Science.gov

Sample records for selected carbonate aquifers

  1. Carbonate aquifers

    USGS Publications Warehouse

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  2. Relations between sinkhole density and anthropogenic contaminants in selected carbonate aquifers in the eastern United States

    USGS Publications Warehouse

    Lindsey, Bruce D.; Katz, Brian G.; Berndt, Marian P.; Ardis, Ann F.; Skach, Kenneth A.

    2009-01-01

    The relation between sinkhole density and water quality was investigated in seven selected carbonate aquifers in the eastern United States. Sinkhole density for these aquifers was grouped into high (>25 sinkholes/100 km2), medium (1–25 sinkholes/100 km2), or low (2) categories using a geographical information system that included four independent databases covering parts of Alabama, Florida, Missouri, Pennsylvania, and Tennessee. Field measurements and concentrations of major ions, nitrate, and selected pesticides in samples from 451 wells and 70 springs were included in the water-quality database. Data were collected as a part of the US Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Areas with high and medium sinkhole density had the greatest well depths and depths to water, the lowest concentrations of total dissolved solids and bicarbonate, the highest concentrations of dissolved oxygen, and the lowest partial pressure of CO2 compared to areas with low sinkhole density. These chemical indicators are consistent conceptually with a conduit-flow-dominated system in areas with a high density of sinkholes and a diffuse-flow-dominated system in areas with a low density of sinkholes. Higher cave density and spring discharge in Pennsylvania also support the concept that the high sinkhole density areas are dominated by conduit-flow systems. Concentrations of nitrate-N were significantly higher (p < 0.05) in areas with high and medium sinkhole density than in low sinkhole-density areas; when accounting for the variations in land use near the sampling sites, the high sinkhole-density area still had higher concentrations of nitrate-N than the low sinkhole-density area. Detection frequencies of atrazine, simazine, metolachlor, prometon, and the atrazine degradate deethylatrazine indicated a pattern similar to nitrate; highest pesticide detections were associated with high sinkhole-density areas. These patterns generally persisted when analyzing

  3. Selective recharge and isotopic composition of shallow groundwater within temperate, epigenic carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Florea, Lee J.

    2013-05-01

    This paper considers the variation of δ18O and δ2H (VSMOW) in precipitation and shallow groundwater from carbonate aquifers that lend insight into the source and timing of recharge within temperate, epigenic karst. The shallow groundwater collected during 2010 and 2011 at Stream Cave (SC) and Natural Bridge Caverns (NBC) represent one input to and the primary output from the Redmond Creek karst aquifer in the Cumberland Plateau of southeast Kentucky, respectively. These data are compared with the isotopic composition of concurrent samples of precipitation from the same watershed that covers some 1900 ha. Values of δ18O and δ2H at SC and NBC are statistically similar and cluster at the midpoint of the local meteoric water line. These values remain surprisingly constant despite seasonal changes in temperature regimens and discharge. Samples in 2012 from regional springs that include Redmond Creek are more depleted in the heavier isotope and similarly stable despite coming from aquifers of a range of sizes and physical characteristics. Applying a Priestly-Taylor model for daily values of potential evapotranspiration, only 43% of the 1.10 m of precipitation in the 2010-2011 dataset remains as potential recharge, primarily during cooler months with lower solar insolation. Weighting δ18O and δ2H values of precipitation by potential recharge creates a better match with the isotopic composition of shallow groundwater than by weighting by precipitation amount. The isotopic composition and deuterium excess of precipitation samples are directly and inversely proportional to temperature, respectively. Deuterium excess in this study and displays intra- and inter-annual variation that ranges from a minimum of +11.1‰ to a maximum of +29.5‰ that demonstrate the higher-than-average deuterium excess in greater Appalachia and the shifting latitude of moisture sources, including a significant winter component of re-evaporated, continental moisture.

