Science.gov

Sample records for secondary wall formation

  1. Hormonal regulation of secondary cell wall formation.

    PubMed

    Didi, Vojtěch; Jackson, Phil; Hejátko, Jan

    2015-08-01

    Secondary cell walls (SCWs) have critical functional importance but also constitute a high proportion of the plant biomass and have high application potential. This is true mainly for the lignocellulosic constituents of the SCWs in xylem vessels and fibres, which form a structured layer between the plasma membrane and the primary cell wall (PCW). Specific patterning of the SCW thickenings contributes to the mechanical properties of the different xylem cell types, providing the plant with mechanical support and facilitating the transport of solutes via vessels. In the last decade, our knowledge of the basic molecular mechanisms controlling SCW formation has increased substantially. Several members of the multi-layered regulatory cascade participating in the initiation and transcriptional regulation of SCW formation have been described, and the first cellular components determining the pattern of SCW at the subcellular resolution are being uncovered. The essential regulatory role of phytohormones in xylem development is well known and the molecular mechanisms that link hormonal signals to SCW formation are emerging. Here, we review recent knowledge about the role of individual plant hormones and hormonal crosstalk in the control over the regulatory cascades guiding SCW formation and patterning. Based on the analogy between many of the mechanisms operating during PCW and SCW formation, recently identified mechanisms underlying the hormonal control of PCW remodelling are discussed as potentially novel mechanisms mediating hormonal regulatory inputs in SCW formation. PMID:26002972

  2. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    PubMed Central

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  3. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation.

    PubMed

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  4. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation

    PubMed Central

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  5. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation.

    PubMed

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  6. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis.

    PubMed

    Zhou, Jianli; Lee, Chanhui; Zhong, Ruiqin; Ye, Zheng-Hua

    2009-01-01

    It has previously been shown that SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) is a key transcription factor regulating secondary cell wall formation, including the biosynthesis of cellulose, xylan, and lignin. In this study, we show that two closely related SND1-regulated MYB transcription factors, MYB58 and MYB63, are transcriptional regulators specifically activating lignin biosynthetic genes during secondary wall formation in Arabidopsis thaliana. MYB58 and MYB63 are phylogenetically distinct from previously characterized MYBs shown to be associated with secondary wall formation or phenylpropanoid metabolism. Expression studies showed that MYB58 and MYB63 are specifically expressed in fibers and vessels undergoing secondary wall thickening. Dominant repression of their functions led to a reduction in secondary wall thickening and lignin content. Overexpression of MYB58 and MYB63 resulted in specific activation of lignin biosynthetic genes and concomitant ectopic deposition of lignin in cells that are normally unlignified. MYB58 was able to activate directly the expression of lignin biosynthetic genes and a secondary wall-associated laccase (LAC4) gene. Furthermore, the expression of MYB58 and MYB63 was shown to be regulated by the SND1 close homologs NST1, NST2, VND6, and VND7 and their downstream target MYB46. Together, our results indicate that MYB58 and MYB63 are specific transcriptional activators of lignin biosynthesis in the SND1-mediated transcriptional network regulating secondary wall formation. PMID:19122102

  7. Spatially and temporally restricted expression of PtrMYB021 regulates secondary cell wall formation in Arabidopsis

    DOE PAGESBeta

    Wang, Wei; Li, Eryang; Porth, Ilga; Chen, Jin-Gui; Mansfield, Shawn D.; Douglas, Carl J.; Wang, Shucai

    2016-02-02

    Among the R2R3 MYB transcription factors that involve in the regulation of secondary cell wall formation in Arabidopsis, MYB46 alone is sufficient to induce the entire secondary cell wall biosynthesis program. PtrMYB021, the poplar homolog of MYB46, has been reported to regulate secondary cell wall formation when expressed in Arabidopsis. We report here that spatially and temporally restricted expression of PtrMYB021 is critical for its function in regulating secondary cell wall formation. By using quantitative RT-PCR, we found that PtrMYB021 was expressed primarily in xylem tissues. When expressed in Arabidopsis under the control of PtrCesA8, but not the 35S promoter,more » PtrMYB021 increased secondary cell wall thickness, which is likely caused by increased lignification as well as changes in cell wall carbohydrate composition. Consistent with this, elevated expression of lignin and cellulose biosynthetic genes were observed in the transgenic plants. Finally, when expressed in Arabidopsis protoplasts as fusion proteins to the Gal4 DNA binding domain, PtrMYB021 activated the reporter gene Gal4-GUS. In summary, our results suggest that PtrMYB021 is a transcriptional activator, and spatially and temporally restricted expression of PtrMYB021 in Arabidopsis regulates secondary cell wall formation by activating a subset of secondary cell wall biosynthesis genes.« less

  8. Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation.

    PubMed

    Tang, Xianfeng; Zhuang, Yamei; Qi, Guang; Wang, Dian; Liu, Huanhuan; Wang, Kairong; Chai, Guohua; Zhou, Gongke

    2015-01-01

    Wood is formed by the successive addition of secondary xylem, which consists of cells with a conspicuously thickened secondary wall composed mainly of cellulose, xylan and lignin. Currently, few transcription factors involved in the direct regulation of secondary wall biosynthesis have been characterized in tree species. Here, we show that PdMYB221, a poplar ortholog of the Arabidopsis R2R3-MYB transcription factor AtMYB4, directly regulates secondary wall biosynthesis during wood formation. PdMYB221 is predominantly expressed in cells of developing wood, and the protein it encodes localizes to the nucleus and acts as a transcriptional repressor. Ectopic expression of PdMYB221 resulted in reduced cell wall thicknesses of fibers and vessels in Arabidopsis inflorescence stems. The amounts of cellulose, xylose, and lignin were decreased and the expression of key genes synthesizing the three components was suppressed in PdMYB221 overexpression plants. Transcriptional activation assays showed that PdMYB221 repressed the promoters of poplar PdCESA7/8, PdGT47C, PdCOMT2 and PdCCR1. Electrophoretic mobility shift assays revealed that PdMYB221 bound directly to the PdCESA8, PdGT47C, and PdCOMT2 promoters. Together, our results suggest that PdMYB221 may be involved in the negative regulation of secondary wall formation through the direct and indirect suppression of the gene expression of secondary wall biosynthesis. PMID:26179205

  9. Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation

    PubMed Central

    Tang, Xianfeng; Zhuang, Yamei; Qi, Guang; Wang, Dian; Liu, Huanhuan; Wang, Kairong; Chai, Guohua; Zhou, Gongke

    2015-01-01

    Wood is formed by the successive addition of secondary xylem, which consists of cells with a conspicuously thickened secondary wall composed mainly of cellulose, xylan and lignin. Currently, few transcription factors involved in the direct regulation of secondary wall biosynthesis have been characterized in tree species. Here, we show that PdMYB221, a poplar ortholog of the Arabidopsis R2R3-MYB transcription factor AtMYB4, directly regulates secondary wall biosynthesis during wood formation. PdMYB221 is predominantly expressed in cells of developing wood, and the protein it encodes localizes to the nucleus and acts as a transcriptional repressor. Ectopic expression of PdMYB221 resulted in reduced cell wall thicknesses of fibers and vessels in Arabidopsis inflorescence stems. The amounts of cellulose, xylose, and lignin were decreased and the expression of key genes synthesizing the three components was suppressed in PdMYB221 overexpression plants. Transcriptional activation assays showed that PdMYB221 repressed the promoters of poplar PdCESA7/8, PdGT47C, PdCOMT2 and PdCCR1. Electrophoretic mobility shift assays revealed that PdMYB221 bound directly to the PdCESA8, PdGT47C, and PdCOMT2 promoters. Together, our results suggest that PdMYB221 may be involved in the negative regulation of secondary wall formation through the direct and indirect suppression of the gene expression of secondary wall biosynthesis. PMID:26179205

  10. Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis

    PubMed Central

    Cassan-Wang, Hua; Goué, Nadia; Saidi, Mohammed N.; Legay, Sylvain; Sivadon, Pierre; Goffner, Deborah; Grima-Pettenati, Jacqueline

    2013-01-01

    The presence of lignin in secondary cell walls (SCW) is a major factor preventing hydrolytic enzymes from gaining access to cellulose, thereby limiting the saccharification potential of plant biomass. To understand how lignification is regulated is a prerequisite for selecting plant biomass better adapted to bioethanol production. Because transcriptional regulation is a major mechanism controlling the expression of genes involved in lignin biosynthesis, our aim was to identify novel transcription factors (TFs) dictating lignin profiles in the model plant Arabidopsis. To this end, we have developed a post-genomic approach by combining four independent in-house SCW-related transcriptome datasets obtained from (1) the fiber cell wall-deficient wat1 Arabidopsis mutant, (2) Arabidopsis lines over-expressing either the master regulatory activator EgMYB2 or (3) the repressor EgMYB1 and finally (4) Arabidopsis orthologs of Eucalyptus xylem-expressed genes. This allowed us to identify 502 up- or down-regulated TFs. We preferentially selected those present in more than one dataset and further analyzed their in silico expression patterns as an additional selection criteria. This selection process led to 80 candidates. Notably, 16 of them were already proven to regulate SCW formation, thereby validating the overall strategy. Then, we phenotyped 43 corresponding mutant lines focusing on histological observations of xylem and interfascicular fibers. This phenotypic screen revealed six mutant lines exhibiting altered lignification patterns. Two of them [Bel-like HomeoBox6 (blh6) and a zinc finger TF] presented hypolignified SCW. Three others (myb52, myb-like TF, hb5) showed hyperlignified SCW whereas the last one (hb15) showed ectopic lignification. In addition, our meta-analyses highlighted a reservoir of new potential regulators adding to the gene network regulating SCW but also opening new avenues to ultimately improve SCW composition for biofuel production. PMID:23781226

  11. Rice BRITTLE CULM 5 (BRITTLE NODE) is Involved in Secondary Cell Wall Formation in the Sclerenchyma Tissue of Nodes

    PubMed Central

    Aohara, Tsutomu; Kotake, Toshihisa; Kaneko, Yasuko; Takatsuji, Hiroshi; Tsumuraya, Yoichi; Kawasaki, Shinji

    2009-01-01

    Several brittle culm (bc) mutants known in grasses are considered excellent materials to study the process of secondary cell wall formation. The brittle phenotype of the rice bc5 (brittle node) mutant appears exclusively in the developed nodes, which is distinct from other bc mutants (bc1, 2, 3, 4, 6 and 7) that show the brittle phenotype in culms and leaves. To address the defects of the rice bc5 mutant in node-specific cell wall formation, we analyzed tissue morphology and cell wall composition. The bc5 mutation was found to affect the cell wall deposition of node sclerenchyma tissues at 1 week after heading, the stage at which the cell wall sugar content is reduced, in the bc5 nodes, compared with wild-type nodes. Moreover, decreased accumulation of lignin and thickness of cell walls in the sclerenchyma tissues were also observed in the bc5 nodes. The amounts of cellulose and hemicellulose were reduced to 53 and 65% of those in the wild-type plants, respectively. Sugar composition and glycosidic linkage analyses of the hemicellulose showed that the accumulation of glucuronosyl arabinoxylan in bc5 nodes was perturbed by the mutation. The bc5 locus was narrowed to an approximately 3.1 Mb region of chromosome 2, where none of the other bc genes is located. The bc5 mutation appeared to reduce the expression levels of the OsCesA genes in the nodes after heading. The results indicate that the BC5 gene regulates the development of secondary cell walls of node sclerenchyma tissues. PMID:19812064

  12. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation

    NASA Astrophysics Data System (ADS)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2016-02-01

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas-wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas-wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.

  13. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation

    NASA Astrophysics Data System (ADS)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2015-09-01

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool which explicitly represents SOA formation and gas/wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas/wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up to 0.35 yield unit due to the loss of organic vapors to chamber walls.

  14. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: Explicit modeling of SOA formation from alkane and alkene oxidation

    DOE PAGESBeta

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2016-02-08

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas–wall partitioning. The model was compared with 41 smog chambermore » experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas–wall mass transfer, the vapor pressure of the species and the duration of the experiments. Furthermore, this work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.« less

  15. Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signalling, and secondary metabolism

    PubMed Central

    Cookson, Sarah Jane; Clemente Moreno, Maria José; Hevin, Cyril; Nyamba Mendome, Larissa Zita; Delrot, Serge; Trossat-Magnin, Claudine; Ollat, Nathalie

    2013-01-01

    Grafting is particularly important to the cultivation of perennial crops such as grapevine (Vitis vinifera) because rootstocks can provide resistance to soil-borne pests and diseases as well as improve tolerance to some abiotic stresses. Successful grafting is a complex biochemical and structural process beginning with the adhesion of the two grafted partners, followed by callus formation and the establishment of a functional vascular system. At the molecular level, the sequence of events underlying graft union formation remains largely uncharacterized. The present study investigates the transcriptome of grapevine rootstock and graft interface tissues sampled 3 d and 28 d after grafting of over-wintering stems in the spring. Many genes were differentially expressed over time, from 3 d to 28 d after grafting, which could be related to the activation of stem growth and metabolic activity in the spring. This hypothesis is supported by the up-regulation of many genes associated with cell wall synthesis, and phloem and xylem development. Generally, there was an up-regulation of gene expression in the graft interface tissue compared with the rootstock, particularly genes involved in cell wall synthesis, secondary metabolism, and signalling. Although there was overlap between the genes differentially expressed over time (from 3 d to 28 d after grafting) with the gene differentially expressed between the rootstock and the graft interface, numerous graft interface-specific genes were identified. PMID:23698628

  16. The Dual Functions of WLIM1a in Cell Elongation and Secondary Wall Formation in Developing Cotton Fibers[C][W

    PubMed Central

    Han, Li-Bo; Li, Yuan-Bao; Wang, Hai-Yun; Wu, Xiao-Min; Li, Chun-Li; Luo, Ming; Wu, Shen-Jie; Kong, Zhao-Sheng; Pei, Yan; Jiao, Gai-Li; Xia, Gui-Xian

    2013-01-01

    LIN-11, Isl1 and MEC-3 (LIM)-domain proteins play pivotal roles in a variety of cellular processes in animals, but plant LIM functions remain largely unexplored. Here, we demonstrate dual roles of the WLIM1a gene in fiber development in upland cotton (Gossypium hirsutum). WLIM1a is preferentially expressed during the elongation and secondary wall synthesis stages in developing fibers. Overexpression of WLIM1a in cotton led to significant changes in fiber length and secondary wall structure. Compared with the wild type, fibers of WLIM1a-overexpressing plants grew longer and formed a thinner and more compact secondary cell wall, which contributed to improved fiber strength and fineness. Functional studies demonstrated that (1) WLIM1a acts as an actin bundler to facilitate elongation of fiber cells and (2) WLIM1a also functions as a transcription factor to activate expression of Phe ammonia lyase–box genes involved in phenylpropanoid biosynthesis to build up the secondary cell wall. WLIM1a localizes in the cytosol and nucleus and moves into the nucleus in response to hydrogen peroxide. Taken together, these results demonstrate that WLIM1a has dual roles in cotton fiber development, elongation, and secondary wall formation. Moreover, our study shows that lignin/lignin-like phenolics may substantially affect cotton fiber quality; this finding may guide cotton breeding for improved fiber traits. PMID:24220634

  17. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa

    PubMed Central

    Yang, Li; Zhao, Xin; Yang, Fan; Fan, Di; Jiang, Yuanzhong; Luo, Keming

    2016-01-01

    WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY19 was expressed in all tissues tested, with highest expression in stems, especially in pith. PtrWRKY19 was located in the nucleus and functioned as a transcriptional repressor. Ectopic expression of PtrWRKY19 in an atwrky12 mutant successfully rescued the phenotype in pith cell walls caused by the defect of AtWRKY12, suggesting that PtrWRKY19 had conserved functions for homologous AtWRKY12. Overexpression of PtrWRKY19 in poplar plants led to a significant increase in the number of pith parenchyma cells. qRT-PCR analysis showed that lignin biosynthesis-related genes were repressed in transgenic plants. In transcient reporter assays, PtrWRKY19 was identified to repress transcription from the PtoC4H2 promoter containing the conserved W-box elements. These results indicated that PtrWRKY19 may function as a negative regulator of pith secondary wall formation in poplar. PMID:26819184

  18. Cell differentiation, secondary cell-wall formation and transformation of callus tissue of Pinus radiata D. Don.

    PubMed

    Möller, Ralf; McDonald, Armando G; Walter, Christian; Harris, Philip J

    2003-09-01

    Tracheid and sclereid differentiation was induced in callus cultures of Pinus radiata D. Don by culturing on a basal medium containing activated charcoal but no phytohormones; sclereids differentiated in callus derived from xylem strips, but not in callus derived from hypocotyl segments. The tracheids differentiated in hypocotyl-derived callus had helical, scalariform, reticulated or pitted secondary cell-wall patterns, but those differentiated in xylem-derived callus had a reticulate or pitted pattern. The thickened tracheid and sclereid walls contained lignin as indicated by the red colour reaction given with phloroglucinol-HCl. The presence of lignin in the cell walls of differentiated callus was confirmed using pyrolysis gas chromatography-mass spectrometry by the detection of phenylpropanoid components derived from lignin. Lignin was also detected using solid-state (13)C cross-polarisation/magic-angle spinning nuclear magnetic resonance spectroscopy and quantified as thioglycolic acid lignin. Monosaccharide analyses of the cell walls isolated from differentiated and undifferentiated calli showed that the cell walls of the differentiated calli contained higher proportions of glucose and mannose, consistent with the presence of greater proportions of gluco- and/or galactogluco-mannans in the secondary cell walls of the differentiated cells. A protocol for the stable transformation of undifferentiated, xylem-derived cultures was successfully developed. Transgenic cell lines were established following Biolistic particle bombardment with a plasmid containing the coding region of the nptII gene and the coding region of the cad gene from P. radiata. Expression of the nptII gene in transgenic lines was confirmed by an NPTII-enzyme-linked immunosorbent assay. The overexpression of cad in the transgenic lines resulted in a down-regulation of cinnamyl alcohol dehydrogenase (EC 1.1.1.195) expression. PMID:12811558

  19. Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls

    PubMed Central

    1980-01-01

    Highly ordered arrays of intramembrane particles are observed in freeze- fractured plasma membranes of the green alga Micrasterias denticulata during the synthesis of the secondary cell wall. The observable architecture of the complex consists primarily of a precise hexagonal array of from 3 to 175 rosettes, consisting of 6 particles each, which fracture with the P-face. The complexes are observed at the ends of impressions of cellulose fibrils. The distance between rows of rosettes is equal to the center-to-center distance between parallel cellulose fibrils of the secondary wall. Correlation of the structure of the complex with the pattern of deposition indicates that the size of a given fibril is proportional to the number of rosettes engaged in its formation. Vesicles containing hexagonal arrays of rosettes are found in the cytoplasm and can be observed in the process of fusing with the plasma membrane, suggesting that the complexes are first assembled in the cytoplasm and then incorporated into the plasma membrane, where they become active in fibril formation. Single rosettes appear to be responsible for the synthesis of microfibrils during primary wall growth. Similar rosettes have now been detected in a green alga, in fern protonemata, and in higher plant cells. This structure, therefore, probably represents a significant component of the cellulose synthesizing mechanism in a large variety of plant cells. PMID:7189756

  20. Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls.

    PubMed

    Giddings, T H; Brower, D L; Staehelin, L A

    1980-02-01

    Highly ordered arrays of intramembrane particles are observed in freeze-fractured plasma membranes of the green alga Micrasterias denticulata during the synthesis of the secondary cell wall. The observable architecture of the complex consists primarily of a precise hexagonal array of from 3 to 175 rosettes, consisting of 6 particles each, which fracture with the P-face. The complexes are observed at the ends of impressions of cellulose fibrils. The distance between rows of rosettes is equal to the center-to-center distance between parallel cellulose fibrils of the secondary wall. Correlation of the structure of the complex with the pattern of deposition indicates that the size of a given fibril is proportional to the number of rosettes engaged in its formation. Vesicles containing hexagonal arrays of rosettes are found in the cytoplasm and can be observed in the process of fusing with the plasma membrane, suggesting that the complexes are first assembled in the cytoplasm and then incorporated into the plasma membrane, where they become active in fibril formation. Single rosettes appear to be responsible for the synthesis of microfibrils during primary wall growth. Similar rosettes have now been detected in a green alga, in fern protonemata, and in higher plant cells. This structure, therefore, probably represents a significant component of the cellulose synthesizing mechanism in a large variety of plant cells. PMID:7189756

  1. Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing

    PubMed Central

    2011-01-01

    Background Acacia auriculiformis × Acacia mangium hybrids are commercially important trees for the timber and pulp industry in Southeast Asia. Increasing pulp yield while reducing pulping costs are major objectives of tree breeding programs. The general monolignol biosynthesis and secondary cell wall formation pathways are well-characterized but genes in these pathways are poorly characterized in Acacia hybrids. RNA-seq on short-read platforms is a rapid approach for obtaining comprehensive transcriptomic data and to discover informative sequence variants. Results We sequenced transcriptomes of A. auriculiformis and A. mangium from non-normalized cDNA libraries synthesized from pooled young stem and inner bark tissues using paired-end libraries and a single lane of an Illumina GAII machine. De novo assembly produced a total of 42,217 and 35,759 contigs with an average length of 496 bp and 498 bp for A. auriculiformis and A. mangium respectively. The assemblies of A. auriculiformis and A. mangium had a total length of 21,022,649 bp and 17,838,260 bp, respectively, with the largest contig 15,262 bp long. We detected all ten monolignol biosynthetic genes using Blastx and further analysis revealed 18 lignin isoforms for each species. We also identified five contigs homologous to R2R3-MYB proteins in other plant species that are involved in transcriptional regulation of secondary cell wall formation and lignin deposition. We searched the contigs against public microRNA database and predicted the stem-loop structures of six highly conserved microRNA families (miR319, miR396, miR160, miR172, miR162 and miR168) and one legume-specific family (miR2086). Three microRNA target genes were predicted to be involved in wood formation and flavonoid biosynthesis. By using the assemblies as a reference, we discovered 16,648 and 9,335 high quality putative Single Nucleotide Polymorphisms (SNPs) in the transcriptomes of A. auriculiformis and A. mangium, respectively, thus yielding

  2. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves.

    PubMed

    Fang, Likui; Zhao, Fangming; Cong, Yunfei; Sang, Xianchun; Du, Qing; Wang, Dezhong; Li, Yunfeng; Ling, Yinghua; Yang, Zhenglin; He, Guanghua

    2012-06-01

    As an important agronomic trait, leaf rolling in rice (Oryza sativa L.) has attracted much attention from plant biologists and breeders. Moderate leaf rolling increases the amount of photosynthesis in cultivars and hence raises grain yield. Here, we describe the map-based cloning of the gene RL14, which was found to encode a 2OG-Fe (II) oxygenase of unknown function. rl14 mutant plants had incurved leaves because of the shrinkage of bulliform cells on the adaxial side. In addition, rl14 mutant plants displayed smaller stomatal complexes and decreased transpiration rates, as compared with the wild type. Defective development could be rescued functionally by the expression of wild-type RL14. RL14 was transcribed in sclerenchymatous cells in leaves that remained wrapped inside the sheath. In mature leaves, RL14 accumulated mainly in the mesophyll cells that surround the vasculature. Expression of genes related to secondary cell wall formation was affected in rl14-1 mutants, and cellulose and lignin content were altered in rl14-1 leaves. These results reveal that the RL14 gene affects water transport in leaves by affecting the composition of the secondary cell wall. This change in water transport results in water deficiency, which is the major reason for the abnormal shape of the bulliform cells. PMID:22329407

  3. The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation

    PubMed Central

    Du, Qian; Wang, Huanzhong

    2015-01-01

    The Arabidopsis vascular system is composed of xylem and phloem, which form a well-defined collateral pattern in vascular bundles. Xylary element and fibers develop secondary cell walls (SCWs) that provide mechanical strength to support plant growth and to transport water and minerals to all above ground organs. SCWs also constitute the majority of terrestrial biomass for biofuel production. The biosynthesis of secondary cell walls are known to be under transcriptional regulation. Transcription factors, such as NAC (NAM, ATAF1/2 and CUC2) and MYB domain proteins, serve as master regulators in SCW development. Recent studies indicated that Class III homeodomain leucine zipper transcription factors (HD-ZIP III TFs) and microRNA 165/166 (miR165/166) may play important roles in SCW formation. Here we discuss the diverse functions of miR165/166 and HD-ZIPIII in vascular development and their interaction with the regulatory pathways of SCW biosynthesis. PMID:26340415

  4. Visualization of cellulose synthases in Arabidopsis secondary cell walls.

    PubMed

    Watanabe, Y; Meents, M J; McDonnell, L M; Barkwill, S; Sampathkumar, A; Cartwright, H N; Demura, T; Ehrhardt, D W; Samuels, A L; Mansfield, S D

    2015-10-01

    Cellulose biosynthesis in plant secondary cell walls forms the basis of vascular development in land plants, with xylem tissues constituting the vast majority of terrestrial biomass. We used plant lines that contained an inducible master transcription factor controlling xylem cell fate to quantitatively image fluorescently tagged cellulose synthase enzymes during cellulose deposition in living protoxylem cells. The formation of secondary cell wall thickenings was associated with a redistribution and enrichment of CESA7-containing cellulose synthase complexes (CSCs) into narrow membrane domains. The velocities of secondary cell wall-specific CSCs were faster than those of primary cell wall CSCs during abundant cellulose production. Dynamic intracellular of endomembranes, in combination with increased velocity and high density of CSCs, enables cellulose to be synthesized rapidly in secondary cell walls. PMID:26450210

  5. Secondary cell walls: biosynthesis and manipulation.

    PubMed

    Kumar, Manoj; Campbell, Liam; Turner, Simon

    2016-01-01

    Secondary cell walls (SCWs) are produced by specialized plant cell types, and are particularly important in those cells providing mechanical support or involved in water transport. As the main constituent of plant biomass, secondary cell walls are central to attempts to generate second-generation biofuels. Partly as a consequence of this renewed economic importance, excellent progress has been made in understanding how cell wall components are synthesized. SCWs are largely composed of three main polymers: cellulose, hemicellulose, and lignin. In this review, we will attempt to highlight the most recent progress in understanding the biosynthetic pathways for secondary cell wall components, how these pathways are regulated, and how this knowledge may be exploited to improve cell wall properties that facilitate breakdown without compromising plant growth and productivity. While knowledge of individual components in the pathway has improved dramatically, how they function together to make the final polymers and how these individual polymers are incorporated into the wall remain less well understood. PMID:26663392

  6. Anther Wall Formation in Solanaceae Species

    PubMed Central

    CARRIZO GARCÍA, CAROLINA

    2002-01-01

    Anther wall formation was studied in 32 species belonging to 27 genera of Solanaceae. Dicotyledonous and basic types of wall formation were observed, as well as several deviations due to subsequent periclinal divisions in the layers formed (middle layers and sometimes the endothecium). One type of wall formation was observed in each species. Some genera are uniform in their type of wall formation, while others are heterogeneous; a similar situation was observed at the tribal level. Summarizing all reported information on anther wall formation in the Solanaceae, 64 % of species show the basic type, while the remaining 36 % show the dicotyledonous type. Thus, neither type predominates, and no single type characterizes genera, tribes or the entire family. PMID:12451025

  7. Cellulose-hemicellulose interaction in wood secondary cell-wall

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  8. The formation and evolution of domain walls

    NASA Technical Reports Server (NTRS)

    Press, William H.; Ryden, Barbara S.; Spergel, David N.

    1991-01-01

    Domain walls are sheet-like defects produced when the low energy vacuum has isolated degenerate minima. The researchers' computer code follows the evolution of a scalar field, whose dynamics are determined by its Lagrangian density. The topology of the scalar field determines the evolution of the domain walls. This approach treats both wall dynamics and reconnection. The researchers investigated not only potentials that produce single domain walls, but also potentials that produce a network of walls and strings. These networks arise in axion models where the U(1) Peccei-Quinn symmetry is broken into Z sub N discrete symmetries. If N equals 1, the walls are bounded by strings and the network quickly disappears. For N greater than 1, the network of walls and strings behaved qualitatively just as the wall network shown in the figures given here. This both confirms the researchers' pessimistic view that domain walls cannot play an important role in the formation of large scale structure and implies that axion models with multiple minimum can be cosmologically disastrous.

  9. An arabidopsis gene regulatory network for secondary cell wall synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptiona...

  10. An Arabidopsis Gene Regulatory Network for Secondary Cell Wall Synthesis

    PubMed Central

    Taylor-Teeples, M; Lin, L; de Lucas, M; Turco, G; Toal, TW; Gaudinier, A; Young, NF; Trabucco, GM; Veling, MT; Lamothe, R; Handakumbura, PP; Xiong, G; Wang, C; Corwin, J; Tsoukalas, A; Zhang, L; Ware, D; Pauly, M; Kliebenstein, DJ; Dehesh, K; Tagkopoulos, I; Breton, G; Pruneda-Paz, JL; Ahnert, SE; Kay, SA; Hazen, SP; Brady, SM

    2014-01-01

    Summary The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. Here, we present a protein-DNA network between Arabidopsis transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. These interactions will serve as a foundation for understanding the regulation of a complex, integral plant component. PMID:25533953

  11. Secondary organic aerosol formation of primary, secondary and tertiary Amines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amines have been widely identified in ambient aerosol in both urban and rural environments and they are potential precursors for formation of nitrogen-containing secondary organic aerosols (SOA). However, the role of amines in SOA formation has not been well studied. In this wrok, we use UC-Riversid...

  12. FORMATION OF SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    (1) Gas-phase chemistry. With the clear and profound effect of the VOC/NOx ratio on SOA formation, we will augment gas-phase VOC oxidation mechanisms in atmospheric models to account for the effect of NOx level on the mechanism of SOA formation; (2) Revis...

  13. Cellulose synthesis in two secondary cell wall processes in a single cell type

    PubMed Central

    Mendu, Venugopal; Stork, Jozsef; Harris, Darby; DeBolt, Seth

    2011-01-01

    Plant cells have a rigid cell wall that constrains internal turgor pressure yet extends in a regulated and organized manner to allow the cell to acquire shape. The primary load-bearing macromolecule of a plant cell wall is cellulose, which forms crystalline microfibrils that are organized with respect to a cell's function and shape requirements. A primary cell wall is deposited during expansion whereas secondary cell wall is synthesized post expansion during differentiation. A complex form of asymmetrical cellular differentiation occurs in Arabidopsis seed coat epidermal cells, where we have recently shown that two secondary cell wall processes occur that utilize different cellulose synthase (CESA) proteins. One process is to produce pectinaceous mucilage that expands upon hydration and the other is a radial wall thickening that reinforced the epidermal cell structure. Our data illustrate polarized specialization of CESA5 in facilitating mucilage attachment to the parent seed and CESA2, CESA5 and CESA9 in radial cell wall thickening and formation of the columella. Herein, we present a model for the complexity of cellulose biosynthesis in this highly differentiated cell type with further evidence supporting each cellulosic secondary cell wall process. PMID:22057330

  14. Processes and problems in secondary star formation

    SciTech Connect

    Klein, R.I.; Whitaker, R.W.; Sandford M.T. II

    1984-03-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of the observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding inter-cloud gas flows leading to non-linear inhomogeneous cloud structures in an intially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in congruent to 1-3 x 10/sup 4/ years and could account for the recent evidence for new massive star formation in several UCHII regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multiple dimensional calculations of coupled processes. The important non-linear interactions include hydrodynamics, radiation transport, and magnetic fields.

  15. A zoom into the nanoscale texture of secondary cell walls

    PubMed Central

    2014-01-01

    Background Besides classical utilization of wood and paper, lignocellulosic biomass has become increasingly important with regard to biorefinery, biofuel production and novel biomaterials. For these new applications the macromolecular assembly of cell walls is of utmost importance and therefore further insights into the arrangement of the molecules on the nanolevel have to be gained. Cell wall recalcitrance against enzymatic degradation is one of the key issues, since an efficient degradation of lignocellulosic plant material is probably the most crucial step in plant conversion to energy. A limiting factor for in-depth analysis is that high resolution characterization techniques provide structural but hardly chemical information (e.g. Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM)), while chemical characterization leads to a disassembly of the cell wall components or does not reach the required nanoscale resolution (Fourier Tranform Infrared Spectroscopy (FT-IR), Raman Spectroscopy). Results Here we use for the first time Scanning Near-Field Optical Microscopy (SNOM in reflection mode) on secondary plant cell walls and reveal a segmented circumferential nanostructure. This pattern in the 100 nm range was found in the secondary cell walls of a softwood (spruce), a hardwood (beech) and a grass (bamboo) and is thus concluded to be consistent among various plant species. As the nanostructural pattern is not visible in classical AFM height and phase images it is proven that the contrast is not due to changes in surfaces topography, but due to differences in the molecular structure. Conclusions Comparative analysis of model substances of casted cellulose nanocrystals and spin coated lignin indicate, that the SNOM signal is clearly influenced by changes in lignin distribution or composition. Therefore and based on the known interaction of lignin and visible light (e.g. fluorescence and resonance effects), we assume the elucidated nanoscale

  16. Organosulfate Formation in Biogenic Secondary Organic Aerosol

    EPA Science Inventory

    Organosulfates of isoprene, α-pinene, and β-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive seri...

  17. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition

    PubMed Central

    Hussey, Steven G.; Mizrachi, Eshchar; Creux, Nicky M.; Myburg, Alexander A.

    2013-01-01

    The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture, and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW) biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein–DNA and protein–protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms. PMID:24009617

  18. Lignin Formation in Wheat Coleoptile Cell Walls

    PubMed Central

    Whitmore, F. W.

