Science.gov

Sample records for secreted human placental

  1. Effect of leptin on the regulation of placental hormone secretion in cultured human placental cells.

    PubMed

    Coya, Raquel; Martul, Pedro; Algorta, Jaime; Aniel-Quiroga, Ma Angeles; Busturia, Ma Angeles; Señarís, Rosa

    2006-11-01

    Placenta is an important source of leptin during pregnancy that contributes to the high plasma leptin levels in pregnant women. Leptin and its functional receptors are synthesized in trophoblast cells that, in turn, secrete gestational hormones supporting a paracrine or autocrine role for leptin in the endocrine activity of the placenta. In the present study we examined the effect of leptin on in vitro release of gestational hormones (human chorionic gonadotropin (hCG), human placental lactogen (hPL), progesterone, estrogens and testosterone) by human term placental cells in culture. Placentas at term were obtained immediately after delivery from mothers with uncomplicated pregnancies. Progesterone, hCG, hPL, estradiol, estrone, estriol and testosterone levels were measured by different assays in culture media of cells maintained in monolayer culture after incubation for 12, 24, 48 or 72 h with leptin or placebo. Incubation with leptin did not modify hCG, hPL, progesterone, estriol and estrone secretion for any of the doses and times assayed. However, leptin led to a dose-dependent decrease in estradiol release. This effect was observed when treatment with recombinant human leptin spanned from 12 to 72 h. At this time an increase in testosterone levels was observed in leptin-treated cells versus placebo. These results indicate that leptin can be considered a gestational hormone implied in the endocrine function of the placenta, with an important role in control of the production of steroid reproductive hormones in placental cells in vitro. PMID:17145648

  2. EFFECT OF BROMODICHLOROMETHANE ON CHORIONIC GONADOTROPHIN SECRETION BY HUMAN PLACENTAL TROPHOBLAST CULTURES

    EPA Science Inventory

    EFFECT OF BROMODICHLOROMETHANE ON CHORIONIC GONADOTROPHIN SECRETION BY HUMAN PLACENTAL TROPHOBLAST CULTURES

    Jiangang Chen1, Gordon C. Douglas1?,Twanda L. Thirkill1?, Peter N. Lohstroh1, Susan R. Bielmeier2, Michael G. Narotsky3, Deborah S. Best3, Randy A. Harrison3, Kala ...

  3. Oxygen-Sensitive K+ Channels Modulate Human Chorionic Gonadotropin Secretion from Human Placental Trophoblast

    PubMed Central

    Díaz, Paula; Sibley, Colin P.; Greenwood, Susan L.

    2016-01-01

    Human chorionic gonadotropin (hCG) is a key autocrine/paracrine regulator of placental syncytiotrophoblast, the transport epithelium of the human placenta. Syncytiotrophoblast hCG secretion is modulated by the partial pressure of oxygen (pO2), reactive oxygen species (ROS) and potassium (K+) channels. Here we test the hypothesis that K+ channels mediate the effects of pO2 and ROS on hCG secretion. Placental villous explants from normal term pregnancies were cultured for 6 days at 6% (normoxia), 21% (hyperoxia) or 1% (hypoxia) pO2. On days 3–5, explants were treated with 5mM 4-aminopyridine (4-AP) or tetraethylammonium (TEA), blockers of pO2-sensitive voltage-gated K+ (KV) channels, or ROS (10–1000μM H2O2). hCG secretion and lactate dehydrogenase (LDH) release, a marker of necrosis, were determined daily. At day 6, hCG and LDH were measured in tissue lysate and 86Rb (K+) efflux assessed to estimate syncytiotrophoblast K+ permeability. hCG secretion and 86Rb efflux were significantly greater in explants maintained in 21% pO2 than normoxia. 4-AP/TEA inhibited hCG secretion to a greater extent at 21% than 6% and 1% pO2, and reduced 86Rb efflux at 21% but not 6% pO2. LDH release and tissue LDH/hCG were similar in 6%, 21% and 1% pO2 and unaffected by 4-AP/TEA. H2O2 stimulated 86Rb efflux and hCG secretion at normoxia but decreased 86Rb efflux, without affecting hCG secretion, at 21% pO2. 4-AP/TEA-sensitive K+ channels participate in pO2-sensitive hCG secretion from syncytiotrophoblast. ROS effects on both hCG secretion and 86Rb efflux are pO2-dependent but causal links between the two remain to be established. PMID:26863525

  4. Oxygen-Sensitive K+ Channels Modulate Human Chorionic Gonadotropin Secretion from Human Placental Trophoblast.

    PubMed

    Díaz, Paula; Sibley, Colin P; Greenwood, Susan L

    2016-01-01

    Human chorionic gonadotropin (hCG) is a key autocrine/paracrine regulator of placental syncytiotrophoblast, the transport epithelium of the human placenta. Syncytiotrophoblast hCG secretion is modulated by the partial pressure of oxygen (pO2), reactive oxygen species (ROS) and potassium (K+) channels. Here we test the hypothesis that K+ channels mediate the effects of pO2 and ROS on hCG secretion. Placental villous explants from normal term pregnancies were cultured for 6 days at 6% (normoxia), 21% (hyperoxia) or 1% (hypoxia) pO2. On days 3-5, explants were treated with 5mM 4-aminopyridine (4-AP) or tetraethylammonium (TEA), blockers of pO2-sensitive voltage-gated K+ (KV) channels, or ROS (10-1000μM H2O2). hCG secretion and lactate dehydrogenase (LDH) release, a marker of necrosis, were determined daily. At day 6, hCG and LDH were measured in tissue lysate and 86Rb (K+) efflux assessed to estimate syncytiotrophoblast K+ permeability. hCG secretion and 86Rb efflux were significantly greater in explants maintained in 21% pO2 than normoxia. 4-AP/TEA inhibited hCG secretion to a greater extent at 21% than 6% and 1% pO2, and reduced 86Rb efflux at 21% but not 6% pO2. LDH release and tissue LDH/hCG were similar in 6%, 21% and 1% pO2 and unaffected by 4-AP/TEA. H2O2 stimulated 86Rb efflux and hCG secretion at normoxia but decreased 86Rb efflux, without affecting hCG secretion, at 21% pO2. 4-AP/TEA-sensitive K+ channels participate in pO2-sensitive hCG secretion from syncytiotrophoblast. ROS effects on both hCG secretion and 86Rb efflux are pO2-dependent but causal links between the two remain to be established. PMID:26863525

  5. Progesterone and human placental lactogen inhibit leptin secretion on cultured trophoblast cells from human placentas at term.

    PubMed

    Coya, Raquel; Martul, Pedro; Algorta, Jaime; Aniel-Quiroga, Ma Angeles; Busturia, Ma Angeles; Señarís, Rosa

    2005-07-01

    The placenta is an important source of leptin production that contributes to the state of hyperleptinemia observed in pregnant women. Moreover, the synthesis of leptin and its receptors by syncytiotrophoblast cells suggests a potential paracrine or autocrine action of leptin in the placenta. In the present study we examined the effect of gestational hormones, human chorionic gonadotropin (hCG), human placental lactogen (hPL), progesterone and estradiol, on in vitro leptin release by human term trophoblast cells in culture. Placentas at term were obtained immediately after delivery from mothers with uncomplicated pregnancies. Leptin levels were measured by enzyme-linked immunosorbent assay in culture media of trophoblasts maintained in monolayer culture for 24, 48 and 72 h with different hormonal treatments or placebo. Treatment with hPL and progesterone led to a time- and dose-dependent decrease in leptin release that was statistically significant after 24 h, with a maximal effect after 72 h of incubation. In contrast, incubation with estradiol and hCG did not have exhibit any effect on leptin secretion at any of the doses and times assayed in this work. The results obtained in this study support that leptin can be considered a gestational hormone implied in the endocrine function of the placenta and that its secretion is at least partially regulated by steroid and peptidic reproductive hormones in trophoblast cells in vitro. PMID:16048798

  6. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    SciTech Connect

    Ramasharma, K.; Li, C.H.

    1987-05-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and ..cap alpha..-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin.

  7. Matrix Metalloproteinase-3 (MMP-3) Is an Endogenous Activator of the MMP-9 Secreted by Placental Leukocytes: Implication in Human Labor

    PubMed Central

    Flores-Pliego, Arturo; Espejel-Nuñez, Aurora; Castillo-Castrejon, Marisol; Meraz-Cruz, Noemi; Beltran-Montoya, Jorge; Zaga-Clavellina, Veronica; Nava-Salazar, Sonia; Sanchez-Martinez, Maribel; Vadillo-Ortega, Felipe; Estrada-Gutierrez, Guadalupe

    2015-01-01

    Background The activity of matrix degrading enzymes plays a leading role in the rupture of the fetal membranes under normal and pathological human labor, and matrix metalloproteinase-9 (MMP-9) it is considered a biomarker of this event. To gain further insight into local MMP-9 origin and activation, in this study we analyzed the contribution of human placental leukocytes to MMP-9 secretion and explored the local mechanisms of the pro-enzyme activation. Methods Placental blood leukocytes were obtained from women at term gestation without labor and maintained in culture up to 72 h. MMP-9 activity in the culture supernatants was determined by zymography and using a specific substrate. The presence of a potential pro-MMP-9 activator in the culture supernatants was monitored using a recombinant biotin-labeled human pro-MMP-9. To characterize the endogenous pro-MMP-9 activator, MMP-1, -3, -7 and -9 were measured by multiplex assay in the supernatants, and an inhibition assay of MMP-9 activation was performed using an anti-human MMP-3 and a specific MMP-3 inhibitor. Finally, production of MMP-9 and MMP-3 in placental leukocytes obtained from term pregnancies with and without labor was assessed by immunofluorescence. Results Placental leukocytes spontaneously secreted pro-MMP-9 after 24 h of culture, increasing significantly at 48 h (P≤0.05), when the active form of MMP-9 was detected. Culture supernatants activated the recombinant pro-MMP-9 showing that placental leukocytes secrete the activator. A significant increase in MMP-3 secretion by placental leukocytes was observed since 48 h in culture (P≤0.05) and up to 72 h (P≤0.001), when concentration reached its maximum value. Specific activity of MMP-9 decreased significantly (P≤0.005) when an anti-MMP-3 antibody or a specific MMP-3 inhibitor were added to the culture media. Placental leukocytes from term labor produced more MMP-9 and MMP-3 compared to term non-labor cells. Conclusions In this work we confirm that

  8. Effect of bromodichloromethane on chorionic gonadotrophin secretion by human placental trophoblast cultures.

    PubMed

    Chen, Jiangang; Douglas, Gordon C; Thirkill, Twanda L; Lohstroh, Peter N; Bielmeier, Susan R; Narotsky, Michael G; Best, Deborah S; Harrison, Randy A; Natarajan, Kala; Pegram, Rex A; Overstreet, James W; Lasley, Bill L

    2003-11-01

    Bromodichloromethane (BDCM) is a trihalomethane found in drinking water as a by-product of disinfection processes. BDCM is hepatotoxic and nephrotoxic in rodents and has been reported to cause strain-specific full-litter resorption in F344 rats during the luteinizing hormone-dependent phase of pregnancy. In humans, epidemiological studies suggest an association between exposure to BDCM in drinking water and increased risk of spontaneous abortion. To begin to address the mechanism(s) of BDCM-induced spontaneous abortion, we hypothesized that BDCM targets the placenta. Primary cultures of human term trophoblast cells were used as an in vitro model to test this hypothesis. Trophoblasts were allowed to differentiate into multinucleated syncytiotrophoblast-like colonies, after which they were incubated for 24 h with different concentrations of BDCM (20 nM to 2 mM). Culture media were collected and assayed for immunoreactive and bioactive chorionic gonadotropin (CG). Cultures exposed to BDCM showed a dose-dependent decrease in the secretion of immunoreactive CG as well as bioactive CG. The lowest effective BDCM concentration was 20 nM, approximately 35-times higher than the maximum concentration reported in human blood (0.57 nM). Trophoblast morphology and viability were similar in controls and cultures exposed to BDCM. We conclude that BDCM perturbs CG secretion by differentiated trophoblasts in vitro. This suggests that the placenta is a likely target of BDCM toxicity in the human and that this could be related to the adverse pregnancy outcomes associated with BDCM. PMID:12970577

  9. The Effects of Culture Conditions on the Glycosylation of Secreted Human Placental Alkaline Phosphatase Produced in Chinese Hamster Ovary Cells

    PubMed Central

    Nam, Jong Hyun; Zhang, Fuming; Ermonval, Myriam; Linhardt, Robert J.; Sharfstein, Susan T.

    2009-01-01

    The effects of different culture conditions, suspension and microcarrier culture and temperature reduction on the structures of N-linked glycans attached to secreted human placental alkaline phosphatase (SEAP) were investigated for CHO cells grown in a controlled bioreactor. Both mass spectrometry and anion-exchange chromatography were used to probe the N-linked glycan structures and distribution. Complex-type glycans were the dominant structures with small amounts of high mannose glycans observed in suspension and reduced temperature cultures. Biantennary glycans were the most common structures detected by mass spectrometry, but triantennary and tetraantennary forms were also detected. The amount of sialic acid present was relatively low, approximately 0.4 mol sialic acid/mol SEAP for suspension cultures. Microcarrier cultures exhibited a decrease in productivity compared with suspension culture due to a decrease in both maximum viable cell density (15-20%) and specific productivity (30-50%). In contrast, a biphasic suspension culture in which the temperature was reduced at the beginning of the stationary phase from 37 to 33°C, showed a 7% increase in maximum viable cell density, a 62% increase in integrated viable cell density, and a 133% increase in specific productivity, leading to greater than threefold increase in total productivity. Both microcarrier and reduced temperature cultures showed increased sialylation and decreased fucosylation when compared to suspension culture. Our results highlight the importance of glycoform analysis after process modification as even subtle changes (e.g., changing from one microcarrier to another) may affect glycan distributions. PMID:18553404

  10. Palmitic acid induces interleukin-1β secretion via NLRP3 inflammasomes and inflammatory responses through ROS production in human placental cells.

    PubMed

    Shirasuna, Koumei; Takano, Hiroki; Seno, Kotomi; Ohtsu, Ayaka; Karasawa, Tadayoshi; Takahashi, Masafumi; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Iwata, Hisataka; Kuwayama, Takehito

    2016-08-01

    Maternal obesity, a major risk factor for adverse pregnancy complications, results in inflammatory cytokine release in the placenta. Levels of free fatty acids are elevated in the plasma of obese human. These fatty acids include obesity-related palmitic acids, which is a major saturated fatty acid, that promotes inflammatory responses. Increasing evidence indicates that nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasomes mediate inflammatory responses induced by endogenous danger signals. We hypothesized that inflammatory responses associated with gestational obesity cause inflammation. To test this hypothesis, we investigated the effect of palmitic acid on the activation of NLRP3 inflammasomes and inflammatory responses in a human Sw.71 trophoblast cell line. Palmitic acid stimulated caspase-1 activation and markedly increased interleukin (IL)-1β secretion in Sw.71 cells. Treatment with a caspase-1 inhibitor diminished palmitic acid-induced IL-1β release. In addition, NLRP3 and caspase-1 genome editing using a CRISPR/Cas9 system in Sw.71 cells suppressed IL-1β secretion, which was stimulated by palmitic acid. Moreover, palmitic acid stimulated caspase-3 activation and inflammatory cytokine secretion (e.g., IL-6 and IL-8). Palmitic acid-induced cytokine secretion were dependent on caspase-3 activation. In addition, palmitic acid-induced IL-1β, IL-6, and IL-8 secretion was depended on reactive oxygen species (ROS) generation. In conclusion, palmitic acid caused activation of NLRP3 inflammasomes and inflammatory responses, inducing IL-1β, IL-6, and IL-8 secretion, which is associated with ROS generation, in human Sw.71 placental cells. We suggest that obesity-related palmitic acid induces placental inflammation, resulting in association with pregnancy complications. PMID:27300134

  11. Zika Virus Infects Human Placental Macrophages.

    PubMed

    Quicke, Kendra M; Bowen, James R; Johnson, Erica L; McDonald, Circe E; Ma, Huailiang; O'Neal, Justin T; Rajakumar, Augustine; Wrammert, Jens; Rimawi, Bassam H; Pulendran, Bali; Schinazi, Raymond F; Chakraborty, Rana; Suthar, Mehul S

    2016-07-13

    The recent Zika virus (ZIKV) outbreak in Brazil has been directly linked to increased cases of microcephaly in newborns. Current evidence indicates that ZIKV is transmitted vertically from mother to fetus. However, the mechanism of intrauterine transmission and the cell types involved remain unknown. We demonstrate that the contemporary ZIKV strain PRVABC59 (PR 2015) infects and replicates in primary human placental macrophages, called Hofbauer cells, and to a lesser extent in cytotrophoblasts, isolated from villous tissue of full-term placentae. Viral replication coincides with induction of type I interferon (IFN), pro-inflammatory cytokines, and antiviral gene expression, but with minimal cell death. Our results suggest a mechanism for intrauterine transmission in which ZIKV gains access to the fetal compartment by directly infecting placental cells and disrupting the placental barrier. PMID:27247001

  12. BROMODICHLOROMETHANE INHIBITS HUMAN PLACENTAL TROPHOBLAST DIFFERENTIATION

    EPA Science Inventory

    BROMODICHLOROMETHANE INHIBITS HUMAN PLACENTAL
    TROPHOBLAST DIFFERENTIATION
    Jiangang Chen, Twanda L. Thirkill, Peter N. Lohstroh, Susan R. Bielmeier, Michael
    G. Narotsky, Deborah S. Best, Randy A. Harrison, Kala Natarajan, Rex A. Pegram,
    Bill L. Lasley, and Gordon C. Do...

  13. Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation.

    PubMed

    Menkhorst, Ellen Melaleuca; Lane, Natalie; Winship, Amy Louise; Li, Priscilla; Yap, Joanne; Meehan, Katie; Rainczuk, Adam; Stephens, Andrew; Dimitriadis, Evdokia

    2012-01-01

    Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the 'extravillous trophoblast' (EVT) invade through the differentiated uterine endometrium (the decidua) to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10(-8) M), medroxyprogesterone acetate (10(-7) M) and cAMP (0.5 mM) for 14 days. Conditioned media (CM) was collected on day 2 (non-decidualized CM) and 14 (decidualized CM) of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN) before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1), dipeptidyl peptidase 1 (DPP1/cathepsin C) and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro-inflammatory condition

  14. Decidual-Secreted Factors Alter Invasive Trophoblast Membrane and Secreted Proteins Implying a Role for Decidual Cell Regulation of Placentation

    PubMed Central

    Menkhorst, Ellen Melaleuca; Lane, Natalie; Winship, Amy Louise; Li, Priscilla; Yap, Joanne; Meehan, Katie; Rainczuk, Adam; Stephens, Andrew; Dimitriadis, Evdokia

    2012-01-01

    Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the ‘extravillous trophoblast’ (EVT) invade through the differentiated uterine endometrium (the decidua) to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10−8 M), medroxyprogesterone acetate (10−7 M) and cAMP (0.5 mM) for 14 days. Conditioned media (CM) was collected on day 2 (non-decidualized CM) and 14 (decidualized CM) of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN) before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1), dipeptidyl peptidase 1 (DPP1/cathepsin C) and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro-inflammatory condition

  15. Finite Element Modeling of Human Placental Tissue

    PubMed Central

    Yu, Mao; Manoogian, Sarah; Duma, Stefan M.; Stitzel, Joel D.

    2009-01-01

    Motor vehicle crashes account for a large portion of placental abruption and fetal losses. To better understand the material properties of the human placenta, a Finite Element (FE) model of human placenta tissue was created and verified using data from uniaxial tension tests. Sixty-four tensile tests at three different strain rates of 7% strain/s, 70% strain/s, and 700% strain/s from six whole human placentas were used for model development. Nominal stresses were calculated by dividing forces at the grips by the original cross-sectional area. Nominal strains were calculated by dividing cross-head displacement by the original gauge length. A detailed methodology for interpreting experimental data for application to material model development is presented. A model of the tension coupon was created in LS-DYNA and stretched in the same manner as the uniaxial tension tests. The behavior of the material was optimized to the uniaxial tension test using a multi-island genetic algorithm. The results demonstrate good correlation between experiments and the model, with an average difference of 2% between the optimized FE and experimental first principal stress at the termination state. The material parameters found in this study can be utilized in FE models of placental tissues for behavior under dynamic loading. PMID:20184849

  16. Human placental trophoblasts confer viral resistance to recipient cells

    PubMed Central

    Delorme-Axford, Elizabeth; Donker, Rogier B.; Mouillet, Jean-Francois; Chu, Tianjiao; Bayer, Avraham; Ouyang, Yingshi; Wang, Tianyi; Stolz, Donna B.; Sarkar, Saumendra N.; Morelli, Adrian E.; Sadovsky, Yoel; Coyne, Carolyn B.

    2013-01-01

    Placental trophoblasts form the interface between the fetal and maternal environments and serve to limit the maternal–fetal spread of viruses. Here we show that cultured primary human placental trophoblasts are highly resistant to infection by a number of viruses and, importantly, confer this resistance to nonplacental recipient cells by exosome-mediated delivery of specific microRNAs (miRNAs). We show that miRNA members of the chromosome 19 miRNA cluster, which are almost exclusively expressed in the human placenta, are packaged within trophoblast-derived exosomes and attenuate viral replication in recipient cells by the induction of autophagy. Together, our findings identify an unprecedented paracrine and/or systemic function of placental trophoblasts that uses exosome-mediated transfer of a unique set of placental-specific effector miRNAs to directly communicate with placental or maternal target cells and regulate their immunity to viral infections. PMID:23818581

  17. Bromodichloromethane inhibits human placental trophoblast differentiation.

    PubMed

    Chen, Jiangang; Thirkill, Twanda L; Lohstroh, Peter N; Bielmeier, Susan R; Narotsky, Michael G; Best, Deborah S; Harrison, Randy A; Natarajan, Kala; Pegram, Rex A; Overstreet, James W; Lasley, Bill L; Douglas, Gordon C

    2004-03-01

    Epidemiological data suggest an association between exposures to bromodichloromethane (BDCM), a trihalomethane found in drinking water as a result of drinking water disinfection, and an increased risk of spontaneous abortion. We previously hypothesized that BDCM targets the placenta and showed that the secretion of chorionic gonadotrophin (CG) was reduced in primary cultures of human term syncytiotrophoblasts exposed to BDCM. In the present study we extend this observation by evaluating the effects of BDCM on the morphological differentiation of mononucleated cytotrophoblast cells to multinucleated syncytiotrophoblast-like colonies. Addition of BDCM to cytotrophoblast cultures inhibited the subsequent formation of multinucleated colonies in a dose-dependent manner, as determined by immunocytochemical staining for desmosomes and nuclei. The effect was seen at BDCM concentrations between 0.02 and 2 mM and was confirmed by quantitative image analysis. Secretion of bioactive and immunoreactive chorionic gonadotropin was also significantly inhibited in a dose-dependent manner under these culture conditions, and cellular levels of CG were also reduced. Trophoblast viability was not compromised by exposure to BDCM. We conclude that BDCM disrupts syncytiotrophoblast formation and inhibits CG secretion in vitro. Although other tissue targets are not ruled out, these data substantiate the idea that BDCM targets the placenta and could have implications for understanding the adverse pregnancy outcomes associated with BDCM exposure in humans. PMID:14691210

  18. Animal models of human placentation--a review.

    PubMed

    Carter, A M

    2007-04-01

    This review examines the strengths and weaknesses of animal models of human placentation and pays particular attention to the mouse and non-human primates. Analogies can be drawn between mouse and human in placental cell types and genes controlling placental development. There are, however, substantive differences, including a different mode of implantation, a prominent yolk sac placenta, and fewer placental hormones in the mouse. Crucially, trophoblast invasion is very limited in the mouse and transformation of uterine arteries depends on maternal factors. The mouse also has a short gestation and delivers poorly developed young. Guinea pig is a good alternative rodent model and among the few species known to develop pregnancy toxaemia. The sheep is well established as a model in fetal physiology but is of limited value for placental research. The ovine placenta is epitheliochorial, there is no trophoblast invasion of uterine vessels, and the immunology of pregnancy may be quite different. We conclude that continued research on non-human primates is needed to clarify embryonic-endometrial interactions. The interstitial implantation of human is unusual, but the initial interaction between trophoblast and endometrium is similar in macaques and baboons, as is the subsequent lacunar stage. The absence of interstitial trophoblast cells in the monkey is an important difference from human placentation. However, there is a strong resemblance in the way spiral arteries are invaded and transformed in the macaque, baboon and human. Non-human primates are therefore important models for understanding the dysfunction that has been linked to pre-eclampsia and fetal growth restriction. Models that are likely to be established in the wake of comparative genomics include the marmoset, tree shrew, hedgehog tenrec and nine-banded armadillo. PMID:17196252

  19. Heme Oxygenase-1 Is Not Decreased in Preeclamptic Placenta and Does Not Negatively Regulate Placental Soluble fms-Like Tyrosine Kinase-1 or Soluble Endoglin Secretion.

    PubMed

    Tong, Stephen; Kaitu'u-Lino, Tu'uhevaha J; Onda, Kenji; Beard, Sally; Hastie, Roxanne; Binder, Natalie K; Cluver, Cathy; Tuohey, Laura; Whitehead, Clare; Brownfoot, Fiona; De Silva, Manarangi; Hannan, Natalie J

    2015-11-01

    Elevated placental release of the antiangiogenic factors, soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sENG), is central to the pathophysiology of preeclampsia. It is widely accepted that heme oxygenase-1 (HO-1) is decreased in preeclamptic placenta and negatively regulates sFlt-1 and sENG production. We set out to verify these contentions. There was no difference in HO-1 mRNA or protein levels in preterm preeclamptic placentas (n=17) compared with gestationally matched controls (n=27). In silico analysis of microarray studies did not identify decreased placental HO-1 expression in preeclamptic placenta. Silencing HO-1 in primary trophoblasts did not affect sFlt-1 protein secretion after 24 or 48 hours. Silencing nuclear factor (erythroid-derived 2)-like 2 (transcription factor that upregulates HO-1) in trophoblasts also did not affect sFlt-1 secretion. Administering tin protoporphyrin IX dichloride (HO-1 inhibitor) or cobalt protoporphyrin (HO-1 inducer) into placental explants did not affect sFlt-1 or sENG secretion. Silencing HO-1 in 2 types of primary endothelial cells (human umbilical vein endothelial and uterine microvascular endothelial cells) significantly increased sFlt-1 secretion but not sENG secretion. However, HO-1 silencing selectively increased mRNA expression of sFlt-1 i13 (generically expressed sFlt-1 variant) but not of sFlt-1 e15a (sFlt-1 variant mainly expressed in placenta). Furthermore, adding tin protoporphyrin IX dichloride decreased sFlt-1, whereas adding HO-1 inducers (cobalt protoporphyrin, dimethyl fumarate, and rosiglitazone) either had no effect or increased sFlt-1 or sENG secretion (these trends are opposite to what is expected). We conclude that HO-1 expression is not decreased in preeclamptic placenta and HO-1 does not negatively regulate placental sFlt-1 and sENG secretion in placental or endothelial cells. PMID:26324507

  20. Human placental coated vesicles contain receptor-bound transferrin.

    PubMed Central

    Booth, A G; Wilson, M J

    1981-01-01

    Human placental coated vesicles have been purified by a method involving sucrose-density-gradient centrifugation and treatment with wheat-germ agglutinin. These preparations were free of contamination by placental microvillus fragments. Crossed immunoelectrophoresis demonstrated that the coated vesicles contained a single serum protein, which was identified as transferrin. This transferrin was only observed after the vesicles were treated with a non-ionic detergent, and its behaviour during crossed hydrophobic-interaction immunoelectrophoresis suggested that a large proportion of it was receptor-bound. No other serum proteins, including immunoglobulin G, could be detected in these preparations. Receptor-bound transferrin was the only antigen common to placental coated vesicles and microvilli, implying that other plasma-membrane proteins are excluded from the region of membrane involved in coated-vesicle formation. Images PLATE 2 PLATE 1 Fig. 1. Fig. 2. Fig. 3. PMID:6272755

  1. Bisphenol A disrupts gene expression in human placental trophoblast cells.

    PubMed

    Rajakumar, Chandrew; Guan, Haiyan; Langlois, David; Cernea, Maria; Yang, Kaiping

    2015-06-01

    This study examined the effect of bisphenol A (BPA) on human placental gene expression using primary trophoblast cells as an in vitro model system. Trophoblast cells were isolated from human placentas at term, cultured and then exposed to environmentally relevant concentrations of BPA (0.1-2 μg/ml) for up to 24h, after which levels of 11β-HSD2 mRNA, protein and activity were determined by standard radiometric conversion assay, western blotting, and qRT-PCR, respectively. The mRNA levels of several other prominent placental hormones/factors were also assessed by qRT-PCR. BPA dramatically increased levels of 11β-HSD2 activity, protein and mRNA in a time- and concentration-dependent manner (> 4-fold). BPA also augmented aromatase, glucose transporter-1, CRH, and hCG mRNA levels while reducing the level of leptin mRNA. These findings demonstrate that BPA severely disrupts human placental gene expression in vitro, which suggests that exposure to BPA may contribute to altered placental function and consequent pregnancy complications. PMID:25784278

  2. Angiogenin expression during early human placental development; association with blood vessel formation.

    PubMed

    Pavlov, Nadine; Frendo, Jean-Louis; Guibourdenche, Jean; Degrelle, Séverine A; Evain-Brion, Danièle; Badet, Josette

    2014-01-01

    The placenta is a transient organ essential for fetal development. During human placental development, chorionic villi grow in coordination with a large capillary network resulting from both vasculogenesis and angiogenesis. Angiogenin is one of the most potent inducers of neovascularisation in experimental models in vivo. We and others have previously mapped angiogenin expression in the human term placenta. Here, we explored angiogenin involvement in early human placental development. We studied, angiogenin expression by in situ hybridisation and/or by RT-PCR in tissues and primary cultured trophoblastic cells and angiogenin cellular distribution by coimmunolabelling with cell markers: CD31 (PECAM-1), vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor receptor-2 (VEGF-R2), Tie-2, von Willebrand factor, CD34, erythropoeitin receptor (Epo-R), alpha-smooth muscle actin, CD45, cytokeratin 7, and Ki-67. Extravillous and villous cytotrophoblasts, isolated and differentiated in vitro, expressed and secreted angiogenin. Angiogenin was detected in villous trophoblastic layers, and structured and nascent fetal vessels. In decidua, it was expressed by glandular epithelial cells, vascular cells and macrophages. The observed pattern of angiogenin expression is compatible with a role in blood vessel formation and in cross-talk between trophoblasts and endothelial cells. In view of angiogenin properties, we suggest that angiogenin may participate in placental vasculogenesis and organogenesis. PMID:25093183

  3. The endocannabinoid system: A novel player in human placentation.

    PubMed

    Costa, M A

    2016-06-01

    Cannabis sativa is the most consumed illegal drug around the world. Its consumption during pregnancy is associated with gestational complications, particularly with fetal growth restriction. Endocannabinoids (eCBs) are lipid molecules that act by activating the G-protein coupled cannabinoid receptors, which are also target of the phytocannabinoid Δ(9)-tetrahydrocannabinol (THC). The endocannabinoid system (ECS) participates in distinct biological processes, including pain, inflammation, neuroprotection, and several reproductive events. In addition, an abnormal expression of ECS is associated with infertility and miscarriages. This manuscript will review and discuss the expression of ECS in normal and pathological human placentas, and the role of eCBs and THC in trophoblast proliferation, apoptosis, differentiation, and function. The current evidence points towards a role of ECS in human placentation, shedding light on the contribution of the eCBs in the coordination of human placentation, and in the cellular mechanisms underlying the deleterious effects of cannabis consumption during pregnancy. PMID:26965993

  4. A microphysiological model of the human placental barrier.

    PubMed

    Blundell, Cassidy; Tess, Emily R; Schanzer, Ariana S R; Coutifaris, Christos; Su, Emily J; Parry, Samuel; Huh, Dongeun

    2016-08-01

    During human pregnancy, the fetal circulation is separated from maternal blood in the placenta by two cell layers - the fetal capillary endothelium and placental trophoblast. This placental barrier plays an essential role in fetal development and health by tightly regulating the exchange of endogenous and exogenous materials between the mother and the fetus. Here we present a microengineered device that provides a novel platform to mimic the structural and functional complexity of this specialized tissue in vitro. Our model is created in a multilayered microfluidic system that enables co-culture of human trophoblast cells and human fetal endothelial cells in a physiologically relevant spatial arrangement to replicate the characteristic architecture of the human placental barrier. We have engineered this co-culture model to induce progressive fusion of trophoblast cells and to form a syncytialized epithelium that resembles the syncytiotrophoblast in vivo. Our system also allows the cultured trophoblasts to form dense microvilli under dynamic flow conditions and to reconstitute expression and physiological localization of membrane transport proteins, such as glucose transporters (GLUTs), critical to the barrier function of the placenta. To provide a proof-of-principle for using this microdevice to recapitulate native function of the placental barrier, we demonstrated physiological transport of glucose across the microengineered maternal-fetal interface. Importantly, the rate of maternal-to-fetal glucose transfer in this system closely approximated that measured in ex vivo perfused human placentas. Our "placenta-on-a-chip" platform represents an important advance in the development of new technologies to model and study the physiological complexity of the human placenta for a wide variety of applications. PMID:27229450

  5. Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions.

    PubMed

    Zhou, Jinghua; Zhang, Jianyun; Li, Feixue; Liu, Jing

    2016-05-01

    Triazole fungicides are one of the top ten classes of current-use pesticides. Although exposure to triazole fungicides is associated with reproductive toxicity in mammals, limited information is available regarding the effects of triazole fungicides on human placental trophoblast function. Tebuconazole (TEB) is a common triazole fungicide that has been extensively used for fungi control. In this work, we showed that TEB could reduce cell viability, disturb normal cell cycle distribution and induce apoptosis of human placental trophoblast cell line HTR-8/SVneo (HTR-8). Bcl-2 protein expression decreased and the level of Bax protein increased after TEB treatment in HTR-8 cells. The results demonstrated that this fungicide induced apoptosis of trophoblast cells via mitochondrial pathway. Importantly, we found that the invasive and migratory capacities of HTR-8 cells decreased significantly after TEB administration. TEB altered the expression of key regulatory genes involved in the modulation of trophoblast functions. Taken together, TEB suppressed human trophoblast invasion and migration through affecting the expression of protease, hormones, angiogenic factors, growth factors and cytokines. As the invasive and migratory abilities of trophoblast are essential for successful placentation and fetus development, our findings suggest a potential risk of triazole fungicides to human pregnancy. PMID:26852204

  6. Hemodynamic aspects of normal human feto-placental (umbilical) circulation.

    PubMed

    Acharya, Ganesh; Sonesson, Sven-Erik; Flo, Kari; Räsänen, Juha; Odibo, Anthony

    2016-06-01

    Understanding the changes in normal circulatory dynamics that occur during the course of pregnancy is essential for improving our knowledge of pathophysiological mechanisms associated with feto-placental diseases. The umbilical circulation is the lifeline of the fetus, and it is accessible for noninvasive assessment. However, not all hemodynamic parameters can be reliably measured in utero using currently available technology. Experimental animal studies have been crucial in validating major concepts related to feto-placental circulatory physiology, but caution is required in directly translating the findings of such studies into humans due to species differences. Furthermore, it is important to establish normal reference ranges and take into account gestational age associated changes while interpreting the results of clinical investigation. Therefore, it is necessary to critically evaluate, synthesize and summarize the knowledge available from the studies performed on human pregnancies to be able to appropriately apply them in clinical practice. This narrative review is an attempt to present contemporary concepts on hemodynamics of feto-placental circulation based on human studies. PMID:27130575

  7. Characterization of urokinase receptor expression by human placental trophoblasts.

    PubMed

    Zini, J M; Murray, S C; Graham, C H; Lala, P K; Karikó, K; Barnathan, E S; Mazar, A; Henkin, J; Cines, D B; McCrae, K R

    1992-06-01

    The processes of implantation and placentation are both dependent on the invasion and remodeling of the uterine endometrium and vasculature by trophoblasts. Because the secretion and autocrine binding of urokinase (uPA) appears to be a common mechanism used by cells to facilitate plasmin-dependent tissue invasion, we measured the production of uPA and expression of uPA receptors by trophoblasts. Prourokinase bound specifically, reversibly, and with high affinity to cultured trophoblasts, via the uPA epidermal growth factor-like domain. Trophoblasts derived from two first-trimester placentae bound more prourokinase than cells isolated from term placentae. Furthermore, in vitro differentiation of cultured cytotrophoblasts into syncytiotrophoblasts was associated with diminished expression of urokinase receptors and a parallel decrease in the cellular content of uPA receptor mRNA. Trophoblasts also secreted prourokinase and plasminogen activator inhibitors types 1 and 2 (PAI-1 and PAI-2). Although prourokinase was secreted in amounts sufficient to endogenously saturate trophoblast uPA receptors, trophoblasts secreted greater amounts of PAI-1 and PAI-2 than uPA, and no net plasminogen activator activity was detected in trophoblast conditioned medium. In contrast, plasminogen added directly to cultured trophoblasts was readily converted to plasmin. Although the invasion and remodeling of uterine tissues by trophoblasts is a complex process dependent on several proteases of varying specificity, our findings suggest that the expression and modulation of urokinase receptors on the trophoblast cell surface may play an important role in this process. PMID:1316787

  8. Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling

    PubMed Central

    Knöfler, Martin; Pollheimer, Jürgen

    2013-01-01

    Wingless ligands, a family of secreted proteins, are critically involved in organ development and tissue homeostasis by ensuring balanced rates of stem cell proliferation, cell death and differentiation. Wnt signaling components also play crucial roles in murine placental development controlling trophoblast lineage determination, chorioallantoic fusion and placental branching morphogenesis. However, the role of the pathway in human placentation, trophoblast development and differentiation is only partly understood. Here, we summarize our present knowledge about Wnt signaling in the human placenta and discuss its potential role in physiological and aberrant trophoblast invasion, gestational diseases and choriocarcinoma formation. Differentiation of proliferative first trimester cytotrophoblasts into invasive extravillous trophoblasts is associated with nuclear recruitment of β -catenin and induction of Wnt-dependent T-cell factor 4 suggesting that canonical Wnt signaling could be important for the formation and function of extravillous trophoblasts. Indeed, activation of the pathway was shown to promote trophoblast invasion in different in vitro trophoblast model systems as well as trophoblast cell fusion. Methylation-mediated silencing of inhibitors of Wnt signaling provided evidence for epigenetic activation of the pathway in placental tissues and choriocarcinoma cells. Similarly, abundant nuclear expression of β -catenin in invasive trophoblasts of complete hydatidiform moles suggested a role for hyper-activated Wnt signaling. In contrast, upregulation of Wnt inhibitors was noticed in placentae of women with preeclampsia, a disease characterized by shallow trophoblast invasion and incomplete spiral artery remodeling. Moreover, changes in Wnt signaling have been observed upon cytomegalovirus infection and in recurrent abortions. In summary, the current literature suggests a critical role of Wnt signaling in physiological and abnormal trophoblast function. PMID

  9. The Comparison of Adipose Stem Cell and Placental Stem Cell in Secretion Characteristics and in Facial Antiaging.

    PubMed

    Xu, Yan; Guo, Shilei; Wei, Cui; Li, Honglan; Chen, Lei; Yin, Chang; Zhang, Chuansen

    2016-01-01

    Background. Mesenchymal stem cells are the most commonly used seed cells in biomedical research and tissue engineering. Their secretory proteins have also been proven to play an important role in tissue healing. Methods. We isolated adipose stem cells and placental stem cells and performed analysis examining characteristics. The secretory proteins were extracted from conditioned medium and analyzed by MALDI-TOF/TOF. The antiaging effect of conditioned mediums was evaluated by the results of facial skin application. Results. Adipose stem cells and placental stem cells were found to be very similar in their surface markers and multipotency. The specific proteins secreted from adipose stem cells were more adept at cell adhesion, migration, wound healing, and tissue remodeling, while the proteins secreted by placental stem cells were more adept at angiogenesis, cell proliferation, differentiation, cell survival, immunomodulation, and collagen degradation. While these two types of conditioned medium could improve the facial index, the improvement of Melanin index after injection of the adipose stem cell conditioned medium was much more significant. Conclusion. The results suggest that the secreted proteins are ideal cell-free substances for regeneration medicine, especially in the antiaging field. PMID:27057176

  10. The Comparison of Adipose Stem Cell and Placental Stem Cell in Secretion Characteristics and in Facial Antiaging

    PubMed Central

    Xu, Yan; Guo, Shilei; Wei, Cui; Li, Honglan; Chen, Lei; Yin, Chang; Zhang, Chuansen

    2016-01-01

    Background. Mesenchymal stem cells are the most commonly used seed cells in biomedical research and tissue engineering. Their secretory proteins have also been proven to play an important role in tissue healing. Methods. We isolated adipose stem cells and placental stem cells and performed analysis examining characteristics. The secretory proteins were extracted from conditioned medium and analyzed by MALDI-TOF/TOF. The antiaging effect of conditioned mediums was evaluated by the results of facial skin application. Results. Adipose stem cells and placental stem cells were found to be very similar in their surface markers and multipotency. The specific proteins secreted from adipose stem cells were more adept at cell adhesion, migration, wound healing, and tissue remodeling, while the proteins secreted by placental stem cells were more adept at angiogenesis, cell proliferation, differentiation, cell survival, immunomodulation, and collagen degradation. While these two types of conditioned medium could improve the facial index, the improvement of Melanin index after injection of the adipose stem cell conditioned medium was much more significant. Conclusion. The results suggest that the secreted proteins are ideal cell-free substances for regeneration medicine, especially in the antiaging field. PMID:27057176

  11. Human placental cathepsin B1. Isolation and some physical properties

    PubMed Central

    Swanson, Arnold A.; Martin, Bill J.; Spicer, Sam S.

    1974-01-01

    A reproducible procedure for the isolation, from human placenta, of a cathepsin B1 in a homogeneous state, demonstrated by electrophoretic, ultracentrifugal and enzymic criteria, was carried out. The pH optimum was near pH5.5. The placental enzyme catalysed the release of acid-soluble u.v.-dense products from haemoglobin and myoglobin. It was inhibited by heavy metals and several compounds which react with the thiol groups. The optimum temperature was between 37° and 42°C. The molecular weight of the enzyme was calculated to be 24250. ImagesPLATE 1Fig. 5. PMID:4824207

  12. 21 CFR 862.1585 - Human placental lactogen test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... placental lactogen are used in the diagnosis and clinical management of high-risk pregnancies involving fetal distress associated with placental insufficiency. Measurements of HPL are also used in...

  13. 21 CFR 862.1585 - Human placental lactogen test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... placental lactogen are used in the diagnosis and clinical management of high-risk pregnancies involving fetal distress associated with placental insufficiency. Measurements of HPL are also used in...

  14. 21 CFR 862.1585 - Human placental lactogen test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... placental lactogen are used in the diagnosis and clinical management of high-risk pregnancies involving fetal distress associated with placental insufficiency. Measurements of HPL are also used in...

  15. 21 CFR 862.1585 - Human placental lactogen test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... placental lactogen are used in the diagnosis and clinical management of high-risk pregnancies involving fetal distress associated with placental insufficiency. Measurements of HPL are also used in...

  16. 21 CFR 862.1585 - Human placental lactogen test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... placental lactogen are used in the diagnosis and clinical management of high-risk pregnancies involving fetal distress associated with placental insufficiency. Measurements of HPL are also used in...

  17. Effect of microcystin-LR on human placental villous trophoblast differentiation in vitro.

    PubMed

    Douglas, Gordon C; Thirkill, Twanda L; Kumar, Priyadarsini; Loi, Minerva; Hilborn, Elizabeth D

    2016-04-01

    Microcystin-LR is a cyanobacterial toxin found in surface and recreational waters that inhibits protein phosphatases and may disrupt the cytoskeleton. Microcystins induce apoptosis in hepatocytes at ≤2.0 µM. Nothing is known about the effects of microcystins on human placental trophoblast differentiation and function. The differentiation of villous trophoblasts to form syncytiotrophoblast occurs throughout pregnancy and is essential for normal placental and fetal development. To investigate the effects of microcystin, villous cytotrophoblasts were isolated from term placentas using an established method and exposed to microcystin-LR. Microcystin-LR below the cytotoxic dose of 25 µM did not cause cell rounding or detachment, had no effect on apoptosis, and no effect on the morphological differentiation of mononucleated cytotrophoblasts to multinucleated syncytiotrophoblast. However, secretion of human chorionic gonadotropin (hCG) increased in a microcystin-LR dose-dependent manner. When incubated with l-buthionine sulphoximine (BSO) to deplete glutathione levels, trophoblast morphological differentiation proceeded normally in the presence of microcystin-LR. Microcystin-LR did not disrupt the trophoblast microtubule cytoskeleton, which is known to play a role in trophoblast differentiation. Immunofluorescence studies showed that trophoblasts express organic anion transport protein 1B3 (OATP1B3), a known microcystin transport protein. In comparison to hepatocytes, trophoblasts appear to be more resistant to the toxic effects of microcystin-LR. The physiological implications of increased hCG secretion in response to microcystin-LR exposure remain to be determined. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 427-439, 2016. PMID:25346179

  18. Virus-Free Human Placental Cell Lines To Study Genetic Functions | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Institute of Child Health and Human Development's Section on Cellular Differentiation is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize immortalized virus-free human placental cell lines.The National Institute of Child Health and Human Development's Section on Cellular Differentiation is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize immortalized virus-free human placental cell lines.

  19. Up-regulation of placental leptin by human chorionic gonadotropin.

    PubMed

    Maymó, Julieta L; Pérez Pérez, Antonio; Sánchez-Margalet, Víctor; Dueñas, José L; Calvo, Juan Carlos; Varone, Cecilia L

    2009-01-01

    Leptin, the 16,000 molecular weight protein product of the obese gene, was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, leptin has been suggested to be involved in other functions during pregnancy, particularly in placenta, in which it was found to be expressed. In the present work, we have found that recombinant human chorionic gonadotropin (hCG) added to BeWo choriocarcinoma cell line showed a stimulatory effect on endogenous leptin expression, when analyzed by Western blot. This effect was time and dose dependent. Maximal effect was achieved at hCG 100 IU/ml. Moreover, hCG treatment enhanced leptin promoter activity up to 12.9 times, evaluated by transient transfection with a plasmid construction containing different promoter regions and the reporter gene luciferase. This effect was dose dependent and evidenced with all the promoter regions analyzed, regardless of length. Similar results were obtained with placental explants, thus indicating physiological relevance. Because hCG signal transduction usually involves cAMP signaling, this pathway was analyzed. Contrarily, we found that dibutyryl cAMP counteracted hCG effect on leptin expression. Furthermore, cotransfection with the catalytic subunit of PKA and/or the transcription factor cAMP response element binding protein repressed leptin expression. Thereafter we determined that hCG effect could be partially blocked by pharmacologic inhibition of MAPK pathway with 50 microM PD98059 but not by the inhibition of the phosphatidylinositol 3-kinase pathway with 0.1 microm wortmannin. Moreover, hCG treatment promoted MAPK kinase and ERK1/ERK2 phosphorylation in placental cells. Finally, cotransfection with a dominant-negative mutant of MAPK blocked the hCG-mediated activation of leptin expression. In conclusion, we provide some evidence suggesting that hCG induces leptin expression in trophoblastic cells probably involving the MAPK signal transduction

  20. Human placental perfusion method in the assessment of transplacental passage of antiepileptic drugs

    SciTech Connect

    Myllynen, Paeivi . E-mail: paivi.k.myllynen@oulu.fi; Pienimaeki, Paeivi; Vaehaekangas, Kirsi

    2005-09-01

    Epilepsy is one of the most common neurological diseases, affecting about 0.5 to 1% of pregnant women. It is commonly accepted that older antiepileptic drugs bear teratogenic potential. So far, no agreement has been reached about the safest antiepileptic drug during pregnancy. It is known that nearly all drugs cross the placenta at least to some extent. Nowadays, there is very little information available of the pharmacokinetics of drugs in the feto-placental unit. Detailed information about drug transport across the placenta would be valuable for the development of safe and effective treatments. For reasons of safety, human studies on placental transfer are restricted to a limited number of drugs. Interspecies differences limit the extrapolation of animal data to humans. Several in vitro methods for the study of placental transfer have been developed over the past decades. The placental perfusion method is the only experimental method that has been used to study human placental transfer of substances in organized placental tissue. The aim of this article is to review human placental perfusion data on antiepileptic drugs. According to perfusion data, it seems that most of the antiepileptic drugs are transferred across the placenta meaning significant fetal exposure.

  1. A prospective study to compare serum human placental lactogen and menstrual dates for determining gestational age.

    PubMed

    Whittaker, P G; Lind, T; Lawson, J Y

    1987-01-01

    In a group of 575 healthy pregnant women with certain menstrual dates the estimation of the length of gestation from maternal serum human placental lactogen concentrations has been compared with gestational age calculated from the last menstrual period and ultrasonic measurements of the fetal biparietal diameter. In 412 of these patients labor started spontaneously, and the estimated dates of delivery determined by these three methods were also compared. In the range of 9 to 17 weeks of pregnancy, gestational age can be determined by human placental lactogen measurement to within 7 days (+/- 1 SD) which compares favorably with other methods. Regarding the prediction of the expected date of delivery, 88% were delivered within 2 weeks of the date predicted by last menstrual period, 82% within 2 weeks of the sonar date, and 80% by the date determined by human placental lactogen assessment. Prediction of delivery in a further group of 139 women with uncertain dates gave 73% within 2 weeks by sonar date and 69% within 2 weeks by human placental lactogen determination. We suggest human placental lactogen measurements should become part of routine antenatal care complementing rather than replacing the role of ultrasonic scanning. For those doctors and patients who wish to avoid more exposure to ultrasonic scanning than absolutely necessary, human placental lactogen estimates offer an alternative method for assessing the length of gestation. PMID:3541617

  2. Dickkopf-1 induced apoptosis in human placental choriocarcinoma is independent of canonical Wnt signaling

    SciTech Connect

    Peng Sha; Miao Chenglin; Li Jing; Fan Xiujun; Cao Yujing; Duan Enkui . E-mail: duane@ioz.ac.cn

    2006-11-24

    Placental choriocarcinoma, a reproductive system carcinoma in women, has about 0.81% occurrence frequency in China, which leads to over 90% lethality due to indistinct pathogenesis and the absence of efficient therapeutic treatment. In the present study, using immunostaining and reverse transcription PCR, we reported that Dickkopf-1 (Dkk-1) is prominently expressed in human cytotrophoblast (CTB) cell, but absent in the human placental choriocarcinoma cell line JAR and JEG3, implicating an unknown correlation between Dkk-1 and carcinogenesis of placental choriocarcinoma. Further, through exogenous introduction of Dkk-1, we found repressed proliferation in JAR and JEG3, induced apoptosis in JAR, and discovered significant tumor suppression effects of Dkk-1 in placental choriocarcinoma. Moreover we found that this function of Dkk-1 is achieved through c-Jun N-terminal kinase (JNK), whereas the canonical Wnt pathway may not have a great role. This discovery is not symphonic to previous functional understanding of Dkk-1, a canonical Wnt signaling antagonist. Together, our data indicate the possible correlation between Dkk-1 and human placental choriocarcinoma and suggest potential applications of Dkk-1 in treatment of human placental choriocarcinomas.

  3. Isolation and characterization of human placental trophoblast subpopulations from first-trimester chorionic villi.

    PubMed Central

    Aboagye-Mathiesen, G; Laugesen, J; Zdravkovic, M; Ebbesen, P

    1996-01-01

    A method for the simultaneous preparation of highly enriched human placental trophoblast populations (villous and extravillous) from first-trimester placental villi (5 to 12 weeks) by using sequential trypsinization, percoll gradient centrifugation, and negative selection with anti-CD9 immunomagnetic separation is described. The purification method resulted in the isolation of four distinct trophoblast populations identified on the basis of morphology and phenotyping: (i) mononuclear villous cytotrophoblast cells which, through differentiation, become committed to syncytium formation; (ii) an extravillous trophoblast population which appeared as a "crazy pavement" and, with subsequent subculturing, differentiated morphologically to mononuclear cells; (iii) an extravillous trophoblast fraction which fused to form multinucleated trophoblast giant cells; and (iv) floating intermediate extravillous trophoblast cells which fused together to form cell clumps and which further differentiated to a mononuclear anchoring intermediate extravillous trophoblast. Short-term cultures of the freshly isolated cell fractions consisted of heterogeneous trophoblasts at different differentiation stages as determined by their varied biochemical and morphological properties. All the isolated trophoblast populations expressed the cytokeratin intermediate filament and the epithelium-specific cell-cell adhesion molecule E-cadherin. The isolated villous trophoblasts in culture expressed integrins alpha 6 and beta 4 and reduced levels of beta 1 subunits, whereas the proliferating extravillous trophoblast cultures expressed alpha 1, alpha 3, and alpha 5 and high levels of beta 1 integrin subunits, vitronectin receptor (alpha V beta 3/beta 5), and major histocompatibility complex class 1 molecules. Furthermore, the isolated trophoblast populations secreted metalloproteases (such as type IV collagenases [mainly 72- and 92-kDa enzymes, i.e., gelatinases A and B]) and urokinase plasminogen

  4. Validation of murine and human placental explant cultures for use in sex steroid and phase II conjugation toxicology studies.

    PubMed

    Sato, Brittany L; Ward, Monika A; Astern, Joshua M; Kendal-Wright, Claire E; Collier, Abby C

    2015-02-01

    Human primary placental explant culture is well established for cytokine signaling and toxicity, but has not been validated for steroidogenic or metabolic toxicology. The technique has never been investigated in the mouse. We characterized human and mouse placental explants for up to 96 h in culture. Explant viability (Lactate dehydrogenase) and sex steroid levels were measured in media using spectrophotometry and ELISA, respectively. Expression and activities of the steroidogenic (3β-hydroxysteroid dehydrogenase, Cytochrome P45017A1, Cytochrome P45019), conjugation (UDP-glucuronosyltransferase, sulfotransferase (SULT)), and regeneration (β-glucuronidase, arylsulfatase C (ASC)) enzymes were determined biochemically in tissues with fluorimetric and spectrophotometric assays, and western blot. Explants were viable up to 96 h, but progesterone, estrone, and 17β-estradiol secretion decreased. Steroidogenic enzyme expression and activities were stable in mouse explants and similar to levels in freshly isolated tissues, but were lower in human explants than in fresh tissue (P<0.01). Human and mouse explants exhibited significantly less conjugation after 96 h, SULT was not detected in the mouse, and neither explants had active ASC, although proteins were expressed. Mouse explants may be useful for steroid biochemistry and endocrine disruption studies, but not metabolic conjugation. In contrast, human explants may be useful for studying conjugation for <48 h, but not for steroid/endocrine studies. PMID:25283089

  5. Validation of murine and human placental explant cultures for use in sex steroid and phase II conjugation toxicology studies

    PubMed Central

    Sato, Brittany L.; Ward, Monika A.; Astern, Joshua M.; Kendal-Wright, Claire E.; Collier, Abby C.

    2014-01-01

    Human primary placental explant culture is well established for cytokine signaling and toxicity, but has not been validated for steroidogenic or metabolic toxicology. The technique has never been investigated in the mouse. We characterized human and mouse placental explants for up to 96hr in culture. Explant viability (Lactate dehydrogenase) and sex steroid levels were measured in media using spectrophotometry and ELISA, respectively. Expression and activities of the steroidogenic (3β-hydroxysteroid dehydrogenase, Cytochrome P45017A1, Cytochrome P45019), conjugation (UDP-glucuronosyltransferase, sulfotransferase (SULT)), and regeneration (β-glucuronidase, arylsulfatase C (ASC)) enzymes were determined biochemically in tissues with fluorimetric and spectrophotometric assays, and western blot. Explants were viable up to 96hr, but progesterone, estrone, and 17β-estradiol secretion decreased. Steroidogenic enzyme expression and activities were stable in mouse explants and similar to levels in freshly isolated tissues, but were lower in human explants than in fresh tissue (P<0.01). Human and mouse explants exhibited significantly less conjugation after 96hr, SULT was not detected in the mouse, and neither explants had active ASC, although proteins were expressed. Mouse explants may be useful for steroid biochemistry and endocrine disruption studies, but not metabolic conjugation. In contrast, human explants may be useful for studying conjugation for <48hr, but not for steroid/endocrine studies. PMID:25283089

  6. A role for GPR55 in human placental venous endothelial cells

    PubMed Central

    Kremshofer, Julia; Siwetz, Monika; Berghold, Veronika M.; Lang, Ingrid; Huppertz, Berthold; Gauster, Martin

    2015-01-01

    Endocannabinoids and their G protein-coupled receptors have been suggested to play a key role in human pregnancy, by regulating important aspects such as implantation, decidualization, placentation and labour. G protein-coupled receptor 55 (GPR55) was previously postulated to be another cannabinoid receptor, since specific cannabinoids were shown to act independently of the classical cannabinoid receptors CB1 or CB2. Current knowledge about GPR55 expression and function in human placenta is very limited and motivated us to evaluate human placental GPR55 expression in relation to other human peripheral tissues and to analyze spatiotemporal GPR55 expression in human placenta. Gene expression analysis revealed low GPR55 levels in human placenta, when compared to spleen and lung, the organs showing highest GPR55 expression. Moreover, expression analysis showed 5.8 fold increased placental GPR55 expression at term compared to first trimester. Immunohistochemistry located GPR55 solely at the fetal endothelium of first trimester and term placenta. qPCR and immunocytochemistry consistently confirmed GPR55 expression in isolated primary placental arterial and venous endothelial cells. Incubation with L-α-lysophosphatidylinositol (LPI), the specific and functional ligand for GPR55, at a concentration of 1 μM, significantly enhanced migration of venous, but not arterial endothelial cells. LPI enhanced migration was inhibited by the GPR55 antagonist O-1918, suggesting a role of the LPI-GPR55 axis in placental venous endothelium function. PMID:25869640

  7. A role for GPR55 in human placental venous endothelial cells.

    PubMed

    Kremshofer, Julia; Siwetz, Monika; Berghold, Veronika M; Lang, Ingrid; Huppertz, Berthold; Gauster, Martin

    2015-07-01

    Endocannabinoids and their G protein-coupled receptors have been suggested to play a key role in human pregnancy, by regulating important aspects such as implantation, decidualization, placentation and labor. G protein-coupled receptor 55 (GPR55) was previously postulated to be another cannabinoid receptor, since specific cannabinoids were shown to act independently of the classical cannabinoid receptors CB1 or CB2. Current knowledge about GPR55 expression and function in human placenta is very limited and motivated us to evaluate human placental GPR55 expression in relation to other human peripheral tissues and to analyze spatiotemporal GPR55 expression in human placenta. Gene expression analysis revealed low GPR55 levels in human placenta, when compared to spleen and lung, the organs showing highest GPR55 expression. Moreover, expression analysis showed 5.8 fold increased placental GPR55 expression at term compared to first trimester. Immunohistochemistry located GPR55 solely at the fetal endothelium of first trimester and term placentas. qPCR and immunocytochemistry consistently confirmed GPR55 expression in isolated primary placental arterial and venous endothelial cells. Incubation with L-α-lysophosphatidylinositol (LPI), the specific and functional ligand for GPR55, at a concentration of 1 µM, significantly enhanced migration of venous, but not arterial endothelial cells. LPI-enhanced migration was inhibited by the GPR55 antagonist O-1918, suggesting a role of the LPI-GPR55 axis in placental venous endothelium function. PMID:25869640

  8. Placental endoplasmic reticulum stress negatively regulates transcription of placental growth factor via ATF4 and ATF6β: implications for the pathophysiology of human pregnancy complications

    PubMed Central

    Mizuuchi, Masahito; Cindrova‐Davies, Tereza; Olovsson, Matts; Charnock‐Jones, D Stephen; Burton, Graham J

    2016-01-01

    Abstract Low maternal circulating concentrations of placental growth factor (PlGF) are one of the hallmarks of human pregnancy complications, including fetal growth restriction (FGR) and early‐onset pre‐eclampsia (PE). Currently, PlGF is used clinically with other biomarkers to screen for high‐risk cases, although the mechanisms underlying its regulation are largely unknown. Placental endoplasmic reticulum (ER) stress has recently been found to be elevated in cases of FGR, and to an even greater extent in early‐onset PE complicated with FGR. ER stress activates the unfolded protein response (UPR); attenuation of protein translation and a reduction in cell growth and proliferation play crucial roles in the pathophysiology of these complications of pregnancy. In this study, we further identified that ER stress regulates release of PlGF. We first observed that down‐regulation of PlGF protein was associated with nuclear localization of ATF4, ATF6α and ATF6β in the syncytiotrophoblast of placentae from PE patients. Transcript analysis showed a decrease of PlGF mRNA, and an increase from genes encoding those UPR transcription factors in placentae from cases of early‐onset PE, but not of late‐onset (>34 weeks) PE, compared to term controls. Further investigations indicated a strong correlation between ATF4 and PlGF mRNA levels only (r = − 0.73, p < 0.05). These results could be recapitulated in trophoblast‐like cells exposed to chemical inducers of ER stress or hypoxia–reoxygenation. The stability of PlGF transcripts was unchanged. The use of small interfering RNA specific for transcription factors in the UPR pathways revealed that ATF4 and ATF6β, but not ATF6α, modulate PlGF transcription. To conclude, ATF4 and ATF6β act synergistically in the negative regulation of PlGF mRNA expression, resulting in reduced PlGF secretion by the trophoblast in response to stress. Therefore, these results further support the targeting of placental ER stress as a

  9. Animal Models to Study Placental Development and Function throughout Normal and Dysfunctional Human Pregnancy

    PubMed Central

    Grigsby, Peta L.

    2016-01-01

    Abnormalities of placental development and function are known to underlie many pathologies of pregnancy, including spontaneous preterm birth, fetal growth restriction and preeclampsia. A growing body of evidence also underscores the importance of placental dysfunction in the lifelong health of both mother and offspring. However, our knowledge regarding placental structure and function throughout pregnancy remains limited. Understanding the temporal growth and functionality of the human placenta throughout the entirety of gestation is important if we are to gain a better understanding of placental dysfunction. The utilization of new technologies and imaging techniques that could enable safe monitoring of placental growth and function in vivo has become a major focus area for the National Institutes of Child Health & Human Development, as evident by the establishment of the “Human Placenta Project”. Many of the objectives of the Human Placenta Project will necessitate pre-clinical studies and testing in appropriately designed animal models that can be readily translated to the clinical setting. This review will describe the advantages and limitations of relevant animals such as the guinea pig, sheep and non-human primate models that have been used to study the role of the placenta in fetal growth disorders, preeclampsia or other maternal diseases during pregnancy. PMID:26752715

  10. Random Secretion of Growth Hormone in Humans

    NASA Astrophysics Data System (ADS)

    Prank, Klaus; Kloppstech, Mirko; Nowlan, Steven J.; Sejnowski, Terrence J.; Brabant, Georg

    1996-08-01

    In normal humans, growth hormone (GH) is secreted from a gland located adjacent to the brain (pituitary) into the blood in distinct pulses, but in patients bearing a tumor within the pituitary (acromegaly) GH is excessively secreted in an irregular manner. It has been hypothesized that GH secretion in the diseased state becomes random. This hypothesis is supported by demonstrating that GH secretion in patients with acromegaly cannot be distinguished from a variety of linear stochastic processes based on the predictability of the fluctuations of GH concentration in the bloodstream.

  11. Pre-B cell colony enhancing factor (PBEF/NAMPT/Visfatin) and vascular endothelial growth factor (VEGF) cooperate to increase the permeability of the human placental amnion

    PubMed Central

    Astern, J.M.; Collier, A.C.; Kendal-Wright, C.E.

    2012-01-01

    Fluid efflux across the region of the amnion overlying the placenta is an essential component of the intramembranous absorption pathway that maintains amniotic fluid volume homeostasis. Dysregulation of this pathway may result in adverse pregnancy outcomes, however the factors controlling amnion permeability are unknown. Here, we report a novel mechanism that increases placental amnion permeability. Pre-B Cell Colony Enhancing Factor (PBEF) is a stress-responsive cytokine expressed by the human amnion, and is known to induce Vascular Endothelial Growth Factor (VEGF) production by other cell types. Interestingly, VEGF is up-regulated in the ovine amnion when intramembranous absorption is augmented. In this study, we show that PBEF induced VEGF secretion by primary human amniotic epithelial cells (AEC) derived from the placental amnion, as well as from the reflected amnion that lines the remainder of the gestational sac. Further, PBEF treatment led to the increased expression of VEGFR2 in placental AEC, but not reflected AEC. To test the hypothesis that PBEF and VEGF increase placental amnion permeability, we monitored the transfer of 2′,7′-dichlorofluorescein (DCF) from the fetal to the maternal side of human amnion explants. A treatment regimen including both PBEF and VEGF increased the rate of DCF transfer across the placental amnion, but not the reflected amnion. In summary, our results suggest that by augmenting VEGFR2 expression in the placental amnion, PBEF primes the tissue for a VEGF-mediated increase in permeability. This mechanism may have important implications in amniotic fluid volume control throughout gestation. PMID:23151382

  12. Placental membrane aging and HMGB1 signaling associated with human parturition

    PubMed Central

    Menon, Ramkumar; Behnia, Faranak; Polettini, Jossimara; Saade, George R; Campisi, Judith; Velarde, Michael

    2016-01-01

    Aging is associated with the onset of several diseases in various organ systems; however, different tissues may age differently, rendering some of them dysfunctional sooner than others. Placental membranes (fetal amniochorionic membranes) protect the fetus throughout pregnancy, but their longevity is limited to the duration of pregnancy. The age-associated dysfunction of these membranes is postulated to trigger parturition. Here, we investigated whether cellular senescence—the loss of cell division potential as a consequence of stress—is involved in placental membrane function at term. We show telomere reduction, p38 MAPK activation, increase in p21 expression, loss of lamin B1 loss, increase in SA-β-galactosidase, and senescence-associated secretory phenotype (SASP) gene expression in placental membranes after labor and delivery (term labor [TL]) compared to membranes prior to labor at term (term, not-in-labor [TNIL]). Exposing TNIL placental membranes to cigarette smoke extract, an oxidative stress inducer, also induced markers of cellular senescence similar to those in TL placental membranes. Bioinformatics analysis of differentially expressed SASP genes revealed HMGB1 signaling among the top pathways involved in labor. Further, we show that recombinant HMGB1 upregulates the expression of genes associated with parturition in myometrial cells. These data suggest that the natural physiologic aging of placental tissues is associated with cellular senescence and human parturition. PMID:26851389

  13. Animal Models to Study Placental Development and Function throughout Normal and Dysfunctional Human Pregnancy.

    PubMed

    Grigsby, Peta L

    2016-01-01

    Abnormalities of placental development and function are known to underlie many pathologies of pregnancy, including spontaneous preterm birth, fetal growth restriction, and preeclampsia. A growing body of evidence also underscores the importance of placental dysfunction in the lifelong health of both mother and offspring. However, our knowledge regarding placental structure and function throughout pregnancy remains limited. Understanding the temporal growth and functionality of the human placenta throughout the entirety of gestation is important if we are to gain a better understanding of placental dysfunction. The utilization of new technologies and imaging techniques that could enable safe monitoring of placental growth and function in vivo has become a major focus area for the National Institutes of Child Health and Human Development, as evident by the establishment of the "Human Placenta Project." Many of the objectives of the Human Placenta Project will necessitate preclinical studies and testing in appropriately designed animal models that can be readily translated to the clinical setting. This review will describe the advantages and limitations of relevant animals such as the guinea pig, sheep, and nonhuman primate models that have been used to study the role of the placenta in fetal growth disorders, preeclampsia, or other maternal diseases during pregnancy. PMID:26752715

  14. Human placental cell and tissue uptake of doxorubicin and its liposomal formulations.

    PubMed

    Soininen, Suvi K; Repo, Jenni K; Karttunen, Vesa; Auriola, Seppo; Vähäkangas, Kirsi H; Ruponen, Marika

    2015-12-01

    The anticancer drug doxorubicin and its liposomal formulations are in clinical use, doxorubicin also during pregnancy. However, little is known about how doxorubicin and its liposomal formulations are taken up by placental cells and whether they can cross human placenta. We therefore investigated quantitative cellular uptake and toxicity of doxorubicin and its two liposomal formulations, pH-sensitive liposomal doxorubicin (L-DOX) and commercially available pegylated liposomal doxorubicin (PL-DOX), in human placental choriocarcinoma (BeWo) cells. PL-DOX showed significantly lower cellular uptake and toxicity compared with doxorubicin and L-DOX. In preliminary studies with human placental perfusion, PL-DOX did not cross the placenta at all in 4h, whereas doxorubicin and L-DOX crossed the placenta at low levels (max 12% of the dose). Furthermore, PL-DOX did not accumulate in placental tissue while doxorubicin did (up to 70% of the dose). Surface pegylation probably explains the low placental cell and tissue uptake of PL-DOX. Formulation of doxorubicin thus seems to enable a decrease of fetal exposure. PMID:26383631

  15. Cathepsin B, cathepsin L, and cystatin C in the porcine uterus and placenta: potential roles in endometrial/placental remodeling and in fluid-phase transport of proteins secreted by uterine epithelia across placental areolae.

    PubMed

    Song, Gwonhwa; Bailey, Daniel W; Dunlap, Kathrin A; Burghardt, Robert C; Spencer, Thomas E; Bazer, Fuller W; Johnson, Greg A

    2010-05-01

    Cathepsins (CTSB and CTSL1) and their inhibitor, cystatin C (CST3), remodel uterine endometrium and placenta for transport of gases, micronutrients, and macromolecules essential for development and growth of the conceptus (embryo/fetus and placental membranes). We examined the temporal/spatial control of expression for CTSB, CTSL1, and CST3 mRNAs in endometria and placentae of pigs using three developmental models: 1) pigs were hysterectomized during the estrous cycle or pregnancy; 2) cyclic pigs were injected with estrogen to induce pseudopregnancy and were hysterectomized; and 3) pigs were ovariectomized, injected with progesterone, and hysterectomized. The abundance of CTSB, CTSL1, and CST3 mRNAs increased in endometrial epithelia during pregnancy and in response to exogenous progesterone but not estrogen. CST3 was also expressed in cells scattered within the stratum compactum stroma. Progesterone decreased epithelial but increased stromal compartment expression of CST3. CTSB increased in all chorionic epithelia, but CTSL1 was limited to chorionic epithelia that form areolae to absorb secretions from uterine glands. Based on the placental and endometrial distribution of CTSL1, we examined expression in the neonatal enterocytes known to transport immunoglobulins from colostrum. CTSL1 was also expressed in enterocytes of intestine from neonatal piglets. Therefore, CTSL1 is expressed by endometrial epithelia, placental areolae, and neonatal intestine, and it may function in the transport of macromolecules across these epithelia. Our results support the idea that reciprocal interactions between CSTL1, CTSB, and CST3 may be required to remodel endometrial and placental tissues for close apposition between maternal and fetal vasculatures and to facilitate transplacental transport of gases, micronutrients (amino acids, glucose), and macromolecules (proteins). Cysteine proteases and their inhibitors may also specifically modify proteins for successful utilization and

  16. Different metabolic activity in placental and reflected regions of the human amniotic membrane.

    PubMed

    Banerjee, Asmita; Weidinger, Adelheid; Hofer, Martin; Steinborn, Ralf; Lindenmair, Andrea; Hennerbichler-Lugscheider, Simone; Eibl, Johann; Redl, Heinz; Kozlov, Andrey V; Wolbank, Susanne

    2015-11-01

    Cells of the human amniotic membrane (hAM) have stem cell characteristics with low immunogenicity and anti-inflammatory properties. While hAM is an excellent source for tissue engineering, so far, its sub-regions have not been taken into account. We show that placental and reflected hAM differ distinctly in morphology and functional activity, as the placental region has significantly higher mitochondrial activity, however significantly less reactive oxygen species. Since mitochondria may participate in processes such as cell rescue, we speculate that amniotic sub-regions may have different potential for tissue regeneration, which may be crucial for clinical applications. PMID:26386652

  17. Effect of Microcystin-LR on human placental villous trophoblast differentiation in vitro

    EPA Science Inventory

    Microcystin-LR is a cyanobacterial toxin found in surface and recreational waters that inhibits protein phosphatases and may disrupt the cytoskeleton. Microcystins induce apoptosis in hepatocytes at ≤2.0 μM. Nothing is known about the effects of microcystins on human placental tr...

  18. Energy status and HIF signalling in chorionic villi show no evidence of hypoxic stress during human early placental development.

    PubMed

    Cindrova-Davies, T; van Patot, M Tissot; Gardner, L; Jauniaux, E; Burton, G J; Charnock-Jones, D S

    2015-03-01

    Early human placental and embryonic development occurs in a physiologically low oxygen environment supported by histiotrophic secretions from endometrial glands. In this study, we compare the placental metabolomic profile in the first, second and third trimesters to determine whether the energy demands are adequately met in the first trimester. We investigated whether hypoxia-inducible factors, HIF-1α and/or HIF-2α, might regulate transcription during the first trimester. First and second trimester tissue was collected using a chorionic villus sampling-like (CVS) technique. Part of each villus sample was frozen immediately and the remainder cultured under 2 or 21% O2 ± 1 mM H2O2, and ±the p38 MAPK pathway inhibitor, PD169316. Levels of HIF-1α were assessed by western blotting and VEGFA, PlGF and GLUT3 transcripts were quantified by RT-PCR. Term samples were collected from normal elective Caesarean deliveries. There were no significant differences in concentrations of ADP, NAD(+), lactate, and glucose, and in the ATP/ADP ratio, across gestational age. Neither HIF-1α nor HIF-2α could be detected in time-zero CVS samples. However, culture under any condition (2 or 21% O2 ± 1 mM H2O2) increased HIF-1α and HIF-2α. HIF-1α and HIF-2α were additionally detected in specimens retrieved after curettage. HIF-1α stabilization was accompanied by significant increases in VEGFA and GLUT3 and a decrease in PlGF mRNAs. These effects were suppressed by PD169316. In conclusion, our data suggest that first trimester placental tissues are not energetically compromised, and that HIF-1α is unlikely to play an appreciable role in regulating transcriptional activity under steady-state conditions in vivo. However, the pathway may be activated by stress conditions. PMID:25391298

  19. Effect of leptin on progesterone, human chorionic gonadotropin, and interleukin-6 secretion by human term trophoblast cells in culture.

    PubMed

    Cameo, Paula; Bischof, Paul; Calvo, Juan Carlos

    2003-02-01

    Leptin, the 16-kDa protein product of the obese gene, was originally seen as an adipocyte-derived signaling molecule. Recently, it has been suggested to be involved in some functions during pregnancy, particularly in the placenta. In the present study, we investigated the role of leptin in the secretion of hCG, progesterone, and interleukin-6 (IL-6) by human term trophoblast cells in culture. Placentae were obtained from cesarean sections following uncomplicated pregnancies and used immediately after delivery. Leptin, hCG, progesterone, and IL-6 were measured by ELISA, RIA, and immunoradiometric assay in the cultured media of trophoblast cells cultured for 48 and 96 h. Leptin mRNA expression in these cultures was determined by reverse transcription-polymerase chain reaction. Recombinant human leptin added to primary cultures of human term placental trophoblast cells showed a stimulatory effect on hCG and IL-6 secretion and an inhibitory effect on progesterone secretion. Primary cultures of term trophoblast cells expressed leptin mRNA. All these findings suggest a role for leptin in human placental endocrine function. PMID:12533410

  20. Recent progress towards understanding the role of DNA methylation in human placental development.

    PubMed

    Bianco-Miotto, Tina; Mayne, Benjamin T; Buckberry, Sam; Breen, James; Rodriguez Lopez, Carlos M; Roberts, Claire T

    2016-07-01

    Epigenetic modifications, and particularly DNA methylation, have been studied in many tissues, both healthy and diseased, and across numerous developmental stages. The placenta is the only organ that has a transient life of 9 months and undergoes rapid growth and dynamic structural and functional changes across gestation. Additionally, the placenta is unique because although developing within the mother, its genome is identical to that of the foetus. Given these distinctive characteristics, it is not surprising that the epigenetic landscape affecting placental gene expression may be different to that in other healthy tissues. However, the role of epigenetic modifications, and particularly DNA methylation, in placental development remains largely unknown. Of particular interest is the fact that the placenta is the most hypomethylated human tissue and is characterized by the presence of large partially methylated domains (PMDs) containing silenced genes. Moreover, how and why the placenta is hypomethylated and what role DNA methylation plays in regulating placental gene expression across gestation are poorly understood. We review genome-wide DNA methylation studies in the human placenta and highlight that the different cell types that make up the placenta have very different DNA methylation profiles. Summarizing studies on DNA methylation in the placenta and its relationship with pregnancy complications are difficult due to the limited number of studies available for comparison. To understand the key steps in placental development and hence what may be perturbed in pregnancy complications requires large-scale genome-wide DNA methylation studies coupled with transcriptome analyses. PMID:27026712

  1. Framing Postpartum Hemorrhage as a Consequence of Human Placental Biology: An Evolutionary and Comparative Perspective

    PubMed Central

    Abrams, Elizabeth; Rutherford, Julienne

    2011-01-01

    Postpartum hemorrhage (PPH), the leading cause of maternal mortality worldwide, is responsible for 35 percent of maternal deaths. Proximately, PPH results from the failure of the placenta to separate from the uterine wall properly, most often because of impairment of uterine muscle contraction. Despite its prevalence and its well-described clinical manifestations, the ultimate causes of PPH are not known and have not been investigated through an evolutionary lens. We argue that vulnerability to PPH stems from the intensely invasive nature of human placentation. The human placenta causes uterine vessels to undergo transformation to provide the developing fetus with a high plane of maternal resources; the degree of this transformation in humans is extensive. We argue that the particularly invasive nature of the human placenta increases the possibility of increased blood loss at parturition. We review evidence suggesting PPH and other placental disorders represent an evolutionarily novel condition in hominins. PMID:21909154

  2. Genetic recapitulation of human pre-eclampsia risk during convergent evolution of reduced placental invasiveness in eutherian mammals

    PubMed Central

    Elliot, Michael G.; Crespi, Bernard J.

    2015-01-01

    The relationship between phenotypic variation arising through individual development and phenotypic variation arising through diversification of species has long been a central question in evolutionary biology. Among humans, reduced placental invasion into endometrial tissues is associated with diseases of pregnancy, especially pre-eclampsia, and reduced placental invasiveness has also evolved, convergently, in at least 10 lineages of eutherian mammals. We tested the hypothesis that a common genetic basis underlies both reduced placental invasion arising through a developmental process in human placental disease and reduced placental invasion found as a derived trait in the diversification of Euarchontoglires (rodents, lagomorphs, tree shrews, colugos and primates). Based on whole-genome analyses across 18 taxa, we identified 1254 genes as having evolved adaptively across all three lineages exhibiting independent evolutionary transitions towards reduced placental invasion. These genes showed strong evidence of enrichment for associations with pre-eclampsia, based on genetic-association studies, gene-expression analyses and gene ontology. We further used in silico prediction to identify a subset of 199 genes that are likely targets of natural selection during transitions in placental invasiveness and which are predicted to also underlie human placental disorders. Our results indicate that abnormal ontogenies can recapitulate major phylogenetic shifts in mammalian evolution, identify new candidate genes for involvement in pre-eclampsia, imply that study of species with less-invasive placentation will provide useful insights into the regulation of placental invasion and pre-eclampsia, and recommend a novel comparative functional-evolutionary approach to the study of genetically based human disease and mammalian diversification. PMID:25602073

  3. IFPA Meeting 2013 Workshop Report III: maternal placental immunological interactions, novel determinants of trophoblast cell fate, dual ex vivo perfusion of the human placenta.