  4. Use of principal-component, correlation, and stepwise multiple-regression analyses to investigate selected physical and hydraulic properties of carbonate-rock aquifers

    USGS Publications Warehouse

    Brown, C. Erwin

    1993-01-01

    Correlation analysis in conjunction with principal-component and multiple-regression analyses were applied to laboratory chemical and petrographic data to assess the usefulness of these techniques in evaluating selected physical and hydraulic properties of carbonate-rock aquifers in central Pennsylvania. Correlation and principal-component analyses were used to establish relations and associations among variables, to determine dimensions of property variation of samples, and to filter the variables containing similar information. Principal-component and correlation analyses showed that porosity is related to other measured variables and that permeability is most related to porosity and grain size. Four principal components are found to be significant in explaining the variance of data. Stepwise multiple-regression analysis was used to see how well the measured variables could predict porosity and (or) permeability for this suite of rocks. The variation in permeability and porosity is not totally predicted by the other variables, but the regression is significant at the 5% significance level. ?? 1993.

  5. Exploration of a deep carbonate hydrogeothermal aquifer

    NASA Astrophysics Data System (ADS)

    von Hartmann, H.; Thomas, R.; Schulz, R.

    2009-04-01

    Geothermal energy is an increasing part of the worldwide energy supply. Deep aquifers for hydrogeothermal use must have very high porosities to provide a sufficient flow rate. The exploration of these hydrogeothermal reservoirs have to include all information which helps to predict these areas of high porosity and high permeability: lithology, facies, and structural framework. Therefore exploration techniques known from hydrocarbon exploration are used: 2D and 3D seismic surveys, including log data. A constraint is the amount of exploration costs. By which geophysical means it is possible to build a geological model which predicts the petrophysical parameters with a sufficient high possibility? There are three geological provinces in Germany with hydrogeothermal potential: the North German Basin, the Upper Rhine Graben, and the Southern German Molasse Basin. Within the Southern German Molasse Basin the hydrogeothermal aquifer comprises carbonate rocks of the Upper Jurassic which were lowered to a depth of approximately 3500 m. The interpretation of a 3D seismic survey shows the distribution of carbonate facies, structural framework, and karst formation. All three aspects are related among each other: faults can facilitate karst formation especially where reefs had been formed. Seismic attributes were used to enhance the visualization of these geologic features. The result is an overall understanding of geologic processes which formed areas of high porosity. In this way the advantage of 3D seismic surveys is obvious. Mapping of these areas can be done also within 3D seismic surveys. The appropriate choice of the seismic method depends on the exploration stage and the extent of the reservoirs. Elongated reservoirs which may be formed by carbonate solution along faults may be explored by 2D seismic lines to lower the costs of a geothermal project.

  6. TOTAL ORGANIC CARBON DETERMINATIONS IN NATURAL AND CONTAMINATED AQUIFER MATERIALS

    EPA Science Inventory

    Quantifying the total organic carbon (TOC) content of soils and aquifer materials is essential for understanding subsurface chemistry during environmental site characterization. ontaminant fate and transport, microbial ecology, and effective treatment methodology are all influenc...

  7. Major-ion and selected trace-metal chemistry of the Biscayne Aquifer, Southeast Florida

    USGS Publications Warehouse

    Radell, M.J.; Katz, B.G.

    1991-01-01

    The major-ion and selected trace-metal chemistry of the Biscayne aquifer was characterized as part of the Florida Ground-Water Quality Monitoring Network Program, a multiagency cooperative effort concerned with delineating baseline water quality for major aquifer systems in the State. The Biscayne aquifer is unconfined and serves as the sole source of drinking water for more than 3 million people in southeast Florida. The Biscayne aquifer consists of highly permeable interbedded limestone and sandstone of Pleistocene and Pliocene age underlying most of Dade and Broward Counties and parts of Palm Beach and Monroe Counties. The high permeability is largely caused by extensive carbonate dissolution. Water sampled from 189 wells tapping the Biscayne aquifer was predominantly a calcium bicarbonate type with some mixed types occurring in coastal areas and near major canals. Major - ion is areally uniform throughout the aquifer. According to nonparametric statistical tests of major ions and dissolved solids, the concentrations of calcium, sodium, bicarbonate, and dissolved solids increased significantly with well depth ( 0.05 significance level ), probably a result of less circulation at depth. Potassium and nitrate concentrations decreased significantly with depth. Although the source of recharge to the aquifer varies seasonally, there was no statistical difference in the concentration of major ions in pared water samples from 27 shallow wells collected during wet and dry seasons. Median concentrations for barium, chromium, copper, lead, and manganese were below maximum or secondary maximum contaminant levels set by the US Environmental Protection Agency. The median iron concentration only slightly exceeded the secondary maximum contaminant level. The concentration of barium was significantly related (0.05 significance level) to calcium and bicarbonate concentration. No distinct areal pattern or vertical distribution of the selected trace metals was evident in water from