    1971-01-01

    Four growth-influencing compounds—hydroxyproline, 2,2′-dipyridyl, 2-chloroethylphosphonic acid, and indoleacetic acid—were used to examine the relationship between lignin formation and growth of wheat coleoptile sections. Hydroxyproline and 2-chloroethylphosphonic acid, at low concentrations, inhibited growth and increased lignin content. Dipyridyl, which promoted coleoptile elongation, decreased lignin content. Indoleacetic acid caused a 300% increase in growth at 0.1 mm but resulted in lignin content no different from controls with no auxin. Chemical and anatomical evidence is given which indicates that lignin is present in the epidermal cell walls of the wheat coleoptile. It is thus possible that bonding between lignin and hemicellulose may have some influence on coleoptile growth. Images PMID:16657843

  19. Arabidopsis Fragile Fiber8, Which Encodes a Putative Glucuronyltransferase, Is Essential for Normal Secondary Wall Synthesis

    PubMed Central

    Zhong, Ruiqin; Peña, Maria J.; Zhou, Gong-Ke; Nairn, C. Joseph; Wood-Jones, Alicia; Richardson, Elizabeth A.; Morrison, W. Herbert; Darvill, Alan G.; York, William S.; Ye, Zheng-Hua

    2005-01-01

    Secondary walls in vessels and fibers of dicotyledonous plants are mainly composed of cellulose, xylan, and lignin. Although genes involved in biosynthesis of cellulose and lignin have been intensively studied, little is known about genes participating in xylan synthesis. We found that Arabidopsis thaliana fragile fiber8 (fra8) is defective in xylan synthesis. The fra8 mutation caused a dramatic reduction in fiber wall thickness and a decrease in stem strength. FRA8 was found to encode a member of glycosyltransferase family 47 and exhibits high sequence similarity to tobacco (Nicotiana plumbaginifolia) pectin glucuronyltransferase. FRA8 is expressed specifically in developing vessels and fiber cells, and FRA8 is targeted to Golgi. Comparative analyses of cell wall polysaccharide fractions from fra8 and wild-type stems showed that the xylan and cellulose contents are drastically reduced in fra8, whereas xyloglucan and pectin are elevated. Further structural analysis of cell walls revealed that although wild-type xylans contain both glucuronic acid and 4-O-methylglucuronic acid residues, xylans from fra8 retain only 4-O-methylglucuronic acid, indicating that the fra8 mutation results in a specific defect in the addition of glucuronic acid residues onto xylans. These findings suggest that FRA8 is a glucuronyltransferase involved in the biosynthesis of glucuronoxylan during secondary wall formation. PMID:16272433

  20. Arabidopsis histidine-containing phosphotransfer factor 4 (AHP4) negatively regulates secondary wall thickening of the anther endothecium during flowering.

    PubMed

    Jung, Kwang Wook; Oh, Seung-Ick; Kim, Yun Young; Yoo, Kyoung Shin; Cui, Mei Hua; Shin, Jeong Sheop

    2008-04-30

    Cytokinins are essential hormones in plant development. Arabidopsis histidine-containing phosphotransfer proteins (AHPs) are mediators in a multistep phosphorelay pathway for cytokinin signaling. The exact role of AHP4 has not been elucidated. In this study, we demonstrated young flower-specific expression of AHP4, and compared AHP4-overexpressing (Ox) trangenic Arabidopsis lines and an ahp4 knock-out line. AHP4-Ox plants had reduced fertility due to a lack of secondary cell wall thickening in the anther endothecium and inhibition of IRREGURAR XYLEMs (IRXs) expression in young flowers. Conversely, ahp4 anthers had more lignified anther walls than the wild type, and increased IRXs expression. Our study indicates that AHP4 negatively regulates thickening of the secondary cell wall of the anther endothecium, and provides new insight into the role of cytokinins in formation of secondary cell walls via the action of AHP4. PMID:18413999

  1. Secondary structure formation in peptide amphiphile micelles

    NASA Astrophysics Data System (ADS)

    Tirrell, Matthew

    2012-02-01

    Peptide amphiphiles (PAs) are capable of self-assembly into micelles for use in the targeted delivery of peptide therapeutics and diagnostics. PA micelles exhibit a structural resemblance to proteins by having folded bioactive peptides displayed on the exterior of a hydrophobic core. We have studied two factors that influence PA secondary structure in micellar assemblies: the length of the peptide headgroup and amino acids closest to the micelle core. Peptide length was systematically varied using a heptad repeat PA. For all PAs the addition of a C12 tail induced micellization and secondary structure. PAs with 9 amino acids formed beta-sheet interactions upon aggregation, whereas the 23 and 30 residue peptides were displayed in an apha-helical conformation. The 16 amino acid PA experienced a structural transition from helix to sheet, indicating that kinetics play a role in secondary structure formation. A p53 peptide was conjugated to a C16 tail via various linkers to study the effect of linker chemistry on PA headgroup conformation. With no linker the p53 headgroup was predominantly alpha helix and a four alanine linker drastically changed the structure of the peptide headgroup to beta-sheet, highlighting the importance of hydrogen boding potential near the micelle core.

  2. Chemistry of secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Yee, Lindsay Diana

    The photooxidation of volatile organic compounds (VOCs) in the atmosphere can lead to the formation of secondary organic aerosol (SOA), a major component of fine particulate matter. Improvements to air quality require insight into the many reactive intermediates that lead to SOA formation, of which only a small fraction have been measured at the molecular level. This thesis describes the chemistry of secondary organic aerosol (SOA) formation from several atmospherically relevant hydrocarbon precursors. Photooxidation experiments of methoxyphenol and phenolic compounds and C12 alkanes were conducted in the Caltech Environmental Chamber. These experiments include the first photooxidation studies of these precursors run under sufficiently low NOx levels, such that RO2 + HO2 chemistry dominates, an important chemical regime in the atmosphere. Using online Chemical Ionization Mass Spectrometery (CIMS), key gas-phase intermediates that lead to SOA formation in these systems were identified. With complementary particle-phase analyses, chemical mechanisms elucidating the SOA formation from these compounds are proposed. Three methoxyphenol species (phenol, guaiacol, and syringol) were studied to model potential photooxidation schemes of biomass burning intermediates. SOA yields (ratio of mass of SOA formed to mass of primary organic reacted) exceeding 25% are observed. Aerosol growth is rapid and linear with the organic conversion, consistent with the formation of essentially non-volatile products. Gas and aerosol-phase oxidation products from the guaiacol system show that the chemical mechanism consists of highly oxidized aromatic species in the particle phase. Syringol SOA yields are lower than that of phenol and guaiacol, likely due to unique chemistry dependent on methoxy group position. The photooxidation of several C12 alkanes of varying structure n-dodecane, 2-methylundecane, cyclododecane, and hexylcyclohexane) were run under extended OH exposure to investigate the

  3. Characterization of microRNAs expressed during secondary wall biosynthesis in Acacia mangium.

    PubMed

    Ong, Seong Siang; Wickneswari, Ratnam

    2012-01-01

    MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants. PMID:23251324

  4. Characterization of microRNAs Expressed during Secondary Wall Biosynthesis in Acacia mangium

    PubMed Central

    Ong, Seong Siang; Wickneswari, Ratnam

    2012-01-01

    MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants. PMID:23251324

  5. The PARVUS gene is expressed in cells undergoing secondary wall thickening and essential for glucuronoxylan biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylan together with cellulose and lignin are the three major components of secondary walls in wood and elucidation of the biosynthetic pathway of xylan is of importance for potential modification of secondary wall composition to produce wood with improved properties. So far, three Arabidopsis glycos...

  6. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants

    PubMed Central

    Nakano, Yoshimi; Yamaguchi, Masatoshi; Endo, Hitoshi; Rejab, Nur Ardiyana; Ohtani, Misato

    2015-01-01

    Plant cells biosynthesize primary cell walls (PCW) in all cells and produce secondary cell walls (SCWs) in specific cell types that conduct water and/or provide mechanical support, such as xylem vessels and fibers. The characteristic mechanical stiffness, chemical recalcitrance, and hydrophobic nature of SCWs result from the organization of SCW-specific biopolymers, i.e., highly ordered cellulose, hemicellulose, and lignin. Synthesis of these SCW-specific biopolymers requires SCW-specific enzymes that are regulated by SCW-specific transcription factors. In this review, we summarize our current knowledge of the transcriptional regulation of SCW formation in plant cells. Advances in research on SCW biosynthesis during the past decade have expanded our understanding of the transcriptional regulation of SCW formation, particularly the functions of the NAC and MYB transcription factors. Focusing on the NAC-MYB-based transcriptional network, we discuss the regulatory systems that evolved in land plants to modify the cell wall to serve as a key component of structures that conduct water and provide mechanical support. PMID:25999964

  7. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana.

    PubMed

    Szyjanowicz, Pio M J; McKinnon, Iain; Taylor, Neil G; Gardiner, John; Jarvis, Mike C; Turner, Simon R

    2004-03-01

    The irregular xylem 2 (irx2) mutant of Arabidopsis thaliana exhibits a cellulose deficiency in the secondary cell wall, which is brought about by a point mutation in the KORRIGAN (KOR) beta,1-4 endoglucanase (beta,1-4 EGase) gene. Measurement of the total crystalline cellulose in the inflorescence stem indicates that the irx2 mutant contains approximately 30% of the level present in the wild type (WT). Fourier-Transform Infra Red (FTIR) analysis, however, indicates that there is no decrease in cellulose in primary cell walls of the cortical and epidermal cells of the stem. KOR expression is correlated with cellulose synthesis and is highly expressed in cells synthesising a secondary cell wall. Co-precipitation experiments, using either an epitope-tagged form of KOR or IRX3 (AtCesA7), suggest that KOR is not an integral part of the cellulose synthase complex. These data are supported by immunolocalisation of KOR that suggests that KOR does not localise to sites of secondary cell wall deposition in the developing xylem. The defect in irx2 plant is consistent with a role for KOR in the later stages of secondary cell wall formation, suggesting a role in processing of the growing microfibrils or release of the cellulose synthase complex. PMID:14871312

  8. Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood.

    PubMed

    Derba-Maceluch, Marta; Awano, Tatsuya; Takahashi, Junko; Lucenius, Jessica; Ratke, Christine; Kontro, Inkeri; Busse-Wicher, Marta; Kosik, Ondrej; Tanaka, Ryo; Winzéll, Anders; Kallas, Åsa; Leśniewska, Joanna; Berthold, Fredrik; Immerzeel, Peter; Teeri, Tuula T; Ezcurra, Ines; Dupree, Paul; Serimaa, Ritva; Mellerowicz, Ewa J

    2015-01-01

    Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary-wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen. PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68 kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose-microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress-responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development. PMID:25307149

  9. Formation of charged ferroelectric domain walls with controlled periodicity.

    PubMed

    Bednyakov, Petr S; Sluka, Tomas; Tagantsev, Alexander K; Damjanovic, Dragan; Setter, Nava

    2015-01-01

    Charged domain walls in proper ferroelectrics were shown recently to possess metallic-like conductivity. Unlike conventional heterointerfaces, these walls can be displaced inside a dielectric by an electric field, which is of interest for future electronic circuitry. In addition, theory predicts that charged domain walls may influence the electromechanical response of ferroelectrics, with strong enhancement upon increased charged domain wall density. The existence of charged domain walls in proper ferroelectrics is disfavoured by their high formation energy and methods of their preparation in predefined patterns are unknown. Here we develop the theoretical background for the formation of charged domain walls in proper ferroelectrics using energy considerations and outline favourable conditions for their engineering. We experimentally demonstrate, in BaTiO3 single crystals the controlled build-up of high density charged domain wall patterns, down to a spacing of 7 μm with a predominant mixed electronic and ionic screening scenario, hinting to a possible exploitation of charged domain walls in agile electronics and sensing devices. PMID:26516026

  10. Formation of charged ferroelectric domain walls with controlled periodicity

    PubMed Central

    Bednyakov, Petr S.; Sluka, Tomas; Tagantsev, Alexander K.; Damjanovic, Dragan; Setter, Nava

    2015-01-01

    Charged domain walls in proper ferroelectrics were shown recently to possess metallic-like conductivity. Unlike conventional heterointerfaces, these walls can be displaced inside a dielectric by an electric field, which is of interest for future electronic circuitry. In addition, theory predicts that charged domain walls may influence the electromechanical response of ferroelectrics, with strong enhancement upon increased charged domain wall density. The existence of charged domain walls in proper ferroelectrics is disfavoured by their high formation energy and methods of their preparation in predefined patterns are unknown. Here we develop the theoretical background for the formation of charged domain walls in proper ferroelectrics using energy considerations and outline favourable conditions for their engineering. We experimentally demonstrate, in BaTiO3 single crystals the controlled build-up of high density charged domain wall patterns, down to a spacing of 7 μm with a predominant mixed electronic and ionic screening scenario, hinting to a possible exploitation of charged domain walls in agile electronics and sensing devices. PMID:26516026

  11. Arabidopsis NMD3 Is Required for Nuclear Export of 60S Ribosomal Subunits and Affects Secondary Cell Wall Thickening

    PubMed Central

    Chen, Mei-Qin; Zhang, Ai-Hong; Zhang, Quan; Zhang, Bao-Cai; Nan, Jie; Li, Xia; Liu, Na; Qu, Hong; Lu, Cong-Ming; Sudmorgen; Zhou, Yi-Hua; Xu, Zhi-Hong; Bai, Shu-Nong

    2012-01-01

    NMD3 is required for nuclear export of the 60S ribosomal subunit in yeast and vertebrate cells, but no corresponding function of NMD3 has been reported in plants. Here we report that Arabidopsis thaliana NMD3 (AtNMD3) showed a similar function in the nuclear export of the 60S ribosomal subunit. Interference with AtNMD3 function by overexpressing a truncated dominant negative form of the protein lacking the nuclear export signal sequence caused retainment of the 60S ribosomal subunits in the nuclei. More interestingly, the transgenic Arabidopsis with dominant negative interference of AtNMD3 function showed a striking failure of secondary cell wall thickening, consistent with the altered expression of related genes and composition of cell wall components. Observation of a significant decrease of rough endoplasmic reticulum (RER) in the differentiating interfascicular fiber cells of the transgenic plant stems suggested a link between the defective nuclear export of 60S ribosomal subunits and the abnormal formation of the secondary cell wall. These findings not only clarified the evolutionary conservation of NMD3 functions in the nuclear export of 60S ribosomal subunits in yeast, animals and plants, but also revealed a new facet of the regulatory mechanism underlying secondary cell wall thickening in Arabidopsis. This new facet is that the nuclear export of 60S ribosomal subunits and the formation of RER may play regulatory roles in coordinating protein synthesis in cytoplasm and transcription in nuclei. PMID:22558264

  12. Characterizing the formation of secondary organic aerosols

    SciTech Connect

    Lunden, Melissa; Black, Douglas; Brown, Nancy

    2004-02-01

    combination of the aerosol and gas phase data, will continue to provide important information on the extent to which biogenic emissions contribute to secondary organic aerosol and may elucidate important interactions between anthropogenic and biogenic sources. The results of these studies, performed in the field, will contribute to the growing effort to produce robust models for particulate formation that are necessary for air quality planning and source apportionment.

  13. Effect of Compliant Walls on Secondary Instabilities in Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Morris, Philip J.

    1991-01-01

    For aerodynamic and hydrodynamic vehicles, it is highly desirable to reduce drag and noise levels. A reduction in drag leads to fuel savings. In particular for submersible vehicles, a decrease in noise levels inhibits detection. A suggested means to obtain these reduction goals is by delaying the transition from laminar to turbulent flow in external boundary layers. For hydrodynamic applications, a passive device which shows promise for transition delays is the compliant coating. In previous studies with a simple mechanical model representing the compliant wall, coatings were found that provided transition delays as predicted from the semi-empirical e(sup n) method. Those studies were concerned with the linear stage of transition where the instability of concern is referred to as the primary instability. For the flat-plate boundary layer, the Tollmien-Schlichting (TS) wave is the primary instability. In one of those studies, it was shown that three-dimensional (3-D) primary instabilities, or oblique waves, could dominate transition over the coatings considered. From the primary instability, the stretching and tilting of vorticity in the shear flow leads to a secondary instability mechanism. This has been theoretical described by Herbert based on Floquet theory. In the present study, Herbert's theory is used to predict the development of secondary instabilities over isotropic and non-isotropic compliant walls. Since oblique waves may be dominant over compliant walls, a secondary theory extention is made to allow for these 3-D primary instabilities. The effect of variations in primary amplitude, spanwise wavenumber, and Reynolds number on the secondary instabilities are examined. As in the rigid wall case, over compliant walls the subharmonic mode of secondary instability dominates for low-amplitude primary disturbances. Both isotropic and non-isotropic compliant walls lead to reduced secondary growth rates compared to the rigid wall results. For high frequencies

  14. Secondary instability of high-speed flows and the influence of wall cooling and suction

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1992-01-01

    The periodic streamwise modulation of the supersonic and hypersonic boundary layers by a two-dimensional first-mode or second-mode wave makes the resulting base flow susceptible to a broadband spanwise-periodic three-dimensional type of instability. The principal parametric resonance of this instability (subharmonic) has been analyzed using Floquet theory. The effect of Mach number and the effectiveness of wall cooling or wall suction in controlling the onset, the growth rate, and the vortical structure of the subharmonic secondary instability are assessed for both a first-mode and a second-mode primary wave. Results indicate that the secondary subharmonic instability of an insulated wall boundary layer is weakened as Mach number increases. Cooling of the wall destabilizes the secondary subharmonic of a second-mode primary wave, but stabilizes it when the primary wave is a first mode. Suction stabilizes the secondary subharmonic at all Mach numbers.

  15. Secondary instability of high-speed flows and the influence of wall cooling and suction

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1992-01-01

    The periodic streamwise modulation of the supersonic and hypersonic boundary layers by a two dimensional first mode or second mode wave makes the resulting base flow susceptible to a broadband spanwise-periodic three dimensional type of instability. The principal parametric resonance of this instability (subharmonic) was analyzed using Floquet theory. The effect of Mach number and the effectiveness of wall cooling or wall suction in controlling the onset, the growth rate, and the vortical nature of the subharmonic secondary instability are assessed for both a first mode and a second mode primary wave. Results indicate that the secondary subharmonic instability of the insulated wall boundary layer is weakened as Mach number increases. Cooling of the wall destabilizes the secondary subharmonic of a second mode primary wave, but stabilizes it when the primary wave is a first mode. Suction stabilizes the secondary subharmonic at all Mach numbers.

  16. Regulation of auxin on secondary cell wall cellulose biosynthesis in developing cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium hirsutum L.) fibers are unicellular trichomes that differentiate from epidermal cells of developing cotton ovules. Mature fibers exhibit thickened secondary walls composed of nearly pure cellulose. Cotton fiber development is divided into four overlapping phases, 1) initiation sta...

  17. Comparative structure and biomechanics of plant primary and secondary cell walls

    PubMed Central

    Cosgrove, Daniel J.; Jarvis, Michael C.

    2012-01-01

    Recent insights into the physical biology of plant cell walls are reviewed, summarizing the essential differences between primary and secondary cell walls and identifying crucial gaps in our knowledge of their structure and biomechanics. Unexpected parallels are identified between the mechanism of expansion of primary cell walls during growth and the mechanisms by which hydrated wood deforms under external tension. There is a particular need to revise current “cartoons” of plant cell walls to be more consistent with data from diverse approaches and to go beyond summarizing limited aspects of cell walls, serving instead as guides for future experiments and for the application of new techniques. PMID:22936943

  18. Mesenchymal Wnt Signaling Promotes Formation of Sternum and Thoracic Body Wall

    PubMed Central

    Snowball, John; Ambalavanan, Manoj; Cornett, Bridget; Lang, Richard; Whitsett, Jeff; Sinner, Debora

    2015-01-01

    Midline defects account for approximately 5% of congenital abnormalities observed at birth. However, the molecular mechanisms underlying the formation of the ventral body wall are not well understood. Recent studies linked mutations in Porcupine—an O-acetyl transferase mediating Wnt ligand acylation—with defects in the thoracic body wall. We hypothesized that anomalous Wnt signaling is involved in the pathogenesis of defective closure of the thoracic body wall. We generated a mouse model wherein Wntless (Wls), which encodes a cargo receptor mediating secretion of Wnt ligands, was conditionally deleted from the developing mesenchyme using Dermo1Cre mice. Wlsf/f;Dermo1Cre/+ embryos died during mid-gestation. At E13.5, skeletal defects were observed in the forelimbs, jaw, and rib cage. At E14.5, midline defects in the thoracic body wall began to emerge: the sternum failed to fuse and the heart protruded through the body wall at the midline (ectopia cordis). To determine the molecular mechanism underlying the phenotype observed in Wlsf/f;Dermo1Cre/+ embryos, we tested whether Wnt/β-catenin signaling was operative in developing the embryonic ventral body wall using Axin2LacZ and BatGal reporter mice. While Wnt/β-catenin signaling activity was observed at the midline of the ventral body wall before sternal fusion, this pattern of activity was altered and scattered throughout the body wall after mesenchymal deletion of Wls. Mesenchymal cell migration was disrupted in Wlsf/f;Dermo1Cre/+ thoracic body wall partially due to anomalous non-canonical Wnt signaling as determined by in vitro assays. Deletion of Lrp5 and Lrp6 receptors, which mediate Wnt/β-catenin signaling in the mesenchyme, partially recapitulated the phenotype observed in the chest midline of Wlsf/f;Dermo1Cre/+ embryos supporting a role for Wnt/β-catenin signaling activity in the normal formation of the ventral body wall mesenchyme. We conclude that Wls-mediated secretion of Wnt ligands from the

  19. The toughness of secondary cell wall and woody tissue

    PubMed Central

    Lucas, P. W.; Tan, H. T. W.; Cheng, P. Y.

    1997-01-01

    The 'across grain' toughness of 51 woods has been determined on thin wet sections using scissors. The moisture content of sections and the varying sharpness of the scissor blades had little effect on the results. In thin sections (less than 0.6mm), toughness rose linearly with section thickness. The intercept toughness at zero thickness, estimated from regression analysis, was proportional to relative density, consistent with values reported for non-woody plant tissues. Extrapolation of the intercept toughness of these woods and other plant tissues/materials to a relative density of 1.0 predicted a toughness of 3.45kJ m-2 , which we identify with the intrinsic toughness of the cell wall. This quantity appears to predict published results from KIC tests on woods and is related to the propensity for crack deflection. The slope of the relationship between section thickness and toughness, describing the work of plastic buckling of cells, was not proportional to relative density, the lightest (balsa) and heaviest (lignum vitae) woods fracturing with less plastic work than predicted. The size of the plastic zone around the crack tip was estimated to be 0.5mm in size. From this, the hypothetical overall toughness of a thick (greater than 1 mm) block of solid cell wall material was calculated as 39.35 kJ m-2, due to both cell wall resistance (10 per cent) and the plastic buckling of cells (90 per cent). This value successfully predicts the toughness of most commercial woods (of relative densities between 0.2 and 0.8) from 'work area' tests in tension and bending. Though density was the most important factor, both fibre width/fibre length (in hardwoods) and lignin/cellulose ratios were negatively correlated with the work of plastic buckling, after correcting for density. At low densities the work of plastic buckling in the longitudinal radial (LR) direction exceeded that in longitudinal tangential (LT), but the reverse was true for relative densities above 0.25. This could

  20. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis

    SciTech Connect

    Wang, Shucai; Li, Eryang; Porth, Ilga; Chen, Jin-Gui; Mansfield, Shawn D.; Douglas, Carl

    2014-05-23

    Poplar has 192 annotated R2R3 MYB genes, of which only three have been shown to play a role in the regulation of secondary cell wall formation. Here we report the characterization of PtrMYB152, a poplar homolog of the Arabidopsis R2R3 MYB transcription factor AtMYB43, in the regulation of secondary cell wall biosynthesis. The expression of PtrMYB152 in secondary xylem is about 18 times of that in phloem. When expressed in Arabidopsis under the control of either 35S or PtrCesA8 promoters, PtrMYB152 increased secondary cell wall thickness, which is likely caused by increased lignification. Accordingly, elevated expression of genes encoding sets of enzymes in secondary wall biosynthesis were observed in transgenic plants expressing PtrMYB152. Arabidopsis protoplast transfection assays suggested that PtrMYB152 functions as a transcriptional activator. Taken together, our results suggest that PtrMYB152 may be part of a regulatory network activating expression of discrete sets of secondary cell wall biosynthesis genes.

  1. CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice.

    PubMed

    Ye, Yafeng; Liu, Binmei; Zhao, Meng; Wu, Kun; Cheng, Weimin; Chen, Xiangbin; Liu, Qian; Liu, Zan; Fu, Xiangdong; Wu, Yuejin

    2015-11-01

    Although the main genes in rice involved in the biosynthesis of secondary wall components have been characterized, the molecular mechanism underlying coordinated regulation of genes expression is not clear. In this study, we reported a new rice variety, cef1, showed the culm easily fragile (CEF) without other concomitant phenotypes. The CEF1 gene encodes a MYB family transcription factor OsMYB103L, was cloned based on map-based approach. Bioinformatics analyses indicated that CEF1 belongs to the R2R3-MYB subfamily and highly similar to Arabidopsis AtMYB103. Expression pattern analysis indicated that CEF1 is mainly expressed in internodes and panicles. Biochemical assays demonstrated that OsMYB103L is a nuclear protein and shows high transcriptional activation activity at C-terminus. OsMYB103L mediates cellulose biosynthesis and secondary walls formation mainly through directly binding the CESA4, CESA7, CESA9 and BC1 promoters and regulating their expression. OsMYB103L may also function as a master switch to regulate the expression of several downstream TFs, which involved in secondary cell wall biosynthesis. Furthermore, OsMYB103L physically interacts with SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and involved in GA-mediated regulation of cellulose synthesis pathway. Our findings revealed that OsMYB103L plays an important role in GA-regulating secondary cell wall synthesis, and the manipulation of this gene provide a new strategy to help the straw decay in soil. PMID:26350403

  2. Development of Cellulosic Secondary Walls in Flax Fibers Requires β-Galactosidase1[C][W][OA

    PubMed Central

    Roach, Melissa J.; Mokshina, Natalia Y.; Badhan, Ajay; Snegireva, Anastasiya V.; Hobson, Neil; Deyholos, Michael K.; Gorshkova, Tatyana A.

    2011-01-01

    Bast (phloem) fibers, tension wood fibers, and other cells with gelatinous-type secondary walls are rich in crystalline cellulose. In developing bast fibers of flax (Linum usitatissimum), a galactan-enriched matrix (Gn-layer) is gradually modified into a mature cellulosic gelatinous-layer (G-layer), which ultimately comprises most of the secondary cell wall. Previous studies have correlated this maturation process with expression of a putative β-galactosidase. Here, we demonstrate that β-galactosidase activity is in fact necessary for the dynamic remodeling of polysaccharides that occurs during normal secondary wall development in flax fibers. We found that developing stems of transgenic (LuBGAL-RNAi) flax with reduced β-galactosidase activity had lower concentrations of free Gal and had significant reductions in the thickness of mature cellulosic G-layers compared with controls. Conversely, Gn-layers, labeled intensively by the galactan-specific LM5 antibody, were greatly expanded in LuBGAL-RNAi transgenic plants. Gross morphology and stem anatomy, including the thickness of bast fiber walls, were otherwise unaffected by silencing of β-galactosidase transcripts. These results demonstrate a specific requirement for β-galactosidase in hydrolysis of galactans during formation of cellulosic G-layers. Transgenic lines with reduced β-galactosidase activity also had biochemical and spectroscopic properties consistent with a reduction in cellulose crystallinity. We further demonstrated that the tensile strength of normal flax stems is dependent on β-galactosidase-mediated development of the phloem fiber G-layer. Thus, the mechanical strength that typifies flax stems is dependent on a thick, cellulosic G-layer, which itself depends on β-galactosidase activity within the precursor Gn-layer. These observations demonstrate a novel role for matrix polysaccharides in cellulose deposition; the relevance of these observations to the development of cell walls in other

  3. Formation of hydrogen peroxide in electron irradiated secondary effluent

    SciTech Connect

    Cooper, W.J.; Sosa, D.; Cadavid, E.M. ); Waite, T.D.; Kurucz, C.N. )

    1989-01-01

    The results of the formation of hydrogen peroxide in a chlorinated secondary wastewater are presented in this paper. This research project utilizes a large scale 1.5 MeV, 50 mA, electron accelerator located at the Virginia Key Wastewater Treatment Plant in Miami, Florida. Secondary chlorinated wastewater is connected to the influent of the electron beam facility and can be treated at 120 gpm. The formation of the oxidant hydrogen peroxide has been related to electron dose. Experimental results are presented and discussed.

  4. Structure of cellulose-deficient secondary cell walls from the irx3 mutant of Arabidopsis thaliana.

    PubMed

    Ha, Marie-Ann; MacKinnon, Iain M; Sturcová, Adriana; Apperley, David C; McCann, Maureen C; Turner, Simon R; Jarvis, Michael C

    2002-09-01

    In the Arabidopsis mutant irx3, truncation of the AtCesA7 gene encoding a xylem-specific cellulose synthase results in reduced cellulose synthesis in the affected xylem cells and collapse of mature xylem vessels. Here we describe spectroscopic experiments to determine whether any cellulose, normal or abnormal, remained in the walls of these cells and whether there were consequent effects on other cell-wall polysaccharides. Xylem cell walls from irx3 and its wild-type were prepared by anatomically specific isolation and were examined by solid-state NMR spectroscopy and FTIR microscopy. The affected cell walls of irx3 contained low levels of crystalline cellulose, probably associated with primary cell walls. There was no evidence that crystalline cellulose was replaced by less ordered glucans. From the molecular mobility of xylans and lignin it was deduced that these non-cellulosic polymers were cross-linked together in both irx3 and the wild-type. The disorder previously observed in the spatial pattern of non-cellulosic polymer deposition in the secondary walls of irx3 xylem could not be explained by any alteration in the structure or cross-linking of these polymers and may be attributed directly to the absence of cellulose microfibrils which, in the wild-type, scaffold the organisation of the other polymers into a coherent secondary cell wall. PMID:12165296

  5. The role of the secondary cell wall in plant resistance to pathogens.

    PubMed

    Miedes, Eva; Vanholme, Ruben; Boerjan, Wout; Molina, Antonio

    2014-01-01

    Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process. PMID:25161657

  6. The role of the secondary cell wall in plant resistance to pathogens

    PubMed Central

    Miedes, Eva; Vanholme, Ruben; Boerjan, Wout; Molina, Antonio

    2014-01-01

    Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process. PMID:25161657

  7. The history of the walls of the Acropolis of Athens and the natural history of secondary fracture healing process.

    PubMed

    Lyritis, G P

    2000-09-01

    During its long and adventurous history, the Acropolis of Athens has been a site of many dramatic events. It suffered its most disastrous destruction during the Persian wars. Under the command of King Xerxes, the Persians invaded Athens and ruined the Temple of the Parthenon and the walls of the Acropolis. After their victorious sea battle at Salamis, the Athenians, led by Themistocles, returned home and tried to repair the damage. Their priority still was to defend their city by restoring the walls of the Acropolis. Materials of all kinds were salvaged from the ruins of the Acropolis and used for an immediate reconstruction of the walls. Later, when the Athenians became the leaders of the Greek world, it was decided that the walls should be rebuilt in a proper artistic way. Themistocles suggested that a small section of the walls, which had formerly been a part of the urgent restoration, should remain in place so as to remind the citizens of this historical event. This is a characteristic example of the biological and mechanical adaptation of fracture callus to musculoskeletal function. After a period of urgency with the fixation of a fracture by means of a primitive secondary callus formation, the broken limb gradually returns to its usual function. Increased mechanical loading enhances the remodelling of the callus and the replacement of woven bone with lamellar bone. PMID:15758516

  8. The role of low volatile organics on secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Kokkola, H.; Yli-Pirilä, P.; Vesterinen, M.; Korhonen, H.; Keskinen, H.; Romakkaniemi, S.; Hao, L.; Kortelainen, A.; Joutsensaari, J.; Worsnop, D. R.; Virtanen, A.; Lehtinen, K. E. J.

    2014-02-01

    Large-scale atmospheric models, which typically describe secondary organic aerosol (SOA) formation based on chamber experiments, tend to systematically underestimate observed organic aerosol burdens. Since SOA constitutes a significant fraction of atmospheric aerosol, this discrepancy translates into an underestimation of SOA contribution to radiative forcing of atmospheric aerosol. Here we show that the underestimation of SOA yields can be partly explained by wall losses of SOA forming compounds during chamber experiments. We present a chamber experiment where α-pinene and ozone are injected into a Teflon chamber. When these two compounds react, we observe rapid formation and growth of new particles. Theoretical analysis of this formation and growth event indicates rapid formation of oxidized volatile organic compounds (OVOC) of very low volatility in the chamber. If these oxidized organic compounds form in the gas phase, their wall losses will have significant implications on their partitioning between the gas and particle phase. Although these OVOCs of very low volatility contribute to the growth of new particles, their mass will almost completely be depleted to the chamber walls during the experiment, while the depletion of OVOCs of higher volatilities is less efficient. According to our model simulations, the volatilities of OVOC contributing to the new particle formation event can be of the order of 10-5 μg m-3.

  9. EFFECT OF ACIDITY ON SECONDARY ORGANIC AEROSOL FORMATION FROM ISOPRENE

    EPA Science Inventory

    The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is c...

  10. Secondary eyewall formation as a progressive boundary layer response

    NASA Astrophysics Data System (ADS)

    Abarca, S. F.; Montgomery, M. T.; Bell, M. M.