    PubMed

    Abumaree, M H; Brownbill, P; Burton, G; Castillo, C; Chamley, L; Croy, B A; Drewlo, S; Dunk, C; Girard, S; Hansson, S; Jones, S; Jurisicova, A; Lewis, R; Letarte, M; Parast, M; Pehrson, C; Rappolee, D; Schneider, H; Tannetta, D; Varmuza, S; Wadsack, C; Wallace, A E; Zenerino, C; Lash, G E

    2014-02-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialised topics. At IFPA meeting 2013 there were twelve themed workshops, three of which are summarized in this report. These workshops related to various aspects of placental biology but collectively covered areas of placental function, cell turnover and immunology: 1) immunology; 2) novel determinants of placental cell fate; 3) dual perfusion of human placental tissue. PMID:24321780

  4. Mono-2-Ethylhexyl Phthalate Induces Oxidative Stress Responses in Human Placental Cells In Vitro

    PubMed Central

    Tetz, Lauren M; Cheng, Adrienne A.; Korte, Cassandra S.; Giese, Roger W.; Wang, Poguang; Harris, Craig; Meeker, John D; Loch-Caruso, Rita

    2013-01-01

    Di-2-ethylhexyl phthalate (DEHP) is an environmental contaminant commonly used as a plasticizer in polyvinyl chloride products. Exposure to DEHP has been linked to adverse pregnancy outcomes in humans including preterm birth, low birth-weight, and pregnancy loss. Although oxidative stress is linked to the pathology of adverse pregnancy outcomes, effects of DEHP metabolites, including the active metabolite, mono-2-ethylhexyl phthalate (MEHP), on oxidative stress responses in placental cells have not been previously evaluated. The objective of the current study is to identify MEHP-stimulated oxidative stress responses in human placental cells. We treated a human placental cell line, HTR-8/SVneo, with MEHP and then measured reactive oxygen species (ROS) generation using the dichlorofluorescein assay, oxidized thymine with mass-spectrometry, redox-sensitive gene expression with qRT-PCR, and apoptosis using a luminescence assay for caspase 3/7 activity. Treatment of HTR-8 cells with 180 μM MEHP increased ROS generation, oxidative DNA damage, and caspase 3/7 activity, and resulted in differential expression of redox-sensitive genes. Notably, 90 and 180 μM MEHP significantly induced mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2), an enzyme important for synthesis of prostaglandins implicated in initiation of labor. The results from the present study are the first to demonstrate that MEHP stimulates oxidative stress responses in placental cells. Furthermore, the MEHP concentrations used were within an order of magnitude of the highest concentrations measured previously in human umbilical cord or maternal serum. The findings from the current study warrant future mechanistic studies of oxidative stress, apoptosis, and prostaglandins as molecular mediators of DEHP/MEHP-associated adverse pregnancy outcomes. PMID:23360888

  5. Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro

    SciTech Connect

    Tetz, Lauren M.; Cheng, Adrienne A.; Korte, Cassandra S.; Giese, Roger W.; Wang, Poguang; Harris, Craig; Meeker, John D.; Loch-Caruso, Rita

    2013-04-01

    Di-2-ethylhexyl phthalate (DEHP) is an environmental contaminant commonly used as a plasticizer in polyvinyl chloride products. Exposure to DEHP has been linked to adverse pregnancy outcomes in humans including preterm birth, low birth-weight, and pregnancy loss. Although oxidative stress is linked to the pathology of adverse pregnancy outcomes, effects of DEHP metabolites, including the active metabolite, mono-2-ethylhexyl phthalate (MEHP), on oxidative stress responses in placental cells have not been previously evaluated. The objective of the current study is to identify MEHP-stimulated oxidative stress responses in human placental cells. We treated a human placental cell line, HTR-8/SVneo, with MEHP and then measured reactive oxygen species (ROS) generation using the dichlorofluorescein assay, oxidized thymine with mass-spectrometry, redox-sensitive gene expression with qRT-PCR, and apoptosis using a luminescence assay for caspase 3/7 activity. Treatment of HTR-8 cells with 180 μM MEHP increased ROS generation, oxidative DNA damage, and caspase 3/7 activity, and resulted in differential expression of redox-sensitive genes. Notably, 90 and 180 μM MEHP significantly induced mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2), an enzyme important for synthesis of prostaglandins implicated in initiation of labor. The results from the present study are the first to demonstrate that MEHP stimulates oxidative stress responses in placental cells. Furthermore, the MEHP concentrations used were within an order of magnitude of the highest concentrations measured previously in human umbilical cord or maternal serum. The findings from the current study warrant future mechanistic studies of oxidative stress, apoptosis, and prostaglandins as molecular mediators of DEHP/MEHP-associated adverse pregnancy outcomes. - Highlights: ► MEHP increased reactive oxygen species, oxidative DNA damage, and caspase activity. ► MEHP induced expression of PTGS2, a gene

  6. An international network (PlaNet) to evaluate a human placental testing platform for chemicals safety testing in pregnancy.

    PubMed

    Brownbill, Paul; Chernyavsky, Igor; Bottalico, Barbara; Desoye, Gernot; Hansson, Stefan; Kenna, Gerry; Knudsen, Lisbeth E; Markert, Udo R; Powles-Glover, Nicola; Schneider, Henning; Leach, Lopa

    2016-09-01

    The human placenta is a critical life-support system that nourishes and protects a rapidly growing fetus; a unique organ, species specific in structure and function. We consider the pressing challenge of providing additional advice on the safety of prescription medicines and environmental exposures in pregnancy and how ex vivo and in vitro human placental models might be advanced to reproducible human placental test systems (HPTSs), refining a weight of evidence to the guidance given around compound risk assessment during pregnancy. The placental pharmacokinetics of xenobiotic transfer, dysregulated placental function in pregnancy-related pathologies and influx/efflux transporter polymorphisms are a few caveats that could be addressed by HPTSs, not the specific focus of current mammalian reproductive toxicology systems. An international consortium, "PlaNet", will bridge academia, industry and regulators to consider screen ability and standardisation issues surrounding these models, with proven reproducibility for introduction into industrial and clinical practice. PMID:27327413

  7. Epigenetic regulation of human placental function and pregnancy outcome: considerations for causal inference.

    PubMed

    Januar, Vania; Desoye, Gernot; Novakovic, Boris; Cvitic, Silvija; Saffery, Richard

    2015-10-01

    Epigenetic mechanisms, often defined as regulating gene activity independently of underlying DNA sequence, are crucial for healthy development. The sum total of epigenetic marks within a cell or tissue (the epigenome) is sensitive to environmental influence, and disruption of the epigenome in utero has been associated with adverse pregnancy outcomes. Not surprisingly, given its multifaceted functions and important role in regulating pregnancy outcome, the placenta shows unique epigenetic features. Interestingly however, many of these are only otherwise seen in human malignancy (the pseudomalignant placental epigenome). Epigenetic variation in the placenta is now emerging as a candidate mediator of environmental influence on placental functioning and a key regulator of pregnancy outcome. However, replication of findings is generally lacking, most likely due to small sample sizes and a lack of standardization of analytical approaches. Defining DNA methylation "signatures" in the placenta associated with maternal and fetal outcomes offers tremendous potential to improve pregnancy outcomes, but care must be taken in interpretation of findings. Future placental epigenetic research would do well to address the issues present in epigenetic epidemiology more generally, including careful consideration of sample size, potentially confounding factors, issues of tissue heterogeneity, reverse causation, and the role of genetics in modulating epigenetic profile. The importance of animal or in vitro models in establishing a functional role of epigenetic variation identified in human beings, which is key to establishing causation, should not be underestimated. PMID:26428498

  8. Cross talk between cAMP and p38 MAPK pathways in the induction of leptin by hCG in human placental syncytiotrophoblasts.

    PubMed

    Ge, Y C; Li, J N; Ni, X T; Guo, C M; Wang, W S; Duan, T; Sun, K

    2011-08-01

    Leptin produced by the placental syncytiotrophoblasts participates in a number of processes in pregnancy including implantation, proliferation of the cytotrophoblasts, and nutrient transfer across the placenta. Despite the functional significance of leptin in pregnancy, the regulation of leptin synthesis is poorly understood in human placental syncytiotrophoblasts. In this study, we investigated the role of endogenous human chorionic gonadotropin (hCG) in the regulation of leptin production as well as the underlying mechanism involving the cross talk between cAMP and p38 mitogen-activated protein kinase (MAPK) pathways. We found that neutralization of endogenous hCG with its antibody dose dependently decreased leptin mRNA level and secretion, whereas exogenous hCG increased leptin mRNA level and secretion. Activation of the cAMP pathway with dibutyryl cAMP (db cAMP) or forskolin recapitulated the stimulatory effect of hCG on leptin expression. Inhibition of protein kinase A with H89 not only reduced the basal leptin expression but also attenuated the induced leptin expression by hCG. Treatment of the syncytiotrophoblasts with db cAMP and hCG phosphorylated p38 MAPK. Inhibition of p38 MAPK with SB203580 not only reduced the basal leptin production but also attenuated the leptin-induced production by both hCG and db cAMP. These data suggest that endogenous hCG plays a significant role in maintaining leptin production in human placental syncytiotrophoblasts, and this effect involves a cross talk between cAMP and p38 MAPK pathways. PMID:21562093

  9. Vitamin C Supplementation Ameliorates the Adverse Effects of Nicotine on Placental Hemodynamics and Histology in Non-Human Primates

    PubMed Central

    Lo, Jamie O.; Schabel, Matthias C.; Roberts, Victoria H.J.; Morgan, Terry K.; Rasanen, Juha P.; Kroenke, Christopher D.; Shoemaker, Ms. Sophie R.; Spindel, Eliot R.; Frias, Antonio E.

    2015-01-01

    Objective We previously demonstrated that prenatal nicotine exposure decreases neonatal pulmonary function in non-human primates (NHP) and maternal Vitamin C supplementation attenuates these deleterious effects. However, nicotine’s effect on placental perfusion and development is not fully understood. This study utilizes non-invasive imaging techniques and histological analysis in a NHP model to test the hypothesis that prenatal nicotine exposure adversely effects placental hemodynamics and development, but is ameliorated by Vitamin C. Study Design Time-mated macaques (n=27) in 4 treatment groups: control (n=5), nicotine only (n=4), Vitamin C only (n=9), and nicotine plus Vitamin C (n=9). Nicotine animals received 2mg/kg/day of nicotine bitartrate (~0.7mg/kg/day free nicotine levels in pregnant human smokers) from days 26–160 (term, 168 days). Vitamin C groups received ascorbic acid at 50, 100 or 250mg/kg/day with or without nicotine. All underwent placental Dynamic Contrast-Enhanced MRI (DCE-MRI) at 135–140 days and Doppler ultrasound at 155 days to measure uterine artery and umbilical vein velocimetry and diameter to calculate uterine artery volume blood flow (cQuta) and placental volume blood flow (cQuv). Animals were delivered by cesarean section at 160 days. A novel DCE-MRI protocol was utilized to calculate placental perfusion from maternal spiral arteries. Placental tissue was processed for histopathology. Results Placental volume blood flow (cQuv) was significantly reduced in nicotine only animals compared with controls and nicotine plus Vitamin C groups (p=0.03). Maternal placental blood flow was not different between experimental groups by DCE-MRI ranging from 0.75–1.94 ml/ml/min (p=0.93). Placental histology showed increased numbers of villous cytotrophoblast cell islands (p<0.05) and increased syncytiotrophoblast sprouting (p<0.001) in nicotine only animals, which was mitigated by Vitamin C. Conclusion Prenatal nicotine exposure significantly

  10. Zika Virus Targets Different Primary Human Placental Cells, Suggesting Two Routes for Vertical Transmission.

    PubMed

    Tabata, Takako; Petitt, Matthew; Puerta-Guardo, Henry; Michlmayr, Daniela; Wang, Chunling; Fang-Hoover, June; Harris, Eva; Pereira, Lenore

    2016-08-10

    Zika virus (ZIKV) infection during pregnancy is linked to severe birth defects, but mother-to-fetus transmission routes are unknown. We infected different primary cell types from mid- and late-gestation placentas and explants from first-trimester chorionic villi with the prototype Ugandan and a recently isolated Nicaraguan ZIKV strain. ZIKV infects primary human placental cells and explants-cytotrophoblasts, endothelial cells, fibroblasts, and Hofbauer cells in chorionic villi and amniotic epithelial cells and trophoblast progenitors in amniochorionic membranes-that express Axl, Tyro3, and/or TIM1 viral entry cofactors. ZIKV produced NS3 and E proteins and generated higher viral titers in amniotic epithelial cells from mid-gestation compared to late-gestation placentas. Duramycin, a peptide that binds phosphatidylethanolamine in enveloped virions and precludes TIM1 binding, reduced ZIKV infection in placental cells and explants. Our results suggest that ZIKV spreads from basal and parietal decidua to chorionic villi and amniochorionic membranes and that targeting TIM1 could suppress infection at the uterine-placental interface. PMID:27443522

  11. Identification of Epigenetic Factor Proteins Expressed in Human Embryonic Stem Cell-Derived Trophoblasts and in Human Placental Trophoblasts.

    PubMed

    Sarkar, Prasenjit; Mischler, Adam; Randall, Shan M; Collier, Timothy S; Dorman, Karen F; Boggess, Kim A; Muddiman, David C; Rao, Balaji M

    2016-08-01

    Human embryonic stem cells (hESCs) have been used to derive trophoblasts through differentiation in vitro. Intriguingly, mouse ESCs are prevented from differentiation to trophoblasts by certain epigenetic factor proteins such as Dnmt1, thus necessitating the study of epigenetic factor proteins during hESC differentiation to trophoblasts. We used stable isotope labeling by amino acids in cell culture and quantitative proteomics to study changes in the nuclear proteome during hESC differentiation to trophoblasts and identified changes in the expression of 30 epigenetic factor proteins. Importantly, the DNA methyltransferases DNMT1, DNMT3A, and DNMT3B were downregulated. Additionally, we hypothesized that nuclear proteomics of hESC-derived trophoblasts may be used for screening epigenetic factor proteins expressed by primary trophoblasts in human placental tissue. Accordingly, we conducted immunohistochemistry analysis of six epigenetic factor proteins identified from hESC-derived trophoblasts-DNMT1, DNMT3B, BAF155, BAF60A, BAF57, and ING5-in 6-9 week human placentas. Indeed, expression of these proteins was largely, though not fully, consistent with that observed in 6-9 week placental trophoblasts. Our results support the use of hESC-derived trophoblasts as a model for placental trophoblasts, which will enable further investigation of epigenetic factors involved in human trophoblast development. PMID:27378238

  12. Pre-B cell colony enhancing factor (PBEF/NAMPT/Visfatin) and vascular endothelial growth factor (VEGF) cooperate to increase the permeability of the human placental amnion.

    PubMed

    Astern, J M; Collier, A C; Kendal-Wright, C E

    2013-01-01

    Fluid efflux across the region of the amnion overlying the placenta is an essential component of the intramembranous absorption pathway that maintains amniotic fluid volume homeostasis. Dysregulation of this pathway may result in adverse pregnancy outcomes, however the factors controlling amnion permeability are unknown. Here, we report a novel mechanism that increases placental amnion permeability. Pre-B Cell Colony Enhancing Factor (PBEF) is a stress-responsive cytokine expressed by the human amnion, and is known to induce Vascular Endothelial Growth Factor (VEGF) production by other cell types. Interestingly, VEGF is up-regulated in the ovine amnion when intramembranous absorption is augmented. In this study, we show that PBEF induced VEGF secretion by primary human amniotic epithelial cells (AEC) derived from the placental amnion, as well as from the reflected amnion that lines the remainder of the gestational sac. Further, PBEF treatment led to the increased expression of VEGFR2 in placental AEC, but not reflected AEC. To test the hypothesis that PBEF and VEGF increase placental amnion permeability, we monitored the transfer of 2',7'-dichlorofluorescein (DCF) from the fetal to the maternal side of human amnion explants. A treatment regimen including both PBEF and VEGF increased the rate of DCF transfer across the placental amnion, but not the reflected amnion. In summary, our results suggest that by augmenting VEGFR2 expression in the placental amnion, PBEF primes the tissue for a VEGF-mediated increase in permeability. This mechanism may have important implications in amniotic fluid volume control throughout gestation. PMID:23151382

  13. Placental Transfer of Rilpivirine in an Ex Vivo Human Cotyledon Perfusion Model

    PubMed Central

    Duro, Dominique; Belissa, Emilie; Peytavin, Gilles

    2015-01-01

    Placental transfers of the HIV nonnucleoside reverse transcriptase inhibitor rilpivirine were investigated in 8 term human cotyledons perfused with rilpivirine (400 ng/ml) in the maternal-to-fetal direction. The mean fetal transfer rate (FTR) (fetal/maternal concentration at steady state from 15 to 90 min) was 26% ± 8% (mean ± standard deviation), and the clearance index (rilpivirine FTR/antipyrine FTR) was 61% ± 20%. This shows that rilpivirine crosses the placenta at a relatively high rate, suggesting that the fetus is exposed to the compound during treatment of the mother. PMID:25691637

  14. TNF-α alters the inflammatory secretion profile of human first trimester placenta.

    PubMed

    Siwetz, Monika; Blaschitz, Astrid; El-Heliebi, Amin; Hiden, Ursula; Desoye, Gernot; Huppertz, Berthold; Gauster, Martin

    2016-04-01

    Implantation and subsequent placental development depend on a well-orchestrated interaction between fetal and maternal tissues, involving a fine balanced synergistic cross-talk of inflammatory and immune-modulating factors. Tumor necrosis factor (TNF)-α has been increasingly recognized as pivotal factor for successful pregnancy, although high maternal TNF-α levels are associated with a number of adverse pregnancy conditions including gestational hypertension and gestational diabetes mellitus. This study describes effects of exogenously applied TNF-α, mimicking increased maternal TNF-α levels, on the secretion profile of inflammation associated factors in human first trimester villous placenta. Conditioned culture media from first trimester villous placental explants were analyzed by inflammation antibody arrays and ELISA after 48 h culture in the presence or absence of TNF-α. Inflammation antibody arrays identified interleukin (IL)-6, IL-8, chemokine (C-C motif) ligand 2 (CCL2), CCL4, and granulocyte-macrophage colony-stimulating factor (GM-CSF) as the most abundantly secreted inflammation-associated factors under basal culture conditions. In the presence of TNF-α, secretion of GM-CSF, CCL5, and IL-10 increased, whereas IL-4 and macrophage CSF levels decreased compared with controls. ELISA analysis verified antibody arrays by showing significantly increased synthesis and release of GM-CSF and CCL5 by placental explants in response to TNF-α. Immunohistochemistry localized GM-CSF in the villous trophoblast compartment, whereas CCL5 was detected in maternal platelets adhering to perivillous fibrin deposits on the villous surface. mRNA-based in situ padlock probe approach localized GM-CSF and CCL5 transcripts in the villous trophoblast layer and the villous stroma. Results from this study suggest that the inflammatory secretion profile of human first trimester placenta shifts towards increased levels of GM-CSF, CCL5, and IL10 in response to elevated maternal

  15. Equine placentation.

    PubMed

    Allen, W R; Stewart, F

    2001-01-01

    A tough, elastic glycoprotein capsule envelops the equine blastocyst between Days 6 and 23 after ovulation. It maintains the spherical configuration of, and provides physical support for, the embryo as it traverses the entire uterine lumen during Days 6-17, propelled by myometrial contractions that are stimulated by pulsatile release of prostaglandin F2alpha and prostaglandin E2. The capsule also accumulates constituents of the exocrine secretions of the endometrial glands ('uterine milk') as nutrients for the mobile embryo as it releases its antiluteolytic maternal recognition-of-pregnancy signal to the whole of the surface of the endometrium. Mobility ceases abruptly on Day 17 with a sudden increase in uterine tonicity that 'fixes' the conceptus at the base of one of the uterine horns. At Day 35, the trophoblast of the spherical conceptus has separated into its invasive and non-invasive components. The former, distinguished as the thickened, annulate chorionic girdle, invades the maternal endometrium to form the unique endometrial cups. These secrete a chorionic gonadotrophin that synergizes with pituitary follicle-stimulating hormone to induce secondary luteal development in the maternal ovaries. The cup cells express foreign fetal antigens that stimulate strong maternal humoral and cell-mediated immune responses, which curtail their lifespan. The non-invasive trophoblast of the allantochorion establishes a stable microvillous contact with the endometrial epithelium around Day 40 and, over the next 100 days, develops a complex multibranched interdigitation with the endometrium to form the microcotyledonary haemotrophic exchange units that cover the entire surface of the diffuse epitheliochorial placenta. Reduction in the effective total area of fetomaternal contact at this placental interface, by competition between twin conceptuses for the limited area of available endometrium, by attachment of the allantochorion to an imperfect endometrium in a mare with

  16. NADPH- and iron-dependent lipid peroxidation inhibit aromatase activity in human placental microsomes.

    PubMed

    Milczarek, Ryszard; Sokołowska, Ewa; Hallmann, Anna; Kaletha, Krystian; Klimek, Jerzy

    2008-06-01

    During pregnancy placenta is the most significant source of lipid hydroperoxides and other reactive oxygen species (ROS). The increased production of lipid peroxides and other ROS is often linked to pre-eclampsia. It is already proved that placental endoplasmic reticulum may be an important place of lipid peroxides and superoxide radical production. In the present study we revealed that NADPH- and iron-dependent lipid peroxidation in human placental microsomes (HPM) inhibit placental aromatase--a key enzyme of estrogen biosynthesis in human placenta. We showed that significant inhibition of this enzyme is caused by small lipid peroxidation (TBARS (thiobarbituric acid-reactive substances)<4nmol/mg microsomal protein (m.p.)). More intensive lipid peroxidation (TBARS>9nmol/mg microsomal protein) diminishes aromatase activity to value being less than 5% of initial value. NADPH- and iron-dependent lipid peroxidation also causes disappearance of cytochrome P450 parallel to observed aromatase activity inhibition. EDTA, alpha-tocopherol, MgCl(2) and superoxide dismutase (SOD) prevent aromatase activity inhibition and cytochrome P450(AROM) degradation. Mannitol and catalase have not effect on TBARS synthesis, aromatase activity and cytochrome P450 degradation. In view of the above we postulate that the inhibition of aromatase activity observed is mainly a consequence of cytochrome P450(AROM) degradation induced by lipid radicals. The role of hydroxyl radical in cytochrome P450 degradation is negligible in our experimental conditions. The results presented here also suggest that the inhibition of aromatase activity can also take place in placenta at in vivo conditions. PMID:18499441

  17. Effect of placental factors on growth and function of the human fetal adrenal in vitro

    SciTech Connect

    Riopel, L.; Branchaud, C.L.; Goodyer, C.G.; Zweig, M.; Lipowski, L.; Adkar, V.; Lefebvre, Y. )

    1989-11-01

    Conditioned medium from human placental monolayer cultures (PM) had a marked stimulatory effect on proliferation (3H-thymidine uptake) of human fetal zone adrenal cells in primary monolayer culture, even in the absence of serum. Epidermal growth factor (EGF) and fibroblast growth factor (FGF) also significantly stimulated fetal adrenal cell growth. However, the effects of PM differed from those of EGF and FGF in several respects: (1) maximal response to PM was 2-5 times greater; (2) mitogenic effects of EGF and FGF were suppressed by adrenocorticotropic hormone (ACTH), whereas that of 50% PM was not; (3) PM inhibited ACTH-stimulated steroidogenesis (dehydroepiandrosterone sulfate and cortisol), but EGF and FGF did not. Preliminary characterization studies have indicated that approximately half of the placental growth-promoting activity is heat resistant and sensitive to bacterial proteases, and that 50-60% of the activity is lost after dialysis with membranes having a molecular weight cutoff of 3500. These findings suggest a role for the placenta in the growth and differentiated function of the human fetal adrenal gland.

  18. Unsupervised Placental Gene Expression Profiling Identifies Clinically Relevant Subclasses of Human Preeclampsia.

    PubMed

    Leavey, Katherine; Benton, Samantha J; Grynspan, David; Kingdom, John C; Bainbridge, Shannon A; Cox, Brian J

    2016-07-01

    Preeclampsia (PE) is a complex, hypertensive disorder of pregnancy, demonstrating considerable variability in maternal symptoms and fetal outcomes. Unfortunately, prior research has not accounted for this variability, resulting in a lack of robust biomarkers and effective treatments for PE. Here, we created a large (N=330) clinically relevant human placental microarray data set, consisting of 7 previously published studies and 157 highly annotated new samples from a single BioBank. Applying unsupervised clustering to this combined data set identified 3 clinically significant probable etiologies of PE: "maternal", with healthy placentas and term deliveries; "canonical", exhibiting expected clinical, ontological, and histopathologic features of PE; and "immunologic" with severe fetal growth restriction and evidence of maternal antifetal rejection. Moreover, these groups could be distinguished using a small quantitative polymerase chain reaction panel and demonstrated varying influence of maternal factors on PE development. An additional subclass of PE placentas was also revealed to form because of chromosomal abnormalities in these samples, supported by array-based comparative genomic hybridization analysis. Overall, our findings represent a new paradigm in our understanding of the origins and maternal-placental contributions to the pathology of PE. The study of PE represents a unique opportunity to access human tissue associated with a complex hypertensive disorder, and our novel approach could be applied to other hypertensive and heterogeneous human diseases. PMID:27160201

  19. Gossypol enantiomers potently inhibit human placental 3β-hydroxysteroid dehydrogenase 1 and aromatase activities.

    PubMed

    Dong, Yaoyao; Mao, Baiping; Li, Linxi; Guan, Hongguo; Su, Ying; Li, Xiaoheng; Lian, Qingquan; Huang, Ping; Ge, Ren-Shan

    2016-03-01

    Gossypol is a chemical isolated from cotton seeds. It exists as (+) or (-) enantiomer and has been tested for anticancer, abortion-inducing, and male contraception. Progesterone formed from pregnenolone by 3β-hydroxysteroid dehydrogenase 1 (HSD3B1) and estradiol from androgen by aromatase (CYP19A1) are critical for the maintenance of pregnancy or associated with some cancers. In this study we compared the potencies of (+)- and (-)-gossypol enantiomers in the inhibition of HSD3B1 and aromatase activities as well as progesterone and estradiol production in human placental JEG-3 cells. (+) Gossypol showed potent inhibition on human placental HSD3B1 with IC50 value of 2.3 μM, while (-) gossypol weakly inhibited it with IC50 over 100 μM. In contrast, (-) gossypol moderately inhibited CYP19A1 activity with IC50 of 23 μM, while (+) gossypol had no inhibition when the highest concentration (100 μM) was tested. (+) Gossypol enantiomer competitively inhibited HSD3B1 against substrate pregnenolone and showed mixed mode against NAD(+). (-) Gossypol competitively inhibited CYP19A1 against substrate testosterone. Gossypol enantiomers showed different potency related to their inhibition on human HSD3B1 and CYP19A1. Whether gossypol enantiomer is used alone or in combination relies on its application and beneficial effects. PMID:26709042

  20. Toxic effects of low doses of Bisphenol-A on human placental cells

    SciTech Connect

    Benachour, Nora; Aris, Aziz

    2009-12-15

    Humans are exposed daily to a great number of xenobiotics and their metabolites present as pollutants. Bisphenol-A (BPA) is extensively used in a broad range of products including baby bottles, food-storage containers, medical equipment, and consumer electronics. Thus, BPA is the most common monomer for polycarbonates intended for food contact. Levels of this industrial product are found in maternal blood, amniotic fluid, follicular fluid, placental tissue, umbilical cord blood, and maternal urine. In this study, we investigated toxic effects of BPA concentrations close to levels found in serum of pregnant women on human cytotrophoblasts (CTB). These cells were isolated from fresh placentas and exposed to BPA for 24 h. Our results showed that very low doses of BPA induce apoptosis (2 to 3 times) as assessed using M30 antibody immunofluorescent detection, and necrosis (1.3 to 1.7 times) as assessed through the cytosolic Adenylate Kinase (AK) activity after cell membrane damage. We also showed that BPA increased significantly the tumor-necrosis factor alpha (TNF-alpha) gene expression and protein excretion as measured by real-time RT-PCR and ELISA luminescent test, respectively. Moreover, we observed that induction of AK activation and TNF-alpha gene expression require lower levels of BPA than apoptosis or TNF-alpha protein excretion. Our findings suggest that exposure of placental cells to low doses of BPA may cause detrimental effects, leading in vivo to adverse pregnancy outcomes such as preeclampsia, intrauterine growth restriction, prematurity and pregnancy loss.

  1. Type III Interferons Produced by Human Placental Trophoblasts Confer Protection against Zika Virus Infection.

    PubMed

    Bayer, Avraham; Lennemann, Nicholas J; Ouyang, Yingshi; Bramley, John C; Morosky, Stefanie; Marques, Ernesto Torres De Azeved; Cherry, Sara; Sadovsky, Yoel; Coyne, Carolyn B

    2016-05-11

    During mammalian pregnancy, the placenta acts as a barrier between the maternal and fetal compartments. The recently observed association between Zika virus (ZIKV) infection during human pregnancy and fetal microcephaly and other anomalies suggests that ZIKV may bypass the placenta to reach the fetus. This led us to investigate ZIKV infection of primary human trophoblasts (PHTs), which are the barrier cells of the placenta. We discovered that PHT cells from full-term placentas are refractory to ZIKV infection. In addition, medium from uninfected PHT cells protects non-placental cells from ZIKV infection. PHT cells constitutively release the type III interferon (IFN) IFNλ1, which functions in both a paracrine and autocrine manner to protect trophoblast and non-trophoblast cells from ZIKV infection. Our data suggest that for ZIKV to access the fetal compartment, it must evade restriction by trophoblast-derived IFNλ1 and other trophoblast-specific antiviral factors and/or use alternative strategies to cross the placental barrier. PMID:27066743

  2. Effect of Prostaglandin E2 on Multidrug Resistance Transporters In Human Placental Cells

    PubMed Central

    Lee, Gene T.; Dong, Yafeng; Zhou, Helen; He, Lily; Weiner, Carl P.

    2014-01-01

    Prostaglandin (PG) E2, a major product of cyclooxygenase (COX)-2, acts as an immunomodulator at the maternal-fetal interface during pregnancy. It exerts biologic function through interaction with E-prostanoid (EP) receptors localized to the placenta. The activation of the COX-2/PGE2/EP signal pathway can alter the expression of the ATP-binding cassette (ABC) transporters, multidrug resistance protein 1 [P-glycoprotein (Pgp); gene: ABCB1], and breast cancer resistance protein (BCRP; gene: ABCG2), which function to extrude drugs and xenobiotics from cells. In the placenta, PGE2-mediated changes in ABC transporter expression could impact fetal drug exposure. Furthermore, understanding the signaling cascades involved could lead to strategies for the control of Pgp and BCRP expression levels. We sought to determine the impact of PGE2 signaling mechanisms on Pgp and BCRP in human placental cells. The treatment of placental cells with PGE2 up-regulated BCRP expression and resulted in decreased cellular accumulation of the fluorescent substrate Hoechst 33342. Inhibiting the EP1 and EP3 receptors with specific antagonists attenuated the increase in BCRP. EP receptor signaling results in activation of transcription factors, which can affect BCRP expression. Although PGE2 decreased nuclear factor κ-light chain-enhancer of activated B activation and increased activator protein 1, chemical inhibition of these inflammatory transcription factors did not blunt BCRP up-regulation by PGE2. Though PGE2 decreased Pgp mRNA, Pgp expression and function were not significantly altered. Overall, these findings suggest a possible role for PGE2 in the up-regulation of placental BCRP expression via EP1 and EP3 receptor signaling cascades. PMID:25261564

  3. Effect of prostaglandin E2 on multidrug resistance transporters in human placental cells.

    PubMed

    Mason, Clifford W; Lee, Gene T; Dong, Yafeng; Zhou, Helen; He, Lily; Weiner, Carl P

    2014-12-01

    Prostaglandin (PG) E2, a major product of cyclooxygenase (COX)-2, acts as an immunomodulator at the maternal-fetal interface during pregnancy. It exerts biologic function through interaction with E-prostanoid (EP) receptors localized to the placenta. The activation of the COX-2/PGE2/EP signal pathway can alter the expression of the ATP-binding cassette (ABC) transporters, multidrug resistance protein 1 [P-glycoprotein (Pgp); gene: ABCB1], and breast cancer resistance protein (BCRP; gene: ABCG2), which function to extrude drugs and xenobiotics from cells. In the placenta, PGE2-mediated changes in ABC transporter expression could impact fetal drug exposure. Furthermore, understanding the signaling cascades involved could lead to strategies for the control of Pgp and BCRP expression levels. We sought to determine the impact of PGE2 signaling mechanisms on Pgp and BCRP in human placental cells. The treatment of placental cells with PGE2 up-regulated BCRP expression and resulted in decreased cellular accumulation of the fluorescent substrate Hoechst 33342. Inhibiting the EP1 and EP3 receptors with specific antagonists attenuated the increase in BCRP. EP receptor signaling results in activation of transcription factors, which can affect BCRP expression. Although PGE2 decreased nuclear factor κ-light chain-enhancer of activated B activation and increased activator protein 1, chemical inhibition of these inflammatory transcription factors did not blunt BCRP up-regulation by PGE2. Though PGE2 decreased Pgp mRNA, Pgp expression and function were not significantly altered. Overall, these findings suggest a possible role for PGE2 in the up-regulation of placental BCRP expression via EP1 and EP3 receptor signaling cascades. PMID:25261564

  4. A human monoclonal antibody specific to placental alkaline phosphatase, a marker of ovarian cancer

    PubMed Central

    Ravenni, Niccolò; Weber, Marcel; Neri, Dario

    2014-01-01

    Placental alkaline phosphatase (PLAP) is a promising ovarian cancer biomarker. Here, we describe the isolation, affinity-maturation and characterization of two fully human monoclonal antibodies (termed B10 and D9) able to bind to human PLAP with a dissociation constant (Kd) of 10 and 30 nM, respectively. The ability of B10 and D9 antibodies to recognize the native antigen was confirmed by Biacore analysis, FACS and immunofluorescence studies using ovarian cancer cell lines and freshly-frozen human tissues. A quantitative biodistribution study in nude mice revealed that the B10 antibody preferentially localizes to A431 tumors, following intravenous administration. Anti-PLAP antibodies may serve as a modular building blocks for the development of targeted therapeutic products, armed with cytotoxic drugs, radionuclides or cytokines as payloads. PMID:24247025

  5. CpG methylation suppresses transcriptional activity of human syncytin-1 in non-placental tissues

    SciTech Connect

    Matouskova, Magda; Blazkova, Jana; Pajer, Petr; Pavlicek, Adam; Hejnar, Jiri . E-mail: hejnar@img.cas.cz

    2006-04-15

    Syncytin-1 is a captive envelope glycoprotein encoded by one of human endogenous retroviruses W. It is expressed exclusively in the placental trophoblast where it participates in cell-to-cell fusion during differentiation of syncytiotrophobast. In other tissues, however, syncytin-1 expression must be kept in check because inadvertent cell fusion might be dangerous for tissue organization and integrity. We describe here an inverse correlation between CpG methylation of syncytin-1 5' long terminal repeat and its expression. Hypomethylation of the syncytin-1 5' long terminal repeat in the placenta and in the choriocarcinoma-derived cell line BeWo was detected. However, other analyzed primary cells and cell lines non-expressing syncytin-1 contain proviruses heavily methylated in this sequence. CpG methylation of syncytin-1 is resistant to the effect of the demethylating agent 5-azacytidine. The inhibitory role of CpG methylation is further confirmed by transient transfection of in-vitro-methylated syncytin-1 promoter-driven reporter construct. Altogether, we conclude that CpG methylation plays a principal role in the transcriptional suppression of syncytin-1 in non-placental tissues, and, in contrast, demethylation of the syncytin-1 promoter in trophoblast is a prerequisite for its expression and differentiation of multinucleated syncytiotrophoblast.

  6. Functional evidence for oxygen-sensitive voltage-gated potassium channels in human placental vasculature.

    PubMed

    Kiernan, M F; Barrie, A; Szkolar, J; Mills, T A; Wareing, M

    2010-06-01

    Hypoxic fetoplacental vasoconstriction (HFPV), involving voltage-gated potassium (K(V)) channels, has been suggested in human placenta; the identity of these channels remains unclear. Using wire myography, chorionic plate blood vessels were exposed to isoform-specific K(V) channel blockers. Dose-response curves (thromboxane mimetic U46619; 0.1-2000 nM) pre- and post-addition of K(V) channel modulator were analysed. Arterial U46619-induced contraction increased with margatoxin and stromatoxin-1, whilst only correolide increased U46619-induced contraction in veins (P < 0.05 two-way ANOVA). Basal tone was unaffected in arteries or veins. These data implicate K(V)1.2 and/or K(V)2.1 and K(V)1.5 in the control of agonist-induced contraction of human placental arteries and veins respectively. PMID:20451247

  7. The contribution of SNAT1 to system A amino acid transporter activity in human placental trophoblast

    SciTech Connect

    Desforges, M.; Greenwood, S.L.; Glazier, J.D.; Westwood, M.; Sibley, C.P.

    2010-07-16

    Research highlights: {yields} mRNA levels for SNAT1 are higher than other system A subtype mRNAs in primary human cytotrophoblast. {yields} SNAT1 knockdown in cytotrophoblast cells significantly reduces system A activity. {yields} SNAT1 is a key contributor to system A-mediated amino acid transport in human placenta. -- Abstract: System A-mediated amino acid transport across the placenta is important for the supply of neutral amino acids needed for fetal growth. All three system A subtypes (SNAT1, 2, and 4) are expressed in human placental trophoblast suggesting there is an important biological role for each. Placental system A activity increases as pregnancy progresses, coinciding with increased fetal nutrient demands. We have previously shown SNAT4-mediated system A activity is higher in first trimester than at term, suggesting that SNAT1 and/or SNAT2 are responsible for the increased system A activity later in gestation. However, the relative contribution of each subtype to transporter activity in trophoblast at term has yet to be evaluated. The purpose of this study was to identify the predominant subtype of system A in cytotrophoblast cells isolated from term placenta, maintained in culture for 66 h, by: (1) measuring mRNA expression of the three subtypes and determining the Michaelis-Menten constants for uptake of the system A-specific substrate, {sup 14}C-MeAIB, (2) investigating the contribution of SNAT1 to total system A activity using siRNA. Results: mRNA expression was highest for the SNAT1 subtype of system A. Kinetic analysis of {sup 14}C-MeAIB uptake revealed two distinct transport systems; system 1: K{sub m} = 0.38 {+-} 0.12 mM, V{sub max} = 27.8 {+-} 9.0 pmol/mg protein/20 min, which resembles that reported for SNAT1 and SNAT2 in other cell types, and system 2: K{sub m} = 45.4 {+-} 25.0 mM, V{sub max} = 1190 {+-} 291 pmol/mg protein/20 min, which potentially represents SNAT4. Successful knockdown of SNAT1 mRNA using target-specific si

  8. Interaction between human placental microvascular endothelial cells and a model of human trophoblasts: effects on growth cycle and angiogenic profile.

    PubMed

    Troja, Weston; Kil, Kicheol; Klanke, Charles; Jones, Helen N

    2014-01-01

    Abstract Intrauterine growth restriction (IUGR) is a leading cause of perinatal complications, and is commonly associated with reduced placental vasculature. Recent studies demonstrated over-expression of IGF-1 in IUGR animal models maintains placental vasculature. However, the cellular environment of the placental chorionic villous is unknown. The close proximity of trophoblasts and microvascular endothelial cells in vivo alludes to autocrine/paracrine regulation following Ad-HuIGF-1 treatment. We investigated the co-culturing of BeWo Choriocarcinoma and Human Placental Microvascular Endothelial Cells (HPMVECs) on the endothelial angiogenic profile and the effect Ad-HuIGF-1 treatment of one cell has on the other. HPMVECs were isolated from human term placentas and cultured in EGM-2 at 37°C with 5% CO2. BeWo cells were maintained in Ham's F12 nutrient mix with 10% FBS and 1% pen/strep. Co-cultured HPMVECS+BeWo cells were incubated in serum-free control media, Ad-HuIGF-1, or Ad-LacZ at MOI 0 and MOI 100:1 for 48 h. Non-treated cells and mono-cultured cells were compared to co-cultured cells. Angiogenic gene expression and proliferative and apoptotic protein expression were analysed by RT-qPCR and immunocytochemistry, respectively. Statistical analyses was performed using student's t-test with P < 0.05 considered significant. Direct Ad-HuIGF-1 treatment increased HPMVEC proliferation (n = 4) and reduced apoptosis (n = 3). Co-culturing HPMVECs+BeWo cells significantly altered RNA expression of the angiogenic profile compared to mono-cultured HPMVECs (n = 8). Direct Ad-HuIGF-1 treatment significantly increased Ang-1 (n = 4) in BeWo cells. Ad-HuIGF-1 treatment of HPMVECs did not alter the RNA expression of angiogenic factors. Trophoblastic factors may play a key role in placental vascular development and IGF-1 may have an important role in HPMVEC growth. PMID:24760505

  9. Human placenta-derived stromal cells decrease inflammation, placental injury and blood pressure in hypertensive pregnant mice.

    PubMed

    Chatterjee, Piyali; Chiasson, Valorie L; Pinzur, Lena; Raveh, Shani; Abraham, Eytan; Jones, Kathleen A; Bounds, Kelsey R; Ofir, Racheli; Flaishon, Liat; Chajut, Ayelet; Mitchell, Brett M

    2016-04-01

    Pre-eclampsia, the development of hypertension and proteinuria or end-organ damage during pregnancy, is a leading cause of both maternal and fetal morbidity and mortality, and there are no effective clinical treatments for pre-eclampsia aside from delivery. The development of pre-eclampsia is characterized by maladaptation of the maternal immune system, excessive inflammation and endothelial dysfunction. We have reported that detection of extracellular RNA by the Toll-like receptors (TLRs) 3 and 7 is a key initiating signal that contributes to the development of pre-eclampsia. PLacental eXpanded (PLX-PAD) cells are human placenta-derived, mesenchymal-like, adherent stromal cells that have anti-inflammatory, proangiogenic, cytoprotective and regenerative properties, secondary to paracrine secretion of various molecules in response to environmental stimulation. We hypothesized that PLX-PAD cells would reduce the associated inflammation and tissue damage and lower blood pressure in mice with pre-eclampsia induced by TLR3 or TLR7 activation. Injection of PLX-PAD cells on gestational day 14 significantly decreased systolic blood pressure by day 17 in TLR3-induced and TLR7-induced hypertensive mice (TLR3 144-111 mmHg; TLR7 145-106 mmHg; both P<0.05), and also normalized their elevated urinary protein:creatinine ratios (TLR3 5.68-3.72; TLR7 5.57-3.84; both P<0.05). On gestational day 17, aortic endothelium-dependent relaxation responses improved significantly in TLR3-induced and TLR7-induced hypertensive mice that received PLX-PAD cells on gestational day 14 (TLR3 35-65%; TLR7 37-63%; both P<0.05). In addition, markers of systemic inflammation and placental injury, increased markedly in both groups of TLR-induced hypertensive mice, were reduced by PLX-PAD cells. Importantly, PLX-PAD cell therapy had no effects on these measures in pregnant control mice or on the fetuses. These data demonstrate that PLX-PAD cell therapy can safely reverse pre-eclampsia-like features during

  10. Alpha-1-Antitrypsin: A Novel Human High Temperature Requirement Protease A1 (HTRA1) Substrate in Human Placental Tissue

    PubMed Central

    Frochaux, Violette; Hildebrand, Diana; Talke, Anja; Linscheid, Michael W.; Schlüter, Hartmut

    2014-01-01

    The human serine protease high temperature requirement A1 (HTRA1) is highly expressed in the placental tissue, especially in the last trimester of gestation. This suggests that HTRA1 is involved in placental formation and function. With the aim of a better understanding of the role of HTRA1 in the placenta, candidate substrates were screened in a placenta protein extract using a gel-based mass spectrometric approach. Protease inhibitor alpha-1-antitrypsin, actin cytoplasmic 1, tropomyosin beta chain and ten further proteins were identified as candidate substrates of HTRA1. Among the identified candidate substrates, alpha-1-antitrypsin (A1AT) was considered to be of particular interest because of its important role as protease inhibitor. For investigation of alpha-1-antitrypsin as substrate of HTRA1 synthetic peptides covering parts of the sequence of alpha-1-antitrypsin were incubated with HTRA1. By mass spectrometry a specific cleavage site was identified after met-382 (AIPM382↓383SIPP) within the reactive centre loop of alpha-1-antitrypsin, resulting in a C-terminal peptide comprising 36 amino acids. Proteolytic removal of this peptide from alpha-1-antitrypsin results in a loss of its inhibitor function. Beside placental alpha-1-antitrypsin the circulating form in human plasma was also significantly degraded by HTRA1. Taken together, our data suggest a link between the candidate substrates alpha-1-antitrypsin and the function of HTRA1 in the placenta in the syncytiotrophoblast, the cell layer attending to maternal blood in the villous tree of the human placenta. Data deposition: Mass spectrometry (MS) data have been deposited to the ProteomeXchange with identifier PXD000473. PMID:25329061

  11. Comparative placental transfer, localization, and effects of radionuclides in experimental animal and human pregnancies

    SciTech Connect

    Sikov, M.R.; Meznarich, H.K.; Traub, R.J.

    1991-11-01

    Estimating radiation doses to the human embryo/fetus from radionuclides and predicting effects requires extrapolation of data from studies of laboratory species, with scaling for species-specific developmental stage and gestational time relationships and maturities at birth. Combinations of fetal-to-maternal ratios of concentrations, patterns of deposition, transfer kinetics, and compartmental and physiologic models are used to predict radioactivity levels and radiation doses to the conceptus. There is agreement between values expressing fractional transfer across the placenta ({theta}) with tabulated values for fractional absorption (f{sub 1}) from gastrointestinal (GI) tract or lung for most substances commonly involved in metabolic processes. A tendency toward disagreement for some other materials is thought to involve explanations based on their physicochemistry, toxicity, or the influence of target tissue development on placental transfer kinetics.

  12. Review: Exploration of placentation from human beings to ocean-living species.

    PubMed

    Soma, H; Murai, N; Tanaka, K; Oguro, T; Kokuba, H; Yoshihama, I; Fujita, K; Mineo, S; Toda, M; Uchida, S; Mogoe, T

    2013-03-01

    This review covers four topics. 1) Placental pathology in Himalayan mountain people. To determine morphological changes of the placenta at high altitude, pathological examination was made of 1000 Himalayan placentas obtained in Nepal and Tibet and the results compared with Japanese placentas delivered at sea level. Characteristic findings in the placental villi of the Himalayan group included high incidences of villous chorangiosis and chorangioma. These processes were clarified by ultrastructural observation. 2) Placentation in Sirenians. The giant Takikawa sea cow, which lived 5 million years ago, was discovered on Hokkaido, Japan. It was an ancestor of the dugong as well as the manatees. Sirenia, the sea cow group, shares a common ancestor with Proboscidea, the elephants, even though they now inhabit quite different environments. A comparison was made of their zonary endothelial type of placentation. 3) Placentation in sharks and rays. The remarkable placentation of hammerhead sharks and manta rays is described. 4) Placentation in the Antarctic minke whale. Placental tissue samples of this whale were obtained from the Japan Institute of Cetacean Research. In an ultrastructural study of the utero-placental junction, microfilamental processes of the allantochorionic zone and crypt formation were visualized. PMID:23332416

  13. Increased ubiquitination and reduced plasma membrane trafficking of placental amino acid transporter SNAT-2 in human IUGR.

    PubMed

    Chen, Yi-Yung; Rosario, Fredrick J; Shehab, Majida Abu; Powell, Theresa L; Gupta, Madhulika B; Jansson, Thomas

    2015-12-01

    Placental amino acid transport is decreased in intrauterine growth restriction (IUGR); however, the underlying mechanisms remain largely unknown. We have shown that mechanistic target of rapamycin (mTOR) signalling regulates system A amino acid transport by modulating the ubiquitination and plasma membrane trafficking of sodium-coupled neutral amino acid transporter 2 (SNAT-2) in cultured primary human trophoblast cells. We hypothesize that IUGR is associated with (1) inhibition of placental mTORC1 and mTORC2 signalling pathways, (2) increased amino acid transporter ubiquitination in placental homogenates and (3) decreased protein expression of SNAT-2 in the syncytiotrophoblast microvillous plasma membrane (MVM). To test this hypothesis, we collected placental tissue and isolated MVM from women with pregnancies complicated by IUGR (n=25) and gestational age-matched women with appropriately grown control infants (n=19, birth weights between the twenty-fifth to seventy-fifth percentiles). The activity of mTORC1 and mTORC2 was decreased whereas the protein expression of the ubiquitin ligase NEDD4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2; +72%, P<0.0001) and the ubiquitination of SNAT-2 (+180%, P<0.05) were increased in homogenates of IUGR placentas. Furthermore, IUGR was associated with decreased system A amino acid transport activity (-72%, P<0.0001) and SNAT-1 (-42%, P<0.05) and SNAT-2 (-31%, P<0.05) protein expression in MVM. In summary, these findings are consistent with the possibility that decreased placental mTOR activity causes down-regulation of placental system A activity by shifting SNAT-2 trafficking towards proteasomal degradation, thereby contributing to decreased fetal amino acid availability and restricted fetal growth in IUGR. PMID:26374858

  14. The role of placental indoleamine 2,3-dioxygenase in human pregnancy

    PubMed Central

    2013-01-01

    Munn et al. made a scientific observation of major biological importance. For the first time they showed that in the mammal the fetus does survive an immune attack mounted by the mother, and that the mechanism responsible for the survival depends on the fetus and placenta 'actively' defending itself from attack by maternal T cells by means of an enzyme indoleamine 2,3-dioxygenase (EC 1.13.11.42) dependent localised depletion of L-tryptophan. These findings raise critical questions for disease and its prevention during human pregnancy. Specifically, the role of this mechanism (discovered in mouse) in the human, and the extent to which defective activation of this process is responsible for major clinical diseases are unknown. Therefore some key facts about this enzyme expressed in the human placenta have been studied in order to test whether Munn et al.'s findings in mouse are met for human pregnancy. This short review attempts to describe our experimental work on human placental indoleamine 2,3-dioxygenase. PMID:24328005

  15. Isolation of endothelial cells from human placental microvessels: effect of different proteolytic enzymes on releasing endothelial cells from villous tissue.

    PubMed

    Ugele, B; Lange, F

    2001-01-01

    Approaches for the isolation of human placental microvascular endothelial cells (HPMEC) using proteolytic enzymes have been described recently. However, the isolation procedure and enzyme composition most suitable for optimal disaggregation of placental tissue and isolation of HPMEC has not yet been established. We tested different proteolytic enzymes and enzyme mixtures for their capabilities of releasing endothelial cells from human term placental villous tissue. Best results were obtained with a mixture of collagenase/dispase/deoxyribonuclease I (0.28%/0.25%/0.01%). By adding a discontinuous Percoll gradient centrifugation step to the enzymatic dispersion, about 1 x 10(6) cells/g tissue with more than 30% von Willebrand factor (vWf)-positive cells were obtained. However, the total cell number and number of vWf-positive cells were highly dependent on the lot of collagenase used. A perfusion step prior to mincing of villous tissue did not increase the amount of vWf-positive cells. We conclude that the methods described in this study are suitable to isolate high yields of HPMEC and that the composition of the collagenase preparation is crucial to the successful release of endothelial cells from placental tissue. To obtain pure HPMEC, further separation steps, e.g., cell sorting with antibodies against endothelial specific cell surface antigens are necessary. PMID:11573814

  16. Metabolic effects of growth factors and polycyclic aromatic hydrocarbons on cultured human placental cells of early and late gestation

    SciTech Connect

    Guyda, H.J. )

    1991-03-01

    The metabolic effects of epidermal growth factor (EGF), insulin, insulin-like growth factor-I (IGF-I), and IGF-II were determined on human placental cells in monolayer culture obtained from early gestation (less than 20 weeks) and late gestation (38-42 weeks). Parameters studied were uptake of aminoisobutyric acid (AIB), uptake of 3-O-methylglucose and (3H)thymidine incorporation into cell protein. Since benzo(alpha)pyrene (BP) inhibits EGF binding and autophosphorylation in cultured human placental cells, particularly in early gestation, we also studied the effect of benzo(alpha)pyrene and other polycyclic aromatic hydrocarbons (PAHs) on EGF-mediated AIB uptake. The metabolic effects of EGF, insulin, and the IGFs in cultured human placental cells varied with gestational age and the growth factor studied. All three classes of growth factors stimulated AIB uptake in both early and late gestation at concentrations from 10-100 micrograms/L, well within a physiological range. However, insulin stimulation of AIB uptake was maximal at a high concentration in both early and late gestation cells, suggesting an action via type 1 IGF receptors rather than via insulin receptors. EGF stimulated 3-O-methylglucose uptake only in term placental cells. No significant stimulation of (3H)thymidine incorporation by any of the growth factors tested was seen with either early or late gestation cells. The effect of PAHs on AIB uptake by cultured placental cells was variable. BP alone stimulated AIB uptake by both very early and late gestation cells and enhanced EGF-stimulated AIB uptake. alpha-naphthoflavone alone inhibited AIB uptake at all gestational ages and inhibited EGF-stimulated AIB uptake. beta-Naphthoflavone and 3-methylcholanthrene minimally inhibited AIB uptake by early gestation cells and did not modify EGF-stimulated uptake at any gestational period.

  17. In vitro toxicological effects of estrogenic mycotoxins on human placental cells: Structure activity relationships

    SciTech Connect

    Prouillac, Caroline; Lecoeur, Sylvaine

    2012-03-15

    Zearalenone (ZEN) is a non-steroid estrogen mycotoxin produced by numerous strains of Fusarium which commonly contaminate cereals. After oral administration, ZEN is reduced via intestinal and hepatic metabolism to α- and β-zearalenol (αZEL and βZEL). These reduced metabolites possess estrogenic properties, αZEL showing the highest affinity for ERs. ZEN and reduced metabolites cause hormonal effects in animals, such as abnormalities in the development of the reproductive tract and mammary gland in female offspring, suggesting a fetal exposure to these contaminants. In our previous work, we have suggested the potential impact of ZEN on placental cells considering this organ as a potential target of xenobiotics. In this work, we first compared the in vitro effects of αZEL and βΖΕL on cell differentiation to their parental molecule on human trophoblast (BeWo cells). Secondly, we investigated their molecular mechanisms of action by investigating the expression of main differentiation biomarkers and the implication of nuclear receptor by docking prediction. Conversely to ZEN, reduced metabolites did not induce trophoblast differentiation. They also induced significant changes in ABC transporter expression by potential interaction with nuclear receptors (LXR, PXR, PR) that could modify the transport function of placental cells. Finally, the mechanism of ZEN differentiation induction seemed not to involve nuclear receptor commonly involved in the differentiation process (PPARγ). Our results demonstrated that in spite of structure similarities between ZEN, αZEL and βZEL, toxicological effects and toxicity mechanisms were significantly different for the three molecules. -- Highlights: ► ZEN and metabolites have differential effect on trophoblast differentiation. ► ZEN and metabolites have differential effect on ABC transporter expression. ► ZEN and metabolites effects involved nuclear receptors interaction.

  18. Parent bisphenol A accumulation in the human maternal-fetal-placental unit.

    PubMed Central

    Schönfelder, Gilbert; Wittfoht, Werner; Hopp, Hartmut; Talsness, Chris E; Paul, Martin; Chahoud, Ibrahim

    2002-01-01

    Bisphenol A (BPA), an endocrine disruptor, is employed in the manufacture of a wide range of consumer products. The suggestion that BPA, at amounts to which we are exposed, alters the reproductive organs of developing rodents has caused concern. At present, no information exists concerning the exposure of human pregnant women and their fetuses to BPA. We therefore investigated blood samples from mothers (n = 37) between weeks 32 and 41 of gestation. Afer the births, we also analyzed placental tissue and umbilical cord blood from the same subjects. We developed a novel chemical derivatization-gas chromatography/mass spectrometry method to analyze parent BPA at concentrations < 1 micro g/mL in plasma and tissues. Concentrations of BPA ranged from 0.3 to 18.9 ng/mL (median = 3.1 ng/mL) in maternal plasma, from 0.2 to 9.2 ng/mL (median = 2.3 ng/mL) in fetal plasma, and from 1.0 to 104.9 ng/g (median = 12.7 ng/g) in placental tissue. BPA blood concentrations were higher in male than in female fetuses. Here we demonstrate parent BPA in pregnant women and their fetuses. Exposure levels of parent BPA were found within a range typical of those used in recent animal studies and were shown to be toxic to reproductive organs of male and female offspring. We suggest that the range of BPA concentrations we measured may be related to sex differences in metabolization of parent BPA or variable maternal use of consumer products leaching BPA. PMID:12417499

  19. Secreted Factors from Human Vestibular Schwannomas Can Cause Cochlear Damage

    PubMed Central

    Dilwali, Sonam; Landegger, Lukas D.; Soares, Vitor Y. R.; Deschler, Daniel G.; Stankovic, Konstantina M.

    2015-01-01

    Vestibular schwannomas (VSs) are the most common tumours of the cerebellopontine angle. Ninety-five percent of people with VS present with sensorineural hearing loss (SNHL); the mechanism of this SNHL is currently unknown. To establish the first model to study the role of VS-secreted factors in causing SNHL, murine cochlear explant cultures were treated with human tumour secretions from thirteen different unilateral, sporadic VSs of subjects demonstrating varied degrees of ipsilateral SNHL. The extent of cochlear explant damage due to secretion application roughly correlated with the subjects’ degree of SNHL. Secretions from tumours associated with most substantial SNHL resulted in most significant hair cell loss and neuronal fibre disorganization. Secretions from VSs associated with good hearing or from healthy human nerves led to either no effect or solely fibre disorganization. Our results are the first to demonstrate that secreted factors from VSs can lead to cochlear damage. Further, we identified tumour necrosis factor alpha (TNFα) as an ototoxic molecule and fibroblast growth factor 2 (FGF2) as an otoprotective molecule in VS secretions. Antibody-mediated TNFα neutralization in VS secretions partially prevented hair cell loss due to the secretions. Taken together, we have identified a new mechanism responsible for SNHL due to VSs. PMID:26690506

  20. Fluoroquinolone (ciprofloxacin) secretion by human intestinal epithelial (Caco-2) cells

    PubMed Central

    Cavet, M E; West, M; Simmons, N L

    1997-01-01

    Human intestinal epithelial Caco-2 cells were used to investigate the mechanistic basis of transepithelial secretion of the fluoroquinolone antibiotic ciprofloxacin. Net secretion and cellular uptake of ciprofloxacin (at 0.1 mM) were not subject to competitive inhibition by sulphate, thiosulphate, oxalate, succinate and para-amino hippurate, probenecid (10 mM), taurocholate (100 μM) or bromosulphophthalein (100 μM). Similarly tetraethylammonium and N-′methylnicotinamide (10 mM) were without effect. Net secretion of ciprofloxacin was inhibited by the organic exchange inhibitor 4,4′-diisothiocyanostilbene-2-2′-disulphonic acid (DIDS, 400 μM). Net secretion of ciprofloxacin was partially inhibited by 100 μM verapamil, whilst net secretion of the P-glycoprotein substrate vinblastine was totally abolished under these conditions. Ciprofloxacin secretion was unaltered after preincubation of cells with two anti-P-glycoprotein antibodies (UIC2 and MRK16), which both significantly reduced secretory vinblastine flux (measured in the same cell batch). Ciprofloxacin (3 mM) failed to inhibit vinblastine net secretion in Caco-2 epithelia, and was not itself secreted by the P-glycoprotein expressing and vinblastine secreting dog kidney cell line, MDCK. Net secretion and cellular uptake of ciprofloxacin (at 0.1 mM) were not subject to alterations of either cytosolic or medium pH, or dependent on the presence of medium Na+, Cl− or K+ in the bathing media. The substrate specificity of the ciprofloxacin secretory transport in Caco-2 epithelia is distinct from both the renal organic anion and cation transport. A role for P-glycoprotein in ciprofloxacin secretion may also be excluded. A novel transport mechanism, sensitive to both DIDS and verapamil mediates secretion of ciprofloxacin by human intestinal Caco-2 epithelia. PMID:9283689

  1. Inhibition of human placental aromatase activity by hydroxylated polybrominated diphenyl ethers (OH-PBDEs)

    SciTech Connect

    Canton, Rocio F. Scholten, Deborah E.A.; Marsh, Goeran; Jong, Paul C. de; Berg, Martin van den

    2008-02-15

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants in many different polymers, resins and substrates. Due to their widespread production and use, their high binding affinity to particles, and their lipophilic properties, several PBDE congeners can bioaccumulate in the environment. As a result, PBDEs and their hydroxylated metabolites (OH-PBDEs) have been detected in humans and various wildlife samples, such as birds, seals, and whales. Furthermore, certain OH-PBDEs and their methoxylated derivatives (MeO-PBDEs) are natural products in the marine environment. Recently, our laboratory focused on the possible effects on steroidogenesis of PBDEs and OH-PBDEs, e.g. in the human adrenocortical carcinoma (H295R) cell line indicating that some OH-PBDEs can significantly influence steroidogenic enzymes like CYP19 (aromatase) and CYP17. In the present study, human placental microsomes have been used to study the possible interaction of twenty two OH-PBDEs and MeO-PBDEs with aromatase, the enzyme that mediates the conversion of androgens into estrogens. All OH-PBDE derivates showed significant inhibition of placental aromatase activity with IC{sub 50} values in the low micromolar range, while the MeO-PBDEs did not have any effect on this enzyme activity. Enzyme kinetics studies indicated that two OH-PBDEs, 5-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (5-OH-BDE47) and 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE47), had a mixed-type inhibition of aromatase activity with apparent K{sub i}/K{sub i}' of 7.68/0,02 {mu}M and 5.01/0.04 {mu}M respectively. For comparison, some structurally related compounds, a dihydroxylated polybrominated biphenyl, which is a natural product (2,2'-dihyroxy-3,3',5,5'-tetrabromobiphenyl (2,2'-diOH-BB80)) and its non-bromo derivative were also included in the study. Again inhibition of aromatase activity could be measured, but their potency was significantly less than those observed for the OH-PBDEs. These results show

  2. Cyclooxygenase-1 and -2 in human placenta and placental bed after normal and pre-eclamptic pregnancies.

    PubMed

    Wetzka, B; Nüsing, R; Charnock-Jones, D S; Schäfer, W; Zahradnik, H P; Smith, S K

    1997-10-01

    In pre-eclampsia, the ratio of prostacyclin:thromboxane production rate is decreased favouring the vasoconstrictive thromboxane. One of the rate-limiting steps in prostaglandin synthesis is cyclooxygenase (COX) activity. Therefore, we investigated the expression of COX-1 and COX-2 in human placenta and placental bed. Tissue specimens from the 29th to 40th week of pregnancy were obtained from Caesarean sections after uncomplicated and pre-eclamptic pregnancies before the onset of labour. COX-1 and COX-2 were localized immunohistochemically with the identification of positive cells by double immunofluorescence staining. The protein and mRNA levels were analysed by immunoblotting and quantitative reverse transcriptase-polymerase chain reaction. Expression of both COX-1 and COX-2 could be observed in placenta and placental bed. COX-1-like immunoreactivity was observed in most cell types with strongest staining in macrophages. Only macrophages, endothelium, vascular leiomyocytes and fibroblasts stained positively for COX-2. In placenta, COX-1 and -2 expression was unchanged after pre-eclampsia. In placental bed, protein and mRNA levels of COX-1 were increased in the pre-eclamptic group (P < 0.05), whereas COX-2 expression did not differ significantly from normal pregnancies. An increased expression of COX-1 could be involved in the pathophysiology of pre-eclamptic changes within the placental bed. A therapy with drugs inhibiting COX-1 might be beneficial in this condition. PMID:9402302

  3. Regulation of amino acid transporters by adenoviral-mediated human insulin-like growth factor-1 in a mouse model of placental insufficiency in vivo and the human trophoblast line BeWo in vitro

    PubMed Central

    Jones, H.; Crombleholme, T.; Habli, M.

    2014-01-01

    Previous work in our laboratory demonstrated that over-expression of human insulin-like growth factor-11 (hIGF-1) in the placenta corrects fetal weight deficits in mouse, rat, and rabbit models of intrauterine growth restriction without changes in placental weight. The underlying mechanisms of this effect have not been elucidated. To investigate the effect of intra-placental IGF-1 over-expression on placental function we examined amino acid transporter expression and localization in both a mouse model of placental Insufficiency (PI) and a model of human trophoblast, the BeWo Choriocarcinoma cell line. For in vitro human studies, BeWo Choriocarcinoma cells were maintained in F12 complete medium + 10%FBS. Cells were incubated in serum-free control media ± Ad-IGF-1 or Ad-LacZ for 48 h. MOIs of 10:1 and 100:1 were utilized. In BeWo, transfection efficiency was 100% at an MOI of 100:1 and Ad-IGF-1 significantly increased IGF-1 secretion, proliferation and invasion but reduced apoptosis compared to controls. In vitro, amino acid uptake was increased following Ad-IGF-1 treatment and associated with significantly increased RNA expression of SNAT1, 2, LAT1 and 4F2hc. Only SNAT2 protein expression was increased but LAT1 showed relocalization from a perinuclear location to the cytoplasm and cell membrane. For in vivo studies, timed-pregnant animals were divided into four groups on day 18; sham-operated controls, uterine artery branch ligation (UABL), UABL + Ad-hIGF-1 (108 PFU), UABL + Ad-LacZ (108 PFU). At gestational day 20, pups and placentas were harvested by C-section. Only LAT1 mRNA expression changed, showing that a reduced expression of the transporter levels in the PI model could be partially rectified with Ad-hIGF1 treatment. At the protein level, System L was reduced in PI but remained at control levels following Ad-hIGF1. The System A isoforms were differentially regulated with SNAT2 expression diminished but SNAT1 increased in PI and Ad-hIGF1 groups. Enhanced

  4. Aromatase inhibition by synthetic lactones and flavonoids in human placental microsomes and breast fibroblasts - A comparative study

    SciTech Connect

    Meeuwen, J.A. van Nijmeijer, S.; Mutarapat, T.; Ruchirawat, S.; Jong, P.C. de; Piersma, A.H.; Berg, M. van den

    2008-05-01

    Interference of exogenous chemicals with the aromatase enzyme can be useful as a tool to identify chemicals that could act either chemopreventive for hormone-dependent cancer or adverse endocrine disruptive. Aromatase is the key enzyme in the biosynthesis of steroids, as it converts androgens to estrogens. Certain flavonoids, plant derived chemicals, are known catalytic aromatase inhibitors. Various systems are in use to test aromatase inhibitory properties of compounds. Commonly used are microsomes derived from ovary or placental tissue characterized by high aromatase activity. To a lesser extent whole cell systems are used and specifically cell systems that are potential target tissue in breast cancer development. In this study aromatase inhibitory properties of fadrozole, 8-prenylnaringenin and a synthetic lactone (TM-7) were determined in human placental microsomes and in human primary breast fibroblasts. In addition, apigenin, chrysin, naringenin and two synthetic lactones (TM-8 and TM-9) were tested in human microsomes only. Comparison of the aromatase inhibitory potencies of these compounds between the two test systems showed that the measurement of aromatase inhibition in human placental microsomes is a good predictor of aromatase inhibition in human breast fibroblasts.

  5. Aromatase inhibition by synthetic lactones and flavonoids in human placental microsomes and breast fibroblasts--a comparative study.

    PubMed

    van Meeuwen, J A; Nijmeijer, S; Mutarapat, T; Ruchirawat, S; de Jong, P C; Piersma, A H; van den Berg, M

    2008-05-01

    Interference of exogenous chemicals with the aromatase enzyme can be useful as a tool to identify chemicals that could act either chemopreventive for hormone-dependent cancer or adverse endocrine disruptive. Aromatase is the key enzyme in the biosynthesis of steroids, as it converts androgens to estrogens. Certain flavonoids, plant derived chemicals, are known catalytic aromatase inhibitors. Various systems are in use to test aromatase inhibitory properties of compounds. Commonly used are microsomes derived from ovary or placental tissue characterized by high aromatase activity. To a lesser extent whole cell systems are used and specifically cell systems that are potential target tissue in breast cancer development. In this study aromatase inhibitory properties of fadrozole, 8-prenylnaringenin and a synthetic lactone (TM-7) were determined in human placental microsomes and in human primary breast fibroblasts. In addition, apigenin, chrysin, naringenin and two synthetic lactones (TM-8 and TM-9) were tested in human microsomes only. Comparison of the aromatase inhibitory potencies of these compounds between the two test systems showed that the measurement of aromatase inhibition in human placental microsomes is a good predictor of aromatase inhibition in human breast fibroblasts. PMID:18201740

  6. Human placental DNA polymerase delta: identification of a 170-kilodalton polypeptide by activity staining and immunoblotting

    SciTech Connect

    Lee, M.Y.W.T.; Toomey, N.L.

    1987-02-24

    DNA polymerase delta was isolated from human placenta and identified as such on the basis of its association with a 3'- to 5'-exonuclease activity. The association of the polymerase and exonuclease activities was maintained throughout purification and attempted separations by physical or electrophoretic methods. Moreover, ratios of the two activities remained constant during the purification steps, and both activities were inhibited by aphidicolin, oxidized glutathione, and n-ethylmaleimide. The purified enzyme had an estimated molecular weight of 172,000, on the basis of a Stokes radius of 53.6 A and a sedimentation coefficient of 7.8 S. On sodium dodecyl sulfate (SDS) gel electrophoresis, polymerase delta preparations contained a band of ca. 170 kilodaltons (kDa) as well as several smaller polypeptides. The 170-kDa polypeptide was identified as the largest polypeptides component in the preparation possessing DNA polymerase activity by an activity staining procedure following gel electrophoresis in the presence of SDS. Western blotting of DNA polymerase delta with polyclonal antisera also revealed a single 170-kDa immunoreactive polypeptide. Monoclonal antibodies to KB cell polymerase ..cap alpha.. inhibited placental polymerase ..cap alpha.. but did not inhibit DNA polymerase delta, while the murine polyclonal antisera to polymerase delta inhibited delta but not ..cap alpha... These findings establish the existence of DNA polymerase delta in a human tissue and support the view that both its polymerase and its exonuclease activities may be associated with a single protein.

  7. Opioid control of gonadotrophin secretion in humans.

    PubMed

    Genazzani, A R; Genazzani, A D; Volpogni, C; Pianazzi, F; Li, G A; Surico, N; Petraglia, F

    1993-11-01

    Hypothalamus-pituitary-axis (HPA) is constantly under the modulatory effect of many substances, such as neurotransmitters, neuromodulators and steroid hormones. Recently, the involvement of endogenous opioid peptides (EOP) in the control of the neuroendocrine mechanism modulating gonadotrophin secretion has been supported by several authors. It has been demonstrated that acute morphine administration decreases luteinizing hormone (LH) plasma levels and this is due to an inhibitory modulation on gonadotrophin releasing hormone discharge from the hypothalamic neurons. EOP are usually increased by stressful situations. In stress-induced amenorrhoea, the presence of low LH plasma levels and an abnormal LH pulsatile secretion has been related to an increased opioid activity, thus supporting the integrative role of opioids between hormonal and neuronal afferences of brain. PMID:8276950

  8. Chromosomal Mosaicism in Human Feto-Placental Development: Implications for Prenatal Diagnosis

    PubMed Central

    Grati, Francesca Romana

    2014-01-01

    Chromosomal mosaicism is one of the primary interpretative issues in prenatal diagnosis. In this review, the mechanisms underlying feto-placental chromosomal mosaicism are presented. Based on the substantial retrospective diagnostic experience with chorionic villi samples (CVS) of a prenatal diagnosis laboratory the following items are discussed: (i) The frequency of the different types of mosaicism (confined placental, CPM, and true fetal mosaicisms, TFM); (ii) The risk of fetal confirmation after the detection of a mosaic in CVS stratified by chromosome abnormality and placental tissue involvement; (iii) The frequency of uniparental disomy for imprinted chromosomes associated with CPM; (iv) The incidence of false-positive and false-negative results in CVS samples analyzed by only (semi-)direct preparation or long term culture; and (v) The implications of the presence of a feto-placental mosaicism for microarray analysis of CVS and non-invasive prenatal screening (NIPS). PMID:26237479

  9. Cross-tolerance of human placental plasma membranes of smokers to fluidizing effects of alcohol

    SciTech Connect

    Sastry, B.V.R.; Horst, M.A.; Naukam, R.J. )

    1991-03-11

    There is cross-tolerance between ethanol and several centrally acting drugs at the membrane level. In order to evaluate cross-tolerance between maternal smoking during pregnancy and alcohol, the authors have prepared plasma membranes of human term placentas from nonsmokers (NS, n=5) and smokers (S, 24 {plus minus} 8 cigarettes/day, n=5) and studied their microviscosities by steady state fluorescence polarization using trans-1,6-diphenyl-1,3,5-hexatriene as a fluorescent probe. These experiments gave the following results: (a) microviscosity was increased by maternal smoking; (b) alcohol decreased microviscosity of the membranes of smokers; (c) exogenous nicotine did not exert any significant effect on the membranes of smokers and nonsmokers. Therefore, the increase in the rigidity of placental plasma membranes is due to chronic smoking, and these membranes are tolerant to the fluidizing effects of alcohol. Cross-tolerance between smoking and ethanol suggests a common hydrophobic locus of the apparent adaptation at the membrane level.

  10. Elemental maps in human allantochorial placental vessels cells: 1. High K + and acetylcholine effects

    NASA Astrophysics Data System (ADS)

    Michelet-Habchi, C.; Barberet, Ph.; Dutta, R. K.; Guiet-Bara, A.; Bara, M.; Moretto, Ph.

    2003-09-01

    Regulation of vascular tone in the fetal extracorporeal circulation most likely depends on circulating hormones, local paracrine mechanisms and changes in membrane potential of vascular smooth muscle cells (VSMCs) and of vascular endothelial cells (VECs). The membrane potential is a function of the physiological activities of ionic channels (particularly, K + and Ca 2+ channels in these cells). These channels regulate the ionic distribution into these cells. Micro-particle induced X-ray emission (PIXE) analysis was applied to determine the ionic composition of VSMC and of VEC in the placental human allantochorial vessels in a physiological survival medium (Hanks' solution) modified by the addition of acetylcholine (ACh: which opens the calcium-sensitive K + channels, K Ca) and of high concentration of K + (which blocks the voltage-sensitive K + channels, K df). In VSMC (media layer), the addition of ACh induced no modification of the Na, K, Cl, P, S, Mg and Ca concentrations and high K + medium increased significantly the Cl and K concentrations, the other ion concentrations remaining constant. In endothelium (VEC), ACh addition implicated a significant increase of Na and K concentration, and high K + medium, a significant increase in Cl and K concentration. These results indicated the importance of K df, K Ca and K ATP channels in the regulation of K + intracellular distribution in VSMC and VEC and the possible intervention of a Na-K-2Cl cotransport and corroborated the previous electrophysiological data.

  11. Differential effects of glyphosate and roundup on human placental cells and aromatase.

    PubMed

    Richard, Sophie; Moslemi, Safa; Sipahutar, Herbert; Benachour, Nora; Seralini, Gilles-Eric

    2005-06-01

    Roundup is a glyphosate-based herbicide used worldwide, including on most genetically modified plants that have been designed to tolerate it. Its residues may thus enter the food chain, and glyphosate is found as a contaminant in rivers. Some agricultural workers using glyphosate have pregnancy problems, but its mechanism of action in mammals is questioned. Here we show that glyphosate is toxic to human placental JEG3 cells within 18 hr with concentrations lower than those found with agricultural use, and this effect increases with concentration and time or in the presence of Roundup adjuvants. Surprisingly, Roundup is always more toxic than its active ingredient. We tested the effects of glyphosate and Roundup at lower nontoxic concentrations on aromatase, the enzyme responsible for estrogen synthesis. The glyphosate-based herbicide disrupts aromatase activity and mRNA levels and interacts with the active site of the purified enzyme, but the effects of glyphosate are facilitated by the Roundup formulation in microsomes or in cell culture. We conclude that endocrine and toxic effects of Roundup, not just glyphosate, can be observed in mammals. We suggest that the presence of Roundup adjuvants enhances glyphosate bioavailability and/or bioaccumulation. PMID:15929894

  12. Differential Effects of Glyphosate and Roundup on Human Placental Cells and Aromatase

    PubMed Central

    Richard, Sophie; Moslemi, Safa; Sipahutar, Herbert; Benachour, Nora; Seralini, Gilles-Eric

    2005-01-01

    Roundup is a glyphosate-based herbicide used worldwide, including on most genetically modified plants that have been designed to tolerate it. Its residues may thus enter the food chain, and glyphosate is found as a contaminant in rivers. Some agricultural workers using glyphosate have pregnancy problems, but its mechanism of action in mammals is questioned. Here we show that glyphosate is toxic to human placental JEG3 cells within 18 hr with concentrations lower than those found with agricultural use, and this effect increases with concentration and time or in the presence of Roundup adjuvants. Surprisingly, Roundup is always more toxic than its active ingredient. We tested the effects of glyphosate and Roundup at lower nontoxic concentrations on aromatase, the enzyme responsible for estrogen synthesis. The glyphosate-based herbicide disrupts aromatase activity and mRNA levels and interacts with the active site of the purified enzyme, but the effects of glyphosate are facilitated by the Roundup formulation in microsomes or in cell culture. We conclude that endocrine and toxic effects of Roundup, not just glyphosate, can be observed in mammals. We suggest that the presence of Roundup adjuvants enhances glyphosate bioavailability and/or bioaccumulation. PMID:15929894

  13. The NADPH- and iron-dependent lipid peroxidation in human placental microsomes.

    PubMed

    Milczarek, Ryszard; Sokolowska, Ewa; Hallmann, Anna; Klimek, Jerzy

    2007-01-01

    In pregnant females, placenta is the most important source of lipid hydroperoxides and other reactive oxygen species (ROS). The increased production of lipid peroxides is often linked to preeclampsia. In our study, we revealed that NADPH- and iron-dependent lipid peroxidation in human placental microsomes (HPM) occurred. In the presence of Fe2+ ion, HPM produced small amounts of thiobarbituric acid-reactive substances (TBARS) - a final product of lipid peroxidation. NADPH caused a strong increase of iron stimulated TBARS formation. TBARS formation was inhibited by superoxide dismutase, butylated hydroxytoluene and alpha-tocopherol but not by mannitol or catalase. TBARS and superoxide radical production was inhibited in similar manner by cytochrome P450 inhibitors. The results obtained led us to the following conclusions: (1) microsomal lipid peroxidation next to mitochondrial lipid peroxidation may by an important source of lipid hydroperoxides in blood during pregnancy and (2) superoxide radical released by microsomal cytochrome P450 is an important factor in NADPH- and iron-dependent lipid peroxidation in HPM. PMID:16896536

  14. PPAR Action in Human Placental Development and Pregnancy and Its Complications

    PubMed Central

    Wieser, Fritz; Waite, Leslie; Depoix, Christophe; Taylor, Robert N.