  8. Geochemical detection of carbon dioxide in dilute aquifers

    SciTech Connect

    Carroll, S; Hao, Y; Aines, R

    2009-03-27

    Carbon storage in deep saline reservoirs has the potential to lower the amount of CO{sub 2} emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO{sub 2} gas leak into dilute groundwater are important measures for the potential release of CO{sub 2} to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO{sub 2} storage reservoir. Specifically, we address the relationships between CO{sub 2} flux, groundwater flow, detection time and distance. The CO{sub 2} flux ranges from 10{sup 3} to 2 x 10{sup 6} t/yr (0.63 to 1250 t/m{sup 2}/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure.

  9. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    SciTech Connect

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C

    2010-02-19

    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  10. Distribution of potentially bioavailable natural organic carbon in aquifer sediments at a chloroethene-contaminated site

    USGS Publications Warehouse

    Thomas, L.K.; Widdowson, M.A.; Chapelle, F.H.; Novak, J.T.; Boncal, J.E.; Lebrón, C. A.

    2012-01-01

    The distribution of natural organic carbon was investigated at a chloroethene-contaminated site where complete reductive dechlorination of tetrachloroethene (PCE) to vinyl chloride and ethene was observed. In this study, operationally defined potentially bioavailable organic carbon (PBOC) was measured in surficial aquifer sediment samples collected at varying depths and locations in the vicinity of a dense nonaqueous phase liquid (DNAPL) source and aqueous phase plume. The relationship between chloroethene concentrations and PBOC levels was examined by comparing differences in extractable organic carbon in aquifer sediments with minimal chloroethene exposure relative to samples collected in the source zone. Using performance-monitoring data, direct correlations with PBOC were also developed with chloroethene concentrations in groundwater. Results show a logarithm-normal distribution for PBOC in aquifer sediments with a mean concentration of 187  mg/kg. PBOC levels in sediments obtained from the underlying confining unit were generally greater when compared to sediments collected in the sandy surficial aquifer. Results demonstrated a statistically significant inverse correlation (p=0.007) between PBOC levels in aquifer sediments and chloroethene concentrations for selected monitoring wells in which chloroethene exposure was the highest. Results from laboratory exposure assays also demonstrated that sediment samples exhibited a reduction in PBOC levels of 35% and 73%, respectively, after a 72-h exposure period to PCE (20,000  μg/L). These results support the notion that PBOC depletion in sediments may be expected in chloroethene-contaminated aquifers, which has potential implications for the long-term sustainability of monitored natural attenuation.

  11. Interlaboratory study of a method for determining nonvolatile organic carbon in aquifer materials

    USGS Publications Warehouse

    Caughey, M.E.; Barcelona, M.J.; Powell, R.M.; Cahill, R.A.; Gron, C.; Lawrenz, D.; Meschi, P.L.

    1995-01-01

    The organic carbon fraction in aquifer materials exerts a major influence on the subsurface mobilities of organic and organic-associated contaminants. The spatial distribution of total organic carbon (TOC) in aquifer materials must be determined before the transport of hydrophobic organic pollutants in aquifers can be modeled accurately. Previous interlaboratory studies showed that it is difficult to measure TOC concentrations 1%. We have tested a new analytical method designed to improve the accuracy and precision of nonvolatile TOC quantitation in geologic materials that also contain carbonate minerals. Four authentic aquifer materials and one NIST standard reference material were selected as test materials for a blind collaborative study. Nonvolatile TOC in these materials ranged from 0.05 to 1.4%, while TIC ranged from 0.46 to 12.6%. Sample replicates were digested with sulfurous acid, dried at 40??C, and then combusted at 950??C using LECO or UIC instruments. For the three test materials that contained >2% TIC, incomplete acidification resulted in a systematic positive bias of TOC values reported by five of the six laboratories that used the test method. Participants did not have enough time to become proficient with the new method before they analyzed the test materials. A seventh laboratory successfully used an alternative method that analyzed separate liquid and solid fractions of the acidified sample residues. ?? 1995 Springer-Verlag.

