

    SciTech Connect

    Souleyrette, M.L.

    1992-10-23

    External dosimetry needs at the four Martin Marietta Energy Systems facilities are served by Energy Systems Centralized External Dosimetry System (CEDS). The CEDS is a four plant program with four dosimeter distribution centers and two dosimeter processing centers. Each plant has its own distribution center, while processing centers are located at ORNL and the Y-12 Plant. The program has been granted accreditation by the Department of Energy Laboratory Accreditation Program (DOELAP). The CEDS is a TLD based system which is responsible for whole-body beta-gamma, neutron, and extremity monitoring. Beta-gamma monitoring is performed using the Harshaw/Solon Technologies model 8805 dosimeter. Effective October 1, 1992 the standard silver mylar has been replaced with an Avery mylar foil blackened on the underside with ink. This was done in an effort to reduce the number of light induced suspect readings. At this time we have little operational experience with the new blackened mylars-The CEDS neutron dosimeter is the Harshaw model 8806B. This card/holder configuration contains two TLD-600/TLD-700 chip pairs; one pair is located beneath a cadmium filter and one pair is located beneath a plastic filter. In routine personnel monitoring the CEDS neutron dosimeter is always paired with a CEDS beta-gamma dosimeter.The CEDS extremity dosimeter is composed of a Harshaw thin TLD-700 dosiclip placed inside a Teledyne RB-4 finger sachet. The finger sachet provides approximately 7 mg/cm{sup 2} filtration over the chip. A teflon ring surrounds the dosiclip to help prevent tearing of the vinyl sachet.

  16. Dosimetry quality assurance in Martin Marietta Energy Systems' centralized external dosimetry system

    SciTech Connect

    Souleyrette, M.L.

    1992-10-23

    External dosimetry needs at the four Martin Marietta Energy Systems facilities are served by Energy Systems Centralized External Dosimetry System (CEDS). The CEDS is a four plant program with four dosimeter distribution centers and two dosimeter processing centers. Each plant has its own distribution center, while processing centers are located at ORNL and the Y-12 Plant. The program has been granted accreditation by the Department of Energy Laboratory Accreditation Program (DOELAP). The CEDS is a TLD based system which is responsible for whole-body beta-gamma, neutron, and extremity monitoring. Beta-gamma monitoring is performed using the Harshaw/Solon Technologies model 8805 dosimeter. Effective October 1, 1992 the standard silver mylar has been replaced with an Avery mylar foil blackened on the underside with ink. This was done in an effort to reduce the number of light induced suspect readings. At this time we have little operational experience with the new blackened mylars-The CEDS neutron dosimeter is the Harshaw model 8806B. This card/holder configuration contains two TLD-600/TLD-700 chip pairs; one pair is located beneath a cadmium filter and one pair is located beneath a plastic filter. In routine personnel monitoring the CEDS neutron dosimeter is always paired with a CEDS beta-gamma dosimeter.The CEDS extremity dosimeter is composed of a Harshaw thin TLD-700 dosiclip placed inside a Teledyne RB-4 finger sachet. The finger sachet provides approximately 7 mg/cm[sup 2] filtration over the chip. A teflon ring surrounds the dosiclip to help prevent tearing of the vinyl sachet.

  17. Air kerma based dosimetry calibration for the Leksell Gamma Knife

    SciTech Connect

    Meltsner, Sheridan Griffin; DeWerd, Larry A.

    2009-02-15

    No accepted official protocol exists for the dosimetry of the Leksell Gamma Knife registered (GK) stereotactic radiosurgery device. Establishment of a dosimetry protocol has been complicated by the unique partial-hemisphere arrangement of 201 individual {sup 60}Co beams simultaneously focused on the treatment volume and by the rigid geometry of the GK unit itself. This article proposes an air kerma based dosimetry protocol using either an in-air or in-acrylic phantom measurement to determine the absorbed dose rate of fields of the 18 mm helmet of a GK unit. A small-volume air ionization chamber was used to make measurements at the physical isocenter of three GK units. The absorbed dose rate to water was determined using a modified version of the AAPM Task Group 21 protocol designed for use with {sup 60}Co-based teletherapy machines. This experimentally determined absorbed dose rate was compared to the treatment planning system (TPS) absorbed dose rate. The TPS used with the GK unit is Leksell GammaPlan. The TPS absorbed dose rate at the time of treatment is the absorbed dose rate determined by the physicist at the time of machine commissioning decay corrected to the treatment date. The TPS absorbed dose rate is defined as absorbed dose rate to water at the isocenter of a water phantom with a radius of 8 cm. Measurements were performed on model B and C Gamma Knife units. The absorbed dose rate to water for the 18 mm helmet determined using air-kerma based calculations is consistently between 1.5% and 2.9% higher than the absorbed dose rate provided by the TPS. These air kerma based measurements allow GK dosimetry to be performed with an established dosimetry protocol and without complications arising from the use of and possible variations in solid phantom material. Measurements were also made with the same ionization chamber in a spherical acrylic phantom for comparison. This methodology will allow further development of calibration methods appropriate for the

  18. Updating and extending the IRDF-2002 dosimetry library

    SciTech Connect

    Capote, R.; Zolotarev, K.I.; Pronyaev, V.G.; Trkov, A.

    2011-07-01

    The International Reactor Dosimetry File (IRDF)-2002 released in 2004 by the IAEA (see http://www-nds.iaea.org/irdf2002/) contains cross-section data and corresponding uncertainties for 66 dosimetry reactions. New cross-section evaluations have become available recently that re-define some of these dosimetry reactions including: (1) high-fidelity evaluation work undertaken by one of the authors (KIZ); (2) evaluations from the US ENDF/B-VII.0 and candidate evaluations from the US ENDF/B-VII.1 libraries that cover reactions within the International Evaluation of Neutron Cross-Section Standards; (3) European JEFF3.1 library; and (4) Japanese JENDL-4.0 library. Additional high-threshold reactions not included in IRDF-2002 (e.g., {sup 59C}o(n,3n) and {sup 209}Bi(n,3n)) have been also evaluated to characterize higher-energy neutron fields. Overall, 37 new evaluations of dosimetry reactions have been assessed and intercomparisons made with integral measurements in reference neutron fields to determine whether they should be adopted to update and improve IRDF-2002. Benchmark calculations performed for newly evaluated reactions using the ENDF/B-VII.0 {sup 235}U thermal fission and {sup 252}Cf spontaneous fission neutron spectra show that calculated integral cross sections exhibit improved agreement with evaluated experimental data when compared with the equivalent data from the IRDF-2002 library. Data inconsistencies or deficiencies of new evaluations have been identified for {sup 63}Cu(n,2n), {sup 60}Ni(n,p) {sup 60m+g}Co, {sup 55}Mn(n,{gamma}), and {sup 232}Th(n,f) reactions. Compared with IRDF-2002, the upper neutron energy boundary was formally increased from the actual maximum energy of typically 20 MeV up to 60 MeV by using the TENDL-2010 cross sections and covariance matrices. This extension would allow the updated IRDF library to be also used in fusion dosimetry applications. Uncertainties in the cross sections for all new evaluations are given in the form of

  19. A probabilistic gastrointestinal tract dosimetry model

    NASA Astrophysics Data System (ADS)

    Huh, Chulhaeng

    develop a more complete set of dosimetry information on the gastrointestinal tract (GI) for internal dose assessment by implementing uncertainty parameters such as gender, age, meal phase, smoking effect, menses and pregnancy, etc. In the calculation of Us for the CDE in ICRP Publication 30, single deterministic values for the ICRP 30 gastro intestinal tract compartment model are given without any consideration of parameter uncertainties or individual variability. The present study showed that all uncertainty parameters used in the ICRP 30 GI tract model have a specific probability density function. The results show Us represent much higher value in the stomach due to increased resident time depending on its uncertainty, while Us approaches to the standard value in upper large and lower large intestines.

  20. Application of a new dosimetry formalism to volumetric modulated arc therapy (VMAT)

    NASA Astrophysics Data System (ADS)

    Rosser, Karen E.; Bedford, James L.

    2009-12-01

    Volumetric modulated arc therapy (VMAT) offers a challenge to classical dosimetry protocols as the beams are dynamic in orientation and aperture shape and may include small apertures. The aim of this paper is to apply a formalism to VMAT beams that has recently been published by the International Atomic Energy Agency (IAEA) working party to improve the dosimetry for small and non-standard fields. We investigated three possible fields and assessed their suitability as plan class specific reference (pcsr) fields. The factors in the new dosimetry formalism were investigated: the conversion of dose to water from the conventional reference field to the pcsr and then from the pcsr to a treatment plan, using a PTW semiflex chamber, two Farmer chambers and an electron diode. Finally, the dose was compared for Alanine, the new formalism and calculated using Pinnacle3 (Philips Radiation Oncology Systems) for two typical clinical VMAT beams. Correction factors between the reference field and the pcsr determined with Alanine range from 0.1% to 2.3% for the three pcsr fields. Dose to water measured using the calibrated ionization chambers is less than 2% different to the dose calculated by Pinnacle3. VMAT planning and delivery procedures have been successfully implemented and a new dosimetry protocol has been investigated for this new technique. Calibration factors for pcsr fields are found to be up to 2.3% different when using the new formalism, compared to using a standard dosimetry protocol. Using the calibration factors determined in the pcsr fields, the ionization chambers and electron diode agree to within 1% with Alanine dosimetry for two clinical VMAT plans. Good agreements between calculations and measurements are found for these two plans when the new formalism is used.

  1. Development, validation, and implementation of a patient-specific Monte Carlo 3D internal dosimetry platform

    NASA Astrophysics Data System (ADS)

    Besemer, Abigail E.

    Targeted radionuclide therapy is emerging as an attractive treatment option for a broad spectrum of tumor types because it has the potential to simultaneously eradicate both the primary tumor site as well as the metastatic disease throughout the body. Patient-specific absorbed dose calculations for radionuclide therapies are important for reducing the risk of normal tissue complications and optimizing tumor response. However, the only FDA approved software for internal dosimetry calculates doses based on the MIRD methodology which estimates mean organ doses using activity-to-dose scaling factors tabulated from standard phantom geometries. Despite the improved dosimetric accuracy afforded by direct Monte Carlo dosimetry methods these methods are not widely used in routine clinical practice because of the complexity of implementation, lack of relevant standard protocols, and longer dose calculation times. The main goal of this work was to develop a Monte Carlo internal dosimetry platform in order to (1) calculate patient-specific voxelized dose distributions in a clinically feasible time frame, (2) examine and quantify the dosimetric impact of various parameters and methodologies used in 3D internal dosimetry methods, and (3) develop a multi-criteria treatment planning optimization framework for multi-radiopharmaceutical combination therapies. This platform utilizes serial PET/CT or SPECT/CT images to calculate voxelized 3D internal dose distributions with the Monte Carlo code Geant4. Dosimetry can be computed for any diagnostic or therapeutic radiopharmaceutical and for both pre-clinical and clinical applications. In this work, the platform's dosimetry calculations were successfully validated against previously published reference doses values calculated in standard phantoms for a variety of radionuclides, over a wide range of photon and electron energies, and for many different organs and tumor sizes. Retrospective dosimetry was also calculated for various pre

  2. Uncertainty Estimation in Intensity-Modulated Radiotherapy Absolute Dosimetry Verification

    SciTech Connect

    Sanchez-Doblado, Francisco . E-mail: paco@us.es; Hartmann, Guenther H.; Pena, Javier; Capote, Roberto; Paiusco, Marta; Rhein, Bernhard; Leal, Antonio; Lagares, Juan Ignacio

    2007-05-01

    Purpose: Intensity-modulated radiotherapy (IMRT) represents an important method for improving RT. The IMRT relative dosimetry checks are well established; however, open questions remain in reference dosimetry with ionization chambers (ICs). The main problem is the departure of the measurement conditions from the reference ones; thus, additional uncertainty is introduced into the dose determination. The goal of this study was to assess this effect systematically. Methods and Materials: Monte Carlo calculations and dosimetric measurements with five different detectors were performed for a number of representative IMRT cases, covering both step-and-shoot and dynamic delivery. Results: Using ICs with volumes of about 0.125 cm{sup 3} or less, good agreement was observed among the detectors in most of the situations studied. These results also agreed well with the Monte Carlo-calculated nonreference correction factors (c factors). Additionally, we found a general correlation between the IC position relative to a segment and the derived correction factor c, which can be used to estimate the expected overall uncertainty of the treatment. Conclusion: The increase of the reference dose relative standard uncertainty measured with ICs introduced by nonreference conditions when verifying an entire IMRT plan is about 1-1.5%, provided that appropriate small-volume chambers are used. The overall standard uncertainty of the measured IMRT dose amounts to about 2.3%, including the 0.5% of reproducibility and 1.5% of uncertainty associated with the beam calibration factor. Solid state detectors and large-volume chambers are not well suited to IMRT verification dosimetry because of the greater uncertainties. An action level of 5% is appropriate for IMRT verification. Greater discrepancies should lead to a review of the dosimetric procedure, including visual inspection of treatment segments and energy fluence.

  3. Emerging technological bases for retrospective dosimetry.

    PubMed

    Straume, T; Anspaugh, L R; Haskell, E H; Lucas, J N; Marchetti, A A; Likhtarev, I A; Chumak, V V; Romanyukha, A A; Khrouch, V T; Gavrilin YuI; Minenko, V F

    1997-01-01

    In this article we discuss examples of challenging problems in retrospective dosimetry and describe some promising solutions. The ability to make measurements by accelerator mass spectrometry and luminescence techniques promises to provide improved dosimetry for regions of Belarus, Ukraine and Russian Federation contaminated by radionuclides from the Chernobyl accident. In addition, it may soon be possible to resolve the large neutron discrepancy in the dosimetry system for Hiroshima through novel measurement techniques that can be used to reconstruct the fast-neutron fluence emitted by the bomb some 51 years ago. Important advances in molecular cytogenetics and electron paramagnetic resonance measurements have produced biodosimeters that show potential in retrospective dosimetry. The most promising of these are the frequency of reciprocal translocations measured in chromosomes of blood lymphocytes using fluorescence in situ hybridization and the electron paramagnetic resonance signal in tooth enamel. PMID:9368303

  4. Cross sections required for FMIT dosimetry

    SciTech Connect

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-05-02

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies.

  5. INTERSPECIES DOSIMETRY MODELS FOR PULMONARY PHARMACOLOGY

    EPA Science Inventory

    Interspecies Dosimetry Models for Pulmonary Pharmacology

    Ted B. Martonen, Jeffry D. Schroeter, and John S. Fleming

    Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangl...

  6. Audits for advanced treatment dosimetry

    NASA Astrophysics Data System (ADS)

    Ibbott, G. S.; Thwaites, D. I.

    2015-01-01

    Radiation therapy has advanced rapidly over the last few decades, progressing from 3D conformal treatment to image-guided intensity modulated therapy of several different flavors, both 3D and 4D and to adaptive radiotherapy. The use of intensity modulation has increased the complexity of quality assurance and essentially eliminated the physicist's ability to judge the validity of a treatment plan, even approximately, on the basis of appearance and experience. Instead, complex QA devices and procedures are required at the institutional level. Similarly, the assessment of treatment quality through remote and on-site audits also requires greater sophistication. The introduction of 3D and 4D dosimetry into external audit systems must follow, to enable quality assurance systems to perform meaningful and thorough audits.

  7. Aufgaben und Genauigkeit der klinischen Dosimetrie

    NASA Astrophysics Data System (ADS)

    Krieger, Hanno

    In diesem Kapitel werden die Aufgaben der klinischen Dosimetrie für die verschiedenen radiologischen Disziplinen zusammengestellt. Die wichtigste Aufgabe ist die Messung der im bestrahlten Medium entstandenen Energiedosis für die verschiedenen Strahlungsquellen. Die am weitesten verbreitete dazu verwendete Methode ist die Dosismessung mit gasgefüllten Ionisationskammern. Im zweiten Teil des Kapitels werden die Genauigkeitsanforderungen der klinischen Dosimetrie diskutiert.

  8. Secondary causes of dyslipidemia.

    PubMed

    Vodnala, Deepthi; Rubenfire, Melvyn; Brook, Robert D

    2012-09-15

    The causes of the lipid disorders in patients referred to specialty clinics for difficult-to-treat dyslipidemias are likely multifactorial. However, the importance of evaluating for secondary causes is unclear. The investigators performed a chart review of new patients referred to the University of Michigan Lipid Clinic from January 2004 to June 2011 (n = 824) to evaluate for the prevalence of several secondary causes of dyslipidemia. In addition to lipoproteins, new patients were assessed for secondary dyslipidemias by a standardized protocol consisting of laboratory testing, a nutritional evaluation, and medical history. These data were evaluated to determine the prevalence of several secondary causes of dyslipidemia. A total of 363 separate factors were identified in the 824 patients that were thought to be potential secondary causes of dyslipidemia. Because some patients (n = 83 [10%]) had multiple conditions, there were 230 (28% of the cohort) with ≥1 potential secondary dyslipidemias. The most common conditions were excessive alcohol intake (n = 82 [10%]), uncontrolled diabetes mellitus (n = 68 [8%]), and overt albuminuria. Although other causes occurred less frequently (each individually found in <5% of patients), altogether they were present in a substantial portion of patients (n = 102 [12%]). In conclusion, nearly 1/3 of patients referred to a specialty clinic had identifiable secondary conditions plausibly contributing to their dyslipidemia. Numerous disorders were identified, with diabetes mellitus and excessive alcohol being the most common. PMID:22658245

  9. 1991 annual book of ASTM standards

    SciTech Connect

    Not Available

    1991-01-01

    This book contains nuclear technology standards also features test methods and practices for solar and geotechnical energy. In the nuclear category, the primary emphasis of this volume is on analysis, dosimetry, and radiation effects in materials. Over eighty standards primarily test methods and practices are featured in this category.

  10. Radiation dosimetry and biophysical models of space radiation effects

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wu, Honglu; Shavers, Mark R.; George, Kerry

    2003-01-01

    Estimating the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons, and the absence of epidemiology data for these radiation types. Developing useful biophysical parameters or models that relate energy deposition by space particles to the probabilities of biological outcomes is a complex problem. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra. In contrast to conventional dosimetric methods, models of radiation track structure provide descriptions of energy deposition events in biomolecules, cells, or tissues, which can be used to develop biophysical models of radiation risks. In this paper, we address the biophysical description of heavy particle tracks in the context of the interpretation of both space radiation dosimetry and radiobiology data, which may provide insights into new approaches to these problems.

  11. The Causal Effect of Student Mobility on Standardized Test Performance: A Case Study with Possible Implications for Accountability Mandates within the Elementary and Secondary Education Act.