    2008-01-01

    During pregnancy crucial anatomic, physiologic, and metabolic changes challenge the mother and the fetus. The placenta is a remarkable organ that allows the mother and the fetus to adapt to the new metabolic, immunologic, and angiogenic environment imposed by gestation. One of the physiologic systems that appears to have evolved to sustain this metabolic regulation is mediated by peroxisome proliferator-activated receptors (PPARs). In clinical pregnancy-specific disorders, including preeclampsia, gestational diabetes, and intrauterine growth restriction, aberrant regulation of components of the PPAR system parallels dysregulation of metabolism, inflammation and angiogenesis. This review summarizes current knowledge on the role of PPARs in regulating human trophoblast invasion, early placental development, and also in the physiology of clinical pregnancy and its complications. As increasingly indicated in the literature, pregnancy disorders, such as preeclampsia and gestational diabetes, represent potential targets for treatment with PPAR ligands. With the advent of more specific PPAR agonists that exhibit efficacy in ameliorating metabolic, inflammatory, and angiogenic disturbances, further studies of their application in pregnancy-related diseases are warranted. PMID:18288290

  15. Mechanisms of alphafetoprotein transfer in the perfused human placental cotyledon from uncomplicated pregnancy.

    PubMed Central

    Brownbill, P; Edwards, D; Jones, C; Mahendran, D; Owen, D; Sibley, C; Johnson, R; Swanson, P; Nelson, D M

    1995-01-01

    We investigated the mechanisms of alphafetoprotein (AFP) transfer across the human placenta by correlating measurements of AFP transfer with cytochemical localization of AFP. Placental cotyledons were dually perfused in vitro with either the fetal or maternal perfusate containing umbilical cord plasma as a source of AFP. Steady state AFP clearance, corrected for release of endogenous AFP, was 0.973 +/- 0.292 microliter/min per gram in the fetal to maternal direction (n = 10), significantly higher (P < 0.02) than that in the maternal to fetal direction (n = 5; 0.022 +/- 0.013 microliter/min per gram). Clearance of a similarly sized protein, horseradish peroxidase was also asymmetric but clearance of the small tracer creatinine was not. Using a monoclonal antibody, we localized AFP to fibrinoid deposits in regions of villi with discontinuities of the syncytiotrophoblast, to cytotrophoblast cells in these deposits, to syncytiotrophoblast on some villi, and to trophoblast cells in the decidua. We conclude that AFP transfer in the placenta is asymmetric and that there are two available pathways for AFP transfer: (a) from the fetal circulation into the villous core and across fibrinoid deposits at discontinuities in the villous syncytiotrophoblast to enter the maternal circulation; and (b) AFP present in the decidua could enter vessels that traverse the basal plate. Images PMID:7593608

  16. Effect of Human Placental Extract on Health Status in Elderly Koreans

    PubMed Central

    Kong, Mihee; Park, Sat Byul

    2012-01-01

    Objectives. Human placental extract (HPE) has begun to be used in Korea in various ways to improve health, even though evidence-based data is insufficient. This study investigated the effects of HPE on health status in elderly Koreans. Design. Randomized, single-blind, and case-control study design. Setting and Participants. Thirty-nine community-dwelling healthy Koreans ≥65 years of age. Intervention. The participants were randomly categorized into a placebo group (n = 17) and HPE group (n = 22). The HPE group received abdominal subcutaneous injections of HPE for 8 weeks. The placebo group was injected with normal saline. Measurements. The degree of health status was surveyed by the Korean health status measure for the elderly (KoHSME V1.0) at baseline and the end of the study. Results. In the HPE group, the scores of physical function, sexual life, and general heath perception at the end of the study period were significantly improved from baseline (P = .007, .020, and .005, resp.), while the health status of the placebo group remained unchanged during the study period. There was a significant difference over the study period between the two groups in the mean change of the physical function score (P = .036). Conclusion. A HPE injection regimen can improve the health status in elderly Koreans. PMID:22454680

  17. Selected Persistent Organic Pollutants in Human Placental Tissue from the United States

    PubMed Central

    Jones, Rachael M.; Li, An; Stodgell, Christopher J.; Walker, Cheryl; Szabo, Sara; Leuthner, Steve; Durkin, Maureen S.; Moye, Jack; Miller, Richard K.

    2014-01-01

    Emerging and legacy environmental pollutants such as polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (DDE) are found in human placenta, indicating prenatal exposure, but data from the United States are sparse. We sought to determine concentrations of these compounds in human placentae as part of a formative research project conducted by the National Children’s Study Placenta Consortium. A total of 169 tissue specimens were collected at different time points post delivery from 42 human placentae at three U.S. locations, and analyzed by gas chromatography coupled with mass spectrometry following extraction using matrix solid phase dispersion. PBDEs, PCBs, and DDE were detected in all specimens. The concentrations of 10 PBDEs (∑10PBDEs), 32 PCBs (∑32PCBs) and p,p’-DDE were 43–1,723, 76–856 and 10–1,968 pg/g wet weight, respectively, in specimens collected shortly after delivery. Significant geographic differences in PBDEs were observed, with higher concentrations in placentae collected in Davis, CA than in those from Rochester, NY or Milwaukee, WI. We combined these with other published data and noted first-order declining trends for placental PCB and DDE concentrations over the past decades, with half-lives of about 5 and 8 years, respectively. The effect of time to tissue collection from refrigerated placentae on measured concentrations of these three classes of persistent organic pollutants was additionally examined, with no significant effect observed up to 120 hours. The results of this work indicate that widespread prenatal exposure to persistent organic pollutants in the United States continues. PMID:24485817

  18. Endothelin A and B receptors change their expression levels during development of human placental villi.

    PubMed

    Cervar, M; Huppertz, B; Barth, S; Hahn, T; Weiss, U; Kaufmann, P; Desoye, G

    2000-01-01

    Endothelin receptors have recently been found in non-vascular tissues including the human placenta. The present study investigated developmental changes in location and expression levels of endothelin A and B receptors (ETA-R, ETB-R) in human placentae and isolated trophoblast by comparing first and third trimester tissues. In the first trimester all cells and tissues were immunolabelled for ETA-R and ETB-R, whereas in third trimester placentae the syncytiotrophoblast (ETA-R, ETB-R) and macrophages (ETA-R) were unstained. Immunoblotting for both receptors revealed up to three bands at 33-35, 50 and 75 kDa, respectively, which were differentially present in the first and third trimester. Pre-adsorption of antibodies with oligopeptides used for antigen-generation weakened the immunoreactions. ETA-R protein levels decreased (P< 0.05) in total villous tissue and isolated trophoblast, whereas ETB-R was unchanged. ETB-R transcripts (RT-PCR) prevailed in both stages and tissues, but in contrast to the protein levels its preponderance decreased from first trimester to term in villous tissue (P< 0.01), because of a four to five-fold increase in ETA-R and only a two-fold (P< 0.05) increase in ETB-R mRNA levels (P< 0.01). We conclude that ET receptor location, intracellular processing and expression levels in human villous tissue change between the first and third trimester. This may reflect changing functions of ET-1 during placental development. PMID:10940204

  19. Differentiation of adipocytes and osteocytes from human adipose and placental mesenchymal stem cells

    PubMed Central

    Mohammadi, Zahra; Afshari, Jalil Tavakkol; Keramati, Mohammad Reza; Alamdari, Daryoush Hamidi; Ganjibakhsh, Meysam; Zarmehri, Azam Moradi; Jangjoo, Ali; Sadeghian, Mohammad Hadi; Ameri, Masoumeh Arab; Moinzadeh, Leila

    2015-01-01

    Objective(s): Mesenchymal stem cells (MSC) can be isolated from adult tissues such as adipose tissue and other sources. Among these sources, adipose tissue (because of easy access) and placenta (due to its immunomodulatory properties, in addition to other useful properties), have attracted more attention in terms of research. The isolation and comparison of MSC from these two sources provides a proper source for clinical experimentation. The aim of this study was to compare the characteristics of MSC isolated from human adipose tissue and placenta. Materials and Methods: Adipose and placental MSC were isolated from the subcutaneous adipose tissues of 10 healthy women (25 to 40 years) and from a fresh term placenta (n= 1), respectively. Stem cells were characterized and compared by flow cytometry using CD29, CD31, CD34, CD44, CD45, CD105, CD166 and HLA-DR markers. Osteocytes and adipocytes were differentiated from isolated human mesenchymal stem cells (HMSC). Results: Adipose and placenta-derived MSC exhibited the same morphological features. ADSC differentiated faster than placenta; however, both were differentiated, taking up to 21 days for osteocyte and 14 days for adipocyte differentiation. About 90% of PLC-MSC and ADSC were positive for CD29, CD44, CD105, and CD166; and negative for CD31, CD34, CD45, and HLA-DR. Conclusion: The two sources of stem cells showed similar surface markers, morphology and differentiation potential and because of their multipotency for differentiating to adipocytes and osteocytes, they can be applied as attractive sources of MSC for regenerative medicine. PMID:25945239

  20. Characterization of tryptophan transport in human placental brush-border membrane vesicles.

    PubMed Central

    Ganapathy, M E; Leibach, F H; Mahesh, V B; Howard, J C; Devoe, L D; Ganapathy, V

    1986-01-01

    The characteristics of tryptophan uptake in isolated human placental brush-border membrane vesicles were investigated. Tryptophan uptake in these vesicles was predominantly Na+-independent. Uptake of tryptophan as measured with short incubations occurred exclusively by a carrier-mediated process, but significant binding of this amino acid to the membrane vesicles was observed with longer incubations. The carrier-mediated system obeyed Michaelis-Menten kinetics, with an apparent affinity constant of 12.7 +/- 1.0 microM and a maximal velocity of 91 +/- 5 pmol/15 s per mg of protein. The kinetic constants were similar in the presence and absence of a Na+ gradient. Competition experiments showed that tryptophan uptake was effectively inhibited by many neutral amino acids except proline, hydroxyproline and 2-(methylamino)isobutyric acid. The inhibitory amino acids included aromatic amino acids as well as other system-1-specific amino acids (system 1 refers to the classical L system, according to the most recent nomenclature of amino acid transport systems). The transport system showed very low affinity for D-isomers, was not affected by phloretin or glucose but was inhibited by p-azidophenylalanine and N-ethylmaleimide. The uptake rates were only minimally affected by change in pH over the range 4.5-8.0. Tryptophan uptake markedly responded to trans-stimulation, and the amino acids capable of causing trans-stimulation included all amino acids with system-1-specificity. The patterns of inhibition of uptake of tryptophan and leucine by various amino acids were very similar. We conclude that system t, which is specific for aromatic amino acids, is absent from human placenta and that tryptophan transport in this tissue occurs via system 1, which has very broad specificity. PMID:3800932

  1. Human Insulinomas Show Distinct Patterns of Insulin Secretion In Vitro.

    PubMed

    Henquin, Jean-Claude; Nenquin, Myriam; Guiot, Yves; Rahier, Jacques; Sempoux, Christine

    2015-10-01

    Insulinomas are β-cell tumors that cause hypoglycemia through inappropriate secretion of insulin. Characterization of the in vitro dynamics of insulin secretion by perifused fragments of 10 human insulinomas permitted their subdivision into three functional groups with similar insulin content. Group A (four patients with fasting and/or postprandial hypoglycemic episodes) showed qualitatively normal responses to glucose, leucine, diazoxide, tolbutamide, and extracellular CaCl2 omission or excess. The effect of glucose was concentration dependent, but, compared with normal islets, insulin secretion was excessive in both low- and high-glucose conditions. Group B (three patients with fasting hypoglycemic episodes) was mainly characterized by large insulin responses to 1 mmol/L glucose, resulting in very high basal secretion rates that were inhibited by diazoxide and restored by tolbutamide but were not further augmented by other agents except for high levels of CaCl2. Group C (three patients with fasting hypoglycemic episodes) displayed very low rates of insulin secretion and virtually no response to stimuli (including high CaCl2 concentration) and inhibitors (CaCl2 omission being paradoxically stimulatory). In group B, the presence of low-Km hexokinase-I in insulinoma β-cells (not in adjacent islets) was revealed by immunohistochemistry. Human insulinomas thus show distinct, though not completely heterogeneous, defects in insulin secretion that are attributed to the undue expression of hexokinase-I in 3 of 10 patients. PMID:26116696

  2. Placental Transfer of Maraviroc in an Ex Vivo Human Cotyledon Perfusion Model and Influence of ABC Transporter Expression

    PubMed Central

    Vinot, C.; Gavard, L.; Tréluyer, J. M.; Manceau, S.; Courbon, E.; Scherrmann, J. M.; Declèves, X.; Duro, D.; Peytavin, G.; Mandelbrot, L.

    2013-01-01

    Nowadays, antiretroviral therapy is recommended during pregnancy to prevent mother-to-child transmission of HIV. However, for many antiretroviral drugs, including maraviroc, a CCR5 antagonist, very little data exist regarding placental transfer. Besides, various factors may modulate this transfer, including efflux transporters belonging to the ATP-binding cassette (ABC) transporter superfamily. We investigated maraviroc placental transfer and the influence of ABC transporter expression on this transfer using the human cotyledon perfusion model. Term placentas were perfused ex vivo for 90 min with maraviroc (600 ng/ml) either in the maternal-to-fetal (n = 10 placentas) or fetal-to-maternal (n = 6 placentas) direction. Plasma concentrations were determined by ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Fetal transfer rates (FTR) and clearance indexes (CLI) were calculated as ratios of fetal to maternal concentrations at steady state (mean values between 30 and 90 min) and ratios of FTR of maraviroc to that of antipyrine, respectively. ABC transporter gene expression levels were determined by quantitative reverse transcription (RT)-PCR and ABCB1 protein expression by Western blotting. For the maternal-to-fetal direction, the mean FTR and CLI were 8.0% ± 3.0 and 0.26 ± 0.07, respectively, whereas the mean CLI was 0.52 ± 0.23 for the fetal-to-maternal direction. We showed a significant inverse correlation between maraviroc CLI and ABCC2, ABCC10, and ABCC11 placental gene expression levels (P < 0.05). To conclude, we report a low maraviroc placental transfer probably involving ABC efflux transporters and thus in all likelihood associated with a limited fetal exposition. Nevertheless, these results would need to be supported by in vivo data obtained from paired maternal and cord blood samples. PMID:23295922

  3. miR-34a expression, epigenetic regulation, and function in human placental diseases

    PubMed Central

    Doridot, Ludivine; Houry, Dorothée; Gaillard, Harald; Chelbi, Sonia T; Barbaux, Sandrine; Vaiman, Daniel

    2014-01-01

    Preeclampsia (PE) is the major pregnancy-induced hypertensive disorder responsible for maternal and fetal morbidity and mortality that can be associated with intrauterine growth restriction (IUGR). PE and IUGR are thought to be due to a placental defect, occurring early during pregnancy. Several placental microRNAs (miRNAs) have been shown to be deregulated in the context of placental diseases and could thus play a role in the pathophysiology of PE. Here, we show that pri-miR-34a is overexpressed in preeclamptic placentas and that its placental expression is much higher during the first trimester of pregnancy than at term, suggesting a possible developmental role. We explored pri-miR-34a regulation and showed that P53, a known activator of miR-34a, is reduced in all pathological placentas and that hypoxia can induce pri-miR-34a expression in JEG-3 cells. We also studied the methylation status of the miR-34a promoter and revealed hypomethylation in all preeclamptic placentas (associated or not with IUGR), whereas hypoxia induced a hypermethylation in JEG-3 cells at 72 h. Despite the overexpression of pri-miR-34a in preeclampsia, there was a striking decrease of the mature miR-34a in this condition, suggesting preeclampsia-driven alteration of pri-miR-34a maturation. SERPINA3, a protease inhibitor involved in placental diseases, is elevated in IUGR and PE. We show here that miR-34a overexpression in JEG-3 downregulates SERPINA3. The low level of mature miR-34a could thus be an important mechanism contributing to SERPINA3 upregulation in placental diseases. Overall, our results support a role for miR-34a in the pathophysiology of preeclampsia, through deregulation of the pri-miRNA expression and its altered maturation. PMID:24081307

  4. Differential expression of human placental neurotrophic factors in preterm and term deliveries.

    PubMed

    Dhobale, Madhavi V; Pisal, Hemlata R; Mehendale, Savita S; Joshi, Sadhana R

    2013-12-01

    Neurotrophic factors such as brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are involved in development of the placenta and fetal brain. A series of human and animal studies in our department have shown that micronutrients (folic acid, vitamin B12) and omega 3 fatty acids like DHA are all interlinked in the one carbon cycle. Any alterations in one carbon components will lead to changes in methylation patterns that further affect the gene expression at critical periods of development resulting in complications during pregnancy. This may further contribute to risk for neurodevelopmental disorders in children born preterm. Therefore this study for the first time examines the mRNA levels from preterm and term placentae. A total number of 38 women delivering preterm (<37 weeks gestation) and 37 women delivering at term (=>37 weeks gestation) were recruited. The mRNA levels of BDNF and NGF were analyzed by real time quantitative polymerase chain reaction. Our results indicate that BDNF and NGF mRNA levels were lower in preterm group as compared to term group. There was a positive association of placental BDNF and NGF mRNA levels with cord plasma BDNF and NGF levels. The differential expression of BDNF and NGF gene in preterm placentae may also alter the vascular development in preterm deliveries. Our data suggests that the reduced mRNA levels of BDNF and NGF may possibly be a result of altered epigenetic mechanisms and may have an implication for altered fetal programming in children born preterm. PMID:24076518

  5. Comparative intrauterine development and placental function of ART concepti: implications for human reproductive medicine and animal breeding

    PubMed Central

    Bloise, Enrrico; Feuer, Sky K.; Rinaudo, Paolo F.

    2014-01-01

    BACKGROUND The number of children conceived using assisted reproductive technologies (ART) has reached >5 million worldwide and continues to increase. Although the great majority of ART children are healthy, many reports suggest a forthcoming risk of metabolic complications, which is further supported by the Developmental Origins of Health and Disease hypothesis of suboptimal embryo/fetal conditions predisposing adult cardiometabolic pathologies. Accumulating evidence suggests that fetal and placental growth kinetics are important features predicting post-natal health, but the relationship between ART and intrauterine growth has not been systematically reviewed. METHODS Relevant studies describing fetoplacental intrauterine phenotypes of concepti generated by in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI) and somatic cell nuclear transfer (SCNT) in the mouse, bovine and human were comprehensively researched using PubMed and Google Scholar. Intrauterine growth plots were created from tabular formatted data available in selected reports. RESULTS ART pregnancies display minor but noticeable alterations in fetal and placental growth curves across mammalian species. In all species, there is evidence of fetal growth restriction in the earlier stages of pregnancy, followed by significant increases in placental size and accelerated fetal growth toward the end of gestation. However, there is a species-specific effect of ART on birthweights, that additionally vary in a culture condition-, strain-, and/or stage at transfer-specific manner. We discuss the potential mechanisms that underlie these changes, and how they are affected by specific components of ART procedures. CONCLUSIONS ART may promote measurable alterations to intrauterine growth trajectory and placental function. Key findings include evidence that birthweight is not a reliable marker of fetal stress, and that increases in embryo manipulation result in more deviant fetal growth curves

  6. Constitutive secretion of chemokines by cultured human trabecular meshwork cells.

    PubMed

    Shifera, Amde Selassie; Trivedi, Sheetal; Chau, Phuonglan; Bonnemaison, Lucia H; Iguchi, Rumiko; Alvarado, Jorge A

    2010-07-01

    Trabecular meshwork endothelial (TME) cells secrete a number of factors, such as enzymes and cytokines, which modulate the functions of the cells and the extracellular matrix of the conventional aqueous outflow pathway. TME cells usually secrete these factors in response to stimuli such as mechanical stretching, laser irradiation and pro-inflammatory cytokines. Here, we report that cultured human TME cells isolated from two non-glaucomatous individuals secrete significant quantities of the chemotactic cytokines IL8, CXCL6 and MCP1 in the absence of any stimulation. The secretion of these chemokines was augmented by treatment with the pro-inflammatory cytokines TNFalpha and IL1beta. By way of comparison, there was little or very low production of the three chemokines by human non-pigmented ciliary epithelial cells in the absence of stimulation. Our findings provide support to our recent observations that monocytes, presumably under the influence of chemotactic signals, circulate through the trabecular meshwork in the normal state and also that cytokines regulate the permeability of Schlemm's canal endothelial cells. In addition, the fact that normal TME cells constitutively secrete chemotactic cytokines strengthens the notion that cytokines play a key role in the homeostasis of the outflow of the aqueous humor and, possibly, in the pathogenesis of glaucoma. PMID:20403352

  7. EFFECT OF BROMODICHLOROMETHANE ON HUMAN TROPHOBLAST CHORIONIC GONADOTROPHIN SECRETION

    EPA Science Inventory

    Effect of Bromodichloromethane on Human Trophoblast Chorionic Gonadotrophin Secretion

    Jiangang Chen1, Twanda L. Thirkill1, Peter N. Lohstroh1, Susan R. Bielmeier2, Michael G. Narotsky3, Deborah S. Best3, Randy A. Harrison3, Kala Natarajan1, Rex A. Pegram3, Gordon C. Dougla...

  8. Development and Function of the Human Fetal Adrenal Cortex: A Key Component in the Feto-Placental Unit

    PubMed Central

    Ishimoto, Hitoshi

    2011-01-01

    Continuous efforts have been devoted to unraveling the biophysiology and development of the human fetal adrenal cortex, which is structurally and functionally unique from other species. It plays a pivotal role, mainly through steroidogenesis, in the regulation of intrauterine homeostasis and in fetal development and maturation. The steroidogenic activity is characterized by early transient cortisol biosynthesis, followed by its suppressed synthesis until late gestation, and extensive production of dehydroepiandrosterone and its sulfate, precursors of placental estrogen, during most of gestation. The gland rapidly grows through processes including cell proliferation and angiogenesis at the gland periphery, cellular migration, hypertrophy, and apoptosis. Recent studies employing modern technologies such as gene expression profiling and laser capture microdissection have revealed that development and/or function of the fetal adrenal cortex may be regulated by a panoply of molecules, including transcription factors, extracellular matrix components, locally produced growth factors, and placenta-derived CRH, in addition to the primary regulator, fetal pituitary ACTH. The role of the fetal adrenal cortex in human pregnancy and parturition appears highly complex, probably due to redundant and compensatory mechanisms regulating these events. Mounting evidence indicates that actions of hormones operating in the human feto-placental unit are likely mediated by mechanisms including target tissue responsiveness, local metabolism, and bioavailability, rather than changes only in circulating levels. Comprehensive study of such molecular mechanisms and the newly identified factors implicated in adrenal development should help crystallize our understanding of the development and physiology of the human fetal adrenal cortex. PMID:21051591

  9. Effect of manganese on human placental spin-lattice (T1) and spin-spin (T2) relaxation times

    SciTech Connect

    Angtuaco, T.L.; Mattison, D.R.; Thomford, P.J.; Jordan, J.

    1986-01-01

    Human placentas were obtained immediately following delivery and incubated with manganese chloride (MnCl/sub 2/) in concentrations ranging from 0.002 to 2.0 mM. Proton density, T1 and T2 were measured at times ranging from 5-200 minutes. There was rapid uptake of manganese by the placenta producing a dose-dependent decrease in placental T1 and T2. The major effect of manganese uptake was shortening of T1 suggesting that the contrast between placenta and myometrium will be enhanced predominantly for T1-dependent imaging pulse sequences.

  10. Influence of endurance exercise and diet on human placental development and fetal growth.

    PubMed

    Clapp, J F

    2006-01-01

    The delivery of oxygen and substrate to the maternal-fetal interphase is the major maternal environmental stimulus which either up- or down-regulates feto-placental growth. During pregnancy, sustained exercise sessions cause an intermittent reduction in oxygen and substrate delivery to the interphase that may exceed 50% during the exercise but, it is probable that regular bouts of sustained exercise or exercise training may improve oxygen and substrate delivery at rest. The type of maternal carbohydrate intake (low- versus high-glycemic sources) and food intake frequency also influence substrate availability through their effects on maternal blood glucose levels and insulin sensitivity. As a result, different exercise regimens and/or different types of carbohydrate intake modify feto-placental growth. The magnitude and direction of the effect is determined by their average 24-h effect on oxygen and substrate availability at different time-points in pregnancy. In general, exercise in early and mid pregnancy stimulates placental growth while the relative amount of exercise in late pregnancy determines its effect on late fetal growth. Low-glycemic food sources in the diet decrease growth rate and size at birth while high-glycemic food sources increase it. Thus, it may be possible to improve pregnancy outcomes in both healthy, low-risk women and a variety of high-risk populaces by simply modifying maternal physical activity and dietary carbohydrate intake during pregnancy. PMID:16165206

  11. Zika virus damages the human placental barrier and presents marked fetal neurotropism.

    PubMed

    Noronha, Lucia de; Zanluca, Camila; Azevedo, Marina Luize Viola; Luz, Kleber Giovanni; Santos, Claudia Nunes Duarte Dos

    2016-05-01

    An unusually high incidence of microcephaly in newborns has recently been observed in Brazil. There is a temporal association between the increase in cases of microcephaly and the Zika virus (ZIKV) epidemic. Viral RNA has been detected in amniotic fluid samples, placental tissues and newborn and fetal brain tissues. However, much remains to be determined concerning the association between ZIKV infection and fetal malformations. In this study, we provide evidence of the transplacental transmission of ZIKV through the detection of viral proteins and viral RNA in placental tissue samples from expectant mothers infected at different stages of gestation. We observed chronic placentitis (TORCH type) with viral protein detection by immunohistochemistry in Hofbauer cells and some histiocytes in the intervillous spaces. We also demonstrated the neurotropism of the virus via the detection of viral proteins in glial cells and in some endothelial cells and the observation of scattered foci of microcalcifications in the brain tissues. Lesions were mainly located in the white matter. ZIKV RNA was also detected in these tissues by real-time-polymerase chain reaction. We believe that these findings will contribute to the body of knowledge of the mechanisms of ZIKV transmission, interactions between the virus and host cells and viral tropism. PMID:27143490

  12. Zika virus damages the human placental barrier and presents marked fetal neurotropism

    PubMed Central

    de Noronha, Lucia; Zanluca, Camila; Azevedo, Marina Luize Viola; Luz, Kleber Giovanni; dos Santos, Claudia Nunes Duarte

    2016-01-01

    An unusually high incidence of microcephaly in newborns has recently been observed in Brazil. There is a temporal association between the increase in cases of microcephaly and the Zika virus (ZIKV) epidemic. Viral RNA has been detected in amniotic fluid samples, placental tissues and newborn and fetal brain tissues. However, much remains to be determined concerning the association between ZIKV infection and fetal malformations. In this study, we provide evidence of the transplacental transmission of ZIKV through the detection of viral proteins and viral RNA in placental tissue samples from expectant mothers infected at different stages of gestation. We observed chronic placentitis (TORCH type) with viral protein detection by immunohistochemistry in Hofbauer cells and some histiocytes in the intervillous spaces. We also demonstrated the neurotropism of the virus via the detection of viral proteins in glial cells and in some endothelial cells and the observation of scattered foci of microcalcifications in the brain tissues. Lesions were mainly located in the white matter. ZIKV RNA was also detected in these tissues by real-time-polymerase chain reaction. We believe that these findings will contribute to the body of knowledge of the mechanisms of ZIKV transmission, interactions between the virus and host cells and viral tropism. PMID:27143490

  13. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  14. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  15. Malignant cancer and invasive placentation

    PubMed Central

    D'Souza, Alaric W.; Wagner, Günter P.

    2014-01-01

    Cancer metastasis is an invasive process that involves the transplantation of cells into new environments. Since human placentation is also invasive, hypotheses about a relationship between invasive placentation in eutherian mammals and metastasis have been proposed. The relationship between metastatic cancer and invasive placentation is usually presented in terms of antagonistic pleiotropy. According to this hypothesis, evolution of invasive placentation also established the mechanisms for cancer metastasis. Here, in contrast, we argue that the secondary evolution of less invasive placentation in some mammalian lineages may have resulted in positive pleiotropic effects on cancer survival by lowering malignancy rates. These positive pleiotropic effects would manifest themselves as resistance to cancer cell invasion. To provide a preliminary test of this proposal, we re-analyze data from Priester and Mantel (Occurrence of tumors in domestic animals. Data from 12 United States and Canadian colleges of veterinary medicine. J Natl Cancer Inst 1971;47:1333-44) about malignancy rates in cows, horses, cats and dogs. From our analysis we found that equines and bovines, animals with less invasive placentation, have lower rates of metastatic cancer than felines and canines in skin and glandular epithelial cancers as well as connective tissue sarcomas. We conclude that a link between type of placentation and species-specific malignancy rates is more likely related to derived mechanisms that suppress invasion rather than different degrees of fetal placental aggressiveness. PMID:25324490

  16. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    SciTech Connect

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet; Casas, Josefina; Lacorte, Sílvia; Porte, Cinta

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  17. Placental Aromatase Is Deficient in Placental Ischemia and Preeclampsia

    PubMed Central

    Dobierzewska, Aneta; España-Perrot, Pedro P.; Venegas-Araneda, Pía; Guzmán-Rojas, Alejandra M.; González, María I.; Palominos-Rivera, Macarena; Irarrazabal, Carlos E.; Figueroa-Diesel, Horacio; Varas-Godoy, Manuel; Illanes, Sebastián E.

    2015-01-01

    Introduction Preeclampsia is a maternal hypertensive disorder with uncertain etiology and a leading cause of maternal and fetal mortality worldwide, causing nearly 40% of premature births delivered before 35 weeks of gestation. The first stage of preeclampsia is characterized by reduction of utero-placental blood flow which is reflected in high blood pressure and proteinuria during the second half of pregnancy. In human placenta androgens derived from the maternal and fetal adrenal glands are converted into estrogens by the enzymatic action of placental aromatase. This implies that alterations in placental steroidogenesis and, subsequently, in the functionality or bioavailability of placental aromatase may be mechanistically involved in the pathophysiology of PE. Methods Serum samples were collected at 32–36 weeks of gestation and placenta biopsies were collected at time of delivery from PE patients (n = 16) and pregnant controls (n = 32). The effect of oxygen tension on placental cells was assessed by incubation JEG–3 cells under 1% and 8% O2 for different time periods, Timed-mated, pregnant New Zealand white rabbits (n = 6) were used to establish an in vivo model of placental ischemia (achieved by ligature of uteroplacental vessels). Aromatase content and estrogens and androgens concentrations were measured. Results The protein and mRNA content of placental aromatase significantly diminished in placentae obtained from preeclamptic patients compared to controls. Similarly, the circulating concentrations of 17-β-estradiol/testosterone and estrone/androstenedione were reduced in preeclamptic patients vs. controls. These data are consistent with a concomitant decrease in aromatase activity. Aromatase content was reduced in response to low oxygen tension in the choriocarcinoma JEG–3 cell line and in rabbit placentae in response to partial ligation of uterine spiral arteries, suggesting that reduced placental aromatase activity in preeclamptic patients may be

  18. Selective binding of human cumulus cell-secreted glycoproteins to human spermatozoa during capacitation in vitro

    SciTech Connect

    Tesarik, J.; Kopecny, V.; Dvorak, M.

    1984-06-01

    The results of this study demonstrate that glycoproteins manufactured by human cumulus cells can be detected bound to human spermatozoa incubated in capacitational medium containing the labeled cumulus-cell secretions. Cumulus-cell-secreted glycoproteins were labeled with a mixture of /sup 3/H-methionine and /sup 3/H-tryptophan or with 3H-fucose, and the binding of the labeled compounds to spermatozoa was evaluated by autoradiography. The binding was highly selective, involving only approximately 1% of the samples of spermatozoa used. The results suggest that the binding of cumulus-cell-secreted glycoproteins to spermatozoa may represent a final and highly selective step in human sperm capacitation.

  19. Effect of Macrophage Migration Inhibitory Factor (MIF) in Human Placental Explants Infected with Toxoplasma gondii Depends on Gestational Age

    PubMed Central

    de Oliveira Gomes, Angelica; de Oliveira Silva, Deise Aparecida; Silva, Neide Maria; de Freitas Barbosa, Bellisa; Franco, Priscila Silva; Angeloni, Mariana Bodini; Fermino, Marise Lopes; Roque-Barreira, Maria Cristina; Bechi, Nicoletta; Paulesu, Luana Ricci; dos Santos, Maria Célia; Mineo, José Roberto; Ferro, Eloisa Amália Vieira

    2011-01-01

    Because macrophage migration inhibitory factor (MIF) is a key cytokine in pregnancy and has a role in inflammatory response and pathogen defense, the objective of the present study was to investigate the effects of MIF in first- and third-trimester human placental explants infected with Toxoplasma gondii. Explants were treated with recombinant MIF, IL-12, interferon-γ, transforming growth factor-β1, or IL-10, followed by infection with T. gondii RH strain tachyzoites. Supernatants of cultured explants were assessed for MIF production. Explants were processed for morphologic analysis, immunohistochemistry, and real-time PCR analysis. Comparison of infected and stimulated explants versus noninfected control explants demonstrated a significant increase in MIF release in first-trimester but not third-trimester explants. Tissue parasitism was higher in third- than in first-trimester explants. Moreover, T. gondii DNA content was lower in first-trimester explants treated with MIF compared with untreated explants. However, in third-trimester explants, MIF stimulus decreased T. gondii DNA content only at the highest concentration of the cytokine. In addition, high expression of MIF receptor was observed in first-trimester placental explants, whereas MIF receptor expression was low in third-trimester explants. In conclusion, MIF was up-regulated and demonstrated to be important for control of T. gondii infection in first-trimester explants, whereas lack of MIF up-regulation in third-trimester placentas may be involved in higher susceptibility to infection at this gestational age. PMID:21641401

  20. Potential new mechanisms of placental damage in celiac disease: anti-transglutaminase antibodies impair human endometrial angiogenesis.

    PubMed

    Di Simone, Nicoletta; De Spirito, Marco; Di Nicuolo, Fiorella; Tersigni, Chiara; Castellani, Roberta; Silano, Marco; Maulucci, Giuseppe; Papi, Massimiliano; Marana, Riccardo; Scambia, Giovanni; Gasbarrini, Antonio

    2013-10-01

    Celiac disease (CD) is an autoimmune enteropathy triggered by gluten ingestion and characterized by circulating anti-transglutaminase type 2 (anti-TG2) autoantibodies. An epidemiological link between maternal CD and increased risk of pregnancy failure has been established; however, the mechanism underlying this association is still poorly understood. Because proper endometrial angiogenesis and decidualization are prerequisites for placental development, we investigated the effect of anti-TG2 antibodies on the process of endometrial angiogenesis. Binding of anti-TG2 antibodies to human endometrial endothelial cells (HEECs) was evaluated by ELISA. Angiogenesis was studied in vitro on HEECs and in vivo in a murine model. In particular, we investigated the effect of anti-TG2 antibodies on HEEC matrix metalloprotease-2 (MMP-2) activity by gelatin zymography, cytoskeletal organization and membrane properties by confocal microscopy, and activation of extracellular signal-regulated kinases (ERKs) and focal adhesion kinase (FAK) by Western blot analysis. Anti-TG2 antibodies bound to HEECs and decreased newly formed vessels both in vitro and in vivo. Anti-TG2 antibodies impaired angiogenesis by inhibiting the activation of MMP-2, disarranging cytoskeleton fibers, changing the physical and mechanical properties of cell membranes, and inhibiting the intracellular phosphorylation of FAK and ERK. Anti-TG2 antibodies inhibit endometrial angiogenesis affecting the TG2-dependent migration of HEECs and extracellular matrix degradation, which are necessary to form new vessels. Our results identify pathogenic mechanisms of placental damage in CD. PMID:23966323

  1. Solvent kinetic isotope effects of human placental alkaline phosphatase in reverse micelles.

    PubMed Central

    Huang, T M; Hung, H C; Chang, T C; Chang, G G

    1998-01-01

    Human placental alkaline phosphatase was embedded in a reverse micellar system prepared by dissolving the surfactant sodium bis(2-ethylhexyl) sulphosuccinate (Aerosol-OT) in 2,2, 4-trimethylpentane. This microemulsion system provides a convenient instrumental tool to study the possible kinetic properties of the membranous enzyme in an immobilized form. The pL (pH/p2H) dependence of hydrolysis of 4-nitrophenyl phosphate has been examined over a pL range of 8.5-12.5 in both aqueous and reverse micellar systems. Profiles of log V versus pL were Ha-bell shaped in the acidic region but reached a plateau in the basic region in which two pKa values of 9.01-9.71 and 9.86-10.48, respectively, were observed in reverse micelles. However, only one pKa value of 9.78-10.27 in aqueous solution was detected. Profiles of log V/K versus pL were bell-shaped in the acidic region. However, they were wave-shaped in the basic region in which a residue of pKa 9.10-9.44 in aqueous solution and 8.07-8.78 in reverse micelles must be dehydronated for the reaction to reach an optimum. The V/K value shifted to a lower value upon dehydronation of a pKa value of 9.80-10.62 in aqueous solution and 11.23-12.17 in reverse micelles. Solvent kinetic isotope effects were measured at three pL values. At pL 9.5, the observed isotope effect was a product of equilibrium isotope effect and a kinetic isotope effect; at pL 10.4, the log V/K value was identical in water and deuterium. The deuterium kinetic isotope effect on V/K was 1.14 in an aqueous solution and 1.16 in reverse micelles. At pL 11.0 at which the log V values reached a plateau in either solvent system, the deuterium kinetic isotope effect on V was 2.08 in an aqueous solution and 0.62 in reverse micelles. Results from a proton inventory experiment suggested that a hydron transfer step is involved in the transition state of the catalytic reaction. The isotopic fractionation factor (pi) for deuterium for the transition state (piT) increased when

  2. Effect of sildenafil on renin secretion in human subjects.

    PubMed

    Chiu, Yeong Jen; Reid, Ian A

    2002-09-01

    Sildenafil is a potent and selective inhibitor of the cyclic GMP-specific phosphodiesterase (PDE5) that is very effective in the treatment of male impotence. It inhibits breakdown of cyclic guanosine monophosphate (cGMP) formed in penile smooth muscle cells in response to stimulation by nitric oxide resulting in muscle relaxation. PDE5 is widely distributed in the body, being present in the vasculature, platelets, and kidneys. In the kidney, PDE5 is involved in the regulation of sodium excretion and renin secretion. The aim of the present investigation was to investigate the effect of sildenafil, in doses used clinically, on renin secretion in human subjects. The studies were performed in two groups of healthy normotensive subjects: one in which sodium intake was unrestricted, and one in which sodium intake was restricted to 600 mg/day. Blood pressure and heart rate were monitored throughout the study, and blood samples for the measurement of plasma cGMP and cAMP concentrations and plasma renin activity (PRA) were collected. After control measurements, the subjects ingested a capsule containing sildenafil or placebo. Cardiovascular measurements and blood sampling continued for the next 120 min. Sildenafil had only minor cardiovascular effects. Diastolic pressure tended to be lower and heart rate was generally higher after sildenafil than after placebo, but the differences were small. Sildenafil caused a prompt and sustained increase in plasma cGMP concentration and a more gradual increase in plasma cAMP concentration. After the subjects received placebo, there was a progressive decrease in PRA during the 2-hr observation period, presumably reflecting the circadian rhythm in renin secretion. In contrast, PRA failed to decrease after the subjects received sildenafil, thus indicating that sildenafil exerts a stimulatory action on renin secretion. This action on renin secretion may help explain why sildenafil only has minor effect on blood pressure despite the

  3. Expression of Placental Members of the Human Growth Hormone Gene Family Is Increased in Response to Sequential Inhibition of DNA Methylation and Histone Deacetylation

    PubMed Central

    Ganguly, Esha; Bock, Margaret E.; Cattini, Peter A.

    2015-01-01

    Abstract The genes coding for human (h) chorionic somatomammotropin (CS), hCS-A and hCS-B, and placental growth hormone (GH-V), hGH-V, are located at a single locus on chromosome 17. Efficient expression of these placental genes has been linked to local regulatory (5′ P and 3′ enhancer) sequences and a remote locus control region (LCR), in part, through gene transfer in placental and nonplacental tumor cells. However, low levels of endogenous hCS/GH-V transcripts are reported in the same cells compared with term placenta, suggesting that chromatin structure, or regulatory region accessibility, versus transcription factor availability contributes to the relatively low levels. To assess individual hCS-A, CS-B, and GH-V gene expression in placental and nonplacental tumor cells and the effect of increasing chromatin accessibility by inhibiting DNA methylation and histone deacetylation using 5-aza-2′-deoxycytidine (azadC) and trichostatin A (TSA). Low levels of hCS-A, CS-B, and GH-V were detected in placental and nonplacental tumor cells compared with term placenta. A significant >5-fold increase in activity was seen in placental, but not nonplacental, cells transfected with hybrid hCS promoter luciferase genes containing 3′ enhancer sequences. Pretreatment of placental JEG-3 cells with azadC resulted in a >10-fold increase in hCS-A, CS-B, and GH-V RNA levels with TSA treatment compared with TSA treatment alone. This effect was specific as reversing the treatment regimen did not have the same effect. An assessment of hyperacetylated H3/H4 in JEG-3 cells treated with azadC and TSA versus TSA alone revealed significant increases consistent with a more open chromatin structure, including the hCS 3′ enhancer sequences and LCR. These observations suggest that accessibility of remote and local regulatory regions required for efficient placental hGH/CS expression can be restricted by DNA methylation and histone acetylation status. This includes restricting access of

  4. Human cultured endothelial cells do secrete endothelin-1

    SciTech Connect

    Clozel, M.; Fischli, W. )

    1989-01-01

    Endothelin-1 (ET-1) has been identified in the conditioned medium of porcine endothelial cells. Human endothelin (ET-1) cloned from a placenta cDNA library is similar to porcine, but it is not known whether endothelin itself is secreted by human endothelial cells. To answer this question, a conditioned medium taken every 48 h from confluent cultures of umbilical vein endothelial cells was analyzed by HPLC and all fractions were tested for their ability to inhibit ({sup 125}I)ET-1 binding on human placenta membranes. Only one fraction did inhibit ({sup 125}I)ET-1 binding. When the conditioned medium was spiked with ET-1, the same single fraction inhibited ({sup 125}I)ET-1 binding showing that ET-1, itself, is present in the conditioned medium of human endothelial cells. ET-1 accumulates with time, reaching a plateau at 48 h. ET-1 secretion is not increased by a 24-h incubation of endothelial cells with phorbol myristate acetate, interleukin-1, tumor necrosis factor, thrombin or neuropeptide Y.

  5. [Morphological variability and placental function].

    PubMed

    Malassiné, A

    2001-01-01

    In mammals, the blastocyst defines with the maternal organism, a structure which allows embryonic development during gestation: the placenta. The structure of this organ varies remarkably across species. In this review the different type of placentation have been described in a comparative manner using terms of classification such as: placental materno-fetal interdigitation, matemofetal blood flow interrelationships, layers of the placental interhemal barrier, trophoblast invasiveness and decidual cell reaction, formation of syncytiotrophoblast. The human hemomonochorial placenta is characterized by a strong decidualization of the uterus and a major invasiveness of the extravillous trophoblast. Furthermore, there is a spectrum of placental endocrine activities across species. In some mammals (e.g., mouse and rat) the placenta eclipses the pituitary in the maintenance of ovarian function. In the human and in the sheep, horse, cat and guinea pig, the placenta acquires the ability to substitute for the ovaries in the maintenance of gestation at various time during pregnancy. The human placenta is characterized by a high rate of steroïdogenesis (progesterone and estrogens) and by the production of a primate specific trophoblastic hormone: human chorionic gonadotropin (hCG). Recently, it was demonstrated that mutation of many genes in mice results in embryonic mortality or fetal growth restriction, due to defects in placental development. Furthermore, distinct molecular pathways regulate the differentiation of various trophoblast cell subtype of the mouse placenta. An important question is whether or not placental differentiation in other mammals is regulated by the same molecular mechanisms. Due to the striking diversity in placental structure, endocrine function and gene expression, caution must be exercised in extrapolating findings regarding placental function and development from one species to another. PMID:11575143

  6. Effects of gestational and overt diabetes on human placental cytochromes P450 and glutathione S-transferase.

    PubMed

    McRobie, D J; Glover, D D; Tracy, T S

    1998-04-01

    The placenta possesses the ability to metabolize a number of xenobiotics and endogenous compounds by processes similar to those seen in the liver. Animal and in vivo studies have observed that the presence of diabetes alters the expression of hepatic metabolizing enzymes (cytochrome P450 and glutathione S-transferase); however, it is unknown whether similar alterations occur in the human placenta. To evaluate whether diabetes has any effect of placental xenobiotic metabolizing activity, the catalytic activities of 7-ethoxyresorufin O-deethylation (EROD, CYP1A1), chlorzoxazone 6-hydroxylation (CYP2E1), dextromethorphan N-demethylation (CYP3A4), dextromethorphan O-demethylation (CYP2D6), and 1-chloro-2, 4-dinitrobenzene (CDNB) conjugation with glutathione (glutathione S-transferase, GST) from placentas of diet (class A1) and insulin-dependent (class A2) gestational diabetics and overt diabetics were compared with matched controls. EROD activity (CYP1A1) ranged from 0.29 to 2.67 pmol/min/mg protein. However, no differences were observed among overt or gestational diabetics and their respective matched controls. CDNB conjugation (GST) ranged from 0.275 to 1.65 units/min/mg protein. In contrast to that observed with CYP1A1, a small but statistically significant reduction in GST activity was noted in overt diabetics as compared with their matched controls and gestational diabetics. CYP2E1, 2D6, and 3A4 enzymatic activities were not detected in human placental tissue. GST protein was detectable in all tissues studied, but no CYP protein could be detected in any of the tissues. Thus, it seems that pregnant women with overt diabetes have reduced GST activity in the placenta, which could potentially result in the exposure of the fetus to harmful electrophiles. However, the full clinical significance of this finding remains to be elucidated. PMID:9531526

  7. Transcriptome analysis of PPARγ target genes reveals the involvement of lysyl oxidase in human placental cytotrophoblast invasion.

    PubMed

    Segond, Nadine; Degrelle, Séverine A; Berndt, Sarah; Clouqueur, Elodie; Rouault, Christine; Saubamea, Bruno; Dessen, Philippe; Fong, Keith S K; Csiszar, Katalin; Badet, Josette; Evain-Brion, Danièle; Fournier, Thierry

    2013-01-01

    Human placental development is characterized by invasion of extravillous cytotrophoblasts (EVCTs) into the uterine wall during the first trimester of pregnancy. Peroxisome proliferator-activated receptor γ (PPARγ) plays a major role in placental development, and activation of PPARγ by its agonists results in inhibition of EVCT invasion in vitro. To identify PPARγ target genes, microarray analysis was performed using GeneChip technology on EVCT primary cultures obtained from first-trimester human placentas. Gene expression was compared in EVCTs treated with the PPARγ agonist rosiglitazone versus control. A total of 139 differentially regulated genes were identified, and changes in the expression of the following 8 genes were confirmed by reverse transcription-quantitative polymerase chain reaction: a disintegrin and metalloproteinase domain12 (ADAM12), connexin 43 (CX43), deleted in liver cancer 1 (DLC1), dipeptidyl peptidase 4 (DPP4), heme oxygenase 1 (HMOX-1), lysyl oxidase (LOX), plasminogen activator inhibitor 1 (PAI-1) and PPARγ. Among the upregulated genes, lysyl oxidase (LOX) was further analyzed. In the LOX family, only LOX, LOXL1 and LOXL2 mRNA expression was significantly upregulated in rosiglitazone-treated EVCTs. RNA and protein expression of the subfamily members LOX, LOXL1 and LOXL2 were analyzed by absolute RT-qPCR and western blotting, and localized by immunohistochemistry and immunofluorescence-confocal microscopy. LOX protein was immunodetected in the EVCT cytoplasm, while LOXL1 was found in the nucleus and nucleolus. No signal was detected for LOXL2 protein. Specific inhibition of LOX activity by β-aminopropionitrile in cell invasion assays led to an increase in EVCT invasiveness. These results suggest that LOX, LOXL1 and LOXL2 are downstream PPARγ targets and that LOX activity is a negative regulator of trophoblastic cell invasion. PMID:24265769

  8. Peptide secreted by human alveolar macrophages releases neutrophil granule contents

    SciTech Connect

    MacArthur, C.K.; Miller, E.J.; Cohen, A.B.

    1987-11-15

    A monoclonal antibody was developed against an 8000-kDa enzyme-releasing peptide (ERP) released from human alveolar macrophages. ERP was isolated on an immunoaffinity column containing the antibody bound to staphylococcal protein A-Sepharose, and by autoradiography. Release of ERP from the macrophages is not changed by plastic adherence, phagocytosis, calcium ionophore, or phorbol esters. The peptide was not antigenically similar to interferon-..gamma.., tumor necrosis factor, or interleukin l..cap alpha.. or 1..beta... The release of constituents from azurophilic and specific granules was the main identified biologic function of ERP. ERP was a more effective secretagogue in the untreated neutrophils and f-met-leu-phe was more effective in the cytochalasin B-treated neutrophils. Absorption of ERP from macrophage-conditioned medium removed a small amount of the chemotactic activity; however, the immunopurified peptide was not chemotactic or chemokinetic for neutrophils, and at high concentrations, it suppressed base line chemokinesis. Treatment of washed macrophages with trypsin released active ERP of approximately the same m.w. of spontaneously secreted ERP. These studies showed that human alveolar macrophages release a peptide which is a secretagogue for human neutrophils under conditions which may be encountered in the lungs during certain disease states. Proteolytic enzymes which are free in the lungs may release the peptide and lead to the secretion of neutrophil enzymes.

  9. Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.

    PubMed

    Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P

    2016-04-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. PMID:26831193

  10. IL-6 and its circadian secretion in humans.

    PubMed

    Vgontzas, A N; Bixler, E O; Lin, H-M; Prolo, P; Trakada, G; Chrousos, G P

    2005-01-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine produced by numerous types of immune and nonimmune cells and is involved in many pathophysiologic mechanisms in humans. Many studies suggest that IL-6 is a putative 'sleep factor' and its circadian secretion correlates with sleep/sleepiness. IL-6 is elevated in disorders of excessive daytime sleepiness such as narcolepsy and obstructive sleep apnea. It correlates positively with body mass index and may be a mediator of sleepiness in obesity. Also the secretion of this cytokine is stimulated by total acute or partial short-term sleep loss reflecting the increased sleepiness experienced by sleep-deprived individuals. Studies that evaluated the 24-hour secretory pattern of IL-6 in healthy young adults suggest that IL-6 is secreted in a biphasic circadian pattern with two nadirs at about 08.00 and 21.00, and two zeniths at about 19.00 and 05.00 h. In contrast, following sleep deprivation or in disorders of sleep disturbance, e.g., insomnia, IL-6 peaks during the day and, based on the level of stress system activity, i.e., cortisol secretion, contributes to either sleepiness and deep sleep (low cortisol) or feelings of tiredness and fatigue and poor sleep (high cortisol). In order to address concerns about the potential impact of differences of IL-6 levels between the beginning and the end of the 24-hour blood-drawing experiment, we proceeded with a cosinor analysis of 'detrended' data in young and old healthy individuals. This new analysis did not affect the biphasic circadian pattern of IL-6 secretion in young adults, while it augmented the flattened circadian pattern in old individuals in whom the difference was greater. Finally, IL-6 appears to be somnogenic in rats and exhibits a diurnal rhythm that follows the sleep/wake cycle in these animals. We conclude that IL-6 is a mediator of sleepiness and its circadian pattern reflects the homeostatic drive for sleep. PMID:15905620

  11. Green tea (-)-epigallocatechin gallate induced growth inhibition of human placental choriocarcinoma cells.

    PubMed

    Shih, Li-Jane; Lin, Yu-Ren; Lin, Cheng-Kuo; Liu, Hang-Shen; Kao, Yung-Hsi

    2016-05-01

    This study investigated the pathways involved in the effect of green tea epigallocatechin gallate (EGCG) on mitogenesis in BeWo, JEG-3, and JAR placental choriocarcinoma cells. EGCG inhibited cell proliferation in dose-dependent and time-dependent manners, as indicated by the number of cells and incorporation of bromodeoxyuridine (BrdU). A catechin-specific effect of green tea was evident; EGCG was more effective than epicatechin, epicatechin gallate, and epigallocatechin in suppressing cell growth. When all three of the mitogen-activated protein kinase (MAPK) subfamilies, i.e., ERK, p38, and JNK, were examined, EGCG significantly increased levels of phospho-ERK1/2 (pERK1/2) and phospho-p38 (pp38) and did not alter the total protein levels of ERK1/2, p38 MAPK, JNK, and phospho-JNK. EGCG-induced increases in the levels of pERK1/2 and pp38 proteins were prevented by pre-treatment with specific inhibitors of ERK1/2 MAPK and p38 MAPK, respectively. These inhibitors also suppressed EGCG-induced decreases in both cell number and BrdU incorporation. Moreover, pre-treatment with an AMP-activated protein kinase (AMPK) inhibitor prevented the actions of EGCG on proliferation and AMPK phosphorylation. These data suggest that EGCG mediates choriocarcinoma cell growth via the AMPK, ERK, and p38 pathways, but not JNK pathway. PMID:27208402

  12. The synthesis, secretion and uptake of prorenin in human amnion

    PubMed Central

    Pringle, Kirsty G; Wang, Yu; Lumbers, Eugenie R

    2015-01-01

    Very high concentrations of prorenin protein occur in human amniotic fluid and amnion. The source of amniotic fluid prorenin is likely the decidua, as it has the highest levels of prorenin mRNA (REN). Conversely, REN mRNA levels in amnion and chorion are very low. This study aimed to investigate whether decidual prorenin could cross the amnion and accumulate in amniotic fluid. Late gestation amnion was incubated for 24 h in the presence or absence of recombinant human (rh)prorenin. REN mRNA abundance was determined by qPCR and prorenin protein levels in the supernatant and tissue were measured by an ELISA. Prior to incubation only 3/11 amnion samples had REN mRNA but measurable levels of prorenin protein were found (1.4 ng/mg total protein). After 24 h incubation, REN mRNA was found in all explants and levels were significantly increased (P = 0.03) but prorenin protein levels in amnion were unchanged. Prorenin protein levels in the supernatant were, however, increased (P = 0.048). Incubation with (rh)prorenin significantly increased amnion tissue prorenin levels (2.8 ng/mg total protein, P = 0.001); REN mRNA levels were unchanged. Therefore, amnion explants express small amounts of REN and secrete prorenin protein. Prorenin is also taken up by amnion. We postulate that the amniotic renin angiotensin system (RAS) alters pregnancy outcome through effects on gestation length and amniotic fluid volume. Since human amnion can take up and secrete prorenin protein, the activity of both amnion and amniotic fluid RASs can be amplified by prorenin produced by other intrauterine tissues. PMID:25902786

  13. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo.

    PubMed

    Greening, David W; Ji, Hong; Chen, Maoshan; Robinson, Bruce W S; Dick, Ian M; Creaney, Jenette; Simpson, Richard J

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets. PMID:27605433

  14. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo

    PubMed Central

    Greening, David W.; Ji, Hong; Chen, Maoshan; Robinson, Bruce W. S.; Dick, Ian M.; Creaney, Jenette; Simpson, Richard J.

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets. PMID:27605433

  15. Lonomia obliqua venomous secretion induces human platelet adhesion and aggregation.

    PubMed

    Berger, Markus; Reck, José; Terra, Renata M S; Beys da Silva, Walter O; Santi, Lucélia; Pinto, Antônio F M; Vainstein, Marilene H; Termignoni, Carlos; Guimarães, Jorge A

    2010-10-01

    The caterpillar Lonomia obliqua is a venomous animal that causes numerous accidents, especially in southern Brazil, where it is considered a public health problem. The clinical manifestations include several haemostatic disturbances that lead to a hemorrhagic syndrome. Considering that platelets play a central role in hemostasis, in this work we investigate the effects of L. obliqua venomous secretion upon blood platelets responses in vitro. Results obtained shows that L. obliqua venom directly induces aggregation and ATP secretion in human washed platelets in a dose-dependent manner. Electron microscopy studies clearly showed that the venomous bristle extract was also able to produce direct platelets shape change and adhesion as well as activation and formation of platelet aggregates. Differently from other enzyme inhibitors, the venom-induced platelet aggregation was significatively inhibited by p-bromophenacyl bromide, a specific inhibitor of phospholipases A2. Additional experiments with different pharmacological antagonists indicate that the aggregation response triggered by the venom active components occurs through a calcium-dependent mechanism involving arachidonic acid metabolite(s) of the cyclooxygenase pathway and activation of phosphodiesterase 3A, an enzyme that leads to the consumption of intracellular cAMP content. It was additionally found that L. obliqua-induced platelet aggregation was independent of ADP release. Altogether, these findings are in line with the need for a better understanding of the complex hemorrhagic syndrome resulting from the envenomation caused by L. obliqua caterpillars, and can also give new insights into the management of its clinical profile. PMID:20157842

  16. Activation of human inflammatory cells by secreted phospholipases A2.

    PubMed

    Triggiani, Massimo; Granata, Francescopaolo; Frattini, Annunziata; Marone, Gianni

    2006-11-01

    Secreted phospholipases A(2) (sPLA(2)s) are enzymes detected in serum and biological fluids of patients with various inflammatory, autoimmune and allergic disorders. Different isoforms of sPLA(2)s are expressed and released by human inflammatory cells, such as neutrophils, eosinophils, T cells, monocytes, macrophages and mast cells. sPLA(2)s generate arachidonic acid and lysophospholipids thus contributing to the production of bioactive lipid mediators in inflammatory cells. However, sPLA(2)s also activate human inflammatory cells by mechanisms unrelated to their enzymatic activity. Several human and non-human sPLA(2)s induce degranulation of mast cells, neutrophils and eosinophils and activate exocytosis in macrophages. In addition some, but not all, sPLA(2) isoforms promote cytokine and chemokine production from macrophages, neutrophils, eosinophils, monocytes and endothelial cells. These effects are primarily mediated by binding of sPLA(2)s to specific membrane targets (heparan sulfate proteoglycans, M-type, N-type or mannose receptors) expressed on effector cells. Thus, sPLA(2)s may play an important role in the initiation and amplification of inflammatory reactions by at least two mechanisms: production of lipid mediators and direct activation of inflammatory cells. Selective inhibitors of sPLA(2)-enzymatic activity and specific antagonists of sPLA(2) receptors are current being tested for pharmacological treatment of inflammatory and autoimmune diseases. PMID:16952481

  17. Engineered human angiogenin mutations in the placental ribonuclease inhibitor complex for anticancer therapy: Insights from enhanced sampling simulations.

    PubMed

    Cong, Xiaojing; Cremer, Christian; Nachreiner, Thomas; Barth, Stefan; Carloni, Paolo

    2016-08-01

    Targeted human cytolytic fusion proteins (hCFPs) represent a new generation of immunotoxins (ITs) for the specific targeting and elimination of malignant cell populations. Unlike conventional ITs, hCFPs comprise a human/humanized target cell-specific binding moiety (e.g., an antibody or a fragment thereof) fused to a human proapoptotic protein as the cytotoxic domain (effector domain). Therefore, hCFPs are humanized ITs expected to have low immunogenicity. This reduces side effects and allows long-term application. The human ribonuclease angiogenin (Ang) has been shown to be a promising effector domain candidate. However, the application of Ang-based hCFPs is largely hampered by the intracellular placental ribonuclease inhibitor (RNH1). It rapidly binds and inactivates Ang. Mutations altering Ang's affinity for RNH1 modulate the cytotoxicity of Ang-based hCFPs. Here we perform in total 2.7 µs replica-exchange molecular dynamics simulations to investigate some of these mutations-G85R/G86R (GGRRmut ), Q117G (QGmut ), and G85R/G86R/Q117G (GGRR/QGmut ). GGRRmut turns out to perturb greatly the overall Ang-RNH1 interactions, whereas QGmut optimizes them. Combining QGmut with GGRRmut compensates the effects of the latter. Our results explain the in vitro finding that, while Ang GGRRmut -based hCFPs resist RNH1 inhibition remarkably, Ang WT- and Ang QGmut -based ones are similarly sensitive to RNH1 inhibition, whereas Ang GGRR/QGmut -based ones are only slightly resistant. This work may help design novel Ang mutants with reduced affinity for RNH1 and improved cytotoxicity. PMID:27110669

  18. Accurate assessment of early gestational age in normal and diabetic women by serum human placental lactogen concentration.

    PubMed

    Whittaker, P G; Aspillaga, M O; Lind, T

    1983-08-01

    Serum human placental lactogen (hPL) and human chorionic gonadotropin (hCG) were assayed and fetal crown-rump length (CRL) was determined by sonar in three groups of pregnant women--35 with uncomplicated pregnancies, 13 with insulin-dependent diabetes mellitus, and 21 who represented a general pregnancy population. Each patient had a regular cycle and recorded last menstrual period, ovulated spontaneously, and was delivered of a single live baby. Serum hPL concentrations within the range 0.01-0.80 microU/ml in patients in the first group gave estimates of gestation with an SD of 6.3 days which was the same as the SD derived from CRL measurements. When the hPL regression equation was applied to the diabetic mothers the difference between the gestational age estimated from hPL and that estimated from LMP had a mean value of - 0.9 days with an SD of 6.2 days; this difference was not significantly different from zero. The third group of patients had a mean difference between hPL and LMP derived gestational age of 0.7 days (+/- 6.7 SD). Serum hPL offers a method of estimating gestation sufficiently precise to be used as a practical alternative to sonar measurements of CRL. PMID:6135831

  19. Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model.

    PubMed

    Ali, Hazem; Kalashnikova, Irina; White, Mark Andrew; Sherman, Michael; Rytting, Erik

    2013-09-15

    The purpose of this study was to prepare dexamethasone-loaded polymeric nanoparticles and evaluate their potential for transport across human placenta. Statistical modeling and factorial design was applied to investigate the influence of process parameters on the following nanoparticle characteristics: particle size, polydispersity index, zeta potential, and drug encapsulation efficiency. Dexamethasone and nanoparticle transport was subsequently investigated using the BeWo b30 cell line, an in vitro model of human placental trophoblast cells, which represent the rate-limiting barrier for maternal-fetal transfer. Encapsulation efficiency and drug transport were determined using a validated high performance liquid chromatography method. Nanoparticle morphology and drug encapsulation were further characterized by cryo-transmission electron microscopy and X-ray diffraction, respectively. Nanoparticles prepared from poly(lactic-co-glycolic acid) were spherical, with particle sizes ranging from 140 to 298 nm, and encapsulation efficiency ranging from 52 to 89%. Nanoencapsulation enhanced the apparent permeability of dexamethasone from the maternal compartment to the fetal compartment more than 10-fold in this model. Particle size was shown to be inversely correlated with drug and nanoparticle permeability, as confirmed with fluorescently labeled nanoparticles. These results highlight the feasibility of designing nanoparticles capable of delivering medication to the fetus, in particular, potential dexamethasone therapy for the prenatal treatment of congenital adrenal hyperplasia. PMID:23850397

  20. Aberrant tropoelastin secretion in MG-63 human osteosarcoma cells

    SciTech Connect

    Curtiss, S.W.

    1989-01-01

    The secretion of newly synthesized tropoelastin, the soluble precursor of the extracellular matrix protein elastin, is not well understood. MG-63 human osteosarcoma cells were found by immunoblot analysis to synthesize 62 kD and 64 kD tropoelastins. Media from 63 cells labelled for five hours with ({sup 3}H)-valine contain no detectable tropoelastin, unlike media from other tropoelastin-synthesizing cells. Immunoblots of conditioned media and 1Ox-concentrated conditioned media left on the cells for six days also show an absence of tropoelastin from the cell media. No insoluble elastin is associated with the cell layer, as determined by amino acid analysis and electron microscopy of 18-21 day cell cultures. The absence of tropoelastin from the cell medium and elastin from the extracellular matrix indicates that MG63 cells do not secrete tropoelastin as expected, but accumulate it intracellularly. This accumulation is transient: immunoblots and immunofluorescence microscopy show that cells three days after passage have the highest steady-state levels of tropoelastin per cell, that day 8 cells contain lower but still significant amounts of tropoelastin, and that by day 22 tropoelastin is no longer present in the cell cultures. Cell density is a critical factor in the observed pattern of tropoelastin expression. Cells seeded at ten fold their usual initial density have high tropoelastin levels at one day after passage, sooner than cells seeded normally. Tropoelastin also disappears from high density-seeded cells more quickly and is no longer detectable at day 10. Lysosome-like vesicles containing membranous structures appear by immunoelectron microscopy to be the primary site of intracellular tropoelastin localization.

  1. H.p.l.c. separation and study of the charge isomers of human placental glutathione transferase.

    PubMed Central

    Radulovic, L L; Kulkarni, A P

    1986-01-01

    Glutathione transferase (GST) from human placenta was purified by affinity chromatography and anion-exchange h.p.l.c. The enzyme exhibited different chromatographic and electrophoretic behaviours according to the concentration of GSH, suggesting a possible change in the net charge of the molecule and a concomitant conformational change due to ligand binding. Two interconvertible forms were quantitatively separated into distinct catalytically active states by h.p.l.c. Depending upon the GSH concentration, polyacrylamide-gel electrophoresis revealed the presence of one or two bands. A Kd of 0.42 mM for GSH was determined fluorimetrically. The loss in intrinsic fluorescence also suggested a conformational change in the enzyme. Kinetic studies using ethacrynic acid were conducted to determine whether the presumed conformational change could effect the catalytic capability of placental GST. A biphasic response in initial velocities was observed with increasing concentrations of GSH. Two apparent Km values of 0.38 and 50.27 mM were obtained for GSH, whereas Vmax. values showed a 46-fold difference. It was concluded that the enzyme assumes a highly anionic form in the presence of a low GSH concentration, whereas it is converted into relatively weaker anionic form when its immediate environment contains a high GSH concentration. Since the average tissue concentration of total GSH was estimated at 0.11 mM for term placenta, the results suggest that the high-affinity-low-activity conformer would predominate in vivo. Images Fig. 2. PMID:3800986

  2. The xenoestrogens, bisphenol A and para-nonylphenol, decrease the expression of the ABCG2 transporter protein in human term placental explant cultures.

    PubMed

    Sieppi, E; Vähäkangas, K; Rautio, A; Ietta, F; Paulesu, L; Myllynen, P

    2016-07-01

    Many endogenous and xenobiotic compounds are substrates and regulators of human placental ABC transporters. ABCG2 is protecting fetus against foreign chemicals. Environmental xenoestrogens, like bisphenol A (BPA) and p-nonylphenol (p-NP), mimic natural estrogens and can affect hormonal systems. Effects of BPA, p-NP, DES (diethylstilbestrol) and estradiol (E2), on ABCG2 expression were studied using human first trimester and term placental explants. Role of estrogen receptors (ER) in the effects of chemicals was studied by ER antagonist. Term placenta expressed less ABCG2 protein. In term placentas BPA (p < 0.05), p-NP (p < 0.01) and E2 (p < 0.05) decreased the ABCG2 protein expression after 48 h exposure while after 24 h exposure, only E2 decreased the expression (p < 0.05). The chemicals did not affect ABCG2 in first trimester placentas. The ER antagonist affected differently the responses of chemicals. In conclusion, environmental xenoestrogens downregulate placental ABCG2 protein expression depending on gestational age. PMID:27036933

  3. Expression and Functional Activity of the Human Bitter Taste Receptor TAS2R38 in Human Placental Tissues and JEG-3 Cells.

    PubMed

    Wölfle, Ute; Elsholz, Floriana A; Kersten, Astrid; Haarhaus, Birgit; Schumacher, Udo; Schempp, Christoph M

    2016-01-01

    Bitter taste receptors (TAS2Rs) are expressed in mucous epithelial cells of the tongue but also outside the gustatory system in epithelial cells of the colon, stomach and bladder, in the upper respiratory tract, in the cornified squamous epithelium of the skin as well as in airway smooth muscle cells, in the testis and in the brain. In the present work we addressed the question if bitter taste receptors might also be expressed in other epithelial tissues as well. By staining a tissue microarray with 45 tissue spots from healthy human donors with an antibody directed against the best characterized bitter taste receptor TAS2R38, we observed an unexpected strong TAS2R38 expression in the amniotic epithelium, syncytiotrophoblast and decidua cells of the human placenta. To analyze the functionality we first determined the TAS2R38 expression in the placental cell line JEG-3. Stimulation of these cells with diphenidol, a clinically used antiemetic agent that binds TAS2Rs including TAS2R38, demonstrated the functionality of the TAS2Rs by inducing calcium influx. Restriction enzyme based detection of the TAS2R38 gene allele identified JEG-3 cells as PTC (phenylthiocarbamide)-taster cell line. Calcium influx induced by PTC in JEG-3 cells could be inhibited with the recently described TAS2R38 inhibitor probenecid and proved the specificity of the TAS2R38 activation. The expression of TAS2R38 in human placental tissues points to further new functions and hitherto unknown endogenous ligands of TAS2Rs far beyond bitter tasting. PMID:26950109

  4. Placental origins of adverse pregnancy outcomes: potential molecular targets: an Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

    PubMed

    Ilekis, John V; Tsilou, Ekaterini; Fisher, Susan; Abrahams, Vikki M; Soares, Michael J; Cross, James C; Zamudio, Stacy; Illsley, Nicholas P; Myatt, Leslie; Colvis, Christine; Costantine, Maged M; Haas, David M; Sadovsky, Yoel; Weiner, Carl; Rytting, Erik; Bidwell, Gene

    2016-07-01

    Although much progress is being made in understanding the molecular pathways in the placenta that are involved in the pathophysiology of pregnancy-related disorders, a significant gap exists in the utilization of this information for the development of new drug therapies to improve pregnancy outcome. On March 5-6, 2015, the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health sponsored a 2-day workshop titled Placental Origins of Adverse Pregnancy Outcomes: Potential Molecular Targets to begin to address this gap. Particular emphasis was given to the identification of important molecular pathways that could serve as drug targets and the advantages and disadvantages of targeting these particular pathways. This article is a summary of the proceedings of that workshop. A broad number of topics were covered that ranged from basic placental biology to clinical trials. This included research in the basic biology of placentation, such as trophoblast migration and spiral artery remodeling, and trophoblast sensing and response to infectious and noninfectious agents. Research findings in these areas will be critical for the formulation of the development of future treatments and the development of therapies for the prevention of a number of pregnancy disorders of placental origin that include preeclampsia, fetal growth restriction, and uterine inflammation. Research was also presented that summarized ongoing clinical efforts in the United States and in Europe that has tested novel interventions for preeclampsia and fetal growth restriction, including agents such as oral arginine supplementation, sildenafil, pravastatin, gene therapy with virally delivered vascular endothelial growth factor, and oxygen supplementation therapy. Strategies were also proposed to improve fetal growth by the enhancement of nutrient transport to the fetus by modulation of their placental transporters and the targeting of placental

  5. Characterization of Humanized Antibodies Secreted by Aspergillus niger

    PubMed Central

    Ward, Michael; Lin, Cherry; Victoria, Doreen C.; Fox, Bryan P.; Fox, Judith A.; Wong, David L.; Meerman, Hendrik J.; Pucci, Jeff P.; Fong, Robin B.; Heng, Meng H.; Tsurushita, Naoya; Gieswein, Christine; Park, Minha; Wang, Huaming

    2004-01-01

    Two different humanized immunoglobulin G1(κ) antibodies and an Fab′ fragment were produced by Aspergillus niger. The antibodies were secreted into the culture supernatant. Both light and heavy chains were initially synthesized as fusion proteins with native glucoamylase. After antibody assembly, cleavage by A. niger KexB protease allowed the release of free antibody. Purification by hydrophobic charge induction chromatography proved effective at removing any antibody to which glucoamylase remained attached. Glycosylation at N297 in the Fc region of the heavy chain was observed, but this site was unoccupied on approximately 50% of the heavy chains. The glycan was of the high-mannose type, with some galactose present, and the size ranged from Hex6GlcNAc2 to Hex15GlcNAc2. An aglycosyl mutant form of antibody was also produced. No significant difference between the glycosylated antibody produced by Aspergillus and that produced by mammalian cell cultures was observed in tests for affinity, avidity, pharmacokinetics, or antibody-dependent cellular cytotoxicity function. PMID:15128505

  6. Protein Kinase C Controls Vesicular Transport and Secretion of Apolipoprotein E from Primary Human Macrophages*

    PubMed Central

    Karunakaran, Denuja; Kockx, Maaike; Owen, Dylan M.; Burnett, John R.; Jessup, Wendy; Kritharides, Leonard

    2013-01-01

    Macrophage-specific apolipoprotein E (apoE) secretion plays an important protective role in atherosclerosis. However, the precise signaling mechanisms regulating apoE secretion from primary human monocyte-derived macrophages (HMDMs) remain unclear. Here we investigate the role of protein kinase C (PKC) in regulating basal and stimulated apoE secretion from HMDMs. Treatment of HMDMs with structurally distinct pan-PKC inhibitors (calphostin C, Ro-31-8220, Go6976) and a PKC inhibitory peptide all significantly decreased apoE secretion without significantly affecting apoE mRNA or apoE protein levels. The PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated apoE secretion, and both PMA-induced and apoAI-induced apoE secretion were inhibited by PKC inhibitors. PKC regulation of apoE secretion was found to be independent of the ATP binding cassette transporter ABCA1. Live cell imaging demonstrated that PKC inhibitors inhibited vesicular transport of apoE to the plasma membrane. Pharmacological or peptide inhibitor and knockdown studies indicate that classical isoforms PKCα/β and not PKCδ, -ϵ, -θ, or -ι/ζ isoforms regulate apoE secretion from HMDMs. The activity of myristoylated alanine-rich protein kinase C substrate (MARCKS) correlated with modulation of PKC activity in these cells, and direct peptide inhibition of MARCKS inhibited apoE secretion, implicating MARCKS as a downstream effector of PKC in apoE secretion. Comparison with other secreted proteins indicated that PKC similarly regulated secretion of matrix metalloproteinase 9 and chitinase-3-like-1 protein but differentially affected the secretion of other proteins. In conclusion, PKC regulates the secretion of apoE from primary human macrophages. PMID:23288845

  7. Programming placental nutrient transport capacity

    PubMed Central

    Fowden, A L; Ward, J W; Wooding, F P B; Forhead, A J; Constancia, M

    2006-01-01

    Many animal studies and human epidemiological findings have shown that impaired growth in utero is associated with physiological abnormalities in later life and have linked this to tissue programming during suboptimal intrauterine conditions at critical periods of development. However, few of these studies have considered the contribution of the placenta to the ensuing adult phenotype. In mammals, the major determinant of intrauterine growth is the placental nutrient supply, which, in turn, depends on the size, morphology, blood supply and transporter abundance of the placenta and on synthesis and metabolism of nutrients and hormones by the uteroplacental tissues. This review examines the regulation of placental nutrient transfer capacity and the potential programming effects of nutrition and glucocorticoid over-exposure on placental phenotype with particular emphasis on the role of the Igf2 gene in these processes. PMID:16439433

  8. Mitigation of Lethal Radiation Syndrome in Mice by Intramuscular Injection of 3D Cultured Adherent Human Placental Stromal Cells.

    PubMed

    Gaberman, Elena; Pinzur, Lena; Levdansky, Lilia; Tsirlin, Maria; Netzer, Nir; Aberman, Zami; Gorodetsky, Raphael

    2013-01-01

    Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×10(6) cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective "off the shelf" therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia. PMID:23823334

  9. Mitigation of Lethal Radiation Syndrome in Mice by Intramuscular Injection of 3D Cultured Adherent Human Placental Stromal Cells

    PubMed Central

    Gaberman, Elena; Pinzur, Lena; Levdansky, Lilia; Tsirlin, Maria; Netzer, Nir; Aberman, Zami; Gorodetsky, Raphael

    2013-01-01

    Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×106 cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective “off the shelf” therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia. PMID:23823334

  10. Polybrominated diphenyl ethers (PBDEs) in human samples of mother-newborn pairs in South China and their placental transfer characteristics.

    PubMed

    Chen, Zhuo-Jia; Liu, Han-Yan; Cheng, Zhang; Man, Yu-Bon; Zhang, Kun-Shui; Wei, Wei; Du, Jun; Wong, Ming-Hung; Wang, Hong-Sheng

    2014-12-01

    There are limited data concerning the placenta transfer characteristics and accumulation of polybrominated diphenyl ethers (PBDEs) in infants. However, PBDEs received increasing health concerns due to their endocrine disrupt and neurodevelopment toxicity effects. The present study assessed the accumulation of PBDEs in 30 paired placenta, breast milk, fetal cord blood, and neonatal urine samples collected from five major cities of the South China. The age of mothers ranged from 21 to 39 (mean 27.6±4.56). The ∑PBDE concentrations were 15.8±9.88 ng g(-1) lipid in placenta, 13.2±7.64 ng g(-1) lipid in breast milk, 16.5±19.5 ng g(-1) lipid in fetal cord blood, and 1.80±1.99 ng ml(-1) in neonatal urine. BDE-47 was the predominant congener in all types of human sample. Octa-BDEs such as BDE-196/-197 were detected highly in placenta and cord blood while moderately in breast milk and neonatal urine. Significant (p<0.01) correlations were observed for both total and most individual PBDEs in cord blood-maternal placenta and breast milk-urine paired individual samples. The extent of placental transfer of higher brominated BDEs such as BDE-196/-197 was greater than that of BDE-47. The estimated daily intake (EDI) analysis for breast-fed infants revealed that newborns in these areas were exposed to relatively high levels of PBDEs via breast milk. Our study not only provided systematic fundamental data for PBDE distribution but also revealed the placenta transfer characteristics of PBDE congeners in South China. PMID:25090577

  11. Novel 3D Microscopic Analysis of Human Placental Villous Trees Reveals Unexpected Significance of Branching Angles

    PubMed Central

    Haeussner, Eva; Buehlmeyer, Antonia; Schmitz, Christoph; von Koch, Franz Edler; Frank, Hans-Georg

    2014-01-01

    The villous trees of human placentas delineate the fetomaternal border and are complex three-dimensional (3D) structures. Thus far, they have primarily been analyzed as thin, two-dimensional (2D) histological sections. However, 2D sections cannot provide access to key aspects such as branching nodes and branch order. Using samples taken from 50 normal human placentas at birth, in the present study we show that analysis procedures for 3D reconstruction of neuronal dendritic trees can also be used for analyzing trees of human placentas. Nodes and their branches (e.g., branching hierarchy, branching angles, diameters, and lengths of branches) can be efficiently measured in whole-mount preparations of isolated villous trees using high-end light microscopy. Such data differ qualitatively from the data obtainable from histological sections and go substantially beyond the morphological horizon of such histological data. Unexpectedly, branching angles of terminal branches of villous trees varied inversely with the fetoplacental weight ratio, a widely used clinical parameter. Since branching angles have never before been determined in the human placenta, this result requires further detailed studies in order to fully understand its impact. PMID:25155961

  12. Effect of enteral nutrition on human pancreatic secretions.

    PubMed

    Grant, J P; Davey-McCrae, J; Snyder, P J

    1987-01-01

    The influence on pancreatic secretion of four enteral feeding products was evaluated in a unique patient with an isolated duodenal fistula for whom enteral feeding access was obtained via a gastrostomy with a small Silastic catheter passed through the gastrostomy and through a surgically created gastrojejunostomy. The patient was totally supported by intravenous nutrition during the study. Each enteral feeding solution was administered at full strength at 50 ml/hr for 2 days with a 24-hr collection of pancreatic secretions by the duodenal cutaneous fistula taken on the second day. Infusion of the enteral feeding solutions did not alter volume of fistula drainage. All solutions decreased bicarbonate and amylase secretion but increased lipase and total nitrogen excretion. From this study, it would appear reasonable to administer Vivonex HN and Criticare HN via the jejunum in patients with pancreatic disease, whereas Osmolite would appear less satisfactory, due to its much stronger stimulation of lipase secretion. PMID:3110448

  13. Pigment epithelium-derived factor (PEDF): a novel trophoblast-derived factor limiting feto-placental angiogenesis in late pregnancy.