    2012-12-01

    The robust observational (satellite based) evidence that secondary eyewalls are common features in major hurricanes contrasts with the scarce in situ observations of the phenomena and its life cycle. This lack of observations has resulted in an incomplete understanding of the dynamics of secondary eyewall formation (SEF). A wide variety of physical processes have been invoked to explain SEF, but only the recently proposed theory of a progressive boundary layer control in SEF has been supported by a variety of full physics mesoscale numerical integrations. The RAINEX field project provided unique observations of the secondary eyewall of Hurricane Rita (2005) both before and during the time Rita exhibited a clear secondary eyewall structure. These observations have contributed to the advancement of the understanding of the secondary eyewall phenomenon. However, in the RAINEX experiment, there was limited data sampling during the development of the secondary wind maxima, thereby precluding a complete observational investigation of the dynamics of SEF. In this presentation we adopt an azimuthally-averaged perspective of the flow dynamics and we test the newly proposed theory of a progressive boundary layer control on SEF. Specifically, we use both RAINEX data as well as data from high resolution, full physics mesoscale numerical simulations to initialize and force an axisymmetric slab boundary layer model with radial diffusion included. The objective is to investigate whether such a reduced boundary layer model can generate secondary wind maxima as a response to environments like those that result in SEF in nature and in full physics simulations.

  11. FT-IR examination of the development of secondary cell wall in cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The secondary cell wall development of cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering was examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. Generally, a progressive intensity increase for bands assigned to cellulose Iß was ...

  12. Development of secondary cell wall in cotton fibers as examined with Fourier transform-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our presentation will focus on continuing efforts to examine secondary cell wall development in cotton fibers using infrared Spectroscopy. Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-...

  13. The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together.

    PubMed

    Schäffer, Christina; Messner, Paul

    2005-03-01

    The cell wall of Gram-positive bacteria has been a subject of detailed chemical study over the past five decades. Outside the cytoplasmic membrane of these organisms the fundamental polymer is peptidoglycan (PG), which is responsible for the maintenance of cell shape and osmotic stability. In addition, typical essential cell wall polymers such as teichoic or teichuronic acids are linked to some of the peptidoglycan chains. In this review these compounds are considered as 'classical' cell wall polymers. In the course of recent investigations of bacterial cell surface layers (S-layers) a different class of 'non-classical' secondary cell wall polymers (SCWPs) has been identified, which is involved in anchoring of S-layers to the bacterial cell surface. Comparative analyses have shown considerable differences in chemical composition, overall structure and charge behaviour of these SCWPs. This review discusses the progress that has been made in understanding the structural principles of SCWPs, which may have useful applications in S-layer-based 'supramolecular construction kits' in nanobiotechnology. PMID:15758211

  14. Secondary Sphere Formation Enhances the Functionality of Cardiac Progenitor Cells

    PubMed Central

    Cho, Hyun-Jai; Lee, Ho-Jae; Youn, Seock-Won; Koh, Seok-Jin; Won, Joo-Yun; Chung, Yeon-Ju; Cho, Hyun-Ju; Yoon, Chang-Hwan; Lee, Sae-Won; Lee, Eun Ju; Kwon, Yoo-Wook; Lee, Hae-Young; Lee, Sang Hun; Ho, Won-Kyung; Park, Young-Bae; Kim, Hyo-Soo

    2012-01-01

    Loss of cardiomyocytes impairs cardiac function after myocardial infarction (MI). Recent studies suggest that cardiac stem/progenitor cells could repair the damaged heart. However, cardiac progenitor cells are difficult to maintain in terms of purity and multipotency when propagated in two-dimensional culture systems. Here, we investigated a new strategy that enhances potency and enriches progenitor cells. We applied the repeated sphere formation strategy (cardiac explant → primary cardiosphere (CS) formation → sphere-derived cells (SDCs) in adherent culture condition → secondary CS formation by three-dimensional culture). Cells in secondary CS showed higher differentiation potentials than SDCs. When transplanted into the infarcted myocardium, secondary CSs engrafted robustly, improved left ventricular (LV) dysfunction, and reduced infarct sizes more than SDCs did. In addition to the cardiovascular differentiation of transplanted secondary CSs, robust vascular endothelial growth factor (VEGF) synthesis and secretion enhanced neovascularization in the infarcted myocardium. Microarray pathway analysis and blocking experiments using E-selectin knock-out hearts, specific chemicals, and small interfering RNAs (siRNAs) for each pathway revealed that E-selectin was indispensable to sphere initiation and ERK/Sp1/VEGF autoparacrine loop was responsible for sphere maturation. These results provide a simple strategy for enhancing cellular potency for cardiac repair. Furthermore, this strategy may be implemented to other types of stem/progenitor cell-based therapy. PMID:22713697

  15. Abundance of mixed linkage glucan in mature tissues and secondary cell walls of grasses.

    PubMed

    Vega-Sánchez, Miguel E; Verhertbruggen, Yves; Scheller, Henrik V; Ronald, Pamela C

    2013-02-01

    (1,3; 1,4)-β-D-glucan, also known as mixed linkage glucan (MLG), is a polysaccharide that in flowering plants is unique to the cell walls of grasses and other related members of Poales. MLG is highly abundant in endosperm cell walls, where it is considered a storage carbohydrate. In vegetative tissues, MLG transiently accumulates in the primary cell walls of young, elongating organs. In evolutionary distant species such as Equisetum, MLG accumulates predominantly in old tissues in the stems. Similarly, we have recently shown that rice accumulates a large amount of MLG in mature stems, which prompted us to re-evaluate the hypothesis that MLG is solely related to growth in grass vegetative tissues. Here, we summarize data that confirms the presence of MLG in secondary cell walls and mature tissues in rice and other grasses. Along with these results, we discuss additional evidence indicating a broader role for MLG than previously considered. PMID:23299432

  16. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles

    PubMed Central

    Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena; Schiøtz, Jakob; Kasama, Takeshi; Puntes, Victor F.; Frandsen, Cathrine

    2015-01-01

    Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100–400 nm and lengths of up to some hundred microns. Lorenz microscopy and electron holography reveal collective magnetic ordering in these structures. However, in contrast to continuous ferromagnetic thin films of comparable dimensions, domain walls appear preferentially as longitudinal, i.e., oriented parallel to the long axis of the nanoparticle assemblies. We explain this unusual domain structure as the result of dipolar interactions and shape anisotropy, in the absence of inter-particle exchange coupling. PMID:26416297

  17. FORMATION CRITERIA AND THE MASS OF SECONDARY POPULATION III STARS

    SciTech Connect

    Susa, Hajime; Umemura, Masayuki; Hasegawa, Kenji E-mail: umemura@ccs.tsukuba.ac.jp

    2009-09-01

    We explore the formation of secondary Population III (Pop III) stars under radiation hydrodynamic (RHD) feedback by a preformed massive star. To properly treat RHD feedback, we perform three-dimensional RHD simulations incorporating the radiative transfer of ionizing photons as well as H{sub 2} dissociating photons from a preformed star. A collapsing gas cloud is settled at a given distance from a 120 M{sub sun} Pop III star, and the evolution of the cloud is pursued including RHD feedback. We derive the threshold density depending on the distance, above which the cloud can keep collapsing owing to the shielding of H{sub 2} dissociating radiation. We find that an H{sub 2} shell formed ahead of an ionizing front works effectively to shield the H{sub 2} dissociating radiation, leading to the positive feedback for the secondary Pop III star formation. Also, near the threshold density, the envelope of gas cloud is stripped significantly by a shock associated with an ionizing front. By comparing the mass accretion timescale with the Kelvin-Helmholtz timescale, we estimate the mass of secondary Pop III stars. It turns out that the stripping by a shock can reduce the mass of secondary Pop III stars down to {approx}20 M{sub sun}.

  18. Secondary instability of high-speed flows and the influence of wall cooling and suction

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1991-01-01

    The periodic streamwise modulation of the supersonic and hypersonic boundary layers by a two-dimensional first-mode or second-mode wave makes the resulting base flow susceptible to a broad-band spanwise-periodic three-dimensional type of instability. The principal parametric resonance of this instability (subharmonic) has been analyzed using Floquet theory. The effect of Mach number and the effectiveness of wall cooling or wall suction in controlling the onset, the growth rate, and the vortical structure of the subharmonic secondary instability are assessed for both a first-mode and a second-mode primary wave.

  19. New Particle Formation and Secondary Organic Aerosol in Beijing

    NASA Astrophysics Data System (ADS)

    Hu, M.; Yue, D.; Guo, S.; Hu, W.; Huang, X.; He, L.; Wiedensohler, A.; Zheng, J.; Zhang, R.

    2011-12-01

    Air pollution in Beijing has been a major concern due to being a mega-city and green Olympic Games requirements. Both long term and intensive field measurements have been conducted at an Urban Air Quality Monitoring Station in the campus of Peking University since 2004. Aerosol characteristics vary seasonally depending on meteorological conditions and source emissions. Secondary compositions of SNA (sum of sulfate, nitrate, and ammonium) and SOA (secondary organic aerosol) become major fraction of fine particles, which may enhance aerosol impacts on visibility and climate change. The transformation processes of new particle formation (NPF) and secondary organic aerosol have been focused on. It was found that gaseous sulfuric acid, ammonia, and organic compounds are important precursors to NPF events in Beijing and H2SO4-NH3-H2O ternary nucleation is one of the important mechanisms. The contributions of condensation and neutralization of sulfuric acid, coagulation, and organics to the growth of the new particles are estimated as 45%, 34%, and 21%, respectively. Tracer-based method to estimate biogenic and anthropogenic SOA was established by using gas chromatography-mass spectrometry. Secondary organic tracers derived from biogenic (isoprene, α-pinene, β-caryophyllene) and anthropogenic (toluene) contributed 32% at urban site and 35% at rural site, respectively. Other source apportionment techniques were also used to estimate secondary organic aerosols, including EC tracer method, water soluble organic carbon content, chemical mass balance model, and AMS-PMF method.

  20. Evaluation of secondary organic aerosol formation in winter

    NASA Astrophysics Data System (ADS)

    Strader, Ross; Lurmann, Fred; Pandis, Spyros N.

    Three different methods are used to predict secondary organic aerosol (SOA) concentrations in the San Joaquin Valley of California during the winter of 1995-1996 [Integrated Monitoring Study, (IMS95)]. The first of these methods estimates SOA by using elemental carbon as a tracer of primary organic carbon. The second method relies on a Lagrangian trajectory model that simulates the formation, transport, and deposition of secondary organic aerosol. The model includes a recently developed gas-particle partitioning mechanism. Results from both methods are in good agreement with the chemical speciation of organic aerosol during IMS95 and suggest that most of the OC measured during IMS95 is of primary origin. Under suitable conditions (clear skies, low winds, low mixing heights) as much as 15-20 μg C m -3 of SOA can be produced, mainly due to oxidation of aromatics. The low mixing heights observed during the winter in the area allow accumulation of SOA precursors and the acceleration of SOA formation. Clouds and fog slow down the production of secondary compounds, reducing their concentrations by a factor of two or three from the above maximum levels. In addition, it appears that there is significant diurnal variation of SOA concentration. A strong dependence of SOA concentrations on temperature is observed, along with the existence of an optimal temperature for SOA formation.

  1. Formation of halogen-induced secondary organic aerosol (XOA)

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    Reactive halogen species (RHS) are very important due to their potential of stratospheric ozone depletion and surface ozone destruction. RHS seem to interact with precursors of secondary organic aerosol (SOA) similarly to common atmospheric oxidants like OH radicals and ozone. The potential interaction of RHS with preformed SOA has recently been studied (Ofner et al., 2012). Although aerosol formation from reaction of RHS with typical SOA precursors was previously studied (e.g. Cai et al., 2006), no data are available on bromine-induced aerosol formation from organic precursors yet. An aerosol smog-chamber was used to examine the halogen-induced secondary organic aerosol (XOA) formation under atmospheric conditions using simulated sunlight. With a concentration of 10 ppb for the organic precursor, 2 ppb for molecular chlorine, and 10 ppb for molecular bromine, the experimental setup is close to ambient conditions. By combined measurements of the aerosol size distribution, ozone and NOx mixing ratios, as well as the decay of the organic precursor, aerosol yields and aerosol growth rates were determined. The decay of the organic precursor was analyzed by capillary gas chromatography coupled with flame-ionization detection (GC-FID) and the aerosol size distribution was measured using a Scanning Mobility Particle Sizer (SMPS). Additionally, with the decay rate of the precursor and the calculated photolysis rates of molecular halogen species, based on the well-known spectrum of the solar simulator, mechanistic details on the XOA formation pathways can be determined. We observed XOA formation even at very low precursor and RHS concentrations with a diameter mode at 10-20 nm and a number concentration up to 1000000 particles cm-3. While the XOA formation from chlorine is very rapid, the interaction of bromine with the organic precursors is about five times slower. The aerosol yield reached maximum values of 0.01 for the reaction of chlorine with α-pinene and 0.0004 for

  2. Secondary Organic Aerosol formation from the gas-phase ozonolysis of 3-methylcatechol and 4-methylcatechol

    NASA Astrophysics Data System (ADS)

    Coeur-Tourneur, Cécile; Foulon, Valentine; Laréal, Michel; Cassez, Andy; Zhao, Weixiong

    2010-05-01

    Secondary Organic Aerosol (SOA) formation during the ozonolysis of 3-methylcatechol (3-methyl-1,2-dihydroxybenzene) and 4-methylcatechol (3-methyl-1,2-dihydroxybenzene) was investigated using a simulation chamber (8 m3) at atmospheric pressure, room temperature (294 ± 2 K) and low relative humidity (5-10%). The initial mixing ratios were as follows (in ppb): 3-methylcatechol (194-1059), 4-methylcatechol (204-1188) and ozone (93-531). The ozone and methylcatechol concentrations were followed by UV photometry and GC-FID (Gas Chromatography - Flame ionization detector), respectively and the aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer). The SOA yields (Y) were determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted methylcatechol concentrations assuming a particle density of 1.4 g cm-3. The aerosol formation yield increases as the initial methylcatechol concentration increases, and leads to aerosol yields ranging from 32% to 67% and from 30% to 64% for 3-methylcatechol and 4-methylcatechol, respectively. Y is a strong function of Mo and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. These data are comparable to those published in a recent study on secondary organic aerosol formation from catechol ozonolysis. To our knowledge, this work represents the first investigation of SOA formation from the ozone reaction with methylcatechols.

  3. Starting to gel: how Arabidopsis seed coat epidermal cells produce specialized secondary cell walls.

    PubMed

    Voiniciuc, Cătălin; Yang, Bo; Schmidt, Maximilian Heinrich-Wilhelm; Günl, Markus; Usadel, Björn

    2015-01-01

    For more than a decade, the Arabidopsis seed coat epidermis (SCE) has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls. PMID:25658798

  4. Starting to Gel: How Arabidopsis Seed Coat Epidermal Cells Produce Specialized Secondary Cell Walls

    PubMed Central

    Voiniciuc, Cătălin; Yang, Bo; Schmidt, Maximilian Heinrich-Wilhelm; Günl, Markus; Usadel, Björn

    2015-01-01

    For more than a decade, the Arabidopsis seed coat epidermis (SCE) has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls. PMID:25658798

  5. Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis.

    PubMed

    Zhao, Qiao; Zeng, Yining; Yin, Yanbin; Pu, Yunqiao; Jackson, Lisa A; Engle, Nancy L; Martin, Madhavi Z; Tschaplinski, Timothy J; Ding, Shi-You; Ragauskas, Arthur J; Dixon, Richard A

    2015-04-01

    Pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutant of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells. PMID:25107662

  6. Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis

    DOE PAGESBeta

    Zhao, Qiao; Zeng, Yining; Yin, Yanbin; Pu, Yunqiao; Jackson, Lisa A.; Engle, Nancy L.; Martin, Madhavi Z.; Tschaplinski, Timothy J.; Ding, Shi-You; Ragauskas, Arthur J.; et al

    2014-08-05

    In this paper, pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutantmore » of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Finally, together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.« less

  7. Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis

    SciTech Connect

    Zhao, Qiao; Zeng, Yining; Yin, Yanbin; Pu, Yunqiao; Jackson, Lisa A.; Engle, Nancy L.; Martin, Madhavi Z.; Tschaplinski, Timothy J.; Ding, Shi-You; Ragauskas, Arthur J.; Dixon, Richard A.

    2014-08-05

    In this paper, pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutant of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Finally, together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.

  8. Granuloma formation secondary to Achilles tendon repair with nonabsorbable suture

    PubMed Central

    Kara, Adnan; Celik, Haluk; Seker, Ali; Uysal, Mehmet Ali; Uzun, Metin; Malkoc, Melih

    2014-01-01

    INTRODUCTION Several complications can be observed after Achilles tendon repairs. In this study we aimed to report granuloma formation secondary to Achilles tendon repair with Ethibond (Ethicon INC, Somerville, New Jersey) suture. PRESENTATION OF CASE A 31 year-old man operated for Achilles tendon rupture. The Ethibond suture was used for primary repair. The patient attended to polyclinic with the complaints of swelling and discharge around the operation site four months after operation. A mass around distal portion of the Achilles tendon was detected. The granulomatous tissue was excised. Inside the mass Ethibond suture was detected. On histopathologic examination, typical findings of the foreign body reaction were observed. No microorganism was cultivated in the tissue culture. The patient has no complaint on the twelfth month control after surgery. DISCUSSION The results of primary repair of Achilles tendon are good but several complications were reported. In tendon repairs generally nonabsorbable sutures are used. The Ethibond is nonabsorbable, braided suture. In the literature, granuloma formations secondary to the suture materials such as polygylactine and braided polyethylen–polyester after Achilles tendon repair were reported but granuloma secondary to the Ethibond is very rare. CONCLUSION Although Ethibond suture is a strong and safe material for Achilles tendon repairs it may cause soft tissue problems such as granuloma. PMID:25212905

  9. Characteristics of wall sheath and secondary electron emission under different electron temperatures in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Duan, Ping; Qin, Hai-Juan; Zhou, Xin-Wei; Cao, An-Ning; Chen, Long; Gao, Hong

    2014-07-01

    In this paper, a two-dimensional physical model is established in a Hall thruster sheath region to investigate the influences of the electron temperature and the propellant on the sheath potential drop and the secondary electron emission in the Hall thruster, by the particle-in-cell (PIC) method. The numerical results show that when the electron temperature is relatively low, the change of sheath potential drop is relatively large, the surface potential maintains a stable value and the stability of the sheath is good. When the electron temperature is relatively high, the surface potential maintains a persistent oscillation, and the stability of the sheath reduces. As the electron temperature increases, the secondary electron emission coefficient on the wall increases. For three kinds of propellants (Ar, Kr, and Xe), as the ion mass increases the sheath potentials and the secondary electron emission coefficients reduce in sequence.

  10. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis.

    PubMed

    Sun, Xiang; Gong, Si-Ying; Nie, Xiao-Ying; Li, Yang; Li, Wen; Huang, Geng-Qing; Li, Xue-Bao

    2015-07-01

    Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers. PMID:25534543

  11. Widespread primary, but geographically restricted secondary, human introductions of wall lizards, Podarcis muralis.

    PubMed

    Michaelides, Sozos N; While, Geoffrey M; Zajac, Natalia; Uller, Tobias

    2015-06-01

    Establishing the introduction pathways of alien species is a fundamental task in invasion biology. The common wall lizard, Podarcis muralis, has been widely introduced outside of its native range in both Europe and North America, primarily through escaped pets or deliberate release of animals from captive or wild populations. Here, we use Bayesian clustering, approximate Bayesian computation (ABC) methods and network analyses to reconstruct the origin and colonization history of 23 non-native populations of wall lizards in England. Our analyses show that established populations in southern England originate from at least nine separate sources of animals from native populations in France and Italy. Secondary introductions from previously established non-native populations were supported for eleven (47%) populations. In contrast to the primary introductions, secondary introductions were highly restricted geographically and appear to have occurred within a limited time frame rather than being increasingly common. Together, these data suggest that extant wall lizard populations in England are the result of isolated accidental and deliberate releases of imported animals since the 1970s, with only local translocation of animals from established non-native populations. Given that populations introduced as recently as 25 years ago show evidence of having adapted to cool climate, discouraging further translocations may be important to prevent more extensive establishment on the south coast of England. PMID:25891955

  12. Characteristics of wall sheath and secondary electron emission under different electron temperature in Hall thruster

    NASA Astrophysics Data System (ADS)

    Duan, Ping; Qin, Haijuan; Cao, Anning; Zhou, Xinwei; Chen, Long; Gao, Hong

    2013-09-01

    Characteristics of discharge channel wall plasma sheath in Hall thruster have great effects on its performance. In this paper, we establish a two-dimensional physical model in Hall thruster sheath area to investigate the influences of the different electron temperature, propellant and particle weight on sheath potential and secondary electron emission in Hall thruster, by the method of Particle In Cell (PIC) simulation. And the electric field at the particle position is obtained by solving the Poisson's equation. The numerical results show that when the electron temperature is low, the change of sheath potential drop is bigger than that with electrons at high temperature, the surface potential maintains a stable value and the stability of the sheath is good. When the electron temperature is high, the surface potential maintains persistent oscillation, and the stability of the sheath is reduced. Along with the increase of electron temperature, the coefficient of secondary electron emission in wall reduce after the first increasing. For three kinds of propellant (Ar, Kr, Xe), with the increase of ion mass, sheath potential and the secondary electron emission coefficient in turn reduce.

  13. Intrusive growth of primary and secondary phloem fibres in hemp stem determines fibre-bundle formation and structure.

    PubMed

    Snegireva, Anastasia; Chernova, Tatyana; Ageeva, Marina; Lev-Yadun, Simcha; Gorshkova, Tatyana

    2015-01-01

    Plant fibres-cells with important mechanical functions and a widely used raw material-are usually identified in microscopic sections only after reaching a significant length or after developing a thickened cell wall. We characterized the early developmental stages of hemp (Cannabis sativa) stem phloem fibres, both primary (originating from the procambium) and secondary (originating in the cambium), when they still had only a primary cell wall. We gave a major emphasis to the role of intrusive elongation, the specific type of plant cell growth by which fibres commonly attain large cell length. We could identify primary phloem fibres at a distance of only 1.2-1.5 mm from the shoot apical meristem when they grew symplastically with the surrounding tissues. Half a millimeter further downwards along the stem, fibres began their intrusive elongation, which led to a sharp increase in fibre numbers visible within the stem cross-sections. The intrusive elongation of primary phloem fibres was completed within the several distal centimetres of the growing stem, before the onset of their secondary cell wall formation. The formation of secondary phloem fibres started long after the beginning of secondary xylem formation. Our data indicate that only a small portion of the fusiform cambial initials (<10 %) give rise directly or via their derivatives to secondary phloem fibres. The key determinant of final bundle structure, both for primary and secondary phloem fibres, is intrusive growth. Through bi-directional elongation, fibres join other fibres initiated individually in other stem levels, thus forming the bundles. Our results provide the specific developmental basis for further biochemical and molecular-genetic studies of phloem fibre development in hemp, but may be applied to many other species. PMID:26019229

  14. Intrusive growth of primary and secondary phloem fibres in hemp stem determines fibre-bundle formation and structure

    PubMed Central

    Snegireva, Anastasia; Chernova, Tatyana; Ageeva, Marina; Lev-Yadun, Simcha; Gorshkova, Tatyana

    2015-01-01

    Plant fibres—cells with important mechanical functions and a widely used raw material—are usually identified in microscopic sections only after reaching a significant length or after developing a thickened cell wall. We characterized the early developmental stages of hemp (Cannabis sativa) stem phloem fibres, both primary (originating from the procambium) and secondary (originating in the cambium), when they still had only a primary cell wall. We gave a major emphasis to the role of intrusive elongation, the specific type of plant cell growth by which fibres commonly attain large cell length. We could identify primary phloem fibres at a distance of only 1.2–1.5 mm from the shoot apical meristem when they grew symplastically with the surrounding tissues. Half a millimeter further downwards along the stem, fibres began their intrusive elongation, which led to a sharp increase in fibre numbers visible within the stem cross-sections. The intrusive elongation of primary phloem fibres was completed within the several distal centimetres of the growing stem, before the onset of their secondary cell wall formation. The formation of secondary phloem fibres started long after the beginning of secondary xylem formation. Our data indicate that only a small portion of the fusiform cambial initials (<10 %) give rise directly or via their derivatives to secondary phloem fibres. The key determinant of final bundle structure, both for primary and secondary phloem fibres, is intrusive growth. Through bi-directional elongation, fibres join other fibres initiated individually in other stem levels, thus forming the bundles. Our results provide the specific developmental basis for further biochemical and molecular-genetic studies of phloem fibre development in hemp, but may be applied to many other species. PMID:26019229

  15. Predicting secondary organic aerosol formation rates in southeast Texas

    NASA Astrophysics Data System (ADS)

    Russell, Matthew; Allen, David T.

    2005-04-01

    Rates of secondary organic aerosol (SOA) formation, due to the reactions of aromatics and monoterpenes, were estimated for southeast Texas by incorporating a modified version of the Statewide Air Pollution Research Center's chemical mechanism (SAPRC99) into the Comprehensive Air Quality Model with extensions (CAMx version 3.10). The model included explicit representation of the reactions of five SOA precursors (α-pinene, β-pinene, sabinene, d-limonene, and Δ3-carene). Reactions of each SOA precursor with O3, OH radical, and NO3 radical were included. The model also included separate reactions for low- and high-SOA-yield aromatic groups with the OH radical. SOA yields in the mechanisms were estimated using compound-specific yield information (ΔSOA/ΔHC) derived from smog chamber experiments conducted by J. R. Odum and colleagues and R. J. Griffin and colleagues. The form of the SOA yield model was based on the work of J. R. Odum and colleagues and is a function of existing organic aerosol concentrations. Existing organic aerosol concentrations were estimated on the basis of ambient measurements of total organic carbon in southeast Texas. The reactions of monoterpenes (predominantly α-pinene and β-pinene) with ozone led to the most regional SOA formation, followed by monoterpenes with the nitrate radical. Aromatic-OH reactions led to less regional SOA formation compared to monoterpenes; however, this formation occurs close to the urban and industrial areas of Houston. In contrast, SOA formation due to the reactions of monoterpenes occurred in the forested areas north of the urban area. The results of this study are in qualitative agreement with estimates of SOA formation based on ambient data from the same time period.

  16. Mutations of Arabidopsis TBL32 and TBL33 Affect Xylan Acetylation and Secondary Wall Deposition

    PubMed Central

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Haghighat, Marziyeh; Richardson, Elizabeth A.; Ye, Zheng-Hua

    2016-01-01

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be mono- and di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reduction in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-O-monoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. These results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls. PMID:26745802

  17. Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition

    DOE PAGESBeta

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Haghighat, Marziyeh; Richardson, Elizabeth A.; Ye, Zheng -Hua; Zhang, Jin -Song

    2016-01-08

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be monoand di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reductionmore » in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-Omonoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. Furthermore, these results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls.« less

  18. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants.

    PubMed

    Song, Xue-Qin; Liu, Li-Feng; Jiang, Yi-Jun; Zhang, Bao-Cai; Gao, Ya-Ping; Liu, Xiang-Ling; Lin, Qing-Shan; Ling, Hong-Qing; Zhou, Yi-Hua

    2013-05-01

    Tricheary elements (TEs), wrapped by secondary cell wall, play essential roles in water, mineral, and nutrient transduction. Cadmium (Cd) is a toxic heavy metal that is absorbed by roots and transported to shoot, leaves, and grains through vascular systems in plants. As rice is a major source of Cd intake, many efforts have been made to establish 'low-Cd rice'. However, no links have been found between cellulose biosynthesis and cadmium accumulation. We report here a rice brittle culm13 mutant, resulting from a novel missense mutation (E101K) [corrected] in the N-terminus of cellulose synthase subunit 9 (CESA9). Except for the abnormal mechanical strength, the mutant plants are morphologically indistinguishable from the wild-type plants. Transmission electron microscopy (TEM) and chemical analyses showed a slight reduction in secondary wall thickness and 22% decrease in cellulose content in bc13 plants. Moreover, this mutation unexpectedly confers the mutant plants Cd tolerance due to less Cd accumulation in leaves. Expression analysis of the genes required for Cd uptake and transport revealed complicated alterations after applying Cd to wild-type and bc13. The mutants were further found to have altered vascular structure. More importantly, Cd concentration in the xylem saps from the bc13 plants was significantly lower than that from the wild-type. Combining the analyses of CESA9 gene expression and Cd content retention in the cell-wall residues, we conclude that CESA9(E101K) [corrected] mutation alters cell-wall properties in the conducting tissues, which consequently affects Cd translocation efficiency that largely contributes to the low Cd accumulation in the mutant plants. PMID:23376772

  19. Formation of secondary organic aerosol from isoprene oxidation over Europe

    NASA Astrophysics Data System (ADS)

    Karl, M.; Tsigaridis, K.; Vignati, E.; Dentener, F.

    2009-01-01

    The role of isoprene as a precursor to secondary organic aerosol (SOA) over Europe is studied with the two-way nested global chemistry transport model TM5. The inclusion of the formation of SOA from isoprene oxidation in our model almost doubles the atmospheric burden of SOA over Europe compared to SOA formation from terpenes and aromatics. The reference simulation, which considers SOA formation from isoprene, terpenes and aromatics, predicts a yearly European production rate of 1.0 Tg SOA yr-1 and an annual averaged atmospheric burden of about 50 Gg SOA over Europe. A fraction of 35% of the SOA produced in the boundary layer over Europe is transported to higher altitudes or to other world regions. Summertime measurements of particulate organic matter (POM) during the extensive EMEP OC/EC campaign 2002/2003 are better reproduced when SOA formation from isoprene is taken into account, reflecting also the strong seasonality of isoprene and other biogenic volatile organic compounds (BVOC) emissions from vegetation. However, during winter, our model strongly underestimates POM, likely caused by missing wood burning in the emission inventories. Uncertainties in the parameterisation of isoprene SOA formation have been investigated. Maximum SOA production is found for irreversible sticking (non-equilibrium partitioning) of condensable vapours on particles, with tropospheric SOA production over Europe increased by a factor of 4 in summer compared to the reference case. Completely neglecting SOA formation from isoprene results in the lowest estimate (0.51 Tg SOA yr-1). The amount and the nature of the absorbing matter are shown to be another key uncertainty when predicting SOA levels. Tropospheric isoprene SOA production over Europe in summer more than doubles when, in addition to pre-existing carbonaceous aerosols, condensation of semi volatile vapours on ammonium and sulphate aerosols is considered. Consequently, smog chamber experiments on SOA formation should be

  20. Formation of secondary organic aerosol from isoprene oxidation over Europe

    NASA Astrophysics Data System (ADS)

    Karl, M.; Tsigaridis, K.; Vignati, E.; Dentener, F.

    2009-09-01

    The role of isoprene as a precursor to secondary organic aerosol (SOA) over Europe is studied with the two-way nested global chemistry transport model TM5. The inclusion of the formation of SOA from isoprene oxidation in our model almost doubles the atmospheric burden of SOA over Europe compared to SOA formation from terpenes and aromatics. The reference simulation, which considers SOA formation from isoprene, terpenes and aromatics, predicts a yearly European production rate of 1.0 Tg SOA yr-1 and an annual averaged atmospheric burden of about 50 Gg SOA over Europe. A fraction of 35% of the SOA produced in the boundary layer over Europe is transported to higher altitudes or to other world regions. Summertime measurements of organic matter (OM) during the extensive EMEP OC/EC campaign 2002/2003 are better reproduced when SOA formation from isoprene is taken into account, reflecting also the strong seasonality of isoprene and other biogenic volatile organic compounds (BVOC) emissions from vegetation. However, during winter, our model strongly underestimates OM, likely caused by missing wood burning in the emission inventories. Uncertainties in the parameterisation of isoprene SOA formation have been investigated. Maximum SOA production is found for irreversible sticking (non-equilibrium partitioning) of condensable vapours on particles, with tropospheric SOA production over Europe increased by a factor of 4 in summer compared to the reference case. Completely neglecting SOA formation from isoprene results in the lowest estimate (0.51 Tg SOA yr-1). The amount and the nature of the absorbing matter are shown to be another key uncertainty when predicting SOA levels. Consequently, smog chamber experiments on SOA formation should be performed with different types of seed aerosols and without seed aerosols in order to derive an improved treatment of the absorption of SOA in the models. Consideration of a number of recent insights in isoprene SOA formation mechanisms

  1. Characterization and Localization of Insoluble Organic Matrices Associated with Diatom Cell Walls: Insight into Their Roles during Cell Wall Formation

    PubMed Central

    Tesson, Benoit; Hildebrand, Mark

    2013-01-01

    Organic components associated with diatom cell wall silica are important for the formation, integrity, and function of the cell wall. Polysaccharides are associated with the silica, however their localization, structure, and function remain poorly understood. We used imaging and biochemical approaches to describe in detail characteristics of insoluble organic components associated with the cell wall in 5 different diatom species. Results show that an insoluble organic matrix enriched in mannose, likely the diatotepum, is localized on the proximal surface of the silica cell wall. We did not identify any organic matrix embedded within the silica. We also identified a distinct material consisting of glucose polymer with variable localization depending on the species. In some species this component was directly involved in the morphogenesis of silica structure while in others it appeared to be only a structural component of the cell wall. A novel glucose-rich structure located between daughter cells during division was also identified. This work for the first time correlates the structure, composition, and localization of insoluble organic matrices associated with diatom cell walls. Additionally we identified a novel glucose polymer and characterized its role during silica structure formation. PMID:23626714

  2. Domain wall formation in late-time phase transitions

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Wang, Yun

    1992-01-01

    We examine domain wall formulation in late time phase transitions. We find that in the invisible axion domain wall phenomenon, thermal effects alone are insufficient to drive different parts of the disconnected vacuum manifold. This suggests that domain walls do not form unless either there is some supplemental (but perhaps not unreasonable) dynamics to localize the scalar field responsible for the phase transition to the low temperature maximum (to an extraordinary precision) before the onset of the phase transition, or there is some non-thermal mechanism to produce large fluctuations in the scalar field. The fact that domain wall production is not a robust prediction of late time transitions may suggest future directions in model building.