    PubMed

    Selya, Arielle S; Engel-Rebitzer, Eden; Dierker, Lisa; Stephen, Eric; Rose, Jennifer; Coffman, Donna L; Otis, Mindy

    2016-01-01

    This paper presents a limited case study examining the causal inference of student mobility on standardized test performance, within one middle-class high school in suburban Connecticut. Administrative data were used from a district public high school enrolling 319 10th graders in 2010. Propensity score methods were used to estimate the causal effect of student mobility on Math, Science, Reading, and Writing portions of the Connecticut Academic Performance Test (CAPT), after matching mobile vs. stable students on gender, race/ethnicity, eligibility for free/reduced lunches, and special education status. Analyses showed that mobility was associated with lower performance in the CAPT Writing exam. Follow-up analyses revealed that this trend was only significant among those who were ineligible for free/reduced lunches, but not among eligible students. Additionally, mobile students who were ineligible for free/reduced lunches had lower performance in the CAPT Science exam according to some analyses. Large numbers of students transferring into a school district may adversely affect standardized test performance. This is especially relevant for policies that affect student mobility in schools, given the accountability measures in the No Child Left Behind that are currently being re-considered in the recent Every Student Succeeds Act. PMID:27486427

  12. The Causal Effect of Student Mobility on Standardized Test Performance: A Case Study with Possible Implications for Accountability Mandates within the Elementary and Secondary Education Act

    PubMed Central

    Selya, Arielle S.; Engel-Rebitzer, Eden; Dierker, Lisa; Stephen, Eric; Rose, Jennifer; Coffman, Donna L.; Otis, Mindy

    2016-01-01

    This paper presents a limited case study examining the causal inference of student mobility on standardized test performance, within one middle-class high school in suburban Connecticut. Administrative data were used from a district public high school enrolling 319 10th graders in 2010. Propensity score methods were used to estimate the causal effect of student mobility on Math, Science, Reading, and Writing portions of the Connecticut Academic Performance Test (CAPT), after matching mobile vs. stable students on gender, race/ethnicity, eligibility for free/reduced lunches, and special education status. Analyses showed that mobility was associated with lower performance in the CAPT Writing exam. Follow-up analyses revealed that this trend was only significant among those who were ineligible for free/reduced lunches, but not among eligible students. Additionally, mobile students who were ineligible for free/reduced lunches had lower performance in the CAPT Science exam according to some analyses. Large numbers of students transferring into a school district may adversely affect standardized test performance. This is especially relevant for policies that affect student mobility in schools, given the accountability measures in the No Child Left Behind that are currently being re-considered in the recent Every Student Succeeds Act. PMID:27486427

  13. Comparison of CT and MR-CT Fusion for Prostate Post-Implant Dosimetry

    SciTech Connect

    Maletz, Kristina L.; Ennis, Ronald D.; Ostenson, Jason; Pevsner, Alexander; Kagen, Alexander; Wernick, Iddo

    2012-04-01

    Purpose: The use of T2 MR for postimplant dosimetry (PID) after prostate brachytherapy allows more anatomically accurate and precise contouring but does not readily permit seed identification. We developed a reproducible technique for performing MR-CT fusion and compared the resulting dosimetry to standard CT-based PID. Methods and Materials: CT and T1-weighted MR images for 45 patients were fused and aligned based on seed distribution. The T2-weighted MR image was then fused to the aligned T1. Reproducibility of the fusion technique was tested by inter- and intraobserver variability for 13 patients. Dosimetry was computed for the prostate as a whole and for the prostate divided into anterior and posterior sectors of the base, mid-prostate, and apex. Results: Inter- and intraobserver variability for the fusion technique showed less than 1% variation in D90. MR-CT fusion D90 and CT D90 were nearly equivalent for the whole prostate, but differed depending on the identification of superior extent of the base (p = 0.007) and on MR/CT prostate volume ratio (p = 0.03). Sector analysis showed a decrease in MR-CT fusion D90 in the anterior base (ratio 0.93 {+-}0.25, p < 0.05) and an increase in MR-CT fusion D90 in the apex (p < 0.05). The volume of extraprostatic tissue encompassed by the V100 is greater on MR than CT. Factors associated with this difference are the MR/CT volume ratio (p < 0.001) and the difference in identification of the inferior extent of the apex (p = 0.03). Conclusions: We developed a reproducible MR-CT fusion technique that allows MR-based dosimetry. Comparing the resulting postimplant dosimetry with standard CT dosimetry shows several differences, including adequacy of coverage of the base and conformity of the dosimetry around the apex. Given the advantage of MR-based tissue definition, further study of MR-based dosimetry is warranted.

  14. Uncertainty in 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  15. Toward a New Evaluation of Neutron Standards

    NASA Astrophysics Data System (ADS)

    Carlson, A. D.; Pronyaev, V. G.; Capote, R.; Hale, G. M.; Hambsch, F.-J.; Kawano, T.; Kunieda, S.; Mannhart, W.; Nelson, R. O.; Neudecker, D.; Schillebeeckx, P.; Simakov, S.; Smith, D. L.; Talou, P.; Tao, X.; Wallner, A.; Wang, W.

    2016-02-01

    Measurements related to neutron cross section standards and certain prompt neutron fission spectra are being evaluated. In addition to the standard cross sections, investigations of reference data that are not as well known as the standards are being considered. Procedures and codes for performing this work are discussed. A number of libraries will use the results of this standards evaluation for new versions of their libraries. Most of these data have applications in neutron dosimetry.

  16. In aqua vivo EPID dosimetry

    SciTech Connect

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Olaciregui-Ruiz, Igor; Pecharroman-Gallego, Raul; Sonke, Jan-Jakob; Stroom, Joep; Herk, Marcel J.; Mijnheer, Ben van

    2012-01-15

    Purpose: At the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment. Methods: The key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D {gamma} evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D {gamma} evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT. Results: The improvements by

  17. Breast dosimetry in clinical mammography

    NASA Astrophysics Data System (ADS)

    Benevides, Luis Alberto Do Rego

    The objective of this study was show that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. In the study, AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The protocol proposes the use of a fiber-optic coupled (FOCD) or Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeter to measure the entrance skin exposure at the time of the mammogram without interfering with diagnostic information of the mammogram. The study showed that FOCD had sensitivity with less than 7% energy dependence, linear in all tube current-time product stations, and was reproducible within 2%. FOCD was superior to MOSFET dosimeter in sensitivity, reusability, and reproducibility. The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. In addition, the study population anthropometric

  18. Tenth ORNL Personnel Dosimetry Intercomparison Study

    SciTech Connect

    Swaja, R.E.; Chou, T.L.; Sims, C.S.; Greene, R.T.

    1985-03-01

    The Tenth Personnel Dosimetry Intercomparison Study was conducted at the Oak Ridge National Laboratory during April 9-11, 1984. Dosemeter badges from 31 participating organizations were mounted on 40cm Lucite phantoms and exposed to a range of dose equivalents which could be encountered during routine personnel monitoring in mixed radiation fields. The Health Physics Research Reactor served as the only source of radiation for eight of the ten irradiations which included a low (approx. 0.50 mSv) and high (approx. 10.00 mSv) neutron dose equivalent run for each of four shield conditions. Two irradiations were also conducted for which concrete- and Lucite-shield reactor irradiations were gamma-enhanced using a /sup 137/Cs source. Results indicated that some participants had difficulty obtaining measurable indication of neutron and gamma exposures at dose equivalents less than about 0.50 mSv and 0.20 mSv, respectively. Albedo dosemeters provided the best overall accuracy and precision for the neutron measurements. Direct interaction TLD systems showed significant variation in accuracy with incident spectrum, and threshold neutron dosemeters (film and recoil track) underestimated reference values by more than 50%. Gamma dose equivalents estimated in the mixed fields were higher than reference values with TL gamma dosemeters generally yielding more accurate results than film. Under the conditions of this study in which participants had information concerning exposure conditions and radiation field characteristics prior to dosemeter evaluation, only slightly more than half of all reported results met regulatory standards for neutron and gamma accuracy. 19 refs., 2 figs., 29 tabs.

  19. Experimental verification of internal dosimetry calculations. Annual progress report

    SciTech Connect

    1980-05-01

    During the past year a dosimetry research program has been established in the School of Nuclear Engineering at the Georgia Institute of Technology. The major objective of this program has been to provide research results upon which a useful internal dosimetry system could be based. The important application of this dosimetry system will be the experimental verification of internal dosimetry calculations such as those published by the MIRD Committee.

  20. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    SciTech Connect

    COOPER, J.R.

    2000-04-17

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  1. Personnel neutron dosimetry at Department of Energy facilities

    SciTech Connect

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered.

  2. EVA dosimetry in manned spacecraft.

    PubMed

    Thomson, I

    1999-12-01

    Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space. PMID:10631334

  3. Chemical dosimetry system for criticality accidents.

    PubMed

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values. PMID:15353694

  4. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  5. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  6. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success.

    PubMed

    Pogue, Brian W; Elliott, Jonathan T; Kanick, Stephen C; Davis, Scott C; Samkoe, Kimberley S; Maytin, Edward V; Pereira, Stephen P; Hasan, Tayyaba

    2016-04-01

    Photodynamic therapy (PDT) can be a highly complex treatment, with many parameters influencing treatment efficacy. The extent to which dosimetry is used to monitor and standardize treatment delivery varies widely, ranging from measurement of a single surrogate marker to comprehensive approaches that aim to measure or estimate as many relevant parameters as possible. Today, most clinical PDT treatments are still administered with little more than application of a prescribed drug dose and timed light delivery, and thus the role of patient-specific dosimetry has not reached widespread clinical adoption. This disconnect is at least partly due to the inherent conflict between the need to measure and understand multiple parameters in vivo in order to optimize treatment, and the need for expedience in the clinic and in the regulatory and commercialization process. Thus, a methodical approach to selecting primary dosimetry metrics is required at each stage of translation of a treatment procedure, moving from complex measurements to understand PDT mechanisms in pre-clinical and early phase I trials, towards the identification and application of essential dose-limiting and/or surrogate measurements in phase II/III trials. If successful, identifying the essential and/or reliable surrogate dosimetry measurements should help facilitate increased adoption of clinical PDT. In this paper, examples of essential dosimetry points and surrogate dosimetry tools that may be implemented in phase II/III trials are discussed. For example, the treatment efficacy as limited by light penetration in interstitial PDT may be predicted by the amount of contrast uptake in CT, and so this could be utilized as a surrogate dosimetry measurement to prescribe light doses based upon pre-treatment contrast. Success of clinical ALA-based skin lesion treatment is predicted almost uniquely by the explicit or implicit measurements of photosensitizer and photobleaching, yet the individualization of treatment

  7. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Elliott, Jonathan T.; Kanick, Stephen C.; Davis, Scott C.; Samkoe, Kimberley S.; Maytin, Edward V.; Pereira, Stephen P.; Hasan, Tayyaba

    2016-04-01

    Photodynamic therapy (PDT) can be a highly complex treatment, with many parameters influencing treatment efficacy. The extent to which dosimetry is used to monitor and standardize treatment delivery varies widely, ranging from measurement of a single surrogate marker to comprehensive approaches that aim to measure or estimate as many relevant parameters as possible. Today, most clinical PDT treatments are still administered with little more than application of a prescribed drug dose and timed light delivery, and thus the role of patient-specific dosimetry has not reached widespread clinical adoption. This disconnect is at least partly due to the inherent conflict between the need to measure and understand multiple parameters in vivo in order to optimize treatment, and the need for expedience in the clinic and in the regulatory and commercialization process. Thus, a methodical approach to selecting primary dosimetry metrics is required at each stage of translation of a treatment procedure, moving from complex measurements to understand PDT mechanisms in pre-clinical and early phase I trials, towards the identification and application of essential dose-limiting and/or surrogate measurements in phase II/III trials. If successful, identifying the essential and/or reliable surrogate dosimetry measurements should help facilitate increased adoption of clinical PDT. In this paper, examples of essential dosimetry points and surrogate dosimetry tools that may be implemented in phase II/III trials are discussed. For example, the treatment efficacy as limited by light penetration in interstitial PDT may be predicted by the amount of contrast uptake in CT, and so this could be utilized as a surrogate dosimetry measurement to prescribe light doses based upon pre-treatment contrast. Success of clinical ALA-based skin lesion treatment is predicted almost uniquely by the explicit or implicit measurements of photosensitizer and photobleaching, yet the individualization of treatment

  8. Dosimetry procedures for an industrial irradiation plant

    NASA Astrophysics Data System (ADS)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  9. Czech results at criticality dosimetry intercomparison 2002.

    PubMed

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV. PMID:15353690

  10. 3-D Imaging Based, Radiobiological Dosimetry

    PubMed Central

    Sgouros, George; Frey, Eric; Wahl, Richard; He, Bin; Prideaux, Andrew; Hobbs, Robert

    2008-01-01

    Targeted radionuclide therapy holds promise as a new treatment against cancer. Advances in imaging are making it possible to evaluate the spatial distribution of radioactivity in tumors and normal organs over time. Matched anatomical imaging such as combined SPECT/CT and PET/CT have also made it possible to obtain tissue density information in conjunction with the radioactivity distribution. Coupled with sophisticated iterative reconstruction algorithims, these advances have made it possible to perform highly patient-specific dosimetry that also incorporates radiobiological modeling. Such sophisticated dosimetry techniques are still in the research investigation phase. Given the attendant logistical and financial costs, a demonstrated improvement in patient care will be a prerequisite for the adoption of such highly-patient specific internal dosimetry methods. PMID:18662554

  11. Prostatic edema in {sup 125}I permanent prostate implants: Dynamical dosimetry taking volume changes into account

    SciTech Connect

    Leclerc, Ghyslain; Lavallee, Marie-Claude; Roy, Rene; Vigneault, Eric; Beaulieu, Luc

    2006-03-15

    The purpose of this study is to determine the impact of edema on the dose delivered to the target volume. An evaluation of the edema characteristics was first made, and then a dynamical dosimetry algorithm was developed and used to compare its results to a standard clinical (static) dosimetry. Source positions and prostate contours extracted from 66 clinical cases on images taken at different points in time (planning, implant day, post-implant evaluation) were used, via the mean interseed distance, to characterize edema [initial increase ({delta}r{sub 0}), half-life ({tau})]. An algorithm was developed to take into account the edema by summing a time series of dose-volume histograms (DVHs) with a weight based on the fraction of the dose delivered during the time interval considered. The algorithm was then used to evaluate the impact of edema on the dosimetry of permanent implants by comparing its results to those of a standard clinical dosimetry. The volumetric study yielded results as follows: the initial prostate volume increase was found to be 1.58 (ranging from 1.15 to 2.48) and the edema half-life, approximately 30 days (range: 3 to 170 days). The dosimetric differences in D{sub 90} observed between the dynamic dosimetry and the clinical one for a single case were up to 15 Gy and depended on the edema half-life and the initial volume increase. The average edema half-life, 30 days, is about 3 times longer than the previously reported 9 days. Dosimetric differences up to 10% of the prescription dose are observed, which can lead to differences in the quality assertion of an implant. The study of individual patient edema resorption with time might be necessary to extract meaningful clinical correlation or biological parameters in permanent implants.

  12. Implications of in-vitro dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials

    PubMed Central

    Pal, Anoop K.; Bello, Dhimiter; Cohen, Joel; Demokritou, Philip

    2016-01-01

    In-vitro high throughput screening platforms based on mechanistic injury pathways are been used for hazard assessment of engineered nanomaterials (ENM). Toxicity screening and other in vitro nanotoxicology assessment efforts in essence compare and rank nanomaterials relative to each other. We hypothesize that this ranking of ENM is susceptible to dispersion and dosimetry protocols, which continue to be poorly standardized. Our objective was to quantitate the impact of dosimetry on toxicity ranking of ENM. A set of eight well-characterized and diverse low aspect ratio ENMs, were utilized. The recently developed at Harvard in-vitro dosimetry platform, which includes preparation of fairly monodispersed suspensions, measurement of the effective density of formed agglomerates in culture media and fate and transport modeling was used for calculating the effective dose delivered to cells as a function of time. Changes in the dose-response relationships between the administered and delivered dose were investigated with two representative endpoints, cell viability and IL-8 production, in the human monocytic THP-1 cells. The slopes of administered/delivered dose-response relationships changed 1:4.94 times and were ENM-dependent. The overall relative ranking of ENM intrinsic toxicity also changed considerably, matching notably better the in vivo inflammation data (R2 0.97 vs. 0.64). This standardized dispersion and dosimetry methodology presented here is generalizable to low aspect ratio ENMs. Our findings further reinforce the need to reanalyze and reinterpret in-vitro ENM hazard ranking data published in the nanotoxicology literature in the light of dispersion and dosimetry considerations (or lack thereof) and to adopt these protocols in future in vitro nanotoxicology testing. PMID:25672815

  13. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  14. Practical neutron dosimetry at high energies

    SciTech Connect

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently.

  15. Applicability of Topaz Composites to Electron Dosimetry

    NASA Astrophysics Data System (ADS)

    Bomfim, K. S.; Souza, D. N.

    2010-11-01

    Thermoluminescent dosimetric topaz properties have been investigated and the results have shown that this mineral presents characteristics of a good dosimeter mainly in doses evaluation in radiotherapy with photons beams in radiotherapy. Typical applications of thermoluminescent dosimeters in radiotherapy are: in vivo dosimetry on patients (either as a routine quality assurance procedure or for dose monitoring in special cases); verification of treatment techniques; dosimetry audits; and comparisons among hospitals. The mean aim of this work was to evaluate the efficiency of topaz-Teflon pellets as thermoluminescent dosimeters in high-energy electron beams used to radiotherapy. Topaz-Teflon pellets were used as TLD.

  16. Recent progresses in tritium radioecology and dosimetry

    SciTech Connect

    Galeriu, D.; Davis, P.; Raskob, W.; Melintescu, A.

    2008-07-15

    In this paper, some aspects of recent progress in tritium radioecology and dosimetry are presented, with emphasis on atmospheric releases to terrestrial ecosystems. The processes involved in tritium transfer through the environment are discussed, together with the current status of environmental tritium models. Topics include the deposition and reemission of HT and HTO, models for the assessment of routine and accidental HTO emissions, a new approach to modeling the dynamics of tritium in mammals, the dose consequences of tritium releases and aspects of human dosimetry. The need for additional experimental data is identified, together with the attributes that would be desirable in the next generation of tritium codes. (authors)

  17. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  18. SNL RML recommended dosimetry cross section compendium

    SciTech Connect

    Griffin, P.J.; Kelly, J.G.; Luera, T.F.; VanDenburg, J.

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  19. Time to demand dosimetry for molecular radiotherapy?

    PubMed Central

    Guy, M J

    2015-01-01

    Molecular radiotherapy (MRT) has been used clinically for around 75 years. Despite this long history of clinical use, there is no established dosimetry practice for calculating the absorbed dose delivered to tumour targets or to organs at risk. As a result, treatment protocols have often evolved based on experience with relatively small numbers of patients, each receiving a similar administered activity but, potentially, widely varying doses. This is in stark contrast to modern external-beam radiotherapy practice. This commentary describes some of the barriers to MRT dosimetry and gives some opinions on the way forward. PMID:25571916

  20. Implementation of talairach atlas based automated brain segmentation for radiation therapy dosimetry.

    PubMed

    Popple, R A; Griffith, H R; Sawrie, S M; Fiveash, J B; Brezovich, I A

    2006-02-01

    Radiotherapy for brain cancer inevitably results in irradiation of uninvolved brain. While it has been demonstrated that irradiation of the brain can result in cognitive deficits, dose-volume relationships are not well established. There is little work correlating a particular cognitive deficit with dose received by the region of the brain responsible for the specific cognitive function. One obstacle to such studies is that identification of brain anatomy is both labor intensive and dependent on the individual performing the segmentation. Automatic segmentation has the potential to be both efficient and consistent. Brains2 is a software package developed by the University of Iowa for MRI volumetric studies. It utilizes MR images, the Talairach atlas, and an artificial neural network (ANN) to segment brain images into substructures in a standardized manner. We have developed a software package, Brains2DICOM, that converts the regions of interest identified by Brains2 into a DICOM radiotherapy structure set. The structure set can be imported into a treatment planning system for dosimetry. We demonstrated the utility of Brains2DICOM using a test case, a 34-year-old man with diffuse astrocytoma treated with three-dimensional conformal radiotherapy. Brains2 successfully applied the Talairach atlas to identify the right and left frontal, parietal, temporal, occipital, subcortical, and cerebellum regions. Brains2 was not successful in applying the ANN to identify small structures, such as the hippocampus and caudate. Further work is necessary to revise the ANN or to develop new methods for identification of small structures in the presence of disease and radiation induced changes. The segmented regions-of-interest were transferred to our commercial treatment planning system using DICOM and dose-volume histograms were constructed. This method will facilitate the acquisition of data necessary for the development of normal tissue complication probability (NTCP) models that

  1. Secondary Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of their name, "secondary" products are essential for plant survival. They are required for basic cell functions as well as communicating the plant's presence to the surrounding environment and defense against pests as defined in the broad sense (i.e., diseases, nematodes, insects and plan...