    PubMed

    Loegl, Jelena; Nussbaumer, Erika; Hiden, Ursula; Majali-Martinez, Alejandro; Ghaffari-Tabrizi-Wizy, Nassim; Cvitic, Silvija; Lang, Ingrid; Desoye, Gernot; Huppertz, Berthold

    2016-07-01

    The rapidly expanding feto-placental vasculature needs tight control by paracrine and endocrine mechanisms. Here, we focused on paracrine influence by trophoblast, the placental epithelium. We aimed to identify differences in regulation of feto-placental angiogenesis in early versus late pregnancy. To this end, the effect of conditioned media (CM) from early and late pregnancy human trophoblast was tested on network formation, migration and proliferation of human feto-placental endothelial cells. Only CM of late pregnancy trophoblast reduced network formation and migration. Screening of trophoblast transcriptome for anti-angiogenic candidates identified pigment epithelium-derived factor (PEDF) with higher expression and protein secretion in late pregnancy trophoblast. Addition of a PEDF-neutralizing antibody restored the anti-angiogenic effect of CM from late pregnancy trophoblast. Notably, human recombinant PEDF reduced network formation only in combination with VEGF. Also in the CAM assay, the combination of PEDF with VEGF reduced branching of vessels below control levels. Analysis of phosphorylation of ERK1/2 and FAK, two key players in VEGF-induced proliferation and migration, revealed that PEDF altered VEGF signaling, while PEDF alone did not affect phosphorylation of ERK1/2 and FAK. These data suggest that the trophoblast-derived anti-angiogenic molecule PEDF is involved in restricting growth and expansion of the feto-placental endothelium predominantly in late pregnancy and targets to modulate the intracellular effect of VEGF. PMID:27278471

  14. Macrophage-derived IL-33 is a critical factor for placental growth.

    PubMed

    Fock, Valerie; Mairhofer, Mario; Otti, Gerlinde R; Hiden, Ursula; Spittler, Andreas; Zeisler, Harald; Fiala, Christian; Knöfler, Martin; Pollheimer, Jürgen

    2013-10-01

    IL-33, the most recently discovered member of the IL-1 superfamily and ligand for the transmembrane form of ST2 (ST2L), has been linked to several human pathologies including rheumatoid arthritis, asthma, and cardiovascular disease. Deregulated levels of soluble ST2, the natural IL-33 inhibitor, have been reported in sera of preeclamptic patients. However, the role of IL-33 during healthy pregnancy remains elusive. In the current study, IL-33 was detected in the culture supernatants of human placental and decidual macrophages, identifying them as a major source of secreted IL-33 in the uteroplacental unit. Because flow cytometry and immunofluorescence stainings revealed membranous ST2L expression on specific trophoblast populations, we hypothesized that IL-33 stimulates trophoblasts in a paracrine manner. Indeed, BrdU incorporation assays revealed that recombinant human IL-33 significantly increased proliferation of primary trophoblasts as well as of villous cytotrophoblasts and cell column trophoblasts in placental explant cultures. These effects were fully abolished upon addition of soluble ST2. Interestingly, Western blot and immunofluorescence analyses demonstrated that IL-33 activates AKT and ERK1/2 in primary trophoblasts and placental explants. Inhibitors against PI3K (LY294002) and MEK1/2 (UO126) efficiently blocked IL-33-induced proliferation in all model systems used. In summary, with IL-33, we define for the first time, to our knowledge, a macrophage-derived regulator of placental growth during early pregnancy. PMID:23997215

  15. Acetylcholine output and foetal vascular resistance of human perfused placental cotyleda.

    PubMed Central

    Boura, A. L.; Gude, N. M.; King, R. G.; Walters, W. A.

    1986-01-01

    The foetal villous vessels of single cotyleda of human placentae have been perfused with a constant flow of Krebs solution, recording inflow pressure and passing the venous perfusate in cascade over guinea-pig ileum and rat stomach strip preparations in vitro. Each cotyledon released for at least 4 h a substance that was probably acetylcholine. The perfusate caused contractions of both preparations which were inhibited by atropine or hyoscine and potentiated by physostigmine. Contractile activity was destroyed after incubation at 37 degrees C of perfusate with acetylcholinesterase but not with acetylcholinesterase plus physostigmine. When the perfusion temperature was lowered to 34 degrees C or below, acetylcholine output was reduced, the extent depending on the fall in temperature. No change in resistance of the villous vessels occurred during the changes in temperature or in the presence at 37 degrees C of atropine, hyoscine, hexamethonium, (+)-tubocurarine, hemicholinium-3 or bretylium. Submaximal vasoconstrictor responses of the villous vessels to the thromboxane A2-mimetic U46619 were not affected by reduction of the perfusion temperature to 30 degrees C, which lowered acetylcholine-like output by approximately 70%. Responses to U46619, at 37 degrees C, were unchanged during the presence of atropine or hyoscine. Acetylcholine is released into the foetal circulation of the human placenta but no evidence could be obtained that it affects villous vascular smooth muscle tone or vasoconstrictor responses. PMID:3730696

  16. Purification of human placental aromatase cytochrome P-450 with monoclonal antibody and its characterization

    SciTech Connect

    Yoshida, Nobutaka; Osawa, Yoshio )

    1991-03-26

    A simple and efficient method is described for the purification of microsomal aromatase cytochrome P-450 from human placenta. The enzyme was solubilized with Emulgen 913 and sodium cholate and subjected to chromatography on a column of Sepharose 4B couples with a specific monoclonal antibody, followed by hydroxyapatite column chromatography. The specific cytochrome P-450 content of purified aromatase was 13.1 (12-14.8) nmol/mg of protein. Aromatase assays were carried out with reconstituted systems of bovine liver P-450 reductase and dilauroyl-L-{alpha}-phosphatidylcholine with (1{beta}-{sup 3}H,4-{sup 14}C)androstenedione as substrate. The total recovery of purified aromatase activity was 32.2%, and P-450 recovery was 17.6%. The very high K{sub m} value for 16{alpha}-hydroxytestosterone aromatization gives a reasonable indication that estriol is not the directly aromatized product in the fetoplacental unit of human pregnancy. The aromatase P-450 was subjected to SDS-polyacrylamide gel electrophoresis in increasing quantities. Silver stain detection techniques indicated a single band having a molecular mass of 55 kDa with greater than 97% purity. The stability analysis showed a half-life of over 4 years on storage at {minus}80C.

  17. Regulation of follistatin-like protein 1 expression and secretion in primary human skeletal muscle cells.

    PubMed

    Görgens, Sven W; Raschke, Silja; Holven, Kirsten Bjørklund; Jensen, Jørgen; Eckardt, Kristin; Eckel, Jürgen

    2013-05-01

    Follistatin-like protein 1 (Fstl1) is a secreted glycoprotein of the follistatin family. Fstl1 is secreted by C2C12 cells, and Akt1 over-expression in skeletal muscle leads to its induction in muscle and increased circulating levels. So far, secretion of Fstl1 by human myotubes and the effect of exercise on its circulating levels have not been investigated. Here, we examined both the regulation of Fstl1 expression and secretion in primary human skeletal muscle cells and the effect of acute exercise on Fstl1 serum concentrations in humans. We show that human myotubes express and secrete Fstl1 in a differentiation-dependent manner. Furthermore, IFNγ and IL-1β significantly increase Fstl1 secretion. Electrical pulse stimulation (EPS)-induced contractile activity of myotubes did not regulate Fstl1. Interestingly, we observed that 60 min cycling increased serum Fstl1 level by 22%. In conclusion, we demonstrate that Fstl1 is expressed and secreted by human myotubes and plasma Fstl1 levels are increased after exercise. PMID:23419164

  18. A stochastic model for early placental development†

    PubMed Central

    Cotter, Simon L.; Klika, Václav; Kimpton, Laura; Collins, Sally; Heazell, Alexander E. P.

    2014-01-01

    In the human, placental structure is closely related to placental function and consequent pregnancy outcome. Studies have noted abnormal placental shape in small-for-gestational-age infants which extends to increased lifetime risk of cardiovascular disease. The origins and determinants of placental shape are incompletely understood and are difficult to study in vivo. In this paper, we model the early development of the human placenta, based on the hypothesis that this is driven by a chemoattractant effect emanating from proximal spiral arteries in the decidua. We derive and explore a two-dimensional stochastic model, and investigate the effects of loss of spiral arteries in regions near to the cord insertion on the shape of the placenta. This model demonstrates that disruption of spiral arteries can exert profound effects on placental shape, particularly if this is close to the cord insertion. Thus, placental shape reflects the underlying maternal vascular bed. Abnormal placental shape may reflect an abnormal uterine environment, predisposing to pregnancy complications. Through statistical analysis of model placentas, we are able to characterize the probability that a given placenta grew in a disrupted environment, and even able to distinguish between different disruptions. PMID:24850904

  19. Membrane potential difference and intracellular cation concentrations in human placental trophoblast cells in culture.

    PubMed Central

    Greenwood, S L; Clarson, L H; Sides, M K; Sibley, C P

    1996-01-01

    1. The electrochemical gradients for Na+ and K+ were assessed in a cell culture model of trophoblast differentiation. 2. Membrane potential difference (Em), intracellular water and Na+ and K+ contents were measured in choriocarcinoma cells (JAr cell line; 96% of which are undifferentiated trophoblast cells) and in mononucleate and multinucleate (differentiated) cytotrophoblast cells isolated from the human placenta at term. 3. There was a significant fall in Em from -57 mV in JAr cells, to -48 and -40 mV in mono-and multinucleate cytotrophoblast cells, respectively. Treatment with ouabain (1 mM for 15 min) depolarized the JAr cell membrane by 15 mV but did not affect cytotrophoblast cell membrane potential. 4. Intracellular K+ concentration was similar in JAr, mono- and multinucleate cytotrophoblast cells but Na+ concentration was higher in mononucleate cytotrophoblast cells compared with JAr cells. 5. Ouabain treatment (3 mM for 15 min) caused a small increase (4.5%) in cell water in mononucleate cytotrophoblast cells but lowered K+ (approximately 30%) and increased Na+ concentration (approximately 125%) in all the trophoblast cells studied. 6. The K+ equilibrium potential (EK) was more negative than Em in all cells and the difference between EK and Em was smaller in JAr cells (-25 mV) than in mono- and multinucleate cytotrophoblast cells (-33 and -43 mV, respectively). 7. The Na+ equilibrium potential (ENa) was positive in the trophoblast cells and the difference between ENa and Em was 122, 100 and 100 mV in JAr, mono- and multinucleate cytotrophoblast cells, respectively. 8. These results suggest that the electrochemical gradient for K+ is affected by the stage of trophoblast cell differentiation. In contrast, the electrochemical gradient for Na+ is similar in mono- and multinucleate cytotrophoblast cells. Images Figure 1 PMID:8734977

  20. Application of Human Placental Villous Tissue Explants to Study ABC Transporter Mediated Efflux of 2,4-Dinitrophenyl-S-Glutathione

    PubMed Central

    Vaidya, Soniya S.; Walsh, Scott W.; Gerk, Phillip M.

    2011-01-01

    Objective The purpose of this study was to characterize the human term placental villous tissue explant culture model as a tool to study the formation and efflux of 1-chloro-2,4-dinitrobenzene (CDNB) conjugate 2,4-dinitrophenyl-S-glutathione (DNP-SG) as a model system for phase II metabolism and ATP-binding cassette (ABC) transporter-mediated cellular efflux. Methods Placental tissue samples were obtained after cesarean section following normal pregnancies (n=9). Cultured villous tissue was monitored up to 48 h to study the effect of time in culture on biochemical parameters, formation and efflux of DNP-SG in the absence or presence of ATPase inhibitor sodium orthovanadate and the protein expression of ABC transporters - multidrug resistance associated protein 2 (MRP2), P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and enzyme glutathione-S-transferase isoform P1-1 (GSTP1-1). Results Villous tissue structure, tissue viability and expression of BCRP, GSTP1-1 remained unchanged, while expression of MRP2, P-gp and total tissue glutathione decreased with time in culture. Tissue integrity was unchanged up to 24 h but declined at 48 h. However, DNP-SG formation, DNP-SG efflux, and the extent of inhibition of DNP-SG efflux by sodium orthovanadate showed only minor changes through 48 h. Sodium orthovanadate decreased DNP-SG efflux, consistent with inhibition of apical ABC transporters. Conclusion The results support the use of the cultured human term placental villous tissue explants model to study coordinated function of GSTP1-1 and apical ABC transporters in the formation and efflux of the model substrate DNP-SG. PMID:21342117

  1. Assessment of placental transfer and the effect on embryo-fetal development of a humanized monoclonal antibody targeting lymphotoxin-alpha in non-human primates.

    PubMed

    Wang, Hong; Schuetz, Chris; Arima, Akihiro; Chihaya, Yutaka; Weinbauer, Gerhard F; Habermann, Gunnar; Xiao, Jim; Woods, Cynthia; Grogan, Jane; Gelzleichter, Thomas; Cain, Gary

    2016-08-01

    An enhanced embryo-fetal development study was conducted in cynomolgus monkeys using pateclizumab, a humanized IgG1 monoclonal antibody (mAb) targeting lymphotoxin-alpha. Pateclizumab administration between gestation days (GD) 20 and 132 did not induce maternal or developmental toxicities. The ratio of fetal-to-maternal serum concentration of pateclizumab was 0.73% on GD 50 and 61% by GD 139. Decreased fetal inguinal lymph node-to-body weight ratio was present in the high-dose group without microscopic abnormalities, a change attributable to inhibition of lymphocyte recruitment, which is a pharmacologic effect of pateclizumab during late lymph node development. The effect was observed in inguinal but not submandibular or mesenteric lymph nodes; this was attributed to differential susceptibility related to sequential lymph node development. Placental transfer of therapeutic IgG1 antibodies; thus, begins during the first trimester in non-human primates. Depending on the potency and dose levels administered, antibody levels in the fetus may be pharmacologically or toxicologically relevant. PMID:27211603

  2. Human placental extract exerts hair growth-promoting effects through the GSK-3β signaling pathway in human dermal papilla cells.

    PubMed

    Kwon, Tae-Rin; Oh, Chang Taek; Choi, Eun Ja; Park, Hye Min; Han, Hae Jung; Ji, Hyi Jeong; Kim, Beom Joon

    2015-10-01

    Human placental extract (HPE) is widely used in Korea to relieve fatigue. However, its effects on human dermal papilla cells (hDPCs) remain unknown. In the present study, in an effort to develop novel therapies to promote hair growth, we screened HPE. We demonstrate that HPE has hair growth‑promoting activities and induces β‑catenin expression through the inhibition of glycogen synthase kinase‑3β (GSK‑3β) by phosphorylation in hDPCs. Treatment with HPE significantly increased the viability of the hDPCs in a concentration‑dependent manner, as shown by bromodeoxyuridine (BrdU) assay. HPE also significantly increased the alkaline phosphatase (ALP) expression levels. The increased β‑catenin levels and the inhibition of GSK‑3β (Ser9) by phosphorylation suggested that HPE promoted the hair-inductive capacity of hDPCs. We compared the effects of treatment with HPE alone and treatment with HPE in conjunction with minoxidil (MXD). We found that HPE plus MXD effectively inhibited GSK‑3β by phosphorylation (Ser9) in the hDPCs. Moreover, we demonstrated that HPE was effective in inducing root hair elongation in rat vibrissa hair follicles, and that treatment with HPE led to a delay in catagen progression. Overall, our findings suggest that HPE promotes hair growth and may thus provide the basis of a novel therapeutic strategy for the clinical treatment of hair loss. PMID:26311045

  3. Placental Adaptations in Growth Restriction

    PubMed Central

    Zhang, Song; Regnault, Timothy R.H.; Barker, Paige L.; Botting, Kimberley J.; McMillen, Isabella C.; McMillan, Christine M.; Roberts, Claire T.; Morrison, Janna L.

    2015-01-01

    The placenta is the primary interface between the fetus and mother and plays an important role in maintaining fetal development and growth by facilitating the transfer of substrates and participating in modulating the maternal immune response to prevent immunological rejection of the conceptus. The major substrates required for fetal growth include oxygen, glucose, amino acids and fatty acids, and their transport processes depend on morphological characteristics of the placenta, such as placental size, morphology, blood flow and vascularity. Other factors including insulin-like growth factors, apoptosis, autophagy and glucocorticoid exposure also affect placental growth and substrate transport capacity. Intrauterine growth restriction (IUGR) is often a consequence of insufficiency, and is associated with a high incidence of perinatal morbidity and mortality, as well as increased risk of cardiovascular and metabolic diseases in later life. Several different experimental methods have been used to induce placental insufficiency and IUGR in animal models and a range of factors that regulate placental growth and substrate transport capacity have been demonstrated. While no model system completely recapitulates human IUGR, these animal models allow us to carefully dissect cellular and molecular mechanisms to improve our understanding and facilitate development of therapeutic interventions. PMID:25580812

  4. Novel 3D light microscopic analysis of IUGR placentas points to a morphological correlate of compensated ischemic placental disease in humans

    PubMed Central

    Haeussner, Eva; Schmitz, Christoph; Frank, Hans-Georg; Edler von Koch, Franz

    2016-01-01

    The villous tree of the human placenta is a complex three-dimensional (3D) structure with branches and nodes at the feto-maternal border in the key area of gas and nutrient exchange. Recently we introduced a novel, computer-assisted 3D light microscopic method that enables 3D topological analysis of branching patterns of the human placental villous tree. In the present study we applied this novel method to the 3D architecture of peripheral villous trees of placentas from patients with intrauterine growth retardation (IUGR placentas), a severe obstetric syndrome. We found that the mean branching angle of branches in terminal positions of the villous trees was significantly different statistically between IUGR placentas and clinically normal placentas. Furthermore, the mean tortuosity of branches of villous trees in directly preterminal positions was significantly different statistically between IUGR placentas and clinically normal placentas. We show that these differences can be interpreted as consequences of morphological adaptation of villous trees between IUGR placentas and clinically normal placentas, and may have important consequences for the understanding of the morphological correlates of the efficiency of the placental villous tree and their influence on fetal development. PMID:27045698

  5. Novel 3D light microscopic analysis of IUGR placentas points to a morphological correlate of compensated ischemic placental disease in humans.

    PubMed

    Haeussner, Eva; Schmitz, Christoph; Frank, Hans-Georg; Edler von Koch, Franz

    2016-01-01

    The villous tree of the human placenta is a complex three-dimensional (3D) structure with branches and nodes at the feto-maternal border in the key area of gas and nutrient exchange. Recently we introduced a novel, computer-assisted 3D light microscopic method that enables 3D topological analysis of branching patterns of the human placental villous tree. In the present study we applied this novel method to the 3D architecture of peripheral villous trees of placentas from patients with intrauterine growth retardation (IUGR placentas), a severe obstetric syndrome. We found that the mean branching angle of branches in terminal positions of the villous trees was significantly different statistically between IUGR placentas and clinically normal placentas. Furthermore, the mean tortuosity of branches of villous trees in directly preterminal positions was significantly different statistically between IUGR placentas and clinically normal placentas. We show that these differences can be interpreted as consequences of morphological adaptation of villous trees between IUGR placentas and clinically normal placentas, and may have important consequences for the understanding of the morphological correlates of the efficiency of the placental villous tree and their influence on fetal development. PMID:27045698

  6. Human Mammospheres Secrete Hormone-Regulated Active Extracellular Vesicles

    PubMed Central

    Rodriguez-Suarez, Eva; Gil, David; Royo, Felix; Elortza, Felix; Falcon-Perez, Juan M.; Vivanco, Maria dM.

    2014-01-01

    Breast cancer is a leading cause of cancer-associated death worldwide. One of the most important prognostic factors for survival is the early detection of the disease. Recent studies indicate that extracellular vesicles may provide diagnostic information for cancer management. We demonstrate the secretion of extracellular vesicles by primary breast epithelial cells enriched for stem/progenitor cells cultured as mammospheres, in non-adherent conditions. Using a proteomic approach we identified proteins contained in these vesicles whose expression is affected by hormonal changes in the cellular environment. In addition, we showed that these vesicles are capable of promoting changes in expression levels of genes involved in epithelial-mesenchymal transition and stem cell markers. Our findings suggest that secreted extracellular vesicles could represent potential diagnostic and/or prognostic markers for breast cancer and support a role for extracellular vesicles in cancer progression. PMID:24404144

  7. A Positive Feedback Loop between Glial Cells Missing 1 and Human Chorionic Gonadotropin (hCG) Regulates Placental hCGβ Expression and Cell Differentiation

    PubMed Central

    Cheong, Mei-Leng; Wang, Liang-Jie; Chuang, Pei-Yun; Chang, Ching-Wen; Lee, Yun-Shien; Lo, Hsiao-Fan; Tsai, Ming-Song

    2015-01-01

    Human chorionic gonadotropin (hCG) is composed of a common α subunit and a placenta-specific β subunit. Importantly, hCG is highly expressed in the differentiated and multinucleated syncytiotrophoblast, which is formed via trophoblast cell fusion and stimulated by cyclic AMP (cAMP). Although the ubiquitous activating protein 2 (AP2) transcription factors TFAP2A and TFAP2C may regulate hCGβ expression, it remains unclear how cAMP stimulates placenta-specific hCGβ gene expression and trophoblastic differentiation. Here we demonstrated that the placental transcription factor glial cells missing 1 (GCM1) binds to a highly conserved promoter region in all six hCGβ paralogues by chromatin immunoprecipitation-on-chip (ChIP-chip) analyses. We further showed that cAMP stimulates GCM1 and the CBP coactivator to activate the hCGβ promoter through a GCM1-binding site (GBS1), which also constitutes a previously identified AP2 site. Given that TFAP2C may compete with GCM1 for GBS1, cAMP enhances the association between the hCGβ promoter and GCM1 but not TFAP2C. Indeed, the hCG-cAMP-protein kinase A (PKA) signaling pathway also stimulates Ser269 and Ser275 phosphorylation of GCM1, which recruits CBP to mediate GCM1 acetylation and stabilization. Consequently, hCG stimulates the expression of GCM1 target genes, including the fusogenic protein syncytin-1, to promote placental cell fusion. Our study reveals a positive feedback loop between GCM1 and hCG regulating placental hCGβ expression and cell differentiation. PMID:26503785

  8. Kinetic comparison of tissue non-specific and placental human alkaline phosphatases expressed in baculovirus infected cells: application to screening for Down's syndrome

    PubMed Central

    Denier, Colette C; Brisson-Lougarre, Andrée A; Biasini, Ghislaine G; Grozdea, Jean J; Fournier, Didier D

    2002-01-01

    Background In humans, there are four alkaline phosphatases, and each form exibits a characteristic pattern of tissue distribution. The availability of an easy method to reveal their activity has resulted in large amount of data reporting correlations between variations in activity and illnesses. For example, alkaline phosphatase from neutrophils of mothers pregnent with a trisomy 21 fetus (Down's syndrome) displays significant differences both in its biochemical and immunological properties, and in its affinity for some specific inhibitors. Results To analyse these differences, the biochemical characteristics of two isozymes (non specific and placental alkaline phosphatases) were expressed in baculovirus infected cells. Comparative analysis of the two proteins allowed us to estimate the kinetic constants of denaturation and sensitivity to two inhibitors (L-p-bromotetramisole and thiophosphate), allowing better discrimination between the two enzymes. These parameters were then used to estimate the ratio of the two isoenzymes in neutrophils of pregnant mothers with or without a trisomy 21 fetus. It appeared that the placental isozyme represented 13% of the total activity of neutrophils of non pregnant women. This proportion did not significantly increase with normal pregnancy. By contrast, in pregnancies with trisomy 21 fetus, the proportion reached 60–80% of activity. Conclusion Over-expression of the placental isozyme compared with the tissue-nonspecific form in neutrophils of mother with a trisomy 21 fetus may explain why the characteristics of the alkaline phosphatase in these cells is different from normal. Application of this knowledge could improve the potential of using alkaline phosphatase measurements to screen for Down's syndrome. PMID:11818032

  9. Small-Conductance Ca2+-Activated Potassium Channels Negatively Regulate Aldosterone Secretion in Human Adrenocortical Cells.

    PubMed

    Yang, Tingting; Zhang, Hai-Liang; Liang, Qingnan; Shi, Yingtang; Mei, Yan-Ai; Barrett, Paula Q; Hu, Changlong

    2016-09-01

    Aldosterone, which plays a key role in maintaining water and electrolyte balance, is produced by zona glomerulosa cells of the adrenal cortex. Autonomous overproduction of aldosterone from zona glomerulosa cells causes primary hyperaldosteronism. Recent clinical studies have highlighted the pathological role of the KCNJ5 potassium channel in primary hyperaldosteronism. Our objective was to determine whether small-conductance Ca(2+)-activated potassium (SK) channels may also regulate aldosterone secretion in human adrenocortical cells. We found that apamin, the prototypic inhibitor of SK channels, decreased membrane voltage, raised intracellular Ca(2+) and dose dependently increased aldosterone secretion from human adrenocortical H295R cells. By contrast, 1-Ethyl-2-benzimidazolinone, an agonist of SK channels, antagonized apamin's action and decreased aldosterone secretion. Commensurate with an increase in aldosterone production, apamin increased mRNA expression of steroidogenic acute regulatory protein and aldosterone synthase that control the early and late rate-limiting steps in aldosterone biosynthesis, respectively. In addition, apamin increased angiotensin II-stimulated aldosterone secretion, whereas 1-Ethyl-2-benzimidazolinone suppressed both angiotensin II- and high K(+)-stimulated production of aldosterone in H295R cells. These findings were supported by apamin-modulation of basal and angiotensin II-stimulated aldosterone secretion from acutely prepared slices of human adrenals. We conclude that SK channel activity negatively regulates aldosterone secretion in human adrenocortical cells. Genetic association studies are necessary to determine whether mutations in SK channel subtype 2 genes may also drive aldosterone excess in primary hyperaldosteronism. PMID:27432863

  10. Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro.

    PubMed

    Simpson, Norman; Maffei, Antonella; Freeby, Matthew; Burroughs, Steven; Freyberg, Zachary; Javitch, Jonathan; Leibel, Rudolph L; Harris, Paul E

    2012-10-01

    We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity. PMID:22915827

  11. Dopamine-Mediated Autocrine Inhibitory Circuit Regulating Human Insulin Secretion in Vitro

    PubMed Central

    Simpson, Norman; Maffei, Antonella; Freeby, Matthew; Burroughs, Steven; Freyberg, Zachary; Javitch, Jonathan; Leibel, Rudolph L.

    2012-01-01

    We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity. PMID:22915827

  12. Primary human chorionic gonadotropin secreting germinoma of the corpus callosum

    PubMed Central

    Chuan Aaron, Foo Song; Dawn, Chong Q. Q.; Kenneth, Chang T. E.; Hoe, Ng Wai; Yen, Soh Shui; Chee Kian, Tham

    2013-01-01

    Background: Primary intracranial germinomas are a rare subset of intracranial tumors derived from mis-incorporated germ cells within the folding neural plate during embryogenesis. Though known to arise from midline structures in the central nervous system (CNS), occurrence within the corpus callosum is exceedingly rare. Case Description: We present a rare case of secreting primary intracranial germinoma with extensive intraventricular metastasis presenting as a multi-cystic butterfly lesion in the genu of the corpus callosum in a young boy. Conclusion: Intracranial germ cell tumors must be considered for any multi-cystic lesion arising from midline structures in the CNS in the preadult population. PMID:24233184

  13. Human colon epithelial cells productively infected with human immunodeficiency virus show impaired differentiation and altered secretion.

    PubMed Central

    Fantini, J; Yahi, N; Baghdiguian, S; Chermann, J C

    1992-01-01

    Selected strains of the human immunodeficiency virus (HIV) types 1 and 2 are able to infect human colon epithelial cells in vitro, suggesting a mechanism for the anal route of HIV transmission. In some cases, HIV is not produced by infected colon cells but can be rescued after coculture with T-lymphoid cells. One of the HIV strains (HIV1-NDK) replicated well in colonic cells. A transmission electron microscope study demonstrated two major structural perturbations in producer colon cells: an unusual number of secretion bodies and the appearance of intracellular lumina with disorganized microvilli, indicating a defect in brush border assembly and differentiation. Either abnormality could account for HIV-induced enteropathy consisting of chronic diarrhea and malabsorption in the absence of enteric pathogens. Moreover, HT29 cells infected with HIV provide a unique model for selection of enterotropic HIV strains. Images PMID:1727501

  14. Long-chain polyunsaturated fatty acids stimulate cellular fatty acid uptake in human placental choriocarcinoma (BeWo) cells.

    PubMed

    Johnsen, G M; Weedon-Fekjaer, M S; Tobin, K A R; Staff, A C; Duttaroy, A K

    2009-12-01

    Supplementation of long-chain polyunsaturated fatty acids (LCPUFAs) is advocated during pregnancy in some countries although very little information is available on their effects on placental ability to take up these fatty acids for fetal supply to which the fetal growth and development are critically dependent. To identify the roles of LCPUFAs on placental fatty acid transport function, we examined the effects of LCPUFAs on the uptake of fatty acids and expression of fatty acid transport/metabolic genes using placental trophoblast cells (BeWo). Following 24 h incubation of these cells with 100 microM of LCPUFAs (arachidonic acid, 20:4n-6, eicosapentaenoic acid, 20:5n-3, or docosahexaenoic acid, 22:6n-3), the cellular uptake of [(14)C] fatty acids was increased by 20-50%, and accumulated fatty acids were preferentially incorporated into phospholipid fractions. Oleic acid (OA, 18:1n-9), on the other hand, could not stimulate fatty acid uptake. LCPUFAs and OA increased the gene expression of ADRP whilst decreased the expression of ASCL3, ACSL4, ACSL6, LPIN1, and FABP3 in these cells. However, LCPUFAs but not OA increased expression of ACSL1 and ACSL5. Since acyl-CoA synthetases are involved in cellular uptake of fatty acids via activation for their channelling to lipid metabolism and/or for storage, the increased expression of ACSL1 and ACLS5 by LCPUFAs may be responsible for the increased fatty acid uptake. These findings demonstrate that LCPUFA may function as an important regulator of general fatty acid uptake in trophoblast cells and may thus have impact on fetal growth and development. PMID:19880178

  15. Combined effects of mineral trioxide aggregate and human placental extract on rat pulp tissue and growth, differentiation and angiogenesis in human dental pulp cells.

    PubMed

    Chang, Seok-Woo; Kim, Ji-Youn; Kim, Mi-Joo; Kim, Ga-Hyun; Yi, Jin-Kyu; Lee, Deok-Won; Kum, Kee-Yeon; Kim, Eun-Cheol

    2016-05-01

    Objective The aim of this study was to evaluate the combined effects of mineral trioxide aggregate (MTA) and human placental extract (HPE) on cell growth, differentiation and in vitro angiogenesis of human dental pulp cells (HDPCs) and to identify underlying signal transduction mechanisms. In vivo dental pulp responses in rats for a pulp-capping agent were examined. Materials and methods MTS assay. ALP activity test, alizarin red S staining and RT-PCR for marker genes were carried out to evaluate cell growth and differentiation. HUVEC migration, mRNA expression and capillary tube formation were measured to evaluate angiogenesis. Signal transduction was analysed using Western blotting and confocal microscopy. The pulps of rat maxillary first molars were exposed and capped with either MTA or MTA plus HPE. Histologic observation and scoring were performed. Results Compared to treatment of HDPCs with either HPE or MTA alone, the combination of HPE and MTA increased cell growth, ALP activity, mineralized nodules and expression of marker mRNAs. Combination HPE and MTA increased migration, capillary tube formation and angiogenic gene expression compared with MTA alone. Activation of Akt, mammalian target of rapamycin (mTOR), p38, JNK and ERK MAPK, Akt, and NF-κB were significantly increased by combining HPE and MTA compared with MTA alone. Pulp capping with MTA plus HPE in rats showed superior dentin bridge formation, odontoblastic layers and dentinal tubules and lower inflammatory cell response, compared to the MTA alone group. Conclusions This study demonstrates for the first time that the use of MTA with HPE promotes cell growth, differentiation and angiogenesis in HDPCs, which were associated with mTOR, MAPK and NF-κB pathways. Direct pulp capping with HPE plus MTA showed superior results when compared with MTA alone. Thus, the combination of MTA and HPE may be useful for regenerative endodontics. PMID:26807656

  16. A single-islet microplate assay to measure mouse and human islet insulin secretion.

    PubMed

    Truchan, Nathan A; Brar, Harpreet K; Gallagher, Shannon J; Neuman, Joshua C; Kimple, Michelle E

    2015-01-01

    One complication to comparing β-cell function among islet preparations, whether from genetically identical or diverse animals or human organ donors, is the number of islets required per assay. Islet numbers can be limiting, meaning that fewer conditions can be tested; other islet measurements must be excluded; or islets must be pooled from multiple animals/donors for each experiment. Furthermore, pooling islets negates the possibility of performing single-islet comparisons. Our aim was to validate a 96-well plate-based single islet insulin secretion assay that would be as robust as previously published methods to quantify glucose-stimulated insulin secretion from mouse and human islets. First, we tested our new assay using mouse islets, showing robust stimulation of insulin secretion 24 or 48 h after islet isolation. Next, we utilized the assay to quantify mouse islet function on an individual islet basis, measurements that would not be possible with the standard pooled islet assay methods. Next, we validated our new assay using human islets obtained from the Integrated Islet Distribution Program (IIDP). Human islets are known to have widely varying insulin secretion capacity, and using our new assay we reveal biologically relevant factors that are significantly correlated with human islet function, whether displayed as maximal insulin secretion response or fold-stimulation of insulin secretion. Overall, our results suggest this new microplate assay will be a useful tool for many laboratories, expert or not in islet techniques, to be able to precisely quantify islet insulin secretion from their models of interest. PMID:26452321

  17. PPARγ controls pregnancy outcome through activation of EG-VEGF: new insights into the mechanism of placental development.

    PubMed

    Garnier, Vanessa; Traboulsi, Wael; Salomon, Aude; Brouillet, Sophie; Fournier, Thierry; Winkler, Carine; Desvergne, Beatrice; Hoffmann, Pascale; Zhou, Qun-Yong; Congiu, Cenzo; Onnis, Valentina; Benharouga, Mohamed; Feige, Jean-Jacques; Alfaidy, Nadia

    2015-08-15

    PPARγ-deficient mice die at E9.5 due to placental abnormalities. The mechanism by which this occurs is unknown. We demonstrated that the new endocrine factor EG-VEGF controls the same processes as those described for PPARγ, suggesting potential regulation of EG-VEGF by PPARγ. EG-VEGF exerts its functions via prokineticin receptor 1 (PROKR1) and 2 (PROKR2). This study sought to investigate whether EG-VEGF mediates part of PPARγ effects on placental development. Three approaches were used: 1) in vitro, using human primary isolated cytotrophoblasts and the extravillous trophoblast cell line (HTR-8/SVneo); 2) ex vivo, using human placental explants (n = 46 placentas); and 3) in vivo, using gravid wild-type PPARγ(+/-) and PPARγ(-/-) mice. Major processes of placental development that are known to be controlled by PPARγ, such as trophoblast proliferation, migration, and invasion, were assessed in the absence or presence of PROKR1 and PROKR2 antagonists. In both human trophoblast cell and placental explants, we demonstrated that rosiglitazone, a PPARγ agonist, 1) increased EG-VEGF secretion, 2) increased EG-VEGF and its receptors mRNA and protein expression, 3) increased placental vascularization via PROKR1 and PROKR2, and 4) inhibited trophoblast migration and invasion via PROKR2. In the PPARγ(-/-) mouse placentas, EG-VEGF levels were significantly decreased, supporting an in vivo control of EG-VEGF/PROKRs system during pregnancy. The present data reveal EG-VEGF as a new mediator of PPARγ effects during pregnancy and bring new insights into the fine mechanism of trophoblast invasion. PMID:26081281

  18. Regulation of in vitro PWM-induced IgG secretion in humans

    SciTech Connect

    O'Gorman, M.R.; Oger, J.J.

    1989-02-01

    PWM-induced differentiation of human PBMC into immunoglobulin (Ig) secreting cells is a widely used model of in vivo IgG secretion. We examined the relationship between the amount of IgG secreted in PBMC cultures obtained from individuals who consistently secrete either very high (HR) or very low amounts (LR) of IgG and various in vitro immune function assays. The PBMC obtained from LR contained a higher ratio of cells expressing the T-suppressor/inducer to T-helper/inducer phenotype. The autologous mixed lymphocyte response was lower and the amount of in vivo radiation sensitive suppression was higher in the LR than in the HR. LR E- cells secreted less IgG than the HR E- cells when both were mixed with heterologous HR E+ cells. Monocyte depletion reduced IgG secretion in both LR and HR. These results suggest that each of the subsets Ts, Th (Thi, Tsi), and B lymphocytes are involved in the regulation of PWM-induced Ig secretion and that the functions of each of these subsets differ in HR and LR individuals.

  19. Trophoblast viability in perfused term placental tissue and explant cultures limited to 7-24 hours.

    PubMed

    Di Santo, S; Malek, A; Sager, R; Andres, A-C; Schneider, H

    2003-01-01

    Human term-placental culture techniques such as villous explant or dual perfusion are commonly used to study trophoblast function under control and experimentally manipulated conditions. We have compared trophoblast viability during perfusion and in explants cultured under various conditions by monitoring glucose consumption, protein synthesis and secretion, expression of differentiation-specific genes, induction of stress proteins and apoptotic cell death. The tissue was obtained from term-placentae of uncomplicated pregnancies after elective Caesarean delivery. We observed a severe loss of trophoblast viability in explants irrespective of the culture conditions used. Over 7 h of culture the amount of the differentiation specific placental hormones hCG, hPL and leptin accumulated in the medium dropped significantly. Analysis of their expression by semi-quantitative and real-time RT-PCR revealed that the down-regulation of expression occurred at the transcriptional level. This transcriptional repression was accompanied by induction of the stress-proteins RTP and BiP/GRP78. Analysis of apoptotic cell death by TUNEL assay and immunohistochemical detection of the caspase-3-specific degradation product of cytokeratin 18 revealed prominent cell death after 7 h of culture. These results are in contrast to the findings obtained in perfused placental tissue where, after 7 h of culture, hormone secretion, expression of stress proteins and cell death were similar as in native tissue. This difference between villous explant incubation and dual perfusion is also reflected by a significantly higher consumption of glucose in perfused tissue. PMID:13129686

  20. High-resolution elemental mapping of human placental chorionic villi using synchrotron X-ray fluorescence spectroscopy

    DOE PAGESBeta

    Punshon, Tracy; Chen, Si; Finney, Lydia; Howard, Louisa; Jackson, Brian P.; Karagas, Margaret R.; Ornvold, Kim

    2015-07-03

    The placenta is the organ that mediates transport of nutrients and waste materials between mother and fetus. Synchrotron X-ray fluorescence (SXRF) microanalysis is a tool for imaging the distribution and quantity of elements in biological tissue, which can be used to study metal transport across biological membranes. Our aims were to pilot placental biopsy specimen preparation techniques that could be integrated into an ongoing epidemiology birth cohort study without harming rates of sample acquisition. We studied the effects of fixative (formalin or glutaraldehyde) and storage duration (30 days or immediate processing) on metal distribution and abundance and investigated a thaw-fixationmore » protocol for archived specimens stored at -80° C. We measured fixative elemental composition with and without a placental biopsy via inductively coupled plasma mass spectrometry (ICP-MS) to quantify fixative-induced elemental changes. Formalin-fixed specimens showed hemolysis of erythrocytes. The glutaraldehyde-paraformaldehyde solution in HEPES buffer (GTA-HEPES) had superior anatomical preservation, avoided hemolysis, and minimized elemental loss, although some cross-linking of exogenous Zn was evident. Elemental loss from tissue stored in fixative for 1 month showed variable losses (≈ 40 % with GTA-HEPES), suggesting storage duration be controlled for. Lastly, thawing of tissue held at -80 °C in a GTA-HEPES solution provided high-quality visual images and elemental images« less

  1. High-resolution elemental mapping of human placental chorionic villi using synchrotron X-ray fluorescence spectroscopy.

    PubMed

    Punshon, Tracy; Chen, Si; Finney, Lydia; Howard, Louisa; Jackson, Brian P; Karagas, Margaret R; Ornvold, Kim

    2015-09-01

    The placenta is the organ that mediates transport of nutrients and waste materials between mother and fetus. Synchrotron X-ray fluorescence (SXRF) microanalysis is a tool for imaging the distribution and quantity of elements in biological tissue, which can be used to study metal transport across biological membranes. Our aims were to pilot placental biopsy specimen preparation techniques that could be integrated into an ongoing epidemiology birth cohort study without harming rates of sample acquisition. We studied the effects of fixative (formalin or glutaraldehyde) and storage duration (30 days or immediate processing) on metal distribution and abundance and investigated a thaw-fixation protocol for archived specimens stored at -80 °C. We measured fixative elemental composition with and without a placental biopsy via inductively coupled plasma mass spectrometry (ICP-MS) to quantify fixative-induced elemental changes. Formalin-fixed specimens showed hemolysis of erythrocytes. The glutaraldehyde-paraformaldehyde solution in HEPES buffer (GTA-HEPES) had superior anatomical preservation, avoided hemolysis, and minimized elemental loss, although some cross-linking of exogenous Zn was evident. Elemental loss from tissue stored in fixative for 1 month showed variable losses (≈40 % with GTA-HEPES), suggesting storage duration be controlled for. Thawing of tissue held at -80 °C in a GTA-HEPES solution provided high-quality visual images and elemental images. PMID:26138895

  2. High-resolution Elemental Mapping of Human Placental Chorionic Villi Using Synchrotron X-ray Fluorescence Spectroscopy

    SciTech Connect

    Punshon, Tracy; Chen, Si; Finney, Lydia; Howard, Louisa; Jackson, Brian P.; Karagas, Margaret R.; Ornvold, Kim

    2015-09-01

    The placenta is the organ that mediates transport of nutrients and waste materials between mother and fetus. Synchrotron X-ray fluorescence (SXRF) microanalysis is a tool for imaging the distribution and quantity of elements in biological tissue, which can be used to study metal transport across biological membranes. Our aims were to pilot placental biopsy specimen preparation techniques that could be integrated into an ongoing epidemiology birth cohort study without harming rates of sample acquisition. We studied the effects of fixative (formalin or glutaraldehyde) and storage duration (30 days or immediate processing) on metal distribution and abundance and investigated a thaw-fixation protocol for archived specimens stored at -80 A degrees C. We measured fixative elemental composition with and without a placental biopsy via inductively coupled plasma mass spectrometry (ICP-MS) to quantify fixative-induced elemental changes. Formalin-fixed specimens showed hemolysis of erythrocytes. The glutaraldehyde-paraformaldehyde solution in HEPES buffer (GTA-HEPES) had superior anatomical preservation, avoided hemolysis, and minimized elemental loss, although some cross-linking of exogenous Zn was evident. Elemental loss from tissue stored in fixative for 1 month showed variable losses (a parts per thousand 40 % with GTA-HEPES), suggesting storage duration be controlled for. Thawing of tissue held at -80 A degrees C in a GTA-HEPES solution provided high-quality visual images and elemental images

  3. High-resolution elemental mapping of human placental chorionic villi using synchrotron X-ray fluorescence spectroscopy

    SciTech Connect

    Punshon, Tracy; Chen, Si; Finney, Lydia; Howard, Louisa; Jackson, Brian P.; Karagas, Margaret R.; Ornvold, Kim

    2015-07-03

    The placenta is the organ that mediates transport of nutrients and waste materials between mother and fetus. Synchrotron X-ray fluorescence (SXRF) microanalysis is a tool for imaging the distribution and quantity of elements in biological tissue, which can be used to study metal transport across biological membranes. Our aims were to pilot placental biopsy specimen preparation techniques that could be integrated into an ongoing epidemiology birth cohort study without harming rates of sample acquisition. We studied the effects of fixative (formalin or glutaraldehyde) and storage duration (30 days or immediate processing) on metal distribution and abundance and investigated a thaw-fixation protocol for archived specimens stored at -80° C. We measured fixative elemental composition with and without a placental biopsy via inductively coupled plasma mass spectrometry (ICP-MS) to quantify fixative-induced elemental changes. Formalin-fixed specimens showed hemolysis of erythrocytes. The glutaraldehyde-paraformaldehyde solution in HEPES buffer (GTA-HEPES) had superior anatomical preservation, avoided hemolysis, and minimized elemental loss, although some cross-linking of exogenous Zn was evident. Elemental loss from tissue stored in fixative for 1 month showed variable losses (≈ 40 % with GTA-HEPES), suggesting storage duration be controlled for. Lastly, thawing of tissue held at -80 °C in a GTA-HEPES solution provided high-quality visual images and elemental images

  4. High-resolution elemental mapping of human placental chorionic villi using synchrotron X-ray fluorescence spectroscopy

    PubMed Central

    Punshon, Tracy; Chen, Si; Finney, Lydia; Howard, Louisa; Jackson, Brian P.; Karagas, Margaret R.; Ornvold, Kim

    2015-01-01

    The placenta is the organ that mediates transport of nutrients and waste materials between mother and fetus. Synchrotron X-ray fluorescence microanalysis (SXRF) is a tool for imaging the distribution and quantity of elements in biological tissue, which can be used to study metal transport across biological membranes. Our aims were to pilot placental biopsy specimen preparation techniques that could be integrated into an ongoing epidemiology birth bohort study without harming rates of sample acquisition. We studied the effects of fixative (formalin or glutaraldehyde) and storage duration (30 days or immediate processing) on metal distribution and abundance and investigated a thaw-fixation protocol for archived specimens stored at −80°C. We measured fixative elemental composition with and without a placental biopsy via ICP-MS to quantify fixative-induced elemental changes. Formalin fixed specimens showed hemolysis of erythrocytes. The glutaraldehyde-paraformaldehyde solution in HEPES buffer (GTA-HEPES) had superior anatomical preservation, avoided hemolysis and minimized elemental loss, although some cross-linking of exogenous Zn was evident. Elemental loss from tissue stored in fixative for 1 month showed variable losses (≈ 40% with GTA-HEPES), suggesting storage duration be controlled for. Thawing of tissue held at −80°C in GTA-HEPES solution provided high quality visual images and elemental images. PMID:26138895

  5. Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion

    PubMed Central

    Perrin, Laurent; Loizides-Mangold, Ursula; Skarupelova, Svetlana; Pulimeno, Pamela; Chanon, Stephanie; Robert, Maud; Bouzakri, Karim; Modoux, Christine; Roux-Lombard, Pascale; Vidal, Hubert; Lefai, Etienne; Dibner, Charna

    2015-01-01

    Objective Circadian clocks are functional in all light-sensitive organisms, allowing an adaptation to the external world in anticipation of daily environmental changes. In view of the potential role of the skeletal muscle clock in the regulation of glucose metabolism, we aimed to characterize circadian rhythms in primary human skeletal myotubes and investigate their roles in myokine secretion. Methods We established a system for long-term bioluminescence recording in differentiated human myotubes, employing lentivector gene delivery of the Bmal1-luciferase and Per2-luciferase core clock reporters. Furthermore, we disrupted the circadian clock in skeletal muscle cells by transfecting siRNA targeting CLOCK. Next, we assessed the basal secretion of a large panel of myokines in a circadian manner in the presence or absence of a functional clock. Results Bioluminescence reporter assays revealed that human skeletal myotubes, synchronized in vitro, exhibit a self-sustained circadian rhythm, which was further confirmed by endogenous core clock transcript expression. Moreover, we demonstrate that the basal secretion of IL-6, IL-8 and MCP-1 by synchronized skeletal myotubes has a circadian profile. Importantly, the secretion of IL-6 and several additional myokines was strongly downregulated upon siClock-mediated clock disruption. Conclusions Our study provides for the first time evidence that primary human skeletal myotubes possess a high-amplitude cell-autonomous circadian clock, which could be attenuated. Furthermore, this oscillator plays an important role in the regulation of basal myokine secretion by skeletal myotubes. PMID:26629407

  6. Single cells from human primary colorectal tumors exhibit polyfunctional heterogeneity in secretions of ELR+ CXC chemokines

    PubMed Central

    Adalsteinsson, Viktor; Tahirova, Narmin; Tallapragada, Naren; Yao, Xiaosai; Campion, Liam; Angelini, Alessandro; Douce, Thomas B.; Huang, Cindy; Bowman, Brittany; Williamson, Christina; Kwon, Douglas S.; Wittrup, K. Dane; Love, J. Christopher

    2014-01-01

    Cancer is an inflammatory disease of tissue that is largely influenced by the interactions between multiple cell types, secreted factors, and signal transduction pathways. While single-cell sequencing continues to refine our understanding of the clonotypic heterogeneity within tumors, the complex interplay between genetic variations and non-genetic factors ultimately affects therapeutic outcome. Much has been learned through bulk studies of secreted factors in the tumor microenvironment, but the secretory behavior of single cells has been largely uncharacterized. Here we directly profiled the secretions of ELR+ CXC chemokines from thousands of single colorectal tumor and stromal cells, using an array of subnanoliter wells and a technique called microengraving to characterize both the rates of secretion of several factors at once and the numbers of cells secreting each chemokine. The ELR+ CXC chemokines are highly redundant, pro-angiogenic cytokines that signal via either or both of the CXCR1 and CXCR2 receptors, exerting profound impacts on tumor growth and progression. We find that human primary colorectal tumor and stromal cells exhibit polyfunctional heterogeneity in the combinations and magnitudes of secretions for these chemokines. In cell lines, we observe similar variance: phenotypes observed in bulk can be largely absent among the majority of single cells, and discordances exist between secretory states measured and gene expression for these chemokines among single cells. Together, these measures suggest secretory states among tumor cells are complex and can evolve dynamically. Most importantly, this study reveals new insight into the intratumoral phenotypic heterogeneity of human primary tumors. PMID:23995780

  7. Simplified matrix solid phase dispersion procedure for the determination of parabens and benzophenone-ultraviolet filters in human placental tissue samples.

    PubMed

    Vela-Soria, F; Rodríguez, I; Ballesteros, O; Zafra-Gómez, A; Ballesteros, L; Cela, R; Navalón, A

    2014-12-01

    In recent decades, the industrial development has resulted in the appearance of a large amount of new chemicals that are able to produce disorders in the human endocrine system. These substances, so-called endocrine disrupting chemicals (EDCs), include many families of compounds, such as parabens and benzophenone-UV filters. Taking into account the demonstrated biological activity of these compounds, it is necessary to develop new analytical procedures to assess the exposure in order to establish, in an accurate way, relationships between EDCs and harmful health effects in population. In the present work, a new method based on a simplified sample treatment by matrix solid phase dispersion (MSPD) followed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis, is validated for the determination of four parabens (methyl-, ethyl-, propyl- and butylparaben) and six benzophenone-UV filters (benzophenone-1, benzophenone-2, benzophenone-3, benzophenone-6, benzophenone-8 and 4-hydroxybenzophenone) in human placental tissue samples. The extraction parameters were accurately optimized using multivariate optimization strategies. Ethylparaben ring-13C6 and benzophenone-d10 were used as surrogates. The found limits of quantification ranged from 0.2 to 0.4 ng g(-1) and inter-day variability (evaluated as relative standard deviation) ranged from 5.4% to 12.8%. The method was validated using matrix-matched standard calibration followed by a recovery assay with spiked samples. Recovery rates ranged from 96% to 104%. The method was satisfactorily applied for the determination of compounds in human placental tissue samples collected at the moment of delivery from 10 randomly selected women. PMID:25456585

  8. Tributyltin alters secretion of interleukin 1 beta from human immune cells.

    PubMed

    Brown, Shyretha; Whalen, Margaret

    2015-08-01

    Tributyltin (TBT) has been used as a biocide in industrial applications such as wood preservation, antifouling paint and antifungal agents. Owing to its many uses, it contaminates the environment and has been found in human blood samples. Interleukin-1 beta (IL-1β) is a pro-inflammatory cytokine that promotes cell growth, tissue repair and immune response regulation. Produced predominately by both monocytes and macrophages, IL-1β appears to increase the invasiveness of certain tumors. This study shows that TBT modifies the secretion of IL-1β from increasingly reconstituted preparations of human immune cells. IL-1β secretion was examined after 24-, 48-h or 6-day exposures to TBT in highly enriched human natural killer (NK) cells, monocyte-depleted peripheral blood mononuclear cells (MD-PBMCs), PBMCs, granulocytes and a preparation combining both PBMCs and granulocytes (PBMCs+granulocytes). TBT altered IL-1β secretion from all of the cell preparations. The 200 nM concentration of TBT normally blocked the secretion of IL-1β, whereas lower concentrations (usually 5-50 nM) elevated secretion of IL-1β. Examination of the signaling pathway(s) responsible for the elevated secretion of IL-1β was carried out in MD-PBMCs. Pathways examined were IL-1β processing (Caspase-1), mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NFκB). Results indicated that MAPK pathways (p44/42 and p38) appear to be the targets of TBT that lead to increased IL-1β secretion from immune cells. These results from human immune cells show IL-1β dysregulation by TBT is occurring ex vivo. Thus, the potential for in vivo effects on pro-inflammatory cytokine levels may possibly be a consequence of TBT exposures. PMID:25382723

  9. The effect of gamma interferon on IL-1 secretion of in vitro differentiated human macrophages.

    PubMed

    Haq, A U; Rinehart, J J; Maca, R D

    1985-12-01

    After being cultured overnight, human monocytes lose their ability to secrete interleukin-1 (IL-1) when stimulated by lipopolysaccharide (LPS). However, when these monocytes were cultured for up to 9 days with various concentrations of interferon-gamma (IFN-gamma), these cells were found to retain their ability to secrete appreciable amounts of IL-1 on LPS stimulation. However, the effect was observed only if the monocytes were exposed to the IFN before LPS stimulation and simultaneous addition of IFN and LPS to macrophages was ineffective. This effect of IFN-gamma was related to the concentration of IFN added to the cultures and was completely neutralized by a monoclonal antibody to IFN-gamma. In addition to inducing IL-1 secretion, IFN-gamma also appeared to increase the overall production of IL-1, since reinduction of IL-1 secretion was not associated with a decrease in intracellular IL-1 content. When these macrophages were initially cultured with IFN-gamma, washed, and further cultured with IFN free medium, these macrophages were found to progressively lose their capacity to secrete IL-1 in response to LPS. Conversely, when monocytes were initially cultured in medium free of IFN, washed, and then further cultured in new medium, but now containing IFN-gamma, these macrophages were found to regain their capacity to secrete IL-1. However, the amount of reinduced IL-1 secretion decreased as the length of the initial culture period without IFN increased, with less than optimal IL-1 secretion occurring if monocytes were allowed to mature for 6 days before IFN-gamma pretreatment. In summary, these studies suggest that IFN-gamma may be important in enhancing IL-1 production and secretion by maturing macrophages and tissue macrophages and consequently may play a role in regulating the accessory cell activity of these cells for a variety of immune responses in vivo. PMID:3934302

  10. The Effect of Ovine Secreted Soluble Factors on Human Dermal Papilla Cell Aggregation

    PubMed Central

    Sari, Agnes Rosarina Prita; Rufaut, Nicholas Wolfgang; Jones, Leslie Norman; Sinclair, Rodney Daniel

    2016-01-01

    Context: In androgenetic alopecia, follicular miniaturization and dynamic changes to the hair cycle produce patterned baldness. The most effective treatment for baldness is hair transplantation surgery. The major limitation to hair transplantation is the availability of donor hair from the relatively unaffected occipital scalp. Hair induction with in vitro expansion of donor follicle populations has the potential to overcome this. The major obstacle to this is that in vitro expansion of human dermal papilla cell (DPC) colonies is associated with irreversible loss of aggregative behavior and hair follicle-inductive potential. In contrast, cultured ovine DPCs maintain these properties after extensive proliferation. Aims: To determine whether aggregating ovine DPC secrete factors that enhance the aggregative behavior or inductive potential of human DPC. Subjects and Methods: Fluorescently-labelled ovine DPC were mixed in culture with human DPC at passage number seven-nine, which had lost their aggregative behavior. The effects of different culture substrates and medium compositions on aggregative behavior were determined. Ovine and human papilla cells were co-cultured, separated by a permeable membrane to determine whether the ovine cells secrete soluble factors that affect human papilla cells. Results: In direct co-culture experiments, well-formed aggregates were produced by 90:10 human:ovine and 50:50 human:ovine DPC mixtures. In contrast, unmixed human DPC remained in a monolayer state after 18 days. Both human and ovine DPC had a higher tendency to aggregate in medium containing 20% (v/v) lamb serum (LS) compared to 10% (v/v) fetal calf serum (FCS). In co-culture experiments separated with permeable membrane, the human DPC aggregates were bigger and more rapidly formed with the addition of ovine secreted soluble factors. Conclusions: Soluble factors secreted by ovine DPC and present in LS increase the aggregative behavior of human DPC. These molecules might

  11. On the role of placental major histocompatibility complex and decidual leukocytes in implantation and pregnancy success using non-human primate models

    PubMed Central

    Golos, Thaddeus G.; Bondarenko, Gennadiy I.; Dambaeva, Svetlana V.; Breburda, Edith E.; Durning, Maureen

    2011-01-01

    While there is broad agreement that interactions of the human maternal immune system with the tissues and cells of the implanting embryo are likely to be critical contributors to pregnancy success, there remains a dearth of information which directly confirms this expectation. Although animal models of reproductive function often provide opportunities for confirming such hypotheses, progress in this area has been sporadic due to limitations of traditional laboratory or agricultural animal models, such as rodents, sheep, pigs and cattle. Many of these limitations derive from divergent modes of implantation and placentation across mammalian species. Over the past decade there has been progress in the development of the nonhuman primate as a model in which to address questions of pregnancy success in the area of immunology. The purpose of this review is to compare available model species, summarize current knowledge and recent progress with an emphasis on experimental in vivo manipulations, and suggest areas available for additional study and growth. PMID:19876826

  12. Dapagliflozin stimulates glucagon secretion at high glucose: experiments and mathematical simulations of human A-cells.

    PubMed

    Pedersen, Morten Gram; Ahlstedt, Ingela; El Hachmane, Mickaël F; Göpel, Sven O

    2016-01-01

    Glucagon is one of the main regulators of blood glucose levels and dysfunctional stimulus secretion coupling in pancreatic A-cells is believed to be an important factor during development of diabetes. However, regulation of glucagon secretion is poorly understood. Recently it has been shown that Na(+)/glucose co-transporter (SGLT) inhibitors used for the treatment of diabetes increase glucagon levels in man. Here, we show experimentally that the SGLT2 inhibitor dapagliflozin increases glucagon secretion at high glucose levels both in human and mouse islets, but has little effect at low glucose concentrations. Because glucagon secretion is regulated by electrical activity we developed a mathematical model of A-cell electrical activity based on published data from human A-cells. With operating SGLT2, simulated glucose application leads to cell depolarization and inactivation of the voltage-gated ion channels carrying the action potential, and hence to reduce action potential height. According to our model, inhibition of SGLT2 reduces glucose-induced depolarization via electrical mechanisms. We suggest that blocking SGLTs partly relieves glucose suppression of glucagon secretion by allowing full-scale action potentials to develop. Based on our simulations we propose that SGLT2 is a glucose sensor and actively contributes to regulation of glucagon levels in humans which has clinical implications. PMID:27535321

  13. Dapagliflozin stimulates glucagon secretion at high glucose: experiments and mathematical simulations of human A-cells

    PubMed Central

    Pedersen, Morten Gram; Ahlstedt, Ingela; El Hachmane, Mickaël F.; Göpel, Sven O.

    2016-01-01

    Glucagon is one of the main regulators of blood glucose levels and dysfunctional stimulus secretion coupling in pancreatic A-cells is believed to be an important factor during development of diabetes. However, regulation of glucagon secretion is poorly understood. Recently it has been shown that Na+/glucose co-transporter (SGLT) inhibitors used for the treatment of diabetes increase glucagon levels in man. Here, we show experimentally that the SGLT2 inhibitor dapagliflozin increases glucagon secretion at high glucose levels both in human and mouse islets, but has little effect at low glucose concentrations. Because glucagon secretion is regulated by electrical activity we developed a mathematical model of A-cell electrical activity based on published data from human A-cells. With operating SGLT2, simulated glucose application leads to cell depolarization and inactivation of the voltage-gated ion channels carrying the action potential, and hence to reduce action potential height. According to our model, inhibition of SGLT2 reduces glucose-induced depolarization via electrical mechanisms. We suggest that blocking SGLTs partly relieves glucose suppression of glucagon secretion by allowing full-scale action potentials to develop. Based on our simulations we propose that SGLT2 is a glucose sensor and actively contributes to regulation of glucagon levels in humans which has clinical implications. PMID:27535321

  14. Secretion of glucose in human parotid saliva after carbohydrate intake.

    PubMed

    Borg, A; Birkhed, D

    1988-12-01

    The aims of the present investigation were, first, to follow the secretion of free glucose in parotid saliva in various subjects after a single oral intake of different carbohydrates, and second, to compare the salivary glucose concentration with the concentration in blood. Twenty healthy subjects, three women and 17 men, 20-35 yr of age, participated. They were asked not to eat or drink anything from 10 p.m. the night before the examination. 75 g of carbohydrate (glucose, fructose, or sucrose) dissolved in 300 ml water was ingested the next morning at 8 a.m. One experimental series with glucose was performed in triplicate in 10 of the subjects. Approximately 1.5 ml of citric acid-stimulated parotid saliva was collected before (0 min) and 15, 30, 45, 60, and 120 min after the intake. Salivary concentration of glucose was analyzed enzymatically. Most of the 0-min samples showed a variation in glucose concentration from 5 to 25 mumol/l. After the glucose, fructose, and sucrose intakes, the salivary glucose level increased about 2-4 times, especially in the 30-min samples. A large inter- as well as intra-individual variation was found both in the 0-min samples and in the samples collected after the different intakes. The correlation between the glucose concentration in saliva and blood was higher after than before the carbohydrate intakes. PMID:3206201

  15. Calpain secreted by activated human lymphoid cells degrades myelin.

    PubMed

    Deshpande, R V; Goust, J M; Hogan, E L; Banik, N L

    1995-10-01

    Calpain secreted by lymphoid (MOLT-3, M.R.) or monocytic (U-937, THP-1) cell lines activated with PMA and A23187 degraded myelin antigens. The degradative effect of enzymes released in the extracellular medium was tested on purified myelin basic protein and rat central nervous system myelin in vitro. The extent of protein degradation was determined by SDS-PAGE and densitometric analysis. Various proteinase inhibitors were used to determine to what extent protein degradation was mediated by calpain and/or other enzymes. Lysosomal and serine proteinase inhibitors inhibited 20-40% of the myelin-degradative activity found in the incubation media of cell lines, whereas the calcium chelator (EGTA), the calpain-specific inhibitor (calpastatin), and a monoclonal antibody to m calpain blocked myelin degradation by 60-80%. Since breakdown products of MBP generated by calpain may include fragments with antigenic epitopes, this enzyme may play an important role in the initiation of immune-mediated demyelination. PMID:8568927

  16. Secretion of phosphomannosyl-deficient arylsulphatase A and cathepsin D from isolated human macrophages.

    PubMed Central

    Muschol, Nicole; Matzner, Ulrich; Tiede, Stephan; Gieselmann, Volkmar; Ullrich, Kurt; Braulke, Thomas

    2002-01-01

    The transfer of macrophage-secreted arylsulphatase A (ASA) to enzyme-deficient brain cells is part of the therapeutic concept of bone marrow transplantation in lysosomal storage diseases. Here we have investigated this transfer in vitro. The uptake of (125)I-labelled recombinant human ASA purified from ASA-overexpressing mouse embryonic fibroblasts deficient for mannose 6-phosphate (M6P) receptors in a mouse ASA-deficient astroglial cell line was completely inhibited by M6P. In contrast, when ASA-deficient astroglial cells were incubated with secretions of [(35)S]methionine-labelled human macrophages or mouse microglia, containing various lysosomal enzymes, neither ASA nor cathepsin D (CTSD) were detected in acceptor cells. Co-culturing of metabolically labelled macrophages with ASA-deficient glial cells did not result in an M6P-dependent transfer of ASA or CTSD between these two cell types. In secretions of [(33)P]phosphate-labelled macrophages no or weakly phosphorylated ASA and CTSD precursor polypeptides were found, whereas both intracellular and secreted ASA from ASA-overexpressing baby hamster kidney cells displayed (33)P-labelled M6P residues. Finally, the uptake of CTSD from secretions of [(35)S]methionine-labelled macrophages in rat hepatocytes was M6P-independent. These data indicated that lysosomal enzymes secreted by human macrophages or a mouse microglial cell line cannot be endocytosed by brain cells due to the failure to equip newly synthesized lysosomal enzymes with the M6P recognition marker efficiently. The data suggest that other mechanisms than the proposed M6P-dependent secretion/recapture of lysosomal enzymes might be responsible for therapeutic effects of bone marrow transplantation in the brain. PMID:12296771

  17. Secretion of phosphomannosyl-deficient arylsulphatase A and cathepsin D from isolated human macrophages.

    PubMed

    Muschol, Nicole; Matzner, Ulrich; Tiede, Stephan; Gieselmann, Volkmar; Ullrich, Kurt; Braulke, Thomas

    2002-12-15

    The transfer of macrophage-secreted arylsulphatase A (ASA) to enzyme-deficient brain cells is part of the therapeutic concept of bone marrow transplantation in lysosomal storage diseases. Here we have investigated this transfer in vitro. The uptake of (125)I-labelled recombinant human ASA purified from ASA-overexpressing mouse embryonic fibroblasts deficient for mannose 6-phosphate (M6P) receptors in a mouse ASA-deficient astroglial cell line was completely inhibited by M6P. In contrast, when ASA-deficient astroglial cells were incubated with secretions of [(35)S]methionine-labelled human macrophages or mouse microglia, containing various lysosomal enzymes, neither ASA nor cathepsin D (CTSD) were detected in acceptor cells. Co-culturing of metabolically labelled macrophages with ASA-deficient glial cells did not result in an M6P-dependent transfer of ASA or CTSD between these two cell types. In secretions of [(33)P]phosphate-labelled macrophages no or weakly phosphorylated ASA and CTSD precursor polypeptides were found, whereas both intracellular and secreted ASA from ASA-overexpressing baby hamster kidney cells displayed (33)P-labelled M6P residues. Finally, the uptake of CTSD from secretions of [(35)S]methionine-labelled macrophages in rat hepatocytes was M6P-independent. These data indicated that lysosomal enzymes secreted by human macrophages or a mouse microglial cell line cannot be endocytosed by brain cells due to the failure to equip newly synthesized lysosomal enzymes with the M6P recognition marker efficiently. The data suggest that other mechanisms than the proposed M6P-dependent secretion/recapture of lysosomal enzymes might be responsible for therapeutic effects of bone marrow transplantation in the brain. PMID:12296771

  18. Stress-impaired transcription factor expression and insulin secretion in transplanted human islets

    PubMed Central

    Dai, Chunhua; Kayton, Nora S.; Shostak, Alena; Poffenberger, Greg; Cyphert, Holly A.; Aramandla, Radhika; Thompson, Courtney; Papagiannis, Ioannis G.; Shiota, Masakazu; Stafford, John M.; Greiner, Dale L.; Herrera, Pedro L.; Shultz, Leonard D.; Stein, Roland; Powers, Alvin C.

    2016-01-01

    Type 2 diabetes is characterized by insulin resistance, hyperglycemia, and progressive β cell dysfunction. Excess glucose and lipid impair β cell function in islet cell lines, cultured rodent and human islets, and in vivo rodent models. Here, we examined the mechanistic consequences of glucotoxic and lipotoxic conditions on human islets in vivo and developed and/or used 3 complementary models that allowed comparison of the effects of hyperglycemic and/or insulin-resistant metabolic stress conditions on human and mouse islets, which responded quite differently to these challenges. Hyperglycemia and/or insulin resistance impaired insulin secretion only from human islets in vivo. In human grafts, chronic insulin resistance decreased antioxidant enzyme expression and increased superoxide and amyloid formation. In human islet grafts, expression of transcription factors NKX6.1 and MAFB was decreased by chronic insulin resistance, but only MAFB decreased under chronic hyperglycemia. Knockdown of NKX6.1 or MAFB expression in a human β cell line recapitulated the insulin secretion defect seen in vivo. Contrary to rodent islet studies, neither insulin resistance nor hyperglycemia led to human β cell proliferation or apoptosis. These results demonstrate profound differences in how excess glucose or lipid influence mouse and human insulin secretion and β cell activity and show that reduced expression of key islet-enriched transcription factors is an important mediator of glucotoxicity and lipotoxicity. PMID:27064285

  19. Localization and regulation of the human very low density lipoprotein/apolipoprotein-E receptor: trophoblast expression predicts a role for the receptor in placental lipid transport.

    PubMed

    Wittmaack, F M; Gåfvels, M E; Bronner, M; Matsuo, H; McCrae, K R; Tomaszewski, J E; Robinson, S L; Strickland, D K; Strauss, J F

    1995-01-01

    The very low density lipoprotein/apolipoprotein-E receptor (VLDLR) is the newest member of the low density lipoprotein receptor (LDLR) family. Very little is known about VLDLR localization and regulation. Immunohistochemical analysis of human placenta with a specific polyclonal antibody detected VLDLR in syncytiotrophoblast and intermediate trophoblast cells. VLDLR transcripts were also localized in these cells by in situ hybridization histochemistry. In addition, VLDLR messenger RNA (mRNA) was detected in villous core endothelial cells and cells appearing to be Hofbauer cells. Northern blot analysis of placenta revealed a 2.6-fold increase in VLDLR mRNA at term compared to that in the first trimester. The regulation of VLDLR expression was studied in JEG-3 and BeWo choriocarcinoma cells, two trophoblast-derived cell lines. Treatment of these cells with 8-bromo-cAMP caused a profound suppression of VLDLR message, whereas LDLR transcripts were increased. Incubation of JEG-3 cells with 25-hydroxycholesterol did not lead to sterol negative feedback on VLDLR gene expression, unlike LDLR mRNA, which declined markedly. Insulin (200 mg/L) up-regulated VLDLR message in JEG-3 cells 2-fold, as did the fibrate hypolipidemic drug, clofibric acid. We conclude that 1) VLDLR is expressed in human placental trophoblast cells in a pattern consistent with a role in placental lipid transport; 2) VLDLR expression is high at term relative to that in the first trimester; and 3) the trophoblast VLDLR is subject to down-regulation by cAMP and up-regulation by insulin and fibrate hypolipidemic drugs. PMID:7828550

  20. Prevention of Defective Placentation and Pregnancy Loss by Blocking Innate Immune Pathways in a Syngeneic Model of Placental Insufficiency.

    PubMed

    Gelber, Shari E; Brent, Elyssa; Redecha, Patricia; Perino, Giorgio; Tomlinson, Stephen; Davisson, Robin L; Salmon, Jane E

    2015-08-01

    Defective placentation and subsequent placental insufficiency lead to maternal and fetal adverse pregnancy outcome, but their pathologic mechanisms are unclear, and treatment remains elusive. The mildly hypertensive BPH/5 mouse recapitulates many features of human adverse pregnancy outcome, with pregnancies characterized by fetal loss, growth restriction, abnormal placental development, and defects in maternal decidual arteries. Using this model, we show that recruitment of neutrophils triggered by complement activation at the maternal/fetal interface leads to elevation in local TNF-α levels, reduction of the essential angiogenic factor vascular endothelial growth factor, and, ultimately, abnormal placentation and fetal death. Blockade of complement with inhibitors specifically targeted to sites of complement activation, depletion of neutrophils, or blockade of TNF-α improves spiral artery remodeling and rescues pregnancies. These data underscore the importance of innate immune system activation in the pathogenesis of placental insufficiency and identify novel methods for treatment of pregnancy loss mediated by abnormal placentation. PMID:26071558

  1. Immunoglobulin isotype isolated from human placental extract does not interfere in complement-mediated bacterial opsonization within the wound milieu

    PubMed Central

    Sharma, Kanika; Bhattacharyya, Debasish

    2015-01-01

    The wound healing potency of an aqueous extract of placenta can be evaluated through the presence of numerous regulatory components. The presence of glycans was detected by thin layer chromatography and fluorophore-assisted carbohydrate electrophoresis. Mass spectrometric analysis revealed the existence of multiple fragments of immunoglobulin G (IgG). IgG was present in the extract at a concentration of 25.2 ± 3.97 μg/ml. IgG possesses anti-complementary activity by diverting the complement activation from target surface. Thus, effect of placental IgG on complement–bacteria interaction was investigated through classical and alternative pathway and the preparation was ascertained to be safe with respect to their interference in the process of bacterial opsonization. PMID:25984442

  2. In-Vitro Study of the Effect of Anti-Hypertensive Drugs on Placental Hormones and Angiogenic Proteins Synthesis in Pre-Eclampsia

    PubMed Central

    Gangooly, Subrata; Jauniaux, Eric

    2014-01-01

    Introduction Antihypertensive drugs lower the maternal blood pressure in pre-eclampsia (PE) by direct or central vasodilatory mechanisms but little is known about the direct effects of these drugs on placental functions. Objective The aim of our study is to evaluate the effect of labetolol, hydralazine, α-methyldopa and pravastatin on the synthesis of placental hormonal and angiogenic proteins know to be altered in PE. Design Placental villous explants from late onset PE (n = 3) and normotensive controls (n = 6) were cultured for 3 days at 10 and 20% oxygen (O2) with variable doses anti-hypertensive drugs. The levels of activin A, inhibin A, human Chorionic Gonadotrophin (hCG), soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng) were measured in explant culture media on day 1, 2 and 3 using standard immunoassays. Data at day 1 and day 3 were compared. Results Spontaneous secretion of sEndoglin and sFlt-1 were higher (p<0.05) in villous explants from PE pregnancies compared to controls. There was a significant time dependant decrease in the secretion of sFlt-1 and sEndoglin in PE cases, which was seen only for sFlt-1 in controls. In both PE cases and controls the placental protein secretions were not affected by varying doses of anti-hypertensive drugs or the different O2 concentration cultures, except for Activin, A which was significantly (p<0.05) higher in controls at 10% O2. Interpretation Our findings suggest that the changes previously observed in maternal serum hormones and angiogenic proteins level after anti-hypertensive treatment in PE could be due to a systemic effect of the drugs on maternal blood pressure and circulation rather than a direct effect of these drugs on placental biosynthesis and/or secretion. PMID:25251016

  3. Cortisol-secreting adrenocortical tumours in dogs and their relevance for human medicine.

    PubMed

    Galac, Sara

    2016-02-01

    Spontaneous cortisol-secreting adrenocortical tumours in pet dogs are an attractive animal model for their human counterparts. Adrenal morphology and function are similar in dogs and humans, and adrenocortical tumours have comparable clinical and pathological characteristics. Their relatively high incidence in pet dogs represents a potential source of adrenocortical tumour tissue to facilitate research. The molecular characteristics of canine cortisol-secreting adrenocortical tumours suggest that they will be useful for the study of angiogenesis, the cAMP/protein kinase A pathway, and the role of Steroidogenic Factor-1 in adrenal tumourigenesis. Pet dogs with spontaneous cortisol-secreting adrenocortical tumours may also be useful in clinical testing of new drugs and in investigating the molecular background of adrenocortical tumours. PMID:26123587

  4. Effect of repeated US stimulation on adiponectin secretion by adipocytes of obese human subjects

    NASA Astrophysics Data System (ADS)

    Fujii, Yasutomo; Taniguchi, Nobuyuki; Satoh, Masaaki; Irie, Takasuke; Itoh, Kouichi

    2006-05-01

    To clarify the effect of the repeated sonication on the adiponectin secretion by adipocytes obtained from obese subjects. Using 1-MHz continuous-wave ultrasound at an intensity of 0.50 or 2.1 W/cm2, we sonicated culture flasks of subcutaneous adipocytes obtained from obese human subjects, in a series of 3 sessions of US stimulation applied for a daily total of 15 min. For the measurement of adiponectin secretion, 50 μl of the culture medium was collected from each flask every 24 h after the 1st stimulation. Quantification of adiponectin protein levels in cell culture supernatants was performed with a commercially available ELISA kit recommended by the manufacturer. The adiponectin concentrations in the culture medium of the US stimulation groups rose significantly (p<0.05). Repeated US stimulation may accelerate adiponectin secretion in obese human adipocytes.

  5. Growth-regulated synthesis and secretion of biologically active nerve growth factor by human keratinocytes.

    PubMed

    Di Marco, E; Marchisio, P C; Bondanza, S; Franzi, A T; Cancedda, R; De Luca, M

    1991-11-15

    Nerve growth factor (NGF) transcripts were identified in normal human keratinocytes in primary and secondary culture. The expression of the NGF mRNA was strongly down-regulated by corticosteroids and was maximal when keratinocytes were in the exponential phase of growth. Immunofluorescence studies on growing keratinocytes colonies and on elutriated keratinocytes obtained from growing colonies and mature stratified epithelium showed specific staining of the Golgi apparatus only in basal keratinocytes in the exponential phase of growth. The keratinocyte-derived NGF was secreted in a biologically active form as assessed by neurite induction in sensory neurons obtained from chick embryo dorsal root ganglia. Based on these data we suggest that the basal keratinocyte is the cell synthesizing and secreting NGF in the human adult epidermis. The paracrine secretion of NGF by keratinocytes might have a major role in regulating innervation, lymphocyte function, and melanocyte growth and differentiation in epidermal morphogenesis as well as during wound healing. PMID:1718982

  6. Effect of substance P on immunoglobulin and interferon-gamma secretion by cultured human duodenal mucosa.

    PubMed

    Hart, R; Dancygier, H; Wagner, F; Lersch, C; Classen, M

    1990-01-01

    Recently, we have demonstrated a substance P (SP)-dependent modulation of in vitro IgM and interferon-gamma (IFN-gamma) secretion by human peripheral blood mononuclear cells, as well as lymphokine activities in supernatants of cultured duodenal mucosa. Therefore we investigated other local immunoregulatory effects of SP. Duodenal biopsies of 7 healthy subjects were cultured with Pokeweed mitogen (PWM, 1 microgram/ml) for 4 days at 37 degrees C in 1 ml medium each. SP was added in concentrations ranging from 10(-12)M to 10(-6)M on day 1. Fresh media with fresh PWM were added every day. IgG, IgM, IgA (ELISA) and IFN-gamma (RIA) were determined in the culture supernatants. Values were referred to 5 mg biopsy weight and expressed as % change in basal PWM pulsed secretion, or as units/ml. 10(-6) M and 10(-12) M SP increased secretion of all immunoglobulin isotypes. Compared to controls, 10(-6) M and 10(-12) M SP led to an increase in IgM secretion of up to 73 +/- 23% and 41 +/- 32% and to an increase in IgA secretion up to 96 +/- 35% and 25 +/- 33%, respectively (alpha = 0.02 for both isotypes at 10(-6) M). 10(-12) M to 10(-6) M SP led to a significant dose-dependent increase in IFN-gamma secretion from 7.08 +/- 1.65 up to 21.8 +/- 12.6 units/ml/5 mg. The maximum effect could be seen on culture days 3 and 4. We were able to demonstrate for the first time that SP stimulates PWM pulsed immunoglobulin and IFN-gamma secretion by human duodenal immunocompetent cells. These results support the hypothesis of local neuropeptidergic-immune interactions. PMID:1689696

  7. The effect of cloprostenol on human luteal steroid and prostaglandin secretion in vitro.

    PubMed Central

    McDougall, A N; Walker, F M; Watson, J

    1977-01-01

    1 Human luteal tissue slices from days 18, 21 and 25 of the menstrual cycle were superfused in vitro with Medium 199 alone or containing cloprostenol (1 microgram/ml). Concentrations of progesterone, oestradiol-17beta and prostaglandins F2alpha and E2 were determined in the superfusate samples. 2 Secretion of steroids and prostaglandins was maintained at an approximately constant level throughout the experiments (21 h in one case) when the tissue was perfused with M199 alone. 3 Superfusion with cloprostenol (1 microgram/ml) resulted in an initial depression of progesterone and oestradiol-17beta but this was not maintained, levels returning to control values or showing an increase, while superfusion with cloprostenol continued. Cloprostenol is not therefore considered to be luteolytic at this dose and under these conditions for human luteal tissue in vitro. 4 Superfusion with cloprostenol (1 microgram/ml) also resulted in a large stimulation of secretion of endogenous prostaglandin F2 alpha following a short lag phase. This stimulation was possibly due to the initial depression of progesterone secretion. A short-lived stimulation of prostaglandin E2 secretion was also observed. 5 The significance of the increase in prostaglandin E2 secretion and the interrelationships between the various changes observed with cloprostenol are difficult to interpret. PMID:890210

  8. Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells.