  3. Secondary eyewall formation in high resolution, realistic hurricane simulations

    NASA Astrophysics Data System (ADS)

    Abarca Fuente, Sergio Federico

    This dissertation explores the dynamics of secondary eyewall formation (SEF) through the analysis of high resolution (1.33 km), realistic integrations of the National Center for Atmospheric Research Advanced Hurricane Weather Research and Forecasting model. Numerical simulations of Hurricanes Katrina and Rita (2005) and Igor (2010) are analyzed. The evolution of these storms was well captured by the model and each simulation exhibited a secondary eyewall (SE): a ring of deep convection separate from the primary eyewall that develops a strong acceleration of the tangential wind. This acceleration manifests itself as an abrupt radial expansion of the tangential wind field, sometimes followed by an independent wind maximum. The convective and wind structures of the SE in the simulations are shown to be consistent with observations. The results presented suggest that unbalanced dynamic processes are fundamental in SEF. It is shown that vortical hot towers (VHTs) are the convective structures that constitute the SE. Their collective effects account for, (a) the establishment of the convective maximum, (b) the weakening of the primary eyewall through competition for inflow (that may culminate with an eyewall replacement cycle) and (c) the wind acceleration, that may or may not express itself as an independent secondary maximum in the tangential wind field. It is shown that the establishment of the VHTs that constitute the SE can be the result of different processes: (1) the release of large amounts of buoyant energy at the radius of the SE; and (2) the accumulation of potential vorticity at the stagnation radius of vortex Rossby waves. In either case, the SE is characterized by a positive potential vorticity anomaly in the lower troposphere that is further enhanced by VHT activity and the axisymmetrization of their remnants, increasing the likelihood for future convection to occur.

  4. Environmental and Biofilm-dependent Changes in a Bacillus cereus Secondary Cell Wall Polysaccharide*

    PubMed Central

    Candela, Thomas; Maes, Emmanuel; Garénaux, Estelle; Rombouts, Yoann; Krzewinski, Frédéric; Gohar, Michel; Guérardel, Yann

    2011-01-01

    Bacterial species from the Bacillus genus, including Bacillus cereus and Bacillus anthracis, synthesize secondary cell wall polymers (SCWP) covalently associated to the peptidoglycan through a phospho-diester linkage. Although such components were observed in a wide panel of B. cereus and B. anthracis strains, the effect of culture conditions or of bacterial growth state on their synthesis has never been addressed. Herein we show that B. cereus ATCC 14579 can synthesize not only one, as previously reported, but two structurally unrelated secondary cell wall polymers (SCWP) polysaccharides. The first of these SCWP, →4)[GlcNAc(β1–3)]GlcNAc(β1–6)[Glc(β1-3)][ManNAc(α1–4)]GalNAc(α1–4)ManNAc(β1→, although presenting an original sequence, fits to the already described the canonical sequence motif of SCWP. In contrast, the second polysaccharide was made up by a totally original sequence, →6)Gal(α1–2)(2-R-hydroxyglutar-5-ylamido)Fuc2NAc4N(α1-6)GlcNAc(β1→, which no equivalent has ever been identified in the Bacillus genus. In addition, we established that the syntheses of these two polysaccharides were differently regulated. The first one is constantly expressed at the surface of the bacteria, whereas the expression of the second is tightly regulated by culture conditions and growth states, planktonic, or biofilm. PMID:21784857

  5. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  6. SECONDARY ORGANIC AEROSOL FORMATION FROM THE IRRADIATION OF SIMULATED AUTOMOBILE EXHAUST

    EPA Science Inventory

    A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SO...

  7. Vortex head-to-head domain walls and their formation in onion-state ring elements

    NASA Astrophysics Data System (ADS)

    Park, M. H.; Hong, Y. K.; Choi, B. C.; Donahue, M. J.; Han, H.; Gee, S. H.

    2006-03-01

    Magnetization configuration of vortex head-to-head (HTH) domain walls and the wall-formation process in Ni80Fe20 ring elements were investigated using magnetic force microscopy (MFM) and micromagnetic simulation. At remanence, two types of vortex HTH domain walls were observed to be stable in the onion configuration, depending on the film thickness: single- and double-vortex HTH domain walls for 40 and 65nm thick ring elements, respectively. As the vortex core nucleated during formation of the HTH domain wall, exchange energy began to decrease, accompanied by an increase in the width of the wall. Vortex nucleation in the 65nm thick ring was found to be much faster than in the 40nm thick ring element. This effect can be attributed to the higher initial magnetostatic energy density in the thicker ring.

  8. Cotton GhMYB7 is predominantly expressed in developing fibers and regulates secondary cell wall biosynthesis in transgenic Arabidopsis.

    PubMed

    Huang, Junfeng; Chen, Feng; Wu, Siyu; Li, Juan; Xu, Wenliang

    2016-02-01

    The secondary cell wall in mature cotton fibers contains over 90% cellulose with low quantities of xylan and lignin. However, little is known regarding the regulation of secondary cell wall biosynthesis in cotton fibers. In this study, we characterized an R2R3-MYB transcription factor, GhMYB7, in cotton. GhMYB7 is expressed at a high level in developing fibers and encodes a MYB protein that is targeted to the cell nucleus and has transcriptional activation activity. Ectopic expression of GhMYB7 in Arabidopsis resulted in small, curled, dark green leaves and also led to shorter inflorescence stems. A cross-sectional assay of basal stems revealed that cell wall thickness of vessels and interfascicular fibers was higher in transgenic lines overexpressing GhMYB7 than in the wild type. Constitutive expression of GhMYB7 in Arabidopsis activated the expression of a suite of secondary cell wall biosynthesis-related genes (including some secondary cell wall-associated transcription factors), leading to the ectopic deposition of cellulose and lignin. The ectopic deposition of secondary cell walls may have been initiated before the cessation of cell expansion. Moreover, GhMYB7 was capable of binding to the promoter regions of AtSND1 and AtCesA4, suggesting that GhMYB7 may function upstream of NAC transcription factors. Collectively, these findings suggest that GhMYB7 is a potential transcriptional activator, which may participate in regulating secondary cell wall biosynthesis of cotton fibers. PMID:26803299

  9. Secondary organic aerosol formation from road vehicle emissions

    NASA Astrophysics Data System (ADS)

    Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.

    2014-05-01

    Organic aerosol particles (OA) are a major fraction of the submicron particulate matter. OA consists of directly emitted primary (POA) and secondary OA (SOA). SOA is formed in-situ in the atmosphere via the reaction of volatile organic precursors. The partitioning of SOA species depends not only on the exposure to oxidants, but for instance also on temperature, relative humidity (RH), and the absorptive mass chemical composition (presence of inorganics) and concentration. Vehicle exhaust is a known source of POA and likely contributes to SOA formation in urban areas [1;2]. This has recently been estimated by (i) analyzing ambient data from urban areas combined with fuel consumption data [3], (ii) by examining the chemical composition of raw fuels [4], or (iii) smog chamber studies [5, 6]. Contradictory and thus somewhat controversial results in the relative quantity of SOA from diesel vs. gasoline vehicle exhaust were observed. In order to elucidate the impact of variable ambient conditions on the potential SOA formation of vehicle exhaust, and its relation to the emitted gas phase species, we studied SOA formed from the exhaust of passenger cars and trucks as a function of fuel and engine type (gasoline, diesel) at different temperatures (T 22 vs. -7oC) and RH (40 vs. 90%), as well as with different levels of inorganic salt concentrations. The exhaust was sampled at the tailpipe during regulatory driving cycles on chassis dynamometers, diluted (200 - 400x) and introduced into the PSI mobile smog chamber [6], where the emissions were subjected to simulated atmospheric ageing. Particle phase instruments (HR-ToF-AMS, aethalometers, CPC, SMPS) and gas phase instruments (PTR-TOF-MS, CO, CO2, CH4, THC, NH3 and other gases) were used online during the experiments. We found that gasoline emissions, because of cold starts, were generally larger than diesel, especially during cold temperatures driving cycles. Gasoline vehicles also showed the highest SOA formation

  10. Building and degradation of secondary cell walls: are there common patterns of lamellar assembly of cellulose microfibrils and cell wall delamination?

    PubMed

    De Micco, Veronica; Ruel, Katia; Joseleau, Jean-Paul; Aronne, Giovanna

    2010-08-01

    During cell wall formation and degradation, it is possible to detect cellulose microfibrils assembled into thicker and thinner lamellar structures, respectively, following inverse parallel patterns. The aim of this study was to analyse such patterns of microfibril aggregation and cell wall delamination. The thickness of microfibrils and lamellae was measured on digital images of both growing and degrading cell walls viewed by means of transmission electron microscopy. To objectively detect, measure and classify microfibrils and lamellae into thickness classes, a method based on the application of computerized image analysis combined with graphical and statistical methods was developed. The method allowed common classes of microfibrils and lamellae in cell walls to be identified from different origins. During both the formation and degradation of cell walls, a preferential formation of structures with specific thickness was evidenced. The results obtained with the developed method allowed objective analysis of patterns of microfibril aggregation and evidenced a trend of doubling/halving lamellar structures, during cell wall formation/degradation in materials from different origin and which have undergone different treatments. PMID:20532796

  11. Nonequilibrium atmospheric secondary organic aerosol formation and growth.

    PubMed

    Perraud, Véronique; Bruns, Emily A; Ezell, Michael J; Johnson, Stanley N; Yu, Yong; Alexander, M Lizabeth; Zelenyuk, Alla; Imre, Dan; Chang, Wayne L; Dabdub, Donald; Pankow, James F; Finlayson-Pitts, Barbara J

    2012-02-21

    Airborne particles play critical roles in air quality, health effects, visibility, and climate. Secondary organic aerosols (SOA) formed from oxidation of organic gases such as α-pinene account for a significant portion of total airborne particle mass. Current atmospheric models typically incorporate the assumption that SOA mass is a liquid into which semivolatile organic compounds undergo instantaneous equilibrium partitioning to grow the particles into the size range important for light scattering and cloud condensation nuclei activity. We report studies of particles from the oxidation of α-pinene by ozone and NO(3) radicals at room temperature. SOA is primarily formed from low-volatility ozonolysis products, with a small contribution from higher volatility organic nitrates from the NO(3) reaction. Contrary to expectations, the particulate nitrate concentration is not consistent with equilibrium partitioning between the gas phase and a liquid particle. Rather the fraction of organic nitrates in the particles is only explained by irreversible, kinetically determined uptake of the nitrates on existing particles, with an uptake coefficient that is 1.6% of that for the ozonolysis products. If the nonequilibrium particle formation and growth observed in this atmospherically important system is a general phenomenon in the atmosphere, aerosol models may need to be reformulated. The reformulation of aerosol models could impact the predicted evolution of SOA in the atmosphere both outdoors and indoors, its role in heterogeneous chemistry, its projected impacts on air quality, visibility, and climate, and hence the development of reliable control strategies. PMID:22308444

  12. Nonequilibrium atmospheric secondary organic aerosol formation and growth

    PubMed Central

    Perraud, Véronique; Bruns, Emily A.; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Alexander, M. Lizabeth; Zelenyuk, Alla; Imre, Dan; Chang, Wayne L.; Dabdub, Donald; Pankow, James F.; Finlayson-Pitts, Barbara J.

    2012-01-01

    Airborne particles play critical roles in air quality, health effects, visibility, and climate. Secondary organic aerosols (SOA) formed from oxidation of organic gases such as α-pinene account for a significant portion of total airborne particle mass. Current atmospheric models typically incorporate the assumption that SOA mass is a liquid into which semivolatile organic compounds undergo instantaneous equilibrium partitioning to grow the particles into the size range important for light scattering and cloud condensation nuclei activity. We report studies of particles from the oxidation of α-pinene by ozone and NO3 radicals at room temperature. SOA is primarily formed from low-volatility ozonolysis products, with a small contribution from higher volatility organic nitrates from the NO3 reaction. Contrary to expectations, the particulate nitrate concentration is not consistent with equilibrium partitioning between the gas phase and a liquid particle. Rather the fraction of organic nitrates in the particles is only explained by irreversible, kinetically determined uptake of the nitrates on existing particles, with an uptake coefficient that is 1.6% of that for the ozonolysis products. If the nonequilibrium particle formation and growth observed in this atmospherically important system is a general phenomenon in the atmosphere, aerosol models may need to be reformulated. The reformulation of aerosol models could impact the predicted evolution of SOA in the atmosphere both outdoors and indoors, its role in heterogeneous chemistry, its projected impacts on air quality, visibility, and climate, and hence the development of reliable control strategies. PMID:22308444

  13. Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation.

    PubMed

    Schuster, Martin; Martin-Urdiroz, Magdalena; Higuchi, Yujiro; Hacker, Christian; Kilaru, Sreedhar; Gurr, Sarah J; Steinberg, Gero

    2016-01-01

    Fungal cells are surrounded by an extracellular cell wall. This complex matrix of proteins and polysaccharides protects against adverse stresses and determines the shape of fungal cells. The polysaccharides of the fungal wall include 1,3-β-glucan and chitin, which are synthesized by membrane-bound synthases at the growing cell tip. A hallmark of filamentous fungi is the class V chitin synthase, which carries a myosin-motor domain. In the corn smut fungus Ustilago maydis, the myosin-chitin synthase Mcs1 moves to the plasma membrane in secretory vesicles, being delivered by kinesin-1 and myosin-5. The myosin domain of Mcs1 enhances polar secretion by tethering vesicles at the site of exocytosis. It remains elusive, however, how other cell-wall-forming enzymes are delivered and how their activity is coordinated post secretion. Here, we show that the U. maydis class VII chitin synthase and 1,3-β-glucan synthase travel in Mcs1-containing vesicles, and that their apical secretion depends on Mcs1. Once in the plasma membrane, anchorage requires enzyme activity, which suggests co-synthesis of chitin and 1,3-β-glucan polysaccharides at sites of exocytosis. Thus, delivery of cell-wall-forming enzymes in Mcs1 vesicles ensures local foci of fungal cell wall formation. PMID:27563844

  14. Heteromannan and Heteroxylan Cell Wall Polysaccharides Display Different Dynamics During the Elongation and Secondary Cell Wall Deposition Phases of Cotton Fiber Cell Development.

    PubMed

    Hernandez-Gomez, Mercedes C; Runavot, Jean-Luc; Guo, Xiaoyuan; Bourot, Stéphane; Benians, Thomas A S; Willats, William G T; Meulewaeter, Frank; Knox, J Paul

    2015-09-01

    The roles of non-cellulosic polysaccharides in cotton fiber development are poorly understood. Combining glycan microarrays and in situ analyses with monoclonal antibodies, polysaccharide linkage analyses and transcript profiling, the occurrence of heteromannan and heteroxylan polysaccharides and related genes in developing and mature cotton (Gossypium spp.) fibers has been determined. Comparative analyses on cotton fibers at selected days post-anthesis indicate different temporal and spatial regulation of heteromannan and heteroxylan during fiber development. The LM21 heteromannan epitope was more abundant during the fiber elongation phase and localized mainly in the primary cell wall. In contrast, the AX1 heteroxylan epitope occurred at the transition phase and during secondary cell wall deposition, and localized in both the primary and the secondary cell walls of the cotton fiber. These developmental dynamics were supported by transcript profiling of biosynthetic genes. Whereas our data suggest a role for heteromannan in fiber elongation, heteroxylan is likely to be involved in the regulation of cellulose deposition of secondary cell walls. In addition, the relative abundance of these epitopes during fiber development varied between cotton lines with contrasting fiber characteristics from four species (G. hirsutum, G. barbadense, G. arboreum and G. herbaceum), suggesting that these non-cellulosic polysaccharides may be involved in determining final fiber quality and suitability for industrial processing. PMID:26187898

  15. Heteromannan and Heteroxylan Cell Wall Polysaccharides Display Different Dynamics During the Elongation and Secondary Cell Wall Deposition Phases of Cotton Fiber Cell Development

    PubMed Central

    Hernandez-Gomez, Mercedes C.; Runavot, Jean-Luc; Guo, Xiaoyuan; Bourot, Stéphane; Benians, Thomas A.S.; Willats, William G.T.; Meulewaeter, Frank; Knox, J. Paul

    2015-01-01

    The roles of non-cellulosic polysaccharides in cotton fiber development are poorly understood. Combining glycan microarrays and in situ analyses with monoclonal antibodies, polysaccharide linkage analyses and transcript profiling, the occurrence of heteromannan and heteroxylan polysaccharides and related genes in developing and mature cotton (Gossypium spp.) fibers has been determined. Comparative analyses on cotton fibers at selected days post-anthesis indicate different temporal and spatial regulation of heteromannan and heteroxylan during fiber development. The LM21 heteromannan epitope was more abundant during the fiber elongation phase and localized mainly in the primary cell wall. In contrast, the AX1 heteroxylan epitope occurred at the transition phase and during secondary cell wall deposition, and localized in both the primary and the secondary cell walls of the cotton fiber. These developmental dynamics were supported by transcript profiling of biosynthetic genes. Whereas our data suggest a role for heteromannan in fiber elongation, heteroxylan is likely to be involved in the regulation of cellulose deposition of secondary cell walls. In addition, the relative abundance of these epitopes during fiber development varied between cotton lines with contrasting fiber characteristics from four species (G. hirsutum, G. barbadense, G. arboreum and G. herbaceum), suggesting that these non-cellulosic polysaccharides may be involved in determining final fiber quality and suitability for industrial processing. PMID:26187898

  16. Secondary brown carbon formation via the dicarbonyl imine pathway: nitrogen heterocycle formation and synergistic effects.

    PubMed

    Kampf, C J; Filippi, A; Zuth, C; Hoffmann, T; Opatz, T

    2016-07-21

    Dicarbonyls are known to be important precursors of so-called atmospheric brown carbon, significantly affecting aerosol optical properties and radiative forcing. In this systematic study we report the formation of light-absorbing nitrogen containing compounds from simple 1,2-, 1,3-, 1,4-, and 1,5-dicarbonyl + amine reactions. A combination of spectrophotometric and mass spectrometric techniques was used to characterize reaction products in solutions mimicking atmospheric particulates. Experiments with individual dicarbonyls and dicarbonyl mixtures in ammonium sulfate and glycine solutions demonstrate that nitrogen heterocycles are common structural motifs of brown carbon chromophores formed in such reaction systems. 1,4- and 1,5-dicarbonyl reaction systems, which were used as surrogates for terpene ozonolysis products, showed rapid formation of light-absorbing material and products with absorbance maxima at ∼450 nm. Synergistic effects on absorbance properties were observed in mixed (di-)carbonyl experiments, as indicated by the formation of a strong absorber in ammonium sulfate solutions containing acetaldehyde and acetylacetone. This cross-reaction oligomer shows an absorbance maximum at 385 nm, relevant for the actinic flux region of the atmosphere. This study demonstrates the complexity of secondary brown carbon formation via the imine pathway and highlights that cross-reactions with synergistic effects have to be considered an important pathway for atmospheric BrC formation. PMID:27334793

  17. Kinetics, products, and mechanisms of secondary organic aerosol formation.

    PubMed

    Ziemann, Paul J; Atkinson, Roger

    2012-10-01

    Secondary organic aerosol (SOA) is formed in the atmosphere when volatile organic compounds (VOCs) emitted from anthropogenic and biogenic sources are oxidized by reactions with OH radicals, O(3), NO(3) radicals, or Cl atoms to form less volatile products that subsequently partition into aerosol particles. Once in particles, these organic compounds can undergo heterogenous/multiphase reactions to form more highly oxidized or oligomeric products. SOA comprises a large fraction of atmospheric aerosol mass and can have significant effects on atmospheric chemistry, visibility, human health, and climate. Previous articles have reviewed the kinetics, products, and mechanisms of atmospheric VOC reactions and the general chemistry and physics involved in SOA formation. In this article we present a detailed review of VOC and heterogeneous/multiphase chemistry as they apply to SOA formation, with a focus on the effects of VOC molecular structure on the kinetics of initial reactions with the major atmospheric oxidants, the subsequent reactions of alkyl, alkyl peroxy, and alkoxy radical intermediates, and the composition of the resulting products. Structural features of reactants and products discussed include compound carbon number; linear, branched, and cyclic configurations; the presence of C[double bond, length as m-dash]C bonds and aromatic rings; and functional groups such as carbonyl, hydroxyl, ester, hydroxperoxy, carboxyl, peroxycarboxyl, nitrate, and peroxynitrate. The intention of this review is to provide atmospheric chemists with sufficient information to understand the dominant pathways by which the major classes of atmospheric VOCs react to form SOA products, and the further reactions of these products in particles. This will allow reasonable predictions to be made, based on molecular structure, about the kinetics, products, and mechanisms of VOC and heterogeneous/multiphase reactions, including the effects of important variables such as VOC, oxidant, and NO

  18. Boundary Layer Dynamical Structure During Secondary Eyewall Formation

    NASA Astrophysics Data System (ADS)

    Abarca, S. F.; Montgomery, M. T.; McWilliams, J. C.

    2014-12-01

    Secondary eyewall formation (SEF) is widely recognized as an important research problem in the dynamics of mature tropical cyclones. It has been shown that the development of the wind maxima in SEF occurs within the boundary layer and that it follows a chain of events initiated by a substantial radial expansion of the tangential wind field. In this context, there is not yet a consensus on the phenomenon's essential physics. It has been proposed that the boundary-layer dynamics of a maturing hurricane vortex is an important controlling element in SEF. However, recent literature also argues that hurricane boundary layers and the related coupling with the interior flow can be described through an Ekman-like balance and that shock-like structures are relevant in the swirling boundary layer of the inner core of mature storms. We analyze the radial and vertical structure of the specific forces and accelerations in in the boundary layer in a mature hurricane that includes a canonical eyewall replacement cycle. The case occurred in a mesoscale, convection-permitting numerical simulation of a tropical cyclone, integrated from an initial weak mesoscale vortex in an idealized quiescent environment. The simulation has been studied extensively in the literature. We find that momentum advection is almost everywhere important (some of it is associated with asymmetric eddies). We discuss the implication of our findings on the proposed importance of Ekman-like balance dynamics during SEF. Finally, our analysis does not support the recently proposed idea that the radial advection of radial momentum, and shock-like structures, are closely related to the supergradient wind phenomena observed during SEF.

  19. Modeling SOA formation from alkanes and alkenes in chamber experiments: effect of gas/wall partitioning of organic vapors.

    NASA Astrophysics Data System (ADS)

    Stéphanie La, Yuyi; Camredon, Marie; Ziemann, Paul; Ouzebidour, Farida; Valorso, Richard; Madronich, Sasha; Lee-Taylor, Julia; Hodzic, Alma; Aumont, Bernard

    2014-05-01

    Oxidation products of Intermediate Volatility Organic Compounds (IVOC) are expected to be the major precursors of secondary organic aerosols (SOA). Laboratory experiments were conducted this last decade in the Riverside APRC chamber to study IVOC oxidative mechanisms and SOA formation processes for a large set of linear, branched and cyclic aliphatic hydrocarbons (Ziemann, 2011). This dataset are used here to assess the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) (Aumont et al., 2005). The simulated SOA yields agree with the general trends observed in the chamber experiments. They are (i) increasing with the increasing carbon number; (ii) decreasing with increasing methyl branch number; and (iii) increasing for cyclic compounds compared to their corresponding linear analogues. However, simulated SOA yields are systematically overestimated regardless of the precursors, suggesting missing processes in the model. In this study, we assess whether gas-to-wall partitioning of organic vapors can explain these model/observation mismatches (Matsunaga and Ziemann, 2010). First results show that GECKO-A outputs better match the observations when wall uptake of organic vapors is taken into account. Effects of gas/wall partitioning on SOA yields and composition will be presented. Preliminary results suggest that wall uptake is a major process influencing SOA production in the Teflon chambers. References Aumont, B., Szopa, S., Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmos.Chem.Phys., 5, 2497-2517 (2005). P. J. Ziemann: Effects of molecular structure on the chemistry of aerosol formation from the OH-radical-initiated oxidation of alkanes and alkenes, Int. Rev.Phys.Chem., 30:2, 161-195 (2011). Matsunaga, A., Ziemann, P. J.: Gas-wall partitioning of organic compounds in a Teflon film

  20. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Campuzano-Jost, P.; Ortega, A. M.; Day, D. A.; Kaser, L.; Jud, W.; Karl, T.; Hansel, A.; Hunter, J. F.; Cross, E. S.; Kroll, J. H.; Peng, Z.; Brune, W. H.; Jimenez, J. L.

    2015-11-01

    Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR) located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA) formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs) onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 4 μg m-3 when LVOC fate corrected) compared to daytime (average 1 μg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH oxidation than

  1. Involvement of Extracellular Cu/Zn Superoxide Dismutase in Cotton Fiber Primary and Secondary Cell Wall Biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extracellular Cu/Zn superoxide dismutases (CSDs) that catalyze the conversion of superoxide to hydrogen peroxide have been suggested to be involved in lignification of secondary walls in spinach, pine and aspen. In cotton fibers, hydrogen peroxide was proposed to be involved in the induction of seco...

  2. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  3. A Novel Isoform of Sucrose Synthase Is Targeted to the Cell Wall during Secondary Cell Wall Synthesis in Cotton Fiber[C][W][OA

    PubMed Central

    Brill, Elizabeth; van Thournout, Michel; White, Rosemary G.; Llewellyn, Danny; Campbell, Peter M.; Engelen, Steven; Ruan, Yong-Ling; Arioli, Tony; Furbank, Robert T.

    2011-01-01

    Sucrose (Suc) synthase (Sus) is the major enzyme of Suc breakdown for cellulose biosynthesis in cotton (Gossypium hirsutum) fiber, an important source of fiber for the textile industry. This study examines the tissue-specific expression, relative abundance, and temporal expression of various Sus transcripts and proteins present in cotton. A novel isoform of Sus (SusC) is identified that is expressed at high levels during secondary cell wall synthesis in fiber and is present in the cell wall fraction. The phylogenetic relationships of the deduced amino acid sequences indicate two ancestral groups of Sus proteins predating the divergence of monocots and dicots and that SusC sequences form a distinct branch in the phylogeny within the dicot-specific clade. The subcellular location of the Sus isoforms is determined, and it is proposed that cell wall-localized SusC may provide UDP-glucose for cellulose and callose synthesis from extracellular sugars. PMID:21757635

  4. Constraining condensed-phase formation kinetics of secondary organic aerosol components from isoprene epoxydiols

    NASA Astrophysics Data System (ADS)

    Riedel, T. P.; Lin, Y.-H.; Zhang, Z.; Chu, K.; Thornton, J. A.; Vizuete, W.; Gold, A.; Surratt, J. D.

    2015-10-01

    Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall-losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.

  5. Constraining condensed-phase formation kinetics of secondary organic aerosol components from isoprene epoxydiols

    NASA Astrophysics Data System (ADS)

    Riedel, T. P.; Lin, Y.-H.; Zhang, Z.; Chu, K.; Thornton, J. A.; Vizuete, W.; Gold, A.; Surratt, J. D.

    2016-02-01

    Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.

  6. Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility

    PubMed Central

    Eudes, Aymerick; Zhao, Nanxia; Sathitsuksanoh, Noppadon; Baidoo, Edward E. K.; Lao, Jeemeng; Wang, George; Yogiswara, Sasha; Lee, Taek Soon; Singh, Seema; Mortimer, Jenny C.; Keasling, Jay D.; Simmons, Blake A.; Loqué, Dominique

    2016-01-01

    Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet). In this study, we demonstrate in Arabidopsis stems that targeted expression of AdoMet hydrolase (AdoMetase, E.C. 3.3.1.2) in secondary cell wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H) units and a reduction of dimethylated syringyl (S) units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild-type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock. PMID:27486577

  7. Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility.

    PubMed

    Eudes, Aymerick; Zhao, Nanxia; Sathitsuksanoh, Noppadon; Baidoo, Edward E K; Lao, Jeemeng; Wang, George; Yogiswara, Sasha; Lee, Taek Soon; Singh, Seema; Mortimer, Jenny C; Keasling, Jay D; Simmons, Blake A; Loqué, Dominique

    2016-01-01

    Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet). In this study, we demonstrate in Arabidopsis stems that targeted expression of AdoMet hydrolase (AdoMetase, E.C. 3.3.1.2) in secondary cell wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H) units and a reduction of dimethylated syringyl (S) units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild-type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock. PMID:27486577

  8. Bacillus anthracis tagO Is Required for Vegetative Growth and Secondary Cell Wall Polysaccharide Synthesis

    PubMed Central

    Lunderberg, J. Mark; Liszewski Zilla, Megan; Missiakas, Dominique

    2015-01-01

    ABSTRACT Bacillus anthracis elaborates a linear secondary cell wall polysaccharide (SCWP) that retains surface (S)-layer and associated proteins via their S-layer homology (SLH) domains. The SCWP is comprised of trisaccharide repeats [→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→] and tethered via acid-labile phosphodiester bonds to peptidoglycan. Earlier work identified UDP-GlcNAc 2-epimerases GneY (BAS5048) and GneZ (BAS5117), which act as catalysts of ManNAc synthesis, as well as a polysaccharide deacetylase (BAS5051), as factors contributing to SCWP synthesis. Here, we show that tagO (BAS5050), which encodes a UDP-N-acetylglucosamine:undecaprenyl-P N-acetylglucosaminyl 1-P transferase, the enzyme that initiates the synthesis of murein linkage units, is required for B. anthracis SCWP synthesis and S-layer assembly. Similar to gneY-gneZ mutants, B. anthracis strains lacking tagO cannot maintain cell shape or support vegetative growth. In contrast, mutations in BAS5051 do not affect B. anthracis cell shape, vegetative growth, SCWP synthesis, or S-layer assembly. These data suggest that TagO-mediated murein linkage unit assembly supports SCWP synthesis and attachment to the peptidoglycan via acid-labile phosphodiester bonds. Further, B. anthracis variants unable to synthesize SCWP trisaccharide repeats cannot sustain cell shape and vegetative growth. IMPORTANCE Bacillus anthracis elaborates an SCWP to support vegetative growth and envelope assembly. Here, we show that some, but not all, SCWP synthesis is dependent on tagO-derived murein linkage units and subsequent attachment of SCWP to peptidoglycan. The data implicate secondary polymer modifications of peptidoglycan and subcellular distributions as a key feature of the cell cycle in Gram-positive bacteria and establish foundations for work on the molecular functions of the SCWP and on inhibitors with antibiotic attributes. PMID:26324447

  9. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. PMID:27107260

  10. Secondary structure of proteins analyzed ex vivo in vascular wall in diabetic animals using FT-IR spectroscopy.

    PubMed

    Majzner, Katarzyna; Wrobel, Tomasz P; Fedorowicz, Andrzej; Chlopicki, Stefan; Baranska, Malgorzata

    2013-11-12

    In recent years many methods for ex vivo tissue analysis or diagnosis of diseases have been applied, including infrared absorption spectroscopy. Fourier-transform infrared (FT-IR) absorption microspectroscopy allows the simultaneous monitoring of the content of various chemical compounds in tissues with both high selectivity and resolution. Imaging of tissue samples in very short time can be performed using a spectrometer equipped with a Focal Plane Array (FPA) detector. Additionally, a detection of minor components or subtle changes associated with the functional status of a tissue sample is possible when advanced methods of data analysis, such as chemometric techniques, are applied. Monitoring of secondary structures of proteins has already proved to be useful in the analysis of animal tissues in disease states. The aim of this work was to build a mathematical model based on FT-IR measurements for the prediction of alterations in the content of secondary structures of proteins analyzed by FT-IR in the vascular wall of diabetic animals. For that purpose a spectral database of proteins of known crystallography and secondary structures was assembled. Thirty-seven proteins were measured by means of two FT-IR techniques: transflection and Attenuated Total Reflectance (ATR). The obtained model was tested on cross-sections of rat tail, for which the content of proteins and their secondary structures was well characterized. Then, the model was applied for the detection of possible alterations in the secondary structures of proteins in the vascular wall of diabetic rats and mice. The obtained results suggest a prominent increase in E- and S-structures and a decrease in the content of H-structures in the vascular wall from diabetic mice and rats. FT-IR-based studies of secondary structures of proteins may be a novel approach to study complex processes ongoing in the vascular wall. The obtained results are satisfactory; however, the existing limitations of the method are

  11. Plant metabolism and cell wall formation in space (microgravity) and on Earth

    NASA Technical Reports Server (NTRS)

    Lewis, Norman G.

    1994-01-01

    Variations in cell wall chemistry provide vascular plants with the ability to withstand gravitational forces, as well as providing facile mechanisms for correctional responses to various gravitational stimuli, e.g., in reaction wood formation. A principal focus of our current research is to precisely and systematically dissect the essentially unknown mechanism(s) of vascular plant cell wall assembly, particularly with respect to formation of its phenolic constituents, i.e., lignins and suberins, and how gravity impacts upon these processes. Formation of these phenolic polymers is of particular interest, since it appears that elaboration of their biochemical pathways was essential for successful land adaptation. By extrapolation, we are also greatly intrigued as to how the microgravity environment impacts upon 'normal' cell wall assembly mechanisms/metabolism.