  2. Methods and approaches to dosimetry

    NASA Technical Reports Server (NTRS)

    Rossi, H. H.

    1972-01-01

    The development of a dosimetric system capable of determining energy depositions in tissue regions that are smaller than a few 100 nanometers is projected. These objectives are met by evaluation of the data produced by a macro-subsystem and a micro-subsystem. Both systems are in essence multiple ionization chambers that are normally operated in a gated pulse mode. The macro-system yields absorbed radiation dose as a function of location in a phantom of the human trunk when it operates in the dose mode; it registers only those sections as a signal in which the primary particle or any of its secondaries have passed, in the pulse mode. The function of the micro-system is to provide detailed information of the track structure by determining lateral energy spread due to delta ray formation or other secondary particle production.

  3. Space radiation dosimetry in low-Earth orbit and beyond

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Benton, E. V.

    2001-01-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. c2001 Elsevier Science B.V. All rights reserved.

  4. Space radiation dosimetry in low-Earth orbit and beyond.

    PubMed

    Benton, E R; Benton, E V

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. PMID:11863032

  5. Analysis of dosimetry from the H.B. Robinson unit 2 pressure vessel benchmark using RAPTOR-M3G and ALPAN

    SciTech Connect

    Fischer, G.A.

    2011-07-01

    Document available in abstract form only, full text of document follows: The dosimetry from the H. B. Robinson Unit 2 Pressure Vessel Benchmark is analyzed with a suite of Westinghouse-developed codes and data libraries. The radiation transport from the reactor core to the surveillance capsule and ex-vessel locations is performed by RAPTOR-M3G, a parallel deterministic radiation transport code that calculates high-resolution neutron flux information in three dimensions. The cross-section library used in this analysis is the ALPAN library, an Evaluated Nuclear Data File (ENDF)/B-VII.0-based library designed for reactor dosimetry and fluence analysis applications. Dosimetry is evaluated with the industry-standard SNLRML reactor dosimetry cross-section data library. (authors)

  6. Personnel radiation dosimetry symposium: program and abstracts

    SciTech Connect

    Not Available

    1984-10-01

    The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry.

  7. Software for 3D radiotherapy dosimetry. Validation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.

    2014-08-01

    The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.

  8. A-bomb survivor dosimetry update

    SciTech Connect

    Loewe, W.E.

    1982-06-01

    A-bomb survivor data have been generally accepted as applicable. Also, the initial radiations have tended to be accepted as the dominant radiation source for all survivors. There was general acceptance of the essential reliability of both the biological effects data and the causative radiation dose values. There are considerations casting doubt on these acceptances, but very little quantification of th implied uncertainties has been attempted. The exception was A-bomb survivor dosimetry, where free-field kerma values for initial radiations were thought to be accurate to about 30%, and doses to individual survivors were treated as effectively error-free. In 1980, a major challenge to the accepted A-bomb survivor dosimetry was announced, and was quickly followed by a succession of explanations and displays showing the soundness of that challenge. In fact, a complete replacement set of free-field kerma values was provided which was suitable for use in constructing an entire new dosimetry for Hiroshima and Nagasaki. The new values showed many changes greater than the accepted 30% uncertainty. An approximate new dosimetry was indeed constructed, and used to convert existing leukemia cause-and-effect data from the old to the new dose values, by way of assessing the impact. (ERB)

  9. Dosimetry implant for treating restenosis and hyperplasia

    DOEpatents

    Srivastava, Suresh; Gonzales, Gilbert R; Howell, Roger W; Bolch, Wesley E; Adzic, Radoslav

    2014-09-16

    The present invention discloses a method of selectively providing radiation dosimetry to a subject in need of such treatment. The radiation is applied by an implant comprising a body member and .sup.117mSn electroplated at selected locations of the body member, emitting conversion electrons absorbed immediately adjacent selected locations while not affecting surrounding tissue outside of the immediately adjacent area.

  10. Protocol for emergency EPR dosimetry in fingernails

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an increased need for after-the fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effect...

  11. Development of A-bomb survivor dosimetry

    SciTech Connect

    Kerr, G.D.

    1995-12-31

    An all important datum in risk assessment is the radiation dose to individual survivors of the bombings in Hiroshima and Nagasaki. The first set of dose estimates for survivors was based on a dosimetry system developed in 1957 by the Oak Ridge National Laboratory (ORNL). These Tentative 1957 Doses (T57D) were later replaced by a more extensive and refined set of Tentative 1965 Doses (T65D). The T65D system of dose estimation for survivors was also developed at ORNL and served as a basis for risk assessment throughout the 1970s. In the late 1970s, it was suggested that there were serious inadequacies with the T65D system, and these inadequacies were the topic of discussion at two symposia held in 1981. In early 1983, joint US- Japan research programs were established to conduct a thorough review of all aspects of the radiation dosimetry for the Hiroshima and Nagasaki A-bomb survivors. A number of important contributions to this review were made by ORNL staff members. The review was completed in 1986 and a new Dosimetry System 1986 (DS86) was adopted for use. This paper discusses the development of the various systems of A-bomb survivor dosimetry, and the status of the current DS86 system as it is being applied in the medical follow-up studies of the A-bomb survivors and their offspring.

  12. Secondary osteoporosis.

    PubMed

    Sheu, Angela; Diamond, Terry

    2016-06-01

    Secondary osteoporosis is less common than primary osteoporosis. It may be suspected in patients who present with a fragility fracture despite having no risk factors for osteoporosis. In addition, secondary osteoporosis should be considered if the bone density Z-score is -2.5 or less. Consider the fracture site and presence of other clinical clues to guide investigations for an underlying cause. The tests to use are those that are indicated for the suspected cause. Baseline investigations include tests for bone and mineral metabolism (calcium, phosphate, alkaline phosphatase, 25-hydroxyvitamin D, parathyroid hormone), liver and kidney function, full blood count and thyroid-stimulating hormone. More detailed testing may be required in patients with severe osteoporosis. PMID:27346916

  13. Secondary osteoporosis

    PubMed Central

    Sheu, Angela; Diamond, Terry

    2016-01-01

    SUMMARY Secondary osteoporosis is less common than primary osteoporosis. It may be suspected in patients who present with a fragility fracture despite having no risk factors for osteoporosis. In addition, secondary osteoporosis should be considered if the bone density Z-score is –2.5 or less. Consider the fracture site and presence of other clinical clues to guide investigations for an underlying cause. The tests to use are those that are indicated for the suspected cause. Baseline investigations include tests for bone and mineral metabolism (calcium, phosphate, alkaline phosphatase, 25-hydroxyvitamin D, parathyroid hormone), liver and kidney function, full blood count and thyroid-stimulating hormone. More detailed testing may be required in patients with severe osteoporosis. PMID:27346916

  14. Focus & Higher Standards for Secondary Schools.

    ERIC Educational Resources Information Center

    International Baccalaureate North America, Inc., New York, NY.

    The International Baccalaureate (IB) program, in which students in the last 2 years of high school can earn a diploma recognized for university admission throughout the world and for course credit at colleges and universities in Canada and the United States, is described. Information about the program is provided in the following areas: (1)…

  15. An assessment of bone marrow and bone endosteum dosimetry methods for photon sources

    NASA Astrophysics Data System (ADS)

    Lee, Choonik; Lee, Choonsik; Shah, Amish P.; Bolch, Wesley E.

    2006-11-01

    The rather complex and microscopic histological structure of the skeletal system generally limits one's ability to accurately model this tissue during dosimetric evaluations. Consequently, various assumptions must be made to evaluate the absorbed dose from external and internal photons to the radiosensitive tissues of the red (or haematopoietically active) bone marrow and the osteogenic tissues of the skeletal endosteum. These various methods for photon skeletal dosimetry have not been inter-compared, partly due to the lack of a realistic reference model that can provide a high-resolution three-dimensional geometry for secondary electron particle transport. In the present study, the paired-image radiation transport (PIRT) model developed by Shah et al (2005 J. Nucl. Med. 45 344) was utilized to evaluate the absorbed dose per incident photon fluence to these skeletal regions from idealized parallel beams of monoenergetic photons. The PIRT model results were then used as a local reference against which absorbed doses via other methods were compared. For red bone marrow dosimetry, four approximate techniques were considered: (1) the dose response function method (DRF method) presented in ORNL/TM-8381, (2) the mass-energy absorption coefficient ratio method (two-parameter MEAC method), (3) the MEAC method with the additional use of energy-dependent dose enhancement factors from King and Spiers (1985 Br. J. Radiol. 58 345) (three-parameter MEAC method), and (4) the three-parameter MEAC method applied at the voxel level through the use image-specific CT numbers (CTN method). For the bone endosteum (i.e., bone surfaces), two approximate techniques were compared: (1) the DRF method for bone surfaces and (2) the homogeneous bone approximation (HBA) method. In each case, the local reference standard was assumed to be that of the PIRT model. Four different ex vivo bone specimens with distinctively different internal structures were used in the study: the cranium, the lumbar

  16. A micro-gap, air-filled ionisation chamber as a detector for criticality accident dosimetry.

    PubMed

    Murawski, Ł; Zielczyński, M; Golnik, N; Gryziński, M A

    2014-10-01

    A micro-gap air-filled ionisation chamber was designed for criticality dosimetry. The special feature of the chamber is its very small gap between electrodes of only 0.3 mm. This prevents ion recombination at high dose rates and minimises the influence of gas on secondary particles spectrum. The electrodes are made of polypropylene because of higher content of hydrogen in this material, when compared with soft tissue. The difference between neutron and gamma sensitivity in such chamber becomes practically negligible. The chamber's envelope contains two specially connected capacitors, one for polarising the electrodes and the other for collecting the ionisation charge. PMID:24324250

  17. Secondary abdominal appendicular ectopic pregnancy.

    PubMed

    Nama, Vivek; Gyampoh, Bright; Karoshi, Mahantesh; McRae, Reynold; Opemuyi, Isaac

    2007-01-01

    Although the case fatality rate for ectopic pregnancies has decreased to 0.08% in industrialized countries, it still represents 3.8% of maternal mortality in the United States alone. In developing countries, the case fatality rate varies from 3% to 27%. Laparoscopic management of tubal pregnancies is now the standard form of treatment where this technology is available. Abdominal pregnancies are rare, and secondary implantation of tubal ectopic pregnancies is the most common cause of abdominal gestations. We present an interesting case of secondary implantation of a tubal ectopic pregnancy to highlight the appendix as a possible secondary implantation site after a tubal ectopic pregnancy. PMID:17630175

  18. Tactical gamma and fast neutron dosimetry with leuko dye optical waveguides. Conference paper

    SciTech Connect

    Kronenberg, S.

    1982-06-18

    Ionizing radiation-induced changes in the refractive index of radiochromic dye solution results in a novel dosimetry system with a very wide dynamic range. This approach is adaptable to personnel dosimetry and to Army tactical dosimetry.

  19. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV)

    SciTech Connect

    Tedgren, Aasa Carlsson; Hedman, Angelica; Grindborg, Jan-Erik; Carlsson, Gudrun Alm

    2011-10-15

    Purpose: High energy photon beams are used in calibrating dosimeters for use in brachytherapy since absorbed dose to water can be determined accurately and with traceability to primary standards in such beams, using calibrated ion chambers and standard dosimetry protocols. For use in brachytherapy, beam quality correction factors are needed, which include corrections for differences in mass energy absorption properties between water and detector as well as variations in detector response (intrinsic efficiency) with radiation quality, caused by variations in the density of ionization (linear energy transfer (LET) -distributions) along the secondary electron tracks. The aim of this work was to investigate experimentally the detector response of LiF:Mg,Ti thermoluminescent dosimeters (TLD) for photon energies below 1 MeV relative to {sup 60}Co and to address discrepancies between the results found in recent publications of detector response. Methods: LiF:Mg,Ti dosimeters of formulation MTS-N Poland were irradiated to known values of air kerma free-in-air in x-ray beams at tube voltages 25-250 kV, in {sup 137}Cs- and {sup 60}Co-beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free-in-air into values of mean absorbed dose in the dosimeters in the actual irradiation geometries were made using EGSnrc Monte Carlo simulations. X-ray energy spectra were measured or calculated for the actual beams. Detector response relative to that for {sup 60}Co was determined at each beam quality. Results: An increase in relative response was seen for all beam qualities ranging from 8% at tube voltage 25 kV (effective energy 13 keV) to 3%-4% at 250 kV (122 keV effective energy) and {sup 137}Cs with a minimum at 80 keV effective energy (tube voltage 180 kV). The variation with effective energy was similar to that reported by Davis et al.[Radiat. Prot. Dosim. 106, 33-43 (2003)] with our values being systematically lower by 2%-4%. Compared to the

  20. A parameterization method and application in breast tomosynthesis dosimetry

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2013-09-15

    Purpose: To present a parameterization method based on singular value decomposition (SVD), and to provide analytical parameterization of the mean glandular dose (MGD) conversion factors from eight references for evaluating breast tomosynthesis dose in the Mammography Quality Standards Act (MQSA) protocol and in the UK, European, and IAEA dosimetry protocols.Methods: MGD conversion factor is usually listed in lookup tables for the factors such as beam quality, breast thickness, breast glandularity, and projection angle. The authors analyzed multiple sets of MGD conversion factors from the Hologic Selenia Dimensions quality control manual and seven previous papers. Each data set was parameterized using a one- to three-dimensional polynomial function of 2–16 terms. Variable substitution was used to improve accuracy. A least-squares fit was conducted using the SVD.Results: The differences between the originally tabulated MGD conversion factors and the results computed using the parameterization algorithms were (a) 0.08%–0.18% on average and 1.31% maximum for the Selenia Dimensions quality control manual, (b) 0.09%–0.66% on average and 2.97% maximum for the published data by Dance et al. [Phys. Med. Biol. 35, 1211–1219 (1990); ibid. 45, 3225–3240 (2000); ibid. 54, 4361–4372 (2009); ibid. 56, 453–471 (2011)], (c) 0.74%–0.99% on average and 3.94% maximum for the published data by Sechopoulos et al. [Med. Phys. 34, 221–232 (2007); J. Appl. Clin. Med. Phys. 9, 161–171 (2008)], and (d) 0.66%–1.33% on average and 2.72% maximum for the published data by Feng and Sechopoulos [Radiology 263, 35–42 (2012)], excluding one sample in (d) that does not follow the trends in the published data table.Conclusions: A flexible parameterization method is presented in this paper, and was applied to breast tomosynthesis dosimetry. The resultant data offer easy and accurate computations of MGD conversion factors for evaluating mean glandular breast dose in the MQSA

  1. Dosimetry investigation of MOSFET for clinical IMRT dose verification.

    PubMed

    Deshpande, Sudesh; Kumar, Rajesh; Ghadi, Yogesh; Neharu, R M; Kannan, V

    2013-06-01

    In IMRT, patient-specific dose verification is followed regularly at each centre. Simple and efficient dosimetry techniques play a very important role in routine clinical dosimetry QA. The MOSFET dosimeter offers several advantages over the conventional dosimeters such as its small detector size, immediate readout, immediate reuse, multiple point dose measurements. To use the MOSFET as routine clinical dosimetry system for pre-treatment dose verification in IMRT, a comprehensive set of experiments has been conducted, to investigate its linearity, reproducibility, dose rate effect and angular dependence for 6 MV x-ray beam. The MOSFETs shows a linear response with linearity coefficient of 0.992 for a dose range of 35 cGy to 427 cGy. The reproducibility of the MOSFET was measured by irradiating the MOSFET for ten consecutive irradiations in the dose range of 35 cGy to 427 cGy. The measured reproducibility of MOSFET was found to be within 4% up to 70 cGy and within 1.4% above 70 cGy. The dose rate effect on the MOSFET was investigated in the dose rate range 100 MU/min to 600 MU/min. The response of the MOSFET varies from -1.7% to 2.1%. The angular responses of the MOSFETs were measured at 10 degrees intervals from 90 to 270 degrees in an anticlockwise direction and normalized at gantry angle zero and it was found to be in the range of 0.98 ± 0.014 to 1.01 ± 0.014. The MOSFETs were calibrated in a phantom which was later used for IMRT verification. The measured calibration coefficients were found to be 1 mV/cGy and 2.995 mV/cGy in standard and high sensitivity mode respectively. The MOSFETs were used for pre-treatment dose verification in IMRT. Nine dosimeters were used for each patient to measure the dose in different plane. The average variation between calculated and measured dose at any location was within 3%. Dose verification using MOSFET and IMRT phantom was found to quick and efficient and well suited for a busy radiotherapy

  2. Dose algorithm determination for the Los Alamos National Laboratory personnel dosimetry system

    SciTech Connect

    Patterson, J.M.

    1995-12-31

    One of the most important aspects of a TLD dosimetry system is the dose algorithm used to convert the signals from the badge reader to an estimate of a worker`s dose. It is now more important then ever to have an accurate algorithm to estimate dose well below regulatory limits. Dosimetry systems for DOE laboratories must meet minimum performance standards based on DOELAP criteria. The purpose of this paper is to describe the development of a dose algorithm for a new TLD dosimeter that has been developed at Los Alamos National Laboratories. It is expected that DOELAP testing will start in 1995. Initial results indicate that the system will be able to exceed the minimum performance criteria by a large margin. The enhanced ability of the dosimeter to determine beta, gamma, and neutron energies makes it very useful in the various radiation fields encountered at the laboratory.

  3. Improvement of Accuracy in Environmental Dosimetry by TLD Cards Using Three-dimensional Calibration Method

    PubMed Central

    HosseiniAliabadi, S. J.; Hosseini Pooya, S. M.; Afarideh, H.; Mianji, F.

    2015-01-01

    Introduction The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area. Objective A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of measurement for environmental dosimetry. Method Three personal TLD cards were rectangularly placed in a cylindrical holder, and calibrated using 1D and 3D calibration methods. Then, the dosimeter has been used simultaneously with a reference instrument in a real radiation field measuring the accumulated dose within a time interval. Result The results show that the accuracy of measurement has been improved by 6.5% using 3D calibration factor in comparison with that of normal 1D calibration method. Conclusion This system can be utilized in large scale environmental monitoring with a higher accuracy. PMID:26157729

  4. Comparison of pencil-type ionization chamber calibration results and methods between dosimetry laboratories.

    PubMed

    Hourdakis, Costas J; Büermann, Ludwig; Ciraj-Bjelac, Olivera; Csete, Istvan; Delis, Harry; Gomola, Igor; Persson, Linda; Novak, Leos; Petkov, Ivailo; Toroi, Paula

    2016-01-01

    A comparison of calibration results and procedures in terms of air kerma length product, PKL, and air kerma, K, was conducted between eight dosimetry laboratories. A pencil-type ionization chamber (IC), generally used for computed tomography dose measurements, was calibrated according to three calibration methods, while its residual signal and other characteristics (sensitivity profile, active length) were assessed. The results showed that the "partial irradiation method" is the preferred method for the pencil-type IC calibration in terms of PKL and it could be applied by the calibration laboratories successfully. Most of the participating laboratories achieved high level of agreement (>99%) for both dosimetry quantities (PKL and K). Estimated relative standard uncertainties of comparison results vary among laboratories from 0.34% to 2.32% depending on the quantity, beam quality and calibration method applied. Detailed analysis of the assigned uncertainties have been presented and discussed. PMID:26508013

  5. An investigation of false positive dosimetry results

    SciTech Connect

    Lewandowski, M.A.; Davis, S.A.; Goff, T.E.; Wu, C.F.