    PubMed

    Devor, D C; Singh, A K; Lambert, L C; DeLuca, A; Frizzell, R A; Bridges, R J

    1999-05-01

    Serous cells are the predominant site of cystic fibrosis transmembrane conductance regulator expression in the airways, and they make a significant contribution to the volume, composition, and consistency of the submucosal gland secretions. We have employed the human airway serous cell line Calu-3 as a model system to investigate the mechanisms of serous cell anion secretion. Forskolin-stimulated Calu-3 cells secrete HCO-3 by a Cl-offdependent, serosal Na+-dependent, serosal bumetanide-insensitive, and serosal 4,4'-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive, electrogenic mechanism as judged by transepithelial currents, isotopic fluxes, and the results of ion substitution, pharmacology, and pH studies. Similar studies revealed that stimulation of Calu-3 cells with 1-ethyl-2-benzimidazolinone (1-EBIO), an activator of basolateral membrane Ca2+-activated K+ channels, reduced HCO-3 secretion and caused the secretion of Cl- by a bumetanide-sensitive, electrogenic mechanism. Nystatin permeabilization of Calu-3 monolayers demonstrated 1-EBIO activated a charybdotoxin- and clotrimazole- inhibited basolateral membrane K+ current. Patch-clamp studies confirmed the presence of an intermediate conductance inwardly rectified K+ channel with this pharmacological profile. We propose that hyperpolarization of the basolateral membrane voltage elicits a switch from HCO-3 secretion to Cl- secretion because the uptake of HCO-3 across the basolateral membrane is mediated by a 4,4 '-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive Na+:HCO-3 cotransporter. Since the stoichiometry reported for Na+:HCO-3 cotransport is 1:2 or 1:3, hyperpolarization of the basolateral membrane potential by 1-EBIO would inhibit HCO-3 entry and favor the secretion of Cl-. Therefore, differential regulation of the basolateral membrane K+ conductance by secretory agonists could provide a means of stimulating HCO-3 and Cl- secretion. In this context, cystic fibrosis transmembrane conductance

  9. 1,25(OH)2D3 Induces Placental Vascular Smooth Muscle Cell Relaxation by Phosphorylation of Myosin Phosphatase Target Subunit 1Ser507: Potential Beneficial Effects of Vitamin D on Placental Vasculature in Humans.

    PubMed

    Jia, Xiuyue; Gu, Yang; Groome, Lynn J; Al-Kofahi, Mahmoud; Alexander, J Steven; Li, Weimin; Wang, Yuping

    2016-05-01

    Placental vascular dysfunction has been linked to insufficiency/deficiency of maternal vitamin D levels during pregnancy. In contrast, sufficient maternal vitamin D levels have shown beneficial effects on pregnancy outcomes. To study the role of vitamin D in pregnancy, we tested our hypothesis that vitamin D exerts beneficial effects on placental vasculature. We examined expression of CYP2R1, CYP27B1, vitamin D receptor (VDR), and CYP24A1 in placental vascular smooth muscle cells (VSMCs) in response to 1,25(OH)2D3 We found that VDR expression was inducible, CYP27B1 expression was dose-dependently down-regulated, and CYP24A1 expression was dose-dependently up-regulated in cells treated with 1,25(OH)2D3 These data suggest a feedback autoregulatory system of vitamin D existing in placental VSMCs. Using a VSMC/collagen-gel contraction assay, we evaluated the effect of 1,25(OH)2D3 on placental VSMC contractility. We found that, similar to losartan, 1,25(OH)2D3 could diminish angiotensin II-induced cell contractility. The mechanism of 1,25(OH)2D3-mediated VSMC relaxation was further explored by examination of Rho-associated protein kinase 1 (ROCK1)/phosphorylation of myosin phosphatase target subunit 1 (MYPT1) pathway molecules. Our results showed that p-MYPT1(Thr853) and p-MYPT1(Thr696) were undetectable. However, p-MYPT1(Ser507), but not p-MYPT1(Ser668), was significantly up-regulated in cells treated with losartan plus angiotensin II. Similar effects were also seen in cells treated with 1,25(OH)2D3 plus angiotensin II or 1,25(OH)2D3 plus losartan plus angiotensin II. Because MYPT1 serine phosphorylation could activate myosin light chain phosphatase (MLCP), and MLCP activation is an important regulatory machinery of smooth muscle cell relaxation, up-regulation of MYPT1(Ser507) phosphorylation could be a mechanism of vitamin D and/or losartan mediated placental VSMC relaxation. PMID:27075619

  10. Macrophage Exosomes Induce Placental Inflammatory Cytokines: A Novel Mode of Maternal-Placental Messaging.

    PubMed

    Holder, Beth; Jones, Tessa; Sancho Shimizu, Vanessa; Rice, Thomas F; Donaldson, Beverly; Bouqueau, Marielle; Forbes, Karen; Kampmann, Beate

    2016-02-01

    During pregnancy, the placenta forms the interface between mother and fetus. Highly controlled regulation of trans-placental trafficking is therefore essential for the healthy development of the growing fetus. Extracellular vesicle-mediated transfer of protein and nucleic acids from the human placenta into the maternal circulation is well documented; the possibility that this trafficking is bi-directional has not yet been explored but could affect placental function and impact on the fetus.We hypothesized that the ability of the placenta to respond to maternal inflammatory signals is mediated by the interaction of maternal immune cell exosomes with placental trophoblast. Utilizing the BeWo cell line and whole placental explants, we demonstrated that the human placenta internalizes macrophage-derived exosomes in a time- and dose-dependent manner. This uptake was via clathrin-dependent endocytosis. Furthermore, macrophage exosomes induced release of proinflammatory cytokines by the placenta. Taken together, our data demonstrates that exosomes are actively transported into the human placenta and that exosomes from activated immune cells modulate placental cytokine production. This represents a novel mechanism by which immune cells can signal to the placental unit, potentially facilitating responses to maternal inflammation and infection, and thereby preventing harm to the fetus. PMID:26602702

  11. Human luteinized granulosa cells secrete apoB100-containing lipoproteins.

    PubMed

    Gautier, Thomas; Becker, Steffi; Drouineaud, Véronique; Ménétrier, Franck; Sagot, Paul; Nofer, Jerzy-Roch; von Otte, Sören; Lagrost, Laurent; Masson, David; Tietge, Uwe J F

    2010-08-01

    Thus far, liver, intestine, heart, and placenta have been shown to secrete apolipoprotein (apo)B-containing lipoproteins. In the present study, we first investigated lipoproteins in human follicular fluid (FF), surrounding developing oocytes within the ovary, as well as in corresponding plasma samples (n = 12). HDL cholesterol within FF correlated well with plasma HDL cholesterol (r = 0.80, P < 0.01), whereas VLDL cholesterol did not, indicating that VLDL in FF might originate directly from the granulosa cells producing FF. Primary human granulosa cells expressed apoB, microsomal triglyceride transfer protein, and apoE, but not the apoB-editing enzyme apobec-1. Using (3)H-leucine, we show that granulosa cells secrete apoB100-containing lipoproteins and that secretion can be stimulated by adding oleate to the medium (+83%). With electron microscopy, apoB-containing lipoproteins within the secretory pathway of human granulosa cells were directly visualized. Finally, we found a positive relationship between apoB levels in FF and improved fertility parameters in a population of 27 women undergoing in vitro fertilization. This study demonstrates that human granulosa cells assemble and secrete apoB100-containing lipoproteins, thereby identifying a novel cell type equipped with these properties. These results might have important implications for female infertility phenotypes as well as for the development of drugs targeting the VLDL production pathway. PMID:20407020

  12. Inhibition of apolipoprotein B and triglyceride secretion in human hepatoma cells (HepG2).

    PubMed

    Haghpassand, M; Wilder, D; Moberly, J B

    1996-07-01

    Apolipoprotein B (apoB), the major protein component of triglyceride-rich lipoproteins, is assembled into a lipoprotein particle via a complex, multistep process. Recent studies indicate that triglyceride-rich lipoprotein assembly requires the activity of the heterodimeric protein, microsomal triglyceride transfer protein (MTP). We identified a novel inhibitor of apolipoprotein B secretion using the human hepatoma cell line, HepG2. CP-10447, a derivative of the hypnotic drug methaqualone (Quaalude), inhibited apoB secretion from HepG2 cells with an IC50 of approximately 5 microM. CP-10447 also inhibited apoB secretion from Caco-2 cells, a model of intestinal lipoprotein production. In experiments using [3H]glycerol as a precursor for triglyceride synthesis, CP-10447 (20 microM) inhibited radiolabeled triglyceride secretion by approximately 83% (P < 0.0001) in HepG2 cells and 76% (P < 0.05) in Caco-2 cells with no effect on radiolabel incorporation into cellular triglyceride, indicating that CP-10447 inhibited triglyceride secretion without affecting triglyceride synthesis. RNA solution hybridization assay indicated that CP-10447 did not affect apoB or apoA-I mRNA levels. Pulse-chase experiments in HepG2 cells confirmed that CP-10447 inhibited the secretion of apoB (not its synthesis) without affecting secretion of total proteins or albumin and suggested that CP-10447 stimulates the early intracellular degradation of apoB in the endoplasmic reticulum (ER). Further studies demonstrated that CP-10447 is a potent inhibitor of human liver microsomal triglyceride transfer activity (IC50 approximately 1.7 microM) in an in vitro assay containing artificial liposomes and partially purified human MTP. These data suggest that CP-10447 may inhibit apoB and triglyceride secretion by inhibiting MTP activity and stimulating the early ER degradation of apoB. CP-10447 should provide a useful tool for further study of the mechanisms of apoB secretion and triglyceride

  13. Placentation in mammals: Definitive placenta, yolk sac, and paraplacenta.

    PubMed

    Carter, A M; Enders, A C

    2016-07-01

    An overview is given of variations in placentation with particular focus on yolk sac, paraplacenta, and other structures important to histotrophic nutrition. The placenta proper varies in general shape, internal structure, and the number of tissues in the interhemal barrier. Yolk sac membranes persist to term in insectivores, colugos, rodents, and lagomorphs. In the latter two orders, they are of known importance for maternal-fetal transfer of antibodies, vitamins, lipids, and proteins. The detached yolk sac of bats is also active throughout gestation. A vascular paraplacenta, or smooth chorioallantois, has known functions in ruminants and carnivores and is found in several other orders of mammal where its function has yet to be explored. In human gestation, the chorion (avascular chorioallantois) is important for hormone synthesis. The true chorion of squirrels and hedgehogs is avascular but may nevertheless allow transfer from mother to fetus through the exocelom. Hemophagous areas with columnar trophoblast are paraplacental structures in carnivores and elephants but occur also within the placenta as in hyenas and moles. In shrews, it is the yolk sac that ingests and processes red cells. Areolas and chorionic vesicles are other structures important for absorption of uterine secretions and ingestion of cellular debris. In conclusion, we find that paraplacental structures, while showing less variation than the placenta proper, contribute not just to the integrity of overall placentation, but in various ways to maternal-fetal interrelationships. PMID:27155730

  14. Vectorial bicarbonate transport by Capan-1 cells: a model for human pancreatic ductal secretion.

    PubMed

    Szucs, Akos; Demeter, Irma; Burghardt, Beáta; Ovári, Gabriella; Case, R Maynard; Steward, Martin C; Varga, Gábor

    2006-01-01

    Human pancreatic ducts secrete a bicarbonate-rich fluid but our knowledge of the secretory process is based mainly on studies of animal models. Our aim was to determine whether the HCO(3)(-) transport mechanisms in a human ductal cell line are similar to those previously identified in guinea-pig pancreatic ducts. Intracellular pH was measured by microfluorometry in Capan-1 cell monolayers grown on permeable filters and loaded with BCECF. Epithelial polarization was assessed by immunolocalization of occludin. Expression of mRNA for key electrolyte transporters and receptors was evaluated by RT-PCR. Capan-1 cells grown on permeable supports formed confluent, polarized monolayers with well developed tight junctions. The recovery of pH(i) from an acid load, induced by a short NH(4)(+) pulse, was mediated by Na(+)-dependent transporters located exclusively at the basolateral membrane. One was independent of HCO(3)(-) and blocked by EIPA (probably NHE1) while the other was HCO(3)(-)-dependent and blocked by H(2)DIDS (probably pNBC1). Changes in pH(i) following blockade of basolateral HCO(3)(-) accumulation confirmed that the cells achieve vectorial HCO(3)(-) secretion. Dose-dependent increases in HCO(3)(-) secretion were observed in response to stimulation of both secretin and VPAC receptors. ATP and UTP applied to the apical membrane stimulated HCO(3)(-) secretion but were inhibitory when applied to the basolateral membrane. HCO(3)(-) secretion in guinea-pig ducts and Capan-1 cell monolayers share many common features, suggesting that the latter is an excellent model for studies of human pancreatic HCO(3)(-) secretion. PMID:17167230

  15. [Therapeutic potential of human mesenchymal stromal cells secreted components: a problem with standartization].

    PubMed

    Sagaradze, G D; Grigorieva, O A; Efimenko, A Yu; Chaplenko, A A; Suslina, S N; Sysoeva, V Yu; Kalinina, N I; Akopyan, Zh A; Tkachuk, V A

    2015-01-01

    Regenerative medicine approaches, such as replacement of damaged tissue by ex vivo manufactured constructions or stimulation of endogenous reparative and regenerative processes to treat different diseases, are actively developing. One of the major tools for regenerative medicine are stem and progenitor cells, including multipotent mesenchymal stem/stromal cells (MSC). Because the paracrine action of bioactive factors secreted by MSC is considered as a main mechanism underlying MSC regenerative effects, application of MSC extracellular secreted products could be a promising approach to stimulate tissue regeneration; it also has some advantages compared to the injection of the cells themselves. However, because of the complexity of composition and multiplicity of mechanisms of action distinguished the medicinal products based on bioactive factors secreted by human MSC from the most of pharmaceuticals, it is important to develop the approaches to their standardization and quality control. In the current study, based on the literature data and guidelines as well as on our own experimental results, we provided rationalization for nomenclature and methods of quality control for the complex of extracellular products secreted by human adipose-derived MSC on key indicators, such as "Identification", "Specific activity" and "Biological safety". Developed approaches were tested on the samples of conditioned media contained products secreted by MSC isolated from subcutaneous adipose tissue of 30 donors. This strategy for the standardization of innovative medicinal products and biomaterials based on the bioactive extracellular factors secreted by human MSC could be applicable for a wide range of bioactive complex products, produced using the different types of stem and progenitor cells. PMID:26716748

  16. Characteristics and Quantities of HIV Host Cells in Human Genital Tract Secretions

    PubMed Central

    Politch, Joseph A.; Marathe, Jai; Anderson, Deborah J.

    2014-01-01

    Human immunodeficiency virus (HIV)–infected leukocytes have been detected in genital secretions from HIV-infected men and women and may play an important role in the sexual transmission of HIV. However, they have been largely overlooked in studies on mechanisms of HIV transmission and in the design and testing of HIV vaccine and microbicide candidates. This article describes the characteristics and quantities of leukocytes in male and female genital secretions under various conditions and also reviews evidence for the involvement of HIV-infected cells in both horizontal and vertical cell-associated HIV transmission. Additional research is needed in this area to better target HIV prevention strategies. PMID:25414414

  17. IFPA meeting 2014 workshop report: Animal models to study pregnancy pathologies; new approaches to study human placental exposure to xenobiotics; biomarkers of pregnancy pathologies; placental genetics and epigenetics; the placenta and stillbirth and fetal growth restriction.

    PubMed

    Barbaux, S; Erwich, J J H M; Favaron, P O; Gil, S; Gallot, D; Golos, T G; Gonzalez-Bulnes, A; Guibourdenche, J; Heazell, A E P; Jansson, T; Laprévote, O; Lewis, R M; Miller, R K; Monk, D; Novakovic, B; Oudejans, C; Parast, M; Peugnet, P; Pfarrer, C; Pinar, H; Roberts, C T; Robinson, W; Saffery, R; Salomon, C; Sexton, A; Staff, A C; Suter, M; Tarrade, A; Wallace, J; Vaillancourt, C; Vaiman, D; Worton, S A; Lash, G E

    2015-04-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2014 there were six themed workshops, five of which are summarized in this report. These workshops related to various aspects of placental biology but collectively covered areas of animal models, xenobiotics, pathological biomarkers, genetics and epigenetics, and stillbirth and fetal growth restriction. PMID:25703592

  18. Leptin reduces apoptosis triggered by high temperature in human placental villous explants: The role of the p53 pathway.

    PubMed

    Pérez-Pérez, Antonio; Toro, Ayelén R; Vilarino-Garcia, Teresa; Guadix, Pilar; Maymó, Julieta L; Dueñas, José L; Varone, Cecilia L; Sánchez-Margalet, Víctor

    2016-06-01

    Maternal fever is common during pregnancy and has for many years been suspected to harm the developing fetus. Whether increased maternal temperature produces exaggerated apoptosis in trophoblast cells remains unclear. Since p53 is a critical regulator of apoptosis we hypothesized that increased temperature in placenta produces abnormal expression of proteins in the p53 pathway and finally caspase-3 activation. Moreover, leptin, produced by placenta, is known to promote the proliferation and survival of trophoblastic cells. Thus, we aimed to study the possible role of leptin preventing apoptosis triggered by high temperature, as well as the molecular mechanisms underlying this effect. Fresh placental tissue was collected from normal pregnancies. Explants of placental villi were exposed to 37 °C, 40 °C and 42 °C during 3 h in the presence or absence of 10 nM leptin in DMEM-F12 medium. Western blotting and qRT-PCR was performed to analyze the expression of p53 and downstream effector, P53AIP1, Mdm2, p21, BAX and BCL-2 as well as the activated cleaved form of caspase-3 and the fragment of cytokeratin-18 (CK-18) cleaved at Asp396 (neoepitope M30). Phosphorylation of the Ser 46 residue on p53, the expression of P53AIP1, Mdm2, p21, as well as caspase-3 and CK-18 were significantly increased in explants at 40 °C and 42 °C. Conversely, these effects were significantly attenuated by leptin 10 nM at both 40 °C and 42 °C. The BCL2/BAX ratio was also significantly decreased in explants at 40 °C and 42 °C compared with explants incubated at 37 °C, which was prevented by leptin stimulation. These data illustrate the potential role of leptin for reducing apoptosis in trophoblast explants, including trophoblastic cells, triggered by high temperature, by preventing the activation of p53 signaling. PMID:27238720

  19. Stimulus-dependent secretion of plasma proteins from human neutrophils.

    PubMed Central

    Borregaard, N; Kjeldsen, L; Rygaard, K; Bastholm, L; Nielsen, M H; Sengeløv, H; Bjerrum, O W; Johnsen, A H

    1992-01-01

    In search for matrix proteins released from secretory vesicles of human neutrophils, a prominent 67-kD protein was identified in the extracellular medium of neutrophils stimulated by the chemotactic peptide, FMLP. The protein was purified to apparent homogeneity and partially sequenced. The sequence of the first 32 NH2-terminal amino acids was identical to the sequence of albumin. mRNA for human albumin could not be detected in bone marrow cells, nor could biosynthetic labeling of albumin be demonstrated in bone marrow cells during incubation with [14C]leucine. Immunofluorescence studies on single cells demonstrated the presence of intracellular albumin in fixed permeabilized neutrophils. Light microscopy of immunogold-silver-stained cryosections visualized albumin in cytoplasmic "granules." The morphology of these was determined by immunoelectron microscopy as vesicles of varying form and size. Subcellular fractionation studies on unstimulated neutrophils demonstrated the presence of albumin in the low density pre-gamma and gamma-regions that contain secretory vesicles, but are devoid of specific granules and azurophil granules. Albumin was readily released from these structures during activation of neutrophils with inflammatory mediators. Immunoblotting demonstrated the presence of immunoglobulin and transferrin along with albumin in exocytosed material from stimulated neutrophils. This indicates that secretory vesicles are unique endocytic vesicles that can be triggered to exocytose by inflammatory stimuli. Images PMID:1378856

  20. Basolateral K+ channel involvement in forskolin-activated chloride secretion in human colon.

    PubMed

    McNamara, B; Winter, D C; Cuffe, J E; O'Sullivan, G C; Harvey, B J

    1999-08-15

    1. In this study we investigated the role of basolateral potassium transport in maintaining cAMP-activated chloride secretion in human colonic epithelium. 2. Ion transport was quantified in isolated human colonic epithelium using the short-circuit current technique. Basolateral potassium transport was studied using nystatin permeabilization. Intracellular calcium measurements were obtained from isolated human colonic crypts using fura-2 spectrofluorescence imaging. 3. In intact isolated colonic strips, forskolin and prostaglandin E2 (PGE2) activated an inward transmembrane current (ISC) consistent with anion secretion (for forskolin DeltaISC = 63.8+/-6.2 microA cm(-2), n = 6; for PGE2 DeltaISC = 34.3+/-5.2 microA cm(-2), n = 6). This current was inhibited in chloride-free Krebs solution or by inhibiting basolateral chloride uptake with bumetanide and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid DIDS). 4. The forskolin- and PGE2-induced chloride secretion was inhibited by basolateral exposure to barium (5 mM), tetrapentylammonium (10 microM) and tetraethylammonium (10 mM). 5. The transepithelial current produced under an apical to serosal K+ gradient in nystatin-perforated colon is generated at the basolateral membrane by K+ transport. Forskolin failed to activate this current under conditions of high or low calcium and failed to increase the levels of intracellular calcium in isolated crypts 6. In conclusion, we propose that potassium recycling through basolateral K+ channels is essential for cAMP-activated chloride secretion. PMID:10432355

  1. A Role for SPARC in the Moderation of Human Insulin Secretion

    PubMed Central

    Harries, Lorna W.; McCulloch, Laura J.; Holley, Janet E.; Rawling, Thomas J.; Welters, Hannah J.; Kos, Katarina

    2013-01-01

    Aims/Hypothesis We have previously shown the implication of the multifunctional protein SPARC (Secreted protein acidic and rich in cysteine)/osteonectin in insulin resistance but potential effects on beta-cell function have not been assessed. We therefore aimed to characterise the effect of SPARC on beta-cell function and features of diabetes. Methods We measured SPARC expression by qRT-PCR in human primary pancreatic islets, adipose tissue, liver and muscle. We then examined the relation of SPARC with glucose stimulated insulin secretion (GSIS) in primary human islets and the effect of SPARC overexpression on GSIS in beta cell lines. Results SPARC was expressed at measurable levels in human islets, adipose tissue, liver and skeletal muscle, and demonstrated reduced expression in primary islets from subjects with diabetes compared with controls (p< = 0.05). SPARC levels were positively correlated with GSIS in islets from control donors (p< = 0.01). Overexpression of SPARC in cultured beta-cells resulted in a 2.4-fold increase in insulin secretion in high glucose conditions (p< = 0.01). Conclusions Our data suggest that levels of SPARC are reduced in islets from donors with diabetes and that it has a role in insulin secretion, an effect which appears independent of SPARC’s modulation of obesity-induced insulin resistance in adipose tissue. PMID:23840838

  2. Characterization of basolateral K+ channels underlying anion secretion in the human airway cell line Calu-3

    PubMed Central

    Cowley, Elizabeth A; Linsdell, Paul

    2002-01-01

    Transepithelial anion secretion in many tissues depends upon the activity of basolateral channels. Using monolayers of the Calu-3 cell line, a human submucosal serous cell model mounted in an Ussing chamber apparatus, we investigated the nature of the K+ channels involved in basal, cAMP- and Ca2+-stimulated anion secretion, as reflected by the transepithelial short circuit current (Isc). The non-specific K+ channel inhibitor Ba2+ inhibited the basal Isc by either 77 or 16 % when applied directly to the basolateral or apical membranes, respectively, indicating that a basolateral K+ conductance is required for maintenance of basal anion secretion. Using the K+ channel blockers clofilium and clotrimazole, we found basal Isc to be sensitive to clofilium, with a small clotrimazole-sensitive component. By stimulating the cAMP and Ca2+ pathways, we determined that cAMP-stimulated anion secretion was almost entirely abolished by clofilium, but insensitive to clotrimazole. In contrast, the Ca2+-stimulated response was sensitive to both clofilium and clotrimazole. Thus, pharmacologically distinct basolateral K+ channels are differentially involved in the control of anion secretion under different conditions. Isolation of the basolateral K+ conductance in permeabilized monolayers revealed a small basal and forskolin-stimulated Isc. Finally, using the reverse transcriptase-polymerase chain reaction, we found that Calu-3 cells express the K+ channel genes KCNN4 and KCNQ1 and the subunits KCNE2 and KCNE3. We conclude that while KCNN4 contributes to Ca2+-activated anion secretion by Calu-3 cells, basal and cAMP-activated secretion are more critically dependent on other K+ channel types, possibly involving one or more class of KCNQ1-containing channel complexes. PMID:11826162

  3. Secretion of human interleukin-2 fused with green fluorescent protein in recombinant Pichia pastoris.

    PubMed

    Cha, Hyung Joon; Dalal, Nimish N; Bentley, William E

    2005-07-01

    Methylotrophic yeast Pichia pastoris is convenient for the expression of eukaryotic foreign proteins owing to its potential for posttranslational modifications, protein folding, and facile culturing. In this work, human interleukin (hIL)-2 was successfully produced as a secreted fusion form in recombinant P. pastoris. By employing green fluorescent protein (GFP) as a monitoring fusion partner, clear identification of fusion protein expression and quantification of intracellular hIL-2 were possible even though there was no correlation between culture supernatant fluorescence and secreted hIL-2 owing to high media interference. Importantly, by the addition of casamino acids in basal medium, we were able to enhance threefold amount of secreted hIL-2, which was present both as a fusion and as a clipped fragment. PMID:16014994

  4. Secretion of biologically active human interleukin 22 (IL-22) by Lactococcus lactis.

    PubMed

    Loera-Arias, María J; Villatoro-Hernández, Julio; Parga-Castillo, Miguel A; Salcido-Montenegro, Alejandro; Barboza-Quintana, Oralia; Muñoz-Maldonado, Gerardo E; Montes-de-Oca-Luna, Roberto; Saucedo-Cárdenas, Odila

    2014-12-01

    Interleukin-22 (IL-22) participates in the modulation of innate immunity and inflammation. This cytokine has important therapeutic potential, such as with ulcerative colitis, liver and lung injury, and infection, in different animal models. We generated a Lactococcus lactis strain that secretes human IL-22 under the regulation of the nisin-inducible promoter. Identification and secretion of this cytokine was demonstrated using western blots of culture supernatants from IL-22-expressing bacteria. The recombinant IL-22 protein produced by L. lactis was biologically active as determined by its ability to induce IL-10 secretion when co-cultured with a colon epithelial cell line in vitro. We consider this novel strain a promising live vaccine for various therapeutic applications. PMID:25214209

  5. INDUCTION BY EPIDERMOPHYTON FLOCCOSUM OF HUMAN FIBROBLAST MATRIX METALLOPROTEINASE-9 SECRETION IN VITRO.

    PubMed

    Kitisin, Thitinan; Luplertlop, Natthanej

    2015-03-01

    Skin infection from pathogenic dermatophyte, Epidermophytonfloccosum, can cause serious health complications, especially in immuno-compromised patients. Proteolytic enzymes secreted from E. floccosum are required for host tissue degradation, facilitating fungal invasion. However, little is known regarding host matrix metalloproteinase (MMP) expression during E. floccosum infection. In this study human foreskin fibroblast (HFF) cell line was used to determine MMP-9 protease activity by gelatin zymography and amount by ELISA. E. floccosum-induced HFF secretion of MMP-9 in a time dependent manner, but HFF cell viability decreased. Treatment with an MMP inhibitor (SB-3CT) caused reduction in E. floccosum-induced secreted MMP-9 and improvement in HFF cell viability. These findings indicate a possible control measure for protecting skin from E. floccosum infection. PMID:26513930

  6. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1984-01-01

    A multiphase study was conducted to examine the properties of growth hormone cells. Topics investigated included: (1) to determine if growth hormone (GH) cells contained within the rat pituitary gland can be separated from the other hormone producing cell types by continuous flow electrophoresis (CFE); (2) to determine what role, if any, gravity plays in the electrophoretic separation of GH cells; (3) to compare in vitro GH release from rat pituitary cells previously exposed to microgravity conditions vs release from cells not exposed to microgravity; (4) to determine if the frequency of different hormone producing pituitary cell types contained in cell suspensions can be quantitated by flow cytometry; and (5) to determine if GH contained within the human post mortem pituitary gland can be purified by CFE. Specific experimental procedures and results are included.

  7. Placental Features of Late-Onset Adverse Pregnancy Outcome

    PubMed Central

    Higgins, Lucy E.; Wareing, Mark; Greenwood, Susan L.; Jones, Rebecca L.; Sibley, Colin P.; Johnstone, Edward D.; Heazell, Alexander E. P.

    2015-01-01

    Objective Currently, no investigations reliably identify placental dysfunction in late pregnancy. To facilitate the development of such investigations we aimed to identify placental features that differ between normal and adverse outcome in late pregnancy in a group of pregnancies with reduced fetal movement. Methods Following third trimester presentation with reduced fetal movement (N = 100), placental structure ex vivo was measured. Placental function was then assessed in terms of (i) chorionic plate artery agonist responses and length-tension characteristics using wire myography and (ii) production and release of placentally derived hormones (by quantitative polymerase chain reaction and enzyme linked immunosorbant assay of villous tissue and explant conditioned culture medium). Results Placentas from pregnancies ending in adverse outcome (N = 23) were ~25% smaller in weight, volume, length, width and disc area (all p<0.0001) compared with those from normal outcome pregnancies. Villous and trophoblast areas were unchanged, but villous vascularity was reduced (median (interquartile range): adverse outcome 10 (10–12) vessels/mm2 vs. normal outcome 13 (12–15), p = 0.002). Adverse outcome pregnancy placental arteries were relatively insensitive to nitric oxide donated by sodium nitroprusside compared to normal outcome pregnancy placental arteries (50% Effective Concentration 30 (19–50) nM vs. 12 (6–24), p = 0.02). Adverse outcome pregnancy placental tissue contained less human chorionic gonadotrophin (20 (11–50) vs. 55 (24–102) mIU/mg, p = 0.007) and human placental lactogen (11 (6–14) vs. 27 (9–50) mg/mg, p = 0.006) and released more soluble fms-like tyrosine kinase-1 (21 (13–29) vs. 5 (2–15) ng/mg, p = 0.01) compared with normal outcome pregnancy placental tissue. Conclusion These data provide a description of the placental phenotype of adverse outcome in late pregnancy. Antenatal tests that accurately reflect elements of this phenotype may

  8. Angiotensin II-stimulated secretion of arginine vasopressin is inhibited by atrial natriuretic peptide in humans.

    PubMed

    Matsukawa, Toshiyoshi; Miyamoto, Takenori

    2011-03-01

    We investigated the effect of the intravenous infusion of atrial natriuretic peptide (ANP) on the response of plasma arginine vasopressin (AVP) levels to intravenous infusion of angiotensin II (ANG II) in healthy individuals. Intravenous infusion of ANP (10 ng·kg(-1)·min(-1)) slightly but significantly decreased plasma AVP levels, while intravenous infusion of ANG II (10 ng·kg(-1)·min(-1)) resulted in slightly increased plasma AVP levels. ANG II infused significant elevations in arterial blood pressure and central venous pressure (CVP). Because the elevation in blood pressure could have potentially inhibited AVP secretion via baroreceptor reflexes, the effect of ANG II on blood pressure was attenuated by the simultaneous infusion of nitroprusside. ANG II alone produced a remarkable increase in plasma AVP levels when infused with nitroprusside, whereas the simultaneous ANP intravenous infusion (10 ng·kg(-1)·min(-1)) abolished the increase in plasma AVP levels induced by ANG II when blood pressure elevation was attenuated by nitroprusside. Thus, ANG II increased AVP secretion and ANP inhibited not only basal AVP secretion but also ANG II-stimulated AVP secretion in humans. These findings support the hypothesis that circulating ANP modulates AVP secretion, in part, by antagonizing the action of circulating ANG II. PMID:21123762

  9. Secretion and apparent activation of human hepatic lipase requires proper oligosaccharide processing in the endoplasmic reticulum.

    PubMed Central

    Verhoeven, A J; Neve, B P; Jansen, H

    1999-01-01

    Human hepatic lipase (HL) is a glycoprotein with four N-linked oligosaccharide side chains. The importance of glycosylation for the secretion of catalytically active HL was studied in HepG2 cells by using inhibitors of intracellular trafficking, N-glycosylation and oligosaccharide processing. Secretion of HL was inhibited by carbonyl cyanide m-chlorophenylhydrazone (CCCP), monensin, brefeldin A (BFA), tunicamycin, castanospermine and N-methyldeoxynojirimycin, but not by 1-deoxymannojirimycin. Secretion of alpha1-antitrypsin, an unrelated N-glycoprotein, was also inhibited by monensin, BFA and tunicamycin, but not by CCCP, castanospermine or N-methyldeoxynojirimycin. Intracellular HL activity decreased with CCCP, tunicamycin, castanospermine and N-methyldeoxynojirimycin, but increased with monensin and BFA. In the absence of protein synthesis de novo, HL activity secreted into the medium was 7.8+/-2.1-fold higher (mean+/-S.D., n=7) than the simultaneous fall in intracellular HL activity. In cells pretreated with monensin or BFA, this factor decreased to 1.3+/-0.5, indicating that the apparent increase in HL activity had already occurred within these cells. After chromatography on Sepharose-heparin, the specific triacylglycerol hydrolase activity of secreted HL was only 1.7+/-0. 3-fold higher than that of intracellular HL, indicating that the secretion-coupled increase in HL activity is only partly explained by true activation. We conclude that oligosaccharide processing by glucosidases in the endoplasmic reticulum is necessary for the transport of newly synthesized human HL, but not alpha1-antitrypsin, to the Golgi, where the catalytic activity of HL is unmasked. PMID:9854035

  10. Ion channels and regulation of insulin secretion in human β-cells

    PubMed Central

    Fridlyand, Leonid E.; Jacobson, David A.; Philipson, L.H.

    2013-01-01

    In mammals an increase in glucose leads to block of ATP dependent potassium channels in pancreatic β cells leading to membrane depolarization. This leads to the repetitive firing of action potentials that increases calcium influx and triggers insulin granule exocytosis. Several important differences between species in this process suggest that a dedicated human-oriented approach is advantageous as extrapolating from rodent data may be misleading in several respects. We examined depolarization-induced spike activity in pancreatic human islet-attached β-cells employing whole-cell patch-clamp methods. We also reviewed the literature concerning regulation of insulin secretion by channel activity and constructed a data-based computer model of human β cell function. The model couples the Hodgkin-Huxley-type ionic equations to the equations describing intracellular Ca2+ homeostasis and insulin release. On the basis of this model we employed computational simulations to better understand the behavior of action potentials, calcium handling and insulin secretion in human β cells under a wide range of experimental conditions. This computational system approach provides a framework to analyze the mechanisms of human β cell insulin secretion. PMID:23624892

  11. Human Neonatal Cardiovascular Progenitors: Unlocking the Secret to Regenerative Ability

    PubMed Central

    Fuentes, Tania I.; Appleby, Nancy; Tsay, Eric; Martinez, J. Julian; Bailey, Leonard; Hasaniya, Nahidh; Kearns-Jonker, Mary

    2013-01-01

    Although clinical benefit can be achieved after cardiac transplantation of adult c-kit+ or cardiosphere-derived cells for myocardial repair, these stem cells lack the regenerative capacity unique to neonatal cardiovascular stem cells. Unraveling the molecular basis for this age-related discrepancy in function could potentially transform cardiovascular stem cell transplantation. In this report, clonal populations of human neonatal and adult cardiovascular progenitor cells were isolated and characterized, revealing the existence of a novel subpopulation of endogenous cardiovascular stem cells that persist throughout life and co-express both c-kit and isl1. Epigenetic profiling identified 41 microRNAs whose expression was significantly altered with age in phenotypically-matched clones. These differences were correlated with reduced proliferation and a limited capacity to invade in response to growth factor stimulation, despite high levels of growth factor receptor on progenitors isolated from adults. Further understanding of these differences may provide novel therapeutic targets to enhance cardiovascular regenerative capacity. PMID:24204836

  12. Purification and Cultivation of Human Pituitary Growth Hormones Secreting Cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Todd, P.; Grindeland, R.; Lanham, W.; Morrison, D.

    1985-01-01

    The rat and human pituitary gland contains a mixture of hormone producing cell types. The separation of cells which make growth hormone (GH) is attempted for the purpose of understanding how the hormone molecule is made within the pituitary cell; what form(s) it takes within the cell; and what form(s) GH assumes as it leaves the cell. Since GH has a number of biological targets (e.g., muscle, liver, bone), the assessment of the activities of the intracellular/extracellular GH by new and sensitive bioassays. GH cells contained in the mixture was separated by free flow electrophoresis. These experiments show that GH cells have different electrophoretic mobilities. This is relevant to NASA since a lack of GH could be a prime causative factor in muscle atrophy. Further, GH has recently been implicated in the etiology of motion sickness in space. Continous flow electrophoresis experiment on STS-8 showed that GH cells could be partially separated in microgravity. However, definitive cell culture studies could not be done due to insufficient cell recoveries.

  13. Placental Adaptation: What Can We Learn from Birthweight:Placental Weight Ratio?

    PubMed Central

    Hayward, Christina E.; Lean, Samantha; Sibley, Colin P.; Jones, Rebecca L.; Wareing, Mark; Greenwood, Susan L.; Dilworth, Mark R.

    2016-01-01

    Appropriate fetal growth relies upon adequate placental nutrient transfer. Birthweight:placental weight ratio (BW:PW ratio) is often used as a proxy for placental efficiency, defined as the grams of fetus produced per gram placenta. An elevated BW:PW ratio in an appropriately grown fetus (small placenta) is assumed to be due to up-regulated placental nutrient transfer capacity i.e., a higher nutrient net flux per gram placenta. In fetal growth restriction (FGR), where a fetus fails to achieve its genetically pre-determined growth potential, placental weight and BW:PW ratio are often reduced which may indicate a placenta that fails to adapt its nutrient transfer capacity to compensate for its small size. This review considers the literature on BW:PW ratio in both large cohort studies of normal pregnancies and those studies offering insight into the relationship between BW:PW ratio and outcome measures including stillbirth, FGR, and subsequent postnatal consequences. The core of this review is the question of whether BW:PW ratio is truly indicative of altered placental efficiency, and whether changes in BW:PW ratio reflect those placentas which adapt their nutrient transfer according to their size. We consider this question using data from mice and humans, focusing upon studies that have measured the activity of the well characterized placental system A amino acid transporter, both in uncomplicated pregnancies and in FGR. Evidence suggests that BW:PW ratio is reduced both in FGR and in pregnancies resulting in a small for gestational age (SGA, birthweight < 10th centile) infant but this effect is more pronounced earlier in gestation (<28 weeks). In mice, there is a clear association between increased BW:PW ratio and increased placental system A activity. Additionally, there is good evidence in wild-type mice that small placentas upregulate placental nutrient transfer to prevent fetal undergrowth. In humans, this association between BW:PW ratio and placental system A

  14. Immortalization of porcine placental trophoblast cells through reconstitution of telomerase activity.

    PubMed

    Zhang, Hongling; Huang, Yong; Wang, Lili; Yu, Tingting; Wang, Zengguo; Chang, Lingling; Zhao, Xiaomin; Luo, Xiaomao; Zhang, Liang; Tong, Dewen

    2016-05-01

    Placental trophoblast cells (PTCs) play a critical role in histotrophic nutrient absorption, gaseous exchange, endocrine activities, and barrier function between the maternal and fetal systems. Establishment of immortalized porcine PTCs will help us to investigate the potential effects of different viruses on porcine trophoblast. In the present study, primary porcine PTCs were isolated from healthy gilts at Day 30 to Day 50 of gestation through collagenase digestion, percoll gradient centrifugation, and anti-CD9 immunomagnetic negative selection. To provide stable and long lifespan cells, primary PTCs were transfected with human telomerase reverse transcriptase (hTERT) gene. One porcine placental trophoblast cell line, named as hTERT-PTCs, was chosen for characterization. Human telomerase reverse transcriptase-PTCs achieved an extended replicative lifespan without exhibiting any neoplastic transformation signs in vivo or in vitro. The morphologic and key physiological characteristics of the immortalized PTCs were similar to primary PTCs. The immortalized PTCs retained original cell polarity and normal karyotype, expressed trophoblast-specific marker cytokeratin 7 and E-cadherin but did not express vimentin and major histocompatibility complex class I antigens as well as primary PTCs. Human telomerase reverse transcriptase-PTCs secreted low levels of chorionic gonadotrophin β-subunit and placental lactogen that were coincident with primary PTCs. Taken together, our results demonstrated that the porcine PTCs could be immortalized through reconstitution of telomerase activity. The immortalized PTCs maintained its original characteristics and can be used as a model cells line to study the pathologic changes of porcine placental trophoblast in viruses infectious diseases. PMID:26850465

  15. Network Analysis Identifies Proinflammatory Plasma Cell Polarization for Secretion of ISG15 in Human Autoimmunity.

    PubMed

    Care, Matthew A; Stephenson, Sophie J; Barnes, Nicholas A; Fan, Im; Zougman, Alexandre; El-Sherbiny, Yasser M; Vital, Edward M; Westhead, David R; Tooze, Reuben M; Doody, Gina M

    2016-08-15

    Plasma cells (PCs) as effectors of humoral immunity produce Igs to match pathogenic insult. Emerging data suggest more diverse roles exist for PCs as regulators of immune and inflammatory responses via secretion of factors other than Igs. The extent to which such responses are preprogrammed in B-lineage cells or can be induced in PCs by the microenvironment is unknown. In this study, we dissect the impact of IFNs on the regulatory networks of human PCs. We show that core PC programs are unaffected, whereas PCs respond to IFNs with distinctive transcriptional responses. The IFN-stimulated gene 15 (ISG15) system emerges as a major transcriptional output induced in a sustained fashion by IFN-α in PCs and linked both to intracellular conjugation and ISG15 secretion. This leads to the identification of ISG15-secreting plasmablasts/PCs in patients with active systemic lupus erythematosus. Thus, ISG15-secreting PCs represent a distinct proinflammatory PC subset providing an Ig-independent mechanism of PC action in human autoimmunity. PMID:27357150

  16. Pharmacogenetics of human ABC transporter ABCC11: new insights into apocrine gland growth and metabolite secretion

    PubMed Central

    Ishikawa, Toshihisa; Toyoda, Yu; Yoshiura, Koh-ichiro; Niikawa, Norio

    2013-01-01

    Cell secretion is an important physiological process that ensures smooth metabolic activities and tissue repair as well as growth and immunological functions in the body. Apocrine secretion occurs when the secretory process is accomplished with a partial loss of cell cytoplasm. The secretory materials are contained within secretory vesicles and are released during secretion as cytoplasmic fragments into the glandular lumen or interstitial space. The recent finding that the non-synonymous single nucleotide polymorphisms (SNP) 538G > A (rs17822931; Gly180Arg) in the ABCC11 gene determines the type of earwax in humans has shed light on the novel function of this ABC (ATP-binding cassette) transporter in apocrine glands. The wild-type (Gly180) of ABCC11 is associated with wet-type earwax, axillary osmidrosis, and colostrum secretion from the mammary gland as well as the potential risk of mastopathy. Furthermore, the SNP (538G > A) in the ABCC11 gene is suggested to be a clinical biomarker for the prediction of chemotherapeutic efficacy. The aim of this review article is to provide an overview on the discovery and characterization of genetic polymorphisms in the human ABCC11 gene and to explain the impact of ABCC11 538G > A on the apocrine phenotype as well as the anthropological aspect of this SNP in the ABCC11 gene and patients’ response to nucleoside-based chemotherapy. PMID:23316210

  17. Network Analysis Identifies Proinflammatory Plasma Cell Polarization for Secretion of ISG15 in Human Autoimmunity

    PubMed Central

    Care, Matthew A.; Stephenson, Sophie J.; Barnes, Nicholas A.; Fan, Im; Zougman, Alexandre; El-Sherbiny, Yasser M.; Vital, Edward M.; Westhead, David R.; Tooze, Reuben M.

    2016-01-01

    Plasma cells (PCs) as effectors of humoral immunity produce Igs to match pathogenic insult. Emerging data suggest more diverse roles exist for PCs as regulators of immune and inflammatory responses via secretion of factors other than Igs. The extent to which such responses are preprogrammed in B-lineage cells or can be induced in PCs by the microenvironment is unknown. In this study, we dissect the impact of IFNs on the regulatory networks of human PCs. We show that core PC programs are unaffected, whereas PCs respond to IFNs with distinctive transcriptional responses. The IFN-stimulated gene 15 (ISG15) system emerges as a major transcriptional output induced in a sustained fashion by IFN-α in PCs and linked both to intracellular conjugation and ISG15 secretion. This leads to the identification of ISG15-secreting plasmablasts/PCs in patients with active systemic lupus erythematosus. Thus, ISG15-secreting PCs represent a distinct proinflammatory PC subset providing an Ig-independent mechanism of PC action in human autoimmunity. PMID:27357150

  18. Cidea Control of Lipid Storage and Secretion in Mouse and Human Sebaceous Glands

    PubMed Central

    Zhang, Shasha; Shui, Guanghou; Wang, Guanqun; Wang, Chao; Sun, Shuhong; Zouboulis, Christos C.; Xiao, Ran; Ye, Jing; Li, Wei

    2014-01-01

    Sebaceous glands are skin appendages that secrete sebum onto hair follicles to lubricate the hair and maintain skin homeostasis. In this study, we demonstrated that Cidea is expressed at high levels in lipid-laden mature sebocytes and that Cidea deficiency led to dry hair and hair loss in aged mice. In addition, Cidea-deficient mice had markedly reduced levels of skin surface lipids, including triacylglycerides (TAGs) and wax diesters (WDEs), and these mice were defective in water repulsion and thermoregulation. Furthermore, we observed that Cidea-deficient sebocytes accumulated a large number of smaller-sized lipid droplets (LDs), whereas overexpression of Cidea in human SZ95 sebocytes resulted in increased lipid storage and the accumulation of large LDs. Importantly, Cidea was highly expressed in human sebaceous glands, and its expression levels were positively correlated with human sebum secretion. Our data revealed that Cidea is a crucial regulator of sebaceous gland lipid storage and sebum lipid secretion in mammals and humans. PMID:24636991

  19. A placental growth factor-positively charged peptide potentiates the antitumor activity of interferon-gamma in human brain glioblastoma U87 cells

    PubMed Central

    Liu, Yu; Chen, Naifei; Yin, Hongmei; Zhang, Leilei; Li, Wei; Wang, Guanjun; Cui, Jiuwei; Yang, Bo; Hu, Ji-Fan

    2016-01-01

    Interferons have been marketed to treat hematological malignancies, but their efficacy in the treatment of solid tumors has been significantly hindered by low antitumor efficacy and numerous side effects. We used a “cDNA in-frame fragment” library screening method to identify short cDNA peptides that potentiate the anti-tumor activity of interferons. In this study, we synthesized a hybrid molecule by fusing a short positively charged peptide derived from placental growth factor-2 to the C-terminus of human IFNγ. Using the human brain glioblastoma U87 cell line as a model system, we found that the hybrid interferon exhibited significantly higher activity than did the wild-type IFNγ in inhibiting tumor cell growth. As compared with the unmodified IFNγ, the hybrid interferon was better at inhibiting cell invasion in a matri-gel assay and at decreasing tumor colony formation. The enhanced antitumor activity of the synthetic interferon was correlated with the activation of interferon pathway genes and the blockade of tumor cell division at the S-G2/M phase. This study demonstrates the potential of a synthetic IFNγ for use as a novel antitumor agent.

  20. l-Methionine Placental Uptake

    PubMed Central

    Araújo, João R.; Correia-Branco, Ana; Ramalho, Carla; Gonçalves, Pedro; Pinho, Maria J.; Keating, Elisa

    2013-01-01

    Our aim was to investigate the influence of gestational diabetes mellitus (GDM) and GDM-associated conditions upon the placental uptake of 14C-l-methionine (14C-l-Met). The 14C-l-Met uptake by human trophoblasts (TBs) obtained from normal pregnancies (normal trophoblast [NTB] cells) is mainly system l-type amino acid transporter 1 (LAT1 [L])-mediated, although a small contribution of system y+LAT2 is also present. Comparison of 14C-l-Met uptake by NTB and by human TBs obtained from GDM pregnancies (diabetic trophoblast [DTB] cells) reveals similar kinetics, but a contribution of systems A, LAT2, and b0+ and a greater contribution of system y+LAT1 appears to exist in DTB cells. Short-term exposure to insulin and long-term exposure to high glucose, tumor necrosis factor-α, and leptin decrease 14C-l-Met uptake in a human TB (Bewo) cell line. The effect of leptin was dependent upon phosphoinositide 3-kinase, extracellular-signal-regulated kinase 1/2 (ERK/MEK 1/2), and p38 mitogen-activated protein kinase. In conclusion, GDM does not quantitatively alter 14C-l-Met placental uptake, although it changes the nature of transporters involved in that process. PMID:23653387

  1. In vivo studies of sterol and squalene secretion by human skin.

    PubMed

    Nikkari, T; Schreibman, P H; Ahrens, E H

    1974-11-01

    This work was aimed at studying the quantity and composition of sterols and squalene secreted by the human skin. Lipids secreted by the entire skin were recovered by Soxhlet extraction of the clothing worn by a patient for 24 hr with a chloroform-methanol azeotrope and by extracting the water of a shower taken by the patient at the end of the 24-hr period. Squalene and sterols were quantified by gas-liquid chromatography. Plant sterols were separated from total sterols by thin-layer chromatography. Free and esterified cholesterol were separated by digitonin precipitation. In eight adults, seven of them with hyperlipoproteinemia, the total skin secretion of cholesterol ranged from 59 to 108 mg/day, with a mean of 88 +/- 17 (SD) mg/day. There was no difference in cholesterol secretion between the normocholesterolemic individual and the hypercholesterolemic ones, nor were there any differences according to type of hyperlipoproteinemia. Free cholesterol amounted to 54 +/- 5% of the total cholesterol. The secretion of squalene ranged from 125 to 475 mg/day in five patients. The secretion of both squalene and cholesterol was quite constant for any individual on a given diet. Cholesterol constituted 95.6 +/- 0.5% of the digitonin-precipitable total body surface sterols of eight patients, and lathosterol, the next largest fraction, 3.4 +/- 0.4%. Total plant sterols formed only 0.65 +/- 0.38% and beta-sitosterol 0.35 +/- 0.23% of the skin surface sterols in six patients whose dietary beta-sitosterol intake ranged from 230 to 3400 mg/day. PMID:4430879

  2. Human iPSC-derived Immature Astroglia Promote Oligodendrogenesis by increased TIMP-1 Secretion

    PubMed Central

    Jiang, Peng; Chen, Chen; Liu, Xiao-Bo; Pleasure, David E.; Liu, Ying; Deng, Wenbin

    2016-01-01

    SUMMARY Astrocytes, once considered passive support cells, are increasingly appreciated as dynamic regulators of neuronal development and function, in part via secreted factors. The extent to which they similarly regulate oligodendrocytes, or proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) is less well understood. Here, we generated astrocytes from human pluripotent stem cells (hiPSC-Astros) and demonstrate that immature astrocytes - as opposed to mature - promoted oligodendrogenesis in vitro. In the PVL mouse model of neonatal hypoxic/ischemic encephalopathy, associated with cerebral palsy in humans, transplanted immature hiPSC-Astros promote myelinogenesis and behavioral outcome. We further identified TIMP-1 as a selectively upregulated component secreted from immature hiPSC-Astros. Accordingly, in the rat PVL model, intranasal administration of conditioned medium from immature hiPSC-Astros promoted oligodendrocyte maturation in a TIMP-1 dependent manner. Our findings suggest stage-specific developmental interactions between astroglia and oligodendroglia, with important therapeutic implications for promoting myelinogenesis. PMID:27134175

  3. NAP-2 Secreted by Human NK Cells Can Stimulate Mesenchymal Stem/Stromal Cell Recruitment

    PubMed Central

    Almeida, Catarina R.; Caires, Hugo R.; Vasconcelos, Daniela P.; Barbosa, Mário A.

    2016-01-01

    Summary Strategies for improved homing of mesenchymal stem cells (MSCs) to a place of injury are being sought and it has been shown that natural killer (NK) cells can stimulate MSC recruitment. Here, we studied the chemokines behind this recruitment. Assays were performed with bone marrow human MSCs and NK cells freshly isolated from healthy donor buffy coats. Supernatants from MSC-NK cell co-cultures can induce MSC recruitment but not to the same extent as when NK cells are present. Antibody arrays and ELISA assays confirmed that NK cells secrete RANTES (CCL5) and revealed that human NK cells secrete NAP-2 (CXCL7), a chemokine that can induce MSC migration. Inhibition with specific antagonists of CXCR2, a receptor that recognizes NAP-2, abolished NK cell-mediated MSC recruitment. This capacity of NK cells to produce chemokines that stimulate MSC recruitment points toward a role for this immune cell population in regulating tissue repair/regeneration. PMID:27052313

  4. Hexabromocyclododecane and tetrabromobisphenol A alter secretion of interferon gamma (IFN-γ) from human immune cells.

    PubMed

    Almughamsi, Haifa; Whalen, Margaret M

    2016-07-01

    Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) are brominated flame-retardant compounds used in a variety of applications including insulation, upholstery, and epoxy resin circuit boards. Interferon gamma (IFN-γ) is an inflammatory cytokine produced by activated T and NK cells that regulates immune responsiveness. HBCD and TBBPA are found in human blood, and previous studies have shown that they alter the ability of human natural killer (NK) lymphocytes to destroy tumor cells. This study examines whether HBCD and TBBPA affect the secretion of IFN-γ from increasingly complex preparations of human immune cells-purified NK cells, monocyte-depleted (MD) peripheral blood mononuclear cells (PBMCs), and PBMCs. Both HBCD and TBBPA were tested at concentrations ranging from 0.05 to 5 µM. HBCD generally caused increases in IFN-γ secretion after 24-h, 48-h, and 6-day exposures in each of the different cell preparations. The specific concentration of HBCD that caused increases as well as the magnitude of the increase varied from donor to donor. In contrast, TBBPA tended to decrease secretion of IFN-γ from NK cells, MD-PBMCs, and PBMCs. Thus, exposure to these compounds may potentially disrupt the immune regulation mediated by IFN-γ. Signaling pathways that have the capacity to regulate IFN-γ production (nuclear factor kappa B (NF-κB), p44/42, p38, JNK) were examined for their role in the HBCD-induced increases in IFN-γ. Results showed that the p44/42 (ERK1/2) MAPK pathway appears to be important in HBCD-induced increases in IFN-γ secretion from human immune cells. PMID:26302867

  5. Ultrasound in placental disorders.

    PubMed

    D'Antonio, Francesco; Bhide, Amar

    2014-04-01

    The definition of placenta previa based on ultrasound findings is more practical, and the traditional definition (implantation of the placenta in the lower uterine segment) needs to be revised. The term 'placenta previa' should only be used when the placental edge overlaps or is within 2 cm of the internal cervical orifice in late pregnancy. If the placental edge is located further than 2 cm but within 3.5 cm from the internal cervical orifice, the placenta should be termed 'low-lying'. Unless the placental edge at least reaches the internal orifice at mid-trimester, symptomatic placenta previa in the third trimester will not be encountered. Caesarean section is the recommended mode of delivery for placenta previa at term. Attempt at vaginal delivery is appropriate for low-lying placenta, but the possibility of post-partum haemorrhage should be kept in mind. The incidence of invasive placentation, such as placenta accrete, has progressively risen in the past 3 decades, possibly as a consequence of increasing caesarean section rates. Ultrasound has a sensitivity of 91% and a specificity of 97% for the identification of all forms of invasive placentation. Chorioangiomas are benign non-trophoblastic placental tumours with excessive vascular proliferation within the stroma of chronic villi. They are usually asymptomatic, although occasionally can be associated with adverse fetal outcomes. Chorioangiomas usually appear as well-circumscribed, rounded, hypo-echoic lesions next to the chorionic surface. Iatrogenic delivery or prenatal intervention are two options, if fetal compromise is present. Prenatal detection leads to a dramatic increase in survival compared with those cases unsuspected antenatally. PMID:24461676

  6. TREK-1 Regulates Cytokine Secretion from Cultured Human Alveolar Epithelial Cells Independently of Cytoskeletal Rearrangements

    PubMed Central

    Schwingshackl, Andreas; Roan, Esra; Teng, Bin; Waters, Christopher M.

    2015-01-01

    Background TREK-1 deficient alveolar epithelial cells (AECs) secrete less IL-6, more MCP-1, and contain less F-actin. Whether these alterations in cytokine secretion and F-actin content are related remains unknown. We now hypothesized that cytokine secretion from TREK-1-deficient AECs was regulated by cytoskeletal rearrangements. Methods We determined F-actin and α-tubulin contents of control, TREK-1-deficient and TREK-1-overexpressing human A549 cells by confocal microscopy and western blotting, and measured IL-6 and MCP-1 levels using real-time PCR and ELISA. Results Cytochalasin D decreased the F-actin content of control cells. Jasplakinolide increased the F-actin content of TREK-1 deficient cells, similar to the effect of TREK-1 overexpression in control cells. Treatment of control and TREK-1 deficient cells with TNF-α, a strong stimulus for IL-6 and MCP-1 secretion, had no effect on F-actin structures. The combination of TNF-α+cytochalasin D or TNF-α+jasplakinolide had no additional effect on the F-actin content or architecture when compared to cytochalasin D or jasplakinolide alone. Although TREK-1 deficient AECs contained less F-actin at baseline, quantified biochemically, they contained more α-tubulin. Exposure to nocodazole disrupted α-tubulin filaments in control and TREK-1 deficient cells, but left the overall amount of α-tubulin unchanged. Although TNF-α had no effect on the F-actin or α-tubulin contents, it increased IL-6 and MCP-1 production and secretion from control and TREK-1 deficient cells. IL-6 and MCP-1 secretions from control and TREK-1 deficient cells after TNF-α+jasplakinolide or TNF-α+nocodazole treatment was similar to the effect of TNF-α alone. Interestingly, cytochalasin D decreased TNF-α-induced IL-6 but not MCP-1 secretion from control but not TREK-1 deficient cells. Conclusion Although cytochalasin D, jasplakinolide and nocodazole altered the F-actin and α-tubulin structures of control and TREK-1 deficient AEC, the

  7. Habituation of adult Magellanic penguins to human visitation as expressed through behavior and corticosterone secretion.

    PubMed

    Walker, Brian G; Boersma, P Dee; Wingfield, John C

    2006-02-01

    Ecotourism is increasing worldwide; hence, it is important to know how wildlife are affected behaviorally and physiologically by human visitation. We studied the effects of human visitation on the Magellanic Penguins (Spheniscus magellanicus) at Punta Tombo, Argentina, by monitoring changes in defensive head turns and plasma corticosterone (a hormone secreted in response to stress) for penguins with and without a history of tourist visitation. Habituation to human visitation was rapid. In penguins with no previous exposure to tourists, the number of defensive head turns and level of plasma corticosterone decreased significantly within 5 days of one 15-minute visit/day. Penguins living in tourist-visited and undisturbed areas secreted more corticosterone when captured and restrained than penguins visited by a person. Penguins in tourist areas, however did not show as strong a corticosterone response to capture and restraint as did penguins in areas without tourists. This difference was due to a decreased capability of the adrenocortical tissue to secrete corticosterone in tourist-visited birds. Although our data show no direct negative effects of tourism on Magellanic Penguins at Punta Tombo, consequences of a modification of physiological capabilities (e.g., adrenocortical function) may not become apparent until much later in life. The physiological differences between tourist-visited and undisturbed groups of Magellanic Penguins emphasize the importance of monitoring the effects of anthropogenic disturbances on wildlife at multiple levels. PMID:16909667

  8. Secretion of Unconjugated Androgens and Estrogens by the Normal and Abnormal Human Testis before and after Human Chorionic Gonadotropin

    PubMed Central

    Weinstein, R. L.; Kelch, R. P.; Jenner, M. R.; Kaplan, S. L.; Grumbach, M. M.

    1974-01-01

    The secretion of androgens and estrogens by normal and abnormal testes was compared by determining the concentrations of dehydroepiandrosterone (DHEA), androstenedione (Δ4A), testosterone (T), estrone (E1), and 17β-estradiol (E2) in peripheral and spermatic venous plasma samples from 14 normal men and 5 men with unilateral testicular atrophy. Four normal men and one patient with unilateral atrophy of the testis were given human chorionic gonadotropin (HCG) before surgery. Plasma estrogens were determined by radioimmunoassay; plasma androgens were measured by the double-isotope dilution derivative technique. Peripheral concentrations of these steroids before and after HCG were similar in both the normal men and the patients with unilateral testicular atrophy. In normal men, the mean ±SE spermatic venous concentrations were DHEA, 73.1±11.7 ng/ml; Δ4A, 30.7±7.9 ng/ml; T, 751±114 ng/ml; E1, 306±55 pg/ml; and E2, 1298±216 pg/ml. Three of four subjects with unilateral testicular atrophy had greatly diminished spermatic venous levels of androgens and estrogens. HCG treatment increased the testicular secretion of DHEA and T fivefold, Δ4A threefold, E1 sixfold, and E2 eightfold in normal men. In the single subject with an atrophic testis who received HCG, the spermatic venous concentrations of androgens and estrogens were much less than in normal men similarly treated. We conclude that: (a) E1 is secreted by the human testis, but testicular secretion of E1 accounts for less than 5% of E1 production in normal men; (b) HCG stimulation produces increases in spermatic venous estrogens equal to or greater than the changes in androgens, including testosterone; and (c) strikingly decreased secretion of androgen and estrogen by unilateral atrophic human tests cannot be appreciated by analyses of peripheral steroid concentrations. PMID:4271572

  9. Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells

    SciTech Connect

    Kaufman, R.J.; Wasley, L.C.; Dorner, A.J.

    1988-05-05

    The synthesis, processing, and secretion of factor VIII expressed from heterologous genes introduced into Chinese hamster ovary cells has been studied. The results show factor VIII to be synthesized as a primary translation product of approximately 230 kDa that can be detected in the lumen of the endoplasmic reticulum. In this compartment, the majority of the factor VIII is in a complex with a resident protein of the endoplasmic reticulum, binding protein, and may never appear in the medium. Some factor VIII transits the endoplasmic reticulum to the Golgi apparatus, where it is cleaved to generate the mature heavy and light chains. In the absence of von Willebrand factor in the medium, the secreted heavy and light chains are unassociated and subsequently degraded. In the presence of von Willebrand factor in the medium, the heavy and light chains are secreted as a stable complex and activity accumulates linearly with time. The utilization and complexity of asparagine-linked carbohydrate present on the secreted recombinant-derived factor VIII and human plasma-derived factor VIII were compared and found to be very similar. In both cases, the asparagine-linked carbohydrate moieties on the heavy chain are primarily of the hybrid or complex-type. In contrast, the factor VIII from both sources contains a high-mannose type of asparagine-linked carbohydrate on the light chain.

  10. Intein-mediated one-step purification of Escherichia coli secreted human antibody fragments.

    SciTech Connect

    Wu, Wan-Yi; Miller, Keith D.; Coolbaugh, Michael; Wood, David W.

    2011-02-25

    In this work, we apply self-cleaving affinity tag technology to several target proteins secreted into the Escherichia coli periplasm, including two with disulfide bonds. The target proteins were genetically fused to a self-cleaving chitin-binding domain intein tag for purification via a chitin agarose affinity resin. By attaching the intein-tagged fusion genes to the PelB secretion leader sequence, the tagged target proteins were secreted to the periplasmic space and could be recovered in active form by simple osmotic shock. After chitin-affinity purification, the target proteins were released from the chitin-binding domain tag via intein self-cleaving. This was induced by a small change in pH from 8.5 to 6.5 at room temperature, allowing direct elution of the cleaved target protein from the chitin affinity resin. The target proteins include the E. coli maltose-binding protein and b-lactamase enzyme, as well as two human antibody fragments that contain disulfide bonds. In all cases, the target proteins were purified with good activity and yield, without the need for refolding. Overall, this work demonstrates the compatibility of the DI-CM intein with the PelB secretion system in E. coli, greatly expanding its potential to more complex proteins.

  11. Full-Length Human Placental sFlt-1-e15a Isoform Induces Distinct Maternal Phenotypes of Preeclampsia in Mice

    PubMed Central

    Szalai, Gabor; Romero, Roberto; Chaiworapongsa, Tinnakorn; Xu, Yi; Wang, Bing; Ahn, Hyunyoung; Xu, Zhonghui; Chiang, Po Jen; Sundell, Birgitta; Wang, Rona; Jiang, Yang; Plazyo, Olesya; Olive, Mary; Tarca, Adi L.; Dong, Zhong; Qureshi, Faisal; Papp, Zoltan; Hassan, Sonia S.; Hernandez-Andrade, Edgar; Than, Nandor Gabor

    2015-01-01

    Objective Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring. Methods Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia. Results Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3±51.7μg/mg vs. 19.3±5.6μg/mg, p = 4.4x10-2; GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2x10-2). Placental and fetal weights did not differ between the

  12. Human Placental Extract as a Subcutaneous Injection Is Effective in Chronic Fatigue Syndrome: A Multi-Center, Double-Blind, Randomized, Placebo-Controlled Study.

    PubMed

    Park, Sat Byul; Kim, Kyu-Nam; Sung, Eunju; Lee, Suk Young; Shin, Ho Cheol

    2016-05-01

    Chronic fatigue (CF) is a common reason for consulting a physician due to affecting quality of life, but only a few effective treatments are available. The aim of this study was to examine the effectiveness of subcutaneous injection of the human placental extract (HPE) on medically indescribable cases of CF and safety in a randomized, double-blind, placebo-controlled clinical trial. A total of 78 subjects with CF were randomly assigned to either a HPE group or a placebo group. Subjects in the HPE group were treated with HPE three times a week subcutaneously for 6 weeks, whereas those in the placebo group with normal saline. Then, the fatigue severity scale (FSS), visual analog scale (VAS) and multidimensional fatigue inventory (MFI) were measured in both CF group and chronic fatigue syndrome (CFS) and idiopathic chronic fatigue (ICF) subgroup. The FSS, VAS and MFI score at baseline were not different between the HPE and placebo group in total subjects with CF. In CFS group, the FSS (p=0.0242), VAS (p=0.0009) and MFI (p=0.0159) scores measured at the end of the study period decreased more in the HPE group than in the placebo group when compared with those at the baseline. There were no significant differences between the HPE group and placebo group in the mean change from baseline in FSS, VAS, and MFI in subjects with ICF during the study period. The subcutaneous injection of HPE was effective in the improvement of CFS. PMID:26911970

  13. Two-way regulation between cells and aligned collagen fibrils: local 3D matrix formation and accelerated neural differentiation of human decidua parietalis placental stem cells.

    PubMed

    Li, Wen; Zhu, Bofan; Strakova, Zuzana; Wang, Rong

    2014-08-01

    It has been well established that an aligned matrix provides structural and signaling cues to guide cell polarization and cell fate decision. However, the modulation role of cells in matrix remodeling and the feedforward effect on stem cell differentiation have not been studied extensively. In this study, we report on the concerted changes of human decidua parietalis placental stem cells (hdpPSCs) and the highly ordered collagen fibril matrix in response to cell-matrix interaction. With high-resolution imaging, we found the hdpPSCs interacted with the matrix by deforming the cell shape, harvesting the nearby collagen fibrils, and reorganizing the fibrils around the cell body to transform a 2D matrix to a localized 3D matrix. Such a unique 3D matrix prompted high expression of β-1 integrin around the cell body that mediates and facilitates the stem cell differentiation toward neural cells. The study offers insights into the coordinated, dynamic changes at the cell-matrix interface and elucidates cell modulation of its matrix to establish structural and biochemical cues for effective cell growth and differentiation. PMID:25003322

  14. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood–brain barrier and human placental trophoblast

    PubMed Central

    Lopalco, Antonio; Ali, Hazem; Denora, Nunzio; Rytting, Erik

    2015-01-01

    Encapsulation of antiepileptic drugs (AEDs) into nanoparticles may offer promise for treating pregnant women with epilepsy by improving brain delivery and limiting the transplacental permeability of AEDs to avoid fetal exposure and its consequent undesirable adverse effects. Oxcarbazepine-loaded nanoparticles were prepared by a modified solvent displacement method from biocompatible polymers (poly(lactic-co-glycolic acid) [PLGA] with or without surfactant and PEGylated PLGA [Resomer® RGPd5055]). The physical properties of the developed nanoparticles were determined with subsequent evaluation of their permeability across in vitro models of the blood–brain barrier (hCMEC/D3 cells) and human placental trophoblast cells (BeWo b30 cells). Oxcarbazepine-loaded nanoparticles with encapsulation efficiency above 69% were prepared with sizes ranging from 140–170 nm, polydispersity indices below 0.3, and zeta potential values below -34 mV. Differential scanning calorimetry and X-ray diffraction studies confirmed the amorphous state of the nanoencapsulated drug. The apparent permeability (Pe) values of the free and nanoencapsulated oxcarbazepine were comparable across both cell types, likely due to rapid drug release kinetics. Transport studies using fluorescently-labeled nanoparticles (loaded with coumarin-6) demonstrated increased permeability of surfactant-coated nanoparticles. Future developments in enzyme-prodrug therapy and targeted delivery are expected to provide improved options for pregnant patients with epilepsy. PMID:25792832

  15. Human secreted carbonic anhydrase: cDNA cloning, nucleotide sequence, and hybridization histochemistry

    SciTech Connect

    Aldred, P.; Fu, Ping; Barrett, G.; Penschow, J.D.; Wright, R.D.; Coghlan, J.P.; Fernley, R.T. )

    1991-01-01

    Complementary DNA clones coding for the human secreted carbonic anhydrase isozyme (CAVI) have been isolated and their nucleotide sequences determined. These clones identify a 1.45-kb mRNA that is present in high levels in parotid submandibular salivary glands but absent in other tissues such as the sublingual gland, kidney, liver, and prostate gland. Hybridization histochemistry of human salivary glands shows mRNA for CA VI located in the acinar cells of these glands. The cDNA clones encode a protein of 308 amino acids that includes a 17 amino acid leader sequence typical of secreted proteins. The mature protein has 291 amino acids compared to 259 or 260 for the cytoplasmic isozymes, with most of the extra amino acids present as a carboxyl terminal extension. In comparison, sheep CA VI has a 45 amino acid extension. Overall the human CA VI protein has a sequence identity of 35 {percent} with human CA II, while residues involved in the active site of the enzymes have been conserved. The human and sheep secreted carbonic anhydrases have a sequence identity of 72 {percent}. This includes the two cysteine residues that are known to be involved in an intramolecular disulfide bond in the sheep CA VI. The enzyme is known to be glycosylated and three potential N-glycosylation sites (Asn-X-Thr/Ser) have been identified. Two of these are known to be glycosylated in sheep CA VI. Southern analysis of human DNA indicates that there is only one gene coding for CA VI.

  16. Sex Steroids Influence Brain-Derived Neurotropic Factor Secretion From Human Airway Smooth Muscle Cells.

    PubMed

    Wang, Sheng-Yu; Freeman, Michelle R; Sathish, Venkatachalem; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2016-07-01

    Brain derived neurotropic factor (BDNF) is emerging as an important player in airway inflammation, remodeling, and hyperreactivity. Separately, there is increasing evidence that sex hormones contribute to pathophysiology in the lung. BDNF and sex steroid signaling are thought to be intricately linked in the brain. There is currently little information on BDNF and sex steroid interactions in the airway but is relevant to understanding growth factor signaling in the context of asthma in men versus women. In this study, we assessed the effect of sex steroids on BDNF expression and secretion in human airway smooth muscle (ASM). Human ASM was treated with estrogen (E2 ) or testosterone (T, 10 nM each) and intracellular BDNF and secreted BDNF measured. E2 and T significantly reduced secretion of BDNF; effects prevented by estrogen and androgen receptor inhibitor, ICI 182,780 (1 μM), and flutamide (10 μM), respectively. Interestingly, no significant changes were observed in intracellular BDNF mRNA or protein expression. High affinity BDNF receptor, TrkB, was not altered by E2 or T. E2 (but not T) significantly increased intracellular cyclic AMP levels. Notably, Epac1 and Epac2 expression were significantly reduced by E2 and T. Furthermore, SNARE complex protein SNAP25 was decreased. Overall, these novel data suggest that physiologically relevant concentrations of E2 or T inhibit BDNF secretion in human ASM, suggesting a potential interaction of sex steroids with BDNF in the airway that is different from brain. The relevance of sex steroid-BDNF interactions may lie in their overall contribution to airway diseases such as asthma. J. Cell. Physiol. 231: 1586-1592, 2016. © 2015 Wiley Periodicals, Inc. PMID:26566264

  17. Viability, Apoptosis, Proliferation, Activation, and Cytokine Secretion of Human Keratoconus Keratocytes after Cross-Linking

    PubMed Central

    Stachon, Tanja; Wang, Jiong; Seitz, Berthold; Szentmáry, Nóra

    2015-01-01

    Purpose. The purpose of this study was to determine the impact of cross-linking (CXL) on viability, apoptosis, proliferation, activation, and cytokine secretion of human keratoconus (KC) keratocytes, in vitro. Methods. Primary KC keratocytes were cultured in DMEM/Ham's F12 medium supplemented with 10% FCS and underwent UVA illumination (370 nm, 2 J/cm2) during exposure to 0.1% riboflavin and 20% Dextran in PBS. Twenty-four hours after CXL, viability was assessed using Alamar blue assay; apoptosis using APO-DIRECT Kit; proliferation using ELISA-BrdU kit; and CD34 and alpha-smooth muscle actin (α-SMA) expression using flow cytometry. Five and 24 hours after CXL, FGFb, HGF, TGFβ1, VEGF, KGF, IL-1β, IL-6, and IL-8 secretion was measured using enzyme-linked-immunoabsorbent assay (ELISA). Results. Following CXL, cell viability and proliferation decreased (P < 0.05; P = 0.009), the percentage of apoptotic keratocytes increased (P < 0.05) significantly, and CD34 and α-SMA expression remained unchanged (P > 0.06). Five hours after CXL, FGFb secretion increased significantly (P = 0.037); however no other cytokine secretion differed significantly from controls after 5 or 24 hours (P > 0.12). Conclusions. Cross-linking decreases viability, triggers apoptosis, and inhibits proliferation, without an impact on multipotent hematopoietic stem cell transformation and myofibroblastic transformation of KC keratocytes. CXL triggers FGFb secretion of KC keratocytes transiently (5 hours), normalizing after 24 hours. PMID:25699261

  18. Effects of botulinum toxin type D on secretion of tumor necrosis factor from human monocytes

    SciTech Connect

    Imamura, K.; Spriggs, D.; Ohno, T.; Kufe, D.

    1989-05-01

    Botulinum toxins are potent neurotoxins which block the release of neurotransmitters. The effects of these toxins on hematopoietic cells, however, are unknown. Monocytes secrete a variety of polypeptide growth factors, including tumor necrosis factor (TNF). In the study reported here, the effects of botulinum toxin type D on the secretion of TNF from human monocytes were examined. The results demonstrate that biotulinum toxin type D inhibits the release of TNF from monocytes activated by lipopolysaccharide (LPS) but not by 12-O-tetradecanoylphorbol-13-acetate. Botulinum toxin type D had no detectable effect on intracellular TNF levels in LPS-treated monocytes, indicating that the effects of this toxin involve the secretory process. This inhibitory effect of botulinum toxin type D on TNF secretion from LPS-treated monocytes was partially reversed by treatment with 12-O-tetradecanoylphorbol-13-acetate or introduction of guanosine 5'-(/gamma/-thio)t-riphosphate into these cells. The results demonstrate that TNF secretion is regulated by at least two distinct guanine nucleotide-binding proteins, one responsible for the activation of phospholiphase C and another which acts as a substrate for botulinum toxin type D. ADP-ribosylation of monocyte membranes by botulinum toxin type D demonstrated the presence of three substrates with M/sub r/s of 45,000, 21,000, and 17,000. While the role of these substrates in exocytosis is unknown, the results suggest that the M/sub r/ 21,000 substrate is involved in a process other than TNF secretion.

  19. Reversal of diabetes following transplantation of an insulin-secreting human liver cell line: Melligen cells

    PubMed Central

    Lawandi, Janet; Tao, Chang; Ren, Binhai; Williams, Paul; Ling, Dora; Swan, M Anne; Nassif, Najah T; Torpy, Fraser R; O’Brien, Bronwyn A; Simpson, Ann M

    2015-01-01

    As an alternative to the transplantation of islets, a human liver cell line has been genetically engineered to reverse type 1 diabetes (TID). The initial liver cell line (Huh7ins) commenced secretion of insulin in response to a glucose concentration of 2.5 mmol/l. After transfection of the Huh7ins cells with human islet glucokinase, the resultant Melligen cells secreted insulin in response to glucose within the physiological range; commencing at 4.25 mmol/l. Melligen cells exhibited increased glucokinase enzymatic activity in response to physiological glucose concentrations, as compared with Huh7ins cells. When transplanted into diabetic immunoincompetent mice, Melligen cells restored normoglycemia. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that both cell lines expressed a range of β-cell transcription factors and pancreatic hormones. Exposure of Melligen and Huh7ins cells to proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) affected neither their viability nor their ability to secrete insulin to glucose. Gene expression (microarray and qRT-PCR) analyses indicated the survival of Melligen cells in the presence of known β-cell cytotoxins was associated with the expression of NF-κB and antiapoptotic genes (such as BIRC3). This study describes the successful generation of an artificial β-cell line, which, if encapsulated to avoid allograft rejection, may offer a clinically applicable cure for T1D. PMID:26029722

  20. A secreted form of the human lymphocyte cell surface molecule CD8 arises from alternative splicing

    SciTech Connect

    Giblin, P.; Kavathas, P. ); Ledbetter, J.A. )

    1989-02-01

    The human lymphocyte differentiation antigen CD8 is encoded by a single gene that gives rise to a 33- to 34-kDa glycoprotein expressed on the cell surface as a dimer and in higher molecular mass forms. The authors demonstrate that the mRNA is alternatively spliced so that an exon encoding a transmembrane domain is deleted. This gives rise to a 30-kDa molecule that is secreted and exists primarily as a monomer. mRNA corresponding to both forms is present in peripheral blood lymphocytes, Con A-activated peripheral blood lymphocytes, and three CD8{sup +} T-cell lines, with the membrane form being the major species. However, differences in the ratio of mRNA for membrane CD8 and secreted CD8 exist. In addition, the splicing pattern observed differs from the pattern found for the mouse CD8 gene. This mRNA is also alternatively spliced, but an exon encoding a cytoplasmic region is deleted, giving rise to a cell surface molecule that differs in its cytoplasmic tail from the protein encoded by the longer mRNA. Neither protein is secreted. This is one of the first examples of a different splicing pattern between two homologous mouse and human genes giving rise to very different proteins. This represents one mechanism of generating diversity during speciation.