  12. MADS-Box Transcription Factor VdMcm1 Regulates Conidiation, Microsclerotia Formation, Pathogenicity, and Secondary Metabolism of Verticillium dahliae

    PubMed Central

    Xiong, Dianguang; Wang, Yonglin; Tian, Longyan; Tian, Chengming

    2016-01-01

    Verticillium dahliae, a notorious phytopathogenic fungus, causes vascular wilt diseases in many plant species resulting in devastating yield losses worldwide. Due to its ability to colonize plant xylem and form microsclerotia, V. dahliae is highly persistent and difficult to control. In this study, we show that the MADS-box transcription factor VdMcm1 is a key regulator of conidiation, microsclerotia formation, virulence, and secondary metabolism of V. dahliae. In addition, our findings suggest that VdMcm1 is involved in cell wall integrity. Finally, comparative RNA-Seq analysis reveals 823 significantly downregulated genes in the VdMcm1 deletion mutant, with diverse biological functions in transcriptional regulation, plant infection, cell adhesion, secondary metabolism, transmembrane transport activity, and cell secretion. When taken together, these data suggest that VdMcm1 performs pleiotropic functions in V. dahliae. PMID:27536281

  13. MADS-Box Transcription Factor VdMcm1 Regulates Conidiation, Microsclerotia Formation, Pathogenicity, and Secondary Metabolism of Verticillium dahliae.

    PubMed

    Xiong, Dianguang; Wang, Yonglin; Tian, Longyan; Tian, Chengming

    2016-01-01

    Verticillium dahliae, a notorious phytopathogenic fungus, causes vascular wilt diseases in many plant species resulting in devastating yield losses worldwide. Due to its ability to colonize plant xylem and form microsclerotia, V. dahliae is highly persistent and difficult to control. In this study, we show that the MADS-box transcription factor VdMcm1 is a key regulator of conidiation, microsclerotia formation, virulence, and secondary metabolism of V. dahliae. In addition, our findings suggest that VdMcm1 is involved in cell wall integrity. Finally, comparative RNA-Seq analysis reveals 823 significantly downregulated genes in the VdMcm1 deletion mutant, with diverse biological functions in transcriptional regulation, plant infection, cell adhesion, secondary metabolism, transmembrane transport activity, and cell secretion. When taken together, these data suggest that VdMcm1 performs pleiotropic functions in V. dahliae. PMID:27536281

  14. Formation of thin walled ceramic solid oxide fuel cells

    DOEpatents

    Claar, Terry D.; Busch, Donald E.; Picciolo, John J.

    1989-01-01

    To reduce thermal stress and improve bonding in a high temperature monolithic solid oxide fuel cell (SOFC), intermediate layers are provided between the SOFC's electrodes and electrolyte which are of different compositions. The intermediate layers are comprised of a blend of some of the materials used in the electrode and electrolyte compositions. Particle size is controlled to reduce problems involving differential shrinkage rates of the various layers when the entire structure is fired at a single temperature, while pore formers are provided in the electrolyte layers to be removed during firing for the formation of desired pores in the electrode layers. Each layer includes a binder in the form of a thermosetting acrylic which during initial processing is cured to provide a self-supporting structure with the ceramic components in the green state. A self-supporting corrugated structure is thus formed prior to firing, which the organic components of the binder and plasticizer removed during firing to provide a high strength, high temperature resistant ceramic structure of low weight and density.

  15. Organic aerosol formation photo-enhanced by the formation of secondary photosensitizers in aerosols.

    PubMed

    Aregahegn, Kifle Z; Nozière, Barbara; George, Christian

    2013-01-01

    Secondary organic aerosols (SOA), which are produced by the transformations of volatile organic compounds in the atmosphere, play a central role in air quality, public health, visibility and climate, but their formation and aging remain poorly characterized. This study evidences a new mechanism for SOA formation based on photosensitized particulate-phase chemistry. Experiments were performed with a horizontal aerosol flow reactor where the diameter growth of the particles was determined as a function of various parameters. In the absence of gas-phase oxidant, experiments in which ammonium sulfate seeds containing glyoxal were exposed to gas-phase limonene and UV light exhibited a photo-induced SOA growth. Further experiments showed that this growth was due to traces of imidazole-2-carboxaldehyde (IC) in the seeds, a condensation product of glyoxal acting as an efficient photosensitizer. Over a 19 min irradiation time, 50 nm seed particles containing this compound were observed to grow between 3.5 and 30 +/- 3% in the presence of either limonene, isoprene, alpha-pinene, beta-pinene, or toluene in concentrations between 1.8 and 352 ppmv. The other condensation products of glyoxal, imidazole (IM) and 2,2-bi1H-imidazole (BI), also acted as photosensitizer but with much less efficiency under the same conditions. In the atmosphere, glyoxal and potentially other gas precursors would thus produce efficient photosensitizers in aerosol and autophotocatalyze SOA growth. PMID:24601000

  16. EVALUATION OF SECONDARY ORGANIC AEROSOL FORMATION IN WINTER. (R823514)

    EPA Science Inventory

    Three different methods are used to predict secondary organic aerosol (SOA)
    concentrations in the San Joaquin Valley of California during the winter of 1995-1996 [Integrated
    Monitoring Study, (IMS95)]. The first of these methods estimates SOA by using elemental carbon as

  17. Kinetic cavity preparation effects on secondary caries formation around resin restorations: a polarized light microscopic in vitro evaluation.

    PubMed

    Hicks, M J; Parkins, F M; Flaitz, C M

    2001-01-01

    The purpose of this in vitro study was to compare the effect of conventional handpiece and kinetic cavity preparation (KCP, air abrasion) techniques of cavity preparation on caries-like enamel lesion formation. After a fluoride-free prophylaxis, twelve human molars were examined macroscopically to ensure that buccal and lingual surfaces were caries-free. Unfilled cavities were prepared in mesiobuccal (conventional [CU]) and mesiolingual (air abrasion [AU]) enamel surfaces. Cavities were prepared in distobuccal (conventional [CF]) and distolingual (air abrasion [AF]) enamel surfaces and restored with composite resin following placement of a bonding agent. Acid-etching of cavity walls was performed only with the conventionally prepared cavities restored with resin. Air abrasion (KCP) prepared cavities were restored without acid-etching of the cavity walls. Teeth were thermocycled (500 cycles, 5 degrees to 50 degrees C, 500 cycles) and exposed to an artificial caries medium for caries initiation and progression. After caries formation, two longitudinal sections were taken from unfilled and filled cavity preparations and examined by polarized light microscopy for wall lesion presence and mean surface lesion depth. Surface lesion depths were similar among groups after the caries initiation period (CU = 225 microns; AU = 237 microns; CF = 241 microns; AF = 251 [p > .05, ANOVA, DMR]), and progression (CU = 437 microns; AU = 415 microns; CF = 405 microns; AF = 429 um [p > 0.05, ANOVA, DMR]). Extensive wall lesions were present in all CU and AU; while small wedge-shaped wall lesions were significantly (p < .05, ANOVA, DMR) fewer in CF (19 percent & 21 percent) and AF (17 percent & 21 percent) following caries initiation and progression compared with unfilled controls. Resin restorations placed in cavities prepared by air abrasion (KCP) and conventional handpiece techniques provided similar degrees of protection against a secondary caries-like challenge. PMID:11475686

  18. Enhancement effect of relative humidity on the formation and regional respiratory deposition of secondary organic aerosol.

    PubMed

    Yu, Kuo-Pin; Lin, Chi-Chi; Yang, Shang-Chun; Zhao, Ping

    2011-07-15

    In this study, we investigated the effect of relative humidity (RH) on the formation of secondary organic aerosol (SOA) generated from the ozonolysis of d-limonene in an environmental chamber. The mass yield and the number concentration of SOA increased seven and eight times, respectively, when the RH increased from 18% to 82%. The measured total loss rates (apparent loss rates) of the number and mass concentration of SOA in the chamber ranged from 1.70 to 1.77 h(-1) and from 2.51 to 2.61 h(-1), respectively, at a controlled ventilation rate of 0.72±0.04 h(-1). The wall-deposition-loss-rate coefficient observed (1.00±0.02 h(-1)) was approximate to the estimated value based on Zhao and Wu's model which includes the factors of turbulence, Brownian diffusion, turbophoresis and surface roughness. According to the ICRP (International Commission on Radiological Protection) model, the inhaled SOA particles are deposited primarily in the alveoli of the lung. The integrated alveolar deposited dose of the mass (surface area) of SOA over 3h accounted for 74.0-74.8% (74.3-74.9%) of the total deposited dose at the investigated RH. Raising the RH resulted in the growth of SOA particle sizes and increment of the deposition dose but did not cause significant changes in the ratio of regional to the total respiratory deposition of SOA. PMID:21570180

  19. Examining the Use of Audience Response Systems in Secondary School Classrooms: A Formative Analysis

    ERIC Educational Resources Information Center

    Kay, Robin; LeSage, Ann; Knaack, Liesel

    2010-01-01

    To date, extensive research has been done on the use of Audience Response Systems (ARSs) in colleges and universities, but not in secondary school schools. The purpose of this study was to conduct a detailed formative analysis on the benefits, challenges, and use of ARSs from the perspective of 659 secondary school students. Key benefits reported…

  20. Formative Assessment in the Grenadian Lower Secondary School: Teachers' Perceptions, Attitudes and Practices

    ERIC Educational Resources Information Center

    Young, James E. J.; Jackman, Mary Grace-Anne

    2014-01-01

    The purpose of this study was to explore the perceptions, attitudes and frequency of use of formative assessment strategies of teachers in the Grenadian lower secondary school (Forms 1, 2 and 3). The study, which was quantitative in nature, involved 252 lower secondary school teachers. Overall the participants had positive perceptions and…

  1. Organic Aerosol Formation Photoenhanced by the Formation of Secondary Photo-sensitizers in ageing Aerosols

    NASA Astrophysics Data System (ADS)

    Aregahegn, Kifle; Nozière, Barbara; George, Christian

    2013-04-01

    Humankind is facing a changing environment possibly due to anthropogenic stress on the atmosphere. In this context, aerosols play a key role by affecting the radiative climate forcing, hydrological cycle, and by their adverse effect on health. The role of organic compounds in these processes is however still poorly understood because of their massive chemical complexity and numerous transformations. This is particularly true for Secondary Organic Aerosol (SOA), which are produced in the atmosphere by organic gases. Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms can not account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS) having Kr-85 source aerosol neutralizer, Differential Mobility Analyser (DMA) and Condensation Particle Sizer (CPC), we identified that traces of the aerosol phase product of glyoxal chemistry as is explained in Gallway et al., and Yu et al., namely imidazole-2-carboxaldehyde (IC) is a strong photo-sensitizer when irradiated by near-UV in the presence of volatile organic compounds such as terpenes. Furthermore, the influence of pH, type and concentration of VOCs, composition of seed particles, relative humidity and irradiation intensity on particle growth were studied. This novel photo-sensitizer contributed to more than 30% of SOA growth in 19min irradiation time in the presence of terpenes in the

  2. Exogenous GA₃ Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla.

    PubMed

    Guo, Huiyan; Wang, Yucheng; Liu, Huizi; Hu, Ping; Jia, Yuanyuan; Zhang, Chunrui; Wang, Yanmin; Gu, Shan; Yang, Chuanping; Wang, Chao

    2015-01-01

    Gibberellin (GA) is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch) seeds were treated with 300 ppm GA₃ and/or 300 ppm paclobutrazol (PAC), seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA₃ and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol-HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA₃, and reduced by PAC; the xylem development was wider in GA₃-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA₃ treatment, suggesting their role in GA₃-induced xylem development in the birch. Our results suggest that GA₃ induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants. PMID:26404260

  3. Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla

    PubMed Central

    Guo, Huiyan; Wang, Yucheng; Liu, Huizi; Hu, Ping; Jia, Yuanyuan; Zhang, Chunrui; Wang, Yanmin; Gu, Shan; Yang, Chuanping; Wang, Chao

    2015-01-01

    Gibberellin (GA) is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch) seeds were treated with 300 ppm GA3 and/or 300 ppm paclobutrazol (PAC), seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA3 and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol–HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA3, and reduced by PAC; the xylem development was wider in GA3-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA3 treatment, suggesting their role in GA3-induced xylem development in the birch. Our results suggest that GA3 induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants. PMID:26404260

  4. Secondary Organic Aerosol Formation from Glyoxal: photochemical versus dark uptake and reversible versus irreversible SOA formation

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Slowik, J.; Kampf, C.; Timkovsky, J.; Noziere, B.; Praplan, A.; Pffafenberger, L.; Holzinger, R.; Hoffmann, T.; Dommen, J.; Prevot, A.; Baltensperger, U.; Volkamer, R.

    2012-04-01

    Glyoxal forms secondary organic aerosol (SOA) by partitioning to the aerosol aqueous phase according to Henry's law. The subsequent processing by heterogeneous and multiphase reactions shifts the partitioning towards aerosols. Currently it is not well understood whether these reactions result in reversible or irreversible SOA formation, and what parameters influence the rate limiting step of multiphase processing. We conducted a series of simulation chamber experiments at PSI in April and May 2011 to investigate processing under dark conditions, UV and/or visible light irradiated conditions, and in the presence and absence of OH radicals. Experiments used ammonium sulfate or ammonium sulfate/fulvic acid mixtures as seed aerosols, and were conducted between 50% and 85% relative humidity at approximately constant RH over the course of any given experiment. Glyoxal was produced photochemically from acetylene, using HONO photolysis as the OH radical source. Gas-phase glyoxal was measured by the CU LED-Cavity Enhanced-DOAS. The Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS) and Ion Chromatography Mass Spectrometer (IC-MS) monitored both gas and aerosol-phase organic reaction products. Particle composition was monitored by High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS), and HPLC-ESI MS/MS and LC-MS analysis of filter samples.

  5. Secondary Organic Aerosol Formation from Glyoxal: photochemical versus dark uptake and reversible versus irreversible SOA formation

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Slowik, J. G.; Kampf, C. J.; Timkovsky, J.; Noziere, B.; Praplan, A. P.; Pfaffenberger, L.; Holzinger, R.; Hoffmann, T.; Dommen, J.; Prevot, A. S.; Baltensperger, U.; Volkamer, R.

    2011-12-01

    Glyoxal forms secondary organic aerosol (SOA) by partitioning to the aerosol aqueous phase according to Henry's law. The subsequent processing by heterogeneous and multiphase reactions shifts the partitioning towards aerosols. Currently it is not well understood whether these reactions result in reversible or irreversible SOA formation, and what parameters influence the rate limiting step of multiphase processing. We conducted a series of simulation chamber experiments at PSI in April and May 2011 to investigate processing under dark conditions, UV and/or visible light irradiated conditions, and in the presence and absence of OH radicals. Experiments used ammonium sulfate or ammonium sulfate/fulvic acid mixtures as seed aerosols, and were conducted between 50% and 85% relative humidity at approximately constant RH over the course of any given experiment. Glyoxal was produced photochemically from acetylene, using HONO photolysis as the OH radical source. Gas-phase glyoxal was measured by the CU LED-Cavity Enhanced-DOAS. The Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS) and Ion Chromatography Mass Spectrometer (IC-MS) monitored both gas and aerosol-phase organic reaction products. Particle composition was monitored by High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS), and HPLC-ESI MS/MS and LC-MS analysis of filter samples.

  6. Detecting the formation of single-walled carbon nanotube rings by photoabsorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hida, Akira; Suzuki, Takayuki; Ishibashi, Koji

    2016-08-01

    Photoabsorption spectroscopy was conducted on single-walled carbon nanotubes (SWNTs) during the formation of ring structures. The absorption bands observed before starting the formation gradually shifted while broadening in the middle. When they finally disappeared, it was found, via atomic force microscopy observations, that almost all SWNTs were transformed into rings. The spectral changes were assumed to be due to the changes in the electronic states of SWNTs. This idea was supported by the results of an investigation using a scanning tunneling microscope. It could be said that photoabsorption spectroscopy is useful for detecting ring formation in situ.

  7. α-Casein Inhibits Insulin Amyloid Formation by Preventing the Onset of Secondary Nucleation Processes.

    PubMed

    Librizzi, Fabio; Carrotta, Rita; Spigolon, Dario; Bulone, Donatella; San Biagio, Pier Luigi

    2014-09-01

    α-Casein is known to inhibit the aggregation of several proteins, including the amyloid β-peptide, by mechanisms that are not yet completely clear. We studied its effects on insulin, a system extensively used to investigate the properties of amyloids, many of which are common to all proteins and peptides. In particular, as for other proteins, insulin aggregation is affected by secondary nucleation pathways. We found that α-casein strongly delays insulin amyloid formation, even at extremely low doses, when the aggregation process is characterized by secondary nucleation. At difference, it has a vanishing inhibitory effect on the initial oligomer formation, which is observed at high concentration and does not involve any secondary nucleation pathway. These results indicate that an efficient inhibition of amyloid formation can be achieved by chaperone-like systems, by sequestering the early aggregates, before they can trigger the exponential proliferation brought about by secondary nucleation mechanisms. PMID:26278257

  8. Secondary Aerosol Formation from Oxidation of Aromatics Hydrocarbons by Cl atoms

    NASA Astrophysics Data System (ADS)

    Cai, X.; Griffin, R.

    2006-12-01

    Aerosol Formation From the Oxidation of Aromatic Hydrocarbons by Chlorine Atmospheric secondary organic aerosol (SOA) affects regional and global air quality. The formation mechanisms of SOA via the oxidation of volatile organic compounds by hydroxyl radicals, ozone, and nitrate radicals have been studied intensively during the last decade. Chlorine atoms (Cl) also have been hypothesized to be effective oxidants in marine and industrially influenced areas. Recent work by the authors has indicated that significant amounts of SOA are formed from the oxidation of monoterpenes by Cl. Aromatic hydrocarbons are important for generation of both SOA and ozone in urban areas because of their large emission rates and high reactivity. The goal of this work was to quantify the SOA formation potentials of two representative aromatic hydrocarbons through laboratory chamber experiments in which oxidation was initiated by Cl. The system constructed for this study includes an experimental chamber, a gas chromatograph for quantification of aromatic mixing ratios, a Scanning Mobility Particle Spectrometer to measure SOA size distributions, a zero air generator, and an illuminating system. The model aromatic hydrocarbons chosen for this study are toluene and m-xylene. Aerosol yields are estimated based on measured aerosol volume concentration, the concentration of consumed hydrocarbon, and estimation of wall loss of the newly formed aerosol. Toluene and m-xylene exhibit similar SOA yields from the oxidation initiated by Cl. The toluene SOA yield from Cl-initiated oxidation, however, depends on the ratio between the mixing ratios of the initial chlorine source and toluene in the chamber. For toluene experiments with higher such ratios, SOA yields vary from 0.05 to 0.079 for generated aerosol ranging from 4.2 to12.0 micrograms per cubic meter. In the lower ratio experiments, SOA yields are from 0.033 to 0.064, corresponding to generated aerosol from 3.0 to 11.0 micrograms per cubic

  9. PORTNEUF VALLEY, IDAHO PM-10 DISPERSION MODEL INCLUDING SECONDARY CHEMICAL FORMATION

    EPA Science Inventory

    A dispersion modeling effort for the Portneuf Valley, Pocatello, Idaho PM-10 attainment demonstration is underway. The model will treat the secondary chemical formation process, primarily sulfate and nitrate formation under both the aqueous and gas phases. The model will simul...

  10. Alternative Format Preferences among Secondary School Visually Impaired Students in Nigeria

    ERIC Educational Resources Information Center

    Adetoro, 'Niran

    2012-01-01

    Persons with visual impairment have consistently shown a preference for one alternative reading format over another, often because of factors outside their control. This study adopted survey research design to investigate alternative format preferences among secondary school visually impaired students, focusing on Southwestern Nigeria. Using total…

  11. Influence of Aerosol Acidity on the Formation of Secondary Organic Aerosol from Biogenic Precursor Hydrocarbons

    EPA Science Inventory

    Secondary organic aerosol (SOA) formation and dynamics may be important factors for the role of aerosols in adverse health effects, visibility and climate change. Formation of SOA occurs when a parent volatile organic compound is oxidized to create products that form in a conden...

  12. Secondary organic aerosol formation from the irradiation of simulated automobile exhaust.

    PubMed

    Kleindienst, T E; Corse, E W; Li, W; McIver, C D; Conver, T S; Edney, E O; Driscoll, D J; Speer, R E; Weathers, W S; Tejada, S B

    2002-03-01

    A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SOA) and how well their formation is described by recently developed models for SOA formation. The quality of a surrogate was tested by comparing its reactivity with that from irradiations of authentic automobile exhaust. Experiments for secondary particle formation using the surrogate were conducted in a fixed volume reactor operated in a dynamic mode. The mass concentration of the aerosol was determined from measurements of organic carbon collected on quartz filters and was corrected for the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. A functional group analysis of the aerosol made by Fourier transform infrared (FTIR) spectroscopy indicated PMID:11924857

  13. Disturbance of the bacterial cell wall specifically interferes with biofilm formation.

    PubMed

    Bucher, Tabitha; Oppenheimer-Shaanan, Yaara; Savidor, Alon; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2015-12-01

    In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment. PMID:26472159

  14. Secondary organic aerosol formation from the gas phase reaction of hydroxyl radicals with m-, o- and p-cresol

    NASA Astrophysics Data System (ADS)

    Henry, Françoise; Coeur-Tourneur, Cecile; Ledoux, Frédéric; Tomas, Alexandre; Menu, Dominique

    Secondary organic aerosol (SOA) formation during the atmospheric oxidation of cresols was investigated using a large smog chamber (8000 L), at atmospheric pressure, 294±2 K and low relative humidity (6-10%). Cresol oxidation was initiated by irradiation of cresol/CH 3ONO/NO/air mixtures. The cresol loss was measured by gas chromatography with a flame ionization detector (GC-FID) and the temporal evolution of the aerosol was monitored using a scanning mobility particle sizer (SMPS). The overall organic aerosol yield ( Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses ( Mo) to the total reacted cresol concentrations assuming a particle density of 1.4 g cm -3. Analysis of the data clearly show that Y is a strong function of Mo and that SOA formation can be expressed by a one-product gas/particle partitioning absorption model. The aerosol formation is affected by the initial cresol concentration, which leads to aerosol yields from 9% to 42%. These results are in good agreement with a recent study performed on SOA formation from the photo-oxidation of o-cresol in a smog chamber. To our knowledge, the present work represents the first investigation of SOA formation from OH reaction with m- and p-cresol.

  15. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-01

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels. PMID:22732009

  16. Nonequilibrium Atmospheric Secondary Organic Aerosol Formation and Growth

    SciTech Connect

    Perraud, Veronique M.; Bruns, Emily A.; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Alexander, M. L.; Zelenyuk, Alla; Imre, D.; Chang, W. L.; Dabdub, Donald; Pankow, James F.; Finlayson-Pitts, Barbara J.

    2012-02-21

    Airborne particles play a critical role in air quality, human health effects, visibility and climate. Secondary organic aerosols (SOA) account for a significant portion of total airborne particles. They are formed in reactions of organic gases that produce low volatility and semi-volatile organic compounds (SVOCs). Current atmospheric models assume that SOA are liquids into which SVOCs undergo equilibrium partitioning and grow the particles. However a large discrepancy between model predictions and field measurements of SOA is commonly observed. We report here laboratory studies of the oxidation of a-pinene by ozone and nitrate radicals and show that particle composition is actually consistent with a kinetically determined growth mechanism, and not with equilibrium partitioning between the gas phase and liquid particles. If this is indeed a general phenomenon in air, the formulation of atmospheric SOA models will have to be revised to reflect this new paradigm. This will have significant impacts on quantifying the role of SOA in air quality, visibility, and climate.

  17. Secondary Aerosol: Precursors and Formation Mechanisms. Technical Report on Grant

    SciTech Connect

    Weinstein-Lloyd, Judith B

    2009-05-04

    This project focused on studying trace gases that participate in chemical reactions that form atmospheric aerosols. Ammonium sulfate is a major constituent of these tiny particles, and one important pathway to sulfate formation is oxidation of dissolved sulfur dioxide by hydrogen peroxide in cloud, fog and rainwater. Sulfate aerosols influence the number and size of cloud droplets, and since these factors determine cloud radiative properties, sulfate aerosols also influence climate. Peroxide measurements, in conjunction with those of other gaseous species, can used to distinguish the contribution of in-cloud reaction to new sulfate aerosol formation from gas-phase nucleation reactions. This will lead to more reliable global climate models. We constructed and tested a new 4-channel fluorescence detector for airborne detection of peroxides. We integrated the instrument on the G-1 in January, 2006 and took a test flight in anticipation of the MAX-Mex field program, where we planned to fly under pressurized conditions for the first time. We participated in the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) - Megacity Aerosol EXperiment Mexico City (MAX-Mex) field measurement campaign. Peroxide instrumentation was deployed on the DOE G-1 research aircraft based in Veracruz, and at the surface site at Tecamac University.

  18. TEM observation of bacteria-induced plagioclase dissolution and secondary mineral formation

    NASA Astrophysics Data System (ADS)

    Tamura, T.; Kyono, A.; Nishimiya, Y.

    2015-12-01

    Silicate minerals are the most common minerals in the earth's crust. Bacteria are also distributed throughout the earth's surface environment. The silicate minerals are known to be dissolved by organic acids and polysaccharides known as bacteria metabolites. The metabolic activity of bacteria therefore plays an important role in the interaction between dissolution of the silicate minerals and formation of secondary minerals. However, little is known about the secondary mineral formation process associated with the bacterial metabolism. To clarify the bacterial effect on the mineral dissolution and the secondary mineral formation, we closely investigated the effect of bacterial activity on surface texture modification and chemical composition changes of plagioclase which is the most abundant silicate mineral in the earth's crust. The bacteria were isolated from soil and then added in a suitable medium with several plagioclase fragments (Ab100% and An100%). It was incubated for 10 days. Al and Si concentrations in the medium were measured by ICP-AES to monitor the dissolution of the plagioclase. Secondary mineral formation during the incubation was observed by TEM, EDS and SAED methods. The authors will give the experiment results and discuss the effect of bacterial activity on the plagioclase dissolution and the secondary mineral formation in detail.

  19. Lumbar spine osteomyelitis and epidural abscess formation secondary to acupuncture.

    PubMed

    Godhania, Vinesh

    2016-01-01

    A 39-year-old male with no previous medical history presented with abdominal and low back pain. Based on clinical and radiological findings he was diagnosed with L1/L2 osteomyelitis and epidural abscess. Further history taking revealed recent use of acupuncture for treatment of mechanical back pain. The patient was treated conservatively with an extended course of antibiotics, monitored with repeat MRI scans and had a full recovery with no neurological deficit. This is the first reported case of epidural abscess formation and osteomyelitis after acupuncture in the UK. As acupuncture becomes more commonly used in western countries, it is important to be aware of this rare but serious complication. PMID:26976275

  20. Assessment of secondary bubble formation on a backward-facing step geometry

    NASA Astrophysics Data System (ADS)

    Juste, G. L.; Fajardo, P.; Guijarro, A.

    2016-07-01

    Flow visualization experiments and numerical simulations were performed on a narrow three-dimensional backward-facing step (BFS) flow with the main objective of characterizing the secondary bubble appearing at the top wall. The BFS has been widely studied because of its geometrical simplicity as well as its ability to reproduce most of the flow features appearing in many applications in which separation occurs. A BFS test rig with an expansion ratio of 2 and two aspect ratios (AR = 4 and AR = 8) was developed. Tests were performed at range of Reynolds numbers ranging from 50 to 1000; visualization experiments provided a qualitative description of secondary bubble and wall-jet flows. Large eddy simulations were carried out with two different codes for validation. Numerical solutions, once validated with experimental data from the literature, were used to acquire a deeper understanding of the experimental visualizations, to characterize the secondary bubble as a function of the flow variables (Reynolds and AR) and to analyze the effect of the secondary bubble on primary reattachment length. Finally, to decouple the sidewall effects due to the non-slip condition and the intrinsic flow three-dimensionality, numerical experiments with free-slip conditions over the sidewalls were computed. The main differences were as follows: When the non-slip condition is used, the secondary bubble appears at a Reynolds number of approximately 200, increases with the Reynolds number, and is limited to a small part of the span. This recirculation zone interacts with the wall-jets and causes the maximum and minimum lengths in the reattachment line of the primary recirculation. Under free slip conditions, the recirculation bubble appears at a higher Reynolds number and covers the entire channel span.

  1. Secondary island formation in collisional and collisionless kinetic simulations of magnetic reconnection

    SciTech Connect

    Dayton, William S; Roytershteyn, Vadim; Gary, Peter; Yin, L; Albright, B J; Bowers, K J; Karimabadi, H

    2009-01-01

    The evolution of magnetic reconnection in large-scale systems often gives rise to extended current layers that are unstable to the formation of secondary magnetic islands. The role of these islands in the reconnection process and the conditions under which they form remains a subject of debate. In this work, we benchmark two different kinetic particle-in-cell codes to address the formation of secondary islands for several types of global boundary conditions. The influence on reconnection is examined for a range of conditions and collisionality limits. Although secondary islands are observed in all cases, their influence on reconnection may be different depending on the regime. In the collisional limit, the secondary islands playa key role in breaking away from the Sweet-Parker scaling and enabling faster reconnection. In the collisionless limit, their formation is one mechanism for controlling the length of the diffusion region. In both limits, the onset of secondary islands leads to a time dependent behavior in the reconnection rate. In all cases considered, the number of secondary islands increases for larger systems.

  2. WD40-Repeat Proteins in Plant Cell Wall Formation: Current Evidence and Research Prospects

    PubMed Central

    Guerriero, Gea; Hausman, Jean-Francois; Ezcurra, Inés

    2015-01-01

    The metabolic complexity of living organisms relies on supramolecular protein structures which ensure vital processes, such as signal transduction, transcription, translation and cell wall synthesis. In eukaryotes WD40-repeat (WDR) proteins often function as molecular “hubs” mediating supramolecular interactions. WDR proteins may display a variety of interacting partners and participate in the assembly of complexes involved in distinct cellular functions. In plants, the formation of lignocellulosic biomass involves extensive synthesis of cell wall polysaccharides, a process that requires the assembly of large transmembrane enzyme complexes, intensive vesicle trafficking, interactions with the cytoskeleton, and coordinated gene expression. Because of their function as supramolecular hubs, WDR proteins could participate in each or any of these steps, although to date only few WDR proteins have been linked to the cell wall by experimental evidence. Nevertheless, several potential cell wall-related WDR proteins were recently identified using in silico approaches, such as analyses of co-expression, interactome and conserved gene neighborhood. Notably, some WDR genes are frequently genomic neighbors of genes coding for GT2-family polysaccharide synthases in eukaryotes, and this WDR-GT2 collinear microsynteny is detected in diverse taxa. In angiosperms, two WDR genes are collinear to cellulose synthase genes, CesAs, whereas in ascomycetous fungi several WDR genes are adjacent to chitin synthase genes, chs. In this Perspective we summarize and discuss experimental and in silico studies on the possible involvement of WDR proteins in plant cell wall formation. The prospects of biotechnological engineering for enhanced biomass production are discussed. PMID:26734023

  3. Scanning secondary-electron microscopy on ferroelectric domains and domain walls in YMnO{sub 3}

    SciTech Connect

    Li, J.; Yang, H. X.; Tian, H. F.; Ma, C.; Li, J. Q.; Zhang, S.; Zhao, Y. G.

    2012-04-09

    Ferroelectric domain structures in YMnO{sub 3} single crystals on the hexagonal polar surface have been investigated by scanning electron microscopy in secondary electron emission mode. The experimental results demonstrate that the domain, as well as domain walls, can be clearly revealed under the operation voltages ranging from 0.6 to 3 kV. Evolution of domain contrasts arising from electron-beam irradiation can be mainly explained by the pyroelectric effect and related charging process. A rich variety of microstructure features of ferroelectric domains can be clearly revealed in YMnO{sub 3} by this high-resolution technique.

  4. Restricting lignin and enhancing sugar deposition in secondary cell walls enhances monomeric sugar release after low temperature ionic liquid pretreatment

    SciTech Connect

    Scullin, Chessa; Cruz, Alejandro G.; Chuang, Yi -De; Simmons, Blake A.; Loque, Dominique; Singh, Seema

    2015-07-04

    Lignocellulosic biomass has the potential to be a major source of renewable sugar for biofuel production. Before enzymatic hydrolysis, biomass must first undergo a pretreatment step in order to be more susceptible to saccharification and generate high yields of fermentable sugars. Lignin, a complex, interlinked, phenolic polymer, associates with secondary cell wall polysaccharides, rendering them less accessible to enzymatic hydrolysis. Herein, we describe the analysis of engineered Arabidopsis lines where lignin biosynthesis was repressed in fiber tissues but retained in the vessels, and polysaccharide deposition was enhanced in fiber cells with little to no apparent negative impact on growth phenotype.

  5. Restricting lignin and enhancing sugar deposition in secondary cell walls enhances monomeric sugar release after low temperature ionic liquid pretreatment

    DOE PAGESBeta

    Scullin, Chessa; Cruz, Alejandro G.; Chuang, Yi -De; Simmons, Blake A.; Loque, Dominique; Singh, Seema

    2015-07-04

    Lignocellulosic biomass has the potential to be a major source of renewable sugar for biofuel production. Before enzymatic hydrolysis, biomass must first undergo a pretreatment step in order to be more susceptible to saccharification and generate high yields of fermentable sugars. Lignin, a complex, interlinked, phenolic polymer, associates with secondary cell wall polysaccharides, rendering them less accessible to enzymatic hydrolysis. Herein, we describe the analysis of engineered Arabidopsis lines where lignin biosynthesis was repressed in fiber tissues but retained in the vessels, and polysaccharide deposition was enhanced in fiber cells with little to no apparent negative impact on growth phenotype.