    1996-12-31

    The Waste Isolation Pilot Plant (WIPP) is a facility designed for the demonstration of the safe disposal of transuranic waste. Currently, the radiation source term is confined to sealed calibration and check sources since WIPP has not received waste for disposal. For several years the WIPP Dosimetry Group has operated a Harshaw Model 8800C reader to analyze Harshaw 8801-7776 thermoluminescent cards (3 TLD-700 and 1 TLD-600) with 8805 holder. The frequency of false positive results for quarterly dosimeter exchanges is higher than desired by the Dosimetry Group management. Initial observations suggested that exposure to intense ambient sunlight may be responsible for the majority of the false positive readings for element 3. A study was designed to investigate the possibility of light leaking through the holder and inducing a signal in element 3. This paper discusses the methods and results obtained, with special emphasis placed on recommendations to reduce the frequency of light-induced false positive readings.

  6. Neutron dosimetry using optically stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Eschbach, P. A.

    1991-06-01

    The addition of thermoluminescent (TL) materials within hydrogenous matrices to detect neutron induced proton recoils for radiation dosimetry is a well known concept. Previous attempts to implement this technique have met with limited success, primarily due to the high temperatures required for TL readout and the low melting temperatures of hydrogen-rich plastics. Research in recent years PNL has produced a new Optically Stimulated Luminescence (OSL) technique known as the Cooled Optically Stimulated Luminescence (COSL) that offers, for the first time, the capability of performing extremely sensitive radiation dosimetry at low temperatures. In addition to its extreme sensitivity, the COSL technique offers multiple readout capability, limited fading in a one year period, and the capability of analyzing single grains within a hydrogenous matrix.

  7. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  8. Neutron dosimetry using optically stimulated luminescence

    SciTech Connect

    Miller, S.D.; Eschbach, P.A.

    1991-06-01

    The addition of thermoluminescent (TL) materials within hydrogenous matrices to detect neutron-induced proton recoils for radiation dosimetry is a well-known concept. Previous attempts to implement this technique have met with limited success, primarily due to the high temperatures required for TL readout and the low melting temperatures of hydrogen-rich plastics. Research in recent years at Pacific Northwest laboratories (PNL) has produced a new Optically Stimulated Luminescence (OSL) technique known as the Cooled Optically Stimulated Luminescence (COSL) that offers, for the first time, the capability of performing extremely sensitive radiation dosimetry at low temperatures. In addition to its extreme sensitivity, the COSL technique offers multiple readout capability, limited fading in a one-year period, and the capability of analyzing single grains within a hydrogenous matrix. 4 refs., 10 figs.

  9. Trigeminal neuralgia treatment dosimetry of the Cyberknife

    SciTech Connect

    Ho, Anthony; Lo, Anthony T.; Dieterich, Sonja; Soltys, Scott G.; Gibbs, Iris C.; Chang, Steve G.; Adler, John R.

    2012-04-01

    There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patient's right, whereas the second is on the patient's left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculation algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.

  10. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  11. Simple optical theory for light dosimetry during PDT (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.

    1992-06-01

    Photons are one of the three major reactants in the photodynamic reaction that yields toxic photoproduct for cell killing. Dosimetry of light is a major concern when planning a photodynamic therapy (PDT) protocol. This paper presents a very simple approach toward the tissue optics with a practical conclusion about how tissue optics affects planning of day-to-day PDT dosimetry. The paper does not address all the complexities of real tissue dosimetry, such as heterogeneous tissues, variable absorption due to changing tissue blood content, and variable tissue oxygen levels. The paper outlines the optical behavior in a homogeneous tissue, which is a starting point for understanding light dosimetry.

  12. Proton beam dosimetry using a TEPC with a 252Cf neutron calibration

    NASA Astrophysics Data System (ADS)

    Nam, Uk-Won; Park, Won-Kee; Lee, Jaejin; Pyo, Jeonghyun; Moon, Bongkon; Kim, Sunghwan

    2015-10-01

    A tissue-equivalent proportional counter (TEPC) can measure the linear energy transfer (LET) of incident radiation and directly calculate the equivalent dose to humans in a complicated radiation field. For radiation monitoring, we developed and characterized a TEPC that can simulate a site diameter of 2 µm for micro-dosimetry. It was calibrated with a 252Cf neutron standard source at the Korea Research Institute of Standards and Science. The channel to LET calibration factor of the TEPC is about 0.72 keV/ µm-channel. Also, we evaluated the possibility of usage the TEPC as a proton dosimeter.

  13. Energy Metabolism and Human Dosimetry of Tritium

    SciTech Connect

    Galeriu, D.; Takeda, H.; Melintescu, A.; Trivedi, A

    2005-07-15

    In the frame of current revision of human dosimetry of {sup 14}C and tritium, undertaken by the International Commission of Radiological Protection, we propose a novel approach based on energy metabolism and a simple biokinetic model for the dynamics of dietary intake (organic {sup 14}C, tritiated water and Organically Bound Tritium-OBT). The model predicts increased doses for HTO and OBT comparing to ICRP recommendations, supporting recent findings.

  14. Quantities and units in radiation protection dosimetry

    NASA Astrophysics Data System (ADS)

    Jennings, W. A.

    1994-08-01

    A new report, entitled Quantities and Units in Radiation Protection Dosimetry, has recently been published by the international Commission on Radiation Units and Measurements. That report (No. 51) aims to provide a coherent system of quantities and units for purposes of measurement and calculation in the assessment of compliance with dose limitations. The present paper provides an extended summary of that report, including references to the operational quantities needed for area and individual monitoring of external radiations.

  15. a Generalized Program for Internal Radionuclide Dosimetry

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy Karl

    The development of monoclonal antibodies specific for tumor surface antigens promises a highly specific carrier medium for delivering a tumorcidal radiation dose. Dosimetry calculations of monoclonal antibodies are made difficult, however, precisely because the focus of radioactivity is targeted for a nonstandard volume in a nonstandard geometry. This precludes straightforward application of the formalism developed for internal radionuclide dosimetry by the Medical Internal Radiation Dose Committee. A software program was written to account for the perturbations introduced by the inclusion of a tumor mass as an additional source of, and target for, radiation. The program allows the interactive development of a mathematical model to account for observed biodistribution data. The model describes the time dependence of radioactivity in each organ system that retains radiolabeled antibody, including tumor. Integration of these "time-activity" curves yield cumulative activity for each organ system identified as a 'source' of radioactivity. A Monte Carlo simulation of photon transport is then executed for each source organ to obtain the fraction of radiation energy absorbed by various 'target' organs. When combined with the cumulative activity, this absorbed fraction allows an estimate of dose to be made for each target organ. The program has been validated against ten analytic models designed to span a range of common input data types. Additionally, a performance benchmark has been defined to assess the practicality of implementing the program on different computing hardware platforms. Sources of error in the computation are elaborated on, and future directions and improvements discussed. The software presents an integrated modeling/dosimetry environment particularly suited for performing Monoclonal Antibody dosimetry. It offers a viable methodology for performing prospective treatment planning, based on extrapolation of tracer kinetic data to therapeutic levels.

  16. 3D dosimetry fundamentals: gels and plastics

    NASA Astrophysics Data System (ADS)

    Lepage, M.; Jordan, K.

    2010-11-01

    Many different materials have been developed for 3D radiation dosimetry since the Fricke gel dosimeter was first proposed in 1984. This paper is intended as an entry point into these materials where we provide an overview of the basic principles for the most explored materials. References to appropriate sources are provided such that the reader interested in more details can quickly find relevant information.

  17. Section 9.1 new dosimeters. New dosimetry systems

    NASA Astrophysics Data System (ADS)

    McLaughlin, William L.

    During the past two years there have been significant advances in several forms of radiation measurement systems for radiation processing, covering dose ranges of 1-10 6 Gy. Calorimeters as reference standards for both ionizing photon and electron fields have become well-established. In addition to the older ceric-cerous dosimetry solution analyzed potentiometrically, new liquid-phase dosimeters include those analyzed by spectrophotometry, e.g., improved forms of acidic aqueous solutions of K-Ag dichromate and organic radiochromic dye solutions. It has recently been demonstrated that by using certain refined sugars, e.g., D-(-) ribose, optical rotation response in aqueous solutions can be enhanced for dosimetry at doses > 10 4 Gy. There has been expanded development, use, and formulation (rods, tablets, and thin films) of the amino acid, alanine, as a solid-phase dosimeter analyzed by either ESR spectrometry or by glutamine or alanine spectrophotometry of complexes with ferric ion in the presence of a sulfonphthalein dye (xylenol orange). New commercial types of radiochromic plastic dosimeters, e.g., GafChromic TM, Riso B3 TM, GAMMACHROME YR TM, Radix TM, and Gammex TM, have been introduced and applied in practice. Improvements and broader use of optical waveguide dosimeters, e.g., Opti-Chromic TM, have also been reported, especially in food irradiation applications. Several novel dyed plastic dosimeters are available in large quantities and they lose color due to irradiation. An example is a dyed cellulosic thin film (ATC type DY-42 TM) which can be measured spectrophotometrically or densitometrically up to doses as high as 10 6 Gy.

  18. Software tool for portal dosimetry research.

    PubMed

    Vial, P; Hunt, P; Greer, P B; Oliver, L; Baldock, C

    2008-09-01

    This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio.NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects. PMID:18946980

  19. Hanford Internal Dosimetry Project manual. Revision 1

    SciTech Connect

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  20. Radiation dosimetry and spectrometry with superheated emulsions

    NASA Astrophysics Data System (ADS)

    d'Errico, Francesco

    2001-09-01

    Detectors based on emulsions of overexpanded halocarbon droplets in tissue equivalent aqueous gels or soft polymers, known as "superheated drop detectors" or "bubble (damage) detectors", have been used in radiation detection, dosimetry and spectrometry for over two decades. Recent technological advances have led to the introduction of several instruments for individual and area monitoring: passive integrating meters based on the optical or volumetric registration of the bubbles, and active counters detecting bubble nucleations acoustically. These advances in the instrumentation have been matched by the progress made in the production of stable and well-specified emulsions of superheated droplets. A variety of halocarbons are employed in the formulation of the detectors, and this permits a wide range of applications. In particular, halocarbons with a moderate degree of superheat, i.e. a relatively small difference between their operating temperature and boiling point, can be used in neutron dosimetry and spectrometry since they are only nucleated by energetic heavy ions such as those produced by fast neutrons. More recently, halocarbons with an elevated degree of superheat have been utilised to produce emulsions that nucleate with much smaller energy deposition and detect low linear energy transfer radiations, such as photons and electrons. This paper reviews the detector physics of superheated emulsions and their applications in radiation measurements, particularly in neutron dosimetry and spectrometry.

  1. In vivo dosimetry in external beam radiotherapy

    SciTech Connect

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  2. Reconstructive dosimetry for cutaneous radiation syndrome

    PubMed Central

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Valverde, N.J.; Da Silva, F.C.A.

    2015-01-01

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. PMID:26445332

  3. Validating the ENDF-B/VII{sup 235}U(n{sub th},f) prompt fission neutron spectrum using updated dosimetry cross sections (IRDFF)

    SciTech Connect

    Capote, R.; Zolotarev, K. I.; Pronyaev, V. G.; Trkov, A.

    2012-07-01

    The International Reactor Dosimetry File IRDF-2002 released in 2004 by the IAEA contains cross-section data and corresponding uncertainties for 66 dosimetry reactions. New cross-section evaluations have become available recently that re-define some of these dosimetry reactions for reactor applications including: 1) high fidelity evaluation work undertaken by one of the authors (KIZ); 2) evaluations from the ENDF/B-VII libraries that cover reactions within the International Evaluation of Neutron Cross-Section Standards; and 3) evaluations from JENDL-3.1 and JENDL-4 libraries. Overall, 37 new evaluations of dosimetry reactions have been assessed to determine whether they should be adopted to update and improve IRDF-2002. A new dosimetry library (International Reactor Dosimetry File for Fission and Fusion - IRDFF) was assembled based on new evaluations combined with selected IRDF-2002 evaluations. A grand-total of 74 dosimetry reactions are included into the IRDFF dosimetry library available at www-nds.iaea.org/IRDFFI. The assembled library was used to validate the {sup 235}U(n{sub th},f) ENDF-B/VII.0 prompt fission neutron spectrum. An excellent average C/E value of 1.002 +/- 0.02 is achieved for reactions with mean neutron energy of the integrated response (E50%) lower than 11 MeV. C/E data for reactions with E50%-response higher than 11 MeV decreases up to 0.8. We conclude that the ENDF-B/VII.0 {sup 235}U(n{sub th},f) prompt fission neutron spectrum from 1-11 MeV is validated within quoted uncertainties by available integral measurements in {sup 235}U(n{sub th},f) neutron field. Further investigations for high-threshold reactions are needed and new measurements of spectrum average cross sections for those reactions in the {sup 235}U(n{sub th},f) neutron field are recommended. (authors)

  4. The spatial resolution in dosimetry with normoxic polymer-gels investigated with the dose modulation transfer approach

    SciTech Connect

    Bayreder, Christian; Schoen, Robert; Wieland, M.; Georg, Dietmar; Moser, Ewald; Berg, Andreas

    2008-05-15

    The verification of dose distributions with high dose gradients as appearing in brachytherapy or stereotactic radiotherapy for example, calls for dosimetric methods with sufficiently high spatial resolution. Polymer gels in combination with a MR or optical scanner as a readout device have the potential of performing the verification of a three-dimensional dose distribution within a single measurement. The purpose of this work is to investigate the spatial resolution achievable in MR-based polymer gel dosimetry. The authors show that dosimetry on a very small spatial scale (voxel size: 94x94x1000 {mu}m{sup 3}) can be performed with normoxic polymer gels using parameter selective T2 imaging. In order to prove the spatial resolution obtained we are relying on the dose-modulation transfer function (DMTF) concept based on very fine dose modulations at half periods of 200 {mu}m. Very fine periodic dose modulations of a {sup 60}Co photon field were achieved by means of an absorption grid made of tungsten-carbide, specifically designed for quality control. The dose modulation in the polymer gel is compared with that of film dosimetry in one plane via the DMTF concept for general access to the spatial resolution of a dose imaging system. Additionally Monte Carlo simulations were performed and used for the calculation of the DMTF of both, the polymer gel and film dosimetry. The results obtained by film dosimetry agree well with those of Monte Carlo simulations, whereas polymer gel dosimetry overestimates the amplitude value of the fine dose modulations. The authors discuss possible reasons. The in-plane resolution achieved in this work competes with the spatial resolution of standard clinical film-scanner systems.

  5. 2004 update of dosimetry for the Utah Thyroid Cohort Study.

    PubMed

    Simon, Steven L; Anspaugh, Lynn R; Hoffman, F Owen; Scholl, Alan E; Stone, Mary B; Thomas, Brian A; Lyon, Joseph L

    2006-02-01

    In the 1980s, individual thyroid doses and uncertainties were estimated for members of a cohort of children identified in 1965 in Utah and Nevada who had potentially been exposed to fallout from the Nevada Test Site. That reconstruction represented the first comprehensive assessment of doses received by the cohort and was the first large effort to assess the uncertainty of dose on an individual person basis. The data on dose and thyroid disease prevalence during different periods were subsequently used in an analysis to determine risks of radiogenic thyroid disease. This cohort has received periodic medical follow-up to observe changes in disease frequency and to reassess the previously reported radiation-related risks, most recently after a Congressional mandate in 1998. In a recent effort to restore the databases and computer codes used to estimate doses in the 1980s, various deficiencies were found in the estimated doses due to improperly operating computer codes, corruption of secondary data files, and lack of quality control procedures. From 2001 through 2004, the dosimetry system was restored and corrected and all doses were recalculated. In addition, two parameter values were updated. While the mean of all doses has not changed significantly, many individual doses have changed by more than an order of magnitude. PMID:16435919

  6. Nuclear data needs for radiation protection and therapy dosimetry

    SciTech Connect

    Chadwick, M.B.; DeLuca, P.M. Jr.; Haight, R.C.

    1995-12-31

    New nuclear data are required for improved neutron and proton radiotherapy treatment planning as well as future applications of high-energy particle accelerators. Modern neutron radiotherapy employs energies extending to 70 MeV, while industrial applications such as transmutation and tritium breeding may generate neutrons exceeding energies of 100 MeV. Secondary neutrons produced by advanced proton therapy facilities can have energies as high as 250 MeV. Each use requires nuclear data for transport calculations and analysis of radiation effects (dosimetry). We discuss the nuclear data needs supportive of these applications including the different information requirements. As data in this energy region are sparse and likely to remain so, advanced nuclear model calculations can provide some of the needed information. ln this context, we present new evaluated nuclear data for C, N, and O. Additional experimental information, including integral and differential data, are required to confirm these results and to bound further calculations. We indicate the required new data to be measured and the difficulties in carrying out such experiments.

  7. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  8. Minimum Competency in Secondary Education.

    ERIC Educational Resources Information Center

    De Landsheere, Viviane

    1987-01-01

    Discusses issues related to the movement toward minimum competency in secondary education. Addresses the problem of defining minimum competency and the dangers of imposed standardization. Identifies three conceptualizations of minimum competency as: (1) the narrowly educational standpoint, (2) the concern with functional literacy, and (3) a more…

  9. Automatic in vivo portal dosimetry of all treatments

    NASA Astrophysics Data System (ADS)

    Olaciregui-Ruiz, I.; Rozendaal, R.; Mijnheer, B.; van Herk, M.; Mans, A.

    2013-11-01

    At our institution EPID (electronic portal imaging device) dosimetry is routinely applied to perform in vivo dose verification of all patient treatments with curative intent since January 2008. The major impediment of the method has been the amount of work required to produce and inspect the in vivo dosimetry reports (a time-consuming and labor-intensive process). In this paper we present an overview of the actions performed to implement an automated in vivo dosimetry solution clinically. We reimplemented the EPID dosimetry software and modified the acquisition software. Furthermore, we introduced new tools to periodically inspect the record-and-verify database and automatically run the EPID dosimetry software when needed. In 2012, 95% of our 3839 treatments scheduled for in vivo dosimetry were analyzed automatically (27 633 portal images of intensity-modulated radiotherapy (IMRT) fields, 5551 portal image data of VMAT arcs, and 2003 portal images of non-IMRT fields). The in vivo dosimetry verification results are available a few minutes after delivery and alerts are immediately raised when deviations outside tolerance levels are detected. After the clinical introduction of this automated solution, inspection of the detected deviations is the only remaining work. These newly developed tools are a major step forward towards full integration of in vivo EPID dosimetry in radiation oncology practice.

  10. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Emergency Exposure Situations § 835.1304 Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material...

  11. Neutron dosimetry and radiation damage calculations for HFBR

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  12. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Emergency Exposure Situations § 835.1304 Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material...

  13. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Emergency Exposure Situations § 835.1304 Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material...

  14. Student Perceptions of an Online Medical Dosimetry Program

    ERIC Educational Resources Information Center

    Lenards, Nishele D.

    2007-01-01

    The University of Wisconsin--La Crosse offers the first web-based medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was need to…

  15. Automatic in vivo portal dosimetry of all treatments.

    PubMed

    Olaciregui-Ruiz, I; Rozendaal, R; Mijnheer, B; van Herk, M; Mans, A

    2013-11-21

    At our institution EPID (electronic portal imaging device) dosimetry is routinely applied to perform in vivo dose verification of all patient treatments with curative intent since January 2008. The major impediment of the method has been the amount of work required to produce and inspect the in vivo dosimetry reports (a time-consuming and labor-intensive process). In this paper we present an overview of the actions performed to implement an automated in vivo dosimetry solution clinically. We reimplemented the EPID dosimetry software and modified the acquisition software. Furthermore, we introduced new tools to periodically inspect the record-and-verify database and automatically run the EPID dosimetry software when needed. In 2012, 95% of our 3839 treatments scheduled for in vivo dosimetry were analyzed automatically (27,633 portal images of intensity-modulated radiotherapy (IMRT) fields, 5551 portal image data of VMAT arcs, and 2003 portal images of non-IMRT fields). The in vivo dosimetry verification results are available a few minutes after delivery and alerts are immediately raised when deviations outside tolerance levels are detected. After the clinical introduction of this automated solution, inspection of the detected deviations is the only remaining work. These newly developed tools are a major step forward towards full integration of in vivo EPID dosimetry in radiation oncology practice. PMID:24201085

  16. Reference Dosimetry for Fast Neutron and Proton Therapy

    SciTech Connect

    Jones, D.T.L.