  1. Reversal of diabetes following transplantation of an insulin-secreting human liver cell line: Melligen cells.

    PubMed

    Lawandi, Janet; Tao, Chang; Ren, Binhai; Williams, Paul; Ling, Dora; Swan, M Anne; Nassif, Najah T; Torpy, Fraser R; O'Brien, Bronwyn A; Simpson, Ann M

    2015-01-01

    As an alternative to the transplantation of islets, a human liver cell line has been genetically engineered to reverse type 1 diabetes (TID). The initial liver cell line (Huh7ins) commenced secretion of insulin in response to a glucose concentration of 2.5 mmol/l. After transfection of the Huh7ins cells with human islet glucokinase, the resultant Melligen cells secreted insulin in response to glucose within the physiological range; commencing at 4.25 mmol/l. Melligen cells exhibited increased glucokinase enzymatic activity in response to physiological glucose concentrations, as compared with Huh7ins cells. When transplanted into diabetic immunoincompetent mice, Melligen cells restored normoglycemia. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that both cell lines expressed a range of β-cell transcription factors and pancreatic hormones. Exposure of Melligen and Huh7ins cells to proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) affected neither their viability nor their ability to secrete insulin to glucose. Gene expression (microarray and qRT-PCR) analyses indicated the survival of Melligen cells in the presence of known β-cell cytotoxins was associated with the expression of NF-κB and antiapoptotic genes (such as BIRC3). This study describes the successful generation of an artificial β-cell line, which, if encapsulated to avoid allograft rejection, may offer a clinically applicable cure for T1D. PMID:26029722

  2. Fluid Secretion in Isolated Proximal Straight Renal Tubules EFFECT OF HUMAN UREMIC SERUM

    PubMed Central

    Grantham, Jared J.; Irwin, Richard L.; Qualizza, Patti B.; Tucker, Donald R.; Whittier, Frederick C.

    1973-01-01

    We have examined the effect of normal and uremic human sera on the transtubular flow of fluid in isolated perfused segments of rabbit proximal convoluted and straight renal tubules. Proximal convoluted and straight tubules absorbed fluid from the lumen when the external bath was normal rabbit serum. Normal human sera in the bath depressed net fluid absorption in both tubular segments, but more importantly, uremic human serum caused proximal straight tubules to secrete fluid into the lumen. Fluid secretion was also demonstrated indirectly by observing in nonperfused proximal straight, but not proximal convoluted tubules, that the normally collapsed lumens opened widely in uremic serum. Nonperfused proximal straight tubules developed expanded lumens even after a 25-fold dilution of human uremic serum with normal rabbit serum, whereas lumen expansion occurred only in undiluted normal human serum, on the average. Serum from acutely uremic rabbits possessed secretory activity but normal rabbit serum did not. The secretory effect of uremic sera in proximal straight tubules was inhibited by cooling and ouabain and probenecid. The secretory activity of uremic sera was removed by dialysis, but not by freezing or boiling. Para-aminohippurate and benzoate caused fluid secretion in proximal straight tubules but urea, creatinine, guanidinosuccinate, and urate did not. On the basis of these results, we suggest that the secretory factor in serum may be a substance or group of substances possibly related to the hippurate class of organic molecules that are accumulated to relatively high concentrations in renal failure. The secretory material in the serum of uremic patients may significantly influence the transport of salt and water in relatively intact residual nephrons. Images PMID:4738063

  3. Placental toxicology: tobacco smoke, abused drugs, multiple chemical interactions, and placental function.

    PubMed

    Sastry, B V

    1991-01-01

    There are increasing numbers of reports on the tobacco smoking and ingestion of abused drugs (e.g. morphine, cocaine) by pregnant women and the effects of the substances on the developing fetus and newborn infant. The passage of drugs and chemicals from the mother to the fetus is influenced by the placental transport and metabolism of the substances. Further, these drugs and chemicals affect the nutrient transport systems in the placenta. The three major drugs of abuse-nicotine, morphine and cocaine-depress both active amino-acid uptake by human placental villi and transplacental amino-acid transport by reason of the drugs' influence on placental cholinergic and opiate systems. Part of this depression (10-16%) is not reversible. Nicotine blocks the cholinergic receptor and thus blocks acetylcholine (ACh)-facilitated amino-acid transport. Morphine stimulates opiate kappa receptors and depresses ACh release. Cocaine blocks Ca2+ influx and thus blocks ACh release. ACh causes dilation of blood vessels and maintains placental blood flow by the activation of endothelial muscarinic receptors. By interfering with ACh release and placental blood flow, the three drugs of abuse may depress the diffusion of amino acids and other nutrients from the trophoblast into the placental circulation. Three regulatory systems are delineated for amino-acid uptake by the placenta: placental ACh, phospholipid N-methyltransferase, and the gammaglutamyl cycle. These systems operate in concert with one another and are dependent on cellular formation of adenosine 5'-triphosphate (ATP). Placental hypoxia induced by carbon monoxide and other tobacco gases depresses the energy-dependent processes and thus the ATP levels of placental cells. Maternal tobacco smoking and drug abuse cause placental insufficiencies for amino-acid transport, which may partially explain the fetal intrauterine growth retardation caused by these substances. Part of the amino-acid deficits may be compensated for by the

  4. Cytokine secretion and NK cell activity in human ADAM17 deficiency

    PubMed Central

    Chavkin, Maor; Schmiedel, Dominik; Wong, Eitan; Werner, Marion; Yaacov, Barak; Averbuch, Diana; Molho-Pessach, Vered; Stepensky, Polina; Kaynan, Noa; Bar-On, Yotam; Seidel, Einat; Yamin, Rachel; Sagi, Irit; Elpeleg, Orly; Mandelboim, Ofer

    2015-01-01

    Genetic deficiencies provide insights into gene function in humans. Here we describe a patient with a very rare genetic deficiency of ADAM17. We show that the patient's PBMCs had impaired cytokine secretion in response to LPS stimulation, correlating with the clinical picture of severe bacteremia from which the patient suffered. ADAM17 was shown to cleave CD16, a major NK killer receptor. Functional analysis of patient's NK cells demonstrated that his NK cells express normal levels of activating receptors and maintain high surface levels of CD16 following mAb stimulation. Activation of individual NK cell receptors showed that the patient's NK cells are more potent when activated directly by CD16, albeit no difference was observed in Antibody Depedent Cytotoxicity (ADCC) assays. Our data suggest that ADAM17 inhibitors currently considered for clinical use to boost CD16 activity should be cautiously applied, as they might have severe side effects resulting from impaired cytokine secretion. PMID:26683521

  5. Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells.

    PubMed

    Lund, Carina; Pulli, Kristiina; Yellapragada, Venkatram; Giacobini, Paolo; Lundin, Karolina; Vuoristo, Sanna; Tuuri, Timo; Noisa, Parinya; Raivio, Taneli

    2016-08-01

    Gonadotropin-releasing hormone (GnRH) neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs) into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs) by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders. PMID:27426041

  6. Syncytiotrophoblast Functions and Fetal Growth Restriction during Placental Malaria: Updates and Implication for Future Interventions

    PubMed Central

    Kidima, Winifrida B.

    2015-01-01

    Syncytiotrophoblast lines the intervillous space of the placenta and plays important roles in fetus growth throughout gestation. However, perturbations at the maternal-fetal interface during placental malaria may possibly alter the physiological functions of syncytiotrophoblast and therefore growth and development of the embryo in utero. An understanding of the influence of placental malaria on syncytiotrophoblast function is paramount in developing novel interventions for the control of placental pathology associated with placental malaria. In this review, we discuss how malaria changes syncytiotrophoblast function as evidenced from human, animal, and in vitro studies and, further, how dysregulation of syncytiotrophoblast function may impact fetal growth in utero. We also formulate a hypothesis, stemming from epidemiological observations, that nutrition may override pathogenesis of placental malaria-associated-fetal growth restriction. We therefore recommend studies on nutrition-based-interventional approaches for high placental malaria-risk women in endemic areas. More investigations on the role of nutrition on placental malaria pathogenesis are needed. PMID:26587536

  7. Ex vivo generation of glucose sensitive insulin secreting mesenchymal stem cells derived from human adipose tissue

    PubMed Central

    Dave, Shruti D.; Vanikar, Aruna V.; Trivedi, Hargovind L

    2012-01-01

    Background: Diabetics are incapable of producing insulin/have autoimmune mechanisms making it ineffective to control glucose secretion. We present a prospective study of glucose-sensitive insulin-secreting mesenchymal stem cells (IS-MSC) generated from human adipose tissue (h-AD) sans xenogenic material. Materials and Methods: Ten grams h-AD from donor anterior abdominal wall was collected in proliferation medium composed of α-Minimum Essential Media (α-MEM), albumin, fibroblast-growth factor and antibiotics, minced, incubated in collagenase-I at 37°C with shaker and centrifuged. Supernatant and pellets were separately cultured in proliferation medium on cell+ plates at 37°C with 5% CO2 for 10 days. Cells were harvested by trypsinization, checked for viability, sterility, counts, flow-cytometry (CD45-/90+/73+), and differentiated into insulin-expressing cells using medium composed of DMEM, gene expressing up-regulators and antibiotics for 3 days. They were studied for transcriptional factors Pax-6, Isl-1, pdx-1 (immunofluorescence). C-peptide and insulin were measured by chemiluminescence. In vitro glucose sensitivity assay was carried out by measuring levels of insulin and C-peptide secretion in absence of glucose followed by 2 hours incubation after glucose addition. Results: Mean IS-AD-MSC quantum was 3.21 ml, cell count, 1.5 ×103 cells/μl), CD45-/90+/73+ cells were 44.37% /25.52%. All of them showed presence of pax-6, pdx-1, and Isl-1. Mean C-Peptide and insulin levels were 0.36 ng/ml and 234 μU/ml, respectively, pre-glucose and 0.87 ng/ml and 618.3 μU/ml post-glucose additions. The mean rise in secretion levels was 2.42 and 2.65 fold, respectively. Conclusion: Insulin-secreting h-AD-MSC can be generated safely and effectively showing in vitro glucose responsive alteration in insulin and C-peptide secretion levels. PMID:22701849

  8. Human IgG Fc promotes expression, secretion and immunogenicity of enterovirus 71 VP1 protein.

    PubMed

    Xu, Juan; Zhang, Chunhua

    2016-05-01

    Enterovirus (EV71) can cause severe neurological diseases, but the underlying pathogenesis remains unclear. The capsid protein, viral protein 1 (VP1), plays a critical role in the pathogenicity of EV71. High level expression and secretion of VP1 protein are necessary for structure, function and immunogenicity in its natural conformation. In our previous studies, 5 codon-optimized VP1 DNA vaccines, including wt-VP1, tPA-VP1, VP1-d, VP1-hFc and VP1-mFc, were constructed and analyzed. They expressed VP1 protein, but the levels of secretion and immunogenicity of these VP1 constructs were significantly different (P<0.05). In this study, we further investigated the protein levels of these constructs and determined that all of these constructs expressed VP1 protein. The secretion level was increased by including a tPA leader sequence, which was further increased by fusing human IgG Fc (hFc) to VP1. VP1-hFc demonstrated the most potent immunogenicity in mice. Furthermore, hFc domain could be used to purify VP1-hFc protein for additional studies. PMID:27533931

  9. Subfractions of enamel matrix derivative differentially influence cytokine secretion from human oral fibroblasts

    PubMed Central

    Villa, Oscar; Brookes, Steven J; Thiede, Bernd; Heijl, Lars; Lyngstadaas, Staale P

    2015-01-01

    Enamel matrix derivative is used to promote periodontal regeneration during the corrective phase of the treatment of periodontal defects. Our main goal was to analyze the bioactivity of different molecular weight fractions of enamel matrix derivative. Enamel matrix derivative, a complex mixture of proteins, was separated into 13 fractions using size-exclusion chromatography and characterized by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and liquid chromatography–electrospray ionization–tandem mass spectrometry. Human periodontal ligament fibroblasts were treated with either enamel matrix derivative or the different fractions. Proliferation and cytokine secretion to the cell culture medium were measured and compared to untreated cells. The liquid chromatography–electrospray ionization–tandem mass spectrometry analyses revealed that the most abundant peptides were amelogenin and leucine-rich amelogenin peptide related. The fractions containing proteins above 20 kDa induced an increase in vascular endothelial growth factor and interleukin-6 secretion, whereas lower molecular weight fractions enhanced proliferation and secretion of interleukin-8 and monocyte chemoattractant protein-1 and reduced interleukin-4 release. The various molecular components in the enamel matrix derivative formulation might contribute to reported effects on tissue regeneration through their influence on vascularization, the immune response, and chemotaxis. PMID:26090085

  10. Human IgG Fc promotes expression, secretion and immunogenicity of enterovirus 71 VP1 protein

    PubMed Central

    Xu, Juan; Zhang, Chunhua

    2016-01-01

    Abstract Enterovirus (EV71) can cause severe neurological diseases, but the underlying pathogenesis remains unclear. The capsid protein, viral protein 1 (VP1), plays a critical role in the pathogenicity of EV71. High level expression and secretion of VP1 protein are necessary for structure, function and immunogenicity in its natural conformation. In our previous studies, 5 codon-optimized VP1 DNA vaccines, including wt-VP1, tPA-VP1, VP1-d, VP1-hFc and VP1-mFc, were constructed and analyzed. They expressed VP1 protein, but the levels of secretion and immunogenicity of these VP1 constructs were significantly different (P<0.05). In this study, we further investigated the protein levels of these constructs and determined that all of these constructs expressed VP1 protein. The secretion level was increased by including a tPA leader sequence, which was further increased by fusing human IgG Fc (hFc) to VP1. VP1-hFc demonstrated the most potent immunogenicity in mice. Furthermore, hFc domain could be used to purify VP1-hFc protein for additional studies.

  11. Subfractions of enamel matrix derivative differentially influence cytokine secretion from human oral fibroblasts.

    PubMed

    Villa, Oscar; Brookes, Steven J; Thiede, Bernd; Heijl, Lars; Lyngstadaas, Staale P; Reseland, Janne E

    2015-01-01

    Enamel matrix derivative is used to promote periodontal regeneration during the corrective phase of the treatment of periodontal defects. Our main goal was to analyze the bioactivity of different molecular weight fractions of enamel matrix derivative. Enamel matrix derivative, a complex mixture of proteins, was separated into 13 fractions using size-exclusion chromatography and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and liquid chromatography-electrospray ionization-tandem mass spectrometry. Human periodontal ligament fibroblasts were treated with either enamel matrix derivative or the different fractions. Proliferation and cytokine secretion to the cell culture medium were measured and compared to untreated cells. The liquid chromatography-electrospray ionization-tandem mass spectrometry analyses revealed that the most abundant peptides were amelogenin and leucine-rich amelogenin peptide related. The fractions containing proteins above 20 kDa induced an increase in vascular endothelial growth factor and interleukin-6 secretion, whereas lower molecular weight fractions enhanced proliferation and secretion of interleukin-8 and monocyte chemoattractant protein-1 and reduced interleukin-4 release. The various molecular components in the enamel matrix derivative formulation might contribute to reported effects on tissue regeneration through their influence on vascularization, the immune response, and chemotaxis. PMID:26090085

  12. Nonlinear dynamics in pulsatile secretion of parathyroid hormone in normal human subjects

    NASA Astrophysics Data System (ADS)

    Prank, Klaus; Harms, Heio; Brabant, Georg; Hesch, Rolf-Dieter; Dämmig, Matthias; Mitschke, Fedor

    1995-03-01

    In many biological systems, information is transferred by hormonal ligands, and it is assumed that these hormonal signals encode developmental and regulatory programs in mammalian organisms. In contrast to the dogma of endocrine homeostasis, it could be shown that the biological information in hormonal networks is not only present as a constant hormone concentration in the circulation pool. Recently, it has become apparent that hormone pulses contribute to this hormonal pool, which modulates the responsiveness of receptors within the cell membrane by regulation of the receptor synthesis, movement within the membrane layer, coupling to signal transduction proteins and internalization. Phase space analysis of dynamic parathyroid hormone (PTH) secretion allowed the definition of a (in comparison to normal subjects) relatively quiet ``low dynamic'' secretory pattern in osteoporosis, and a ``high dynamic'' state in hyperparathyroidism. We now investigate whether this pulsatile secretion of PTH in healthy men exhibits characteristics of nonlinear determinism. Our findings suggest that this is conceivable, although on the basis of presently available data and techniques, no proof can be established. Nevertheless, pulsatile secretion of PTH might be a first example of nonlinear deterministic dynamics in an apparently irregular hormonal rhythm in human physiology.

  13. Modulation of human cytotrophoblastic leptin secretion by interleukin-1alpha and 17beta-oestradiol and its effect on HCG secretion.

    PubMed

    Chardonnens, D; Cameo, P; Aubert, M L; Pralong, F P; Islami, D; Campana, A; Gaillard, R C; Bischof, P

    1999-11-01

    To investigate the role of leptin during pregnancy, we assessed leptin production by pure cultured human cytotrophoblastic cells (CTB), its regulation by cytokines and 17beta-oestradiol and its effects on human chorionic gonadotrophin (HCG) secretion. Purified CTB from first trimester placenta were incubated in duplicates in the presence or absence of cytokines or 17beta-oestradiol. Medium was harvested on day 2 and the culture stopped on day 4. Results were corrected for protein content of each individual well and expressed as percent of controls per day (mean +/- SEM). Basal CTB leptin production was 25.2 +/- 2.6 (ng/mg prot). In comparison with controls, leptin production was stimulated to 320 +/- 16% (P < 0.0001) and 195 +/- 3.2% (P < 0.0004) by 3 and 10 ng/ml of interleukin-1alpha respectively. 17beta-oestradiol 10(-6) to 10(-9) mol/l increased basal leptin production 5-9-fold, while 10(-5) mol/l had no such effect. Basal CTB HCG secretion was 5722 +/- 1055 (mIU/mg prot). There was a dose-dependent leptin-induced increase in HCG secretion (P = 0.0039) reaching a 5-fold increase with a leptin concentration of 1 microg/ml (P < 0.006). Gonadotrophin-releasing hormone (GnRH) 8.5 x 10(-8) mol/l significantly increased HCG secretion to 140 +/- 21% of controls (P = 0.031). Cetrorelix (0.1 microg/ml) inhibited leptin-induced HCG secretion (P = 0.0028). PMID:10541571

  14. pNET co-secreting GHRH and calcitonin: ex vivo hormonal studies in human pituitary cells

    PubMed Central

    Rubinfeld, Hadara; Lysyy, Lyudmila; Schiller, Tal; Raverot, Véronique; Shimon, Ilan; Knobler, Hilla

    2016-01-01

    Summary Acromegaly due to ectopic GHRH secretion from a neuroendocrine tumor (NET) is rare and comprises <1% of all acromegaly cases. Herein we present a 57-year-old woman with clinical and biochemical features of acromegaly and a 6 cm pancreatic NET (pNET), secreting GHRH and calcitonin. Following surgical resection of the pancreatic tumor, IGF1, GH and calcitonin normalized, and the clinical features of acromegaly improved. In vitro studies confirmed that the tumor secreted large amounts of both GHRH and calcitonin, and incubation of pNET culture-derived conditioned media stimulated GH release from a cultured human pituitary adenoma. This is a unique case of pNET secreting both GHRH and calcitonin. The ability of the pNET-derived medium to stimulate in vitro GH release from a human pituitary-cell culture, combined with the clinical and hormonal remission following tumor resection, confirmed the ectopic source of acromegaly in this patient. Learning points Signs, symptoms and initial work-up of acromegaly due to ectopic GHRH secretion are similar to pituitary-dependent acromegaly. However, if no identifiable pituitary lesion is found, somatostatin receptor scan and further imaging (CT, MRI) should be performed.Detection of GHRH in the blood and in the tumor-derived medium supports the diagnosis of ectopic GHRH secretion.Functional bioactivity of pNET-secreted GHRH can be proved in vitro by releasing GH from human pituitary cells. PMID:26904199

  15. Secretion of alpha-immunoreactive inhibin by human pre-embryos cultured in vitro.

    PubMed

    Phocas, I; Sarandakou, A; Rizos, D; Dimitriadou, F; Mantzavinos, T; Zourlas, P A

    1992-04-01

    alpha-Immunoreactive inhibin was measured using an enzyme immunoassay kit in the culture medium (Ham's F-10 medium supplemented with 14% heat-inactivated human serum) from day 3 or 4 to day 14 post-fertilization of 31 surplus pre-embryos from eight women participating in an in-vitro fertilization programme. Inhibition secretion was demonstrated in all of them from the fourth day after fertilization (mean +/- SEM: 3.0 +/- 0.7 U) and was independent of the morphological development of pre-embryos (2-4 cells, n = 4; 6-8 cells, n = 4; 8-10 cells, n = 9; 10-12 cells, n = 4; morulae, n = 5 and blastocysts, n = 4). On days 7, 10, 13 and 14 post-fertilization, mean inhibin values +/- SEM for non-disintegrated pre-embryos were respectively: 6.5 +/- 0.9 U, 12.3 +/- 2.0 U, 16.8 +/- 3.2 U and 20.2 +/- 3.7 U; however, when disintegration was noted on days 10 and 13 after fertilization, inhibin mean values were 9.0 +/- 1.4 U and 8.4 +/- 1.7 U respectively. Inhibin levels were significantly correlated with human chorionic gonadotrophin levels in the same culture media only on day 13, while correlation with pregnancy specific beta 1-glycoprotein occurred on day 7 post-fertilization. In conclusion, early human pre-embryos secrete alpha-immunoreactive inhibin before the cytotrophoblast is formed. This secretion increases significantly with time when development is continued, while disintegration is followed by a net decline in the rate of inhibin release. PMID:1522200

  16. Human placental renin-angiotensin system in normotensive and pre-eclamptic pregnancies at high altitude and after acute hypoxia-reoxygenation insult.

    PubMed

    Kurlak, Lesia O; Mistry, Hiten D; Cindrova-Davies, Tereza; Burton, Graham J; Broughton Pipkin, Fiona

    2016-03-01

    A functioning placental renin-angiotensin system (RAS) appears necessary for uncomplicated pregnancy and is present during placentation, which occurs under low oxygen tensions. Placental RAS is increased in pre-eclampsia (PE), characterised by placental dysfunction and elevated oxidative stress. We investigated the effect of high altitude hypoxia on the RAS and hypoxia-inducible factors (HIFs) by measuring mRNA and protein expression in term placentae from normotensive (NT) and PE women who delivered at sea level or above 3100 m, using an explant model of hypoxia-reoxygenation to assess the impact of acute oxidative stress on the RAS and HIFs. Protein levels of prorenin (P = 0.049), prorenin receptor (PRR; P = 0.0004), and angiotensin type 1 receptor (AT1R, P = 0.006) and type 2 receptor (AT2R, P = 0.002) were all significantly higher in placentae from NT women at altitude, despite mRNA expression being unaffected. However, mRNA expression of all RAS components was significantly lower in PE at altitude than at sea level, yet PRR, angiotensinogen (AGT) and AT1R proteins were all increased. The increase in transcript and protein expression of all the HIFs and NADPH oxidase 4 seen in PE compared to NT at sea level was blunted at high altitude. Experimentally induced oxidative stress stimulated AGT mRNA (P = 0.04) and protein (P = 0.025). AT1R (r = 0.77, P < 0.001) and AT2R (r = 0.81, P < 0.001) mRNA both significantly correlated with HIF-1β, whilst AT2R also correlated with HIF-1α (r = 0.512, P < 0.013). Our observations suggest that the placental RAS is responsive to changes in tissue oxygenation: this could be important in the interplay between reactive oxygen species as cell-signalling molecules for angiogenesis and hence placental development and function. PMID:26574162

  17. Characterization and gestational regulation of corticotropin-releasing hormone messenger RNA in human placenta.

    PubMed Central

    Frim, D M; Emanuel, R L; Robinson, B G; Smas, C M; Adler, G K; Majzoub, J A

    1988-01-01

    Corticotropin-releasing hormone (CRH), a hypothalamic neuropeptide involved in the regulation of ACTH secretion, has been detected by RIA in extracts of human placenta. We wished to determine whether this immunoreactive substance is a product of CRH gene expression in the placenta. We have found authentic human CRH (hCRH) mRNA in human placental tissue that is similar in size to hypothalamic CRH mRNA. Furthermore, the transcriptional initiation site for placental hCRH mRNA is identical to that previously predicted for hypothalamic hCRH mRNA, 23-26 nucleotides downstream from a canonical promoter element. Placental hCRH mRNA increases more than 20-fold in the 5 wk preceding parturition, in parallel with a rise in placental hCRH peptide content. These data strongly suggest that the hCRH gene is expressed in the placenta and that this expression changes dramatically during gestation. Images PMID:3260606

  18. A novel Gymnema sylvestre extract stimulates insulin secretion from human islets in vivo and in vitro.

    PubMed

    Al-Romaiyan, A; Liu, B; Asare-Anane, H; Maity, C R; Chatterjee, S K; Koley, N; Biswas, T; Chatterji, A K; Huang, G-C; Amiel, S A; Persaud, S J; Jones, P M

    2010-09-01

    Many plant-based products have been suggested as potential antidiabetic agents, but few have been shown to be effective in treating the symptoms of Type 2 diabetes mellitus (T2DM) in human studies, and little is known of their mechanisms of action. Extracts of Gymnema sylvestre (GS) have been used for the treatment of T2DM in India for centuries. The effects of a novel high molecular weight GS extract, Om Santal Adivasi, (OSA(R)) on plasma insulin, C-peptide and glucose in a small cohort of patients with T2DM are reported here. Oral administration of OSA(R) (1 g/day, 60 days) induced significant increases in circulating insulin and C-peptide, which were associated with significant reductions in fasting and post-prandial blood glucose. In vitro measurements using isolated human islets of Langerhans demonstrated direct stimulatory effects of OSA(R) on insulin secretion from human ß-cells, consistent with an in vivo mode of action through enhancing insulin secretion. These in vivo and in vitro observations suggest that OSA(R) may provide a potential alternative therapy for the hyperglycemia associated with T2DM. PMID:20812281

  19. Systematic Identification and Characterization of Novel Human Skin-Associated Genes Encoding Membrane and Secreted Proteins

    PubMed Central

    Buhren, Bettina Alexandra; Martinez, Cynthia; Schrumpf, Holger; Gasis, Marcia; Grether-Beck, Susanne; Krutmann, Jean

    2013-01-01

    Through bioinformatics analyses of a human gene expression database representing 105 different tissues and cell types, we identified 687 skin-associated genes that are selectively and highly expressed in human skin. Over 50 of these represent uncharacterized genes not previously associated with skin and include a subset that encode novel secreted and plasma membrane proteins. The high levels of skin-associated expression for eight of these novel therapeutic target genes were confirmed by semi-quantitative real time PCR, western blot and immunohistochemical analyses of normal skin and skin-derived cell lines. Four of these are expressed specifically by epidermal keratinocytes; two that encode G-protein-coupled receptors (GPR87 and GPR115), and two that encode secreted proteins (WFDC5 and SERPINB7). Further analyses using cytokine-activated and terminally differentiated human primary keratinocytes or a panel of common inflammatory, autoimmune or malignant skin diseases revealed distinct patterns of regulation as well as disease associations that point to important roles in cutaneous homeostasis and disease. Some of these novel uncharacterized skin genes may represent potential biomarkers or drug targets for the development of future diagnostics or therapeutics. PMID:23840300

  20. Nufenoxole, a new antidiarrhoeal agent, inhibits fluid secretion in the human jejunum.

    PubMed Central

    Moriarty, K J; Rolston, D D; Kelly, M J; Shield, M; Clark, M L

    1985-01-01

    Nufenoxole is an orally active antidiarrhoeal agent which binds to opioid receptors in the brain and myenteric plexus of the intestine. A perfusion technique has been used to investigate the effect of nufenoxole (1 mg/kg intrajejunally) on water and solute transport stimulated by the secretagogue, dioctyl sodium sulphosuccinate, in the human jejunum in vivo. Nufenoxole reversed the direction of jejunal transport of salt and water from net secretion to net absorption. These changes in water and electrolyte transport were inhibited by intravenous naloxone, the opioid antagonist. Nufenoxole possesses potent antisecretory properties, which are mediated via opioid receptors and may contribute to its antidiarrhoeal action in man. PMID:2578119

  1. Placental Nutrient Transport and Intrauterine Growth Restriction

    PubMed Central

    Gaccioli, Francesca; Lager, Susanne

    2016-01-01

    Intrauterine growth restriction refers to the inability of the fetus to reach its genetically determined potential size. Fetal growth restriction affects approximately 5–15% of all pregnancies in the United States and Europe. In developing countries the occurrence varies widely between 10 and 55%, impacting about 30 million newborns per year. Besides having high perinatal mortality rates these infants are at greater risk for severe adverse outcomes, such as hypoxic ischemic encephalopathy and cerebral palsy. Moreover, reduced fetal growth has lifelong health consequences, including higher risks of developing metabolic and cardiovascular diseases in adulthood. Numerous reports indicate placental insufficiency as one of the underlying causes leading to altered fetal growth and impaired placental capacity of delivering nutrients to the fetus has been shown to contribute to the etiology of intrauterine growth restriction. Indeed, reduced expression and/or activity of placental nutrient transporters have been demonstrated in several conditions associated with an increased risk of delivering a small or growth restricted infant. This review focuses on human pregnancies and summarizes the changes in placental amino acid, fatty acid, and glucose transport reported in conditions associated with intrauterine growth restriction, such as maternal undernutrition, pre-eclampsia, young maternal age, high altitude and infection. PMID:26909042

  2. A study of the distribution of aluminium in human placental tissues based on alkaline solubilization with determination by electrothermal atomic absorption spectrometry.

    PubMed

    Kruger, Pamela C; Schell, Lawrence M; Stark, Alice D; Parsons, Patrick J

    2010-09-01

    Aluminium (Al) is a nonessential element known to induce neurotoxic effects, such as dialysis dementia, in patients on hemodialysis, with compromised kidney function. The role of Al in the progression of some neurodegenerative diseases, such as Alzheimer's disease (AD), is controversial, and remains unclear. The effects of Al on other vulnerable populations, such as fetuses and infants, have been infrequently studied. In the present study, Al has been measured in human placenta samples, comprising ∼160 each of placenta bodies, placenta membranes, and umbilical cords, using electrothermal atomic absorption spectrometry (ETAAS) after atmospheric pressure digestion with tetramethylammonium hydroxide (TMAH) and ethylenediaminetetraacidic acid (EDTA). The sensitivity, or characteristic mass (m(0)), for Al at the 309.3-nm line was found to be 30 ± 4 pg. The instrumental detection limit (IDL) (3s) for Al in solution was calculated as 0.72 μg L(-1) while the method detection limit (MDL) (3s) was 0.25 μg g(-1). Accuracy was assessed through analysis of quality control (QC) materials, including certified reference materials (CRMs), in-house reference materials (RMs), and spike recovery experiments, of varying matrices. Placental tissue analyses revealed geometric mean concentrations of approximately 0.5 μg g(-1) Al in placenta bodies (n = 165) and membranes (n = 155), while Al concentrations in umbilical cords (n = 154) were about 0.3 μg g(-1). Al was detected in 95% of placenta bodies, and 81% of placenta membranes, but only in 46% of umbilical cords. PMID:21072353

  3. A study of the distribution of aluminum in human placental tissues based on alkaline solubilization with determination by electrothermal atomic absorption spectrometry

    PubMed Central

    Kruger, Pamela C.; Schell, Lawrence M.; Stark, Alice D.; Parsons, Patrick J.

    2010-01-01

    Summary Aluminum (Al) is a nonessential element known to induce neurotoxic effects, such as dialysis dementia, in patients on hemodialysis, with compromised kidney function. The role of Al in the progression of some neurodegenerative diseases, such as Alzheimer’s disease (AD), is controversial, and remains unclear. The effects of Al on other vulnerable populations, such as fetuses and infants, have been infrequently studied. In the present study, Al has been measured in human placenta samples, comprising ~160 each of placenta bodies, placenta membranes, and umbilical cords, using electrothermal atomic absorption spectrometry (ETAAS) after atmospheric pressure digestion with tetramethylammonium hydroxide (TMAH) and ethylenediaminetetraacidic acid (EDTA). The sensitivity, or characteristic mass (m0), for Al at the 309.3-nm line was found to be 30 ± 4 pg. The instrumental detection limit (IDL) (3s) for Al in solution was calculated as 0.72 μg L-1, while the method detection limit (MDL) (3s) was 0.25 μg g-1. Accuracy was assessed through analysis of quality control (QC) materials, including certified reference materials (CRMs), in-house reference materials (RMs), and spike recovery experiments, of varying matrices. Placental tissue analyses revealed geometric mean concentrations of approximately 0.5 μg g-1 Al in placenta bodies (n=165) and membranes (n=155), while Al concentrations in the umbilical cord (n=154) were about 0.3 μg g-1. Al was detected in 95% of placenta bodies, and 81% of placenta membranes, but only in 46% of umbilical cords. PMID:21072353

  4. Placental Dysfunction and Fetal Programming: The Importance of Placental Size, Shape, Histopathology, and Molecular Composition

    PubMed Central

    Longtine, Mark S.; Nelson, D. Michael

    2013-01-01

    Normal function of the placenta is pivotal for optimal fetal growth and development. Fetal programming commonly is associated with placental dysfunction that predisposes to obstetric complications and .suboptimal fetal outcomes. We consider several clinical phenotypes for placental dysfunction that likely predispose to fetal programming. Some of these reflect abnormal development of the chorioallantoic placenta in size, shape, or histopathology. Others result when exogenous stressors in the maternal environment combine with maladaptation of the placental response to yield small placentas with limited reserve, as typical of early-onset intrauterine growth restriction and preeclampsia. Still others reflect epigenetic changes, including altered expression of imprinted genes, altered enzymatic activity, or altered efficiencies in nutrient transport. Although the human placenta is a transient organ that persists only 9 months, the effects of this organ on the offspring remain for a lifetime. PMID:21710395

  5. Pseudoislet formation enhances gene expression, insulin secretion and cytoprotective mechanisms of clonal human insulin-secreting 1.1B4 cells.

    PubMed

    Green, Alastair D; Vasu, Srividya; McClenaghan, Neville H; Flatt, Peter R

    2015-10-01

    We have studied the effects of cell communication on human beta cell function and resistance to cytotoxicity using the novel human insulin-secreting cell line 1.1B4 configured as monolayers and pseudoislets. Incubation with the incretin gut hormones GLP-1 and GIP caused dose-dependent stimulation of insulin secretion from 1.1B4 cell monolayers and pseudoislets. The secretory responses were 1.5-2.7-fold greater than monolayers. Cell viability (MTT), DNA damage (comet assay) and apoptosis (acridine orange/ethidium bromide staining) were investigated following 2-h exposure of 1.1B4 monolayers and pseudoislets to ninhydrin, H2O2, streptozotocin, glucose, palmitate or cocktails of proinflammatory cytokines. All agents tested decreased viability and increased DNA damage and apoptosis in both 1.1B4 monolayers and pseudoislets. However, pseudoislets exhibited significantly greater resistance to cytotoxicity (1.5-2.7-fold increases in LD50) and lower levels of DNA damage (1.3-3.4-fold differences in percentage tail DNA and olive tail moment) and apoptosis (1.3-1.5-fold difference) compared to monolayers. Measurement of gene expression by reverse-transcription, real-time PCR showed that genes involved with insulin secretion (INS, PDX1, PCSK1, PCSK2, GLP1R and GIPR), cell-cell communication (GJD2, GJA1 and CDH1) and antioxidant defence (SOD1, SOD2, GPX1 and CAT) were significantly upregulated in pseudoislets compared to monolayers, whilst the expression of proapoptotic genes (NOS2, MAPK8, MAPK10 and NFKB1) showed no significant differences. In summary, these data indicate cell-communication associated with three-dimensional islet architecture is important both for effective insulin secretion and for protection of human beta cells against cytotoxicity. PMID:25559846

  6. Reevaluation of Fatty Acid Receptor 1 as a Drug Target for the Stimulation of Insulin Secretion in Humans

    PubMed Central

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia; Christiansen, Elisabeth; Due-Hansen, Maria E.; Grundmann, Manuel; Machicao, Fausto; Peter, Andreas; Kostenis, Evi; Ulven, Trond; Fritsche, Andreas; Häring, Hans-Ulrich; Ullrich, Susanne

    2013-01-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1 agonist, TUG-469, stimulate glucose-induced insulin secretion through FFAR1. The proapoptotic effect of chronic exposure of β-cells to palmitate was independent of FFAR1. TUG-469 was protective, whereas inhibition of FFAR1 promoted apoptosis. In accordance with the proapoptotic effect of palmitate, in vivo cross-sectional observations demonstrated a negative association between fasting free fatty acids (NEFAs) and insulin secretion. Because NEFAs stimulate secretion through FFAR1, we examined the interaction of genetic variation in FFAR1 with NEFA and insulin secretion. The inverse association of NEFA and secretion was modulated by rs1573611 and became steeper for carriers of the minor allele. In conclusion, FFAR1 agonists support β-cell function, but variation in FFAR1 influences NEFA effects on insulin secretion and therefore could affect therapeutic efficacy of FFAR1 agonists. PMID:23378609

  7. Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans.

    PubMed

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia; Christiansen, Elisabeth; Due-Hansen, Maria E; Grundmann, Manuel; Machicao, Fausto; Peter, Andreas; Kostenis, Evi; Ulven, Trond; Fritsche, Andreas; Häring, Hans-Ulrich; Ullrich, Susanne

    2013-06-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1 agonist, TUG-469, stimulate glucose-induced insulin secretion through FFAR1. The proapoptotic effect of chronic exposure of β-cells to palmitate was independent of FFAR1. TUG-469 was protective, whereas inhibition of FFAR1 promoted apoptosis. In accordance with the proapoptotic effect of palmitate, in vivo cross-sectional observations demonstrated a negative association between fasting free fatty acids (NEFAs) and insulin secretion. Because NEFAs stimulate secretion through FFAR1, we examined the interaction of genetic variation in FFAR1 with NEFA and insulin secretion. The inverse association of NEFA and secretion was modulated by rs1573611 and became steeper for carriers of the minor allele. In conclusion, FFAR1 agonists support β-cell function, but variation in FFAR1 influences NEFA effects on insulin secretion and therefore could affect therapeutic efficacy of FFAR1 agonists. PMID:23378609

  8. Monosodium Urate Activates Src/Pyk2/PI3 Kinase and Cathepsin Dependent Unconventional Protein Secretion From Human Primary Macrophages*

    PubMed Central

    Välimäki, Elina; Miettinen, Juho J.; Lietzén, Niina; Matikainen, Sampsa; Nyman, Tuula A.

    2013-01-01

    Monosodium urate (MSU) is an endogenous danger signal that is crystallized from uric acid released from injured cells. MSU is known to activate inflammatory response in macrophages but the molecular mechanisms involved have remained uncharacterized. Activated macrophages start to secrete proteins to activate immune response and to recruit other immune cells to the site of infection and/or tissue damage. Secretome characterization after activation of innate immune system is essential to unravel the details of early phases of defense responses. Here, we have analyzed the secretome of human primary macrophages stimulated with MSU using quantitative two-dimensional gel electrophoresis based proteomics as well as high-throughput qualitative GeLC-MS/MS approach combining protein separation by SDS-PAGE and protein identification by liquid chromatography-MS/MS. Both methods showed that MSU stimulation induced robust protein secretion from lipopolysaccharide-primed human macrophages. Bioinformatic analysis of the secretome data showed that MSU stimulation strongly activates unconventional, vesicle mediated protein secretion. The unconventionally secreted proteins included pro-inflammatory cytokines like IL-1β and IL-18, interferon-induced proteins, and danger signal proteins. Also active forms of lysosomal proteases cathepsins were secreted on MSU stimulation, and cathepsin activity was essential for MSU-induced unconventional protein secretion. Additionally, proteins associated to phosphorylation events including Src family tyrosine kinases were increased in the secretome of MSU-stimulated cells. Our functional studies demonstrated that Src, Pyk2, and PI3 kinases act upstream of cathepsins to activate the overall protein secretion from macrophages. In conclusion, we provide the first comprehensive characterization of protein secretion pathways activated by MSU in human macrophages, and reveal a novel role for cathepsins and Src, Pyk2, PI3 kinases in the activation of

  9. Polarized secretion of newly synthesized lipoproteins by the Caco-2 human intestinal cell line

    SciTech Connect

    Traber, M.G.; Kayden, H.J.; Rindler, M.J.

    1987-11-01

    Lipoprotein secretion by Caco-2 cells, a human intestinal cell line, was studied in cells grown on inserts containing a Millipore filter (0.45 micron), separating secretory products from the apical and basolateral membranes into separate chambers. Under these conditions, as observed by electron microscopy, the cells formed a monolayer of columnar epithelial cells with microvilli on the apical surface and tight junctions between cells. The electrical resistances of the cell monolayers were 250-500 ohms/cm2. Both /sup 14/C-labeled lipids and /sup 35/S-labeled proteins were used to assess lipoprotein secretion. After a 24-hr incubation with (/sup 14/C)oleic acid, 60-80% of the secreted triglyceride (TG) was in the basolateral chamber; 40% of the TG was present in the d less than 1.006 g/ml (chylomicron + VLDL) fraction and 50% in the 1.006 less than d less than 1.063 g/ml (LDL) fraction. After a 4-hr incubation with (/sup 35/S)methionine, apolipoproteins were found to be major secretory products with 75-100% secreted to the basolateral chamber. Apolipoproteins B-100, B-48, E, A-I, A-IV, and C-III were identified by immunoprecipitation. The d less than 1.006 g/ml fraction was found to contain all of the major apolipoproteins, while the LDL fraction contained primarily apoB-100 and apoE; the HDL (1.063 less than d less than 1.21 g/ml) fraction principally contained apoA-I and apoA-IV. Mn-heparin precipitated all of the (/sup 35/S)methionine-labeled apoB-100 and B-48 and a majority of the other apolipoproteins, and 80% of the (/sup 14/C)oleic acid-labeled triglyceride, but only 15% of the phospholipid, demonstrating that Caco-2 cells secrete triglyceride-rich lipoproteins containing apoB.

  10. Cultured human astrocytes secrete large cholesteryl ester- andtriglyceride-rich lipoproteins along with endothelial lipase

    SciTech Connect

    Yang, Lin; Liu, Yanzhu; Forte, Trudy M.; Chisholm, Jeffrey W.; Parks, John S.; Shachter, Neil S.

    2003-12-01

    We cultured normal human astrocytes and characterized their secreted lipoproteins. Human astrocytes secreted lipoproteins in the size range of plasma VLDL (Peak 1), LDL (Peak 2), HDL (Peak 3) and a smaller peak (Peak 4), as determined by gel filtration chromatography, nondenaturing gradient gel electrophoresis and transmission electron microscopy. Cholesterol enrichment of astrocytes led to a particular increase in Peak 1. Almost all Peak 2, 3 and 4 cholesterol and most Peak 1 cholesterol was esterified (unlike mouse astrocyte lipoproteins, which exhibited similar peaks but where cholesterol was predominantly non-esterified). Triglycerides were present at about 2/3 the level of cholesterol. LCAT was detected along with two of its activators, apolipoprotein (apo) A-IV and apoC-I. ApoA-I and apoA-II mRNA and protein were absent. ApoJ was present equally in all peaks but apoE was present predominantly in peaks 3 and 4. ApoB was not detected. The electron microscopic appearance of Peak 1 lipoproteins suggested partial lipolysis leading to the detection of a heparin-releasable triglyceride lipase consistent with endothelial lipase. The increased neuronal delivery of lipids from large lipoprotein particles, for which apoE4 has greater affinity than does apoE3, may be a mechanism whereby the apoE {var_epsilon}4 allele contributes to neurodegenerative risk.

  11. The spectrophotometric sulfo-phospho-vanillin assessment of total lipids in human meibomian gland secretions.

    PubMed

    McMahon, Anne; Lu, Hua; Butovich, Igor A

    2013-05-01

    Human meibomian gland secretions (meibum) are the major lipid component of the human preocular tear film. The predominant lipid classes found in meibum include waxes (WE), cholesteryl esters (CE), and varying amounts of cholesterol (Chl). The classical sulfo-phospho-vanillin assay (SPVA), adapted for a microplate reader, was used to quantitate lipids in meibum. To account for varying reactivities of different lipids in SPVA, a model meibomian lipid mixture (MMx) that approximated the WE/CE/Chl composition of meibum was developed and used to quantitate meibomian lipids. The overall SPV responses of MMx and meibum were found to be close, with similar intermediate and final reaction products for both. Saturated WE that had not been expected to be reactive were found to be SPV-positive. A reaction mechanism for these compounds in SPVA which involves the formation of alkenyl ethers is proposed and discussed. Tested proteins were non-reactive in SPVA. Thus, by comparing the results of gravimetric analyses of meibum samples with the results of a properly calibrated SPVA, it was estimated that the SPV-reactive lipid content of dry meibum in tested samples was about 78 % (w/w). The SPV method can also be adopted for analyzing other types of complex lipids secretions, such as sebum, as well as whole lipid extracts from other lipid-enriched organs and tissues, if proper standards are chosen. PMID:23345137

  12. Human iPSC-Derived Immature Astroglia Promote Oligodendrogenesis by Increasing TIMP-1 Secretion.

    PubMed

    Jiang, Peng; Chen, Chen; Liu, Xiao-Bo; Pleasure, David E; Liu, Ying; Deng, Wenbin

    2016-05-10

    Astrocytes, once considered passive support cells, are increasingly appreciated as dynamic regulators of neuronal development and function, in part via secreted factors. The extent to which they similarly regulate oligodendrocytes or proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) is less understood. Here, we generated astrocytes from human pluripotent stem cells (hiPSC-Astros) and demonstrated that immature astrocytes, as opposed to mature ones, promote oligodendrogenesis in vitro. In the PVL mouse model of neonatal hypoxic/ischemic encephalopathy, associated with cerebral palsy in humans, transplanted immature hiPSC-Astros promoted myelinogenesis and behavioral outcome. We further identified TIMP-1 as a selectively upregulated component secreted from immature hiPSC-Astros. Accordingly, in the rat PVL model, intranasal administration of conditioned medium from immature hiPSC-Astros promoted oligodendrocyte maturation in a TIMP-1-dependent manner. Our findings suggest stage-specific developmental interactions between astroglia and oligodendroglia and have important therapeutic implications for promoting myelinogenesis. PMID:27134175

  13. Interleukin-1 beta induces synthesis and secretion of interleukin-6 in human chondrocytes.

    PubMed

    Bender, S; Haubeck, H D; Van de Leur, E; Dufhues, G; Schiel, X; Lauwerijns, J; Greiling, H; Heinrich, P C

    1990-04-24

    Increased concentrations of interleukin-6 (IL-6) have been found in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and crystal-related joint diseases. It is therefore of great interest to identify the cells responsible for the production of IL-6, and to investigate whether IL-6 plays a role in the pathogenesis of degenerative or inflammatory joint diseases. Here we show that human interleukin-1 beta (IL-1 beta) induces IL-6 synthesis and secretion in differentiated human chondrocytes. In organ cultures resembling closely the in vivo system 10(6) chondrocytes incubated with 100 units of interleukin-1 beta per ml of medium led to the release of 6 X 10(3) units of IL-6 within 24 h. Chondrocytes cultured in agarose or as monolayers similarly incubated with IL-1 beta produced even higher amounts of IL-6: 70 X 10(3) units per 10(6) cells within 24 h. The induction of IL-6 synthesis by IL-1 beta was also shown at the mRNA level. IL-6 secreted by stimulated chondrocytes showed heterogeneity upon Western blot analysis. PMID:2335234

  14. Effect of addition of human follicular fluid on progesterone secretion by cultured sheep granulosa cells.

    PubMed

    Kumari, G L; Vohra, S; Raghavan, V

    1982-10-01

    The effect of addition of human follicular fluid to cultures of granulosa cells of large sheep follicles (4-6 mm in diameter) on basal and LH-stimulated progesterone secretion was investigated. Both luteinization and progesterone secretion were inhibited by addition of 10% (w/v) charcoal-treated follicular fluid from medium (2-6 mm) and large (7-16 mm) follicles which had low concentrations of estradiol-17 beta, progesterone and LH. In comparison, the fluid from large follicles, having high levels of the same hormones, stimulated both the parameters, and addition of LH along with the fluid had no further effect. Fluid collected from cystic follicles appeared to be stimulatory which also had elevated levels of estradiol-17 beta and progesterone. These findings indicate the presence of both the inhibitors and stimulators of luteinization in human follicular fluid. The effectiveness of any of them either to inhibit or stimulate luteinization probably will depend upon the composition of the follicular fluid and the stage of maturation of the follicles from which it was collected. PMID:6218983

  15. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion

    PubMed Central

    Ravassard, Philippe; Hazhouz, Yasmine; Pechberty, Séverine; Bricout-Neveu, Emilie; Armanet, Mathieu; Czernichow, Paul; Scharfmann, Raphael

    2011-01-01

    Despite intense efforts over the past 30 years, human pancreatic β cell lines have not been available. Here, we describe a robust technology for producing a functional human β cell line using targeted oncogenesis in human fetal tissue. Human fetal pancreatic buds were transduced with a lentiviral vector that expressed SV40LT under the control of the insulin promoter. The transduced buds were then grafted into SCID mice so that they could develop into mature pancreatic tissue. Upon differentiation, the newly formed SV40LT-expressing β cells proliferated and formed insulinomas. The resulting β cells were then transduced with human telomerase reverse transcriptase (hTERT), grafted into other SCID mice, and finally expanded in vitro to generate cell lines. One of these cell lines, EndoC-βH1, expressed many β cell–specific markers without any substantial expression of markers of other pancreatic cell types. The cells secreted insulin when stimulated by glucose or other insulin secretagogues, and cell transplantation reversed chemically induced diabetes in mice. These cells represent a unique tool for large-scale drug discovery and provide a preclinical model for cell replacement therapy in diabetes. This technology could be generalized to generate other human cell lines when the cell type–specific promoter is available. PMID:21865645

  16. Distinct patterns of gene-specific methylation in mammalian placentas: implications for placental evolution and function.

    PubMed

    Ng, H K; Novakovic, B; Hiendleder, S; Craig, J M; Roberts, C T; Saffery, R

    2010-04-01

    The placenta has arisen relatively recently and is among the most rapidly evolving tissues in mammals. Several different placental barrier and structure types appear to have independently evolved common functional features. Specific patterns of gene expression that determine placental development in humans are predicted to be accompanied by specific profiles of epigenetic modification. However, the stratification of epigenetic modifications into those involved in conserved aspects of placental function, versus those involved in divergent placental features, has yet to begin. As a first step towards this goal, we have investigated the methylation status of a small number of gene-specific methylation events recently identified in human placenta, in a panel of placental tissue from baboon, marmoset, cow, cat, guinea pig and mouse. These represent disparate placental barrier types and structures. In this study we hypothesized that specific epigenetic markings may be associated with placental barrier type or function, independent of phylogeny. However, in contrast to our predictions, the majority of gene-specific methylation appears to track with phylogeny, independent of placental barrier type or other structural features. This suggests that despite the likelihood of epigenetic modification playing a role in the functioning and evolution of different placental subtypes, there is no evidence for an involvement of the gene-specific methylation profiles we have identified, in specifying these differences. Further studies, examining larger numbers of epigenetic modifications across phylogeny, are required to define the role of specific epigenetic modifications in the evolution of distinct placental structures. PMID:20167366

  17. Netrins and Their Roles in Placental Angiogenesis

    PubMed Central

    Dakouane-Giudicelli, Mbarka; Alfaidy, Nadia; de Mazancourt, Philippe

    2014-01-01

    Netrins, a family of laminin-related proteins, were originally identified as axonal guidance molecules. Subsequently, netrins were found to modulate various biological processes including morphogenesis, tumorogenesis, adhesion, and, recently, angiogenesis. In human placenta, the most vascularized organ, the presence of netrins has also been reported. Recent studies demonstrated the involvement of netrins in the regulation of placental angiogenesis. In this review we focused on the role of netrins in human placental angiogenesis. Among all netrins examined, netrin-4 and netrin-1 have been found to be either pro- or antiangiogenic factors. These opposite effects appear to be related to the endothelial cell phenotype studied and seem also to depend on the receptor type to which netrin binds, that is, the canonical receptor member of the DCC family, the members of the UNC5 family, or the noncanonical receptor members of the integrin family or DSCAM. PMID:25143950

  18. Preparation of a novel composite nanofiber gel-encapsulated human placental extract through layer-by-layer self-assembly

    PubMed Central

    LIU, GUOHUI; CHEN, XI; ZHOU, WU; YANG, SHUHUA; YE, SHUNAN; CAO, FAQI; LIU, YI; XIONG, YUAN

    2016-01-01

    Aqueous human placenta extract (HPE) has been previously used to treat chronic soft tissue ulcer; however, the optimal dosage of HPE has yet to be elucidated. The present study investigated a novel nanofiber gel composed through layer-by-layer (LbL) self-assembly, in which HPE was encapsulated. IKVAV, RGD, RAD16 and FGL-PA were screened and combined to produce an optimal vehicle nanofiber gel through LbL assembly. Subsequently, the aqueous HPE was encapsulated into this nanofiber at the appropriate concentration, and the morphology, particle size, drug loading efficacy, encapsulation rate, release efficiency and structure validation were detected. The encapsulation efficiency of all three HPE samples was >90%, the nanofiber gel exhibited a slow releasing profile, and the structure of HPE encapsulated in the nanofiber gel was unvaried. In conclusion, this type of novel composite nanocapsules may offer a promising delivery system for HPE. PMID:27073463

  19. Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo.

    PubMed

    Ferri, C; Pittoni, V; Piccoli, A; Laurenti, O; Cassone, M R; Bellini, C; Properzi, G; Valesini, G; De Mattia, G; Santucci, A

    1995-03-01

    Endothelin-1 (ET-1) is a potent vasoactive and mitogenic peptide produced by the vascular endothelium. In this study, we evaluated whether insulin stimulates ET-1 secretion by human endothelial cells derived from umbilical cord veins and by human permanent endothelial hybrid cells Ea.hy 926. Moreover, to provide evidence that insulin may stimulate ET-1 secretion in vivo, plasma ET-1 levels were evaluated in 7 type II diabetic normotensive males (mean age, 54.3 +/- 4.0 yr) during 2-h hyperinsulinemic euglycemic clamps (287 pmol insulin/m2.min-1) as well as in 12 obese hypertensive males (mean age, 44.2 +/- 4.6 yr) before and after a 12-week period of caloric restriction. Our results showed that insulin stimulated ET-1 release from cultured endothelial cells in a dose-dependent fashion. ET-1 release persisted for 24 h and was also observed at physiological insulin concentrations (10(-9) mol/L). The insulin-induced ET-1 secretion was inhibited by genistein, a tyrosine kinase inhibitor, and by cycloheximide, a protein synthesis inhibitor, suggesting that it requires de novo protein synthesis rather than ET-1 release from intracellular stores. In the in vivo experiments, plasma ET-1 levels rapidly increased during euglycemic hyperinsulinemic clamps (from 0.76 +/- 0.18 pg/mL at time zero to 1.65 +/- 0.21 pg/mL at 60 min; P < 0.05) and persisted elevated until the end of insulin infusion (1.37 +/- 0.37 pg/mL at 120 min; P < 0.05 vs. time zero). In obese hypertensives, plasma ET-1 levels significantly decreased after 12 weeks of caloric restriction (from 0.85 +/- 0.51 to 0.48 +/- 0.28 pg/mL; P < 0.04). The decrease in body weight induced by caloric restriction was accompanied by a significant reduction in fasting insulin levels (from 167.2 +/- 94.0 to 98.9 +/- 44.9 pmol/L; P < 0.05) which correlated with the reduction in plasma ET-1 levels (r = 0.78; P < 0.003). In conclusion, our data show that insulin stimulates both in vitro and in vivo ET-1 secretion. Such interaction

  20. Cyclic mechanical stretching and interleukin-1alpha synergistically up-regulate prostacyclin secretion in cultured human uterine myometrial cells.

    PubMed

    Korita, D; Itoh, H; Sagawa, N; Yura, S; Yoshida, M; Kakui, K; Takemura, M; Nuamah, M A; Fujii, S

    2004-03-01

    Prostacyclin (PGI2), a potent uterine smooth muscle relaxant, is postulated to be a major prostaglandin (PG) secreted from the human myometrium. PGI2 metabolite concentrations in the maternal plasma were reported to be elevated during pregnancy, especially during labor. Recently, we developed cultured human myometrial cells from pregnant women and reported that cyclic mechanical stretching mimicking labor increased PGI2 secretion from these cells by up-regulating PGI2 synthase promoter activities. Since elevation of cervical/vaginal interleukin-1alpha (IL-1alpha) concentrations is also a characteristic feature of delivery, and IL-1alpha is a known stimulator of PG synthesis, we investigated a possible synergistic effect of cyclic mechanical stretching and IL-1alpha on PGI2 production in cultured human myometrial cells. Treatment with IL-1alpha (10 ng/ml) significantly augmented (4- to 60-fold) the secretion of PGI2, prostaglandin E2 (PGE2), prostaglandin F2alpha (PGF2alpha) and thromboxane A2 (TXA2) from cultured human myometrial cells obtained from non-pregnant and pregnant women as well as in cultured human umbilical artery and cultured human coronary artery smooth muscle cells (p < 0.05 for all comparisons). However, labor-like cyclic mechanical stretching up-regulated IL-1alpha-augmented PGI2 secretion from myometrial cells obtained from non-pregnant and pregnant women 2.1- to 2.8-fold (p < 0.05 for all comparisons), but not PGE2, PGF2alpha nor TXA2. Moreover, such an augumentation of PGI2 secretion by cyclic mechanical stretching was not observed in cultured human umbilical artery nor in cultured human coronary artery smooth muscle cells. These results suggest that cyclic mechanical stretching by labor, in concert with IL-1alpha stimulation, contributes to the increase in myometrial PGI2 secretion during delivery. PMID:15255281

  1. Glucose-dependent insulinotropic polypeptide: effects on insulin and glucagon secretion in humans.

    PubMed

    Christensen, Mikkel Bring

    2016-04-01

    The hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted by enteroendocrine cells in the intestinal mucosa in response to nutrient ingestion. They are called incretin hormones because of their ability to enhance insulin secretion. However, in recent years it has become clear that the incretin hormones also affect glucagon secretion. While GLP-1 decreases glucagon levels, the effect of GIP on glucagon levels has been unclear. The regulation of glucagon secretion is interesting, as the combination of inadequate insulin secretion and excessive glucagon secretion are essential contributors to the hyperglycaemia that characterise patients with type 2 diabetes. Moreover, the near absence of a well-timed glucagon response contributes to an increased risk of hypoglycaemia in patients with type 1 diabetes. The overall aim of this PhD thesis was to investigate how the blood glucose level affects the glucagon and insulin responses to GIP in healthy subjects (Study 1) and patients with Type 2 diabetes (Study 2), and more specifically to investigate the effects of GIP and GLP-1 at low blood glucose in patients with Type 1 diabetes without endogenous insulin secretion (Study 3). The investigations in the three mentioned study populations have been described in three original articles. The employed study designs were in randomised, placebo-controlled, crossover set-up, in which the same research subject is subjected to several study days thereby acting as his own control. Interventions were intravenous administration of hormones GIP, GLP-1 and placebo (saline) during different blood glucose levels maintained (clamped) at a certain level. The end-points were plasma concentrations of glucagon and insulin as well as the amount of glucose used to clamp the blood glucose levels. In Study 3, we also used stable glucose isotopes to estimate the endogenous glucose production and assessed symptoms and cognitive function during

  2. Certolizumab pegol does not bind the neonatal Fc receptor (FcRn): Consequences for FcRn-mediated in vitro transcytosis and ex vivo human placental transfer.

    PubMed

    Porter, Charlene; Armstrong-Fisher, Sylvia; Kopotsha, Tim; Smith, Bryan; Baker, Terry; Kevorkian, Lara; Nesbitt, Andrew

    2016-08-01

    Antibodies to tumor necrosis factor (anti-TNF) are used to treat inflammatory diseases, which often affect women of childbearing age. The active transfer of these antibodies across the placenta by binding of the Fc-region to the neonatal Fc receptor (FcRn) may result in adverse fetal or neonatal effects. In contrast to other anti-TNFs, certolizumab pegol lacks an Fc-region. The objective of this study was to determine whether the structure of certolizumab pegol limits active placental transfer. Binding affinities of certolizumab pegol, infliximab, adalimumab and etanercept to human FcRn and FcRn-mediated transcytosis were determined using in vitro assays. Human placentas were perfused ex vivo to measure transfer of certolizumab pegol and positive control anti-D IgG from the maternal to fetal circulation. FcRn binding affinity (KD) was 132nM, 225nM and 1500nM for infliximab, adalimumab and etanercept, respectively. There was no measurable certolizumab pegol binding affinity, similar to that of the negative control. FcRn-mediated transcytosis across a cell layer (mean±SD; n=3) was 249.6±25.0 (infliximab), 159.0±20.2 (adalimumab) and 81.3±13.1ng/mL (etanercept). Certolizumab pegol transcytosis (3.2±3.4ng/mL) was less than the negative control antibody (5.9±4.6ng/mL). No measurable transfer of certolizumab pegol from the maternal to the fetal circulation was observed in 5 out of 6 placentas that demonstrated positive-control IgG transport in the ex vivo perfusion model. Together these results support the hypothesis that the unique structure of certolizumab pegol limits its transfer through the placenta to the fetus and may be responsible for previously reported differences in transfer of other anti-TNFs from mother to fetus. PMID:27123565

  3. The new framework for understanding placental mammal evolution.

    PubMed

    Asher, Robert J; Bennett, Nigel; Lehmann, Thomas

    2009-08-01

    An unprecedented level of confidence has recently crystallized around a new hypothesis of how living placental mammals share a pattern of common descent. The major groups are afrotheres (e.g., aardvarks, elephants), xenarthrans (e.g., anteaters, sloths), laurasiatheres (e.g., horses, shrews), and euarchontoglires (e.g., humans, rodents). Compared with previous hypotheses this tree is remarkably stable; however, some uncertainty persists about the location of the placental root, and (for example) the position of bats within laurasiatheres, of sea cows and aardvarks within afrotheres, and of dermopterans within euarchontoglires. A variety of names for sub-clades within the new placental mammal tree have been proposed, not all of which follow conventions regarding priority and stability. More importantly, the new phylogenetic framework enables the formulation of new hypotheses and testing thereof, for example regarding the possible developmental dichotomy that seems to distinguish members of the newly identified southern and northern radiations of living placental mammals. PMID:19582725

  4. Placental Protein 13 (PP13) - A Placental Immunoregulatory Galectin Protecting Pregnancy.

    PubMed

    Than, Nándor Gábor; Balogh, Andrea; Romero, Roberto; Kárpáti, Eva; Erez, Offer; Szilágyi, András; Kovalszky, Ilona; Sammar, Marei; Gizurarson, Sveinbjorn; Matkó, János; Závodszky, Péter; Papp, Zoltán; Meiri, Hamutal

    2014-01-01

    Galectins are glycan-binding proteins that regulate innate and adaptive immune responses, and some confer maternal-fetal immune tolerance in eutherian mammals. A chromosome 19 cluster of galectins has emerged in anthropoid primates, species with deep placentation and long gestation. Three of the five human cluster galectins are solely expressed in the placenta, where they may confer additional immunoregulatory functions to enable deep placentation. One of these is galectin-13, also known as Placental Protein 13 (PP13). It has a "jelly-roll" fold, carbohydrate-recognition domain and sugar-binding preference resembling other mammalian galectins. PP13 is predominantly expressed by the syncytiotrophoblast and released from the placenta into the maternal circulation. Its ability to induce apoptosis of activated T cells in vitro, and to divert and kill T cells as well as macrophages in the maternal decidua in situ, suggests important immune functions. Indeed, mutations in the promoter and an exon of LGALS13 presumably leading to altered or non-functional protein expression are associated with a higher frequency of preeclampsia and other obstetrical syndromes, which involve immune dysregulation. Moreover, decreased placental expression of PP13 and its low concentrations in first trimester maternal sera are associated with elevated risk of preeclampsia. Indeed, PP13 turned to be a good early biomarker to assess maternal risk for the subsequent development of pregnancy complications caused by impaired placentation. Due to the ischemic placental stress in preterm preeclampsia, there is increased trophoblastic shedding of PP13 immunopositive microvesicles starting in the second trimester, which leads to high maternal blood PP13 concentrations. Our meta-analysis suggests that this phenomenon may enable the potential use of PP13 in directing patient management near to or at the time of delivery. Recent findings on the beneficial effects of PP13 on decreasing blood pressure due

  5. Placental Protein 13 (PP13) – A Placental Immunoregulatory Galectin Protecting Pregnancy

    PubMed Central

    Than, Nándor Gábor; Balogh, Andrea; Romero, Roberto; Kárpáti, Éva; Erez, Offer; Szilágyi, András; Kovalszky, Ilona; Sammar, Marei; Gizurarson, Sveinbjorn; Matkó, János; Závodszky, Péter; Papp, Zoltán; Meiri, Hamutal

    2014-01-01

    Galectins are glycan-binding proteins that regulate innate and adaptive immune responses, and some confer maternal-fetal immune tolerance in eutherian mammals. A chromosome 19 cluster of galectins has emerged in anthropoid primates, species with deep placentation and long gestation. Three of the five human cluster galectins are solely expressed in the placenta, where they may confer additional immunoregulatory functions to enable deep placentation. One of these is galectin-13, also known as Placental Protein 13 (PP13). It has a “jelly-roll” fold, carbohydrate-recognition domain and sugar-binding preference resembling other mammalian galectins. PP13 is predominantly expressed by the syncytiotrophoblast and released from the placenta into the maternal circulation. Its ability to induce apoptosis of activated T cells in vitro, and to divert and kill T cells as well as macrophages in the maternal decidua in situ, suggests important immune functions. Indeed, mutations in the promoter and an exon of LGALS13 presumably leading to altered or non-functional protein expression are associated with a higher frequency of preeclampsia and other obstetrical syndromes, which involve immune dysregulation. Moreover, decreased placental expression of PP13 and its low concentrations in first trimester maternal sera are associated with elevated risk of preeclampsia. Indeed, PP13 turned to be a good early biomarker to assess maternal risk for the subsequent development of pregnancy complications caused by impaired placentation. Due to the ischemic placental stress in preterm preeclampsia, there is increased trophoblastic shedding of PP13 immunopositive microvesicles starting in the second trimester, which leads to high maternal blood PP13 concentrations. Our meta-analysis suggests that this phenomenon may enable the potential use of PP13 in directing patient management near to or at the time of delivery. Recent findings on the beneficial effects of PP13 on decreasing blood pressure

  6. Staphylococcus aureus and Pseudomonas aeruginosa express and secrete human surfactant proteins.

    PubMed

    Bräuer, Lars; Schicht, Martin; Worlitzsch, Dieter; Bensel, Tobias; Sawers, R Gary; Paulsen, Friedrich

    2013-01-01

    Surfactant proteins (SP), originally known from human lung surfactant, are essential to proper respiratory function in that they lower the surface tension of the alveoli. They are also important components of the innate immune system. The functional significance of these proteins is currently reflected by a very large and growing number of publications. The objective goal of this study was to elucidate whether Staphylococcus aureus and Pseudomonas aeruginosa is able to express surfactant proteins. 10 different strains of S. aureus and P. aeruginosa were analyzed by means of RT-PCR, Western blot analysis, ELISA, immunofluorescence microscopy and immunoelectron microscopy. The unexpected and surprising finding revealed in this study is that different strains of S. aureus and P. aeruginosa express and secrete proteins that react with currently commercially available antibodies to known human surfactant proteins. Our results strongly suggest that the bacteria are either able to express 'human-like' surfactant proteins on their own or that commercially available primers and antibodies to human surfactant proteins detect identical bacterial proteins and genes. The results may reflect the existence of a new group of bacterial surfactant proteins and DNA currently lacking in the relevant sequence and structure databases. At any rate, our knowledge of human surfactant proteins obtained from immunological and molecular biological studies may have been falsified by the presence of bacterial proteins and DNA and therefore requires critical reassessment. PMID:23349731

  7. Staphylococcus aureus and Pseudomonas aeruginosa Express and Secrete Human Surfactant Proteins

    PubMed Central

    Worlitzsch, Dieter; Bensel, Tobias; Sawers, R. Gary; Paulsen, Friedrich

    2013-01-01

    Surfactant proteins (SP), originally known from human lung surfactant, are essential to proper respiratory function in that they lower the surface tension of the alveoli. They are also important components of the innate immune system. The functional significance of these proteins is currently reflected by a very large and growing number of publications. The objective goal of this study was to elucidate whether Staphylococcus aureus and Pseudomonas aeruginosa is able to express surfactant proteins. 10 different strains of S. aureus and P. aeruginosa were analyzed by means of RT-PCR, Western blot analysis, ELISA, immunofluorescence microscopy and immunoelectron microscopy. The unexpected and surprising finding revealed in this study is that different strains of S. aureus and P. aeruginosa express and secrete proteins that react with currently commercially available antibodies to known human surfactant proteins. Our results strongly suggest that the bacteria are either able to express ‘human-like’ surfactant proteins on their own or that commercially available primers and antibodies to human surfactant proteins detect identical bacterial proteins and genes. The results may reflect the existence of a new group of bacterial surfactant proteins and DNA currently lacking in the relevant sequence and structure databases. At any rate, our knowledge of human surfactant proteins obtained from immunological and molecular biological studies may have been falsified by the presence of bacterial proteins and DNA and therefore requires critical reassessment. PMID:23349731

  8. Polyaromatic compounds alter placental protein synthesis in pregnant rats

    SciTech Connect

    Shiverick, K.T.; Ogilvie, S.; Medrano, T. )

    1991-03-15

    The administration of the polyaromatic compounds {beta}-naphthoflavone ({beta}NF) and 3-methylcholanthrene (3MC) to pregnant rats during mid-gestation has been shown to produce marked feto-placental growth retardation. This study examined secretory protein synthesis in placental tissue from rats following administration of {beta}NF on gestation days (gd) 11-14 or 3MC on gd 12-14. Explants of placental basal zone tissue were cultured for 24 hours in serum-free medium in the presence of ({sup 3}H)leucine. Secreted proteins were analyzed by two-dimensional SDS-polyacrylamide gel electrophoresis followed by either fluorography or immunostaining. Total incorporation of ({sup 3}H)leucine into secreted proteins was not altered in BZ explants from {beta}NF or 3MC-treated animals. However a selective decrease was observed in ({sup 3}H)leucine incorporation into a major complex of proteins with apparent molecular weight of 25-30,000 and isoelectric point between 5.3 to 5.7. This group of proteins has been further identified as being related to rat pituitary growth hormone (GH) using N-terminal amino acid microsequencing of individual spots from 2-D SDS-PA gels. This is the first report that synthesis of GH-related proteins by rat placenta is decreased following {beta}NF and 3MC administration, a change which may underlie the feto-placental growth retardation associated with these polyaromatic compounds.

  9. Feto-placental adaptations to maternal obesity in the baboon

    PubMed Central

    Farley, Darren; Tejero, Maria E.; Comuzzie, Anthony G.; Higgins, Paul B.; Cox, Laura; Werner, Sherry L.; Jenkins, Susan L.; Li, Cun.; Choi, Jaehyek; Dick, Edward J.; Hubbard, Gene B.; Frost, Patrice; Dudley, Donald D.; Ballesteros, Brandon; Wu, Guoyao; Nathanielsz, Peter W.; Schlabritz-Loutsevitch, Natalia E.

    2010-01-01

    Maternal obesity is present in 20–34% of pregnant women and has been associated with both intrauterine growth restriction and large-for-gestational age fetuses. While fetal and placental functions have been extensively studied in the baboon, no data are available on the effect of maternal obesity on placental structure and function in this species. We hypothesize that maternal obesity in the baboon is associated with a maternal inflammatory state and induces structural and functional changes in the placenta. The major findings of this study were 1) decreased placental syncytiotrophoblast amplification factor, intact syncytiotrophoblast endoplasmic reticulum structure and decreased system A placental amino acid transport in obese animals; 2) fetal serum amino acid composition and mononuclear cells (PBMC) transcriptome were different in fetuses from obese compared with non-obese animals 3) maternal obesity in humans and baboons is similar in regard of increased placental and adipose tissue macrophage infiltration, increased CD14 expression in maternal PBMC and maternal hyperleptinemia. In summary, these data demonstrate that in obese baboons in the absence of increased fetal weight, placental and fetal phenotype are consistent with those described for large- for-gestational age human fetuses. PMID:19632719

  10. EMMPRIN Is Secreted by Human Uterine Epithelial Cells in Microvesicles and Stimulates Metalloproteinase Production by Human Uterine Fibroblast Cells

    PubMed Central

    Dayger, C. A.; Mehrotra, P.; Belton, R. J.; Nowak, R. A.

    2012-01-01

    Endometrial remodeling is a physiological process involved in the gynecological disease, endometriosis. Tissue remodeling is directed by uterine fibroblast production of matrix metalloproteinases (MMPs). Several MMPs are regulated directly by the protein extracellular matrix metalloproteinase inducer (EMMPRIN) and also by proinflammatory cytokines such as interleukin (IL)1-α/β. We hypothesized that human uterine epithelial cells (HESs) secrete intact EMMPRIN to stimulate MMPs. Microvesicles from HES cell-conditioned medium (CM) expressed intact EMMPRIN protein. Treatment of HES cells with estradiol or phorbyl 12-myristate-13-acetate increased the release of EMMPRIN-containing microvesicles. The HES CM stimulated MMP-1, -2, and -3 messenger RNA levels in human uterine fibroblasts (HUFs) and EMMPRIN immunodepletion from HES-cell concentrated CM reduced MMP stimulation (P < .05). Treatment of HUF cells with low concentrations of IL-1β/α stimulated MMP production (P < .05). These results indicate that HES cells regulate MMP production by HUF cells by secretion of EMMPRIN, in response to ovarian hormones, proinflammatory cytokines as well as activation of protein kinase C. PMID:22729071

  11. Campylobacter jejuni survival within human epithelial cells is enhanced by the secreted protein CiaI

    PubMed Central

    Buelow, Daelynn R.; Christensen, Jeffrey E.; Neal-McKinney, Jason M.; Konkel, Michael E.

    2011-01-01

    Summary Although it is known that Campylobacter jejuni invade the cells that line the human intestinal tract, the bacterial proteins that enable this pathogen to survive within Campylobacter-containing vacuoles (CCV) have not been identified. Here, we describe the identification and characterization of a protein that we termed CiaI for Campylobacter invasion antigen involved in Intracellular survival. We show that CiaI harbors an amino-terminal type III secretion (T3S) sequence and is secreted from C. jejuni through the flagellar T3S system. In addition, the ciaI mutant was impaired in intracellular survival when compared to a wild-type strain, as judged by the gentamicin-protection assay. Fluorescence microscopy examination of epithelial cells infected with the C. jejuni ciaI mutant revealed that the CCV were more frequently co-localized with Cathepsin D (a lysosomal marker) than the CCV in cells infected with a C. jejuni wild-type strain. Ectopic expression of CiaI-GFP in epithelial cells yielded a punctate phenotype not observed with the other C. jejuni genes, and this phenotype was abolished by mutation of a dileucine motif located in the carboxy-terminus of the protein. Based on the data, we conclude that CiaI contributes to the ability of C. jejuni to survive within epithelial cells. PMID:21435039

  12. Secreted gingipains from Porphyromonas gingivalis colonies exert potent immunomodulatory effects on human gingival fibroblasts.

    PubMed

    Bengtsson, Torbjörn; Khalaf, Atika; Khalaf, Hazem

    2015-09-01

    Periodontal pathogens, including Porphyromonas gingivalis, can form biofilms in dental pockets and cause inflammation, which is one of the underlying mechanisms involved in the development of periodontal disease, ultimately leading to tooth loss. Although P. gingivalis is protected in the biofilm, it can still cause damage and modulate inflammatory responses from the host, through secretion of microvesicles containing proteinases. The aim of this study was to evaluate the role of cysteine proteinases in P. gingivalis colony growth and development, and subsequent immunomodulatory effects on human gingival fibroblast. By comparing the wild type W50 with its gingipain deficient strains we show that cysteine proteinases are required by P. gingivalis to form morphologically normal colonies. The lysine-specific proteinase (Kgp), but not arginine-specific proteinases (Rgps), was associated with immunomodulation. P. gingivalis with Kgp affected the viability of gingival fibroblasts and modulated host inflammatory responses, including induction of TGF-β1 and suppression of CXCL8 and IL-6 accumulation. These results suggest that secreted products from P. gingivalis, including proteinases, are able to cause damage and significantly modulate the levels of inflammatory mediators, independent of a physical host-bacterial interaction. This study provides new insight of the pathogenesis of P. gingivalis and suggests gingipains as targets for diagnosis and treatment of periodontitis. PMID:26302843

  13. Xanthohumol impairs glucose uptake by a human first-trimester extravillous trophoblast cell line (HTR-8/SVneo cells) and impacts the process of placentation.

    PubMed

    Correia-Branco, Ana; Azevedo, Cláudia F; Araújo, João R; Guimarães, João T; Faria, Ana; Keating, Elisa; Martel, Fátima

    2015-10-01

    In this study, we aimed to investigate modulation of glucose uptake by the HTR-8/SVneo human first-trimester extravillous trophoblast cell line by a series of compounds and to study its consequences upon cell proliferation, viability and migration. We observed that uptake of (3)H-deoxy-d-glucose ((3)H-DG; 10 nM) was time-dependent, saturable, inhibited by cytochalasin B (50 and 100 µM), phloretin (0.5 mM) and phloridzin (1 mM), insulin-insensitive and sodium-independent. In the short term (30 min), neither 5-HT (100-1000 µM), melatonin (10 nM) nor the drugs of abuse ethanol (100 mM), nicotine (100 µM), cocaine (25 µM), amphetamine (10-25 µM) and 3,4-methylenedioxy-N-methamphetamine (10 µM) affected (3)H-DG uptake, while dexamethasone (100-1000 µM), fluoxetine (100-300 µM), quercetin, epigallocatechin-3-gallate (30-1000 µM), xanthohumol (XH) and resveratrol (1-500 µM) decreased it. XH was the most potent inhibitor [IC50 = 3.55 (1.37-9.20) µM] of (3)H-DG uptake, behaving as a non-competitive inhibitor of (3)H-DG uptake, both after short- and long-term (24 h) treatment. The effect of XH (5 µM; 24 h) upon (3)H-DG uptake involved mammalian target of rapamycin, tyrosine kinases and c-Jun N-terminal kinases intracellular pathways. Moreover, XH appeared to decrease cellular uptake of lactate due to inhibition of the monocarboxylate transporter 1. Additionally, XH (24 h; 5 µM) decreased cell viability, proliferation, culture growth and migration. The effects of XH upon cell viability and culture growth, but not the antimigratory effect, were mimicked by low extracellular glucose conditions and reversed by high extracellular glucose conditions. We thus suggest that XH, by inhibiting glucose cellular uptake and impairing HTR-8/SVneo cell viability and proliferation, may have a deleterious impact in the process of placentation. PMID:26194608

  14. Modulation of human B cell immunoglobulin secretion by the C3b component of complement.

    PubMed

    Tsokos, G C; Berger, M; Balow, J E

    1984-02-01

    The human C3b component of complement was found to inhibit the differentiation of human B lymphocytes into immunoglobulin-secreting cells in vitro. Pokeweed mitogen (PWM)-induced plaque-forming cell (PFC) responses were inhibited by C3-coated zymosan particles and by purified human C3b. C3b inhibited the PWM-driven responses in a dose-dependent fashion, and it was necessary for C3b to be present in the early phases of the cultures. C3b acted directly on B cells rather than on helper T cells because it inhibited the PFC responses of MNC depleted of T cells and subsequently stimulated with a T cell-independent Epstein Barr virus mitogen. Furthermore, C3b failed to stimulate the generation of suppressor lymphocytes and/or monocytes that might have been responsible for the inhibition of B cell responses. Our results indicate that C3b or its fragments exert negative modulatory effects on human B lymphocyte responses. PMID:6228593

  15. Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Shan, Jiajie; Liao, Jie; Huang, Junwei; Robert, Renaud; Palmer, Melissa L; Fahrenkrug, Scott C; O'Grady, Scott M; Hanrahan, John W

    2012-01-01

    Anion and fluid secretion are both defective in cystic fibrosis (CF); however, the transport mechanisms are not well understood. In this study, Cl− and HCO3− secretion was measured using genetically matched CF transmembrane conductance regulator (CFTR)-deficient and CFTR-expressing cell lines derived from the human airway epithelial cell line Calu-3. Forskolin stimulated the short-circuit current (Isc) across voltage-clamped monolayers, and also increased the equivalent short-circuit current (Ieq) calculated under open-circuit conditions. Isc was equivalent to the HCO3− net flux measured using the pH-stat technique, whereas Ieq was the sum of the Cl− and HCO3− net fluxes. Ieq and HCO3− fluxes were increased by bafilomycin and ZnCl2, suggesting that some secreted HCO3− is neutralized by parallel electrogenic H+ secretion. Ieq and fluid secretion were dependent on the presence of both Na+ and HCO3−. The carbonic anhydrase inhibitor acetazolamide abolished forskolin stimulation of Ieq and HCO3− secretion, suggesting that HCO3− transport under these conditions requires catalysed synthesis of carbonic acid. Cl− was the predominant anion in secretions under all conditions studied and thus drives most of the fluid transport. Nevertheless, 50–70% of Cl− and fluid transport was bumetanide-insensitive, suggesting basolateral Cl− loading by a sodium–potassium–chloride cotransporter 1 (NKCC1)-independent mechanism. Imposing a transepithelial HCO3− gradient across basolaterally permeabilized Calu-3 cells sustained a forskolin-stimulated current, which was sensitive to CFTR inhibitors and drastically reduced in CFTR-deficient cells. Net HCO3− secretion was increased by bilateral Cl− removal and therefore did not require apical Cl−/HCO3− exchange. The results suggest a model in which most HCO3− is recycled basolaterally by exchange with Cl−, and the resulting HCO3−-dependent Cl− transport provides an osmotic driving force for

  16. Cytokine-activated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP-1/JE.

    PubMed Central

    Rollins, B. J.; Yoshimura, T.; Leonard, E. J.; Pober, J. S.