  6. Characteristics of secondary flows in rough-wall turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Vanderwel, Christina; Ganapathisubramani, Bharathram

    2015-11-01

    Large-scale secondary motions consisting of counter-rotating vortices and low- and high-momentum pathways can form in boundary layers that develop over rough surfaces. We experimentally investigated the sensitivity of these secondary motions to spanwise arrangement of the roughness by studying the flow over streamwise-aligned rows of elevated roughness with systematically-varied spacing. The roughness is created with LEGO blocks mounted along the floor of the wind tunnel and Stereo-PIV is used to measure the velocity field in a cross-plane. Results show that the secondary flows are strongest when the spanwise spacing of the surface topology is comparable with the boundary layer thickness. We discuss how these results are relevant to flows over arbitrary topologies and how these secondary motions influence the Reynolds stress distribution in the boundary layer.

  7. Vascular wall hypoxia promotes arterial thrombus formation via augmentation of vascular thrombogenicity.

    PubMed

    Matsuura, Yunosuke; Yamashita, Atsushi; Iwakiri, Takashi; Sugita, Chihiro; Okuyama, Nozomi; Kitamura, Kazuo; Asada, Yujiro

    2015-07-01

    Atherosclerotic lesions represent a hypoxic milieu. However, the significance of this milieu in atherothrombosis has not been established. We aimed to assess the hypothesis that vascular wall hypoxia promotes arterial thrombus formation. We examined the relation between vascular wall hypoxia and arterial thrombus formation using a rabbit model in which arterial thrombosis was induced by 0.5 %-cholesterol diet and repeated balloon injury of femoral arteries. Vascular wall hypoxia was immunohistochemically detected by pimonidazole hydrochloride, a hypoxia marker. Rabbit neointima and THP-1 macrophages were cultured to analyse prothrombotic factor expression under hypoxic conditions (1 % O2). Prothrombotic factor expression and nuclear localisation of hypoxia-inducible factor (HIF)-1α and nuclear factor-kappa B (NF-κB) p65 were immunohistochemically assessed using human coronary atherectomy plaques. Hypoxic areas were localised in the macrophage-rich deep portion of rabbit neointima and positively correlated with the number of nuclei immunopositive for HIF-1α and NF-κB p65, and tissue factor (TF) expression. Immunopositive areas for glycoprotein IIb/IIIa and fibrin in thrombi were significantly correlated with hypoxic areas in arteries. TF and plasminogen activator inhibitor-1 (PAI-1) expression was increased in neointimal tissues and/or macrophages cultured under hypoxia, and both were suppressed by inhibitors of either HIF-1 or NF-κB. In human coronary plaques, the number of HIF-1α-immunopositive nuclei was positively correlated with that of NF-κB-immunopositive nuclei and TF-immunopositive and PAI-1-immunopositive area, and it was significantly higher in thrombotic plaques. Vascular wall hypoxia augments the thrombogenic potential of atherosclerotic plaque and thrombus formation on plaques via prothrombotic factor upregulation. PMID:25833755

  8. Combination of tissue expansion and porcine mesh for secondary abdominal wall closure after pediatric liver transplantation.

    PubMed

    Lafosse, Aurore; de Magnee, Catherine; Brunati, Andrea; Bayet, Bénédicte; Vanwijck, Romain; Manzanares, Javier; Reding, Raymond

    2012-08-01

    We report the case of a two and a half yr boy hospitalized in our Pediatric Transplantation Unit for portal vein thrombosis following liver transplantation. After performing a meso-Rex shunt, abdominal wall closure was impossible without compressing the portal flow. A combination of two techniques was used to perform the reconstruction of the muscular fasciae and skin layers. The association of tissue expanders and porcine mesh (Surgisis(®)) allowed complete abdominal wall closure with good functional and esthetic results. Use of both techniques is a useful alternative for difficult abdominal closure after liver pediatric transplantation. PMID:21848529

  9. ABORTED MICROSPORES Acts as a Master Regulator of Pollen Wall Formation in Arabidopsis.

    PubMed

    Xu, Jie; Ding, Zhiwen; Vizcay-Barrena, Gema; Shi, Jianxin; Liang, Wanqi; Yuan, Zheng; Werck-Reichhart, Danièle; Schreiber, Lukas; Wilson, Zoe A; Zhang, Dabing

    2014-04-29

    Mature pollen is covered by durable cell walls, principally composed of sporopollenin, an evolutionary conserved, highly resilient, but not fully characterized, biopolymer of aliphatic and aromatic components. Here, we report that ABORTED MICROSPORES (AMS) acts as a master regulator coordinating pollen wall development and sporopollenin biosynthesis in Arabidopsis thaliana. Genome-wide coexpression analysis revealed 98 candidate genes with specific expression in the anther and 70 that showed reduced expression in ams. Among these 70 members, we showed that AMS can directly regulate 23 genes implicated in callose dissociation, fatty acids elongation, formation of phenolic compounds, and lipidic transport putatively involved in sporopollenin precursor synthesis. Consistently, ams mutants showed defective microspore release, a lack of sporopollenin deposition, and a dramatic reduction in total phenolic compounds and cutin monomers. The functional importance of the AMS pathway was further demonstrated by the observation of impaired pollen wall architecture in plant lines with reduced expression of several AMS targets: the abundant pollen coat protein extracellular lipases (EXL5 and EXL6), and CYP98A8 and CYP98A9, which are enzymes required for the production of phenolic precursors. These findings demonstrate the central role of AMS in coordinating sporopollenin biosynthesis and the secretion of materials for pollen wall patterning. PMID:24781116

  10. Processes influencing secondary aerosol formation in the San Joaquin Valley during winter

    SciTech Connect

    Frederick W. Lurmann; Steven G. Brown; Michael C. McCarthy; Paul T. Roberts

    2006-12-15

    Air quality data collected in the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM2.5) mass concentrations in California ({le} 188 {mu}g/m{sup 3} 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NOx)-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NOx and volatile organic compound (VOC) emissions plus background O{sub 3} levels are expected to determine NOx oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter. 59 refs., 11 figs., 1 tab.

  11. Formation of Secondary Particulate Matter by Reactions of Gas Phase Hexanal with Sulfate Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2003-12-01

    The formation of secondary particulate matter from the atmospheric oxidation of organic compounds can significantly contribute to the particulate burden, but the formation of organic secondary particulate matter is poorly understood. One way of producing organic secondary particulate matter is the oxidation of hydrocarbons with seven or more carbon atoms to get products with low vapor pressure. However, several recent reports suggest that relatively low molecular weight carbonyls can enter the particle phase by undergoing heterogeneous reactions. This may be a very important mechanism for the formation of organic secondary particulate matter. Atmospheric aldehydes are important carbonyls in the gas phase, which form via the oxidation of hydrocarbons emitted from anthropogenic and biogenic sources. In this poster, we report the results on particle growth by the heterogeneous reactions of hexanal. A 5 L Continuous Stirred Tank Reactor (CSTR) is set up to conduct the reactions in the presence of seed aerosol particles of deliquesced ammonia bisulfate. Hexanal is added into CSTR by syringe pump, meanwhile the concentrations of hexanal are monitored with High Pressure Liquid Chromatograph (HPLC 1050). A differential Mobility Analyzer (TSI 3071) set to an appropriate voltage is employed to obtain monodisperse aerosols, and another DMA associated with a Condensation Nuclear Counter (TSI 7610) is used to measure the secondary particle size distribution by the reaction in CSTR. This permits the sensitive determination of particle growth due to the heterogeneous reaction, very little growth occurs when hexanal added alone. Results for the simultaneous addition of hexanal and alcohols will also be presented.

  12. Porous wall hollow glass microspheres as a medium or substrate for storage and formation of novel materials

    DOEpatents

    Wicks, George G; Serkiz, Steven M.; Zidan, Ragaiy; Heung, Leung K.

    2014-06-24

    Porous wall hollow glass microspheres are provided as a template for formation of nanostructures such as carbon nanotubes, In addition, the carbon nanotubes in combination with the porous wall hollow glass microsphere provides an additional reaction template with respect to carbon nanotubes.

  13. FASTR: A novel data format for concomitant representation of RNA sequence and secondary structure information.

    PubMed

    Bose, Tungadri; Dutta, Anirban; Mh, Mohammed; Gandhi, Hemang; Mande, Sharmila S

    2015-09-01

    Given the importance of RNA secondary structures in defining their biological role, it would be convenient for researchers seeking RNA data if both sequence and structural information pertaining to RNA molecules are made available together. Current nucleotide data repositories archive only RNA sequence data. Furthermore, storage formats which can frugally represent RNA sequence as well as structure data in a single file, are currently unavailable. This article proposes a novel storage format, 'FASTR', for concomitant representation of RNA sequence and structure. The storage efficiency of the proposed FASTR format has been evaluated using RNA data from various microorganisms. Results indicate that the size of FASTR formatted files (containing both RNA sequence as well as structure information) are equivalent to that of FASTA-format files, which contain only RNA sequence information. RNA secondary structure is typically represented using a combination of a string of nucleotide characters along with the corresponding dot-bracket notation indicating structural attributes. 'FASTR' - the novel storage format proposed in the present study enables a frugal representation of both RNA sequence and structural information in the form of a single string. In spite of having a relatively smaller storage footprint, the resultant 'fastr' string(s) retain all sequence as well as secondary structural information that could be stored using a dot-bracket notation. An implementation of the 'FASTR' methodology is available for download at http://metagenomics.atc.tcs.com/compression/fastr. PMID:26333403

  14. Formative Assessment and Increased Student Involvement Increase Grades in an Upper Secondary School Biology Course

    ERIC Educational Resources Information Center

    Granbom, Martin

    2016-01-01

    This study shows that formative methods and increased student participation has a positive influence on learning measured as grades. The study was conducted during the course Biology A in a Swedish Upper Secondary School. The students constructed grade criteria and defined working methods and type of examination within a given topic, Gene…

  15. Public Health Impacts of Secondary Particulate Formation from Aromatic Hydrocarbons in Gasoline

    EPA Science Inventory

    Background: Aromatic hydrocarbons emitted from gasoline‐powered vehicles contribute to the formation of secondary organic aerosol (SOA), which increases the atmospheric mass concentration of fine particles (PM2.5). Here we estimate the public health burden associated w...

  16. Beyond the Classroom Walls: Edmodo in Saudi Secondary School EFL Instruction, Attitudes and Challenges

    ERIC Educational Resources Information Center

    Al-Kathiri, Fatimah

    2015-01-01

    This paper investigates the prospects of integrating Edmodo into Saudi EFL female secondary school instruction. It concentrates on students' perceptions and challenges regarding Edmodo use and its effect on their attitudes towards EFL learning. The 42 participants were divided into two groups. The experimental group received traditional teaching…

  17. Roles of arabinogalactan proteins in cotyledon formation and cell wall deposition during embryo development of Arabidopsis.

    PubMed

    Zhong, Jing; Ren, YuJun; Yu, Miao; Ma, TengFei; Zhang, XueLian; Zhao, Jie

    2011-07-01

    Arabinogalactan proteins (AGPs) are a class of highly glycosylated, widely distributed proteins in higher plants. In the previous study, we found that the green fluorescence from JIM13-labeled AGPs was mainly distributed in embryo proper and the basal part of suspensor but gradually disappeared after the torpedo-stage embryos in Arabidopsis. And (β-D-Glc)(3) Yariv phenylglycoside (βGlcY), a synthetic reagent that specifically binds to AGPs, could inhibit embryo development. In this study, as a continuous work, we investigated the AGP functions in embryo germination, cotyledon formation, and cell wall deposition in Arabidopsis embryos by using immunofluorescent, immunoenzyme, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) techniques. The results showed that 50 μM βGlcY caused inhibition of embryo germination, formation of abnormal cotyledon embryos, and disorder of cotyledon vasculature. Compared with the normal embryos in vitro and in vivo, the AGPs and pectin signals were quite weaker in the whole abnormal embryos, whereas the cellulose signal was stronger in the shoot apical meristem (SAM) of abnormal embryo by calcofluor white staining. The FTIR assay demonstrated that the cell wall of abnormal embryos was relatively poorer in pectins and richer in cellulose than those of normal embryos. By TEM observation, the SAM cells of the abnormal embryos had less cytoplasm, more plastid and starch grains, and larger vacuole than that of normal embryos. These results indicated that AGPs may play roles in embryo germination, cotyledon formation, cell wall cellulose and pectin deposition, and cell division potentiality during embryo development of Arabidopsis. PMID:20830495

  18. Secondary embryonic axis formation by transplantation of D quadrant micromeres in an oligochaete annelid.

    PubMed

    Nakamoto, Ayaki; Nagy, Lisa M; Shimizu, Takashi

    2011-01-01

    Among spiral cleaving embryos (e.g. mollusks and annelids), it has long been known that one blastomere at the four-cell stage, the D cell, and its direct descendants play an important role in axial pattern formation. Various studies have suggested that the D quadrant acts as the organizer of the embryonic axes in annelids, although this has never been demonstrated directly. Here we show that D quadrant micromeres (2d and 4d) of the oligochaete annelid Tubifex tubifex are essential for embryonic axis formation. When 2d and 4d were ablated the embryo developed into a rounded cell mass covered with an epithelial cell sheet. To examine whether 2d and 4d are sufficient for axis formation they were transplanted to an ectopic position in an otherwise intact embryo. The reconstituted embryo formed a secondary embryonic axis with a duplicated head and/or tail. Cell lineage analyses showed that neuroectoderm and mesoderm along the secondary axis were derived from the transplanted D quadrant micromeres and not from the host embryo. However, endodermal tissue along the secondary axis originated from the host embryo. Interestingly, when either 2d or 4d was transplanted separately to host embryos, the reconstituted embryos failed to form a secondary axis, suggesting that both 2d and 4d are required for secondary axis formation. Thus, the Tubifex D quadrant micromeres have the ability to organize axis formation, but they lack the ability to induce neuroectodermal tissues, a characteristic common to chordate primary embryonic organizers. PMID:21148182

  19. Plasma wall sheath contributions to flux retention during the formation of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Milroy, R. D.; Slough, J. T.; Hoffman, A. L.

    1984-06-01

    Flux loss during field reversal on the TRX-1 field-reversed θ pinch is found to be much less than predicted by the inertial model of Green and Newton. This can be explained by a pressure bearing, conducting sheath which naturally forms at the wall and limits the flux loss. A one-dimensional (r-t) magnetohydrodynamic (MHD) numerical model has been used to study the formation and effectiveness of the sheath. The calculations are in excellent agreement with experimental measurements over a wide range of operating parameters. The results indicate that good flux trapping can be achieved through the field reversal phase of FRC formation with much slower external field reversal rates than in current experiments.

  20. Ozone and secondary aerosol formation — Analysis of particle observations in the 2009 SHARP campaign

    NASA Astrophysics Data System (ADS)

    Cowin, J.; Yu, X.; Laulainen, N.; Iedema, M.; Lefer, B. L.; Anderson, D.; Pernia, D.; Flynn, J. H.

    2010-12-01

    Particulate matters (PM) play important roles in the formation and transformation of ozone. Although photooxidation of volatile organic compounds with respect to ozone formation in the gas phase is well understood, many unknowns still exist in heterogeneous mechanisms that process soot, secondary aerosols (both inorganic and organic), and key radical precursors such as formaldehyde and nitrous acid. Our main objective is to answer two key science questions: 1) will reduction of fine PM reduce ozone formation? 2) What sources of PM are most culpable? Are they from local chemistry or long-range transport? The field data collected in the 2009 Study of Houston Atmospheric Radical Precursors (SHARP) by our group at the Moody Tower consist of 1) real-time photolysis rates of ozone precursors, 2) particle size distributions, 3) organic carbon and elemental carbon, and 4) an archive of single particle samples taken with the Time Resolved Aerosol Collector (TRAC) sampler. The time resolution of the TRAC sampler is 30 minutes for routine measurements, and 15 minutes during some identified “events” (usually in the mid-afternoon) of high ozone and secondary organic or sulfate particle formation. The latter events last typically about an hour. Five ozone exceedance days occurred during the 6 weeks of deployment. Strong correlation between photochemical activities and organic carbon was observed. Initial data analysis indicates that secondary organic aerosol is a major component of the carbonaceous aerosols observed in Houston. Soot, secondary sulfate, seal salt, and mineral dust particles are determined from single particle analysis using scanning electron microscope and transmission electron microcopy coupled with energy dispersive X-ray spectroscopy. Compared with observations in 2000, the mass percentage of organics is higher (60 vs. 30%), and lower for sulfate (20% vs. 32%). On-going data analysis will focus on the composition, sources, and transformation of primary and

  1. Modeling and analysis of secondary particulate matter formation in the atmosphere

    NASA Astrophysics Data System (ADS)

    Vutukuru, Satish Kumar

    Particulate matter (PM) pollution is one of the major environmental challenges the world is facing today. A significant fraction of ambient PM is derived from gas-to-particle conversion processes---known as secondary PM---from gas-phase emissions such as oxides of nitrogen and sulfur, and volatile organic compounds (VOCs). The formation of secondary PM in a given region depends on the emissions profile and atmospheric conditions (temperature, wind, relative humidity, etc.) of the region. Therefore, three-dimensional computational models are needed to gain insights on PM formation and develop strategies to mitigate particulate pollution. The organic component of secondary PM, known as secondary organic aerosol (SOA), is formed in the atmosphere from gas-phase VOC emissions. In this dissertation, a three-dimensional model for SOA simulation is constructed and applied to the South Coast Air Basin of California (SoCAB). Model predictions show that atmospheric transport plays a significant role in SOA formation in the region. Inland areas experience high SOA levels due to transport of precursor emissions from urban coastal areas of the basin. Similar to SOA, a non-linear relationship exists between the formation of secondary inorganic PM and precursor emissions; Therefore three-dimensional air quality models are often applied to study impacts from emission sources of interest. This dissertation presents two such studies. The UCI-CIT air quality is applied to quantify PM impacts from ship emissions in the region. Results show that ships contribute to particulate nitrate and sulfate increase up to 12.8 and 1.7 mug/m3 respectively, mostly from the secondary formation. Simulations of future year scenario shows dramatic increase of impacts from ships. After the SoCAB, San Joaquin Valley (SJV) region experiences high levels of ambient PM in California. Additional emissions may occur in the SJV from distributed generation (DG) of electricity to meet future power needs. Air

  2. Increasing Gas Hydrate Formation Temperature for Desalination of High Salinity Produced Water with Secondary Guests

    SciTech Connect

    Cha, Jong-Ho; Seol, Yongkoo

    2013-10-07

    We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

  3. Study of Sheath Potential and Plasma Density Profiles in the Presence of Strong Secondary Electron Emission from Walls

    NASA Astrophysics Data System (ADS)

    Trung, Huy-Sinh; Kaganovich, Igor; Khrabrov, Alexander

    2011-10-01

    We study the behavior of plasmas confined within walls, which emit secondary electrons. A set of fluid equations for ions, the Vlasov equation for electrons, and Poisson's equation are solved together numerically to obtain potential and density distributions. We explore the transition to the space charge limited regime in the sheath. The potential and density profiles are monotonic if the emission coefficient is set below the critical emission coefficient. Above the critical emission coefficient, the profiles become non monotonic. We recover the results obtained by Hobbs & Wesson and compare them to the full-scale simulation results of a particle-in-cell code, EDIPIC. Research supported by the Department of Energy National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences.

  4. Secondary formation of disinfection by-products by UV treatment of swimming pool water.

    PubMed

    Spiliotopoulou, Aikaterini; Hansen, Kamilla M S; Andersen, Henrik R

    2015-07-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  5. Relationship between chain collapse and secondary structure formation in a partially folded protein.

    PubMed

    Nakagawa, Kanako; Yamada, Yoshiteru; Matsumura, Yoshitaka; Tsukamoto, Seiichi; Yamamoto-Ohtomo, Mio; Ohtomo, Hideaki; Okabe, Takahiro; Fujiwara, Kazuo; Ikeguchi, Masamichi

    2014-06-01

    Chain collapse and secondary structure formation are frequently observed during the early stages of protein folding. Is the chain collapse brought about by interactions between secondary structure units or is it due to polymer behavior in a poor solvent (coil-globule transition)? To answer this question, we measured small-angle X-ray scattering for a series of β-lactoglobulin mutants under conditions in which they assume a partially folded state analogous to the folding intermediates. Mutants that were designed to disrupt the secondary structure units showed the gyration radii similar to that of the wild type protein, indicating that chain collapse is due to coil-globule transitions. PMID:25100622

  6. LytR-CpsA-Psr Enzymes as Determinants of Bacillus anthracis Secondary Cell Wall Polysaccharide Assembly

    PubMed Central

    Liszewski Zilla, Megan; Chan, Yvonne G. Y.; Lunderberg, Justin Mark; Schneewind, Olaf

    2014-01-01

    Bacillus anthracis, the causative agent of anthrax, replicates as chains of vegetative cells by regulating the separation of septal peptidoglycan. Surface (S)-layer proteins and associated proteins (BSLs) function as chain length determinants and bind to the secondary cell wall polysaccharide (SCWP). In this study, we identified the B. anthracis lcpD mutant, which displays increased chain length and S-layer assembly defects due to diminished SCWP attachment to peptidoglycan. In contrast, the B. anthracis lcpB3 variant displayed reduced cell size and chain length, which could be attributed to increased deposition of BSLs. In other bacteria, LytR-CpsA-Psr (LCP) proteins attach wall teichoic acid (WTA) and polysaccharide capsule to peptidoglycan. B. anthracis does not synthesize these polymers, yet its genome encodes six LCP homologues, which, when expressed in S. aureus, promote WTA attachment. We propose a model whereby B. anthracis LCPs promote attachment of SCWP precursors to discrete locations in the peptidoglycan, enabling BSL assembly and regulated separation of septal peptidoglycan. PMID:25384480

  7. Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation.

    PubMed

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Gusarov, Sergey; Skaf, Munir S; Kovalenko, Andriy

    2015-01-01

    Plant biomass recalcitrance, a major obstacle to achieving sustainable production of second generation biofuels, arises mainly from the amorphous cell-wall matrix containing lignin and hemicellulose assembled into a complex supramolecular network that coats the cellulose fibrils. We employed the statistical-mechanical, 3D reference interaction site model with the Kovalenko-Hirata closure approximation (or 3D-RISM-KH molecular theory of solvation) to reveal the supramolecular interactions in this network and provide molecular-level insight into the effective lignin-lignin and lignin-hemicellulose thermodynamic interactions. We found that such interactions are hydrophobic and entropy-driven, and arise from the expelling of water from the mutual interaction surfaces. The molecular origin of these interactions is carbohydrate-π and π-π stacking forces, whose strengths are dependent on the lignin chemical composition. Methoxy substituents in the phenyl groups of lignin promote substantial entropic stabilization of the ligno-hemicellulosic matrix. Our results provide a detailed molecular view of the fundamental interactions within the secondary plant cell walls that lead to recalcitrance. PMID:26263115

  8. Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in Sorghum bicolor.

    PubMed

    Scully, Erin D; Gries, Tammy; Sarath, Gautam; Palmer, Nathan A; Baird, Lisa; Serapiglia, Michelle J; Dien, Bruce S; Boateng, Akwasi A; Ge, Zhengxiang; Funnell-Harris, Deanna L; Twigg, Paul; Clemente, Thomas E; Sattler, Scott E

    2016-02-01

    The phenylpropanoid biosynthetic pathway that generates lignin subunits represents a significant target for altering the abundance and composition of lignin. The global regulators of phenylpropanoid metabolism may include MYB transcription factors, whose expression levels have been correlated with changes in secondary cell wall composition and the levels of several other aromatic compounds, including anthocyanins and flavonoids. While transcription factors correlated with downregulation of the phenylpropanoid biosynthesis pathway have been identified in several grass species, few transcription factors linked to activation of this pathway have been identified in C4 grasses, some of which are being developed as dedicated bioenergy feedstocks. In this study we investigated the role of SbMyb60 in lignin biosynthesis in sorghum (Sorghum bicolor), which is a drought-tolerant, high-yielding biomass crop. Ectopic expression of this transcription factor in sorghum was associated with higher expression levels of genes involved in monolignol biosynthesis, and led to higher abundances of syringyl lignin, significant compositional changes to the lignin polymer and increased lignin concentration in biomass. Moreover, transgenic plants constitutively overexpressing SbMyb60 also displayed ectopic lignification in leaf midribs and elevated concentrations of soluble phenolic compounds in biomass. Results indicate that overexpression of SbMyb60 is associated with activation of monolignol biosynthesis in sorghum. SbMyb60 represents a target for modification of plant cell wall composition, with the potential to improve biomass for renewable uses. PMID:26712107

  9. Polarized and persistent Ca²⁺ plumes define loci for formation of wall ingrowth papillae in transfer cells.

    PubMed

    Zhang, Hui-Ming; Imtiaz, Mohammad S; Laver, Derek R; McCurdy, David W; Offler, Christina E; van Helden, Dirk F; Patrick, John W

    2015-03-01

    Transfer cell morphology is characterized by a polarized ingrowth wall comprising a uniform wall upon which wall ingrowth papillae develop at right angles into the cytoplasm. The hypothesis that positional information directing construction of wall ingrowth papillae is mediated by Ca(2+) signals generated by spatiotemporal alterations in cytosolic Ca(2+) ([Ca(2+)]cyt) of cells trans-differentiating to a transfer cell morphology was tested. This hypothesis was examined using Vicia faba cotyledons. On transferring cotyledons to culture, their adaxial epidermal cells synchronously trans-differentiate to epidermal transfer cells. A polarized and persistent Ca(2+) signal, generated during epidermal cell trans-differentiation, was found to co-localize with the site of ingrowth wall formation. Dampening Ca(2+) signal intensity, by withdrawing extracellular Ca(2+) or blocking Ca(2+) channel activity, inhibited formation of wall ingrowth papillae. Maintenance of Ca(2+) signal polarity and persistence depended upon a rapid turnover (minutes) of cytosolic Ca(2+) by co-operative functioning of plasma membrane Ca(2+)-permeable channels and Ca(2+)-ATPases. Viewed paradermally, and proximal to the cytosol-plasma membrane interface, the Ca(2+) signal was organized into discrete patches that aligned spatially with clusters of Ca(2+)-permeable channels. Mathematical modelling demonstrated that these patches of cytosolic Ca(2+) were consistent with inward-directed plumes of elevated [Ca(2+)]cyt. Plume formation depended upon an alternating distribution of Ca(2+)-permeable channels and Ca(2+)-ATPase clusters. On further inward diffusion, the Ca(2+) plumes coalesced into a uniform Ca(2+) signal. Blocking or dispersing the Ca(2+) plumes inhibited deposition of wall ingrowth papillae, while uniform wall formation remained unaltered. A working model envisages that cytosolic Ca(2+) plumes define the loci at which wall ingrowth papillae are deposited. PMID:25504137

  10. Polarized and persistent Ca2+ plumes define loci for formation of wall ingrowth papillae in transfer cells

    PubMed Central

    Zhang, Hui-Ming; Imtiaz, Mohammad S.; Laver, Derek R.; McCurdy, David W.; Offler, Christina E.; van Helden, Dirk F.; Patrick, John W.

    2015-01-01

    Transfer cell morphology is characterized by a polarized ingrowth wall comprising a uniform wall upon which wall ingrowth papillae develop at right angles into the cytoplasm. The hypothesis that positional information directing construction of wall ingrowth papillae is mediated by Ca2+ signals generated by spatiotemporal alterations in cytosolic Ca2+ ([Ca2+]cyt) of cells trans-differentiating to a transfer cell morphology was tested. This hypothesis was examined using Vicia faba cotyledons. On transferring cotyledons to culture, their adaxial epidermal cells synchronously trans-differentiate to epidermal transfer cells. A polarized and persistent Ca2+ signal, generated during epidermal cell trans-differentiation, was found to co-localize with the site of ingrowth wall formation. Dampening Ca2+ signal intensity, by withdrawing extracellular Ca2+ or blocking Ca2+ channel activity, inhibited formation of wall ingrowth papillae. Maintenance of Ca2+ signal polarity and persistence depended upon a rapid turnover (minutes) of cytosolic Ca2+ by co-operative functioning of plasma membrane Ca2+-permeable channels and Ca2+-ATPases. Viewed paradermally, and proximal to the cytosol–plasma membrane interface, the Ca2+ signal was organized into discrete patches that aligned spatially with clusters of Ca2+-permeable channels. Mathematical modelling demonstrated that these patches of cytosolic Ca2+ were consistent with inward-directed plumes of elevated [Ca2+]cyt. Plume formation depended upon an alternating distribution of Ca2+-permeable channels and Ca2+-ATPase clusters. On further inward diffusion, the Ca2+ plumes coalesced into a uniform Ca2+ signal. Blocking or dispersing the Ca2+ plumes inhibited deposition of wall ingrowth papillae, while uniform wall formation remained unaltered. A working model envisages that cytosolic Ca2+ plumes define the loci at which wall ingrowth papillae are deposited. PMID:25504137

  11. Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation.

    PubMed

    Krechmer, Jordan E; Coggon, Matthew M; Massoli, Paola; Nguyen, Tran B; Crounse, John D; Hu, Weiwei; Day, Douglas A; Tyndall, Geoffrey S; Henze, Daven K; Rivera-Rios, Jean C; Nowak, John B; Kimmel, Joel R; Mauldin, Roy L; Stark, Harald; Jayne, John T; Sipilä, Mikko; Junninen, Heikki; Clair, Jason M St; Zhang, Xuan; Feiner, Philip A; Zhang, Li; Miller, David O; Brune, William H; Keutsch, Frank N; Wennberg, Paul O; Seinfeld, John H; Worsnop, Douglas R; Jimenez, Jose L; Canagaratna, Manjula R

    2015-09-01

    Gas-phase low volatility organic compounds (LVOC), produced from oxidation of isoprene 4-hydroxy-3-hydroperoxide (4,3-ISOPOOH) under low-NO conditions, were observed during the FIXCIT chamber study. Decreases in LVOC directly correspond to appearance and growth in secondary organic aerosol (SOA) of consistent elemental composition, indicating that LVOC condense (at OA below 1 μg m(-3)). This represents the first simultaneous measurement of condensing low volatility species from isoprene oxidation in both the gas and particle phases. The SOA formation in this study is separate from previously described isoprene epoxydiol (IEPOX) uptake. Assigning all condensing LVOC signals to 4,3-ISOPOOH oxidation in the chamber study implies a wall-loss corrected non-IEPOX SOA mass yield of ∼4%. By contrast to monoterpene oxidation, in which extremely low volatility VOC (ELVOC) constitute the organic aerosol, in the isoprene system LVOC with saturation concentrations from 10(-2) to 10 μg m(-3) are the main constituents. These LVOC may be important for the growth of nanoparticles in environments with low OA concentrations. LVOC observed in the chamber were also observed in the atmosphere during SOAS-2013 in the Southeastern United States, with the expected diurnal cycle. This previously uncharacterized aerosol formation pathway could account for ∼5.0 Tg yr(-1) of SOA production, or 3.3% of global SOA. PMID:26207427

  12. Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Squizzato, S.; Masiol, M.; Brunelli, A.; Pistollato, S.; Tarabotti, E.; Rampazzo, G.; Pavoni, B.

    2013-02-01

    Physicochemical properties of aerosol were investigated by analyzing the inorganic water soluble content in PM2.5 samples collected in the eastern part of the Po Valley (Italy). In this area the EU limits for many air pollutants are frequently exceeded as a consequence of local sources and regional-scale transport of secondary inorganic aerosol precursors. Nine PM2.5-bound major inorganic ions (F-, Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+, Ca2+) were monitored over one year in three sites categorized as semi-rural background, urban background and industrial. The acidic properties of the PM2.5 were studied by applying the recently developed E-AIM thermodynamic model 4 (Extended Aerosol Thermodynamics Model). The experimental data were also examined in relation to the levels of gaseous precursors of secondary inorganic aerosol (SO2, NOx, NO, NO2) and on the basis of some environmental conditions having an effect on the secondary aerosols generation processes. A chemometric procedure using cluster analysis on experimental [NH4+]/[SO42-] molar ratio and NO3- concentration has been applied to determine the conditions needed for ammonium nitrate formation in different chemical environments. Finally, some considerations on the secondary inorganic aerosol formation and the most relevant weather conditions concerning the sulfate-nitrate-ammonium system were also discussed. The obtained results and discussion can help in understanding the secondary aerosol formation dynamics in the Po Valley, which is one of the most critical regions for air pollution in southern Europe.

  13. Concentric Eye Walls, Secondary Wind Maxima, and The Evolution of the Hurricane vortex.

    NASA Astrophysics Data System (ADS)

    Willoughby, H. E.; Clos, J. A.; Shoreibah, M. G.

    1982-02-01

    Research aircraft observations in recent hurricanes support the model of Shapiro and Willoughby (1982) for the tropical cyclone's response to circularly symmetric, convective heat sources (convective rings). In both nature and the numerical model the tangential wind commonly increases rapidly just inside the radius of maximum wind and decreases inside the eye near the central axis of the vortex. Thus both secondary outer wind maxima and eyewall wind maxima often contract as they intensify. This response is independent of the horizontal spatial scale of the maximum. An outer maximum is frequently observed to constrict about a pre-existing eye and replace it. This chain of events often coincides with a weakening, or at least a pause in intensification, of the vortex as a whole. The concentric eye phenomenon is a common, but by no means universal, feature of tropical cyclones. It is most frequently observed in intense, highly symmetric systems.

  14. Mechanisms of Formation of Secondary Organic Aerosols and Implications for Global Radiative Forcing

    SciTech Connect

    John H. Seinfeld

    2011-12-08

    Organic material constitutes about 50% of global atmospheric aerosol mass, and the dominant source of organic aerosol is the oxidation of volatile hydrocarbons, to produce secondary organic aerosol (SOA). Understanding the formation of SOA is crucial to predicting present and future climate effects of atmospheric aerosols. The goal of this program is to significantly increase our understanding of secondary organic aerosol (SOA) formation in the atmosphere. Ambient measurements indicate that the amount of SOA in the atmosphere exceeds that predicted in current models based on existing laboratory chamber data. This would suggest that either the SOA yields measured in laboratory chambers are understated or that all major organic precursors have not been identified. In this research program we are systematically exploring these possibilities.