    2005-05-24

    Fast neutrons and protons undergo fundamentally different interactions in tissue. The former interact with nuclei, while the latter, as in the case of photons, interact mainly with atomic electrons. Protons do, however, also undergo some nuclear interactions, the probability of which increases with energy. For both modalities the practical instruments for determining the reference absorbed dose in a patient are ionization chambers. These provide indirect determination of absorbed dose because calibration factors measured in standard radiation fields, as well as conversion factors that require knowledge of various physical data, have to be applied. All dosimetry protocols recommend that reference absorbed dose measurements in the clinical situation be made with ionization chambers having 60Co calibration factors traceable to standards laboratories. Neutron doses determined with the current internationally accepted protocol (ICRU Report 45 [1989]) have a relative uncertainty of {+-}4.3% (1{sigma}), while proton doses determined with the two protocols (ICRU Report 59 [1998] and IAEA Report TRS 398 [2000]) presently in use have relative uncertainties (1{sigma}) of {+-}2.6 % and {+-}2.0%, respectively.

  17. EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films

    NASA Astrophysics Data System (ADS)

    Helge Østerås, Bjørn; Olaug Hole, Eli; Rune Olsen, Dag; Malinen, Eirik

    2006-12-01

    In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 µm thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1 15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media.

  18. Estimating the effective density of engineered nanomaterials for in vitro dosimetry

    PubMed Central

    DeLoid, Glen; Cohen, Joel M.; Darrah, Tom; Derk, Raymond; Wang, Liying; Pyrgiotakis, Georgios; Wohlleben, Wendel; Demokritou, Philip

    2014-01-01

    The need for accurate in vitro dosimetry remains a major obstacle to the development of cost-effective toxicological screening methods for engineered nanomaterials. An important key to accurate in vitro dosimetry is the characterization of sedimentation and diffusion rates of nanoparticles suspended in culture media, which largely depend upon the effective density and diameter of formed agglomerates in suspension. Here we present a rapid and inexpensive method for accurately measuring the effective density of nano-agglomerates in suspension. This novel method is based on the volume of the pellet obtained by bench-top centrifugation of nanomaterial suspensions in a packed cell volume tube, and is validated against gold-standard analytical ultracentrifugation data. This simple and cost-effective method allows nanotoxicologists to correctly model nanoparticle transport, and thus attain accurate dosimetry in cell culture systems, which will greatly advance the development of reliable and efficient methods for toxicological testing and investigation of nano-bio interactions in vitro. PMID:24675174

  19. 1983 international intercomparison of nuclear accident dosimetry systems at Oak Ridge National Laboratory

    SciTech Connect

    Swaja, R.E.; Greene, R.T.; Sims, C.S.

    1985-04-01

    An international intercomparison of nuclear accident dosimetry systems was conducted during September 12-16, 1983, at Oak Ridge National Laboratory (ORNL) using the Health Physics Research Reactor operated in the pulse mode to simulate criticality accidents. This study marked the twentieth in a series of annual accident dosimetry intercomparisons conducted at ORNL. Participants from ten organizations attended this intercomparison and measured neutron and gamma doses at area monitoring stations and on phantoms for three different shield conditions. Results of this study indicate that foil activation techniques are the most popular and accurate method of determining accident-level neutron doses at area monitoring stations. For personnel monitoring, foil activation, blood sodium activation, and thermoluminescent (TL) methods are all capable of providing accurate dose estimates in a variety of radiation fields. All participants in this study used TLD's to determine gamma doses with very good results on the average. Chemical dosemeters were also shown to be capable of yielding accurate estimates of total neutron plus gamma doses in a variety of radiation fields. While 83% of all neutron measurements satisfied regulatory standards relative to reference values, only 39% of all gamma results satisfied corresponding guidelines for gamma measurements. These results indicate that continued improvement in accident dosimetry evaluation and measurement techniques is needed.

  20. Adaptive mean filtering for noise reduction in CT polymer gel dosimetry

    SciTech Connect

    Hilts, Michelle; Jirasek, Andrew

    2008-01-15

    X-ray computed tomography (CT) as a method of extracting 3D dose information from irradiated polymer gel dosimeters is showing potential as a practical means to implement gel dosimetry in a radiation therapy clinic. However, the response of CT contrast to dose is weak and noise reduction is critical in order to achieve adequate dose resolutions with this method. Phantom design and CT imaging technique have both been shown to decrease image noise. In addition, image postprocessing using noise reduction filtering techniques have been proposed. This work evaluates in detail the use of the adaptive mean filter for reducing noise in CT gel dosimetry. Filter performance is systematically tested using both synthetic patterns mimicking a range of clinical dose distribution features as well as actual clinical dose distributions. Both low and high signal-to-noise ratio (SNR) situations are examined. For all cases, the effects of filter kernel size and the number of iterations are investigated. Results indicate that adaptive mean filtering is a highly effective tool for noise reduction CT gel dosimetry. The optimum filtering strategy depends on characteristics of the dose distributions and image noise level. For low noise images (SNR {approx}20), the filtered results are excellent and use of adaptive mean filtering is recommended as a standard processing tool. For high noise images (SNR {approx}5) adaptive mean filtering can also produce excellent results, but filtering must be approached with more caution as spatial and dose distortions of the original dose distribution can occur.

  1. Twenty-first nuclear accident dosimetry intercomparison study, August 6-10, 1984

    SciTech Connect

    Swaja, R.E.; Ragan, G.E.; Sims, C.S.

    1985-05-01

    The twenty-first in a series of nuclear accident dosimetry (NAD) intercomparison (NAD) studies was conducted at the Oak Ridge National Laboratory's Dosimetry Applications Research Facility during August 6-10, 1984. The Health Physics Research Reactor operated in the pulse mode was used to simulate three criticality accidents with different radiation fields. Participants from five organizations measured neutron doses between 0.53 and 4.36 Gy and gamma doses between 0.19 and 1.01 Gy at area monitoring stations and on phantoms. About 75% of all neutron dose estimates based on foil activation, hair activation, simulated blood sodium activation, and thermoluminescent methods were within +-25% of reference values. Approximately 86% of all gamma results measured using thermoluminescent (TLD-700 or CaSO/sub 4/) systems were within +-20% of reference doses which represents a significant improvement over previous studies. Improvements observed in the ability of intercomparison participants to estimate neutron and gamma doses under criticality accident conditions can be partly attributed to experience in previous NAD studies which have provided practical tests of dosimetry systems, enabled participants to improve evaluation methods, and standardized dose reporting conventions. 16 refs., 15 tabs.

  2. Personnel neutron dose assessment upgrade: Volume 1, Personnel neutron dosimetry assessment: (Final report)

    SciTech Connect

    Hadlock, D.E.; Brackenbush, L.W.; Griffith, R.V.; Hankins, D.E.; Parkhurst, M.A.; Stroud, C.M.; Faust, L.G.; Vallario, E.J.

    1988-07-01

    This report provides guidance on the characteristics, use, and calibration criteria for personnel neutron dosimeters. The report is applicable for neutrons with energies ranging from thermal to less than 20 MeV. Background for general neutron dosimetry requirements is provided, as is relevant federal regulations and other standards. The characteristics of personnel neutron dosimeters are discussed, with particular attention paid to passive neutron dosimetry systems. Two of the systems discussed are used at DOE and DOE-contractor facilities (nuclear track emulsion and thermoluminescent-albedo) and another (the combination TLD/TED) was recently developed. Topics discussed in the field applications of these dosimeters include their theory of operation, their processing, readout, and interpretation, and their advantages and disadvantages for field use. The procedures required for occupational neutron dosimetry are discussed, including radiation monitoring and the wearing of dosimeters, their exchange periods, dose equivalent evaluations, and the documenting of neutron exposures. The coverage of dosimeter testing, maintenance, and calibration includes guidance on the selection of calibration sources, the effects of irradiation geometries, lower limits of detectability, fading, frequency of calibration, spectrometry, and quality control. 49 refs., 6 figs., 8 tabs.

  3. Patient dose analysis in total body irradiation through in vivo dosimetry.

    PubMed

    Ganapathy, K; Kurup, P G G; Murali, V; Muthukumaran, M; Bhuvaneshwari, N; Velmurugan, J

    2012-10-01

    Total body irradiation (TBI) is a special radiotherapy technique, administered prior to bone marrow transplantation. Due to the complex nature of the treatment setup, in vivo dosimetry for TBI is mandatory to ensure proper delivery of the intended radiation dose throughout the body. Lithium fluoride (LiF) TLD-100 chips are used for the TBI in vivo dosimetry. Results obtained from the in vivo dosimetry of 20 patients are analyzed. Results obtained from forehead, abdomen, pelvis, and mediastinum showed a similar pattern with the average measured dose from 96 to 97% of the prescription dose. Extremities and chest received a dose greater than the prescription dose in many instances (more than 20% of measurements). Homogeneous dose delivery to the whole body is checked by calculating the mean dose with standard deviation for each fraction. Reasons for the difference between prescription dose and measured dose for each site are discussed. Dose homogeneity within ±10% is achieved using our in-house TBI protocol. PMID:23293453

  4. A method for estimating occupational radiation dose to individuals, using weekly dosimetry data

    SciTech Connect

    Mitchell, T.J.; Ostrouchov, G.; Frome, E.L.; Kerr, G.D.

    1993-12-01

    Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses. It is usually assumed that the annual dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. We propose the use of a probability distribution to describe an individual`s dose during a specific period of time. Statistical methods for estimating this dose distribution are developed. The methods take into account the ``measurement error`` that is produced by the dosimetry system, and the bias that was introduced by policies that lead to right censoring of small doses as zero. The method is applied to a sample of dose histories obtained from hard copy dosimetry records at Oak Ridge National Laboratory (ORNL). The result of this evaluation raises serious questions about the validity of the historical personnel dosimetry data that is currently being used in low-dose studies of nuclear industry workers. In particular, it appears that there was a systematic underestimation of doses for ORNL workers. This could result in biased estimates of dose-response coefficients and their standard errors.

  5. EURADOS strategic research agenda: vision for dosimetry of ionising radiation.

    PubMed

    Rühm, W; Fantuzzi, E; Harrison, R; Schuhmacher, H; Vanhavere, F; Alves, J; Bottollier Depois, J F; Fattibene, P; Knežević, Ž; Lopez, M A; Mayer, S; Miljanić, S; Neumaier, S; Olko, P; Stadtmann, H; Tanner, R; Woda, C

    2016-02-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). PMID:25752758

  6. Retrospective assessment of personnel neutron dosimetry for workers at the Hanford Site

    SciTech Connect

    Fix, J.J.; Wilson, R.H.; Baumgartner, W.B.

    1996-09-01

    This report was prepared to examine the specific issue of the potential for unrecorded neutron dose for Hanford workers, particularly in comparison with the recorded whole body (neutron plus photon) dose. During the past several years, historical personnel dosimetry practices at Hanford have been documented in several technical reports. This documentation provides a detailed history of the technology, radiation fields, and administrative practices used to measure and record dose for Hanford workers. Importantly, documentation has been prepared by personnel whose collective experience spans nearly the entire history of Hanford operations beginning in the mid-1940s. Evaluations of selected Hanford radiation dose records have been conducted along with statistical profiles of the recorded dose data. The history of Hanford personnel dosimetry is complex, spanning substantial evolution in radiation protection technology, concepts, and standards. Epidemiologic assessments of Hanford worker mortality and radiation dose data were initiated in the early 1960s. In recent years, Hanford data have been included in combined analyses of worker cohorts from several Department of Energy (DOE) sites and from several countries through the International Agency for Research on Cancer (IARC). Hanford data have also been included in the DOE Comprehensive Epidemiologic Data Resource (CEDR). In the analysis of Hanford, and other site data, the question of comparability of recorded dose through time and across the respective sites has arisen. DOE formed a dosimetry working group composed of dosimetrists and epidemiologists to evaluate data and documentation requirements of CEDR. This working group included in its recommendations the high priority for documentation of site-specific radiation dosimetry practices used to measure and record worker dose by the respective DOE sites.

  7. Monte Carlo calculations of correction factors for plane-parallel ionization chambers in clinical electron dosimetry

    SciTech Connect

    Araki, Fujio

    2008-09-15

    Recent standard dosimetry protocols recommend that plane-parallel ionization chambers be used in the measurements of depth-dose distributions or the calibration of low-energy electron beams with beam quality R{sub 50}<4 g/cm{sup 2}. In electron dosimetry protocols with the plane-parallel chambers, the wall correction factor, P{sub wall}, in water is assumed to be unity and the replacement correction factor, P{sub repl}, is taken to be unity for well-guarded plane-parallel chambers, at all measurement depths. This study calculated P{sub wall} and P{sub repl} for NACP-02, Markus, and Roos plane-parallel chambers in clinical electron dosimetry using the EGSnrc Monte Carlo code system. The P{sub wall} values for the plane-parallel chambers increased rapidly as a function of depth in water, especially at lower energy. The value around R{sub 50} for NACP-02 was about 10% greater than unity at 4 MeV. The effect was smaller for higher electron energies. Similarly, P{sub repl} values with depth increased drastically at the region with the steep dose gradient for lower energy. For Markus P{sub repl} departed more than 10% from unity close to R{sub 50} due to the narrow guard ring width. P{sub repl} for NACP-02 and Roos was close to unity in the plateau region of depth-dose curves that includes a reference depth, d{sub ref}. It was also found that the ratio of the dose to water and the dose to the sensitive volume in the air cavity for the plane-parallel chambers, D{sub w}/[D{sub air}]{sub pp}, at d{sub ref} differs significantly from that assumed by electron dosimetry protocols.

  8. Improving neutron dosimetry using bubble detector technology

    SciTech Connect

    Buckner, M.A.

    1993-02-01

    Providing accurate neutron dosimetry for a variety of neutron energy spectra is a formidable task for any dosimetry system. Unless something is known about the neutron spectrum prior to processing the dosimeter, the calculated dose may vary greatly from that actually encountered; that is until now. The entrance of bubble detector technology into the field of neutron dosimetry has eliminated the necessity of having an a priori knowledge of the neutron energy spectra. Recently, a new approach in measuring personnel neutron dose equivalent was developed at Oak Ridge National Laboratory. By using bubble detectors in combination with current thermoluminescent dosimeters (TLDs) as a Combination Personnel Neutron Dosimeter (CPND), not only is it possible to provide accurate dose equivalent results, but a simple four-interval neutron energy spectrum is obtained as well. The components of the CPND are a Harshaw albedo TLD and two bubble detectors with theoretical energy thresholds of 100 key and 1500 keV. Presented are (1) a synoptic history surrounding emergence of bubble detector technology, (2) a brief overview of the current theory on mechanisms of interaction, (3) the data and analysis process involved in refining the response functions, (4) performance evaluation of the original CPND and a reevaluation of the same data under the modified method, (5) the procedure used to determine the reference values of component fluence and dose equivalent for field assessment, (6) analysis of the after-modification results, (7) a critique of some currently held assumptions, offering some alternative explanations, and (8) thoughts concerning potential applications and directions for future research.

  9. In vivo light dosimetry for pleural PDT

    NASA Astrophysics Data System (ADS)

    Dimofte, Andreea; Zhu, Timothy C.; Finlay, Jarod C.; Culligan, Melissa; Edmonds, Christine E.; Friedberg, Joseph S.; Cengel, Keith; Hahn, Stephen M.

    2009-02-01

    In-vivo light Dosimetry for patients undergoing photodynamic therapy (PDT) is one of the important dosimetry quantities critical for predicting PDT outcome. This study examines the light fluence (rate) delivered to patients undergoing pleural PDT as a function of treatment time, treatment volume and surface area, and its accuracy as a function of the calibration accuracies of each isotropic detector and the calibration integrating sphere. The patients studied here were enrolled in Phase II clinical trial of Photofrin-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. The ages of the patients studied varied from 34 to 69 year old. All patients were administered 2mg per kg body weight Photoprin 24 hours before the surgery. Patients undergoing photodynamic therapy (PDT) are treated with laser light with a light fluence of 60 J/cm^2 at 630nm. Fluence rate (mW/cm^2) and cumulative fluence (J/cm^2) was monitored at 7 different sites during the entire light treatment delivery. Isotropic detectors were used for in-vivo light dosimetry. The anisotropy of each isotropic detector was found to be within 30%. The mean fluence rate delivery varied from 37.84 to 94.05 mW/cm^2 and treatment time varied from 1762 to 5232s. We have established a correlation between the treatment time and the treatment volume. The results are discussed using an integrating sphere theory and the measured tissue optical properties. The result can be used as a clinical guideline for future pleural PDT treatment.

  10. Model selection for radiochromic film dosimetry

    NASA Astrophysics Data System (ADS)

    Méndez, I.

    2015-05-01

    The purpose of this study was to find the most accurate model for radiochromic film dosimetry by comparing different channel independent perturbation models. A model selection approach based on (algorithmic) information theory was followed, and the results were validated using gamma-index analysis on a set of benchmark test cases. Several questions were addressed: (a) whether incorporating the information of the non-irradiated film, by scanning prior to irradiation, improves the results; (b) whether lateral corrections are necessary when using multichannel models; (c) whether multichannel dosimetry produces better results than single-channel dosimetry; (d) which multichannel perturbation model provides more accurate film doses. It was found that scanning prior to irradiation and applying lateral corrections improved the accuracy of the results. For some perturbation models, increasing the number of color channels did not result in more accurate film doses. Employing Truncated Normal perturbations was found to provide better results than using Micke-Mayer perturbation models. Among the models being compared, the triple-channel model with Truncated Normal perturbations, net optical density as the response and subject to the application of lateral corrections was found to be the most accurate model. The scope of this study was circumscribed by the limits under which the models were tested. In this study, the films were irradiated with megavoltage radiotherapy beams, with doses from about 20-600 cGy, entire (8 inch  × 10 inch) films were scanned, the functional form of the sensitometric curves was a polynomial and the different lots were calibrated using the plane-based method.

  11. Active Solid State Dosimetry for Lunar EVA

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Chen, Liang-Yu.

    2006-01-01

    The primary threat to astronauts from space radiation is high-energy charged particles, such as electrons, protons, alpha and heavier particles, originating from galactic cosmic radiation (GCR), solar particle events (SPEs) and trapped radiation belts in Earth orbit. There is also the added threat of secondary neutrons generated as the space radiation interacts with atmosphere, soil and structural materials.[1] For Lunar exploration missions, the habitats and transfer vehicles are expected to provide shielding from standard background radiation. Unfortunately, the Lunar Extravehicular Activity (EVA) suit is not expected to afford such shielding. Astronauts need to be aware of potentially hazardous conditions in their immediate area on EVA before a health and hardware risk arises. These conditions would include fluctuations of the local radiation field due to changes in the space radiation field and unknown variations in the local surface composition. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.[2

  12. USF/Russian dosimetry on STS-57

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The major purpose of this experiment was to conduct an international comparison of passive dosimetry methods in space. Two APD's were flown in the charged particle directional spectrometer (CPDS)/tissue equivalent proportional counter (TEPC) locker on the space shuttle during the STS-57 mission. Due to placement, the shielding and radiation environment of the APD's were nearly the same and the dosimeters distributed in the two boxes can be considered equally exposed. The dosimeter types included plastic nuclear track detectors (PNTD's), thermoluminescent detectors (TLD), nuclear emulsions, and thermal/resonance neutron detectors (TRND's). The USF dosimeters included PNTD's, TLD's, and TRND's, while the Russian dosimeters included PNTD's, TLD's, and nuclear emulsions.