    1990-01-01

    We have demonstrated inducible expression of the mRNA encoding the monocyte chemoattractant MCP-1, the human homolog of the JE gene, in endothelial cells within 3 hours of treatment with IL-1 beta and tumor necrosis factor. IFN-gamma also induced expression of this mRNA after 24 hours, but to a lesser extent. MCP-1/JE protein steadily accumulated in the medium of endothelial cells during a 48-hour exposure to IL-1 beta. Medium conditioned by IL-1 beta-treated endothelial cells contained monocyte chemoattractant activity that was immunoadsorbed by anti-MCP-1 antibodies. These results suggest that endothelial cells secrete a monocyte chemoattractant, MCP-1/JE, in response to inflammatory mediators, and thus may contribute to the accumulation of monocytes at sites of inflammation. Images Figure 1 Figure 2 PMID:2113354

  17. Azurocidin, a natural antibiotic from human neutrophils: expression, antimicrobial activity, and secretion.

    PubMed

    Almeida, R P; Vanet, A; Witko-Sarsat, V; Melchior, M; McCabe, D; Gabay, J E

    1996-06-01

    The azurophil granules of human PMN contain four antibiotic proteins, the serprocidins, which have extensive homology to one another and to serine proteases. Azurocidin, a member of this family, is a 29-kDa glycoprotein with broad spectrum antimicrobial activity and chemotactic activity toward monocytes. Insect cells transfected with a baculovirus vector carrying azurocidin cDNA produced a recombinant azurocidin protein. We purified the recombinant azurocidin protein from the culture medium of the infected cells and showed that it retained the antimicrobial activity of the native neutrophil-derived molecule. In addition, we present evidence that a 49-amino-acid region of the recombinant azurocidin protein is required for its secretion from insect cells. PMID:8776752

  18. [Biological characteristics of exosomes secreted by human bone marrow mesenchymal stem cells].

    PubMed

    Feng, Ying; Lu, Shi-Hong; Wang, Xin; Cui, Jun-Jie; Li, Xue; DU, Wen-Jing; Wang, Ying; Li, Juan-Juan; Song, Bao-Quan; Chen, Fang; Ma, Feng-Xia; Chi, Ying; Yang, Shao-Guang; Han, Zhong-Chao

    2014-06-01

    This study was aimed to explore the immunoregulatory function and capability supporting the angiogenesis of exosomes secreted by bone marrow mesenchymal stem cells (BMMSC) from healthy persons. Supernatant of BMMSC (P4-P6) was collected for exosome purification. Transmission electron microscopy (TEM) and Western blot were used to identify the quality of isolated exosomes. The amount of exosomes was quantified through bicinchoninic acid (BCA) protein assay. Human peripheral blood mononuclear cells (PBMNC) were isolated from healthy donor and added with isolating exosomes. After co-cultured for 72 h, IFN-γ from the co-culture system was detected by ELISA. The expression of miRNA-associated with immunity were detected by real-time reverse transcription polymerase chain reaction (Real-time RT-PCR). The interactions between exosomes and human umbilical vein endothelial cells (HUVEC) were observed with confocal microscopy. Subconfluent HUVEC were harvested and treated with the indicated concentration of exosomes. Nude mice were injected subcutaneously with exosomes or PBS as control to verify the ability of angiogenesis. The results showed that diameter range of exosomes was range from 40 to 160 nm. The isolated exosomes expressed the CD9. There was approximately linear relation between the secretion of exosomes and cell density. The exosomes suppressed the production of IFN-γ from PBMNC, and contained miRNA associated with immune regulation such as miR301, miR22 and miR-let-7a. Exosomes induced vascular tube formation in vitro and vascularization of Matrigel plugs in vivo. It is concluded that the BMMSC-derived exosomes can regulate immunity and support vascularization. PMID:24989260

  19. Dietary Sodium Restriction Decreases Insulin Secretion Without Affecting Insulin Sensitivity in Humans

    PubMed Central

    Byrne, Loretta M.; Yu, Chang; Wang, Thomas J.; Brown, Nancy J.

    2014-01-01

    Context: Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. Objective: To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. Design: We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. Setting: Academic clinical research center. Participants: Healthy, nondiabetic, normotensive volunteers. Interventions: Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5–7 days. Main Outcome Measures: Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. Results: A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (−16.0 ± 5.6%; P = .007) and C-peptide responses (−21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (−1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. Conclusions: Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity. PMID:25029426

  20. Placental programming of chronic diseases, cancer and lifespan: a review.

    PubMed

    Barker, D J P; Thornburg, K L

    2013-10-01

    Particular paths of fetal growth are now known to predict a range of disorders in adult life. This is thought to reflect fetal programming, the phenomenon whereby nutrition and other influences during development set the body's organs and systems for life. The thesis of this review is that normal variations in the processes of placental development lead to variations in the supply of nutrients to the fetus and programme a small number of key systems that are linked to later disease. A baby's growth and nutrition depend both on the function of the placenta, reflected in its gross morphology at birth, and on the mother's lifetime nutrition, reflected in her height and weight. In many studies, the effects of placental size and shape on later disease have been examined within different categories of mother's body size. The review shows that variations in gross placental morphology at birth predict a wide range of disorders in later life. Any particular placental phenotype seems to predict a limited number of diseases. Further research into the links between the processes of placentation and the morphology of the placenta at birth is now required. We need to know more about the relative importance of nutrient flow, nutrient balance and the timing of nutritional events in determining disorders in later life. We also need to understand why, compared to other placental mammals, the human placenta is so variable in its morphology and functional capacity. PMID:23916422

  1. Metabolism of bupropion by baboon hepatic and placental microsomes

    PubMed Central

    Wang, Xiaoming; Abdelrahman, Doaa R.; Fokina, Valentina M.; Hankins, Gary D.V.; Ahmed, Mahmoud S.; Nanovskaya, Tatiana N.

    2011-01-01

    The aim of this investigation was to determine the biotransformation of bupropion by baboon hepatic and placental microsomes, identify the enzyme(s) catalyzing the reaction(s) and determine its kinetics. Bupropion was metabolized by baboon hepatic and placental microsomes to hydroxybupropion (OH-BUP), threo- (TB) and erythrohydrobupropion (EB). OH-bupropion was the major metabolite formed by hepatic microsomes (Km 36 ± 6 µM, Vmax 258 ± 32 pmol mg protein−1 min−1), however the formation of OH-BUP by placental microsomes was below the limit of quantification. The apparent Km values of bupropion for the formation of TB and EB by hepatic and placental microsomes were similar. The selective inhibitors of CYP2B6 (ticlopidine and phencyclidine) and monoclonal antibodies raised against human CYP2B6 isozyme caused 80% inhibition of OH-BUP formation by baboon hepatic microsomes. The chemical inhibitors of aldo-keto reductases (flufenamic acid), carbonyl reductases (menadione), and 11β-hydroxysteroid dehydrogenases (18β-glycyrrhetinic acid) significantly decreased the formation of TB and EB by hepatic and placental microsomes. Data indicate that CYP2B of baboon hepatic microsomes is responsible for biotransformation of bupropion to OH-BUP, while hepatic and placental short chain dehydrogenases/reductases and to a lesser extent aldo-keto reductases are responsible for the reduction of bupropion to TB and EB. PMID:21570381

  2. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation.

    PubMed

    Yang, Jieling; Zhao, Yue; Shi, Jianjin; Shao, Feng

    2013-08-27

    Inflammasome mediated by central nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) protein is critical for defense against bacterial infection. Here we show that type III secretion system (T3SS) needle proteins from several bacterial pathogens, including Salmonella typhimurium, enterohemorrhagic Escherichia coli, Shigella flexneri, and Burkholderia spp., can induce robust inflammasome activation in both human monocyte-derived and mouse bone marrow macrophages. Needle protein activation of human NRL family CARD domain containing 4 (NLRC4) inflammasome requires the sole human neuronal apoptosis inhibitory protein (hNAIP). Among the seven mouse NAIPs, NAIP1 functions as the mouse counterpart of hNAIP. We found that NAIP1 recognition of T3SS needle proteins was more robust in mouse dendritic cells than in bone marrow macrophages. Needle proteins, as well as flagellin and rod proteins from five different bacteria, exhibited differential and cell type-dependent inflammasome-stimulating activity. Comprehensive profiling of the three types of NAIP ligands revealed that NAIP1 sensing of the needle protein dominated S. flexneri-induced inflammasome activation, particularly in dendritic cells. hNAIP/NAIP1 and NAIP2/5 formed a large oligomeric complex with NLRC4 in the presence of corresponding bacterial ligands, and could support reconstitution of the NLRC4 inflammasome in a ligand-specific manner. PMID:23940371

  3. Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes.

    PubMed

    Lacasa, Danièle; Taleb, Soraya; Keophiphath, Mayoura; Miranville, Alexandra; Clement, Karine

    2007-02-01

    Obesity is considered a chronic low-grade inflammatory state. The white adipose tissue produces a variety of inflammation-related proteins whose expression is increased in obese subjects. The nonadipose cell fraction, which includes infiltrated macrophages, is a determinant source of inflammation-related molecules within the adipose tissue. Our working hypothesis is that macrophage infiltration affects fat expansion through a paracrine action on adipocyte differentiation. Human primary preadipocytes were then differentiated in the presence of conditioned media obtained from macrophages differentiated from blood monocytes. Preadipocytes treated by macrophage-conditioned medium displayed marked reduction of adipogenesis as assessed by decreased cellular lipid accumulation and reduced gene expression of adipogenic and lipogenic markers. In addition to this effect, the activation of macrophages by lipopolysaccharides stimulated nuclear factor kappaB signaling, increased gene expression and release of proinflammatory cytokines and chemokines, and induced preadipocyte proliferation. This phenomenon was associated with increased cyclin D1 gene expression and maintenance of the fibronectin-rich matrix. Anti-TNFalpha neutralizing antibody inhibits the inflammatory state of preadipocytes positioning TNFalpha as an important mediator of inflammation in preadipocytes. Strikingly, conditioned media produced by macrophages isolated from human adipose tissue exerted comparable effects with activated macrophages, i.e. decreased adipogenesis and increased inflammatory state in the preadipocytes. These data show that macrophage-secreted factors inhibit the formation of mature adipocytes, suggesting possible role in limiting adipose tissue expansion in humans. PMID:17082259

  4. Zinc sulphate attenuates chloride secretion in human colonic mucosae in vitro.

    PubMed

    Medani, Mekki; Bzik, Victoria A; Rogers, Ailin; Collins, Danielle; Kennelly, Rory; Winter, Des C; Brayden, David J; Baird, Alan W

    2012-12-01

    Zinc's usefulness in the treatment of diarrhoea is well established as an addition to oral rehydration. Mechanisms of action of zinc have been explored in intestinal epithelia from rodents and in cell lines. The aim was to examine how zinc alters ion transport and signal transduction in human colon in vitro. Voltage clamped colonic sheets obtained at the time of surgical resection were used to quantify ion transport responses to established secretagogues. Nystatin permeabilisation was used to study basolaterally-sited ion channels. Direct actions of zinc were determined using preparations of colonic crypts isolated from human mucosal sheets. Electrophysiological measurements revealed zinc to be an inhibitor of electrogenic ion transport stimulated by forskolin, PGE(2), histamine and carbachol in isolated human colonic epithelium. Basolateral addition of zinc sulphate had no direct effect on the epithelium. To further outline the mechanism of action, levels of secondary intracellular messengers (3', 5'-cyclic adenosine monophosphate; cAMP) were determined in isolated colonic crypts, and were found to be reduced by zinc sulphate. Finally, indirect evidence from nystatin-permeabilised mucosae further suggested that zinc inhibits basolateral K(+) channels, which are critical for transepithelial Cl(-) secretion linked to water flux. Anti-secretory, and therefore anti-diarrhoeal, actions of exogenous zinc are due, at least in part, to direct basolateral epithelial K(+) channel inhibition. PMID:23022335

  5. Enteric oxalate secretion is not directly mediated by the human CFTR chloride channel

    PubMed Central

    Hatch, Marguerite

    2013-01-01

    The secretion of the oxalate anion by intestinal epithelia is a functionally significant component of oxalate homeostasis and hence a relevant factor in the etiology and management of calcium oxalate urolithiasis. To test the hypothesis that human cystic fibrosis transmembrane conductance regulator (hCFTR) can directly mediate the efflux of the oxalate anion, we compared cAMP-stimulated 36Cl−, 14C-oxalate, and 35SO42− efflux from Xenopus oocytes expressing hCFTR with water-injected control oocytes. hCFTR-expressing oocytes exhibited a large, reversible cAMP-dependent increase in whole cell conductance measured using a two-electrode voltage clamp and a 13-fold increase in rate of cAMP-stimulated 36Cl− efflux. In contrast, the rate constants of oxalate and sulfate efflux were low and unaffected by cAMP in either control or hCFTR-expressing oocytes. We conclude that the human CFTR gene product does not directly mediate oxalate efflux in secretory epithelia and hence is not directly involved in oxalate homeostasis in humans. PMID:18563405

  6. RFX6 regulates insulin secretion by modulating Ca2+ homeostasis in human β cells.

    PubMed

    Chandra, Vikash; Albagli-Curiel, Olivier; Hastoy, Benoit; Piccand, Julie; Randriamampita, Clotilde; Vaillant, Emmanuel; Cavé, Hélène; Busiah, Kanetee; Froguel, Philippe; Vaxillaire, Martine; Rorsman, Patrik; Polak, Michel; Scharfmann, Raphael

    2014-12-24

    Development and function of pancreatic β cells involve the regulated activity of specific transcription factors. RFX6 is a transcription factor essential for mouse β cell differentiation that is mutated in monogenic forms of neonatal diabetes. However, the expression and functional roles of RFX6 in human β cells, especially in pathophysiological conditions, are poorly explored. We demonstrate the presence of RFX6 in adult human pancreatic endocrine cells. Using the recently developed human β cell line EndoC-βH2, we show that RFX6 regulates insulin gene transcription, insulin content, and secretion. Knockdown of RFX6 causes downregulation of Ca(2+)-channel genes resulting in the reduction in L-type Ca(2+)-channel activity that leads to suppression of depolarization-evoked insulin exocytosis. We also describe a previously unreported homozygous missense RFX6 mutation (p.V506G) that is associated with neonatal diabetes, which lacks the capacity to activate the insulin promoter and to increase Ca(2+)-channel expression. Our data therefore provide insights for understanding certain forms of neonatal diabetes. PMID:25497100

  7. Involvement of protein kinase C in phagocytosis of human retinal pigment epithelial cells and induction of matrix metalloproteinase secretion.

    PubMed

    Irschick, Eveline U; Haas, Gertrud; Troger, Josef; Ueberall, Florian; Huemer, Hartwig P

    2009-10-01

    Protein kinase C (PKC) is involved in cell activation. We investigated PKC-mediated pathways and secretion of matrix metalloproteinases (MMPs) in phagocytosis by human retinal pigment epithelial cells (RPE). We used time-resolved fluorometry for europium-labeled microsphere uptake and gel zymography to assay the influence of PKC modulators. PKC inhibitors blocked phagocytosis by RPE. ARPE-19, a human RPE-cell line, showed reduced secretion of MMP-2, although MMP-9 secretion by PKC activation was conserved in both cell types, namely in the primary RPEs and in the RPE-cell line. Particle uptake by RPE cells requires activation of PKC; the use of PKC inhibitors as new anticancer drugs may possibly cause ocular side-effects. PMID:18641922

  8. Protein Secretion in Human Mammary Epithelial Cells following HER1 Receptor Activation: Influence of HER2 and HER3 Expression

    SciTech Connect

    Zhang, Yi; Gonzalez-Hernandez, Rachel M.; Zangar, Richard C.

    2011-02-14

    Background: Secretion of proteins by mammary cells results in autocrine and paracrine signaling that defines cell growth, migration and the extracellular environment. Even so, we have a very limited understanding of the cellular regulatory processes that regulate protein secretion. Method: In this study, we utilize an ELISA microarray platform to evaluate the effects of epidermal growth factor receptor (HER) expression on protein secretion in human epithelial mammary cells (HMEC). These secreted proteins included several HER1 ligands, interleukins 1α and 18, RANTES, vascular endothelial and platelet derived growth factors, matrix metalloproteases 1, 2 and 9, and the extracellular portion of the HER1 and HER2 proteins. Result: We utilized HMEC lines that were engineered to express different levels of HER1, HER2 and HER3. We determined the effects of these receptors on the secretion of a variety of growth factors, cytokines, and proteases. Conclusion: Overall, this study suggests that HER overexpression orchestrate broad affects on the tumor microenvironment by altering the secretion of a diverse group of biologically active proteins.

  9. Inhibitory effects of somatostatin on tumor necrosis factor-alpha-induced interleukin-6 secretion in human pancreatic periacinar myofibroblasts.

    PubMed

    Andoh, Akira; Hata, Kazunori; Shimada, Mitsue; Fujino, Sanae; Tasaki, Kazuhito; Bamba, Shigeki; Araki, Yoshio; Fujiyama, Yoshihide; Bamba, Tadao

    2002-07-01

    Pancreatic periacinar myofibroblasts are considered to be therapeutic targets for the suppression of acute pancreatitis. To elucidate the mechanisms mediating the therapeutic actions of somatostatin on acute pancreatitis, we investigated how somatostatin affects the tumor necrosis factor (TNF)-alpha-induced interleukin (IL)-6 and IL-8 secretion from pancreatic myofibroblasts. Cytokine secretion was determined by enzyme-linked immunosorbent assay (ELISA) and Northern blotting. Nuclear factor (NF)-kappaB DNA-binding activity was evaluated by electrophoretic mobility shift assay (EMSAs). The expression of somatostatin receptor (SSTR) mRNA was evaluated by reverse transcription-polymerase chain reaction (RT-PCR). Somatostatin dose-dependently inhibited the TNF-alpha-induced IL-6 secretion. In comparison, the effects on IL-8 secretion were modest. Northern blot analysis demonstrated that somatostatin decreased the TNF-alpha-induced IL-6 mRNA expression, and that this effect was completely blocked by the somatostatin antagonist cyclo-somatostatin. Furthermore, somatostatin suppressed TNF-alpha-induced NF-kappaB activation. These cells bear SSTR subtypes 1 and 2. Somatostatin down-regulated the TNF-alpha-induced IL-6 secretion in human pancreatic periacinar myofibroblasts. These findings suggest that some of the therapeutic actions of somatostatin on acute pancreatitis might be mediated by reducing local IL-6 secretion in the pancreas. PMID:12060857

  10. Yeast Modulation of Human Dendritic Cell Cytokine Secretion: An In Vitro Study

    PubMed Central

    Smith, Ida M.; Christensen, Jeffrey E.; Arneborg, Nils; Jespersen, Lene

    2014-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs) appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications beyond the current

  11. Yeast modulation of human dendritic cell cytokine secretion: an in vitro study.

    PubMed

    Smith, Ida M; Christensen, Jeffrey E; Arneborg, Nils; Jespersen, Lene

    2014-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs) appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications beyond the current

  12. 1α,25-dihydroxyvitamin D3 stimulates human SOST gene expression and sclerostin secretion.

    PubMed

    Wijenayaka, Asiri R; Yang, Dongqing; Prideaux, Matthew; Ito, Nobuaki; Kogawa, Masakazu; Anderson, Paul H; Morris, Howard A; Solomon, Lucian B; Loots, Gabriela G; Findlay, David M; Atkins, Gerald J

    2015-09-15

    Sclerostin, the SOST gene product, is a negative regulator of bone formation and a positive regulator of bone resorption. In this study, treatment of human primary osteoblasts, including cells differentiated to an osteocyte-like stage, with 1α,25-dihydroxyvitaminD3 (1,25D) resulted in the dose-dependent increased expression of SOST mRNA. A similar effect was observed in human trabecular bone samples cultured ex vivo, and in osteocyte-like cultures of differentiated SAOS2 cells. Treatment of SAOS2 cells with 1,25D resulted in the production and secretion of sclerostin protein. In silico analysis of the human SOST gene revealed a single putative DR3-type vitamin D response element (VDRE) at position -6216 bp upstream of the transcription start site (TSS). This sequence was confirmed to have strong VDRE activity by luciferase reporter assays and electrophoretic mobility shift analysis (EMSA). Sequence substitution in the VDR/RXR half-sites abolished VDRE reporter activity and binding of nuclear proteins. A 6.3 kb fragment of the human proximal SOST promoter demonstrated responsiveness to 1,25D. The addition of the evolutionary conserved region 5 (ECR5), a known bone specific enhancer region, ahead of the 6.3 kb fragment increased basal promoter activity but did not increase 1,25D responsiveness. Site-specific mutagenesis abolished the responsiveness of the 6.3 kb promoter to 1,25D. We conclude that 1,25D is a direct regulator of human SOST gene and sclerostin protein expression, extending the pathways of control of sclerostin expression. At least some of this responsiveness is mediated by the identified classical VDRE however the nature of the transcriptional regulation by 1,25D warrants further investigation. PMID:26112182

  13. Modulation of placental vascular endothelial growth factor by leptin and hCG.

    PubMed

    Islami, D; Bischof, P; Chardonnens, D

    2003-07-01

    Vascular endothelial growth factor (VEGF) has been identified as an endothelium-specific mitogen and inducer of angiogenesis and endothelial cell survival. Leptin and hCG have also been suggested as possible regulators of angiogenesis in various models. In-vivo and in-vitro assays revealed that leptin has an angiogenic activity and that the vascular endothelium is a target for leptin. Thus, we hypothesized that products of cytotrophoblastic cells may play a role in placental angiogenesis and we therefore investigated the effects of leptin and hCG on cytotrophoblast VEGF secretion. We incubated cytotrophoblastic cells (CTB) with recombinant human leptin (rhLept) (0-4 pg/ml) or hCG (0-30000 IU/ml) for 4 h. rhLept significantly stimulated hCG (P = 0.0045) and decreased VEGF release (P = 0.0008) by CTB in a concentration-dependent manner. On the other hand, increasing concentrations of hCG (0-30000 IU/ml), induced a significant inhibition of leptin secretion (P = 0.0028) and a marked dose-dependent stimulation of VEGF(165) secretion (P < 0.0001). We observed an increase of >1000-fold in basal trophoblastic VEGF secretion with physiological concentrations of hCG in vitro. An inhibitory effect of hCG on trophoblastic leptin secretion was also observed, suggesting that hCG might exert a possible negative feedback on trophoblastic release of leptin. We hypothesize that trophoblastic products such as hCG and leptin are probably involved in the control of VEGF secretion at the maternal-fetal interface. PMID:12802046

  14. Lithocholic acid attenuates cAMP-dependent Cl- secretion in human colonic epithelial T84 cells.

    PubMed

    Ao, Mei; Domingue, Jada C; Khan, Nabihah; Javed, Fatima; Osmani, Kashif; Sarathy, Jayashree; Rao, Mrinalini C

    2016-06-01

    Bile acids (BAs) play a complex role in colonic fluid secretion. We showed that dihydroxy BAs, but not the monohydroxy BA lithocholic acid (LCA), stimulate Cl(-) secretion in human colonic T84 cells (Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Am J Physiol Cell Physiol 305: C447-C456, 2013). In this study, we explored the effect of LCA on the action of other secretagogues in T84 cells. While LCA (50 μM, 15 min) drastically (>90%) inhibited FSK-stimulated short-circuit current (Isc), it did not alter carbachol-stimulated Isc LCA did not alter basal Isc, transepithelial resistance, cell viability, or cytotoxicity. LCA's inhibitory effect was dose dependent, acted faster from the apical membrane, rapid, and not immediately reversible. LCA also prevented the Isc stimulated by the cAMP-dependent secretagogues 8-bromo-cAMP, lubiprostone, or chenodeoxycholic acid (CDCA). The LCA inhibitory effect was BA specific, since CDCA, cholic acid, or taurodeoxycholic acid did not alter FSK or carbachol action. While LCA alone had no effect on intracellular cAMP concentration ([cAMP]i), it decreased FSK-stimulated [cAMP]i by 90%. Although LCA caused a small increase in intracellular Ca(2+) concentration ([Ca(2+)]i), chelation by BAPTA-AM did not reverse LCA's effect on Isc LCA action does not appear to involve known BA receptors, farnesoid X receptor, vitamin D receptor, muscarinic acetylcholine receptor M3, or bile acid-specific transmembrane G protein-coupled receptor 5. LCA significantly increased ERK1/2 phosphorylation, which was completely abolished by the MEK inhibitor PD-98059. Surprisingly PD-98059 did not reverse LCA's effect on Isc Finally, although LCA had no effect on basal Isc, nystatin permeabilization studies showed that LCA both stimulates an apical cystic fibrosis transmembrane conductance regulator Cl(-) current and inhibits a basolateral K(+) current. In summary, 50 μM LCA greatly inhibits cAMP-stimulated Cl(-) secretion, making low doses of LCA of

  15. [Differentiation of human amniotic mesenchymal stem cells into insulin-secreting cells induced by regenerating pancreatic extract].

    PubMed

    Zhang, Yanmei; Wang, Dianliang; Zeng, Hongyan; Wang, Lieming; Sun, Jinwei; Zhang, Zhen; Dong, Shasha

    2012-02-01

    In this study, the natural biological inducer, rat regenerating pancreatic extract (RPE), was used to induce human amniotic mesenchymal stem cells (hAMSCs) into insulin-secreting cells. We excised 60% of rat pancreas in order to stimulate pancreatic regeneration. RPE was extracted and used to induce hAMSCs at a final concentration of 20 microg/mL. The experiment methods used were as follows: morphological-identification, dithizone staining, immumofluorescence analysis, reverse transcription-PCR (RT-PCR) and insulin secretion stimulated by high glucose. The results show that the cell morphology of passge3 hAMSCs changed significantly after the induction of RPE, resulting in cluster shape after induction for 15 days. Dithizone staining showed that there were scarlet cell masses in RPE-treated culture. Immumofluorescence analysis indicated that induced cells were insulin-positive expression. RT-PCR showed the positive expression of human islet-related genes Pdx1 and insulin in the induced cells. The result of insulin secretion stimulated by high glucose indicated that insulin increasingly secreted and then kept stable with prolongation of high glucose stimulation. In conclusion, hAMSCs had the potential to differentiate into insulin-secreting cells induced by RPE in vitro. PMID:22667123

  16. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines

    SciTech Connect

    Bronzert, D.A.; Pantazis, P.; Antoniades, H.N.; Kasid, A.; Davidson, N.; Dickson, R.B.; Lippman, M.E.

    1987-08-01

    The authors report that human breast cancer cells secrete a growth factor that is biologically and immunologically similar to platelet-derived growth factor (PDGF). Serum-free medium conditioned by estrogen-independent MDA-MB-231 or estrogen-dependent MCF-7 cells contains a mitogenic or competence activity that is capable of inducing incorporation of (/sup 3/H) thymidine into quiescent Swiss 3T3 cells in the presence of platelet-poor plasma. Like authentic PDGF, the PDGF-like activity produced by breast cancer cells is stable after acid and heat treatment (95/sup 0/C) and inhibited by reducing agents. The mitogenic activity comigrates with a material of approx. =30 kDa on NaDodSO/sub 4//polyacrylamide gels. Immunoprecipitation with PDGF antiserum of proteins from metabolically labeled cell lysates and conditioned medium followed by analysis on nonreducing NaDodSO/sub 4//polyacrylamide gels identified proteins of 30 and 34 kDa. Upon reduction, the 30- and 34-kDa bands were converted to 15- and 16-kDa bands suggesting that the immunoprecipitated proteins were made up of two disulfide-linked polypeptides similar to PDGF. Hybridization studies with cDNA probes for the A chain PDGF and the B chain of PDGF/SIS identified transcripts for both PDGF chains in the MCF-7 and MDA-MB-231 cells. The data summarized above provide conclusive evidence for the synthesis and hormonally regulated secretion of a PDGF-like mitogen by breast carcinoma cells. Production of a PDGF-like growth factor by breast cancer cell lines may be important in mediating paracrine stimulation of tumor growth.

  17. Combined Use of Etomidate and Dexmedetomidine Produces an Additive Effect in Inhibiting the Secretion of Human Adrenocortical Hormones.

    PubMed

    Gu, Hongbin; Zhang, Mazhong; Cai, Meihua; Liu, Jinfen

    2015-01-01

    BACKGROUND The direct effects of etomidate were investigated on the secretion of cortisol and its precursors by dispersed cells from the adrenal cortex of human of animals. Dexmedetomidine (DEX) is an anesthetic agent that may interfere with cortisol secretion via an unknown mechanism, such as involving inhibition of 11b-hydroxylase and the cholesterol side-chain cleavage enzyme system. The aim of this study was to determine whether dexmedetomidine (DEX) has a similar inhibitory effect on adrenocortical function, and whether combined use of etomidate (ETO) and DEX could produce a synergistic action in inhibiting the secretion of human adrenocortical hormones. MATERIAL AND METHODS Human adrenocortical cells were exposed to different concentrations of ETO and DEX. The dose-effect model between the ETO concentration and the mean secretion of cortisone (CORT) and aldosterone (ALDO) per hour was estimated. RESULTS Hill's equation well-described the dose-effect correlation between the ETO concentration and the amount of ALDO and CORT secretion. When the DEX concentration was introduced into the model by using E0 (basal secretion) as the covariate, the goodness of fit of the ETO-CORT dose-effect model was improved significantly and the objective function value was reduced by 4.55 points (P<0.05). The parameters of the final ETO-ALDO pharmacodynamics model were EC50=9.74, Emax=1.20, E0=1.33, and γ=18.5; the parameters of the final ETO-CORT pharmacodynamics model were EC50=9.49, Emax=8.16, E0=8.57, and γ=37.0. In the presence of DEX, E0 was 8.57-0.0247×(CDEX-4.6), and the other parameters remained unchanged. All parameters but γ were natural logarithm conversion values. CONCLUSIONS Combined use of DEX and ETO reduced ETO's inhibitory E0 (basal secretion) of CORT from human adrenocortical cells in a dose-dependent manner, suggesting that combined use of ETO and DEX produced an additive effect in inhibiting the secretion of human adrenocortical hormones. PMID:26568275

  18. Combined Use of Etomidate and Dexmedetomidine Produces an Additive Effect in Inhibiting the Secretion of Human Adrenocortical Hormones

    PubMed Central

    Gu, Hongbin; Zhang, Mazhong; Cai, Meihua; Liu, Jinfen

    2015-01-01

    Background The direct effects of etomidate were investigated on the secretion of cortisol and its precursors by dispersed cells from the adrenal cortex of human of animals. Dexmedetomidine (DEX) is an anesthetic agent that may interfere with cortisol secretion via an unknown mechanism, such as involving inhibition of 11β-hydroxylase and the cholesterol side-chain cleavage enzyme system. The aim of this study was to determine whether dexmedetomidine (DEX) has a similar inhibitory effect on adrenocortical function, and whether combined use of etomidate (ETO) and DEX could produce a synergistic action in inhibiting the secretion of human adrenocortical hormones. Material/Methods Human adrenocortical cells were exposed to different concentrations of ETO and DEX. The dose-effect model between the ETO concentration and the mean secretion of cortisone (CORT) and aldosterone (ALDO) per hour was estimated. Results Hill’s equation well-described the dose-effect correlation between the ETO concentration and the amount of ALDO and CORT secretion. When the DEX concentration was introduced into the model by using E0 (basal secretion) as the covariate, the goodness of fit of the ETO-CORT dose-effect model was improved significantly and the objective function value was reduced by 4.55 points (P<0.05). The parameters of the final ETO-ALDO pharmacodynamics model were EC50=9.74, Emax=1.20, E0=1.33, and γ=18.5; the parameters of the final ETO-CORT pharmacodynamics model were EC50=9.49, Emax=8.16, E0=8.57, and γ=37.0. In the presence of DEX, E0 was 8.57–0.0247×(CDEX–4.6), and the other parameters remained unchanged. All parameters but γ were natural logarithm conversion values. Conclusions Combined use of DEX and ETO reduced ETO’s inhibitory E0 (basal secretion) of CORT from human adrenocortical cells in a dose-dependent manner, suggesting that combined use of ETO and DEX produced an additive effect in inhibiting the secretion of human adrenocortical hormones. PMID

  19. Differential placental gene expression in severe preeclampsia.

    PubMed

    Sitras, V; Paulssen, R H; Grønaas, H; Leirvik, J; Hanssen, T A; Vårtun, A; Acharya, G

    2009-05-01

    We investigated the global placental gene expression profile in severe preeclampsia. Twenty-one women were randomly selected from 50 participants with uncomplicated pregnancies to match 21 patients with severe preeclampsia. A 30K Human Genome Survey Microarray v.2.0 (Applied Biosystems) was used to evaluate the gene expression profile. After RNA isolation, five preeclamptic placentas were excluded due to poor RNA quality. The series composed of 37 hybridizations in a one-channel detection system of chemiluminescence emitted by the microarrays. An empirical Bayes analysis was applied to find differentially expressed genes. In preeclamptic placentas 213 genes were significantly (fold-change>or=2 and pplacental histopathologic examination. In summary, placental gene expression is altered in preeclampsia and we provide a comprehensive list of the differentially expressed genes. Placental gene expression is different between early- and late-onset preeclampsia, suggesting differences in pathophysiology. PMID:19249095

  20. Regulation of Glucagon Secretion in Normal and Diabetic Human Islets by γ-Hydroxybutyrate and Glycine*

    PubMed Central

    Li, Changhong; Liu, Chengyang; Nissim, Itzhak; Chen, Jie; Chen, Pan; Doliba, Nicolai; Zhang, Tingting; Nissim, Ilana; Daikhin, Yevgeny; Stokes, David; Yudkoff, Marc; Bennett, Michael J.; Stanley, Charles A.; Matschinsky, Franz M.; Naji, Ali

    2013-01-01

    Paracrine signaling between pancreatic islet β-cells and α-cells has been proposed to play a role in regulating glucagon responses to elevated glucose and hypoglycemia. To examine this possibility in human islets, we used a metabolomic approach to trace the responses of amino acids and other potential neurotransmitters to stimulation with [U-13C]glucose in both normal individuals and type 2 diabetics. Islets from type 2 diabetics uniformly showed decreased glucose stimulation of insulin secretion and respiratory rate but demonstrated two different patterns of glucagon responses to glucose: one group responded normally to suppression of glucagon by glucose, but the second group was non-responsive. The non-responsive group showed evidence of suppressed islet GABA levels and of GABA shunt activity. In further studies with normal human islets, we found that γ-hydroxybutyrate (GHB), a potent inhibitory neurotransmitter, is generated in β-cells by an extension of the GABA shunt during glucose stimulation and interacts with α-cell GHB receptors, thus mediating the suppressive effect of glucose on glucagon release. We also identified glycine, acting via α-cell glycine receptors, as the predominant amino acid stimulator of glucagon release. The results suggest that glycine and GHB provide a counterbalancing receptor-based mechanism for controlling α-cell secretory responses to metabolic fuels. PMID:23266825

  1. Regulation of glucagon secretion in normal and diabetic human islets by γ-hydroxybutyrate and glycine.

    PubMed

    Li, Changhong; Liu, Chengyang; Nissim, Itzhak; Chen, Jie; Chen, Pan; Doliba, Nicolai; Zhang, Tingting; Nissim, Ilana; Daikhin, Yevgeny; Stokes, David; Yudkoff, Marc; Bennett, Michael J; Stanley, Charles A; Matschinsky, Franz M; Naji, Ali

    2013-02-01

    Paracrine signaling between pancreatic islet β-cells and α-cells has been proposed to play a role in regulating glucagon responses to elevated glucose and hypoglycemia. To examine this possibility in human islets, we used a metabolomic approach to trace the responses of amino acids and other potential neurotransmitters to stimulation with [U-(13)C]glucose in both normal individuals and type 2 diabetics. Islets from type 2 diabetics uniformly showed decreased glucose stimulation of insulin secretion and respiratory rate but demonstrated two different patterns of glucagon responses to glucose: one group responded normally to suppression of glucagon by glucose, but the second group was non-responsive. The non-responsive group showed evidence of suppressed islet GABA levels and of GABA shunt activity. In further studies with normal human islets, we found that γ-hydroxybutyrate (GHB), a potent inhibitory neurotransmitter, is generated in β-cells by an extension of the GABA shunt during glucose stimulation and interacts with α-cell GHB receptors, thus mediating the suppressive effect of glucose on glucagon release. We also identified glycine, acting via α-cell glycine receptors, as the predominant amino acid stimulator of glucagon release. The results suggest that glycine and GHB provide a counterbalancing receptor-based mechanism for controlling α-cell secretory responses to metabolic fuels. PMID:23266825

  2. Source of peritoneal proteoglycans. Human peritoneal mesothelial cells synthesize and secrete mainly small dermatan sulfate proteoglycans.

    PubMed Central

    Yung, S.; Thomas, G. J.; Stylianou, E.; Williams, J. D.; Coles, G. A.; Davies, M.

    1995-01-01

    This study describes experiments that compare the proteoglycans (PGs) extracted from the dialysate from patients receiving continuous peritoneal ambulatory dialysis (CAPD) with those secreted by metabolically labeled human peritoneal mesothelial cells in vitro. The PGs isolated from both sources were predominantly small chondroitin sulfate/dermatan sulfate PGs. Western blot of the core proteins obtained after chondroitin ABC lyase treatment with specific antibodies identified decorin and biglycan. With [35S]sulfate and [35S]methionine as labeling precursors it was shown that dermatan sulfate rather than chondroitin sulfate were the major glycosaminoglycan chains and that decorin was the predominant species. These data provide the first evidence that human peritoneal mesothelial cells may be the principal source of PGs in the peritoneum. Given the proposed functions of decorin and biglycan, the results suggest that these PGs may be involved in the control of transforming growth factor-beta activity and collagen fibril formation in the peritoneum. Images Figure 2 Figure 7 Figure 8 PMID:7856761

  3. Evidence of hydrogen ion secretion from the human gall bladder in vitro.

    PubMed Central

    Plevris, J N; Hayes, P C; Harrison, D J; Bouchier, I A

    1992-01-01

    Gall bladder bile is more acid that hepatic bile and this has been attributed to bicarbonate absorption by the gall bladder epithelium. The aim of this study was to investigate in vitro the acid base changes that occur across the human gall bladder mucosa. Fresh gall bladder tissue was obtained at cholecystectomy and placed in an Ussing Chamber and perfused with Ringer-Krebs glucose bicarbonate solution. The viability of the gall bladder was assessed by measuring the potential differences across the epithelium and by the morphology of the epithelial cells at the end of the experiments. Aliquots from the solutions were taken at two, 45 and 70 minutes and pCO2, hydrogen ion and bicarbonate concentrations were measured. In the mucosal side of the chamber a consistent and significant decrease was observed from two minutes to 70 minutes in bicarbonate concentration while pCO2 and hydrogen ion concentrations significantly increased. The degree of inflammation correlated well with the ability for acidification, the more inflamed the tissue the less its ability to acidify. When the gall bladder was exposed to amiloride or sodium free solution acidification was abolished in the mucosal side. When tissue metabolism was irreversibly inhibited by exposure to formaldehyde, hydrogen ion concentration and pCO2 were significantly decreased in the mucosal side of the chamber compared with the viable gall bladder. The human gall bladder is capable of secreting acid and this may be an important mechanism for preventing calcium precipitation and gall stone formation. PMID:1582602

  4. Expression of lipoprotein lipase mRNA and secretion in macrophages isolated from human atherosclerotic aorta.

    PubMed

    Mattsson, L; Johansson, H; Ottosson, M; Bondjers, G; Wiklund, O

    1993-10-01

    The expression of lipoprotein lipase (LPL) mRNA and the LPL activity were studied in macrophages (CD14 positive) from human atherosclerotic tissue. Macrophages were isolated after collagenase digestion by immunomagnetic isolation. About 90% of the cells were foam cells with oil red O positive lipid droplets. To analyze the mRNA expression, PCR with specific primers for LPL was used. Arterial macrophages were analyzed directly after isolation and the data showed low expression of LPL mRNA when compared with monocyte-derived macrophages. To induce the expression of LPL mRNA in macrophages, PMA was used. When incubating arterial macrophages with PMA for 24 h we could not detect any increase in LPL mRNA levels. Similarly, the cells secreted very small amounts of LPL even after PMA stimulation. In conclusion, these studies show a very low expression of LPL mRNA in the CD14-positive macrophage-derived foam cells isolated from human atherosclerotic tissue. These data suggest that the CD14-positive cells are a subpopulation of foam cells that express low levels of lipoprotein lipase, and the lipid content could be a major factor for downregulation of LPL. However, the cells were isolated from advanced atherosclerotic lesions, and these findings may not reflect the situation in early fatty streaks. PMID:8408628

  5. Gene expression profiling of dengue infected human primary cells identifies secreted mediators in vivo

    PubMed Central

    Becerra, Aniuska; Warke, Rajas V.; Martin, Katherine; Xhaja, Kris; de Bosch, Norma; Rothman, Alan L.; Bosch, Irene

    2009-01-01

    We used gene expression profiling of human primary cells infected in vitro with dengue virus (DENV) as a tool to identify secreted mediators induced in response to the acute infection. Affymetrix Genechip analysis of human primary monocytes, B cells and dendritic cells infected with DENV in vitro revealed a strong induction of monocyte chemotactic protein 2 (MCP-2/CCL8), interferon gamma-induced protein 10 (IP-10/CXCL10) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/TNFSF10). The expression of these genes was confirmed in dendritic cells infected with DENV in vitro at mRNA and protein levels. A prospectively enrolled cohort of DENV-infected Venezuelan patients was used to measure the levels of these proteins in serum during three different periods of the disease. Results showed significant increase of MCP-2, IP-10 and TRAIL levels in DENV-infected patients during the febrile period, when compared to healthy donors and patients with other febrile illnesses. MCP-2 and IP-10 levels were still elevated during the post-febrile period while TRAIL levels dropped close to normal after defervescense. Patients with primary infections had higher TRAIL levels than patients with secondary infections during the febrile period of the disease. Increased levels of IP-10, TRAIL and MCP-2 in acute DENV infections suggest a role for these mediators in the immune response to the infection. PMID:19551822

  6. Meta-analysis of data from human ex vivo placental perfusion studies on genotoxic and immunotoxic agents within the integrated European project NewGeneris.

    PubMed

    Mose, T; Mathiesen, L; Karttunen, V; Nielsen, J K S; Sieppi, E; Kummu, M; Mørck, T A; Myöhänen, K; Partanen, H; Vähäkangas, K; Knudsen, L E; Myllynen, P

    2012-05-01

    In the E.U. integrated project NewGeneris, we studied placental transport of thirteen immunotoxic and genotoxic agents in three ex vivo placental perfusion laboratories. In the present publication, all placental perfusion data have been re-analyzed and normalized to make them directly comparable and rankable. Antipyrine transfer data differed significantly between the studies and laboratories, and therefore normalization of data was necessary. An antipyrine normalization factor was introduced making the variance significantly smaller within and between the studies using the same compound but performed in different laboratories. Non-normalized (regular) and normalized data showed a good correlation. The compounds were ranked according to their transplacental transfer rate using either antipyrine normalized AUC120 or transfer index (TI120(%)). Normalization generated a division of compounds in slow, medium and high transfer rate groups. The transfer rate differed slightly depending on the parameter used. However, compounds with passage similar to antipyrine which goes through the placenta by passive diffusion, and good recovery in media (no accumulation in the tissue or adherence to equipment) were highly ranked no matter which parameter was used. Antipyrine normalization resulted in the following ranking order of compounds according to AUC(120NORM) values: NDMA ≥ EtOH ≥ BPA ≥ IQ ≥AA ≥ GA ≥ PCB180 ≥ PhIP ≥ AFB1 > DON ≥ BP ≥ PCB52 ≥ TCDD. As the variance in all parameters within a study decreased after antipyrine normalization, we conclude that this normalization approach at least partially corrects the bias caused by the small methodological differences between studies. PMID:22374511

  7. An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency

    PubMed Central

    2012-01-01

    Background Although there are many different expression systems for recombinant production of pharmaceutical proteins, many of these suffer from drawbacks such as yield, cost, complexity of purification, and possible contamination with human pathogens. Microalgae have enormous potential for diverse biotechnological applications and currently attract much attention in the biofuel sector. Still underestimated, though, is the idea of using microalgae as solar-fueled expression system for the production of recombinant proteins. Results In this study, we show for the first time that completely assembled and functional human IgG antibodies can not only be expressed to high levels in algal systems, but also secreted very efficiently into the culture medium. We engineered the diatom Phaeodactylum tricornutum to synthesize and secrete a human IgG antibody against the Hepatitis B Virus surface protein. As the diatom P. tricornutum is not known to naturally secrete many endogenous proteins, the secreted antibodies are already very pure making extensive purification steps redundant and production extremely cost efficient. Conclusions Microalgae combine rapid growth rates with all the advantages of eukaryotic expression systems, and offer great potential for solar-powered, low cost production of pharmaceutical proteins. PMID:22970838

  8. Effects of alpha-lipoic acid on chemerin secretion in 3T3-L1 and human adipocytes.

    PubMed

    Prieto-Hontoria, Pedro L; Pérez-Matute, Patricia; Fernández-Galilea, Marta; López-Yoldi, Miguel; Sinal, Christopher J; Martínez, J Alfredo; Moreno-Aliaga, María J

    2016-03-01

    Chemerin is a novel adipokine associated with obesity and insulin resistance. α-Lipoic acid (α-LA) has shown beneficial properties on diabetes and obesity. The aim of this study was to examine the effects of α-LA on chemerin production in adipocytes in absence or presence of TNF-α, insulin and AICAR. The potential signaling pathways involved in α-LA effects on chemerin were also analyzed. α-LA actions on chemerin were tested in differentiated 3T3-L1 adipocytes and in some cases in human subcutaneous and omental adipocytes. Chemerin mRNA levels were measured by RT-PCR and the amount of chemerin secreted to culture media was determined by ELISA. α-LA induced a concentration-dependent inhibition on both chemerin secretion and mRNA levels in 3T3-L1 adipocytes. The AMPK activator AICAR and the PI3K inhibitor LY294002 dramatically abrogated both chemerin secretion and gene expression, and further potentiated the inhibitory effect of α-LA on chemerin secretion. Insulin was able to partially reverse the inhibitory action of α-LA on chemerin secretion. α-LA also reduced basal chemerin secretion in both subcutaneous and omental adipocytes from overweight/obese subjects. Moreover, α-LA was able to abolish the stimulatory effects of the pro-inflammatory cytokine TNF-α on chemerin secretion. Our data demonstrated the ability of α-LA to inhibit chemerin production, an adipokine associated to obesity and metabolic syndrome, suggesting that the reduction of chemerin could contribute to the antiobesity/antidiabetic properties described for α-LA. PMID:26721419

  9. Microfluidic Device for the Measurement of Amino Acid Secretion Dynamics from Murine and Human Islets of Langerhans.

    PubMed

    Wang, Xue; Yi, Lian; Roper, Michael G

    2016-03-15

    Islets of Langerhans are the regulators of in vivo blood glucose levels through the secretion of endocrine hormones. Amino acids, released from various cells within islets or from intrapancreatic neurons, are hypothesized to further adjust hormone secretions. In contrast to the well-accepted mechanism of glucose-stimulated insulin secretion, several questions remain as to the function of amino acids in the regulation of hormone release from islets. To understand the autocrine and paracrine roles that amino acids play in islet physiology, a microfluidic system was developed to perform online monitoring of the secretion profiles of amino acids from 2-5 islets. The device contained an islet chamber with the ability to perfuse stimulants and an amino acid measurement system with derivatization and electrophoretic separation integrated on a single microchip. The setup was optimized to allow -15 kV to be applied to the device for high efficiency and rapid separations of derivatized amino acids. The compositions of the derivatization and separation buffers were optimized to prevent precipitations in the channels, which allowed continuous monitoring of secretion for over 2 h. With this method, 10 amino acids were resolved with limits of detection ranging from 1 to 20 nM. When murine islets were perfused with 3 mM glucose, the secretion rates of 9 amino acids were measured and ranged from 30 to 400 fmol islet(-1) min(-1). As the glucose concentration was increased to 20 mM, the dynamic changes of amino acids were monitored. The biological relevance of the amino acid secretions was verified using 2,4-dinitrophenol as an inhibitor of the proton motive force. The microfluidic system was also used to measure dynamic changes of amino acid release from human islets, which showed different release profiles compared to their murine counterparts. PMID:26891222

  10. Inflammatory cytokines regulate secretion of VEGF and chemokines by human conjunctival fibroblasts: Role in dysfunctional tear syndrome.

    PubMed

    Nagineni, Chandrasekharam N; William, Abitha; Cherukuri, Aswini; Samuel, William; Hooks, John J; Detrick, Barbara

    2016-02-01

    Ocular surface inflammation is one of the primary mechanisms associated with dysfunctional tear syndrome (DTS), also known as dry eye disease. DTS, more prevalent in older populations, causes ocular discomfort and visual disturbance due to dryness on the surface layer in the eye. We used human conjunctival fibroblast cultures (HCJVF) to investigate the effects of inflammatory cytokines IFN-γ, TNF-α and IL-1β (ITI) on the secretions of VEGF and chemokines. Our results demonstrate the elevated secretion of angiogenic VEGF molecules by ITI without affecting anti-angiogenic molecules, PEDF, endostatin, thrombospondin and sVEGF-R1. The secretion of interferon-γ inducible chemokines, CXCL9, -10, -11 by HCJVF were significantly enhanced by ITI. Our in vitro study supports previously reported observations of elevated VEGF and chemokines in tear fluids of DTS patients, reiterating the role of inflammatory reactions in DTS. PMID:26615568

  11. Effects of preventing O-glycosylation on the secretion of human chorionic gonadotropin in Chinese hamster ovary cells

    SciTech Connect

    Matzuk, M.M.; Krieger, M.; Corless, C.L.; Boime, I.

    1987-09-01

    Human chorionic gonadotropin (hCG) is a member of a family of heterodimeric glycoprotein hormones that have a common ..cap alpha.. subunit but differ in their hormone-specific ..beta..-subunits. The ..beta.. subunit of hCG (hCG..beta..) is unique among the ..beta.. subunits in that it contains four mucin-like O-linked oligosaccharides attached to a carboxyl-terminal extension. To study the effects of O-glycosylation on the secretion and assembly of hCG, expression vectors containing either hCG..beta.. gene alone or together with the hCG..cap alpha.. gene were transfected into a mutant Chinese hamster ovary cell line, 1d1D, which exhibits a reversible defect in O-glycosylation. The results reveal that hCG..beta.. can be secreted normally in the absence of its O-linked oligosaccharides. hCG..beta.. devoid of O-linked carbohydrate can also combine efficiently with hCG..cap alpha.. and be secreted as an intact dimer. The authors conclude that in Chinese hamster ovary cells, the hCG..beta.. O-linked chains play no role in the assembly and secretion of hCG. The normal and O-linked oligosaccharide-deficient forms of hCG secreted by these cells should prove useful in examining the role of O-linked chains on the biological function of hCG.

  12. Secreted and O-GlcNAcylated MIF binds to the human EGF receptor and inhibits its activation.

    PubMed

    Zheng, Yanhua; Li, Xinjian; Qian, Xu; Wang, Yugang; Lee, Jong-Ho; Xia, Yan; Hawke, David H; Zhang, Gang; Lyu, Jianxin; Lu, Zhimin

    2015-10-01

    Activation of epidermal growth factor receptor (EGFR), which occurs in many types of tumour, promotes tumour progression. However, no extracellular antagonist of human EGFR has been identified. We found that human macrophage migration inhibitory factor (MIF) is O-GlcNAcylated at Ser 112/Thr 113 at its carboxy terminus. The naturally secreted and O-GlcNAcylated MIF binds to EGFR, thereby inhibiting the binding of EGF to EGFR and EGF-induced EGFR activation, phosphorylation of ERK and c-Jun, cell invasion, proliferation and brain tumour formation. Activation of EGFR through mutation or its ligand binding enhances the secretion of MMP13, which degrades extracellular MIF, and results in abrogation of the negative regulation of MIF on EGFR. The finding that EGFR activation downregulates its antagonist in the tumour microenvironment represents an important feedforward mechanism for human tumour cells to enhance EGFR signalling and promote tumorigenesis. PMID:26280537

  13. Mechanism and function of type IV secretion during infection of the human host

    PubMed Central

    Gonzalez-Rivera, Christian; Bhatty, Minny; Christie, Peter J.

    2015-01-01

    Bacterial pathogens employ type IV secretion systems (T4SSs) for various purposes to aid in survival and proliferation in eukaryotic host. One large T4SS subfamily, the conjugation systems, confers a selective advantage to the invading pathogen in clinical settings through dissemination of antibiotic resistance genes and virulence traits. Besides their intrinsic importance as principle contributors to the emergence of multiply drug-resistant ‘superbugs’, detailed studies of these highly tractable systems have generated important new insights into the mode of action and architectures of paradigmatic T4SSs as a foundation for future efforts aimed at suppressing T4SS machine function. Over the past decade, extensive work on the second large T4SS subfamily, the effector translocators, has identified a myriad of mechanisms employed by pathogens to subvert, subdue, or bypass cellular processes and signaling pathways of the host cell. An overarching theme in the evolution of many effectors is that of molecular mimicry. These effectors carry domains similar to those of eukaryotic proteins and exert their effects through stealthy interdigitation of cellular pathways, often with the outcome not of inducing irreversible cell damage but rather of reversibly modulating cellular functions. This chapter summarizes the major developments for the actively studied pathogens with an emphasis on the structural and functional diversity of the T4SSs and the emerging common themes surrounding effector function in the human host. PMID:27337453

  14. Specialized proresolving mediators enhance human B cell differentiation to antibody secreting cells1

    PubMed Central

    Ramon, Sesquile; Gao, Fei; Serhan, Charles N.; Phipps, Richard P.

    2012-01-01

    The resolution of inflammation is an active and dynamic process critical in maintaining homeostasis. Newly identified lipid mediators have been recognized as key players during the resolution phase. These specialized proresolving mediators (SPM) constitute separate families that include lipoxins, resolvins, protectins and maresins each derived from essential polyunsaturated fatty acids. New results demonstrate that SPM regulate aspects of the immune response, including reduction of neutrophil infiltration, decreased T cell cytokine production and stimulation of macrophage phagocytic activity. The actions of SPM on B lymphocytes remain unknown. Our study shows for the first time that the novel SPM 17-hydroxydosahexaenoic acid (17-HDHA), resolvin D1 (RvD1) and protectin D1 (PD1) are present in the spleen. Interestingly, 17-HDHA, RvD1 but not PD1, strongly increase activated human B cell IgM and IgG production. Furthermore, increased antibody production by 17-HDHA is due to augmented B cell differentiation towards a CD27+CD38+ antibody-secreting cell phenotype. 17-HDHA did not affect proliferation and was non-toxic to cells. Increase of plasma cell differentiation and antibody production supports the involvement of SPM during the late stages of inflammation and pathogen clearance. The present study provides new evidence for SPM activity in the humoral response. These new findings highlight the potential applications of SPM as endogenous and non-toxic adjuvants, and as anti-inflammatory therapeutic molecules. PMID:22711890

  15. Sex-Specific Placental Responses in Fetal Development

    PubMed Central

    2015-01-01

    The placenta is an ephemeral but critical organ for the survival of all eutherian mammals and marsupials. It is the primary messenger system between the mother and fetus, where communicational signals, nutrients, waste, gases, and extrinsic factors are exchanged. Although the placenta may buffer the fetus from various environmental insults, placental dysfunction might also contribute to detrimental developmental origins of adult health and disease effects. The placenta of one sex over the other might possess greater ability to respond and buffer against environmental insults. Given the potential role of the placenta in effecting the lifetime health of the offspring, it is not surprising that there has been a resurging interest in this organ, including the Human Placental Project launched by the National Institutes of Child Health and Human Development. In this review, we will compare embryological development of the laboratory mouse and human chorioallantoic placentae. Next, evidence that various species, including humans, exhibit normal sex-dependent structural and functional placental differences will be examined followed by how in utero environmental changes (nutritional state, stress, and exposure to environmental chemicals) might interact with fetal sex to affect this organ. Recent data also suggest that paternal state impacts placental function in a sex-dependent manner. The research to date linking placental maladaptive responses and later developmental origins of adult health and disease effects will be explored. Finally, we will focus on how sex chromosomes and epimutations may contribute to sex-dependent differences in placental function, the unanswered questions, and future directions that warrant further consideration. PMID:26241064

  16. Sex-Specific Placental Responses in Fetal Development.

    PubMed

    Rosenfeld, Cheryl S

    2015-10-01

    The placenta is an ephemeral but critical organ for the survival of all eutherian mammals and marsupials. It is the primary messenger system between the mother and fetus, where communicational signals, nutrients, waste, gases, and extrinsic factors are exchanged. Although the placenta may buffer the fetus from various environmental insults, placental dysfunction might also contribute to detrimental developmental origins of adult health and disease effects. The placenta of one sex over the other might possess greater ability to respond and buffer against environmental insults. Given the potential role of the placenta in effecting the lifetime health of the offspring, it is not surprising that there has been a resurging interest in this organ, including the Human Placental Project launched by the National Institutes of Child Health and Human Development. In this review, we will compare embryological development of the laboratory mouse and human chorioallantoic placentae. Next, evidence that various species, including humans, exhibit normal sex-dependent structural and functional placental differences will be examined followed by how in utero environmental changes (nutritional state, stress, and exposure to environmental chemicals) might interact with fetal sex to affect this organ. Recent data also suggest that paternal state impacts placental function in a sex-dependent manner. The research to date linking placental maladaptive responses and later developmental origins of adult health and disease effects will be explored. Finally, we will focus on how sex chromosomes and epimutations may contribute to sex-dependent differences in placental function, the unanswered questions, and future directions that warrant further consideration. PMID:26241064

  17. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta

    SciTech Connect

    Robinson, B.G.; Emanuel, R.L.; Frim, D.M.; Majzoub, J.A. )

    1988-07-01

    Primary cultures of purified human cytotrophoblasts have been used to examine the expression of the corticotropin-releasing hormone (CRH) gene in placenta. The authors report here that glucocorticoids stimulate placental CRH synthesis and secretion in primary cultures of human placenta. This stimulation is in contrast to the glucocorticoid suppression of CRH expression in hypothalamus. The positive regulation of CRH by glucocorticoids suggests that the rise in CRH preceding parturition could result from the previously described rise in fetal glucocorticoids. Furthermore, this increase in placental CRH could stimulate, via adrenocorticotropic hormone, a further rise in fetal glucocorticoids, completing a positive feedback loop that would be terminated by delivery.

  18. Biosynthesis and secretion of functional protein S by a human megakaryoblastic cell line (MEG-01)

    SciTech Connect

    Ogura, M.; Tanabe, N.; Nishioka, J.; Suzuki, K.; Saito, H.

    1987-07-01

    A human megakaryoblastic cell line (MEG-01) was investigated for the presence of protein S in culture medium and cell lysates using a specific enzyme-linked immunoassay (ELISA) and a functional assay. When 5 X 10(5) MEG-01 cells/mL was subcultured in RPMI 1640 medium with 10% fetal calf serum (FCS), the concentration of protein S antigen in the culture medium increased progressively with time from less than 8 ng/mL on day 0 to 105.6 +/- 6.0 ng/mL on day 13. Vitamin K2(1 microgram/mL) increased the production of functional protein S, whereas warfarin (1 microgram/mL) profoundly decreased the quantity and the specific activity of secreted protein S. By an indirect immunofluorescent technique, protein S antigen was detected in both MEG-01 cells and human bone marrow megakaryocytes. Immunoblot analysis of culture medium revealed two distinct bands (mol wt 84,000 and 78,000) that are identical to the doublets of purified plasma protein S. De novo synthesis of protein S was demonstrated by the presence of specific immunoprecipitable radioactivity in the medium after 5 hours of labeling of the cells with (/sup 35/S)-methionine as a 84,000 mol wt protein. Plasma protein S levels of nine patients with severe aplastic anemia were not significantly different from those of normal controls. These results suggest that megakaryocytes produce functional protein S and contain the enzymes required for the carboxylation of selected glutamic acid residues, and that protein S synthesized by megakaryocytes does not represent a main source of plasma protein S.

  19. House dust mite extracts activate cultured human dermal endothelial cells to express adhesion molecules and secrete cytokines.

    PubMed

    Arlian, Larry G; Elder, B Laurel; Morgan, Marjorie S

    2009-05-01

    The human skin contacts molecules from house dust mites that are ubiquitous in many environments. These mite-derived molecules may penetrate the skin epidermis and dermis and contact microvascular endothelial cells and influence their function. The purpose of this study was to determine the response of normal human dermal microvascular endothelial cells to extracts of the dust mites, Dermatophagoides farinae, D. pteronyssinus, and Euroglyphus maynei with and without endotoxin (lipopolysaccharide). Endothelial cells were stimulated with mite extracts and the expression of surface molecules and the secretion of cytokines were measured in the absence and presence of polymyxin B to bind endotoxin. All three mite extracts stimulated endothelial cells to express intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin and to secrete interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP-1), and granulocyte/macrophage colony stimulating factor (GM-CSF). Euroglyphus maynei-induced expression of all the cell surface molecules was not inhibited when the endotoxin activity in the mite extract was inhibited. In contrast, endothelial cells challenged with D. farinae or D. pteronyssinus extract depleted of endotoxin activity expressed only constitutive levels of ICAM-1, VCAM-1, and E-selectin. D. farinae and E. maynei extracts depleted of endotoxin activity still induced secretion of IL-8 and MCP-1 but at reduced levels. Only constitutive amounts of IL-6, G-CSF, and GM-CSF were secreted in response to any of the endotoxin-depleted mite extracts. Extracts of D. farinae, D. pteronyssinus, and E. maynei contain both endotoxins and other molecules that can stimulate expression of cell adhesion molecules and chemokine receptors and the secretion of cytokines by normal human microvascular endothelial cells. PMID:19496432

  20. In vivo Cigarette Smoke Exposure Decreases CCL20, SLPI, and BD-1 Secretion by Human Primary Nasal Epithelial Cells

    PubMed Central

    Jukosky, James; Gosselin, Benoit J.; Foley, Leah; Dechen, Tenzin; Fiering, Steven; Crane-Godreau, Mardi A.

    2016-01-01

    Smokers and individuals exposed to second-hand cigarette smoke have a higher risk of developing chronic sinus and bronchial infections. This suggests that cigarette smoke (CS) has adverse effects on immune defenses against pathogens. Epithelial cells are important in airway innate immunity and are the first line of defense against infection. Airway epithelial cells not only form a physical barrier but also respond to the presence of microbes by secreting antimicrobials, cytokines, and chemokines. These molecules can lyse infectious microorganisms and/or provide signals critical to the initiation of adaptive immune responses. We examined the effects of CS on antimicrobial secretions of primary human nasal epithelial cells (PHNECs). Compared to non-CS-exposed individuals, PHNEC from in vivo CS-exposed individuals secreted less chemokine ligand (C-C motif) 20 (CCL20), Beta-defensin 1 (BD-1), and SLPI apically, less BD-1 and SLPI basolaterally, and more CCL20 basolaterally. Cigarette smoke extract (CSE) exposure in vitro decreased the apical secretion of CCL20 and beta-defensin 1 by PHNEC from non-CS-exposed individuals. Exposing PHNEC from non-CS exposed to CSE also significantly decreased the levels of many mRNA transcripts that are involved in immune signaling. Our results show that in vivo or in vitro exposure to CS alters the secretion of key antimicrobial peptides from PHNEC, but that in vivo CS exposure is a much more important modifier of antimicrobial peptide secretion. Based on the gene expression data, it appears that CSE disrupts multiple immune signaling pathways in PHNEC. Our results provide mechanistic insight into how CS exposure alters the innate immune response and increases an individual’s susceptibility to pathogen infection. PMID:26793127

  1. In vivo Cigarette Smoke Exposure Decreases CCL20, SLPI, and BD-1 Secretion by Human Primary Nasal Epithelial Cells.

    PubMed

    Jukosky, James; Gosselin, Benoit J; Foley, Leah; Dechen, Tenzin; Fiering, Steven; Crane-Godreau, Mardi A

    2015-01-01

    Smokers and individuals exposed to second-hand cigarette smoke have a higher risk of developing chronic sinus and bronchial infections. This suggests that cigarette smoke (CS) has adverse effects on immune defenses against pathogens. Epithelial cells are important in airway innate immunity and are the first line of defense against infection. Airway epithelial cells not only form a physical barrier but also respond to the presence of microbes by secreting antimicrobials, cytokines, and chemokines. These molecules can lyse infectious microorganisms and/or provide signals critical to the initiation of adaptive immune responses. We examined the effects of CS on antimicrobial secretions of primary human nasal epithelial cells (PHNECs). Compared to non-CS-exposed individuals, PHNEC from in vivo CS-exposed individuals secreted less chemokine ligand (C-C motif) 20 (CCL20), Beta-defensin 1 (BD-1), and SLPI apically, less BD-1 and SLPI basolaterally, and more CCL20 basolaterally. Cigarette smoke extract (CSE) exposure in vitro decreased the apical secretion of CCL20 and beta-defensin 1 by PHNEC from non-CS-exposed individuals. Exposing PHNEC from non-CS exposed to CSE also significantly decreased the levels of many mRNA transcripts that are involved in immune signaling. Our results show that in vivo or in vitro exposure to CS alters the secretion of key antimicrobial peptides from PHNEC, but that in vivo CS exposure is a much more important modifier of antimicrobial peptide secretion. Based on the gene expression data, it appears that CSE disrupts multiple immune signaling pathways in PHNEC. Our results provide mechanistic insight into how CS exposure alters the innate immune response and increases an individual's susceptibility to pathogen infection. PMID:26793127

  2. Protein kinase C inhibition by sphingoid long-chain bases: effects on secretion in human neutrophils

    SciTech Connect

    Wilson, E.; Arnold, R.R.; Merrill, A.H.; Lambeth, J.D.

    1987-05-01

    Sphingoid long-chain bases (sphinganine and sphingosine(So)) have recently been shown to inhibit protein kinase C (PK-C) in vitro and to block activation of the oxidative burst in intact neutrophils (PMN) by inhibiting this enzyme. In the present study, the authors have used So to investigate the role of protein kinase C in stimulus-induced secretion of PMN granule contents. Secretion of the specific granule component lactoferrin (Lf) is completely inhibited by pretreatment with So when either PMA or fLMP is used as the secretogogue. Secretion of lysozyme, a component of both the azurophilic and specific granules, is completely inhibited by So when PMA is used, but only 40% inhibited with fMLP. The secretion of the azurophilic granule markers US -glucuronidase and myeloperoxidase was not affected by So regardless of the agonist used. Data indicate that both PK-C-dependent and -independent pathways participate in the neutrophil secretory response.

  3. The role of extracellular vesicles in placental vascular complications.

    PubMed

    Aharon, Anat

    2015-02-01

    Extracellular membrane vesicles (EVs) also termed microvesicles (MVs) are secreted from different cells, are present in the blood circulation under normal physiological conditions, and their levels increase in a wide range of disease states. EVs contain proteins, growth and apoptotic factors, DNA fragments, microRNAs as well as messenger RNAs (mRNAs); therefore, they may function as regulators in cell-cell communication and mediators of cell signaling during multiple biological processes. The current review focuses on the role of EVs in healthy pregnancy and gestational vascular complications and discusses the involvement of EVs in gene regulation, placental hemostasis and cell function that overall reflect the placental-maternal crosstalk. PMID:25903528

  4. High Secretion of Interferons by Human Plasmacytoid Dendritic Cells upon Recognition of Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Scheuplein, Vivian A.; Seifried, Janna; Malczyk, Anna H.; Miller, Lilija; Höcker, Lena; Vergara-Alert, Júlia; Dolnik, Olga; Zielecki, Florian; Becker, Björn; Spreitzer, Ingo; König, Renate; Becker, Stephan

    2015-01-01

    ABSTRACT The Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 as the causative agent of a severe respiratory disease with a fatality rate of approximately 30%. The high virulence and mortality rate prompted us to analyze aspects of MERS-CoV pathogenesis, especially its interaction with innate immune cells such as antigen-presenting cells (APCs). Particularly, we analyzed secretion of type I and type III interferons (IFNs) by APCs, i.e., B cells, macrophages, monocyte-derived/myeloid dendritic cells (MDDCs/mDCs), and by plasmacytoid dendritic cells (pDCs) of human and murine origin after inoculation with MERS-CoV. Production of large amounts of type I and III IFNs was induced exclusively in human pDCs, which were significantly higher than IFN induction by severe acute respiratory syndrome (SARS)-CoV. Of note, IFNs were secreted in the absence of productive replication. However, receptor binding, endosomal uptake, and probably signaling via Toll-like receptor 7 (TLR7) were critical for sensing of MERS-CoV by pDCs. Furthermore, active transcription of MERS-CoV N RNA and subsequent N protein expression were evident in infected pDCs, indicating abortive infection. Taken together, our results point toward dipeptidyl peptidase 4 (DPP4)-dependent endosomal uptake and subsequent infection of human pDCs by MERS-CoV. However, the replication cycle is stopped after early gene expression. In parallel, human pDCs are potent IFN-producing cells upon MERS-CoV infection. Knowledge of such IFN responses supports our understanding of MERS-CoV pathogenesis and is critical for the choice of treatment options. IMPORTANCE MERS-CoV causes a severe respiratory disease with high fatality rates in human patients. Recently, confirmed human cases have increased dramatically in both number and geographic distribution. Understanding the pathogenesis of this highly pathogenic CoV is crucial for developing successful treatment strategies. This study elucidates the

  5. Characterization of Skin Aging-Associated Secreted Proteins (SAASP) Produced by Dermal Fibroblasts Isolated from Intrinsically Aged Human Skin.

    PubMed

    Waldera Lupa, Daniel M; Kalfalah, Faiza; Safferling, Kai; Boukamp, Petra; Poschmann, Gereon; Volpi, Elena; Götz-Rösch, Christine; Bernerd, Francoise; Haag, Laura; Huebenthal, Ulrike; Fritsche, Ellen; Boege, Fritz; Grabe, Niels; Tigges, Julia; Stühler, Kai; Krutmann, Jean

    2015-08-01

    Most molecular hallmarks of cellular senescence have been identified in studies of cells aged in vitro by driving them into replicative or stress-induced senescence. Comparatively, less is known about the characteristic features of cells that have aged in vivo. Here we provide a systematic molecular analysis of normal human dermal fibroblasts (NHDFs) that were isolated from intrinsically aged human skin of young versus middle aged versus old donors. Intrinsically aged NHDFs in culture exhibited more frequently nuclear foci positive for p53 binding protein 1 and promyelocytic leukemia protein reminiscent of 'DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS)'. Formation of such foci was neither accompanied by increased DNA double strand breaks, nor decreased cell viability, nor telomere shortening. However, it was associated with the development of a secretory phenotype, indicating incipient cell senescence. By quantitative analysis of the entire secretome present in conditioned cell culture supernatant, combined with a multiplex cytokine determination, we identified 998 proteins secreted by intrinsically aged NHDFs in culture. Seventy of these proteins exhibited an age-dependent secretion pattern and were accordingly denoted 'skin aging-associated secreted proteins (SAASP)'. Systematic comparison of SAASP with the classical senescence-associated secretory phenotype (SASP) revealed that matrix degradation as well as proinflammatory processes are common aspects of both conditions. However, secretion of 27 proteins involved in the biological processes of 'metabolism' and 'adherens junction interactions' was unique for NHDFs isolated from intrinsically aged skin. In conclusion, fibroblasts isolated from intrinsically aged skin exhibit some, but not all, molecular hallmarks of cellular senescence. Most importantly, they secrete a unique pattern of proteins that is distinct from the canonical SASP and might reflect specific processes of skin aging

  6. IGF-1 drives chromogranin A secretion via activation of Arf1 in human neuroendocrine tumour cells

    PubMed Central

    Münzberg, Christin; Höhn, Katharina; Krndija, Denis; Maaß, Ulrike; Bartsch, Detlef K; Slater, Emily P; Oswald, Franz; Walther, Paul; Seufferlein, Thomas; von Wichert, Götz

    2015-01-01

    Hypersecretion is the major symptom of functional neuroendocrine tumours. The mechanisms that contribute to this excessive secretion of hormones are still elusive. A key event in secretion is the exit of secretory products from the Golgi apparatus. ADP-ribosylation factor (Arf) GTPases are known to control vesicle budding and trafficking, and have a leading function in the regulation of formation of secretory granula at the Golgi. Here, we show that Arf1 is the predominant Arf protein family member expressed in the neuroendocrine pancreatic tumour cell lines BON and QGP-1. In BON cells Arf1 colocalizes with Golgi markers as well as chromogranin A, and shows significant basal activity. The inhibition of Arf1 activity or expression significantly impaired secretion of chromogranin A. Furthermore, we show that the insulin-like growth factor 1 (IGF-1), a major regulator of growth and secretion in BON cells, induces Arf1 activity. We found that activation of Arf1 upon IGF-1 receptor stimulation is mediated by MEK/ERK signalling pathway in BON and QGP-1 cells. Moreover, the activity of Arf1 in BON cells is mediated by autocrinely secreted IGF-1, and concomitantly, autocrine IGF1 secretion is maintained by Arf1 activity. In summary, our data indicate an important regulatory role for Arf1 at the Golgi in hypersecretion in neuroendocrine cancer cells. PMID:25754106

  7. [Rheological properties of human bronchial secretions: demonstration of proline-rich polypeptides and their role (author's transl)].

    PubMed

    Bailleul, V; Richet, C; Hayem, A; Degand, P

    1977-01-17

    Human bronchial secretions were examined for chemical components and rheological properties. Proline-rich polypeptides (PRP) obtained by ultrasonic treatment and by contact with a cationic resin (AG 50WX2) were purified by gel-filtration chromatography and high-voltage electrophoresis. The chemical composition of these components allowed a classification according to their proline, glycine, glutamic acid and lysine contents. Rheological experiments suggest a biological role for the PRP in the fibrillar structure of sputum. PMID:12892

  8. Gene therapy of multiple sclerosis using interferon β-secreting human bone marrow mesenchymal stem cells.

    PubMed

    Ryu, Chung Heon; Park, Kwang Ywel; Hou, Yun; Jeong, Chang Hyun; Kim, Seong Muk; Jeun, Sin-Soo

    2013-01-01

    Interferon-beta (IFN- β ), a well-established standard treatment for multiple sclerosis (MS), has proved to exhibit clinical efficacy. In this study, we first evaluated the therapeutic effects for MS using human bone marrow-derived mesenchymal stem cells (hBM-MSCs) as delivery vehicles with lesion-targeting capability and IFN- β as therapeutic gene. We also engineered hBM-MSCs to secret IFN- β (MSCs-IFN β ) via adenoviral transduction and confirmed the secretory capacity of MSCs-IFN β by an ELISA assay. MSCs-IFN β -treated mice showed inhibition of experimental autoimmune encephalomyelitis (EAE) onset, and the maximum and average score for all animals in each group was significantly lower in the MSCs-IFN β -treated EAE mice when compared with the MSCs-GFP-treated EAE mice. Inflammatory infiltration and demyelination in the lumbar spinal cord also significantly decreased in the MSCs-IFN β -treated EAE mice compared to PBS- or MSCs-GFP-treated EAE mice. Moreover, MSCs-IFN β treatment enhanced the immunomodulatory effects, which suppressed proinflammatory cytokines (IFN-γ and TNF-α) and conversely increased anti-inflammatory cytokines (IL-4 and IL-10). Importantly, injected MSCs-IFN β migrated into inflamed CNS and significantly reduced further injury of blood-brain barrier (BBB) permeability in EAE mice. Thus, our results provide the rationale for designing novel experimental protocols to enhance the therapeutic effects for MS using hBM-MSCs as an effective gene vehicle to deliver the therapeutic cytokines. PMID:23710456

  9. A nanoscaffold impregnated with human wharton's jelly stem cells or its secretions improves healing of wounds.

    PubMed

    Tam, Kimberley; Cheyyatraviendran, Suganya; Venugopal, Jayarama; Biswas, Arijit; Choolani, Mahesh; Ramakrishna, Seeram; Bongso, Ariff; Fong, Chui-Yee

    2014-04-01

    Wound healing is a major problem in diabetic patients and current methods of treatment have met with limited success. Since skin cell renewal is under the control of mesenchymal stem cells (MSCs) treatment of wounds has been attempted with the application of exogenous bone marrow MSCs (hBMMSCs). However, hBMMSCs have the limitations of painful harvest, low cell numbers and short-lived stemness properties unlike MSCs from the Wharton's jelly of human umbilical cords (hWJSCs). Since nanoscaffolds provide three dimensional architectural patterns that mimic in vivo stem cell niches and aloe vera has antibacterial properties we evaluated the use of an aloe vera-polycaprolactone (AV/PCL) nanoscaffold impregnated with green fluorescent protein (GFP)-labeled hWJSCs (GFP-hWJSCs + AV/PCL) or its conditioned medium (hWJSC-CM + AV/PCL) for healing of excisional and diabetic wounds. In skin fibroblast scratch-wound assays exposed to GFP-hWJSCs + AV/PCL or hWJSC-CM + AV/PCL, fibroblasts migrated significantly faster from edges of scratches into vacant areas together with increased secretion of collagen I and III, elastin, fibronectin, superoxide dismutase, and metalloproteinase-1 (MMP-1) compared to controls. After one application of GFP-hWJSCs + AV/PCL or hWJSC-CM + AV/PCL excisional and diabetic wounds in mice showed rapid wound closure, reepithelialization, and increased numbers of sebaceous glands and hair follicles compared to controls. The same wounds exposed to GFP-hWJSCs + AV/PCL or hWJSC-CM + AV/PCL also showed positive keratinocyte markers (cytokeratin, involucrin, filaggrin) and increased expression of ICAM-1, TIMP-1, and VEGF-A compared to controls. AV/PCL nanoscaffolds in combination with hWJSCs appear to have synergistic benefits for wound healing. PMID:24265214

  10. Placental transfer of the actinides and related heavy elements

    SciTech Connect

    Sikov, M.R.