  15. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space.

    PubMed

    Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki; Kotake, Toshihisa; Yamazaki, Takashi; Higashibata, Akira; Ishioka, Noriaki; Shimazu, Toru; Fukui, Keiji; Osada, Ikuko; Kasahara, Haruo; Kamada, Motoshi

    2015-01-01

    Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions. PMID:26378793

  16. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space

    PubMed Central

    Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki; Kotake, Toshihisa; Yamazaki, Takashi; Higashibata, Akira; Ishioka, Noriaki; Shimazu, Toru; Fukui, Keiji; Osada, Ikuko; Kasahara, Haruo; Kamada, Motoshi

    2015-01-01

    Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions. PMID:26378793

  17. Secondary organic aerosol formation initiated from reactions between ozone and surface-sorbed squalene

    NASA Astrophysics Data System (ADS)

    Wang, Chunyi; Waring, Michael S.

    2014-02-01

    Previous research has shown that ozone reactions on surface-sorbed D-limonene can promote gas phase secondary organic aerosol (SOA) formation indoors. In this work, we conducted 13 steady state chamber experiments to measure the SOA formation entirely initiated by ozone reactions with squalene sorbed to glass, at chamber ozone of 57-500 ppb for two relative humidity (RH) conditions of 21% and 51%, in the absence of seed particles. Squalene is a nonvolatile compound that is a component of human skin oil and prevalent on indoor surfaces and in settled dust due to desquamation. The size distributions, mass and number secondary emission rates (SER), aerosol mass fractions (AMF), and aerosol number fractions (ANF) of formed SOA were quantified. The surface AMF and ANF are defined as the change in SOA mass or number formed, respectively, per ozone mass consumed by ozone-squalene reactions. All experiments but one exhibited nucleation and mass formation. Mass formation was relatively small in magnitude and increased with ozone, most notably for the RH = 51% experiments. The surface AMF was a function of the chamber aerosol concentration, and a multi-product model was fit using the 'volatility basis set' framework. Number formation was relatively strong at low ozone and low RH conditions. Though we cannot extrapolate our results because experiments were conducted at high air exchange rates, we speculate that this process may enhance particle number more than mass concentrations indoors.

  18. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day and night time chemistry

    NASA Astrophysics Data System (ADS)

    Lee, A. K. Y.; Abbatt, J. P. D.; Leaitch, W. R.; Li, S.-M.; Sjostedt, S. J.; Wentzell, J. J. B.; Liggio, J.; Macdonald, A. M.

    2015-10-01

    Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region at Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identified two types of BSOA (BSOA-1 and BSOA-2), which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas-particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 will arise from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by the OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22-33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91) compared to the background organic aerosol, and so f91 is used as an indicator of BSOA formation pathways. A comparison between laboratory studies in the literature and our field observations highlights the potential importance of gas-phase formation chemistry of BSOA-2 type materials that may not be captured in smog chamber experiments, perhaps due to the wall loss of gas-phase intermediate products.

  19. Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Squizzato, S.; Masiol, M.; Brunelli, A.; Pistollato, S.; Tarabotti, E.; Rampazzo, G.; Pavoni, B.

    2012-07-01

    Physicochemical properties of aerosol were investigated by analyzing the inorganic water soluble content in PM2.5 samples collected in the eastern part of the Po Valley (Italy). In this area the EU limits for many air pollutants are frequently exceeded as a consequence of local sources and regional-scale transport of secondary inorganic aerosol precursors. Nine PM2.5-bound major inorganic ions (F-, Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+, Ca2+) were monitored over one year in three sites categorized as semi-rural background, urban background and industrial. The acidic properties of the PM2.5 were studied by applying the recently developed E-AIM thermodynamic model 4. The experimental data were also examined in relation to the levels of gaseous precursors of SIA (SO2, NOx, NO, NO2) and on the basis of some environmental conditions having an effect on the secondary aerosols generation processes. A chemometric procedure using cluster analysis on experimental [NH4+]/[SO42-] molar ratio and NO3- concentration has been applied to determine the conditions needed for ammonium nitrate formation in different chemical environments. Finally, some considerations on the secondary inorganic aerosol formation and the most relevant weather conditions concerning the sulfate-nitrate-ammonium system were also discussed. The methods used can be easily applied to other environments to evaluate the physicochemical characteristics of aerosols and the climatic conditions necessary for the formation of ammonium sulfate and ammonium nitrate aerosols.

  20. The first biantennary bacterial secondary cell wall polymer and its influence on S-layer glycoprotein assembly.

    PubMed Central

    Steindl, Christian; Schäffer, Christina; Wugeditsch, Thomas; Graninger, Michael; Matecko, Irena; Müller, Norbert; Messner, Paul

    2002-01-01

    The cell surface of Aneurinibacillus thermoaerophilus DSM 10155 is covered with a square surface (S)-layer glycoprotein lattice. This S-layer glycoprotein, which was extracted with aqueous buffers after a freeze-thaw cycle of the bacterial cells, is the only completely water-soluble S-layer glycoprotein to be reported to date. The purified S-layer glycoprotein preparation had an overall carbohydrate content of 19%. Detailed chemical investigations indicated that the S-layer O-glycans of previously established structure accounted for 13% of total glycosylation. The remainder could be attributed to a peptidoglycan-associated secondary cell wall polymer. Structure analysis was performed using purified secondary cell wall polymer-peptidoglycan complexes. NMR spectroscopy revealed the first biantennary secondary cell wall polymer from the domain Bacteria, with the structure alpha-L-Glc p NAc-(1-->3)-beta-L-Man p NAc-(1-->4)-beta-L-Gal p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->3)-beta-L-Man p NAc-(1-->4)-beta-L-Gal p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->4)-[alpha-L-Glc p NAc-(1-->3)-beta-L-Man p NAc-(1-->4)-beta-L-Gal p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->3)-beta-L-Man p NAc-(1-->4)-beta-L-Gal p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->3)]-beta-L-Man p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->3)-beta-L-Man p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->O)-PO(2)(-)-O-PO(2)(-)-(O-->6)-MurNAc- (where MurNAc is N -acetylmuramic acid). The neutral polysaccharide is linked via a pyrophosphate bond to the C-6 atom of every fourth N -acetylmuramic acid residue, in average, of the A1gamma-type peptidoglycan. In vivo, the biantennary polymer anchored the S-layer glycoprotein very effectively to the cell wall, probably due to the doubling of motifs for a proposed lectin-like binding between the polymer and the N-terminus of the S-layer protein. When the cellular support was removed during S-layer glycoprotein isolation, the co-purified polymer mediated the solubility of the S

  1. IDENTIFYING GENES CONTROLLING FERULATE CROSS-LINKING FORMATION IN GRASS CELL WALLS

    SciTech Connect

    de O Buanafina, Marcia Maria

    2013-10-16

    formation or genes encoding transcription factors that control feruloylation. So it will require further investigations to confirm if we have a mutation on the ferulloyltransferase gene(s). We have also identified severe phenotypes which showed a significant change in the level of cell wall ferulates and sugars and have not survived. As this genotype did not reach flowering stage there was no seed production and so further analysis could not be done. 3. Candidate Gene Approach: Because of the likely long time expected to generate and identify candidate with mutation(s) on the feruloyltransferase gene, from our screening, we have in addition taken a bioinformatics approach in order to try to identify candidates gene(s) involved in feruloylation. Homologues of the rice feruloyl transferase genes belonging to Pfam PF02458 family were identified in Brachypodium distachyon by blasting EST sequences of putative rice arabinoxylan feruloyl transferase genes against Brachypodium and homologous sequences identified were tested for their expression level in Brachypodium. Sequences of the two Brachypodium genes, which showed highest expression and similarity to rice sequences, were used to design primers for construction of RNAi and over-expression vectors. These were transformed into Brachypodium using Agrobacterium transformation and plants generated have been analyzed for levels of cell wall ferulates and diferulates over generations T0 to T2 or T3. Our data shows a significant reduction if ferulates monomers and dimers from plants generated from RNAi::BdAT2 over 2-3 generations indicating that this gene might be a positive candidate for feruloylation in Brachypodium. However when BdAT2 was up regulated there was not much increase in the level of ferulates as would be expected. This lack of effect on the level of cell wall ferulates could be due to the CaMV::35S promoter used to drive the expression of the putative BdAT2 gene. We have shown previously that Aspergillus FAEA

  2. CELLULOSE SYNTHASE9 Serves a Nonredundant Role in Secondary Cell Wall Synthesis in Arabidopsis Epidermal Testa Cells1[C][W][OA

    PubMed Central

    Stork, Jozsef; Harris, Darby; Griffiths, Jonathan; Williams, Brian; Beisson, Fred; Li-Beisson, Yonghua; Mendu, Venugopal; Haughn, George; DeBolt, Seth

    2010-01-01

    Herein, we sought to explore the contribution of cellulose biosynthesis to the shape and morphogenesis of hexagonal seed coat cells in Arabidopsis (Arabidopsis thaliana). Consistent with seed preferential expression of CELLULOSE SYNTHASE9 (CESA9), null mutations in CESA9 caused no change in cellulose content in leaves or stems, but caused a 25% reduction in seeds. Compositional studies of cesa9 seeds uncovered substantial proportional increases in cell wall neutral sugars and in several monomers of cell wall-associated polyesters. Despite these metabolic compensations, cesa9 seeds were permeable to tetrazolium salt, implying that cellulose biosynthesis, via CESA9, is required for correct barrier function of the seed coat. A syndrome of depleted radial wall, altered seed coat cell size, shape, and internal angle uniformity was quantified using scanning electron micrographs in cesa9 epidermal cells. By contrast, morphological defects were absent in cesa9 embryos, visually inspected from torpedo to bent cotyledon, consistent with no reduction in postgermination radical or hypocotyl elongation. These data implied that CESA9 was seed coat specific or functionally redundant in other tissues. Assessment of sections from glutaraldehyde fixed wild-type and cesa9 mature seeds supported results of scanning electron micrographs and quantitatively showed depletion of secondary cell wall synthesis in the radial cell wall. Herein, we show a nonredundant role for CESA9 in secondary cell wall biosynthesis in radial cell walls of epidermal seed coats and document its importance for cell morphogenesis and barrier function of the seed coat. PMID:20335403

  3. Bubble Formation from Wall Orifice in Liquid Cross-Flow Under Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    2000-01-01

    Two-phase flows present a wide variety of applications for spacecraft thermal control systems design. Bubble formation and detachment is an integral part of the two phase flow science. The objective of the present work is to experimentally investigate the effects of liquid cross-flow velocity, gas flow rate, and orifice diameter on bubble formation in a wall-bubble injection configuration. Data were taken mainly under reduced gravity conditions but some data were taken in normal gravity for comparison. The reduced gravity experiment was conducted aboard the NASA DC-9 Reduced Gravity Aircraft. The results show that the process of bubble formation and detachment depends on gravity, the orifice diameter, the gas flow rate, and the liquid cross-flow velocity. The data are analyzed based on a force balance, and two different detachment mechanisms are identified. When the gas momentum is large, the bubble detaches from the injection orifice as the gas momentum overcomes the attaching effects of liquid drag and inertia. The surface tension force is much reduced because a large part of the bubble pinning edge at the orifice is lost as the bubble axis is tilted by the liquid flow. When the gas momentum is small, the force balance in the liquid flow direction is important, and the bubble detaches when the bubble axis inclination exceeds a certain angle.

  4. Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO2

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, X.; Hu, Q.; Deng, W.; Zhang, Y.; Ding, X.; Fu, X.; Bernard, F.; Zhang, Z.; Lü, S.; He, Q.; Bi, X.; Chen, J.; Sun, Y.; Yu, J.; Peng, P.; Sheng, G.; Fu, J.

    2016-01-01

    Sulfur dioxide (SO2) can enhance the formation of secondary aerosols from biogenic volatile organic compounds (VOCs), but its influence on secondary aerosol formation from anthropogenic VOCs, particularly complex mixtures like vehicle exhaust, remains uncertain. Gasoline vehicle exhaust (GVE) and SO2, a typical pollutant from coal burning, are directly co-introduced into a smog chamber, in this study, to investigate the formation of secondary organic aerosols (SOA) and sulfate aerosols through photooxidation. New particle formation was enhanced, while substantial sulfate was formed through the oxidation of SO2 in the presence of high concentration of SO2. Homogenous oxidation by OH radicals contributed a negligible fraction to the conversion of SO2 to sulfate, and instead the oxidation by stabilized Criegee intermediates (sCIs), formed from alkenes in the exhaust reacting with ozone, dominated the conversion of SO2. After 5 h of photochemical aging, GVE's SOA production factor revealed an increase by 60-200 % in the presence of high concentration of SO2. The increase could principally be attributed to acid-catalyzed SOA formation as evidenced by the strong positive linear correlation (R2 = 0.97) between the SOA production factor and in situ particle acidity calculated by the AIM-II model. A high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) resolved OA's relatively lower oxygen-to-carbon (O : C) (0.44 ± 0.02) and higher hydrogen-to-carbon (H : C) (1.40 ± 0.03) molar ratios for the GVE / SO2 mixture, with a significantly lower estimated average carbon oxidation state (OSc) of -0.51 ± 0.06 than -0.19 ± 0.08 for GVE alone. The relative higher mass loading of OA in the experiments with SO2 might be a significant explanation for the lower SOA oxidation degree.

  5. Formation of secondary aerosols from gasoline vehicle exhausts when mixing with SO2

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, X.; Hu, Q.; Deng, W.; Zhang, Y.; Ding, X.; Fu, X.; Bernard, F.; Zhang, Z.; Lü, S.; He, Q.; Bi, X.; Chen, J.; Sun, Y.; Yu, J.; Peng, P.; Sheng, G.; Fu, J.

    2015-09-01

    Sulfur dioxide (SO2) can enhance the formation of secondary aerosols from biogenic volatile organic compounds (VOCs), but its influence on secondary aerosol formation from anthropogenic VOCs, particularly complex mixtures like vehicle exhausts, is still poorly understood. Here we directly co-introduced gasoline vehicles exhausts (GVE) and SO2, a typical pollutant from coal burning, into a smog chamber to investigate the formation of secondary organic aerosols (SOA) and sulfate aerosols through photooxidation. In the presence of high concentration of SO2, new particle formation was enhanced while substantial sulfate was formed through the oxidation of SO2. The homogenous oxidation by OH radicals contributed a negligible fraction to the conversion of SO2 to sulfate, and instead the oxidation by stabilized Criegee intermediates (sCIs), formed from alkenes in the exhaust reacting with ozone, dominated the conversion of SO2. After 5 h of photochemical aging, GVE's SOA production factor revealed an increase by 60-200 % in the presence of high concentration of SO2. This increase could largely be attributed to acid-catalyzed SOA formation, which was evidenced by the strong positive linear correlation (R2 = 0.97) between the SOA production factor and in-situ particle acidity calculated by AIM-II model. A high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) resolved OA's relatively lower oxygen-to-carbon (O : C) and higher hydrogen-to-carbon (H : C) molar ratios for the GVE/SO2 mixture, with a much lower estimated average carbon oxidation state (OSc) of -0.51 ± 0.06 than that of -0.19 ± 0.08 for GVE alone. The relative higher mass loading of OA in the experiments with SO2 might be the major reason for the lower oxidation degree of SOA.

  6. Asparagus Spears as a Model to Study Heteroxylan Biosynthesis during Secondary Wall Development

    PubMed Central

    Wu, Aimin; Picard, Kelsey; Lampugnani, Edwin R.; Cheetamun, Roshan; Beahan, Cherie; Cassin, Andrew; Lonsdale, Andrew; Doblin, Monika S.; Bacic, Antony

    2015-01-01

    Garden asparagus (Asparagus officinalis L.) is a commercially important crop species utilized for its excellent source of vitamins, minerals and dietary fiber. However, after harvest the tissue hardens and its quality rapidly deteriorates because spear cell walls become rigidified due to lignification and substantial increases in heteroxylan content. This latter observation prompted us to investigate the in vitro xylan xylosyltransferase (XylT) activity in asparagus. The current model system for studying heteroxylan biosynthesis, Arabidopsis, whilst a powerful genetic system, displays relatively low xylan XylT activity in in vitro microsomal preparations compared with garden asparagus therefore hampering our ability to study the molecular mechanism(s) of heteroxylan assembly. Here, we analyzed physiological and biochemical changes of garden asparagus spears stored at 4 °C after harvest and detected a high level of xylan XylT activity that accounts for this increased heteroxylan. The xylan XylT catalytic activity is at least thirteen-fold higher than that reported for previously published species, including Arabidopsis and grasses. A biochemical assay was optimized and up to seven successive Xyl residues were incorporated to extend the xylotetraose (Xyl4) acceptor backbone. To further elucidate the xylan biosynthesis mechanism, we used RNA-seq to generate an Asparagus reference transcriptome and identified five putative xylan biosynthetic genes (AoIRX9, AoIRX9-L, AoIRX10, AoIRX14_A, AoIRX14_B) with AoIRX9 having an expression profile that is distinct from the other genes. We propose that Asparagus provides an ideal biochemical system to investigate the biochemical aspects of heteroxylan biosynthesis and also offers the additional benefit of being able to study the lignification process during plant stem maturation. PMID:25894575

  7. Asparagus Spears as a Model to Study Heteroxylan Biosynthesis during Secondary Wall Development.

    PubMed

    Song, Lili; Zeng, Wei; Wu, Aimin; Picard, Kelsey; Lampugnani, Edwin R; Cheetamun, Roshan; Beahan, Cherie; Cassin, Andrew; Lonsdale, Andrew; Doblin, Monika S; Bacic, Antony

    2015-01-01

    Garden asparagus (Asparagus officinalis L.) is a commercially important crop species utilized for its excellent source of vitamins, minerals and dietary fiber. However, after harvest the tissue hardens and its quality rapidly deteriorates because spear cell walls become rigidified due to lignification and substantial increases in heteroxylan content. This latter observation prompted us to investigate the in vitro xylan xylosyltransferase (XylT) activity in asparagus. The current model system for studying heteroxylan biosynthesis, Arabidopsis, whilst a powerful genetic system, displays relatively low xylan XylT activity in in vitro microsomal preparations compared with garden asparagus therefore hampering our ability to study the molecular mechanism(s) of heteroxylan assembly. Here, we analyzed physiological and biochemical changes of garden asparagus spears stored at 4 °C after harvest and detected a high level of xylan XylT activity that accounts for this increased heteroxylan. The xylan XylT catalytic activity is at least thirteen-fold higher than that reported for previously published species, including Arabidopsis and grasses. A biochemical assay was optimized and up to seven successive Xyl residues were incorporated to extend the xylotetraose (Xyl4) acceptor backbone. To further elucidate the xylan biosynthesis mechanism, we used RNA-seq to generate an Asparagus reference transcriptome and identified five putative xylan biosynthetic genes (AoIRX9, AoIRX9-L, AoIRX10, AoIRX14_A, AoIRX14_B) with AoIRX9 having an expression profile that is distinct from the other genes. We propose that Asparagus provides an ideal biochemical system to investigate the biochemical aspects of heteroxylan biosynthesis and also offers the additional benefit of being able to study the lignification process during plant stem maturation. PMID:25894575

  8. Tetrahedral collapse: a rotational toy model of simultaneous dark-matter halo, filament and wall formation

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.

    2016-04-01

    We discuss an idealized model of halo formation, in which a collapsing halo node is tetrahedral, with a filament extruding from each of its four faces, and with a wall connecting each pair of filaments. In the model, filaments generally spin when they form, and the halo spins if and only if there is some rotation in filaments. This is the simplest-possible fully three-dimensional halo collapse in the `origami approximation,' in which voids are irrotational, and the dark-matter sheet out of which dark-matter structures form is allowed to fold in position-velocity phase space, but not stretch (i.e., it cannot vary in density along a stream). Up to an overall scaling, the four filament directions, and only three other quantities, such as filament spins, suffice to determine all of the collapse's properties: the shape, mass, and spin of the halo; the densities per unit length and spins of all filaments; and masses per unit area of the walls. If the filaments are arranged regular-tetrahedrally, filament properties obey simple laws, reminiscent of angular-momentum conservation. The model may be most useful in understanding spin correlations between neighbouring galaxies joined by filaments; these correlations would give intrinsic alignments between galaxies, essential to understand for accurate cosmological weak-lensing measurements.

  9. Formation and structure of 360 and 540 degree domain walls in thin magnetic stripes

    NASA Astrophysics Data System (ADS)

    Mascaro, Mark; Jang, Youngman; Bowden, S. R.; Unguris, J.; Ross, C. A.

    2012-02-01

    A method is presented for forming a 360^o domain wall (DW) and more complex structures such as a 540^o DW in a wire attached to an injection pad by applying an alternating in-plane field perpendicular to the wire. SEMPA, MFM measurements and OOMMF micromagnetic simulations give a consistent picture of the magnetic structure and stray field distribution of the 360^o DW. Equilibrium 360^o DWs in wires have a well-defined structure and size, persist over a wide field range, and can be distinguished from configurations consisting of two 180^o DWs pinned near each other. The formation and stability of these complex walls has implications in memory and logic devices based on field- or current-induced DW motion, where impingement of adjacent 180^o DWs can produce composite DWs whose behavior and stray field distribution differ significantly from that of a 180^o DW, and these structures could also be used to examine intriguing resonant behavior as predicted by modeling. [Phys. Rev. B 82, 214411; Phys. Rev. B 82, 134411

  10. ABCG26-mediated polyketide trafficking and hydroxycinnamoyl spermidines contribute to pollen wall exine formation in Arabidopsis.

    PubMed

    Quilichini, Teagen D; Samuels, A Lacey; Douglas, Carl J

    2014-11-01

    Pollen grains are encased by a multilayered, multifunctional wall. The sporopollenin and pollen coat constituents of the outer pollen wall (exine) are contributed by surrounding sporophytic tapetal cells. Because the biosynthesis and development of the exine occurs in the innermost cell layers of the anther, direct observations of this process are difficult. The objective of this study was to investigate the transport and assembly of exine components from tapetal cells to microspores in the intact anthers of Arabidopsis thaliana. Intrinsically fluorescent components of developing tapetum and microspores were imaged in intact, live anthers using two-photon microscopy. Mutants of ABCG26, which encodes an ATP binding cassette transporter required for exine formation, accumulated large fluorescent vacuoles in tapetal cells, with corresponding loss of fluorescence on microspores. These vacuolar inclusions were not observed in tapetal cells of double mutants of abcg26 and genes encoding the proposed sporopollenin polyketide biosynthetic metabolon (ACYL COENZYME A SYNTHETASE5, POLYKETIDE SYNTHASE A [PKSA], PKSB, and TETRAKETIDE α-PYRONE REDUCTASE1), providing a genetic link between transport by ABCG26 and polyketide biosynthesis. Genetic analysis also showed that hydroxycinnamoyl spermidines, known components of the pollen coat, were exported from tapeta prior to programmed cell death in the absence of polyketides, raising the possibility that they are incorporated into the exine prior to pollen coat deposition. We propose a model where ABCG26-exported polyketides traffic from tapetal cells to form the sporopollenin backbone, in coordination with the trafficking of additional constituents, prior to tapetum programmed cell death. PMID:25415974

  11. Tetrahedral collapse: a rotational toy model of simultaneous dark-matter halo, filament and wall formation

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.

    2016-07-01

    We discuss an idealized model of halo formation, in which a collapsing halo node is tetrahedral, with a filament extruding from each of its four faces, and with a wall connecting each pair of filaments. In the model, filaments generally spin when they form, and the halo spins if and only if there is some rotation in filaments. This is the simplest possible fully three-dimensional halo collapse in the `origami approximation', in which voids are irrotational, and the dark-matter sheet out of which dark-matter structures form is allowed to fold in position-velocity phase space, but not stretch (i.e. it cannot vary in density along a stream). Up to an overall scaling, the four filament directions, and only three other quantities, such as filament spins, suffice to determine all of the collapse's properties: the shape, mass, and spin of the halo; the densities per unit length and spins of all filaments; and masses per unit area of the walls. If the filaments are arranged regular-tetrahedrally, filament properties obey simple laws, reminiscent of angular-momentum conservation. The model may be most useful in understanding spin correlations between neighbouring galaxies joined by filaments; these correlations would give intrinsic alignments between galaxies, essential to understand for accurate cosmological weak-lensing measurements.

  12. Characterizing formation of interfacial domain wall and exchange coupling strength in laminated exchange coupled composites

    NASA Astrophysics Data System (ADS)

    Hou, H.-C.; Kirby, B. J.; Gao, K. Z.; Lai, C.-H.

    2013-04-01

    We have studied the N-dependent switching behavior of composite magnets, comprised of a hard CoPtCr-SiO2 (CPCS) film and a laminated soft [Pt/CPCS]N multilayer. First order reversal curve magnetometry provides evidence of interfacial domain wall (iDW) assisted reversal for N ≥ 5. The magnetic depth profiles determined from polarized neutron reflectometry (PNR) explicitly demonstrate that the composite magnets are more rigidly coupled for N = 3 than for N = 7, and suggest that for N = 7 reversal occurs via formation of iDW. By fitting the PNR profile into the energy surface calculations, we can further deduce the vertical coupling strength in the laminated soft layer.

  13. Simulation Chamber Investigations of Secondary Organic Aerosol Formation From Boreal Tree Emissions: Dependence on VOC Classes

    NASA Astrophysics Data System (ADS)

    Kiendler-Scharr, A.; Mentel, T. F.; Kleist, E.; Hohaus, T.; Mensah, A.; Spindler, C.; Tillmann, R.; Uerlings, R.; Dal Maso, M.; Rudich, Y.; Juergen, W.

    2008-12-01

    A considerable fraction of the organic aerosol component is of secondary origin, meaning it is formed through oxidation of volatile organic compounds (VOCs). Plant emissions, e.g. monoterpenes and sesquiterpenes, are a major source of VOCs in the troposphere. So far most laboratory and simulation chamber investigations on the potential to form secondary organic aerosols (SOA) from plant emissions focused on single VOCs such as a-pinene. In this study we investigated the formation and growth of SOA by ozonolysis and/or photo-oxidation of the VOCs emitted by several tree species such as spruce, pine and birch. The experiments were performed in the Plant chamber of the ICG-3 in Jülich under well defined conditions for the plant. VOC emissions were transferred to a reaction chamber which was operated as a continuously stirred tank reactor. SOA formation from the VOCs was initiated by an excess of ozone and OH radicals. The results are compared to a reference study with a-pinene as the only SOA precursor. Our results indicate that the general laboratory approach of studying the formation of SOA from single components can lead to a bias in both the mass yields and the mass spectral signatures observed. Plots of maximum SOA volumes versus the total amount of carbon fed into the reaction chamber led to approximately linear relationships. The intercepts of these plots were seen as threshold for SOA formation. It was observed that this threshold was lower for the mixture of VOCs emitted from spruce, pine, and birch than for a-pinene as single compound. We therefore conclude that the threshold for SOA formation from real plant mixtures may be much lower than the threshold obtained from laboratory experiments that were focussed on single VOCs. SOA formation from stress induced VOCs will be compared to non stress induced emissions. Possible feedbacks of climate change to VOC emissions and aerosol formation will be discussed based on our experimental observations.

  14. Secondary Organic Aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles

    NASA Astrophysics Data System (ADS)

    Brégonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Pangui, E.; Morales, S. B.; Temime-Roussel, B.; Gratien, A.; Michoud, V.; Cazaunau, M.; DeWitt, H. L.; Tapparo, A.; Monod, A.; Doussin, J.-F.

    2015-07-01

    The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene/NOx/light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are two and four times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of two or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to water soluble volatile organic compounds (VOCs) dissolution in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.

  15. Secondary organic aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles

    NASA Astrophysics Data System (ADS)

    Brégonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Pangui, E.; Morales, S. B.; Temime-Roussel, B.; Gratien, A.; Michoud, V.; Cazaunau, M.; DeWitt, H. L.; Tapparo, A.; Monod, A.; Doussin, J.-F.

    2016-02-01

    The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene / NOx / light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are 2 and 4 times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of 2 or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to the dissolution of water soluble volatile organic compounds (VOCs) in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.

  16. Instantaneous nitric oxide effect on secondary organic aerosol formation from m-xylene photooxidation

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Tang, Ping; Cocker, David R.

    2015-10-01

    Secondary organic aerosol (SOA) formation from aromatic hydrocarbon photooxidation is highly sensitive to NO concentration. The instantaneous effect of NO on SOA formation from m-xylene photooxidation is investigated in this work by data mining 10 years of aromatic hydrocarbon chamber experiments conducted in the UC Riverside/CE-CERT chamber. First, the effect of sub-ppb NO concentrations on SOA formation is explored. The relationship of SOA growth rate to 1) NO2/NO ratio; 2) instantaneous HC/NO; 3) absolute NO concentration; 4) peroxy radical reaction branching ratio and 5) hydroxyl radical concentration are illustrated. Second, continuous and stepwise NO, NO2 and HONO injection are applied to m-xylene photooxidation experiments to simulate continuous NO sources in an urban area. The influence of these reaction scenarios on radical concentrations and SOA formation is explored. [HO2rad ]/[RO2rad ] shows a strong correlation with SOA yields in addition to [rad OH]/[HO2rad ], [rad OH], [HO2rad ] and [RO2rad ]. Enhanced SOA formation is observed when low NO levels (<1 ppb) are artificially maintained by continuous or step-wise injection; consistent with earlier research, SOA formation is observed to be suppressed by large initial NO injections. It is proposed that NO at sub-ppb level enhances rad OH formation increasing HO2rad and RO2rad and therefore promoting SOA formation. Further, two NO pathways (one promoting and one suppressing SOA formation) and one extremely low NO phase (NO "free") are used to demonstrate the evolution of NO impact on SOA formation during photooxidation. This study implies that SOA yields from aromatic hydrocarbon and low NOx photooxidation is previously underestimated due to differences between traditional environmental chamber experiments and atmospheric reactivity.

  17. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas C. T.; Lazell, Hamish W.; Arosio, Paolo; Knowles, Tuomas P. J.

    2015-08-01

    The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial to progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.

  18. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation

    SciTech Connect

    Michaels, Thomas C. T. Lazell, Hamish W.; Arosio, Paolo; Knowles, Tuomas P. J.

    2015-08-07

    The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial to progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.

  19. Cellulose synthase catalytic subunit (CesA) genes associated with primary or secondary wall biosynthesis in developing cotton fibers (Gossypium hirsutum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers are unicellular seed trichomes and consist of almost pure cellulose. During the transition from elongation growth to secondary wall thickening, the rate of cellulose biosynthesis in fibers rises nearly 100-fold. Although the first two cellulose synthase catalytic subunits (CesAs) wer...

  20. Mechanisms for Secondary Eyewall Formation in Tropical Cyclones: A Case Study of Hurricane Katrina (2005)

    NASA Astrophysics Data System (ADS)

    Garcia-Rivera, J. M.; Lin, Y.

    2013-05-01

    The Weather Research and Forecast (WRF) model is used to simulate the last eyewall replacement cycle (ERC) of Hurricane Katrina (2005) just before it's landfall in the Louisiana coastline. In this study, we pursue a complete understanding of the physics behind the secondary eyewall formation (SEF) in tropical cyclones. The simulation results show the occurrence of the early stages of an ERC in the simulated storm just before landfall. This confirms that with the appropriate set of physics parameterization schemes, grid spacing and initial conditions, the numerical model is able to reproduce ERCs on certain tropical cyclones with no data assimilation or extra data inputs. Strong updrafts are observed to converge in a ring outside the primary eyewall of Hurricane Katrina (2005) suggesting SEF during that period. The increase of divergence outside the primary eyewall with an outer-ring of convergence forming above the boundary layer can be part of the mechanisms that lead to SEF. Also, potential vorticity (PV) field is analyzed for its possible relationship with the development of the secondary eyewall. This detailed study of the pre-ERC events in the inner-core of Hurricane Katrina can build the foundations for testing some of the existing hypotheses for the development of secondary eyewalls leading to new ideas behind their formation.

  1. Formation flavonoid secondary metabolites in callus culture of Chrysanthemum cinerariefolium as alternative provision medicine

    NASA Astrophysics Data System (ADS)

    Purwianingsih, Widi; Febri, Santika; Kusdianti

    2016-02-01

    Increasing need of medicine ingredients require the discovery of other methods that can be used as an alternative. One method that can be used as an alternative is tissue culture. Quercetin is a flavonoid secondary metabolites that have been known to be useful as antiviral, anti-asthma and anti-cancer potential. The purpose of this study was to produce flavonoids, especially quercetin in callus culture Chrysanthemum cinerariefolium. Pieces of leaves of plantlets C. cinerariefolium used as explants for formation of callus tissue. To grow the callus, Murashige and Skoog (MS) medium used with addition of various concentrations of growth regulators 2.4-D, and kinetin. For multiplication, callus subcultured on similar medium. Callus that had formed, especially brown callus, further analyzed using Gas Chromatography Mass Spectrum (GCMS). Before analyzed callus was extracted in 95% ethanol. The result showed that callus potentially generate secondary metabolite are brown and friable. Based on these parameters, the best callus produced from leaf explants grown on MS medium with the addition of 4 mg / L 2,4-D and 0 mg / L kinetin. The callus contain secondary metabolites such as some of the flavonoid quercetin precursors such as acetic acid and tetrahydroxychalcone, and some other secondary metabolites.

  2. Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Chhabra, P. S.; Chan, A. W. H.; Surratt, J. D.; Kroll, J. H.; Kwan, A. J.; McCabe, D. C.; Wennberg, P. O.; Sorooshian, A.; Murphy, S. M.; Dalleska, N. F.; Flagan, R. C.; Seinfeld, J. H.