  13. Multisegmented ion chamber for CT scanner dosimetry

    SciTech Connect

    Moore, M.M.; Cacak, R.K.; Hendee, W.R.

    1981-01-01

    A multisegmented, ionization chamber capable of determining dosimetric profiles from a CT scanner has been developed and tested. The chamber consists of a number of 2 mm wide electrically isolated segments from which ionization currents may be measured. Presented here are the performance characteristics of the chamber including energy response, dose linearity, and corrections for ''cross talk'' between segments. Sample dosimetric profiles are depicted for 3 and 6 mm nominal beam widths at two locations in a dosimetric phantom positioned in the x-ray beam of a fourth generation CT scanner. The results agree well with the conventional method of obtaining dosimetry measurements with TLD chips.

  14. Neutron dosimetry of the Little Boy device

    SciTech Connect

    Pederson, R.A.; Plassmann, E.A.

    1984-01-01

    Neutron dose rates at several angular locations and at distances out to 0.5 mile have been measured during critical operation of the Little Boy replica. We used modified remmetes and thermoluminescent dosimetry techniques for the measurements. The present status of our analysis is presented including estimates of the neutron-dose-relaxation length in air and the variation of the neutron-to-gamma-ray dose ratio with distance from the replica. These results are preliminary and are subject to detector calibration measurements.

  15. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    SciTech Connect

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y.; Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N.

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  16. The next decade in external dosimetry

    SciTech Connect

    Griffith, R.V.

    1986-10-01

    As the radiation protection community moves through the last half of the '80s and into the next decade, we can expect the requirements for external dosimetry to become increasingly more restrictive and demanding. As in other health protection fields, growing regulatory and legal pressures, together with a natural evolution in philosophy, require the health physicist to display an increasing degree of accountability, rigor, and professionalism. The good news is that, for the most part, the technology necessary to solve many of the problems will be available or not far behind. This paper describes anticipated technology. 66 refs., 10 figs.

  17. Hydroxyanthraquinone dye solutions for radiation dosimetry.

    PubMed

    Bedear El-Assy, N; Alian, A; Abdel Rahim, F; Roushdy, H

    1982-06-01

    An investigation has been carried out on the effect of gamma-radiation on the absorption spectra of aqueous solutions of the hydroxyanthraquinone dyes, alizarin and alizarin red S. Ionizing radiation at absorbed doses over the range 10(5)-3 x 10(6) rad brought about gradual bleaching of aerated (oxygenated) dye solutions. The radiolytic bleaching was enhanced through addition of hydrogen peroxide, as expected. A mechanism for the radiolytic reaction is proposed, based on chemical attack of the chromophore by radicals and radical ions as aqueous radiolysis products. Suggestions are made for possible radiation dosimetry by means of spectrophotometric analysis of the absorption spectra. PMID:7107037

  18. Changes in Occupational Radiation Exposures after Incorporation of a Real-time Dosimetry System in the Interventional Radiology Suite.

    PubMed

    Poudel, Sashi; Weir, Lori; Dowling, Dawn; Medich, David C

    2016-08-01

    A statistical pilot study was retrospectively performed to analyze potential changes in occupational radiation exposures to Interventional Radiology (IR) staff at Lawrence General Hospital after implementation of the i2 Active Radiation Dosimetry System (Unfors RaySafe Inc, 6045 Cochran Road Cleveland, OH 44139-3302). In this study, the monthly OSL dosimetry records obtained during the eight-month period prior to i2 implementation were normalized to the number of procedures performed during each month and statistically compared to the normalized dosimetry records obtained for the 8-mo period after i2 implementation. The resulting statistics included calculation of the mean and standard deviation of the dose equivalences per procedure and included appropriate hypothesis tests to assess for statistically valid differences between the pre and post i2 study periods. Hypothesis testing was performed on three groups of staff present during an IR procedure: The first group included all members of the IR staff, the second group consisted of the IR radiologists, and the third group consisted of the IR technician staff. After implementing the i2 active dosimetry system, participating members of the Lawrence General IR staff had a reduction in the average dose equivalence per procedure of 43.1% ± 16.7% (p = 0.04). Similarly, Lawrence General IR radiologists had a 65.8% ± 33.6% (p=0.01) reduction while the technologists had a 45.0% ± 14.4% (p=0.03) reduction. PMID:27356166

  19. Effect of processor temperature on film dosimetry

    SciTech Connect

    Srivastava, Shiv P.; Das, Indra J.

    2012-07-01

    Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d{sub max.}, 10 Multiplication-Sign 10 cm{sup 2}, 100 cm) to a given dose. An automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4-40.6 Degree-Sign C (85-105 Degree-Sign F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.

  20. Numerical dosimetry dedicated to children RF exposure.

    PubMed

    Wiart, Joe; Hadjem, Abdelhamid; Varsier, Nadège; Conil, Emmanuelle

    2011-12-01

    Children are more and more using wireless communication systems. This growth has strengthened public concern and has highlighted the need to assess the radio frequency (RF) exposure of children. In dosimetry, taking advantage of the improvement of High Performance Calculation systems, great efforts have been carried out to improve the numerical tools and human models used to assess the Specific Absorption Rate (SAR). This paper analyses progress in building child and foetus models for numerical dosimetry purpose. The simulation results, in terms of Specific Absorption Rate over 1 and 10 g of tissues, in specific organs such as brain and averaged over the whole body, are reported and analysed. The results show that compliance methods used nowadays to certify phones are valid for children. The studies also show that specific tissues such as peripheral brain tissues can have higher exposure with children than with adults. Studies performed with plane waves as sources and whole body children models show that the whole body SAR of children can be higher than the WBSAR of adults and that the compliance to ICNIRP reference levels does not guarantee the compliance to ICNIRP basic restrictions. Dealing with the foetus models and dielectric properties great efforts have been made. Preliminary results show that the foetus exposure is often lower than the mother exposure, with an important influencing parameter: the foetus position in the uterus. PMID:22005525

  1. Dosimetry of inhaled radon and thoron progeny

    SciTech Connect

    James, A.C.

    1994-06-01

    This chapter reviews recent developments in modeling doses received by lung tissues, with particular emphasis on application of ICRP`s new dosimetric model of the respiratory tract for extrapolating to other environments the established risks from exposure to radon progeny in underground mines. Factors discussed include: (1) the influence of physical characteristics of radon progeny aerosols on dose per unit exposure, e.g., the unattached fraction, and the activity-size distributions of clustered and attached progeny; (2) the dependence of dose on breathing rate, and on the exposed subject (man, woman or child); (3) the variability of dose per unit exposure in a home when exposure is expressed in terms of potential {alpha} energy or radon gas concentration; (4) the comparative dosimetry of thoron progeny; and (5) the effects of air-cleaning on lung dose. Also discussed is the apparent discrepancy between lung cancer risk estimates derived purely from dosimetry and the lung cancer incidence observed in the epidemiological studies of radon-exposed underground miners. Application of ICRP`s recommended risk factors appears to overestimate radon lung-cancer risk for miners by a factor of three. ``Normalization`` of the calculated effective dose is therefore needed, at least for {alpha} dose from radon and thoron progeny, in order to obtain a realistic estimate of lung cancer risk.

  2. Eleventh DOE workshop on personnel neutron dosimetry

    SciTech Connect

    Not Available

    1991-12-31

    Since its formation, the Office of Health (EH-40) has stressed the importance of the exchange of information related to and improvements in neutron dosimetry. This Workshop was the eleventh in the series sponsored by the Department of Energy (DOE). It provided a forum for operational personnel at DOE facilities to discuss current issues related to neutron dosimetry and for leading investigators in the field to discuss promising approaches for future research. A total of 26 papers were presented including the keynote address by Dr. Warren K. Sinclair, who spoke on, ``The 1990 Recommendations of the ICRP and their Biological Background.`` The first several papers discussed difficulties in measuring neutrons of different energies and ways of compensating or deriving correction factors at individual facilities. Presentations were also given by the US Navy and Air Force. Current research in neutron dosimeter development was the subject of the largest number of papers. These included a number on the development of neutron spectrometers. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  3. The importance of 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Low, Daniel

    2015-01-01

    Radiation therapy has been getting progressively more complex for the past 20 years. Early radiation therapy techniques needed only basic dosimetry equipment; motorized water phantoms, ionization chambers, and basic radiographic film techniques. As intensity modulated radiation therapy and image guided therapy came into widespread practice, medical physicists were challenged with developing effective and efficient dose measurement techniques. The complex 3-dimensional (3D) nature of the dose distributions that were being delivered demanded the development of more quantitative and more thorough methods for dose measurement. The quality assurance vendors developed a wide array of multidetector arrays that have been enormously useful for measuring and characterizing dose distributions, and these have been made especially useful with the advent of 3D dose calculation systems based on the array measurements, as well as measurements made using film and portal imagers. Other vendors have been providing 3D calculations based on data from the linear accelerator or the record and verify system, providing thorough evaluation of the dose but lacking quality assurance (QA) of the dose delivery process, including machine calibration. The current state of 3D dosimetry is one of a state of flux. The vendors and professional associations are trying to determine the optimal balance between thorough QA, labor efficiency, and quantitation. This balance will take some time to reach, but a necessary component will be the 3D measurement and independent calculation of delivered radiation therapy dose distributions.

  4. PDT dose dosimetry for pleural photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Sharikova, Anna V.; Finlay, Jarod C.; Liang, Xing; Zhu, Timothy C.

    2013-03-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in target tissue. Although existing systems are capable of measuring the light fluence in vivo, the concurrent measurement of photosensitizer in the treated tissue so far has been lacking. We have developed and tested a new method to simultaneously acquire light dosimetry and photosensitizer fluorescence data via the same isotropic detector, employing treatment light as the excitation source. A dichroic beamsplitter is used to split light from the isotropic detector into two fibers, one for light dosimetry, the other, after the 665 nm treatment light is removed by a band-stop filter, to a spectrometer for fluorescence detection. The light fluence varies significantly during treatment because of the source movement. The fluorescence signal is normalized by the light fluence measured at treatment wavelength. We have shown that the absolute photosensitizer concentration can be obtained by an optical properties correction factor and linear spectral fitting. Tissue optical properties are determined using an absorption spectroscopy probe immediately before PDT at the same sites. This novel method allows accurate real-time determination of delivered PDT dose using existing isotropic detectors, and may lead to a considerable improvement of PDT treatment quality compared to the currently employed systems. Preliminary data in patient studies is presented.

  5. Dosimetry of radium-223 and progeny

    SciTech Connect

    Fisher, D.R.; Sgouros, G.

    1999-01-01

    Radium-223 is a short-lived (11.4 d) alpha emitter with potential applications in radioimmunotherapy of cancer. Radium-223 can be complexed and linked to protein delivery molecules for specific tumor-cell targeting. It decays through a cascade of short-lived alpha- and beta-emitting daughters with emission of about 28 MeV of energy through complete decay. The first three alpha particles are essentially instantaneous. Photons associated with Ra-223 and progeny provide the means for tumor and normal-organ imaging and dosimetry. Two beta particles provide additional therapeutic value. Radium-223 may be produced economically and in sufficient amounts for widescale application. Many aspects of the chemistry of carrier-free isotope preparation, complexation, and linkage to the antibody have been developed and are being tested. The radiation dosimetry of a Ra-223-labeled antibody shows favorable tumor to normal tissue dose ratios for therapy. The 11.4-d half-life of Ra-223 allows sufficient time for immunoconjugate preparation, administration, and tumor localization by carrier antibodies before significant radiological decay takes place. If 0.01 percent of a 37 MBq (1 mCi) injection deposits in a one gram tumor mass, and if the activity is retained with a typical effective half-time (75 h), the absorbed dose will be 163 mGy MBq{sup {minus}1} (600 rad mCi{sup {minus}1}) administered. 49 refs., 5 figs., 2 tabs.

  6. Calibration of helical tomotherapy machine using EPR/alanine dosimetry

    SciTech Connect

    Perichon, Nicolas; Garcia, Tristan; Francois, Pascal; Lourenco, Valerie; Lesven, Caroline; Bordy, Jean-Marc

    2011-03-15

    Purpose: Current codes of practice for clinical reference dosimetry of high-energy photon beams in conventional radiotherapy recommend using a 10x10 cm{sup 2} square field, with the detector at a reference depth of 10 cm in water and 100 cm source to surface distance (SSD) (AAPM TG-51) or 100 cm source-to-axis distance (SAD) (IAEA TRS-398). However, the maximum field size of a helical tomotherapy (HT) machine is 40x5 cm{sup 2} defined at 85 cm SAD. These nonstandard conditions prevent a direct implementation of these protocols. The purpose of this study is twofold: To check the absorbed dose in water and dose rate calibration of a tomotherapy unit as well as the accuracy of the tomotherapy treatment planning system (TPS) calculations for a specific test case. Method: Both topics are based on the use of electron paramagnetic resonance (EPR) using alanine as transfer dosimeter between the Laboratoire National Henri Becquerel (LNHB) {sup 60}Co-{gamma}-ray reference beam and the Institut Curie's HT beam. Irradiations performed in the LNHB reference {sup 60}Co-{gamma}-ray beam allowed setting up the calibration method, which was then implemented and tested at the LNHB 6 MV linac x-ray beam, resulting in a deviation of 1.6% (at a 1% standard uncertainty) relative to the reference value determined with the standard IAEA TRS-398 protocol. Results: HT beam dose rate estimation shows a difference of 2% with the value stated by the manufacturer at a 2% standard uncertainty. A 4% deviation between measured dose and the calculation from the tomotherapy TPS was found. The latter was originated by an inadequate representation of the phantom CT-scan values and, consequently, mass densities within the phantom. This difference has been explained by the mass density values given by the CT-scan and used by the TPS which were not the true ones. Once corrected using Monte Carlo N-Particle simulations to validate the accuracy of this process, the difference between corrected TPS

  7. TG-69: radiographic film for megavoltage beam dosimetry.

    PubMed

    Pai, Sujatha; Das, Indra J; Dempsey, James F; Lam, Kwok L; Losasso, Thomas J; Olch, Arthur J; Palta, Jatinder R; Reinstein, Lawrence E; Ritt, Dan; Wilcox, Ellen E

    2007-06-01

    TG-69 is a task group report of the AAPM on the use of radiographic film for dosimetry. Radiographic films have been used for radiation dosimetry since the discovery of x-rays and have become an integral part of dose verification for both routine quality assurance and for complex treatments such as soft wedges (dynamic and virtual), intensity modulated radiation therapy (IMRT), image guided radiation therapy (IGRT), and small field dosimetry like stereotactic radiosurgery. Film is convenient to use, spatially accurate, and provides a permanent record of the integrated two dimensional dose distributions. However, there are several challenges to obtaining high quality dosimetric results with film, namely, the dependence of optical density on photon energy, field size, depth, film batch sensitivity differences, film orientation, processing conditions, and scanner performance. Prior to the clinical implementation of a film dosimetry program, the film, processor, and scanner need to be tested to characterize them with respect to these variables. Also, the physicist must understand the basic characteristics of all components of film dosimetry systems. The primary mission of this task group report is to provide guidelines for film selection, irradiation, processing, scanning, and interpretation to allow the physicist to accurately and precisely measure dose with film. Additionally, we present the basic principles and characteristics of film, processors, and scanners. Procedural recommendations are made for each of the steps required for film dosimetry and guidance is given regarding expected levels of accuracy. Finally, some clinical applications of film dosimetry are discussed. PMID:17654924

  8. PREFACE: Third International Conference on Radiotherapy Gel Dosimetry

    NASA Astrophysics Data System (ADS)

    DeDeene, Yves; Baldock, Clive

    2004-01-01

    Gel dosimetry is not merely another dosimetry technique. Gel dosimeters are integrating dosimeters that enable dose verification in three dimensions. The application of a 3D dosimetry technique in the clinic would give a real push to the implementation of advanced high-precision radiotherapy technologies in many institutes. It can be expected that with the recent developments in the field towards more user-friendly gel systems and imaging modalities, gel dosimetry will become a vital link in the chain of high-precision radiation cancer therapy in the near future. Many researchers all over the world have contributed to the emerging technology of gel dosimetry. The research field of gel dosimetry is recognized to be very broad from polymer and analytical chemistry and material research to imaging technologies. The DOSGEL conferences in the past have proven to be an important forum at which material scientists, chemists, medical physicists, magnetic resonance imaging and radiation specialists brought together a critical mass of thoughts, findings and considerations. DOSGEL 2004 has been endorsed by many international, supra-national and national medical physics organizations and publishers. These proceedings contain 51 papers that cover various aspects of gel dosimetry.

  9. Improving the accuracy of ionization chamber dosimetry in small megavoltage x-ray fields

    NASA Astrophysics Data System (ADS)

    McNiven, Andrea L.

    The dosimetry of small x-ray fields is difficult, but important, in many radiation therapy delivery methods. The accuracy of ion chambers for small field applications, however, is limited due to the relatively large size of the chamber with respect to the field size, leading to partial volume effects, lateral electronic disequilibrium and calibration difficulties. The goal of this dissertation was to investigate the use of ionization chambers for the purpose of dosimetry in small megavoltage photon beams with the aim of improving clinical dose measurements in stereotactic radiotherapy and helical tomotherapy. A new method for the direct determination of the sensitive volume of small-volume ion chambers using micro computed tomography (muCT) was investigated using four nominally identical small-volume (0.56 cm3) cylindrical ion chambers. Agreement between their measured relative volume and ionization measurements (within 2%) demonstrated the feasibility of volume determination through muCT. Cavity-gas calibration coefficients were also determined, demonstrating the promise for accurate ion chamber calibration based partially on muCT. The accuracy of relative dose factor measurements in 6MV stereotactic x-ray fields (5 to 40mm diameter) was investigated using a set of prototype plane-parallel ionization chambers (diameters of 2, 4, 10 and 20mm). Chamber and field size specific correction factors ( CSFQ ), that account for perturbation of the secondary electron fluence, were calculated using Monte Carlo simulation methods (BEAM/EGSnrc simulations). These correction factors (e.g. CSFQ = 1.76 (2mm chamber, 5mm field) allow for accurate relative dose factor (RDF) measurement when applied to ionization readings, under conditions of electronic disequilibrium. With respect to the dosimetry of helical tomotherapy, a novel application of the ion chambers was developed to characterize the fan beam size and effective dose rate. Characterization was based on an adaptation of the

  10. Development of an applicator for eye lens dosimetry during radiotherapy

    PubMed Central

    Park, J M; Lee, J; Ye, S-J

    2014-01-01

    Objective: To develop an applicator for in vivo measurements of lens dose during radiotherapy. Methods: A contact lens-shaped applicator made of acrylic was developed for in vivo measurements of lens dose. This lens applicator allows the insertion of commercially available metal oxide semiconductor field effect transistors (MOSFETs) dosemeters. CT images of an anthropomorphic phantom with and without the applicator were acquired. Ten volumetric modulated arc therapy plans each for the brain and the head and neck cancer were generated and delivered to an anthropomorphic phantom. The differences between the measured and the calculated doses at the lens applicator, as well as the differences between the measured and the calculated doses at the surface of the eyelid were acquired. Results: The average difference between the measured and the calculated doses with the applicator was 3.1 ± 1.8 cGy with a micro MOSFET and 2.8 ± 1.3 cGy with a standard MOSFET. The average difference without the lens applicator was 4.8 ± 5.2 cGy with the micro MOSFET and 5.7 ± 6.5 cGy with the standard MOSFET. The maximum difference with the micro MOSFET was 10.5 cGy with the applicator and 21.1 cGy without the applicator. For the standard MOSFET, it was 6.8 cGy with the applicator and 27.6 cGy without the applicator. Conclusion: The lens applicator allowed reduction of the differences between the calculated and the measured doses during in vivo measurement for the lens compared with in vivo measurement at the surface of the eyelid. Advances in knowledge: By using an applicator for in vivo dosimetry of the eye lens, it was possible to reduce the measurement uncertainty. PMID:25111733

  11. Items Supporting the Hanford Internal Dosimetry Program Implementation of the IMBA Computer Code

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.