    1986-11-01

    A selective literature review dealing with prenatal exposure of animals and humans to actinides and related heavy elements, comparative aspects of placental transfer and fetoplacental distribution are considered. General patterns have been derived from typical quantitative values, and used to compare similarities and dissimilarities, and to examine factors responsible for observed differences. 37 refs., 2 tabs.

  11. Placental Mechanics in the Zika-Microcephaly Relationship.

    PubMed

    Adibi, Jennifer J; Zhao, Yaqi; Cartus, Abigail R; Gupta, Phalguni; Davidson, Lance A

    2016-07-13

    How the Zika virus (ZIKV) accesses the embryo remains unknown. In this issue, Quicke et al. (2016) use an in vitro model of the human placenta to show that placental macrophages are more permissive to ZIKV infection than trophoblasts, which may be refractory to infection (Bayer et al., 2016). PMID:27414496

  12. Disruption of the Saccharomyces cerevisiae YAP3 gene reduces the proteolytic degradation of secreted recombinant human albumin.

    PubMed

    Kerry-Williams, S M; Gilbert, S C; Evans, L R; Ballance, D J

    1998-01-30

    Expression of recombinant human albumin (rHA) in Saccharomyces cerevisiae resulted in secretion of both mature albumin and a 45 kDa degradation product, comprising an N-terminal fragment of rHA with heterogeneous C-termini between residues 403 and 409 (Geisow et al., 1991). Site-directed mutagenesis of the human albumin gene (HA) to change Arg410 to Ala (R410A) caused a significant reduction in the amount of fragment produced. Mutation of the adjacent dibasic site Lys413 Lys414 had little effect in isolation, but in combination with the R410A mutation resulted in a further reduction in the amount of rHA fragment produced. This reduction could be duplicated with nature-identical rHA by disruption of the gene for an aspartyl protease (YAP3), alone or in conjunction with disruption of the KEX2 gene. Disruption of KEX2 alone did not result in any improvement in the degree of degradation of the rHA. Reduced degradation was also observed when an rHA-human growth hormone fusion protein was secreted from a yap3 strain, suggesting that such strains may have a general utility for heterologous protein secretion. PMID:9483804

  13. Development of genetically engineered human intestinal cells for regulated insulin secretion using rAAV-mediated gene transfer.

    PubMed

    Tang, Shiue-Cheng; Sambanis, Athanassios

    2003-04-01

    Cell-based therapies for treating insulin-dependent diabetes (IDD) can provide a more physiologic regulation of blood glucose levels in a less invasive fashion than daily insulin injections. Promising cells include intestinal enteroendocrine cells genetically engineered to secrete insulin in response to physiologic stimuli; responsiveness occurs at the exocytosis level to regulate the acute release of recombinant insulin. In this work, we established a human cellular model to demonstrate that meat hydrolysate can simultaneously stimulate glucagon-like peptide-1 (GLP-1, an enteroendocrine cell-derived incretin hormone) and recombinant insulin secretion from the engineered human NCI-H716 intestinal cell line. Cells were genetically modified using the recombinant adeno-associated virus (rAAV)-mediated insulin gene transfer. Recombinant cells were then differentiated to display endocrine features, in particular the formation of granule-like compartments. A fusion protein of insulin and enhanced green fluorescence protein (EGFP) was designed to reveal the compartments of localization of the fusion protein and assess its co-localization with endogenous GLP-1. Our work provides a unique human cellular model for regulated insulin release through genetic engineering of GLP-1-secreting intestinal cells, which is expected to be useful for cell-based therapies of IDD. PMID:12659868

  14. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes.

    PubMed

    Bacos, Karl; Gillberg, Linn; Volkov, Petr; Olsson, Anders H; Hansen, Torben; Pedersen, Oluf; Gjesing, Anette Prior; Eiberg, Hans; Tuomi, Tiinamaija; Almgren, Peter; Groop, Leif; Eliasson, Lena; Vaag, Allan; Dayeh, Tasnim; Ling, Charlotte

    2016-01-01

    Aging associates with impaired pancreatic islet function and increased type 2 diabetes (T2D) risk. Here we examine whether age-related epigenetic changes affect human islet function and if blood-based epigenetic biomarkers reflect these changes and associate with future T2D. We analyse DNA methylation genome-wide in islets from 87 non-diabetic donors, aged 26-74 years. Aging associates with increased DNA methylation of 241 sites. These sites cover loci previously associated with T2D, for example, KLF14. Blood-based epigenetic biomarkers reflect age-related methylation changes in 83 genes identified in human islets (for example, KLF14, FHL2, ZNF518B and FAM123C) and some associate with insulin secretion and T2D. DNA methylation correlates with islet expression of multiple genes, including FHL2, ZNF518B, GNPNAT1 and HLTF. Silencing these genes in β-cells alter insulin secretion. Together, we demonstrate that blood-based epigenetic biomarkers reflect age-related DNA methylation changes in human islets, and associate with insulin secretion in vivo and T2D. PMID:27029739

  15. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes

    PubMed Central

    Bacos, Karl; Gillberg, Linn; Volkov, Petr; Olsson, Anders H; Hansen, Torben; Pedersen, Oluf; Gjesing, Anette Prior; Eiberg, Hans; Tuomi, Tiinamaija; Almgren, Peter; Groop, Leif; Eliasson, Lena; Vaag, Allan; Dayeh, Tasnim; Ling, Charlotte

    2016-01-01

    Aging associates with impaired pancreatic islet function and increased type 2 diabetes (T2D) risk. Here we examine whether age-related epigenetic changes affect human islet function and if blood-based epigenetic biomarkers reflect these changes and associate with future T2D. We analyse DNA methylation genome-wide in islets from 87 non-diabetic donors, aged 26–74 years. Aging associates with increased DNA methylation of 241 sites. These sites cover loci previously associated with T2D, for example, KLF14. Blood-based epigenetic biomarkers reflect age-related methylation changes in 83 genes identified in human islets (for example, KLF14, FHL2, ZNF518B and FAM123C) and some associate with insulin secretion and T2D. DNA methylation correlates with islet expression of multiple genes, including FHL2, ZNF518B, GNPNAT1 and HLTF. Silencing these genes in β-cells alter insulin secretion. Together, we demonstrate that blood-based epigenetic biomarkers reflect age-related DNA methylation changes in human islets, and associate with insulin secretion in vivo and T2D. PMID:27029739

  16. Sonographic spectrum of placental abruption.

    PubMed

    Nyberg, D A; Cyr, D R; Mack, L A; Wilson, D A; Shuman, W P

    1987-01-01

    Fifty-seven cases of placental abruption detected by sonography were retrospectively reviewed. The location of hemorrhage was subchorionic in 46 cases (81%), retroplacental in nine cases (16%), and preplacental in two cases (4%). Subchorionic hematomas were more frequently shown in the 33 patients presenting before 20 menstrual weeks (91%) than in the 24 patients presenting after 20 weeks (67%). The echogenicity of hemorrhage depended on the time the sonogram was performed relative to the onset of symptoms: Acute hemorrhage was hyperechoic to isoechoic compared with the placenta, while resolving hematomas became hypoechoic within 1 week and sonolucent within 2 weeks. Acute hemorrhage was occasionally difficult to distinguish from the adjacent placenta. This occurred in five retroplacental hematomas that showed only an abnormally thick and heterogeneous placenta. Nine cases of placental abruption were initially confused with other mass lesions. Placental abruption causes a wide spectrum of sonographic findings that may be overlooked or misdiagnosed. PMID:3538831

  17. Interleukin-11 alters placentation and causes preeclampsia features in mice

    PubMed Central

    Winship, Amy L.; Koga, Kaori; Menkhorst, Ellen; Van Sinderen, Michelle; Rainczuk, Katarzyna; Nagai, Miwako; Cuman, Carly; Yap, Joanne; Zhang, Jian-Guo; Simmons, David; Young, Morag J.; Dimitriadis, Evdokia

    2015-01-01

    Preeclampsia (PE) is a pregnancy-specific disorder characterized by hypertension and proteinuria after 20 wk gestation. Abnormal extravillous trophoblast (EVT) invasion and remodeling of uterine spiral arterioles is thought to contribute to PE development. Interleukin-11 (IL11) impedes human EVT invasion in vitro and is elevated in PE decidua in women. We demonstrate that IL11 administered to mice causes development of PE features. Immunohistochemistry shows IL11 compromises trophoblast invasion, spiral artery remodeling, and placentation, leading to increased systolic blood pressure (SBP), proteinuria, and intrauterine growth restriction, although nonpregnant mice were unaffected. Real-time PCR array analysis identified pregnancy-associated plasma protein A2 (PAPPA2), associated with PE in women, as an IL11 regulated target. IL11 increased PAPPA2 serum and placental tissue levels in mice. In vitro, IL11 compromised primary human EVT invasion, whereas siRNA knockdown of PAPPA2 alleviated the effect. Genes regulating uterine natural killer (uNK) recruitment and differentiation were down-regulated and uNK cells were reduced after IL11 treatment in mice. IL11 withdrawal in mice at onset of PE features reduced SBP and proteinuria to control levels and alleviated placental labyrinth defects. In women, placental IL11 immunostaining levels increased in PE pregnancies and in serum collected from women before development of early-onset PE, shown by ELISA. These results indicate that elevated IL11 levels result in physiological changes at the maternal–fetal interface, contribute to abnormal placentation, and lead to the development of PE. Targeting placental IL11 may provide a new treatment option for PE. PMID:26655736

  18. Interleukin-11 alters placentation and causes preeclampsia features in mice.

    PubMed

    Winship, Amy L; Koga, Kaori; Menkhorst, Ellen; Van Sinderen, Michelle; Rainczuk, Katarzyna; Nagai, Miwako; Cuman, Carly; Yap, Joanne; Zhang, Jian-Guo; Simmons, David; Young, Morag J; Dimitriadis, Evdokia

    2015-12-29

    Preeclampsia (PE) is a pregnancy-specific disorder characterized by hypertension and proteinuria after 20 wk gestation. Abnormal extravillous trophoblast (EVT) invasion and remodeling of uterine spiral arterioles is thought to contribute to PE development. Interleukin-11 (IL11) impedes human EVT invasion in vitro and is elevated in PE decidua in women. We demonstrate that IL11 administered to mice causes development of PE features. Immunohistochemistry shows IL11 compromises trophoblast invasion, spiral artery remodeling, and placentation, leading to increased systolic blood pressure (SBP), proteinuria, and intrauterine growth restriction, although nonpregnant mice were unaffected. Real-time PCR array analysis identified pregnancy-associated plasma protein A2 (PAPPA2), associated with PE in women, as an IL11 regulated target. IL11 increased PAPPA2 serum and placental tissue levels in mice. In vitro, IL11 compromised primary human EVT invasion, whereas siRNA knockdown of PAPPA2 alleviated the effect. Genes regulating uterine natural killer (uNK) recruitment and differentiation were down-regulated and uNK cells were reduced after IL11 treatment in mice. IL11 withdrawal in mice at onset of PE features reduced SBP and proteinuria to control levels and alleviated placental labyrinth defects. In women, placental IL11 immunostaining levels increased in PE pregnancies and in serum collected from women before development of early-onset PE, shown by ELISA. These results indicate that elevated IL11 levels result in physiological changes at the maternal-fetal interface, contribute to abnormal placentation, and lead to the development of PE. Targeting placental IL11 may provide a new treatment option for PE. PMID:26655736

  19. [Chronic placental insufficiency: incidence and causes].

    PubMed

    Fedorova, M V; Mariasheva, N V; Alekseevskiĭ, A V; Kotov, Iu B; Lukashenko, S Iu

    1990-08-01

    This population study has examined the incidence and determinants of placental insufficiency. Predictors of placental dysfunction were ascertained. They included somatic diseases, gestational complications, a positive obstetric and gynecologic history and a series of constitutional factors. Populations of primiparae+- and multigravidae at risk of placental insufficiency were identified. PMID:2260740

  20. The Protein Architecture of Human Secretory Vesicles Reveals Differential Regulation of Signaling Molecule Secretion by Protein Kinases

    PubMed Central

    Taupenot, Laurent; Ziegler, Michael; O'Connor, Daniel T.; Ma, Qi; Smoot, Michael; Ideker, Trey; Hook, Vivian

    2012-01-01

    Secretory vesicles are required for release of chemical messengers to mediate intercellular signaling among human biological systems. It is necessary to define the organization of the protein architecture of the ‘human’ dense core secretory vesicles (DCSV) to understand mechanisms for secretion of signaling molecules essential for cellular regulatory processes. This study, therefore, conducted extensive quantitative proteomics and systems biology analyses of human DCSV purified from human pheochromocytoma. Over 600 human DCSV proteins were identified with quantitative evaluation of over 300 proteins, revealing that most proteins participate in producing peptide hormones and neurotransmitters, enzymes, and the secretory machinery. Systems biology analyses provided a model of interacting DCSV proteins, generating hypotheses for differential intracellular protein kinases A and C signaling pathways. Activation of cellular PKA and PKC pathways resulted in differential secretion of neuropeptides, catecholamines, and β-amyloid of Alzheimer's disease for mediating cell-cell communication. This is the first study to define a model of the protein architecture of human DCSV for human disease and health. PMID:22916103

  1. A low dose euglycemic infusion of recombinant human insulin-like growth factor I rapidly suppresses fasting-enhanced pulsatile growth hormone secretion in humans.

    PubMed Central

    Hartman, M L; Clayton, P E; Johnson, M L; Celniker, A; Perlman, A J; Alberti, K G; Thorner, M O

    1993-01-01

    To determine if insulin-like growth factor I (IGF-I) inhibits pulsatile growth hormone (GH) secretion in man, recombinant human IGF-I (rhIGF-I) was infused for 6 h at 10 micrograms.kg-1.h-1 during a euglycemic clamp in 10 normal men who were fasted for 32 h to enhance GH secretion. Saline alone was infused during an otherwise identical second admission as a control. As a result of rhIGF-I infusion, total and free IGF-I concentrations increased three- and fourfold, respectively. Mean GH concentrations fell from 6.3 +/- 1.6 to 0.59 +/- 0.07 micrograms/liter after 120 min. GH secretion rates, calculated by a deconvolution algorithm, decreased with a t 1/2 of 16.6 min and remained suppressed thereafter. Suppression of GH secretion rates occurred within 60 min when total and free IGF-I concentrations were 1.6-fold and 2-fold above baseline levels, respectively, and while glucose infusion rates were < 1 mumol.kg-1.min-1. During saline infusion, GH secretion rates remained elevated. Infusion of rhIGF-I decreased the mass of GH secreted per pulse by 84% (P < 0.01) and the number of detectable GH secretory pulses by 32% (P < 0.05). Plasma insulin and glucagon decreased to nearly undetectable levels after 60 min of rhIGF-I. Serum free fatty acids, beta-hydroxybutyrate, and acetoacetate were unaffected during the first 3 h of rhIGF-I but decreased thereafter to 52, 32, and 50% of levels observed during saline. We conclude that fasting-enhanced GH secretion is rapidly suppressed by a low-dose euglycemic infusion of rhIGF-I. This effect of rhIGF-I is likely mediated through IGF-I receptors independently of its insulin-like metabolic actions. PMID:8514857

  2. Malignant cancer and invasive placentation: A case for positive pleiotropy between endometrial and malignancy phenotypes.

    PubMed

    D'Souza, Alaric W; Wagner, Günter P

    2014-01-01

    Cancer metastasis is an invasive process that involves the transplantation of cells into new environments. Since human placentation is also invasive, hypotheses about a relationship between invasive placentation in eutherian mammals and metastasis have been proposed. The relationship between metastatic cancer and invasive placentation is usually presented in terms of antagonistic pleiotropy. According to this hypothesis, evolution of invasive placentation also established the mechanisms for cancer metastasis. Here, in contrast, we argue that the secondary evolution of less invasive placentation in some mammalian lineages may have resulted in positive pleiotropic effects on cancer survival by lowering malignancy rates. These positive pleiotropic effects would manifest themselves as resistance to cancer cell invasion. To provide a preliminary test of this proposal, we re-analyze data from Priester and Mantel (Occurrence of tumors in domestic animals. Data from 12 United States and Canadian colleges of veterinary medicine. J Natl Cancer Inst 1971; 47: :1333-44) about malignancy rates in cows, horses, cats and dogs. From our analysis we found that equines and bovines, animals with less invasive placentation, have lower rates of metastatic cancer than felines and canines in skin and glandular epithelial cancers as well as connective tissue sarcomas. We conclude that a link between type of placentation and species-specific malignancy rates is more likely related to derived mechanisms that suppress invasion rather than different degrees of fetal placental aggressiveness. PMID:25324490

  3. Placentation in the alpaca Lama pacos.

    PubMed

    Olivera, Luis; Zago, Douglas; Leiser, Rudolf; Jones, Carolyn; Bevilacqua, Estela

    2003-07-01

    Reproduction in South American camelids is poorly studied. To extend our knowledge of the development and cellular physiology of the placenta in the alpaca Lama pacos, we have examined specimens from day 150 of pregnancy to term. Morphological investigations using light, transmission and scanning electron microscopy, the histochemical localization of iron, alkaline and acid phosphatase activity, and the immunodetection of placental lactogen hormone were performed. Throughout pregnancy there was a progressive increase in the depths of folds on the uterine mucosa surface together with a thickening of the endometrium. Glandular cells exhibited PAS and acid phosphatase (AcP) positive secretion granules. In the chorion, giant trophoblast polyploid cells gradually became more numerous and larger. Non-giant cells exhibited positive granules for PAS, alkaline phosphatase (AkP) reaction and immunostaining for bovine placental lactogen hormone (PLH). SDS -PAGE electrophoresis and Western blotting procedures also confirmed the presence of a bovine PLH-like glycoprotein in the fetal alpaca placenta. Over the glandular openings, the chorion formed typical areolae, where the trophoblast exhibited AcP and PAS positive reactions. At these sites, the fetal endothelial cells contained iron-storage granules in their cytoplasm. The trophoblast-epithelial interface exhibited a complex microvillous interdigitation, in which an AkP reaction was very prominent. The chorionic capillaries progressively indented adjacent trophoblast cells. These data suggest that although the epitheliochorial alpaca placenta is diffuse, various trophoblast cell types and specialized areas of the maternofetal interface give the placenta micro-regional functions where histiotrophic nutrition, hormone production and molecular exchange are prevalent. PMID:12802689

  4. Hyperpolarization of the Membrane Potential Caused by Somatostatin in Dissociated Human Pituitary Adenoma Cells that Secrete Growth Hormone

    NASA Astrophysics Data System (ADS)

    Yamashita, Naohide; Shibuya, Naohiko; Ogata, Etsuro

    1986-08-01

    Membrane electrical properties and the response to somatostatin were examined in dissociated human pituitary adenoma cells that secrete growth hormone (GH). Under current clamp condition with a patch electrode, the resting potential was -52.4 ± 8.0 mV, and spontaneous action potentials were observed in 58% of the cells. Under voltage clamp condition an outward K+ current, a tetrodotoxin-sensitive Na+ current, and a Ca2+ current were observed. Cobalt ions suppressed the Ca2+ current. The threshold of Ca2+ current activation was about -60 mV. Somatostatin elicited a membrane hyperpolarization associated with increased membrane permeability in these cells. The reversal potential of somatostatin-induced hyperpolarization was -78.4 ± 4.3 mV in 6 mM K+ medium and -97.2 ± 6.4 mV in 3 mM K+ medium. These reversal potential values and a shift with the external K+ concentration indicated that membrane hyperpolarization was caused by increased permeability to K+. The hyperpolarized membrane potential induced by somatostatin was -63.6 ± 5.9 mV in the standard medium. This level was subthreshold for Ca2+ and Na+ currents and was sufficient to inhibit spontaneous action potentials. Hormone secretion was significantly suppressed by somatostatin and cobalt ions. Therefore, we suggest that Ca2+ entering the cell through voltage-dependent channels are playing an important role for GH secretion and that somatostatin suppresses GH secretion by blocking Ca2+ currents. Finally, we discuss other possibilities for the inhibitory effect of somatostatin on GH secretion.

  5. Role of the Yersinia YopJ protein in suppressing interleukin-8 secretion by human polymorphonuclear leukocytes.

    PubMed

    Spinner, Justin L; Hasenkrug, Aaron M; Shannon, Jeffrey G; Kobayashi, Scott D; Hinnebusch, B Joseph

    2016-01-01

    Polymorphonuclear leukocytes, in addition to their direct bactericidal activities, produce cytokines involved in the activation and regulation of the innate and adaptive immune response to infection. In this study we evaluated the cytokine response of human PMNs following incubation with the pathogenic Yersinia species. Yersinia pestis strains with the pCD1 virulence plasmid, which encodes cytotoxic Yop proteins that are translocated into host cells, stimulated little or no cytokine production compared to pCD1-negative strains. In particular, PMNs incubated with pCD1-negative Y. pestis secreted 1000-fold higher levels of interleukin-8 (IL-8 or CXCL8), a proinflammatory chemokine important for PMN recruitment and activation. Deletion of yopE, -H, -T, -M or ypkA had no effect on pCD1-dependent inhibition, whereas deletion of yopJ resulted in significantly increased IL-8 production. Like Y. pestis, the enteropathogenic Yersinia species inhibited IL-8 secretion by PMNs, and strains lacking the virulence plasmid induced high levels of IL-8. Our results show that virulence plasmid-encoded effector Yops, particularly YopJ, prevent IL-8 secretion by human PMNs. Suppression of the chemotactic IL-8 response by Y. pestis may contribute to the delayed PMN recruitment to the infected lymph node that typifies bubonic plague. PMID:26361732

  6. Fibronectin-Alginate microcapsules improve cell viability and protein secretion of encapsulated Factor IX-engineered human mesenchymal stromal cells.

    PubMed

    Sayyar, Bahareh; Dodd, Megan; Marquez-Curtis, Leah; Janowska-Wieczorek, Anna; Hortelano, Gonzalo

    2015-01-01

    Continuous delivery of proteins by engineered cells encapsu-lated in biocompatible polymeric microcapsules is of considerable therapeutic potential. However, this technology has not lived up to expectations due to inadequate cell--matrix interactions and subsequent cell death. In this study we hypoth-esize that the presence of fibronectin in an alginate matrix may enhance the viability and functionality of encapsulated human cord blood-derived mesenchymal stromal cells (MSCs) expressing the human Factor IX (FIX) gene. MSCs were encapsulated in alginate-PLL microcapsules containing 10, 100, or 500 μg/ml fibronectin to ameliorate cell survival. MSCs in microcapsules with 100 and 500 μg/ml fibronectin demonstrated improved cell viability and proliferation and higher FIX secretion compared to MSCs in non-supplemented microcapsules. In contrast, 10 μg/ml fibronectin did not significantly affect the viability and protein secretion from the encapsulated cells. Differentiation studies demonstrated osteogenic (but not chondrogenic or adipogenic) differentiation capability and efficient FIX secretion of the enclosed MSCs in the fibronectin-alginate suspension culture. Thus, the use of recombinant MSCs encapsulated in fibronectin-alginate microcapsules in basal or osteogenic cultures may be of practical use in the treatment of hemophilia B. PMID:24564349

  7. Expression of PAPPA2 in human fetomaternal interface and involvement in trophoblast invasion and migration.

    PubMed

    Wang, H Y; Zhang, Z; Yu, S

    2016-01-01

    Pregnancy-associated plasma protein-A 2 (PAPPA2) is a placental-enriched gene that is important for normal human placentation and defects in the gene can cause complications in pregnancy. Yet the exact expression pattern and role of PAPPA2 in the human fetomaternal interface are not clear. In this study, in situ hybridization (ISH) and immunohistochemistry (IHC) were employed to examine the spatial and temporal expression of PAPPA2 in the human fetomaternal interface. IHC results exhibited wide expression of PAPPA2 in the fetomaternal interface, with placental syncytiatrophoblast (STB) and extravillous trophoblast (EVT) showing strong expression and the cytotrophoblast (CTB) showing weak expression of PAPPA2. These results were confirmed by ISH. Quantitative reverse transcription-polymerase chain reaction and western blot showed the elevation of PAPPA2 in first trimester EVT differentiation and term CTB spontaneous syncytialization. PAPPA2-siRNA transfection significantly depressed the invasion and migration ability of a trophoblast cell line (HTR8/SVneo) in a transwell migration and Matrigel invasion model compared to a negative control siRNA (P < 0.05), also revealing that matrix metalloproteinase 9 (MMP9) secretion is downregulated. This was confirmed using a human first trimester placental villi explant culture model. Our results reveal the spatial and temporal expression of PAPPA2 in the human fetomaternal interface and show the positive regulatory role of PAPPA2 in human trophoblast invasion and migration through the secretion of MMP9. PMID:27525857

  8. Human neutrophil elastase regulates the expression and secretion of elafin (elastase-specific inhibitor) in type II alveolar epithelial cells.

    PubMed

    Reid, P T; Marsden, M E; Cunningham, G A; Haslett, C; Sallenave, J M

    1999-08-20

    Elafin is a low molecular weight antiproteinase believed to be important in the regulation of elastase mediated tissue damage. The expression of elafin is known to be regulated by proinflammatory cytokines such as interleukin-1 beta and tumour necrosis factor but little was known regarding the effect of human neutrophil elastase (HNE). Employing a chloramphenicol acetyltransferase reporter construct of the human elafin gene, reverse transcription PCR from total cellular RNA and ELISA techniques, we have examined the effect of human neutrophil elastase on the transcription and secretion of human elafin in the pulmonary epithelial A549 cell line. Stimulation with HNE at concentrations of 10(-10) and 10(-11) M resulted in a significant upregulation of elafin promoter activity. Similarly, transcription of the endogenous human elafin gene was upregulated with HNE concentrations ranging from 10(-10) to 10(-12) M. In addition, we demonstrate that stimulation with HNE at concentrations ranging from 10(-9) and 10(-12) M resulted in a significant reduction in the secreted elafin protein as measured in the cell supernatant. These results provide further evidence for a role of elafin in the regulation of HNE driven proteolysis of the extracellular matrix. PMID:10486558

  9. Monitoring human neutrophil granule secretion by flow cytometry: secretion and membrane potential changes assessed by light scatter and a fluorescent probe of membrane potential

    SciTech Connect

    Fletcher, M.P.; Seligmann, B.E.

    1985-04-01

    Purified human peripheral blood polymorphonuclear neutrophils (PMN) were incubated at 37 degrees C with the fluorescent membrane potential sensitive cyanine dye di-O-C(5)(3) and exposed to a number of stimulatory agents (N-formylmethionylleucylphenylalanine (FMLP), cytochalasin B (cyto B) + FMLP, phorbol myristate acetate (PMA). Flow cytometry was utilized to measure changes in forward light scatter (FS), orthogonal light scatter (90 degrees-SC), and fluorescence intensity of individual cells over time. A saturating (10(-6) M) dose of FMLP lead to a significant increase in the cells' FS without a change in 90 degrees-SC as well as a heterogeneous loss of di-O-C(5)(3) fluorescence. PMA (100 ng/ml) also caused an increase in FS but a uniform loss of dye fluorescence by all cells (apparent depolarization). Cyto B + FMLP produced an increase in FS, a marked loss of 90 degrees-SC, and a uniform loss of fluorescence. Secretion experiments under identical incubation conditions indicated a significantly positive relationship between loss of enzyme markers or cell granularity and orthogonal light scatter (r . 0.959, 0.998, and 0.989 for loss of 90 degrees-SC vs lysozyme, beta-glucuronidase, and granularity index, respectively). Flow cytometric light scatter measurements may yield important information on the extent of prior cell degranulation or activation.

  10. HIV-1 Nef Breaches Placental Barrier in Rat Model

    PubMed Central

    Singh, Poonam; Agnihotri, Saurabh Kumar; Tewari, Mahesh Chandra; Kumar, Sadan; Sachdev, Monika; Tripathi, Raj Kamal

    2012-01-01

    The vertical transmission of HIV-1 from the mother to fetus is known, but the molecular mechanism regulating this transmission is not fully characterized. The fetus is highly protected by the placenta, which does not permit microbial pathogens to cross the placental barrier. In the present study, a rat model was established to observe the effect of HIV-1 protein Nef on placental barrier. Evans blue dye was used to assay permeability of placental barrier and fourteen day pregnant Sprague Dawley rats were injected intravenously with 2% Evans blue dye along with various concentrations of recombinant Nef. After an hour, animals were sacrificed and dye migration was observed through the assimilation of peripheral blood into fetus. Interestingly, traces of recombinant Nef protein were detected in the embryo as well as amniotic fluid and amniotic membrane along with placenta and uterus. Our study indicates that recombinant HIV-1-Nef protein breaches the placental barrier and allows the migration of Evans blue dye to the growing fetus. Further the concentration of Nef protein in blood is directly proportional to the intensity of dye migration and to the amount of Nef protein detected in uterus, placenta, amniotic membrane, amniotic fluid and embryo. Based on this study, it can be concluded that the HIV-1 Nef protein has a direct effect on breaching of the placental barrier in the model we have established in this study. Our observations will be helpful to understand the molecular mechanisms related to this breach of placental barrier by Nef in humans and may be helpful to identify specific Nef inhibitors. PMID:23240037

  11. Placental Responses to Changes in the Maternal Environment Determine Fetal Growth

    PubMed Central

    Dimasuay, Kris Genelyn; Boeuf, Philippe; Powell, Theresa L.; Jansson, Thomas

    2016-01-01

    Placental responses to maternal perturbations are complex and remain poorly understood. Altered maternal environment during pregnancy such as hypoxia, stress, obesity, diabetes, toxins, altered nutrition, inflammation, and reduced utero-placental blood flow may influence fetal development, which can predispose to diseases later in life. The placenta being a metabolically active tissue responds to these perturbations by regulating the fetal supply of nutrients and oxygen and secretion of hormones into the maternal and fetal circulation. We have proposed that placental nutrient sensing integrates maternal and fetal nutritional cues with information from intrinsic nutrient sensing signaling pathways to balance fetal demand with the ability of the mother to support pregnancy by regulating maternal physiology, placental growth, and placental nutrient transport. Emerging evidence suggests that the nutrient-sensing signaling pathway mechanistic target of rapamycin (mTOR) plays a central role in this process. Thus, placental nutrient sensing plays a critical role in modulating maternal–fetal resource allocation, thereby affecting fetal growth and the life-long health of the fetus. PMID:26858656

  12. Cephalic phase secretion of insulin and other enteropancreatic hormones in humans.

    PubMed

    Veedfald, Simon; Plamboeck, Astrid; Deacon, Carolyn F; Hartmann, Bolette; Knop, Filip K; Vilsbøll, Tina; Holst, Jens J

    2016-01-01

    Enteropancreatic hormone secretion is thought to include a cephalic phase, but the evidence in humans is ambiguous. We studied vagally induced gut hormone responses with and without muscarinic blockade in 10 glucose-clamped healthy men (age: 24.5 ± 0.6 yr, means ± SE; body mass index: 24.0 ± 0.5 kg/m(2); HbA1c: 5.1 ± 0.1%/31.4 ± 0.5 mmol/mol). Cephalic activation was elicited by modified sham feeding (MSF, aka "chew and spit") with or without atropine (1 mg bolus 45 min before MSF + 80 ng·kg(-1)·min(-1) for 2 h). To mimic incipient prandial glucose excursions, glucose levels were clamped at 6 mmol/l on all days. The meal stimulus for the MSF consisted of an appetizing breakfast. Participants (9/10) also had a 6 mmol/l glucose clamp without MSF. Pancreatic polypeptide (PP) levels rose from 6.3 ± 1.1 to 19.9 ± 6.8 pmol/l (means ± SE) in response to MSF and atropine lowered basal PP levels and abolished the MSF response. Neither insulin, C-peptide, glucose-dependent insulinotropic polypeptide (GIP), nor glucagon-like peptide-1 (GLP-1) levels changed in response to MSF or atropine. Glucagon and ghrelin levels were markedly attenuated by atropine prior to and during the clamp: at t = 105 min on the atropine (ATR) + clamp (CLA) + MSF compared with the saline (SAL) + CLA and SAL + CLA + MSF days; baseline-subtracted glucagon levels were -10.7 ± 1.1 vs. -4.0 ± 1.1 and -4.7 ± 1.9 pmol/l (means ± SE), P < 0.0001, respectively; corresponding baseline-subtracted ghrelin levels were 303 ± 36 vs. 39 ± 38 and 3.7 ± 21 pg/ml (means ± SE), P < 0.0001. Glucagon and ghrelin levels were unaffected by MSF. Despite adequate PP responses, a cephalic phase response was absent for insulin, glucagon, GLP-1, GIP, and ghrelin. PMID:26492921

  13. Placental Expression of the Heme Transporter, Feline Leukemia Virus Subgroup C Receptor, Is related to Maternal Iron Status in Pregnant Adolescents123

    PubMed Central

    Jaacks, Lindsay M.; Young, Melissa F.; Essley, Bridget V.; McNanley, Thomas J.; Cooper, Elizabeth M.; Pressman, Eva K.; McIntyre, Allison W.; Orlando, Mark S.; Abkowitz, Janis L.; Guillet, Ronnie; O'Brien, Kimberly O.

    2011-01-01

    Little is known about the expression of heme transporters in human placenta and possible associations between these transporters and maternal or neonatal iron status. To address this area of research, relative protein expression of 2 heme transporters, Feline Leukemia Virus, Subgroup C, Receptor 1 (FLVCR1) and Breast Cancer Resistance Protein (BCRP), was assessed using Western-blot analysis in human placental tissue in relation to maternal/neonatal iron status and placental iron concentration. Placental FLVCR1 (n = 71) and BCRP (n = 83) expression were assessed at term (36.6–41.7 wk gestation) in a cohort of pregnant adolescents (13–18 y of age) at high-risk of iron deficiency. Both FLVCR1 and BCRP were detected in all placental samples assayed. Placental FLVCR1 expression was positively related to placental BCRP expression (n = 69; R2 = 0.104; P < 0.05). Adolescents that were anemic at delivery had lower placental FLVCR1 expression (n = 49; P < 0.05). Placental FLVCR1 expression was positively associated with placental iron concentration at delivery (n = 61; R2 = 0.064; P < 0.05). In contrast, placental BCRP expression was not significantly associated with maternal iron status or placental iron content. Both FLVCR1 and BCRP are highly expressed in human placental tissue, but only FLVCR1 was significantly inversely associated with maternal iron status and placental iron concentration. Further analysis is needed to explore potential functional roles of FLVCR1 in human placental iron transport. PMID:21593354

  14. Cortisol Stimulates Secretion of Dehydroepiandrosterone in Human Adrenocortical Cells Through Inhibition of 3βHSD2

    PubMed Central

    Topor, Lisa Swartz; Asai, Masato; Dunn, James; Majzoub, Joseph A.

    2011-01-01

    Context: Initiating factors leading to production of adrenal androgens are poorly defined. Cortisol is present in high concentrations within the adrenal gland, and its production rises with growth during childhood. Objective: Our aim was to characterize the effect of cortisol and other glucocorticoids on androgen secretion from a human adrenocortical cell line and from nonadrenal cells transfected with CYP17A1 or HSD3B2. Design/Setting: This study was performed in cultured cells, at an academic medical center. Methods: The effects of cortisol upon steroid production in human adrenal NCI-H295R cells were measured by immunoassay, tandem mass spectrometry, and thin-layer chromatography. The effects of cortisol upon the activities of 17, 20 lyase and 3βHSD2 were measured in NCI-H295R cells and in transfected COS-7 cells. Results: Cortisol markedly and rapidly stimulated dehydroepiandrosterone (DHEA) in a dose-dependent manner at cortisol concentrations ≥50 μm. Cortisone and 11-deoxycortisol were also potent stimulators of DHEA secretion, whereas prednisolone and dexamethasone were not. Treatment with cortisol did not affect expression of CYP17A1 or HSD3B2 mRNAs. Stimulation of DHEA secretion by cortisol was associated with competitive inhibition of 3βHSD2 activity. Conclusions: Cortisol inhibits 3βHSD2 activity in adrenal cells and in COS-7 cells transfected with HSD3B2. Thus, it is possible that intraadrenal cortisol may participate in the regulation of adrenal DHEA secretion through inhibition of 3βHSD2. We hypothesize that a rise in intraadrenal cortisol during childhood growth may lead to inhibition of 3βHSD2 activity and contribute to the initiation of adrenarche. PMID:20943790

  15. Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity

    PubMed Central

    Meyer, Lauren K; Ciaraldi, Theodore P; Henry, Robert R; Wittgrove, Alan C; Phillips, Susan A

    2013-01-01

    Adiponectin is an insulin sensitizing fat cell (FC) hormone whose levels are related to adipose tissue (AT) mass and depot distribution. We hypothesized that the nature of AT expansion (hypertrophy vs. hyperplasia) contributes to obesity-related reductions in serum adiponectin and that this effect is influenced by the regional distribution of AT to subcutaneous (S) and visceral (V) depots. Thirteen obese subjects provided paired AT biopsies. Serum total and high molecular weight (HMW) adiponectin levels were determined by ELISA. Secretion was quantified following 24-h explant culture. FC size, number, % large, and % small FC were determined by microscopic analysis. Secretion of total adiponectin was highest by SAT (P = 0.008) and correlated more strongly with serum adiponectin (total: P = 0.015, r = 0.77; HMW: P = 0.005, r = 0.83) than did secretion by VAT (P = 0.05, r = 0.66 for both). FC size was greatest in SAT and correlated negatively with both serum (total: P = 0.01, r = −0.74; HMW: P = 0.03, r = −0.69) and secreted (total: P = 0.05, r = −0.72; HMW: P = 0.02, r = −0.87) adiponectin. The % small FC in SAT correlated positively with both serum (total: P = 0.006, r = 0.87; HMW: P = 0.009, r = 0.79) and secreted (total: P = 0.03, r = 0.75; HMW: P = 0.01, r = 0.92) adiponectin. VAT FC size correlated negatively with serum HMW adiponectin (P = 0.01, r = −0.76) but not with any measure of secretion. VAT had the greatest % small FC, which related positively to serum HMW (P = 0.004, r = 0.81) and to secreted total adiponectin (P = 0.02, r = 0.78). These studies indicate that differences in fat cell size and depot distribution of AT expansion are important influences on adiponectin in obesity. PMID:24052897

  16. Differentiation of human adipocytes at physiological oxygen levels results in increased adiponectin secretion and isoproterenol-stimulated lipolysis

    PubMed Central

    Famulla, Susanne; Schlich, Raphaela; Sell, Henrike; Eckel, Jürgen

    2012-01-01

    Adipose tissue (AT) hypoxia occurs in obese humans and mice. Acute hypoxia in adipocytes causes dysregulation of adipokine secretion with an increase in inflammatory factors and diminished adiponectin release. O2 levels in humans range between 3 and 11% revealing that conventional in vitro culturing at ambient air and acute hypoxia treatment (1% O2) are performed under non-physiological conditions. In this study, we mimicked physiological conditions by differentiating human primary adipocytes under 10% or 5% O2 in comparison to 21% O2. Induction of differentiation markers was comparable between all three conditions. Adipokine release by adipocytes differentiated at lower oxygen levels was altered, with a marked upregulation of adiponectin, IL-6 and DPP4 secretion, and reduced leptin levels compared with adipocytes differentiated at 21% O2. Isoproterenol-induced lipolysis was significantly elevated in adipocytes differentiated at 10% and 5% compared with 21% O2. This effect was accompanied by increased protein expression of β-1 and -2 adrenergic receptor, HSL and perilipin. Conditioned medium (CM) of adipocytes differentiated at the three different conditions was generated for stimulation of human skeletal muscle cells (SkMC) or smooth muscle cells (SMC). CM-induced insulin resistance in SkMC was comparable for the different CMs. However, the SMC proliferative effect of CM from adipocytes differentiated at 10% O2 was significantly reduced compared with 21% O2. This study demonstrates that oxygen levels during adipogenesis are important factors altering adipocyte functionality such as adipokine release, in particular adiponectin secretion, as well as the hormone-induced lipolytic pathway. PMID:23700522

  17. Cell surface and secreted protein profiles of human thyroid cancer cell lines reveal distinct glycoprotein patterns.

    PubMed

    Arcinas, Arthur; Yen, Ten-Yang; Kebebew, Electron; Macher, Bruce A

    2009-08-01

    Cell surface proteins have been shown to be effective therapeutic targets. In addition, shed forms of these proteins and secreted proteins can serve as biomarkers for diseases, including cancer. Thus, identification of cell surface and secreted proteins has been a prime area of interest in the proteomics field. Most cell surface and secreted proteins are known to be glycosylated, and therefore, a proteomics strategy targeting these proteins was applied to obtain proteomic profiles from various thyroid cancer cell lines that represent the range of thyroid cancers of follicular cell origin. In this study, we oxidized the carbohydrates of secreted proteins and those on the cell surface with periodate and isolated them via covalent coupling to hydrazide resin. The glycoproteins obtained were identified from tryptic peptides and N-linked glycopeptides released from the hydrazide resin using two-dimensional liquid chromatography-tandem mass spectrometry in combination with the gas phase fractionation. Thyroid cancer cell lines derived from papillary thyroid cancer (TPC-1), follicular thyroid cancer (FTC-133), Hurthle cell carcinoma (XTC-1), and anaplastic thyroid cancer (ARO and DRO-1) were evaluated. An average of 150 glycoproteins were identified per cell line, of which more than 57% are known cell surface or secreted glycoproteins. The usefulness of the approach for identifying thyroid cancer associated biomarkers was validated by the identification of glycoproteins (e.g., CD44, galectin 3 and metalloproteinase inhibitor 1) that have been found to be useful markers for thyroid cancer. In addition to glycoproteins that are commonly expressed by all of the cell lines, we identified others that are only expressed in the more well-differentiated thyroid cancer cell lines (follicular, Hurthle cell and papillary), or by cell lines derived from undifferentiated tumors that are uniformly fatal forms of thyroid cancer (i.e., anaplastic). On the basis of the results obtained, a

  18. Assisted Reproduction Technologies Impair Placental Steroid Metabolism

    PubMed Central

    Collier, Abby C.; Miyagi, Shogo J.; Yamauchi, Yasuhiro; Ward, Monika A.

    2009-01-01

    The placenta plays a vital role in pregnancy by facilitating steroid passage from maternal to fetal circulation and/or direct production of hormones. Using a murine model, we demonstrated the differences in placental steroid metabolism between pregnancies conceived naturally and with assisted reproduction technologies (ART): in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). While the ovarian steroid production was similar (estrone, 17β-estradiol) or higher (estriol) in ART pregnancies compared to mating, the levels of placental estriol were significantly lower in ART group. Placentas from ART had significantly higher activities of the steroid metabolizing enzymes UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT), which in ICSI were also coupled with decreased activity of the steroid regenerating enzymes β-glucuronidase (β-G) and Aryl sulfatase (AS). Levels of steroid metabolites androstane-3α-17β-diol glucuronide and dehydroepiandrosterone sulfate were higher in fetal compared to maternal blood in ART, but not in mating. This study demonstrates that in murine ART pregnancies, higher metabolism and clearance of steroids by the placenta may seriously affect the passage of essential hormones to the fetus. If a similar phenomenon exists in humans, this could provide a plausible explanation for obstetric and neonatal complications associated with ART, including the higher incidence of low birth weight babies. PMID:19406239

  19. Maternal fructose drives placental uric acid production leading to adverse fetal outcomes.

    PubMed

    Asghar, Zeenat A; Thompson, Alysha; Chi, Maggie; Cusumano, Andrew; Scheaffer, Suzanne; Al-Hammadi, Noor; Saben, Jessica L; Moley, Kelle H

    2016-01-01

    Maternal metabolic diseases increase offspring risk for low birth weight and cardiometabolic diseases in adulthood. Excess fructose consumption may confer metabolic risks for both women and their offspring. However, the direct consequences of fructose intake per se are unknown. We assessed the impact of a maternal high-fructose diet on the fetal-placental unit in mice in the absence of metabolic syndrome and determined the association between maternal serum fructose and placental uric acid levels in humans. In mice, maternal fructose consumption led to placental inefficiency, fetal growth restriction, elevated fetal serum glucose and triglyceride levels. In the placenta, fructose induced de novo uric acid synthesis by activating the activities of the enzymes AMP deaminase and xanthine oxidase. Moreover, the placentas had increased lipids and altered expression of genes that control oxidative stress. Treatment of mothers with the xanthine oxidase inhibitor allopurinol reduced placental uric acid levels, prevented placental inefficiency, and improved fetal weights and serum triglycerides. Finally, in 18 women delivering at term, maternal serum fructose levels significantly correlated with placental uric acid levels. These findings suggest that in mice, excess maternal fructose consumption impairs placental function via a xanthine oxidase/uric acid-dependent mechanism, and similar effects may occur in humans. PMID:27125896

  20. Maternal fructose drives placental uric acid production leading to adverse fetal outcomes

    PubMed Central

    Asghar, Zeenat A.; Thompson, Alysha; Chi, Maggie; Cusumano, Andrew; Scheaffer, Suzanne; Al-Hammadi, Noor; Saben, Jessica L.; Moley, Kelle H.

    2016-01-01

    Maternal metabolic diseases increase offspring risk for low birth weight and cardiometabolic diseases in adulthood. Excess fructose consumption may confer metabolic risks for both women and their offspring. However, the direct consequences of fructose intake per se are unknown. We assessed the impact of a maternal high-fructose diet on the fetal-placental unit in mice in the absence of metabolic syndrome and determined the association between maternal serum fructose and placental uric acid levels in humans. In mice, maternal fructose consumption led to placental inefficiency, fetal growth restriction, elevated fetal serum glucose and triglyceride levels. In the placenta, fructose induced de novo uric acid synthesis by activating the activities of the enzymes AMP deaminase and xanthine oxidase. Moreover, the placentas had increased lipids and altered expression of genes that control oxidative stress. Treatment of mothers with the xanthine oxidase inhibitor allopurinol reduced placental uric acid levels, prevented placental inefficiency, and improved fetal weights and serum triglycerides. Finally, in 18 women delivering at term, maternal serum fructose levels significantly correlated with placental uric acid levels. These findings suggest that in mice, excess maternal fructose consumption impairs placental function via a xanthine oxidase/uric acid-dependent mechanism, and similar effects may occur in humans. PMID:27125896

  1. Placental vascular defects in compromised pregnancies: effects of assisted reproductive technologies and other maternal stressors.

    PubMed

    Reynolds, Lawrence P; Borowicz, Pawel P; Palmieri, Chiara; Grazul-Bilska, Anna T

    2014-01-01

    Many factors negatively affect pregnancy establishment and subsequent fetal growth and development, including maternal factors such as nutritional stress, age, body mass index, and genetic background, and external factors including environmental stress, psychosocial stress, multiple fetuses, medical conditions (e.g., polycystic ovary syndrome), lifestyle choices (e.g., alcohol consumption, smoking), and assisted reproductive technologies. These same factors have similar consequences for placental growth and development, including vascular development. We and others have shown that placental vascular development begins very early in pregnancy and determines, to a large extent, placental function-that is, the magnitude of the increase in placental blood flow and thus nutrient transport to the fetus. During the peri-implantation period and also later in pregnancy, cloned (somatic cell nuclear transfer) embryos exhibit a variety of placental defects including reduced vascularization and altered expression of angiogenic factors. Although placental defects are less pronounced in pregnancies resulting from the transfer of in vitro fertilized embryos, we and others have recently demonstrated that vascularization, expression of angiogenic factors, sex steroid receptors, several epigenetic markers, and growth of utero-placental tissues all were altered during early pregnancy after transfer of embryos obtained through natural mating, in vitro fertilization, or other assisted reproductive techniques. These observations are in agreement with the recent reports that in humans even singleton pregnancies established with assisted reproductive techniques are at increased risk of preterm delivery and low birth weight, and seem especially relevant considering the rapidly expanding use of these techniques in humans and animals. PMID:25015812

  2. Characterization of In Vitro Engineered Human Adipose Tissues: Relevant Adipokine Secretion and Impact of TNF-α

    PubMed Central

    Aubin, Kim; Safoine, Meryem; Proulx, Maryse; Audet-Casgrain, Marie-Alice; Côté, Jean-François; Têtu, Félix-André; Roy, Alphonse; Fradette, Julie

    2015-01-01

    Representative modelling of human adipose tissue functions is central to metabolic research. Tridimensional models able to recreate human adipogenesis in a physiological tissue-like context in vitro are still scarce. We describe the engineering of white adipose tissues reconstructed from their cultured adipose-derived stromal precursor cells. We hypothesize that these reconstructed tissues can recapitulate key functions of AT under basal and pro-inflammatory conditions. These tissues, featuring human adipocytes surrounded by stroma, were stable and metabolically active in long-term cultures (at least 11 weeks). Secretion of major adipokines and growth factors by the reconstructed tissues was determined and compared to media conditioned by human native fat explants. Interestingly, the secretory profiles of the reconstructed adipose tissues indicated an abundant production of leptin, PAI-1 and angiopoietin-1 proteins, while higher HGF levels were detected for the human fat explants. We next demonstrated the responsiveness of the tissues to the pro-inflammatory stimulus TNF-α, as reflected by modulation of MCP-1, NGF and HGF secretion, while VEGF and leptin protein expression did not vary. TNF-α exposure induced changes in gene expression for adipocyte metabolism-associated mRNAs such as SLC2A4, FASN and LIPE, as well as for genes implicated in NF-κB activation. Finally, this model was customized to feature adipocytes representative of progressive stages of differentiation, thereby allowing investigations using newly differentiated or more mature adipocytes. In conclusion, we produced tridimensional tissues engineered in vitro that are able to recapitulate key characteristics of subcutaneous white adipose tissue. These tissues are produced from human cells and their neo-synthesized matrix elements without exogenous or synthetic biomaterials. Therefore, they represent unique tools to investigate the effects of pharmacologically active products on human stromal cells

  3. Chorioamniotic membrane separation caused by the seromucinous collection from a placental chorioangioma

    PubMed Central

    Eom, Hye Mi; Choi, Byung Hee; Jeong, Eun Jeong; Byun, Jung Mi; Jeong, Dae Hoon; Sung, Moon Su; Lee, Kyung Bok; Kim, Ki Tae; Yoon, Hye Kyoung

    2016-01-01

    Placental chorioangioma is a benign non-trophoblastic tumor of the placenta that can have various adverse effects on the mother and fetus depending on its size. Chorioamniotic membrane separation is rare condition of detachment between the amniotic membrane and chorionic membrane. Chorioamniotic membrane separation after the second trimester of pregnancy is usually occurs after invasive procedures or may occur spontaneously; it is mostly associated with fetal abnormalities. Here, we report a case of chorioamniotic membrane separation that might be occurred caused by the seromucinous secretion from a placental chorioangioma. PMID:27200315

  4. Mutation of the protein-O-mannosyltransferase enhances secretion of the human urokinase-type plasminogen activator in Hansenula polymorpha.

    PubMed

    Agaphonov, Michael O; Sokolov, Sviatoslav S; Romanova, Nina V; Sohn, Jung-Hoon; Kim, So-Young; Kalebina, Tatyana S; Choi, Eui-Sung; Ter-Avanesyan, Michael D

    2005-10-15

    Human urokinase-type plasminogen activator (uPA) is poorly secreted and aggregates in the endoplasmic reticulum of yeast cells due to inefficient folding. A screen for Hansenula polymorpha mutants with improved uPA secretion revealed a gene encoding a homologue of the Saccharomyces cerevisiae protein-O-mannosyltransferase Pmt1p. Expression of the H. polymorpha PMT1 gene (HpPMT1) abolished temperature sensitivity of the S. cerevisiae pmt1 pmt2 double mutant. As in S. cerevisiae, inactivation of the HpPMT1 gene affected electrophoretic mobility of the O-glycosylated protein, extracellular chitinase. In contrast to S. cerevisiae, disruption of HpPMT1 alone caused temperature sensitivity. Inactivation of the HpPMT1 gene decreased intracellular aggregation of uPA, suggesting that enhanced secretion of uPA was due to improvement of its folding in the endoplasmic reticulum. Unlike most of the endoplasmic reticulum membrane proteins, HpPmt1p possesses the C-terminal KDEL retention signal. PMID:16200504

  5. Bufadienolides from parotoid gland secretions of Cuban toad Peltophryne fustiger (Bufonidae): Inhibition of human kidney Na(+)/K(+)-ATPase activity.

    PubMed

    Perera Córdova, Wilmer H; Leitão, Suzana Guimarães; Cunha-Filho, Geraldino; Bosch, Roberto Alonso; Alonso, Isel Pascual; Pereda-Miranda, Rogelio; Gervou, Rodrigo; Touza, Natália Araújo; Quintas, Luis Eduardo M; Noël, François

    2016-02-01

    Parotoid gland secretions of toad species are a vast reservoir of bioactive molecules with a wide range of biological properties. Herein, for the first time, it is described the isolation by preparative reversed-phase HPLC and the structure elucidation by NMR spectroscopy and/or mass spectrometry of nine major bufadienolides from parotoid gland secretions of the Cuban endemic toad Peltophryne fustiger: ψ-bufarenogin, gamabufotalin, bufarenogin, arenobufagin, 3-(N-suberoylargininyl) marinobufagin, bufotalinin, telocinobufagin, marinobufagin and bufalin. In addition, the secretion was analyzed by UPLC-MS/MS which also allowed the identification of azelayl arginine. The effect of arenobufagin, bufalin and ψ-bufarenogin on Na(+)/K(+)-ATPase activity in a human kidney preparation was evaluated. These bufadienolides fully inhibited the Na(+)/K(+)-ATPase in a concentration-dependent manner, although arenobufagin (IC50 = 28.3 nM) and bufalin (IC50 = 28.7 nM) were 100 times more potent than ψ-bufarenogin (IC50 = 3020 nM). These results provided evidence about the importance of the hydroxylation at position C-14 in the bufadienolide skeleton for the inhibitory activity on the Na(+)/K(+)-ATPase. PMID:26615828

  6. Direct in vitro effects of androgens and estrogens on ob gene expression and leptin secretion in human adipose tissue.

    PubMed

    Machinal-Quélin, Florence; Dieudonné, Marie-Noëlle; Pecquery, René; Leneveu, Marie-Christine; Giudicelli, Yves

    2002-07-01

    In the present study, we have explored, in vitro, the possibility that short exposure to androgens and estrogens for 24 h may directly influence leptin expression (ARNm and secretion) in sc adipose tissue from men and women. In men, only dihydrotestosterone at high concentration (100 nM) induced a reduction in leptin secretion and ob mRNA level. In women, 17beta-estradiol (10-100 nM) increased ob mRNA expression (+180 to +500%) and leptin release (+75%). Moreover, in adipose tissue of women, the estrogen precursors testosterone (100 nM) and dehydroepiandrosterone (1 microM) also induced an increase in leptin secretion (+84 and +96%, respectively), an effect that was prevented by the aromatase inhibitor letrozole. Finally, the stimulatory effect of 17beta-estradiol observed in women was antagonized by the antiestrogen ICI182780. Altogether, these results suggest that the sexual dimorphism of leptinemia in humans is mainly owing to the estrogen receptor-dependent stimulation of leptin expression in adipose tissue by estrogens and estrogen precursors in women. PMID:12374466

  7. Naproxen sodium decreases prostaglandins secretion from cultured human endometrial stromal cells modulating metabolizing enzymes mRNA expression.

    PubMed

    Carrarelli, Patrizia; Funghi, Lucia; Bruni, Simone; Luisi, Stefano; Arcuri, Felice; Petraglia, Felice

    2016-04-01

    Dysmenorrhea, defined as painful cramps occurring immediately before or during the menstrual period, is a common symptom of different gynecological diseases. An acute uterine inflammatory response driven by prostaglandins (PGs) is responsible for painful symptoms. Progesterone withdrawal is responsible for activation of cyclooxygenase (COX-2) enzyme and decrease of hydroxyprostaglandin dehydrogenase (HPDG) with consequent increased secretion of PGs secretion, inducing uterine contractility and pain. The most widely used drugs for the treatment of pelvic pain associated with menstrual cycle are non steroidal anti-inflammatory drugs (NSAIDs). The uterine site of action of these drugs is still not defined and the present study evaluated the effect of naproxen sodium in cultured human endometrial stromal cells (HESC) collected from healthy women. PGE2 release was measured by ELISA; COX-2 and HPDG mRNA expression were assessed by qRT-PCR. Naproxen sodium did not affect HESC vitality. Naproxen sodium significantly decreased PGE2 secretion (p < 0.01) and COX-2 mRNA expression (p < 0.01). TNF-α induced PGE2 release was reduced in presence of naproxen sodium (p < 0.05), in association with decreased COX-2 and increased HPDG mRNAs expression. Naproxen sodium decreases endometrial PGE2 release induced by inflammatory stimulus acting on endometrial COX-2 and HPDG expression, suggesting endometrial synthesis of prostaglandins as a possible target for reduction of uterine inflammatory mechanism in dysmenorrhea. PMID:26634864

  8. Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: Relevance to atopic dermatitis

    PubMed Central

    Zhang, Bodi; Alysandratos, Konstantinos-Dionysios; Angelidou, Asimenia; Asadi, Shahrzad; Sismanopoulos, Nikolaos; Delivanis, Danae-Anastasia; Weng, Zuyi; Miniati, Alexandra; Vasiadi, Magdalini; Katsarou-Katsari, Alexandra; Miao, Benchun; Leeman, Susan E.; Kalogeromitros, Dimitrios; Theoharides, Theoharis C.

    2012-01-01

    Background Mast cells derive from hematopoietic cell precursors and participate in tissue allergic, immune, and inflammatory processes. They secrete many mediators, including preformed TNF, in response to allergic, neuropeptide, and environmental triggers. However, regulation of mast cell degranulation is not well understood. Objective We investigated the role of mitochondrial dynamics in degranulation of human cultured mast cells. Methods Human umbilical cord blood–derived mast cells (hCBMCs) and Laboratory of Allergic Diseases 2 (LAD2) mast cells were examined by confocal and differential interference contrast microscopy during activation by IgE/antigen and substance P (SP). Mast cells in control and atopic dermatitis (AD) skin were evaluated by transmission electron microscopy. LAD2 cells were pretreated with mitochondrial division inhibitor, a dynamin-related protein 1 (Drp1) inhibitor, and small interfering RNA for Drp1, which is necessary for mitochondrial fission and translocation. Calcineurin and Drp1 gene expression was analyzed in stimulated LAD2 cells and AD skin biopsies. Results Stimulation of hCBMCs with IgE/antigen or LAD2 cells with SP leads to rapid (30 minutes) secretion of preformed TNF. Degranulation is accompanied by mitochondrial translocation from a perinuclear location to exocytosis sites. Extracellular calcium depletion prevents these effects, indicating calcium requirement. The calcium-dependent calcineurin and Drp1 are activated 30 minutes after SP stimulation. Reduction of Drp1 activity by mitochondrial division inhibitor and decrease of Drp1 expression using small interfering RNA inhibit mitochondrial translocation, degranulation, and TNF secretion. Mitochondrial translocation is also evident by transmission electron microscopy in skin mast cells from AD biopsies, in which gene expression of calcineurin, Drp1, and SP is higher than in normal skin. Conclusion Human mast cell degranulation requires mitochondrial dynamics, also

  9. Increased SCF/c-kit by hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells via regulating the phosphorylation of mTOR.

    PubMed

    Lee, Youjin; Jung, Jieun; Cho, Kyung Jin; Lee, Seoung-Kwan; Park, Jong-Wan; Oh, Il-Hoan; Kim, Gi Jin

    2013-01-01

    Hypoxia triggers physiological and pathological cellular processes, including proliferation, differentiation, and death, in several cell types. Mesenchymal stem cells (MSCs) derived from various tissues have self-renewal activity and can differentiate towards multiple lineages. Recently, it has been reported that hypoxic conditions tip the balance between survival and death by hypoxia-induced autophagy, although the underlying mechanism is not clear. The objectives of this study are to compare the effect of hypoxia on the self-renewal of bone marrow-derived mesenchymal stem cells (BM-MSCs) and placental chorionic plate-derived mesenchymal stem cells (CP-MSCs) and to investigate the regulatory mechanisms of self-renewal in each MSC type during hypoxia. The expression of self-renewal markers (e.g., Oct4, Nanog, Sox2) was assessed in both cell lines. PI3K and stem cell factor (SCF) expression gradually increased in CP-MSCs but were markedly downregulated in BM-MSCs by hypoxia. The phosphorylation of ERK and mTOR was augmented by hypoxia in CP-MSCs compared to control. Also, the expression of LC3 II, a component of the autophagosome and the hoof-shaped autophagosome was detected more rapidly in CP-MSCs than in BM-MSCs under hypoxia. Hypoxia induced the expression of SCF in CP-MSCs and increased SCF/c-kit pathway promotes the self-renewal activities of CP-MSCs via an autocrine/paracrine mechanism that balances cell survival and cell death events by autophagy. These activities occur to a greater extent in CP-MSCs than in BM-MSCs through regulating the phosphorylation of mTOR. These findings will provide useful guidelines for better understanding the function of SCF/c-kit in the self-renewal and autophagy-regulated mechanisms that promote of MSC survival. PMID:22833529

  10. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells.

    PubMed

    Hayashi, M; Inagaki, A; Novak, I; Matsuda, H

    2016-07-01

    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl(-) channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (V te) in Capan-1 monolayers with a half-maximal effective concentration value of approximately 10 μM, which corresponded to the value obtained on whole-cell Cl(-) currents in Capan-1 single cells. The effects of adenosine on V te, an equivalent short-circuit current (I sc), and whole-cell Cl(-) currents were inhibited by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased I sc and whole-cell Cl(-) currents through CFTR Cl(-) channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B receptor antagonist, PSB 603, inhibited the response of I sc to adenosine. Immunohistochemical analysis showed that the A2A and A2B receptors colocalized with Ezrin in the luminal membranes of Capan-1 monolayers and in rat pancreatic ducts. Adenosine elicited the whole-cell Cl(-) currents in guinea pig duct cells. These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl(-) channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion. PMID:26965147

  11. The effects of Saccharum officinarium (sugar cane) molasses on cytokine secretion by human blood cultures.

    PubMed

    Rahiman, Farzana; Pool, Edmund John

    2010-01-01

    This study investigated the effects of sugar cane molasses on the immune system, using cytokines as biomarkers. Whole blood cultures, stimulated in vitro with endotoxin or PHA, were incubated with various concentrations of molasses. No cell death occurred in whole blood cultures incubated with molasses samples. The addition of molasses (800 microg/mL) to unstimulated whole blood cultures resulted in increased levels of the biomarker of inflammation, Interleukin-6 (P < 0.001) and also the biomarker of humoral immunity, Interleukin-10 (P < 0.001). Molasses addition (800 microg/mL) to unstimulated whole blood cultures has no effect on the cell mediated immunity biomarker, Interferon gamma secretion. Molasses has no effect on Interleukin-6, Interleukin-10 and Interferon gamma secretion in stimulated whole blood cultures. Immunostimulation by molasses requires further investigation as it may have potential health impacts. PMID:20391026

  12. EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG

    PubMed Central

    Collin, Mattias; Olsén, Arne

    2001-01-01

    Streptococcus pyogenes is an important human pathogen that selectively interacts with proteins involved in the humoral defense system, such as immunoglobulins and complement factors. In this report we show that S.pyogenes has the ability to hydrolyze the chitobiose core of the asparagine-linked glycan on immuno globulin G (IgG) when bacteria are grown in the presence of human plasma. This activity is associated with the secretion of a novel 108 kDa protein denoted EndoS. EndoS has endoglycosidase activity on purified soluble IgG as well as IgG bound to the bacterial surface. EndoS is required for the activity on IgG, as an isogenic EndoS mutant could not hydrolyze the glycan on IgG. In addition, we show that the secreted streptococcal cysteine proteinase SpeB cleaves IgG in the hinge region in a papain-like manner. This is the first example of an endoglycosidase produced by a bacterial pathogen that selectively hydrolyzes human IgG, and reveals a novel mechanism which may contribute to S.pyogenes pathogenesis. PMID:11406581

  13. A control system formulation of the mechanism that controls the secretions of serum group hormone in humans during sleep

    NASA Technical Reports Server (NTRS)

    Howard, J. C.; Young, D. R.

    1975-01-01

    Plasma growth hormone concentrations during sleep were determined experimentally. An elevated level of plasma growth hormone was observed during the initial phase of sleep and remained elevated for approximately 3 hr before returning to the steady-state level. Moreover, subsequent to a prolonged interruption of sleep, of the order of 2-3 hr, an elevated level of plasma growth hormone was again observed during the initial phase of resumed sleep. A control system formulation of the mechanism that controls the secretions of serum growth hormone in humans was used to account for the growth hormone responses observed.

  14. Placenta-Specific Protein 1: A Potential Key to Many Oncofetal-Placental OB/GYN Research Questions

    PubMed Central

    Devor, Eric J.; Reyes, Henry D.; Santillan, Donna A.; Santillan, Mark K.; Onukwugha, Chinenye; Goodheart, Michael J.; Leslie, Kimberly K.

    2014-01-01

    Placenta-specific protein 1 (PLAC1) is a secreted protein found in trophoblasts. Several reports implicate a central role for PLAC1 in establishment and maintenance of the placenta. In addition to placentae PLAC1 is expressed in a variety of solids including breast, endometrial, and ovarian cancers. In order to show that PLAC1 is potentially relevant to a number of research questions in OB/GYN, we report on PLAC1 expression in a selected panel that includes two choriocarcinoma cell lines, normal placental tissues, and endometrial and ovarian tumors. We report for the first time that PLAC1 is also expressed in human fetal tissues. PLAC1 is transcriptionally heterogeneous with one promoter (P1) generating two transcripts with alternately spliced 5' UTRs and the other promoter (P2) generating a third transcript. Placental tissues favor P2 transcripts, while P1 is favored in most of the other cells. Mechanisms determining multiple PLAC1 transcripts and promoter preferences are as yet unknown, but it is clear that this protein is likely to be important in a variety of phenomena relevant to both gynecologic oncology and maternal-fetal medicine. PMID:24757447

  15. Physiological effects of enteral and parenteral feeding on pancreaticobiliary secretion in humans.

    PubMed

    O'Keefe, Stephen J D; Lee, Ronzo B; Anderson, Frank P; Gennings, Chris; Abou-Assi, Souheil; Clore, John; Heuman, Douglas; Chey, William

    2003-01-01

    In the nutritional management of digestive disorders, it is important to know the relative secretory and metabolic responses to enteral and parenteral feeding. Twenty-seven healthy volunteers were studied while receiving either oral drinks or duodenal infusions of a complex formula diet, duodenal or intravenous infusions of elemental (protein as free amino acids, low fat) formulae, or saline. Pancreaticobiliary secretory responses were measured by nasoduodenal polyethylene glycol perfusion and aspiration, while monitoring blood hormone and nutrient levels. Diets were matched for protein (1.5 g x kg(-1) x d(-1)) and energy (40 kcal x kg(-1) x d(-1)). Compared with placebo, all oroenteral diets stimulated amylase, lipase, trypsin, and bile acid secretion and increased plasma concentrations of gastrin and cholecystokinin, whereas intravenous feeding did not. The complex formula produced a similar response whether given as drinks or duodenal infusions. Changing the duodenal formula to elemental reduced enzyme secretion by 50%, independently of CCK. Higher increases in plasma insulin, glucose, and amino acids were noted with intravenous feeding. Delivering food directly to the intestine by a feeding tube does not reduce pancreaticobiliary secretion. Enteral "elemental" formulae diminish, but only intravenous feeding avoids pancreatic stimulation. Intravenous administration impairs metabolic clearance. PMID:12488233

  16. Endothelin-1 potently stimulates chloride secretion and inhibits Na(+)-glucose absorption in human intestine in vitro.

    PubMed Central

    Kuhn, M; Fuchs, M; Beck, F X; Martin, S; Jähne, J; Klempnauer, J; Kaever, V; Rechkemmer, G; Forssmann, W G

    1997-01-01

    1. Serosally added synthetic endothelin-1 (ET-1) increased short-circuit current (Isc) across isolated muscle-stripped human colonic mucosa in vitro. Bumetanide inhibited Isc responses, indicating that ET-1 stimulates electrogenic Cl- secretion. 2. In isolated human jejunal mucosa, ET-1 exhibited a concentration-dependent dual action. At low concentrations it induced rapid increases in Isc and these were inhibited by bumetanide. At a higher concentration (0.1 microM), ET-1 provoked a drastic and progressive decrease in Isc below the baseline value. 3. Pretreatment with phlorizin or omission of glucose from the Krebs-Ringer solution at the apical (luminal) side of the jejunal mucosa prevented the decreases in Isc evoked by ET-1, suggesting that the peptide inhibits the glucose-coupled electrogenic Na+ absorption. Indeed, flux experiments with D-[14C]glucose demonstrated that ET-1 decreases jejunal glucose absorption by approximately 80% within 30 min. 4. Electron microprobe analyses of cryosections of human jejunum showed that ET-1 (0.1 microM) evokes a significant decrease in intracellular Na+ concentrations of villus (not crypt) epithelial cells, suggesting that the peptide attenuates apical Na(+)-glucose entry by reducing the activity of the Na(+)-glucose cotransporter, SGLT1. 5. In the presence of tetrodotoxin (TTX), ET-1-induced Cl- secretion was significantly reduced, in both human jejunal and colonic mucosa. However, the inhibitory effect on jejunal Na(+)-glucose absorption was not affected by TTX. 6. ET-1 increases electrogenic Cl- secretion across human intestinal mucosa in vitro. This effect is mediated in part via the activation of enteric nerves. Responses of the human jejunal mucosa to high ET-1 concentrations exhibit a second component, namely the rapid inhibition of electrogenic Na(+)-glucose absorption, which might be mediated by an inhibition of the transport activity of SGLT1. This effect is independent from neuronal mediators. Our results suggest

  17. Regiospecificity of placental metabolism by cytochromes P450 and glutathione S-transferase.

    PubMed

    McRobie, D J; Glover, D D; Tracy, T S

    1996-01-01

    The placenta possesses the ability to metabolize numerous xenobiotics and endogenous steroids. However, it is unknown whether regional differences in these enzymatic reactions exist in the human placenta. To this end, we undertook a study of four regions of the placenta, the chorionic plate, maternal surface, placental margin and whole tissue, to assess the activities of cytochrome P450 1A1 and 19A1 (aromatase) and glutathione S-stransferase in these fractions. No differences in either P450 1A1 or glutathione S-transferase activities were noted among any of the placental fractions. However, with respect to P450 19A1 activity, the placental margin differed significantly from all other fractions (p < 0.05). This study demonstrates that whole tissue samples of the human placenta are adequate for placental cytochrome P450 and glutathione S-transferase metabolism studies. PMID:8938464

  18. Placental profiling of UGT1A enzyme expression and activity and interactions with preeclampsia at term.

    PubMed

    Collier, Abby C; Thévenon, Audrey D; Goh, William; Hiraoka, Mark; Kendal-Wright, Claire E

    2015-12-01

    Placental UDP-glucuronosyltransferase (UGT) enzymes have critical roles in hormone, nutrient, chemical balance and fetal exposure during pregnancy. Placental UGT1A isoforms were profiled and differences between preeclamptic (PE) and non-PE placental UGT expression determined. In third trimester villous placenta, UGT1A1, 1A4, 1A6 and 1A9 were expressed and active in all specimens (n = 10), but UGT1A3, 1A5, 1A7, 1A8 and 1A10 were absent. The UGT1A activities were comparable to human liver microsomes per milligram, but placental microsome yields were only 2 % of liver (1 mg/g of tissue vs. 45 mg/g of tissue). For successful PCR, placental collection and processing within 60 min from delivery, including DNAse and ≥300 ng of RNA in reverse transcription were essential and snap freezing in liquid nitrogen immediately was the best preservation method. Although UGT1A6 mRNA was lower in PE (P < 0.001), there were no other significant effects on UGT mRNA, protein or activities. A more comprehensive tissue sample set is required for confirmation of PE interactions with UGT. Placental UGT1A enzyme expression patterns are similar to the liver and a detoxicative role for placental UGT1A is inferred. PMID:25465229

  19. Placental heme receptor LRP1 correlates with the heme exporter FLVCR1 and neonatal iron status.

    PubMed

    Cao, Chang; Pressman, Eva K; Cooper, Elizabeth M; Guillet, Ronnie; Westerman, Mark; O'Brien, Kimberly O

    2014-09-01

    LDL receptor-related protein 1 (LRP1) is a transmembrane receptor highly expressed in human placenta. It was recently found to be the receptor for heme and its plasma-binding protein hemopexin (Hx) and is integral to systemic heme clearance. Little is known about systemic concentrations of Hx during pregnancy and whether maternal Hx and placental LRP1 contributes to fetal iron (Fe) homeostasis during pregnancy. We hypothesized that placental LRP1 would be upregulated in maternal/neonatal Fe insufficiency and would be related to maternal circulating Hx. Placental LRP1 expression was assessed in 57 pregnant adolescents (14-18 years) in relationship with maternal and cord blood Fe status indicators (hemoglobin (Hb), serum ferritin, transferrin receptor), the Fe regulatory hormone hepcidin and serum Hx. Hx at mid-gestation correlated positively with Hb at mid-gestation (r=0.35, P=0.02) and Hx at delivery correlated positively with cord hepcidin (r=0.37, P=0.005). Placental LRP1 protein expression was significantly higher in women who exhibited greater decreases in serum Hx from mid-gestation to term (r=0.28, P=0.04). Significant associations were also found between placental LRP1 protein with cord hepcidin (r=-0.29, P=0.03) and placental heme exporter feline leukemia virus C receptor 1 (r=0.34, P=0.03). Our data are consistent with a role for placental heme Fe utilization in supporting fetal Fe demands. PMID:24947444

  20. Human esophageal myofibroblasts secrete proinflammatory cytokines in response to acid and Toll-like receptor 4 ligands.

    PubMed

    Gargus, Matthew; Niu, Chao; Vallone, John G; Binkley, Jana; Rubin, Deborah C; Shaker, Anisa

    2015-06-01

    The pathophysiology of esophageal injury, repair, and inflammation in gastroesophageal reflux-disease (GERD) is complex. Whereas most studies have focused on the epithelial response to GERD injury, we are interested in the stromal response. We hypothesized that subepithelial esophageal myofibroblasts in GERD secrete proinflammatory cytokines in response to injurious agents encountered via epithelial barrier breaches or through dilated epithelial intercellular spaces. We determined the percentage of myofibroblasts [-smooth muscle actin (-SMA)+vimentin+CD31-] in the subepithelial GERD and normal esophageal stroma by immunomorphologic analysis. We performed -SMA coimmunostaining with IL-6 and p65. We established and characterized primary cultures of -SMA+vimentin+CD31-CD45- human esophageal myofibroblasts (HuEso MFs). We modeled GERD by treatment with pH 4.5-acidified media and Toll-like receptor 4 (TLR4) ligands, LPS and high-mobility group box 1 protein (HMGB1), and determined myofibroblast cytokine secretion in response to GERD injury. We demonstrate that spindle-shaped cell myofibroblasts are located near the basement membrane of stratified squamous epithelium in normal esophagus. We identify an increase in subepithelial myofibroblasts and activation of proinflammatory pathways in patients with GERD. Primary cultures of stromal cells obtained from normal esophagus retain myofibroblast morphology and express the acid receptor transient receptor potential channel vanilloid subfamily 1 (TRPV1) and TLR4. HuEso MFs stimulated with acid and TLR4 agonists LPS and HMGB1 increase IL-6 and IL-8 secretion via TRPV1 and NF-B activation. Our work implicates a role for human subepithelial stromal cells in the pathogenesis of GERD-related esophageal injury. Findings of this study can be extended to the investigation of epithelial-stromal interactions in inflammatory esophageal mucosal disorders. PMID:25882613

  1. Expression analysis of secreted and cell surface genes of five transformed human cell lines and derivative xenograft tumors

    PubMed Central

    Stull, Robert A; Tavassoli, Roya; Kennedy, Scot; Osborn, Steve; Harte, Rachel; Lu, Yan; Napier, Cheryl; Abo, Arie; Chin, Daniel J

    2005-01-01

    Background Since the early stages of tumorigenesis involve adhesion, escape from immune surveillance, vascularization and angiogenesis, we devised a strategy to study the expression profiles of all publicly known and putative secreted and cell surface genes. We designed a custom oligonucleotide microarray containing probes for 3531 secreted and cell surface genes to study 5 diverse human transformed cell lines and their derivative xenograft tumors. The origins of these human cell lines were lung (A549), breast (MDA MB-231), colon (HCT-116), ovarian (SK-OV-3) and prostate (PC3) carcinomas. Results Three different analyses were performed: (1) A PCA-based linear discriminant analysis identified a 54 gene profile characteristic of all tumors, (2) Application of MANOVA (Pcorr < .05) to tumor data revealed a larger set of 149 differentially expressed genes. (3) After MANOVA was performed on data from individual tumors, a comparison of differential genes amongst all tumor types revealed 12 common differential genes. Seven of the 12 genes were identified by all three analytical methods. These included late angiogenic, morphogenic and extracellular matrix genes such as ANGPTL4, COL1A1, GP2, GPR57, LAMB3, PCDHB9 and PTGER3. The differential expression of ANGPTL4 and COL1A1 and other genes was confirmed by quantitative PCR. Conclusion Overall, a comparison of the three analyses revealed an expression pattern indicative of late angiogenic processes. These results show that a xenograft model using multiple cell lines of diverse tissue origin can identify common tumorigenic cell surface or secreted molecules that may be important biomarker and therapeutic discoveries. PMID:15836779

  2. Human esophageal myofibroblasts secrete proinflammatory cytokines in response to acid and Toll-like receptor 4 ligands

    PubMed Central

    Gargus, Matthew; Niu, Chao; Vallone, John G.; Binkley, Jana; Rubin, Deborah C.

    2015-01-01

    The pathophysiology of esophageal injury, repair, and inflammation in gastroesophageal reflux-disease (GERD) is complex. Whereas most studies have focused on the epithelial response to GERD injury, we are interested in the stromal response. We hypothesized that subepithelial esophageal myofibroblasts in GERD secrete proinflammatory cytokines in response to injurious agents encountered via epithelial barrier breaches or through dilated epithelial intercellular spaces. We determined the percentage of myofibroblasts [α-smooth muscle actin (α-SMA)+vimentin+CD31−] in the subepithelial GERD and normal esophageal stroma by immunomorphologic analysis. We performed α-SMA coimmunostaining with IL-6 and p65. We established and characterized primary cultures of α-SMA+vimentin+CD31−CD45− human esophageal myofibroblasts (HuEso MFs). We modeled GERD by treatment with pH 4.5-acidified media and Toll-like receptor 4 (TLR4) ligands, LPS and high-mobility group box 1 protein (HMGB1), and determined myofibroblast cytokine secretion in response to GERD injury. We demonstrate that spindle-shaped cell myofibroblasts are located near the basement membrane of stratified squamous epithelium in normal esophagus. We identify an increase in subepithelial myofibroblasts and activation of proinflammatory pathways in patients with GERD. Primary cultures of stromal cells obtained from normal esophagus retain myofibroblast morphology and express the acid receptor transient receptor potential channel vanilloid subfamily 1 (TRPV1) and TLR4. HuEso MFs stimulated with acid and TLR4 agonists LPS and HMGB1 increase IL-6 and IL-8 secretion via TRPV1 and NF-κB activation. Our work implicates a role for human subepithelial stromal cells in the pathogenesis of GERD-related esophageal injury. Findings of this study can be extended to the investigation of epithelial-stromal interactions in inflammatory esophageal mucosal disorders. PMID:25882613

  3. Factor VIII Is Synthesized in Human Endothelial Cells, Packaged in Weibel-Palade Bodies and Secreted Bound to ULVWF Strings

    PubMed Central

    Turner, Nancy A.; Moake, Joel L.

    2015-01-01

    The cellular synthesis site and ensuing storage location for human factor VIII (FVIII), the coagulation protein deficient in hemophilia A, has been elusive. FVIII stability and half-life is dependent on non-covalent complex formation with von Willebrand factor (VWF) to avoid proteolysis and clearance. VWF is synthesized in megakaryocytes and endothelial cells, and is stored and