    2007-10-01

    Secondary organic aerosol (SOA) formation from the photooxidation of one monoterpene (α-pinene) and two sesquiterpenes (longifolene and aromadendrene) is investigated in the Caltech environmental chambers. The effect of NOx on SOA formation for these biogenic hydrocarbons is evaluated by performing photooxidation experiments under varying NOx conditions. The NOx dependence of α-pinene SOA formation follows the same trend as that observed previously for a number of SOA precursors, including isoprene, in which SOA yield (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted) decreases as NOx level increases. The NOx dependence of SOA yield for the sesquiterpenes, longifolene and aromadendrene, however, differs from that determined for isoprene and α-pinene; the aerosol yield under high-NOx conditions substantially exceeds that under low-NOx conditions. The reversal of the NOx dependence of SOA formation for the sesquiterpenes is consistent with formation of relatively low-volatility organic nitrates, and/or the isomerization of large alkoxy radicals leading to less volatile products. Analysis of the aerosol chemical composition for longifolene confirms the presence of organic nitrates under high-NOx conditions. Consequently the formation of SOA from certain biogenic hydrocarbons such as sesquiterpenes (and possibly large anthropogenic hydrocarbons as well) may be more efficient in polluted air.

  3. Secondary Organic Aerosol Formation from m-Xylene in the Absence of NOx

    SciTech Connect

    Song, Chen; Na, Kwangsam; Warren, Bethany; Malloy, Quentin; Cocker, David R.

    2007-11-01

    Formation of secondary organic aerosol (SOA) from m-xylene photoxidation in the absence of NOx was investigated in a series of smog chamber experiments. Experiments were performed in dry air and in the absence of seed aerosol with H2O2 photolysis providing a stable hydroxyl radical (OH radical) source. SOA formation from this study is exceptionally higher than experiments with existence of NOx. The experiments with elevated HO2 levels indicate that organic hydroperoxide compounds should contribute to SOA formation. Nitrogen oxide (NO) is shown to reduce aerosol formation; the constant aerosol formation rate obtained before addition of NO and after consumption of NO strongly suggests that aerosol formation is mainly through reactions with OH and HO2 radicals. In addition, a density of 1.40 ± 0.1 g cm-3 for the SOA from the photooxidation of m-xylene in the absence of NOx has been measured, which is significantly higher than the currently used unit density.

  4. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Maso, M. D.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-03-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Secondary organic aerosols (SOA) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOC) emitted by vegetation are a major source of SOA. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed SOA, and possibly their climatic effects. This raises questions whether stress-induced changes in SOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on SOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical SOA formation for infested plants in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify SOA formation. While sesquiterpenes, methyl salicylate, and C17-BVOC increase SOA yield, green leaf volatiles suppress SOA formation. By classifying emission types, stressors and SOA formation potential, we propose possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  5. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Dal Maso, M.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-09-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs) emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4-6% yield). Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  6. The formation mechanism of 360° domain walls in exchange-biased polycrystalline ferromagnetic films

    NASA Astrophysics Data System (ADS)

    Dean, J.; Kohn, A.; Kovács, A.; Zeltser, A.; Carey, M. J.; Hrkac, G.; Allwood, D. A.; Schrefl, T.

    2011-10-01

    The formation mechanism of 360° domain walls (360DW) created in an exchange-biased bilayer of Co65.5Fe14.5B20/Ir22Mn78 is described. The structural and magnetic properties are experimentally characterized and incorporated into a micromagnetic model of exchange-bias for granular anti-ferromagnetic films. This model is used to study and explain the formation mechanism of 360DWs in the ferromagnetic layer, which occur due to interface coupling to the antiferromagnetic layer. The validity of the resulting calculated magnetization maps are examined by comparing simulated and experimental Fresnel-contrast images of the bilayer. Energy barrier simulations are used to explain the dependence of the areal size and spatial frequency of the 360DW on the anisotropy energy of the anti-ferromagnetic layer. These calculations also show how such structures can form at room temperature at relatively low applied magnetic fields. Calculations based on this model are in agreement with imaging using Lorentz transmission electron microscopy and the measured macro-magnetic properties.

  7. Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Veres, P. R.; Warneke, C.; Roberts, J. M.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Li, S.-M.; Wild, R. J.; Brown, S. S.; Dubé, W. P.; Lerner, B. M.; Williams, E. J.; Johnson, J. E.; Quinn, P. K.; Bates, T. S.; Lefer, B.; Hayes, P. L.; Jimenez, J. L.; Weber, R. J.; Zamora, R.; Ervens, B.; Millet, D. B.; Rappenglück, B.; de Gouw, J. A.

    2015-02-01

    Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site (Pasadena) in June-July 2010 during CalNex (California Research at the Nexus of Air Quality and Climate Change) and a site in an oil and gas producing region (Uintah Basin) in January-February 2013 during UBWOS 2013 (Uintah Basin Winter Ozone Studies) will be discussed. Although the VOC (volatile organic compounds) compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 ± 1.3 in UBWOS 2013 and 2.0 ± 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 99%). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Compared to the original MCM model that includes only ozonolysis of unsaturated organic compounds and OH oxidation of acetylene, when we updated yields of ozonolysis of alkenes and included OH oxidation of isoprene, vinyl alcohol chemistry, reaction of formaldehyde with HO2, oxidation of aromatics, and reaction of CH3O2 with OH, the model predictions for formic acid were improved by a factor of 6.4 in UBWOS 2013 and 4.5 in CalNex, respectively. A comparison of measured and modeled HCOOH/acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 19 and 45% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be 0-6 and 0-5% in UBWOS 2013 and CalNex, respectively. We observe that

  8. Evidence that the N-terminal part of the S-layer protein from Bacillus stearothermophilus PV72/p2 recognizes a secondary cell wall polymer.

    PubMed

    Ries, W; Hotzy, C; Schocher, I; Sleytr, U B; Sára, M

    1997-06-01

    The S-layer of Bacillus stearothermophilus PV72/p2 shows oblique lattice symmetry and is composed of identical protein subunits with a molecular weight of 97,000. The isolated S-layer subunits could bind and recrystallize into the oblique lattice on native peptidoglycan-containing sacculi which consist of peptidoglycan of the A1gamma chemotype and a secondary cell wall polymer with an estimated molecular weight of 24,000. The secondary cell wall polymer could be completely extracted from peptidoglycan-containing sacculi with 48% HF, indicating the presence of phosphodiester linkages between the polymer chains and the peptidoglycan backbone. The cell wall polymer was composed mainly of GlcNAc and ManNAc in a molar ratio of 4:1, constituted about 20% of the peptidoglycan-containing sacculus dry weight, and was also detected in the fraction of the S-layer self-assembly products. Extraction experiments and recrystallization of the whole S-layer protein and proteolytic cleavage fragments confirmed that the secondary cell wall polymer is responsible for anchoring the S-layer subunits by the N-terminal part to the peptidoglycan-containing sacculi. In addition to this binding function, the cell wall polymer was found to influence the in vitro self-assembly of the guanidinium hydrochloride-extracted S-layer protein. Chemical modification studies further showed that the secondary cell wall polymer does not contribute significant free amino or carboxylate groups to the peptidoglycan-containing sacculi. PMID:9190804

  9. Mechanism underlying Kármán vortex street breakdown preceding secondary vortex street formation

    NASA Astrophysics Data System (ADS)

    Dynnikova, G. Ya.; Dynnikov, Ya. A.; Guvernyuk, S. V.

    2016-05-01

    The Kármán street that develops behind a bluff body transforms in the far wake into a secondary vortex street of lower frequency and stronger vortices. Before this transformation, the primary street decays. This interesting phenomenon was investigated in a number of experimental and theoretical studies. Much of that work is devoted to studying the reasons for the formation of the secondary street and its frequency characteristics. Reasons for the decay of the primary street are not well understood. In this work, the mechanism underlying the breaking of the primary vortex street is studied. A qualitative explanation of this process is presented wherein a region of heightened density of the dipole moment forms. This region moves relative to the Kármán vortices so that its distance from the body remains constant. In this region, the Kármán vortex street collapses.

  10. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions

    NASA Astrophysics Data System (ADS)

    Zhang, Q. J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J. M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A.

    2015-03-01

    Secondary pollutants such as ozone, secondary inorganic aerosol, and secondary organic aerosol formed in the plume of megacities can affect regional air quality. In the framework of the FP7/EU MEGAPOLI project, an intensive campaign was launched in the Greater Paris Region in July 2009. The major objective was to quantify different sources of organic aerosol (OA) within a megacity and in its plume. In this study, we use airborne measurements aboard the French ATR-42 aircraft to evaluate the regional chemistry-transport model CHIMERE within and downwind the Paris region. Slopes of the plume OA levels vs. Ox (= O3 + NO2) show secondary OA (SOA) formation normalized with respect to photochemical activity and are used for specific evaluation of the OA scheme in the model. Simulated and observed slopes are in good agreement, when the most realistic "high-NOx" yields are used in the Volatility-Basis-Set scheme implemented into the model. In addition, these slopes are relatively stable from one day to another, which suggest that they are characteristic for the given megacity plume environment. Since OA within the plume is mainly formed from anthropogenic precursors (VOC and primary OA, POA), this work allows a specific evaluation of anthropogenic SOA and SOA formed from primary semi-volatile and intermediate volatile VOCs (SI-SOA) formation scheme in a model. For specific plumes, this anthropogenic OA build-up can reach about 10 μg m-3. For the average of the month of July 2009, maximum increases occur close to the agglomeration for primary OA are noticed at several tens (for POA) to hundred (for SI-SOA) kilometers of distance from the Paris agglomeration.

  11. Contribution of secondary condensable organics to new particle formation: A case study in Houston, Texas

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Zhang, Renyi; Collins, Don; Li, Guohui

    2006-08-01

    We report aerosol simulations using the EPA's Models-3 Community Multiscale Air Quality model (CMAQ) and ground-based and aircraft aerosol measurements to investigate new particle formation in Houston, Texas. The aerosol measurements reveal elevated ultrafine particles that reach the highest value in the afternoon, indicating prominent new particle formation. Simulations of the binary H2SO4-H2O nucleation predict an order of magnitude lower concentrations for aerosols near 10 nm than the measurements. A parameterized nucleation scheme that accounts for the enhanced nucleation effect of secondary condensable organics is incorporated into the Models-3/CMAQ. The organic nucleation scheme predicts the number concentrations in agreement with the measurements during the daytime. The diurnal variation is well reproduced in the simulations including the organic nucleation scheme. Comparison with the aircraft measurements also shows that the organic nucleation scheme produces good predictions of the altitude-dependent number size distributions of the ultrafine particles. The results corroborate the importance of secondary condensable organics in new particle formation when sulfate and organics are abundant.

  12. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    NASA Astrophysics Data System (ADS)

    Yee, L. D.; Kautzman, K. E.; Loza, C. L.; Schilling, K. A.; Coggon, M. M.; Chhabra, P. S.; Chan, M. N.; Chan, A. W. H.; Hersey, S. P.; Crounse, J. D.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.

    2013-02-01

    The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol), major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NOx (<10 ppb) conditions using H2O2 as the OH source. Secondary organic aerosol (SOA) yields (ratio of mass of SOA formed to mass of primary organic reacted) greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O:C) ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) measurements of the SOA in all three systems are ~0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010). An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach.

  13. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    NASA Astrophysics Data System (ADS)

    Yee, L. D.; Kautzman, K. E.; Loza, C. L.; Schilling, K. A.; Coggon, M. M.; Chhabra, P. S.; Chan, M. N.; Chan, A. W. H.; Hersey, S. P.; Crounse, J. D.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.

    2013-08-01

    The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol), major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NOx (< 10 ppb) conditions using H2O2 as the OH source. Secondary organic aerosol (SOA) yields (ratio of mass of SOA formed to mass of primary organic reacted) greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O : C) ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) measurements of the SOA in all three systems are ~ 0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010). An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach.

  14. Formation mechanism of the secondary building unit in a chromium terephthalate metal-organic framework

    SciTech Connect

    Cantu Cantu, David; McGrail, B. Peter; Glezakou, Vassiliki Alexandra

    2014-09-18

    Based on density functional theory calculations and simulation, a detailed mechanism is presented on the formation of the secondary building unit (SBU) of MIL-101, a chromium terephthalate metal-organic framework (MOF). SBU formation is key to MOF nucleation, the rate-limiting step in the formation process of many MOFs. A series of reactions that lead to the formation of the SBU of MIL-101 is proposed in this work. Initial rate-limiting reactions form the metal cluster with three chromium (III) atoms linked to a central bridging oxygen. Terephthalate linkers play a key role as chromium (III) atoms are joined to linker carboxylate groups prior to the placement of the central bridging oxygen. Multiple linker addition reactions, which follow in different paths due to structural isomers, are limited by the removal of water molecules in the first chromium coordination shell. The least energy path is identified were all linkers on one face of the metal center plane are added first. A simple kinetic model based on transition state theory shows the rate of secondary building unit formation similar to the rate metal-organic framework nucleation. The authors are thankful to Dr. R. Rousseau for a critical reading of the manuscript. This research would not have been possible without the support of the Office of Fossil Energy, U.S. Department of Energy. This research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and the PNNL Institutional Computing (PIC) program located at Pacific Northwest National Laboratory.

  15. Lithologic Control on Secondary Clay Mineral Formation in the Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Caylor, E.; Rasmussen, C.; Dhakal, P.

    2015-12-01

    Understanding the transformation of rock to soil is central to landscape evolution and ecosystem function. The objective of this study was to examine controls on secondary mineral formation in a forested catchment in the Catalina-Jemez CZO. We hypothesized landscape position controls the type of secondary minerals formed in that well-drained hillslopes favor Si-poor secondary phases such as kaolinite, whereas poorly drained portions of the landscape that collect solutes from surrounding areas favor formation of Si-rich secondary phases such as smectite. The study focused on a catchment in Valles Caldera in northern New Mexico where soils are derived from a mix of rhyolitic volcanic material, vegetation includes a mixed conifer forest, and climate is characterized by a mean annual precipitation of ~800 mm yr-1 and mean annual temperature of 4.5°C. Soils were collected at the soil-saprolite boundary from three landscape positions, classified as well drained hillslope, poorly drained convergent area, and poorly drained hill slope. Clay fractions were isolated and analyzed using a combination of quantitative and qualitative x-ray diffraction (XRD) analyses and thermal analysis. Quantitative XRD of random powder mounts indicated the presence of both primary phases such as quartz, and alkali and plagioclase feldspars, and secondary phases that include illite, Fe-oxyhydroxides including both goethite and hematite, kaolinite, and smectite. The clay fractions were dominated by smectite ranging from 36-42%, illite ranging from 21-35%, and kaolinite ranging from 1-8%. Qualitative XRD of oriented mounts confirmed the presence of smectite in all samples, with varying degrees of interlayering and interstratification. In contrast to our hypothesis, results indicated that secondary mineral assemblage was not strongly controlled by landscape position, but rather varied with underlying variation in lithology. The catchment is underlain by a combination of porphorytic rhyolite and

  16. Induction of secondary axis in hydra revisited: New insights into pattern formation

    PubMed Central

    Kadu, Vishal; S. Ghaskadbi, Saroj; Ghaskadbi, Surendra

    2012-01-01

    In 1909, several years before the famous `Organizer’ experiments of Spemann and Mangold, Ethel Browne demonstrated induction of a secondary axis in hydra by grafting a hypostome. Based on this and subsequent work, in the late sixties, Lewis Wolpert proposed the theory of morphogen gradients and positional information. We have studied secondary axis induction by hypostome and foot tissue using three species of hydra as well as transgenic, GFP-expressing lines of hydra. We have found that pieces of hypostome and complete foot of a donor hydra can induce a secondary axis all along (in upper, middle or lower parts of) the body column of a host hydra, both within and across species with comparable rates. Thus, contrary to the available literature, our results show that the host hypostome does not completely inhibit the induction of a secondary axis. The length of the induced axis though is determined by the position of the graft. By using GFP-expressing lines of hydra we have demonstrated that host ectodermal and endodermal cells actively contribute to the secondary axis. On comparison, the hypostome was found to be a stronger and dominant Organizer than the foot. Foot grafting experiments show a transient increase in the host length as well as the distance between the two Organizers. The length becomes normal once the grafted foot reaches the budding zone. Our work brings out several new aspects of the role of positional cues in pattern formation in hydra that can be now be explored at cellular and molecular levels. PMID:24551754

  17. Seed Regeneration Potential of Canopy Gaps at Early Formation Stage in Temperate Secondary Forests, Northeast China

    PubMed Central

    Yan, Qiao-Ling; Zhu, Jiao-Jun; Yu, Li-Zhong

    2012-01-01

    Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R = 0.32, P<0.01), especially in medium and small gaps (<500 m2). Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R = 0.43, P<0.01). Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono), but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation. PMID:22745771

  18. Formation and structure of 360 and 540 degree domain walls in thin magnetic stripes

    NASA Astrophysics Data System (ADS)

    Jang, Youngman; Bowden, S. R.; Mascaro, Mark; Unguris, J.; Ross, C. A.

    2012-02-01

    360°, 540°, and other complex transverse domain walls have been created in narrow cobalt wires connected to injection pads by cycling a magnetic field perpendicular to the wire length. The composite walls, formed by impingement of 180° transverse walls of alternating chirality, are stable over a wide field range. The structure of the walls observed at remanence by scanning electron microscopy with polarization analysis and by magnetic force microscopy is in good quantitative agreement with the prediction of micromagnetic simulations.

  19. The pattern of secondary root formation in curving roots of Arabidopsis thaliana (L.) Heynh

    NASA Technical Reports Server (NTRS)

    Fortin, M. C.; Pierce, F. J.; Poff, K. L.

    1989-01-01

    A gravitational stimulus was used to induce the curvature of the main root of Arabidopsis thaliana. The number of secondary roots increased on the convex side and decreased on the concave side of any curved main root axes in comparison with straight roots used as the control. The same phenomenon was observed with the curved main roots of plants grown on a clinostat and of mutant plants exhibiting random root orientation. The data suggest that the pattern of lateral root formation is associated with curvature but is independent of the environmental stimuli used to induce curvature.

  20. Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke

    NASA Astrophysics Data System (ADS)

    Sleiman, Mohamad; Destaillats, Hugo; Smith, Jared D.; Liu, Chen-Lin; Ahmed, Musahid; Wilson, Kevin R.; Gundel, Lara A.

    2010-11-01

    We used controlled laboratory experiments to evaluate the aerosol-forming potential of ozone reactions with nicotine and secondhand smoke. Special attention was devoted to real-time monitoring of the particle size distribution and chemical composition of SOA as they are believed to be key factors determining the toxicity of SOA. The experimental approach was based on using a vacuum ultraviolet photon ionization time-of-flight aerosol mass spectrometer (VUV-AMS), a scanning mobility particle sizer (SMPS) and off-line thermal desorption coupled to mass spectrometry (TD-GC-MS) for gas-phase byproducts analysis. Results showed that exposure of SHS to ozone induced the formation of ultrafine particles (<100 nm) that contained high molecular weight nitrogenated species ( m/ z 400-500), which can be due to accretion/acid-base reactions and formation of oligomers. In addition, nicotine was found to contribute significantly (with yields 4-9%) to the formation of secondary organic aerosol through reaction with ozone. The main constituents of the resulting SOA were tentatively identified and a reaction mechanism was proposed to elucidate their formation. These findings identify a new component of thirdhand smoke that is associated with the formation of ultrafine particles (UFP) through oxidative aging of secondhand smoke. The significance of this chemistry for indoor exposure and health effects is highlighted.

  1. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    SciTech Connect

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

  2. Composition and secondary formation of fine particulate matter in the Salt Lake Valley: winter 2009.

    PubMed

    Kuprov, Roman; Eatough, Delbert J; Cruickshank, Tyler; Olson, Neal; Cropper, Paul M; Hansen, Jaron C

    2014-08-01

    Under the National Ambient Air Quality Standards (NAAQS), put in place as a result of the Clean Air Amendments of 1990, three regions in the state of Utah are in violation of the NAAQS for PM10 and PM2.5 (Salt Lake County, Ogden City, and Utah County). These regions are susceptible to strong inversions that can persist for days to weeks. This meteorology, coupled with the metropolitan nature of these regions, contributes to its violation of the NAAQS for PM during the winter. During January-February 2009, 1-hr averaged concentrations of PM10-2.5, PM2.5, NO(x), NO2, NO, O3, CO, and NH3 were measured. Particulate-phase nitrate, nitrite, and sulfate and gas-phase HONO, HNO3, and SO2 were also measured on a 1-hr average basis. The results indicate that ammonium nitrate averages 40% of the total PM2.5 mass in the absence of inversions and up to 69% during strong inversions. Also, the formation of ammonium nitrate is nitric acid limited. Overall, the lower boundary layer in the Salt Lake Valley appears to be oxidant and volatile organic carbon (VOC) limited with respect to ozone formation. The most effective way to reduce ammonium nitrate secondary particle formation during the inversions period is to reduce NO(x) emissions. However, a decrease in NO(x) will increase ozone concentrations. A better definition of the complete ozone isopleths would better inform this decision. Implications: Monitoring of air pollution constituents in Salt Lake City, UT, during periods in which PM2.5 concentrations exceeded the NAAQS, reveals that secondary aerosol formation for this region is NO(x) limited. Therefore, NO(x) emissions should be targeted in order to reduce secondary particle formation and PM2.5. Data also indicate that the highest concentrations of sulfur dioxide are associated with winds from the north-northwest, the location of several small refineries. PMID:25185397

  3. Urban stress-induced biogenic VOC emissions impact secondary aerosol formation in Beijing

    NASA Astrophysics Data System (ADS)

    Ghirardo, A.; Xie, J.; Zheng, X.; Wang, Y.; Grote, R.; Block, K.; Wildt, J.; Mentel, T.; Kiendler-Scharr, A.; Hallquist, M.; Butterbach-Bahl, K.; Schnitzler, J.-P.

    2015-08-01

    Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs), which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs) and "stress-induced" BVOCs (sBVOCs) from the dominant broadleaf woody plant species in the megacity of Beijing. Based on an inventory of BVOC emissions and the tree census, we assessed the potential impact of BVOCs on secondary particulate matter formation in 2005 and 2010, i.e., before and after realizing the large tree-planting program for the 2008 Olympic Games. We found that sBVOCs, such as fatty acid derivatives, benzenoids and sesquiterpenes, constituted a significant fraction (∼ 15 %) of the total annual BVOC emissions, and we estimated that the overall annual BVOC budget may have doubled from ∼ 3.6 × 109 g C year-1 in 2005 to ∼ 7.1 × 109 g C year-1 in 2010 due to the increase in urban greens, while at the same time, the emission of anthropogenic VOCs (AVOCs) could be lowered by 24 %. Based on our BVOC emission assessment, we estimated the biological impact on SOA mass formation in Beijing. Compared to AVOCs, the contribution of biogenic precursors (2-5 %) for secondary particulate matter in Beijing was low. However, sBVOCs can significantly contribute (∼ 40 %) to the formation of total secondary organic aerosol (SOA) from biogenic sources; apparently, their annual emission increased from 1.05 μg m-3 in 2005 to 2.05 μg m-3 in 2010. This study demonstrates that biogenic and, in particular, sBVOC emissions contribute to SOA formation in megacities. However, the main problems regarding air quality in Beijing still originate from anthropogenic activities. Nevertheless, the present survey suggests that in urban plantation programs, the selection of plant species with low cBVOC and sBVOC emission potentials have some possible beneficial effects on urban air quality.

  4. Secondary organic aerosol formation from the ozonolysis of 2-carene and 3-carene

    NASA Astrophysics Data System (ADS)

    Mellouki, A.; Chen, H.; Bernard, F.; Cazaunau, M.; Grosselin, B.; Daele, V.; Chen, J.

    2013-12-01

    The atmospheric degradation of terpenes in the remote areas such as those with coniferous forests is known to lead to the formation and growth of atmospheric new particles. 2-carene and 3-carene have been reported to be present in number of such areas. Hence, their oxidation may represent an important source of secondary organic aerosols in some specific regions. 2-carene and 3-carene possess a structure of endocyclic double bonds which make them reactive toward ozone under atmospheric conditions. We have conducted a study on the reactions of ozone with 2-carene and 3-carene using a flow reactor dedicated to the investigation of secondary organic aerosol (SOA) formation. The reactor is equipped with an ozone generator and a movable injector which allows the reaction to occur within a short time range (typically 17 - 48 seconds). This enables us to investigate the initial steps of the SOA formation. In a first series of experiments, we have determined the rate constant for the reaction of ozone with 3-carene under pseudo-first-order conditions. The rate constant value measured was 3.8 x 10-17 molecule-1s-1, at 298 K, in agreement with the literatures and simulation chamber experiments. We have then investigated the SOA formation from the ozonolysis of 2-carene and 3-carene. By adjusting the residence time and initial concentration of carenes and ozone, number concentration of SOA have been measured for short reactions times and low concentrations of reactants. Nucleation thresholds of 2-carene and 3-carene were extracted from the plots of log N = f(Δ[Carenes]).

  5. Formation of hydroxyl radicals from photolysis of secondary organic aerosol material

    NASA Astrophysics Data System (ADS)

    Badali, K. M.; Zhou, S.; Aljawhary, D.; Antiñolo, M.; Chen, W. J.; Lok, A.; Mungall, E.; Wong, J. P. S.; Zhao, R.; Abbatt, J. P. D.

    2015-07-01

    This paper demonstrates that OH radicals are formed by photolysis of secondary organic aerosol (SOA) material formed by terpene ozonolysis. The SOA is collected on filters, dissolved in water containing a radical trap (benzoic acid), and then exposed to ultraviolet light in a photochemical reactor. The OH formation rates, which are similar for both α-pinene and limonene SOA, are measured from the formation rate of p-hydroxybenzoic acid as measured using offline HPLC analysis. To evaluate whether the OH is formed by photolysis of H2O2 or organic hydroperoxides (ROOH), the peroxide content of the SOA was measured using the horseradish peroxidase-dichlorofluorescein (HRP-DCF) assay, which was calibrated using H2O2. The OH formation rates from SOA are 5 times faster than from the photolysis of H2O2 solutions whose concentrations correspond to the peroxide content of the SOA solutions, assuming that the HRP-DCF signal arises from H2O2 alone. The higher rates of OH formation from SOA are likely due to ROOH photolysis, but we cannot rule out a contribution from secondary processes as well. This result is substantiated by photolysis experiments conducted with t-butyl hydroperoxide and cumene hydroperoxide which produce over 3 times more OH than photolysis of equivalent concentrations of H2O2. Relative to the peroxide level in the SOA and assuming that the peroxides drive most of the ultraviolet absorption, the quantum yield for OH generation from α-pinene SOA is 0.8 ± 0.4. This is the first demonstration of an efficient photolytic source of OH in SOA, one that may affect both cloud water and aerosol chemistry.

  6. Some aspects of the problem of secondary eyewall formation in idealized three-dimensional nonlinear simulations

    NASA Astrophysics Data System (ADS)

    Menelaou, K.; Yau, M. K.; Martinez, Y.

    2014-09-01

    Some aspects of the problem of secondary eyewall formation (SEF) are investigated with the aid of an idealized model. A series of experiments are conducted, starting with a strong annular vortex embedded in a quiescent background flow and forced by the sustained heating associated with a spiral rainband (control experiment). Following this, two experiments are configured to assess the impact of vertical wind shear (VWS) in the SEF process. The importance of the boundary layer force imbalance is finally investigated in a number of simulations in which surface and boundary layer physics are included. From the control experiment, it is found that in the absence of background environmental flow, the sustained latent heating associated with a spiral rainband can form a secondary eyewall even in the absence of a frictional boundary layer. The presence of VWS acts negatively in the SEF process by disrupting the organization of the potential vorticity induced by the rainband. When boundary layer physics is included, some similarities with previous studies are seen, but there is no SEF. These results suggest that the boundary layer most likely contributes to, rather than initiate, a secondary eyewall. This article was corrected on 10 OCT 2014. See the end of the full text for details.

  7. Modeling the influence of alkane molecular structure on secondary organic aerosol formation.

    PubMed

    Aumont, Bernard; Camredon, Marie; Mouchel-Vallon, Camille; La, Stéphanie; Ouzebidour, Farida; Valorso, Richard; Lee-Taylor, Julia; Madronich, Sasha

    2013-01-01

    Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapor pressure. Intermediate Volatility Organic Compounds (IVOC) emitted to the atmosphere are expected to be a substantial source of SOA. These emitted IVOC constitute a complex mixture including linear, branched and cyclic alkanes. The explicit gas-phase oxidation mechanisms are here generated for various linear and branched C10-C22 alkanes using the GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) and SOA formation is investigated for various homologous series. Simulation results show that both the size and the branching of the carbon skeleton are dominant factors driving the SOA yield. However, branching appears to be of secondary importance for the particle oxidation state and composition. The effect of alkane molecular structure on SOA yields appears to be consistent with recent laboratory observations. The simulated SOA composition shows, however, an unexpected major contribution from multifunctional organic nitrates. Most SOA contributors simulated for the oxidation of the various homologous series are far too reduced to be categorized as highly oxygenated organic aerosols (OOA). On a carbon basis, the OOA yields never exceeded 10% regardless of carbon chain length, molecular structure or ageing time. This version of the model appears clearly unable to explain a large production of OOA from alkane precursors. PMID:24600999

  8. Heterogeneous Chemistry of Carbonyls and Alcohols With Sulfuric Acid: Implications for Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Levitt, N.; Zhang, R.

    2006-12-01

    Recent environmental chamber studies have suggested that acid-catalyzed particle-phase reactions of organic carbonyls lead to multifold increases in secondary organic aerosol (SOA) mass and acid-catalyzed reactions between alcohols and aldehydes in the condensed phase lead to the formation of hemiacetals and acetals, also enhancing secondary organic aerosol growth. The kinetics and mechanism of the heterogeneous chemistry of carbonyls and alcohols with sulfuric acid, however, remain largely uncertain. In this talk, we present measurements of heterogeneous uptake of several carbonyls and alcohols on liquid H2SO4 in a wide range of acid concentrations and temperatures. The results indicate that uptake of larger carbonyls is explained by aldol condensation. For small dicarbonyls, heterogeneous reactions are shown to decrease with acidity and involve negligible formation of sulfate esters. Hydration and polymerization likely explain the measured uptake of such small dicarbonyls on H2SO4 and the measurements do not support an acid- catalyzed uptake. Atmospheric implications from our findings will be discussed.

  9. Type VIII Collagen Mediates Vessel Wall Remodeling after Arterial Injury and Fibrous Cap Formation in Atherosclerosis

    PubMed Central

    Lopes, Joshua; Adiguzel, Eser; Gu, Steven; Liu, Shu-Lin; Hou, Guangpei; Heximer, Scott; Assoian, Richard K.; Bendeck, Michelle P.

    2014-01-01

    Collagens in the atherosclerotic plaque signal regulation of cell behavior and provide tensile strength to the fibrous cap. Type VIII collagen, a short-chain collagen, is up-regulated in atherosclerosis; however, little is known about its functions in vivo. We studied the response to arterial injury and the development of atherosclerosis in type VIII collagen knockout mice (Col8−/− mice). After wire injury of the femoral artery, Col8−/− mice had decreased vessel wall thickening and outward remodeling when compared with Col8+/+ mice. We discovered that apolipoprotein E (ApoE) is an endogenous repressor of the Col8a1 chain, and, therefore, in ApoE knockout mice, type VIII collagen was up-regulated. Deficiency of type VIII collagen in ApoE−/− mice (Col8−/−;ApoE−/−) resulted in development of plaques with thin fibrous caps because of decreased smooth muscle cell migration and proliferation and reduced accumulation of fibrillar type I collagen. In contrast, macrophage accumulation was not affected, and the plaques had large lipid-rich necrotic cores. We conclude that in atherosclerosis, type VIII collagen is up-regulated in the absence of ApoE and functions to increase smooth muscle cell proliferation and migration. This is an important mechanism for formation of a thick fibrous cap to protect the atherosclerotic plaque from rupture. PMID:23567639

  10. The effects of increasing atmospheric ozone on biogenic monoterpene profiles and the formation of secondary aerosols

    NASA Astrophysics Data System (ADS)

    Pinto, Delia M.; Tiiva, Päivi; Miettinen, Pasi; Joutsensaari, Jorma; Kokkola, Harri; Nerg, Anne-Marja; Laaksonen, Ari; Holopainen, Jarmo K.

    Monoterpenes are biogenic volatile organic compounds (BVOCs) which play an important role in plant adaptation to stresses, atmospheric chemistry, plant-plant and plant-insect interactions. In this study, we determined whether ozonolysis can influence the monoterpenes in the headspace of cabbage. The monoterpenes were mixed with an air-flow enriched with 100, 200 or 400 ppbv of ozone (O 3) in a Teflon chamber. The changes in the monoterpene and O 3 concentrations, and the formation of secondary organic aerosols (SOA) were determined during ozonolysis. Furthermore, the monoterpene reactions with O 3 and OH were modelled using reaction kinetics equations. The results showed that all of the monoterpenes were unequally affected: α-thujene, sabinene and D-limonene were affected to the greatest extend, whereas the 1,8-cineole concentration did not change. In addition, plant monoterpene emissions reduced the O 3 concentration by 12-24%. The SOA formation was dependent on O 3 concentration. At 100 ppbv of O 3, virtually no new particles were formed but clear SOA formation was observed at the higher ozone concentrations. The modelled results showed rather good agreements for α-pinene and 1,8-cineole, whereas the measured concentrations were clearly lower compared to modelled values for sabinene and limonene. In summary, O 3-quenching by monoterpenes occurs beyond the boundary layer of leaves and results in a decreased O 3 concentration, altered monoterpene profiles and SOA formation.