    2008-01-07

    The Hanford Internal Dosimetry Program has adopted the computer code IMBA (Integrated Modules for Bioassay Analysis) as its primary code for bioassay data evaluation and dose assessment using methodologies of ICRP Publications 60, 66, 67, 68, and 78. The adoption of this code was part of the implementation plan for the June 8, 2007 amendments to 10 CFR 835. This information release includes action items unique to IMBA that were required by PNNL quality assurance standards for implementation of safety software. Copie of the IMBA software verification test plan and the outline of the briefing given to new users are also included.

  12. Standardization versus Standards.

    ERIC Educational Resources Information Center

    Meier, Deborah

    2002-01-01

    Examines differences between old state-designed norm-referenced tests and new tests aligned with the curriculum. Concludes that new state tests are very similar to old ones. Discusses impact of new high-stakes standardized tests on students and teachers. Argues the new wave of standardized testing is not the answer to improving student…

  13. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  14. New Federal Air Quality Standards.

    ERIC Educational Resources Information Center

    Stopinski, O. W.

    The report discusses the current procedures for establishing air quality standards, the bases for standards, and, finally, proposed and final National Primary and Secondary Ambient Air Quality Standards for sulfur dioxide, particulate matter, carbon monoxide, nonmethane hydrocarbons, photochemical oxidants, and nitrogen dioxide. (Author/RH)

  15. IEC STANDARDS FOR INDIVIDUAL MONITORING OF IONISING RADIATION

    SciTech Connect

    Voytchev, Miroslav; Ambrosi, P.; Behrens, R.; Chiaro Jr, Peter John

    2011-01-01

    This paper presents IEC/SC 45B Radiation protection instrumentation and its standards for individual monitoring of ionising radiation: IEC 61526 Ed. 3 for active personal dosemeters and IEC 62387-1 for passive integrating dosimetry systems. The transposition of these standards as CENELEC (European) standards is also discussed together with the collaboration between IEC/SC 45B and ISO/TC 85/SC 2.

  16. OSL studies of alkali fluoroperovskite single crystals for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Raja, A.; Madhusoodanan, U.; Annalakshmi, O.; Ramasamy, P.

    2016-08-01

    This paper presents a preliminary investigation of the optically stimulated luminescence (OSL) of alkali fluoroperovskite single crystals for radiation dosimetry. The perovskite-like KMgF3, NaMgF3 and LiBaF3 polycrystalline compounds doped with rare earths (Eu2+ and Ce3+) were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of these compounds have been grown from melt by using vertical Bridgman-Stockbarger method. The Linearly Modulated OSL and Continuous Wave OSL measurements were performed in these alkali fluorides using blue light stimulation. Thermal bleaching experiments have shown that OSL signals originate from traps which are unstable near 200 °C, thus proving the suitability of the signals for dosimetric purposes. Optical bleaching measurements were also performed for these fluoride samples. OSL dose response was studied as a function of dose which was found to increase with beta dose.

  17. Standards not that standard.

    PubMed

    Vilanova, Cristina; Tanner, Kristie; Dorado-Morales, Pedro; Villaescusa, Paula; Chugani, Divya; Frías, Alba; Segredo, Ernesto; Molero, Xavier; Fritschi, Marco; Morales, Lucas; Ramón, Daniel; Peña, Carlos; Peretó, Juli; Porcar, Manuel

    2015-01-01

    There is a general assent on the key role of standards in Synthetic Biology. In two consecutive letters to this journal, suggestions on the assembly methods for the Registry of standard biological parts have been described. We fully agree with those authors on the need of a more flexible building strategy and we highlight in the present work two major functional challenges standardization efforts have to deal with: the need of both universal and orthogonal behaviors. We provide experimental data that clearly indicate that such engineering requirements should not be taken for granted in Synthetic Biology. PMID:26435739

  18. SU-D-304-03: Small Field Proton Dosimetry Using MicroDiamond and Gafchromic Film

    SciTech Connect

    Andersen, A; Das, I; Coutinho, L

    2015-06-15

    Purpose: Certain dosimetric characteristics continue to make proton beam therapy an appealing modality for cancer treatment. The proton Bragg peak allows for conformal radiation dose delivery to the target while reducing dose to normal tissue and organs. As field sizes become very small the benefit of the Bragg peak is diminished due to loss of transverse equilibrium along the central beam axis. Furthermore, aperture scattering contributes additional dose along the central axis. These factors warrant the need for accurate small field dosimetry. In this study small field dosimetry was performed using two different methods. Methods: Small field dosimetry measurements were performed using a PTW microdiamond detector and Gafchromic EBT2 film for aperture sizes ranging from 0.5cm to 10cm and a proton range in water of 10cm to 27cm. The measurements were analyzed and then compared to each other and to reference dosimetry data acquired with a Markus chamber. Results: A decrease in normalized output is observed at small field sizes and at larger ranges in water using both measurement methods. Also, a large variation is observed between the output measurements by microdiamond and film at very small field sizes. At the smallest aperture, normalized output ranged from 0.16 to 0.72 and the percent difference between both measurement methods ranged from 36% to 70% depending on proton range. At field sizes above 5cm the film and microdiamond agree within 3%. Conclusion: Although both measurement methods exhibit a general decrease in output factor at small field sizes, dosimetric measurements for small fields using these two methods can vary significantly. Dosimetry under standard conditions is not sufficient to correctly model the dose distributions and outputs factors for small field sizes, additional small field measurements should be performed.

  19. Permanent Breast Seed Implant Dosimetry Quality Assurance

    SciTech Connect

    Keller, Brian M.; Ravi, Ananth; Sankreacha, Raxa; Pignol, Jean-Philippe

    2012-05-01

    Purpose: A permanent breast seed implant is a novel method of accelerated partial breast irradiation for women with early-stage breast cancer. This article presents pre- and post-implant dosimetric data, relates these data to clinical outcomes, and makes recommendations for those interested in starting a program. Methods and Materials: A total of 95 consecutive patients were accrued into one of three clinical trials after breast-conserving surgery: a Phase I/II trial (67 patients with infiltrating ductal carcinoma); a Phase II registry trial (25 patients with infiltrating ductal carcinoma); or a multi-center Phase II trial for patients with ductal carcinoma in situ (3 patients). Contouring of the planning target volume (PTV) was done on a Pinnacle workstation and dosimetry calculations, including dose-volume histograms, were done using a Variseed planning computer. Results: The mean pre-implant PTV coverage for the V{sub 90}, V{sub 100}, V{sub 150}, and V{sub 200} were as follows: 98.8% {+-} 1.2% (range, 94.5-100%); 97.3% {+-} 2.1% (range, 90.3-99.9%), 68.8% {+-} 14.3% (range, 32.7-91.5%); and 27.8% {+-} 8.6% (range, 15.1-62.3%). The effect of seed motion was characterized by post-implant dosimetry performed immediately after the implantation (same day) and at 2 months after the implantation. The mean V{sub 100} changed from 85.6% to 88.4% (p = 0.004) and the mean V{sub 200} changed from 36.2% to 48.3% (p < 0.001). Skin toxicity was associated with maximum skin dose (p = 0.014). Conclusions: Preplanning dosimetry should aim for a V{sub 90} of approximately 100%, a V{sub 100} between 95% and 100%, and a V{sub 200} between 20% and 30%, as these numbers are associated with no local recurrences to date and good patient tolerance. In general, the target volume coverage improved over the duration of the seed therapy. The maximum skin dose, defined as the average dose over the hottest 1 Multiplication-Sign 1-cm{sup 2} surface area, should be limited to 90% of the

  20. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

    PubMed Central

    2010-01-01

    doses on a particle surface area or number basis can be as high as three to six orders of magnitude. As a consequence, in vitro hazard assessments utilizing mass-based exposure metrics have inherently high errors where particle number or surface areas target cells doses are believed to drive response. The gold standard for particle dosimetry for in vitro nanotoxicology studies should be direct experimental measurement of the cellular content of the studied particle. However, where such measurements are impractical, unfeasible, and before such measurements become common, particle dosimetry models such as ISDD provide a valuable, immediately useful alternative, and eventually, an adjunct to such measurements. PMID:21118529

  1. ISDD: A Computational Model of Particle Sedimentation, Diffusion and Target Cell Dosimetry for In Vitro Toxicity Studies

    SciTech Connect

    Hinderliter, Paul M.; Minard, Kevin R.; Orr, Galya; Chrisler, William B.; Thrall, Brian D.; Pounds, Joel G.; Teeguarden, Justin G.

    2010-11-30

    . As a consequence, in vitro hazard assessments utilizing mass-based exposure metrics have inherently high errors where particle number or surface areas target cells doses are believed to drive response. The gold standard for particle dosimetry for in vitro nanotoxicology studies should be direct experimental measurement of the cellular content of the studied particle. However, where such measurements are impractical, unfeasible, and before such measurements become common, particle dosimetry models such as ISDD provide a valuable, immediately useful alternative, and eventually an adjunct to such measurements.

  2. Investigation of effect of variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio-immunotherapy

    NASA Astrophysics Data System (ADS)

    Wilderman, S. J.; Roberson, P. L.; Bolch, W. E.; Dewaraja, Y. K.

    2013-07-01

    A method is described for computing patient-specific absorbed dose rates to active marrow which accounts for spatial variation in bone volume fraction and marrow cellularity. A module has been added to the 3D Monte Carlo dosimetry program DPM to treat energy deposition in the components of bone spongiosa distinctly. Homogeneous voxels in regions containing bone spongiosa (as defined on CT images) are assumed to be comprised only of bone, active (red) marrow and inactive (yellow) marrow. Cellularities are determined from biopsy, and bone volume fractions are computed from cellularities and CT-derived voxel densities. Electrons are assumed to deposit energy locally in the three constituent components in proportions determined by electron energy absorption fractions which depend on energy, cellularity, and bone volume fraction, and which are either taken from the literature or are derived from Monte Carlo simulations using EGS5. Separate algorithms are used to model primary β particles and secondary electrons generated after photon interactions. Treating energy deposition distinctly in bone spongiosa constituents leads to marrow dosimetry results which differ from homogeneous spongiosa dosimetry by up to 20%. Dose rates in active marrow regions with cellularities of 20, 50, and 80% can vary by up to 20%, and can differ by up to 10% as a function of bone volume fraction. Dose to bone marrow exhibits a strong dependence on marrow cellularity and a potentially significant dependence on bone volume fraction.

  3. Development and validation of a GEANT4 radiation transport code for CT dosimetry

    PubMed Central

    Carver, DE; Kost, SD; Fernald, MJ; Lewis, KG; Fraser, ND; Pickens, DR; Price, RR; Stabin, MG

    2014-01-01

    We have created a radiation transport code using the GEANT4 Monte Carlo toolkit to simulate pediatric patients undergoing CT examinations. The focus of this paper is to validate our simulation with real-world physical dosimetry measurements using two independent techniques. Exposure measurements were made with a standard 100-mm CT pencil ionization chamber, and absorbed doses were also measured using optically stimulated luminescent (OSL) dosimeters. Measurements were made in air, a standard 16-cm acrylic head phantom, and a standard 32-cm acrylic body phantom. Physical dose measurements determined from the ionization chamber in air for 100 and 120 kVp beam energies were used to derive photon-fluence calibration factors. Both ion chamber and OSL measurement results provide useful comparisons in the validation of our Monte Carlo simulations. We found that simulated and measured CTDI values were within an overall average of 6% of each other. PMID:25706135

  4. Development and validation of a GEANT4 radiation transport code for CT dosimetry.

    PubMed

    Carver, D E; Kost, S D; Fernald, M J; Lewis, K G; Fraser, N D; Pickens, D R; Price, R R; Stabin, M G

    2015-04-01

    The authors have created a radiation transport code using the GEANT4 Monte Carlo toolkit to simulate pediatric patients undergoing CT examinations. The focus of this paper is to validate their simulation with real-world physical dosimetry measurements using two independent techniques. Exposure measurements were made with a standard 100-mm CT pencil ionization chamber, and absorbed doses were also measured using optically stimulated luminescent (OSL) dosimeters. Measurements were made in air with a standard 16-cm acrylic head phantom and with a standard 32-cm acrylic body phantom. Physical dose measurements determined from the ionization chamber in air for 100 and 120 kVp beam energies were used to derive photon-fluence calibration factors. Both ion chamber and OSL measurement results provide useful comparisons in the validation of the Monte Carlo simulations. It was found that simulated and measured CTDI values were within an overall average of 6% of each other. PMID:25706135

  5. Experimental comparison of seven commercial dosimetry diodes for measurement of stereotactic radiosurgery cone factors

    SciTech Connect

    Dieterich, Sonja; Sherouse, George W.

    2011-07-15

    Purpose: The purpose of this work is to assess the variation in performance of various commercially available dosimetry diodes for quantitative small field dosimetry, specifically by intercomparing measurements of SRS cone factors. Methods: Measurements were made in 6 MV photon beams with fixed SRS cones for two accelerator-based SRS systems: a Varian Clinac iX (Varian/Zmed cones) at 600 MU/min and a CyberKnife model G4 at 800 MU/min. Measurements were made at 1.5 cm depth in water using the IBA Dosimetry ''blue phantom'' 3D scanning system, controlled by omnipro-accept software. Source-to-detector distance was 100 cm for the Clinac, 80 cm for the CyberKnife. Two normalization methods were used for the Clinac, one directly referenced to diode measurements in a 10 cm x 10 cm square field and the other indirectly by ''daisy-chaining'' diode measurements to ion chamber measurement in the 10 cm x 10 cm reference field through an intermediate 4 cm x 4 cm square field. CyberKnife factors were referenced directly to measurements in the 60 mm reference field. Seven commercial diodes were evaluated: PTW TN60008, TN60012, TN60016, TN60017; IBA Dosimetry SFD; Sun Nuclear EDGE; Exradin SD1 (first generation prototype). Results: With the exception of the SFD, all the evaluated devices yielded surprisingly consistent results. Standard deviations of Clinac factors for four diodes (SD1, EDGE, TN60008, and TN60012) ranged from approximately 0.50% at 30 mm to 2.0% at 5 mm cones size when referenced directly to the 10 cm x 10 cm measurement. The daisy-chaining strategy reduced the standard deviation to approximately 0.30% at 30 mm and 1.9% at 5 mm. Standard deviations for the same four diodes in the CyberKnife beam ranged up to approximately 1.0% at 5 mm. Conclusions: The inter-detector variation is small and appears to be systematic with detector packaging, more inherent filtration producing flatter curves for both the relatively hard Clinac beam and the softer CyberKnife beam. The

  6. Dose Escalation and Dosimetry of First in Human Alpha Radioimmunotherapy with 212Pb-TCMC-trastuzumab

    PubMed Central

    Meredith, Ruby; Torgue, Julien; Shen, Sui; Fisher, Darrell R.; Banaga, Eileen; Bunch, Patty; Morgan, Desiree; Fan, Jinda; Straughn, J. Michael

    2015-01-01

    Our purpose was to study the safety, distribution, pharmacokinetics, immunogenicity and tumor response of intraperitoneal (IP) 212Pb-TCMC-trastuzumab (TCMC is S-2-(4-isothiocyantobenzl)-1, 4, 7, 10-tetraaza-1, 4, 7, 10=tetra (2-carbamoylmethl) cyclododecane) in patients with HER-2 expressing malignancy. Methods In a standard 3+3 Phase 1 design for dose escalation, 212Pb-TCMC-trastuzumab was delivered IP less than 4 hours after giving 4mg/kg IV trastuzumab to patients with peritoneal carcinomatosis who had failed standard therapies. Results Five dosage levels (7.4, 9.6, 12.6, 16.3, 21.1 MBq/m2) showed minimal toxicity at >1 year for the first group and >4 months for others. The lack of substantial toxicity was consistent with the dosimetry assessments (mean equivalent dose to marrow = 0.18 mSv/MBq). Radiation dosimetry assessment was performed using pharmacokinetics data obtained in the initial cohort (n=3). Limited redistribution of radioactivity out of the peritoneal cavity to circulating blood, which cleared via urinary excretion and no specific uptake in major organs was observed in 24 hours. Maximum serum concentration of the radiolabeled antibody was 22.9% at 24h (decay corrected to injection time) and 500 Bq/mL (decay corrected to collection time). Non-decay corrected cumulative urinary excretion was ≤6% in 24h (2.3 half lives). Dose rate measurements performed at 1m from the patient registered less than 5μSv/hr (using portable detectors) in the latest cohort, significantly less than what is normally observed using nuclear medicine imaging agents. Anti-drug antibody assays performed on serum from the first 4 cohorts were all negative. Conclusions Five dose levels of IP 212Pb-TCMC-trastuzumab treatment of patients with peritoneal carcinomatosis showed little agent related toxicity, consistent with the dosimetry calculations. PMID:25157044

  7. SU-E-J-110: TG 51 Dosimetry : With Or Without Lead

    SciTech Connect

    Shah, M

    2014-06-01

    TG-51 Dosimetry: With or Without Lead. Purpose: In this project, an analytical method has been introduced for adjustment of the TG-51 recommended KQ in order to produce accurate dosimetric data for high energy photons without the lead foil. Methods: These investigations were performed using a 30 cm × 30 cm × 30 cm CIVCO water tank, A12 EXRADIN Water proof Farmer Chamber, a Standard Imaging MAX 4000 electrometer, and 1 mm thick lead foil from Standard Imaging. Complete TG-51 was performed every month with and without lead. The results were analyzed and an analytical model has been developed for comparing the values of KQ. TG-51 Table I was used to obtain KQ values. Results: The dosimetric evaluations were obtained for Varian Linear accelerators Model 21ix and 21ex. These results indicates that the measured data with lead foil in place as recommended by TG-51 is in excellent agreement (within 0.1%) with the calculated data obtained by the new model, from our dosimetry data without-lead. If equation 15 of the TG-51 report is used without any adjustments, it will lead to differences of about 1.6 % (on the average) in relative data which will Resultin differences of about 0.3 % (on the average) in the KQ Values. The KQ value for 18 MV obtained consistently with the equation of TG-51 “with lead” and “without lead” were 0.971 and 0.974, respectively. The 0.3 % higher results for KQ without lead eventually will lead to 0.3% larger output. However, by considering this model the KQ value was found to be 0.971 for dosimetry without lead. Conclusion: The analytical model that was introduced in this project was able to reproduce the dosimetric data of the high energy linear accelerators to within 0.1% without the use of the lead foil.

  8. Water equivalence of various materials for clinical proton dosimetry by experiment and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Al-Sulaiti, Leena; Shipley, David; Thomas, Russell; Kacperek, Andrzej; Regan, Patrick; Palmans, Hugo

    2010-07-01

    The accurate conversion of dose to various materials used in clinical proton dosimetry to dose-to-water is based on fluence correction factors, accounting for attenuation of primary protons and production of secondary particles due to non-elastic nuclear interactions. This work aims to investigate the depth dose distribution and the fluence correction with respect to water or graphite at water equivalent depths (WED) in different target materials relevant for dosimetry such as polymethyl methacrylate (PMMA), graphite, A-150, aluminium and copper at 60 and 200 MeV. This was done through a comparison between Monte Carlo simulation using MCNPX 2.5.0, analytical model calculations and experimental measurements at Clatterbridge Centre of Oncology (CCO) in a 60 MeV modulated and un-modulated proton beam. MCNPX simulations indicated small fluence corrections for all materials with respect to graphite and water in 60 and 200 MeV except for aluminium. The analytical calculations showed an increase in the fluence correction factor to a few percent for all materials with respect to water at 200 MeV. The experimental measurements for 60 MeV un-modulated beam indicated a good agreement with MCNPX. For the modulated beam the fluence correction factor was found to be decreasing below unity by up to few percent with depth for aluminium and copper but almost constant and unity for A-150.

  9. Calculated effects of backscattering on skin dosimetry for nuclear fuel fragments.

    PubMed

    Aydarous, A Sh

    2008-01-01

    The size of hot particles contained in nuclear fallout ranges from 10 nm to 20 microm for the worldwide weapons fallout. Hot particles from nuclear power reactors can be significantly bigger (100 microm to several millimetres). Electron backscattering from such particles is a prominent secondary effect in beta dosimetry for radiological protection purposes, such as skin dosimetry. In this study, the effect of electron backscattering due to hot particles contamination on skin dose is investigated. These include parameters such as detector area, source radius, source energy, scattering material and source density. The Monte-Carlo Neutron Particle code (MCNP4C) was used to calculate the depth dose distribution for 10 different beta sources and various materials. The backscattering dose factors (BSDF) were then calculated. A significant dependence is shown for the BSDF magnitude upon detector area, source radius and scatterers. It is clearly shown that the BSDF increases with increasing detector area. For high Z scatterers, the BSDF can reach as high as 40 and 100% for sources with radii 0.1 and 0.0001 cm, respectively. The variation of BSDF with source radius, source energy and source density is discussed. PMID:18223183

  10. Gamma-ray dosimetry measurements of the Little Boy replica

    SciTech Connect

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.

  11. MECHANISTIC DOSIMETRY MODELS OF NANOMATERIAL DEPOSITION IN THE RESPIRATORY TRACT

    EPA Science Inventory

    Accurate health risk assessments of inhalation exposure to nanomaterials will require dosimetry models that account for interspecies differences in dose delivered to the respiratory tract. Mechanistic models offer the advantage to interspecies extrapolation that physicochemica...

  12. Retrospective dosimetry analyses of reactor vessel cladding samples

    SciTech Connect

    Greenwood, L. R.; Soderquist, C. Z.; Fero, A. H.

    2011-07-01

    Reactor pressure vessel cladding samples for Ringhals Units 3 and 4 in Sweden were analyzed using retrospective reactor dosimetry techniques. The objective was to provide the best estimates of the neutron fluence for comparison with neutron transport calculations. A total of 51 stainless steel samples consisting of chips weighing approximately 100 to 200 mg were removed from selected locations around the pressure vessel and were sent to Pacific Northwest National Laboratory for analysis. The samples were fully characterized and analyzed for radioactive isotopes, with special interest in the presence of Nb-93m. The RPV cladding retrospective dosimetry results will be combined with a re-evaluation of the surveillance capsule dosimetry and with ex-vessel neutron dosimetry results to form a comprehensive 3D comparison of measurements to calculations performed with 3D deterministic transport code. (authors)

  13. Dosimetry of ozone and nitrogen dioxide in man and animals

    SciTech Connect

    Overton, J.H. Jr.; Miller, F.J.

    1984-01-01

    The health effects of ozone (O/sub 3/) and nitrogen dioxide (NO/sub 2/) are assessed from animal toxicological, controlled human, and epidemiological studies. These assessments will be strengthened when results of animal studies can be quantitatively extrapolated to man. To achieve quantitative extrapolation, improvements are needed in the areas of dosimetry and species sensitivity. And, of course, an adequate health effect data base must exist on which to make extrapolations. The focus of this paper is to review the regional dosimetry of O/sub 3/ and NO/sub 2/ in the respiratory tract of man and animals. Dosimetry relates to estimating the amount of pollutant reaching a specific target region of the respiratory tract as a function of exposure concentration. At present, there are two approaches to dosimetry, experimental and mathematical modeling, which are discussed.

  14. Investigation criteria for dosimetry results comparisons

    SciTech Connect

    Hough, E.G. )

    1984-01-01

    This paper reports that the Oconee Nuclear Station, like most nuclear facilities, monitors its personnel with two types of dosimeters: a thermoluminescent dosimeter (TLD), which is normally used for determining the official dose equivalent, and a pocket ionization chamber (PIC), which is used to estimate exposure for control purposes. At Oconee, the results obtained from the two types of dosimeters are compared on a monthly basis as a part of the routine exchange and processing of worker TLDs. Each worker's TLD result is compared to the sum of the PIC dose estimates for the month that the TLD was used. The TLD result is accepted as the official dose equivalent for the month if the comparison results are within the tolerance limits specified by the criteria. An out-of-tolerance comparison requires investigation, which consists of performance tests of the dosimetry involved and reviews of exposure records. Adjustments to a worker's official dose equivalent are made when warranted by an investigation.

  15. Advanced Semiconductor Dosimetry in Radiation Therapy

    SciTech Connect

    Rosenfeld, Anatoly B.

    2011-05-05

    Modern radiation therapy is very conformal, resulting in a complexity of delivery that leads to many small radiation fields with steep dose gradients, increasing error probability. Quality assurance in delivery of such radiation fields is paramount and requires real time and high spatial resolution dosimetry. Semiconductor radiation detectors due to their small size, ability to operate in passive and active modes and easy real time multichannel readout satisfy many aspects of in vivo and in a phantom quality assurance in modern radiation therapy. Update on the recent developments and improvements in semiconductor radiation detectors and their application for quality assurance in radiation therapy, based mostly on the developments at the Centre for Medical Radiation Physics (CMRP), University of Wollongong, is presented.

  16. Dosimetry in mixed neutron-gamma fields

    SciTech Connect

    Remec, I.

    1998-04-01

    The gamma field accompanying neutrons may, in certain circumstances, play an important role in the analysis of neutron dosimetry and even in the interpretation of radiation induced steel embrittlement. At the High Flux Isotope Reactor pressure vessel the gamma induced reactions dominate the responses of {sup 237}Np and {sup 238}U dosimeters, and {sup 9}Be helium accumulation fluence monitors. The gamma induced atom displacement rate in steel is higher than corresponding neutron rate, and is the cause of ``accelerated embrittlement`` of HFIR materials. In a large body of water, adjacent to a fission plate, photofissions contribute significantly to the responses of fission monitors and need to be taken into account if the measurements are used for the qualification of the transport codes and cross-section libraries.

  17. Dosimetry for photodynamic therapy of endometrial tissue

    NASA Astrophysics Data System (ADS)

    Svaasand, Lars O.; Fehr, Mathias K.; Madsen, Sten; Tadir, Yona; Tromberg, Bruce J.

    1995-05-01

    Hysterectomy is the most common major operation performed in the United States with dysfunctional uterine bleeding as one of the major indications. The clinical needs for simple and safe endometrial destruction are essential. Photodynamic therapy (PDT) may offer a simple and cost effective solution for the treatment of dysfunctional uterine bleeding. The dosimetry is discussed for the case of topical application of photosensitizer. This technique might be the method of preference because undesired side effects such as skin photosensitization that is typical for systemically injected photosensitizers, can be avoided. Effective PDT requires a sufficient amount of light delivered to the targeted tissue in a reasonable period of time. A trifurcated optical applicator consisting of three cylindrical diffusing fibers has been constructed, and this applicator can deliver a typical required optical dose of about 50-100 J/cm2 to the full depth of the endometrium for an exposure time of 10-20 minutes.

  18. Tissue substitutes in radiation dosimetry and measurement

    SciTech Connect

    Not Available

    1989-01-01

    This book explains the activities of the International Commission on Radiation Units and Measurements and discusses tissue substitutes in radiation dosimetry and measurement. The following section is on basic concepts including definitions, specifications, and interaction coefficients. This section also includes a description of the effects of photons, electrons, neutrons, and heavily charged particles on body tissues. The third section is on selected requirements for tissue substitutes and briefly covers radiation-related requirements for radiation therapy, radiologic diagnosis, radiation protection, and radiobiology. The fourth short section is on composition of body tissues, and comparative interaction and depth dose data for selected tissue substitutes are covered in the fifth section. This includes several tables and many graphs of the ratios required to calculate the radiation dose.

  19. The radiation dosimetry of intrathecally administered radionuclides

    SciTech Connect

    Stabin, M.G.; Evans, J.F.

    1999-01-01

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energy deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.

  20. On flattening filter-free portal dosimetry.

    PubMed

    Pardo, Eduardo; Castro Novais, Juan; Molina López, María Yolanda; Ruiz Maqueda, Sheila

    2016-01-01

    Varian introduced (in 2010) the option of removing the flattening filter (FF) in their C-Arm linacs for intensity-modulated treatments. This mode, called flattening filter-free (FFF), offers the advantage of a greater dose rate. Varian's "Portal Dosimetry" is an electronic portal imager device (EPID)-based tool for IMRT verification. This tool lacks the capability of verifying flattening filter-free (FFF) modes due to saturation and lack of an image prediction algorithm. (Note: the latest versions of this software and EPID correct these issues.) The objective of the present study is to research the feasibility of said verifications (with the older versions of the software and EPID). By placing the EPID at a greater distance, the images can be acquired without saturation, yielding a linearity similar to the flattened mode. For the image prediction, a method was optimized based on the clinically used algorithm (analytical anisotropic algorithm (AAA)) over a homogeneous phantom. The depth inside the phantom and its electronic density were tailored. An application was developed to allow the conversion of a dose plane (in DICOM format) to Varian's custom format for Portal Dosimetry. The proposed method was used for the verification of test and clinical fields for the three qualities used in our institution for IMRT: 6X, 6FFF and 10FFF. The method developed yielded a positive verification (more than 95% of the points pass a 2%/2 mm gamma) for both the clinical and test fields. This method was also capable of "predicting" static and wedged fields. A workflow for the verification of FFF fields was developed. This method relies on the clinical algorithm used for dose calculation and is able to verify the FFF modes, as well as being useful for machine quality assurance. The procedure described does not require new hardware. This method could be used as a verification of Varian's Portal Dose Image Prediction. PMID:27455487

  1. Thermoluminescent Dosimetry: A Preliminary Study for microCT Applications

    SciTech Connect

    Montano Garcia, C.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.; Brandan, M. E.; Ruiz-Trejo, C.

    2006-09-08

    Preliminary measurements for microCT dosimetry are reported in this work, using TLD-100 crystals (1x1x1 mm3) within a solid water phantom specially designed with approximate dimensions of a mouse. A dose dependence as a function of radial distance and position along the axis of the phantom was found. Because of the smaller doses used in this work we can say that it is feasible to perform dosimetry measurements with high accuracy using TLD-100 microcubes.

  2. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-10-10

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP). It describes the roles of and relationships between the IDP and site contractors, and provides recommendations and guidance for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs. Guidance includes identifying conditions under which workers should be placed on bioassay programs, types, descritptions, and capabilities of measurements, suggested routine bioassay programs, limitations on services, and practices for recording and reporting results.

  3. Development document for effluent-limitations guidelines and standards for the nonferrous-metals-manufacturing point source category. Volume 2. Bauxite refining, primary aluminum smelting, secondary aluminum smelting. Final report

    SciTech Connect

    Not Available

    1989-05-01

    Contents include: industry profile; subcategorization; water use and wastewater characteristics; selection of pollutant parameters; control and treatment technologies; costs of waste water treatment and control; best practicable technology currently available; best available technology economically achievable; new source performance standards; pretreatment standards; best conventional pollutant-control technology.

  4. Electron paramagnetic resonance dosimetry: Methodology and material characterization

    NASA Astrophysics Data System (ADS)

    Hayes, Robert Bruce

    Electron Paramagnetic Resonance (EPR) methodologies for radiation dose reconstruction are investigated using various dosimeter materials. Specifically, methodologies were developed and used that were intended to improve the accuracy and precision of EPR dosimetric techniques, including combining specimen rotation during measurement, use of an internal manganese standard, instrument stabilization techniques and strict measurement protocols. Characterization and quantification of these improvements were preformed on three specific EPR dosimeter materials. The dosimeter materials investigated using these optimized EPR techniques were Walrus teeth, human tooth enamel and alanine dosimeters. Walrus teeth showed the least desirable properties for EPR dosimetry yielding large native signals and low sensitivity (EPR signal per unit dose). The methods for tooth enamel and alanine resulted in large improvements in precision and accuracy. The minimum detectable dose (MDD) found for alanine was approximately 30 mGy (three standard deviations from the measured zero dose value). This is a sensitivity improvement of 5 to 10 over other specialized techniques published in the literature that offer MDD's in the range of 150 mGy to 300 mGy. The accuracy of the method on tooth enamel was comparable to that typically reported in the literature although the measurement precision was increased by about 7. This improvement in measurement precision enables various applications including dose vs. depth profile analysis and a more nondestructive testing evaluation (where the whole sample need not be additively irradiated in order to calibrate its radiation response). A nondestructive evaluation of numerous samples showed that the method could reconstruct the same doses to within 10 mGy of those evaluated destructively. Doses used for this assessment were in the range of 100 to 250 mGy. The method had sufficient stability to measure tooth enamel samples exhibiting extreme anisotropy with a

  5. Standardized Curriculum for Carpentry.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: carpentry I and II. The seven units in carpentry I are as follows: introduction and orientation; safety; measurement; tools and equipment; basic concepts in carpentry; reading blueprints and working drawings; and foundations.…

  6. Standardized Curriculum for Electrician.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: electrician I and II. The 11 units in electrician I are as follows: orientation; safety; tools, equipment, materials/supplies; basic principles and theory; DC circuits; AC circuits; blueprints and load calculations; load centers and…

  7. Standardized Curriculum for Cosmetology.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: cosmetology I and II. The 18 units in cosmetology I are as follows: introduction to cosmetology; Vocational Industrial Clubs of America; the look you like; bacteriology; sterilization and sanitation; hair and disorders; draping,…

  8. 14 CFR 23.405 - Secondary control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Control Surface and System Loads § 23.405 Secondary control system. Secondary controls, such as wheel brakes, spoilers... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Secondary control system. 23.405 Section...

  9. 14 CFR 25.405 - Secondary control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.405 Secondary control system. Secondary controls, such as wheel brake, spoiler, and tab controls, must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Secondary control system. 25.405 Section...

  10. 14 CFR 25.405 - Secondary control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Secondary control system. 25.405 Section 25.405 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.405 Secondary control system. Secondary...

  11. Specific issues in small animal dosimetry and irradiator calibration

    PubMed Central

    Yoshizumi, Terry; Brady, Samuel L.; Robbins, Mike E.; Bourland, J. Daniel

    2013-01-01

    Purpose In response to the increased risk of radiological terrorist attack, a network of Centers for Medical Countermeasures against Radiation (CMCR) has been established in the United States, focusing on evaluating animal model responses to uniform, relatively homogenous whole- or partial-body radiation exposures at relatively high dose rates. The success of such studies is dependent not only on robust animal models but on accurate and reproducible dosimetry within and across CMCR. To address this issue, the Education and Training Core of the Duke University School of Medicine CMCR organised a one-day workshop on small animal dosimetry. Topics included accuracy in animal dosimetry accuracy, characteristics and differences of cesium-137 and X-ray irradiators, methods for dose measurement, and design of experimental irradiation geometries for uniform dose distributions. This paper summarises the information presented and discussed. Conclusions Without ensuring accurate and reproducible dosimetry the development and assessment of the efficacy of putative countermeasures will not prove successful. Radiation physics support is needed, but is often the weakest link in the small animal dosimetry chain. We recommend: (i) A user training program for new irradiator users, (ii) subsequent training updates, and (iii) the establishment of a national small animal dosimetry center for all CMCR members. PMID:21961967

  12. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    SciTech Connect

    Hankins, D.E.; Homann, S.; Westermark, J.

    1986-09-17

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnel requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm/sup 2//mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90/sup 0/. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs.

  13. Boron dose determination for BNCT using Fricke and EPR dosimetry

    SciTech Connect

    Wielopolski, L.; Ciesielski, B.

    1995-02-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to {alpha} and {sup 7}Li charged particles resulting from a neutron capture by {sup 10}B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient`s dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here.

  14. Review of the near-earth space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Guo, Jianming; Chen, Xiaoqian; Li, Shiyou

    2016-07-01

    The near-earth space radiation environment has a great effect to the spacecraft and maybe do harm to the astronaut's health. Thus, how to measure the radiation has become a serious challenge. In order to provide sufficient protection both for astronauts and for instruments on-board, dose equivalent and linear energy transfer should be measured instead of merely measuring total radiation dose. This paper reviews the methods of radiation measurement and presents a brief introduction of dosimetry instruments. The method can be divided into two different kinds, i.e., positive dosimetry and passive dosimetry. The former usually includes electronic devices which can be used for data storage and can offer simultaneous monitoring on space radiation. The passive dosimetry has a much simple structure, and need extra operation after on-orbit missions for measuring. To get more reliable data of radiation dosimetry, various instruments and methods had been applied in the spacecrafts and the manned spacecrafts in particular. The outlook of the development in the space radiation dosimetry measurement is also presented.

  15. ESR dosimetry for atomic bomb survivors and radiologic technologists

    NASA Astrophysics Data System (ADS)

    Tatsumi-Miyajima, Junko

    1987-06-01

    An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO 33- radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO 33- radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.

  16. Highlights and pitfalls of 20 years of application of computerised glow curve analysis to thermoluminescence research and dosimetry.

    PubMed

    Horowitz, Y S; Moscovitch, M

    2013-01-01

    The technical and dosimetric aspects of computerised glow curve analysis are described in detail including a review of the current 'state-of-the-achieved' in applications to environmental and personal dosimetry, clinical dosimetry, quality control, characterisation of new materials, continuing characterisation of 'old' materials, heavy charged particle dosimetry, mixed field n-gamma dosimetry, X-ray dosimetry and other aspects of thermoluminescence dosimetry. Fearless emphasis is placed on 'pitfalls' as well as successes. PMID:22987121

  17. Uncertainty propagation for SPECT/CT-based renal dosimetry in (177)Lu peptide receptor radionuclide therapy.

    PubMed

    Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Gleisner, Katarina Sjögreen

    2015-11-01

    A computer model of a patient-specific clinical (177)Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of (177)Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity. PMID:26458139

  18. Uncertainty propagation for SPECT/CT-based renal dosimetry in 177Lu peptide receptor radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Sjögreen Gleisner, Katarina

    2015-11-01

    A computer model of a patient-specific clinical 177Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of 177Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity.

  19. Polyethylene Naphthalate Scintillator: A Novel Detector for the Dosimetry of Radioactive Ophthalmic Applicators

    PubMed Central

    Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion

    2015-01-01

    Background Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm3 and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Purpose, Materials and Methods Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. Results For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Conclusion Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications. PMID:27171681

  20. The Australian radiation protection and nuclear safety agency megavoltage photon thermoluminescence dosimetry postal audit service 2007-2010.

    PubMed

    Oliver, C P; Butler, D J; Webb, D V

    2012-03-01

    The Australian radiation protection and nuclear safety agency (ARPANSA) has continuously provided a level 1 mailed thermoluminescence dosimetry audit service for megavoltage photons since 2007. The purpose of the audit is to provide an independent verification of the reference dose output of a radiotherapy linear accelerator in a clinical environment. Photon beam quality measurements can also be made as part of the audit in addition to the output measurements. The results of all audits performed between 2007 and 2010 are presented. The average of all reference beam output measurements calculated as a clinically stated dose divided by an ARPANSA measured dose is 0.9993. The results of all beam quality measurements calculated as a clinically stated quality divided by an ARPANSA measured quality is 1.0087. Since 2011 the provision of all auditing services has been transferred from the Ionizing Radiation Standards section to the Australian Clinical Dosimetry Service (ACDS) which is currently housed within ARPANSA. PMID:22302465