  12. Fracture trace map and single-well aquifer test results in a carbonate aquifer in Berkeley County, West Virginia

    USGS Publications Warehouse

    McCoy, Kurt J.; Podwysocki, Melvin H.; Crider, E. Allen; Weary, David J.

    2005-01-01

    These data contain information on the results of single-well aquifer tests, lineament analysis, and a bedrock geologic map compilation for the low-lying carbonate and shale areas of eastern Berkeley County, West Virginia. Efforts have been initiated by management agencies of Berkeley County in cooperation with the U.S. Geological Survey to further the understanding of the spatial distribution of fractures in the carbonate regions and their correlation with aquifer properties. This report presents transmissivity values from about 200 single-well aquifer tests and a map of fracture-traces determined from aerial photos and field investigations. Transmissivity values were compared to geologic factors possibly affecting its magnitude.

  13. Productivity of an unconfined aquifer as related to carbonate facies: the Coral Reef Aquifer of Collier County, Florida

    SciTech Connect

    Missimer, T.M.

    1985-01-01

    A 3-year investigation of the shallow, unconfined Coral Reef Aquifer of northern Collier County, Florida, has revealed the relationship of carbonate lithofacies to the transmissivity and specific yield of the aquifer. The geology of the aquifer was studied using cores, test wells, and both surface and borehole geophysics. Numerous aquifer performance tests were conducted to measure the hydraulic coefficients of the aquifer. The Coral Reef Aquifer consists of a surficial quartz sand mantel from 4 to 20 feet thick underlain by 24 to 70 feet of limestone. Four predominant lithofacies were found in the limestone: moldic arenaceous, molluscan packstone; corraline, moldic boundstone,; molluscan wackestone; and unconsolidated, agrillaceous wackestone. The base of the aquifer is formed by a low permeability, green dolosilt. Transmissivity values measured over a 12-square mile area ranged from 59,000 to 1,550,000 gpd/ft. The highest transmissivity values were associated with the occurrence of molluscan packstones. Estimated porosities in the molluscan packstone ranged up to 65% compared to 40% or less in the other lithofacies. The transmissivity of the aquifer was dependent primarily on the occurrence of the molluscan packstones and not greatly dependent on the overall aquifer thickness.

  14. Transport and variability of fecal bacteria in carbonate conglomerate aquifers.

    PubMed

    Goeppert, Nadine; Goldscheider, Nico

    2011-01-01

    Clastic sedimentary rocks are generally considered non-karstifiable and thus less vulnerable to pathogen contamination than karst aquifers. However, dissolution phenomena have been observed in clastic carbonate conglomerates of the Subalpine Molasse zone of the northern Alps and other regions of Europe, indicating karstification and high vulnerability, which is currently not considered for source protection zoning. Therefore, a research program was established at the Hochgrat site (Austria/Germany), as a demonstration that karst-like characteristics, flow behavior, and high vulnerability to microbial contamination are possible in this type of aquifer. The study included geomorphologic mapping, comparative multi-tracer tests with fluorescent dyes and bacteria-sized fluorescent microspheres, and analyses of fecal indicator bacteria (FIB) in spring waters during different seasons. Results demonstrate that (1) flow velocities in carbonate conglomerates are similar as in typical karst aquifers, often exceeding 100 m/h; (2) microbial contaminants are rapidly transported toward springs; and (3) the magnitude and seasonal pattern of FIB variability depends on the land use in the spring catchment and its altitude. Different groundwater protection strategies that currently applied are consequently required in regions formed by karstified carbonatic clastic rocks, taking into account their high degree of heterogeneity and vulnerability. PMID:20678141

  15. Potentially bioavailable natural organic carbon and hydrolyzable amino acids in aquifer sediments

    USGS Publications Warehouse

    Thomas, Lashun K.; Widdowson, Mark A.; Novak, John T.; Chapelle, Francis H.; Benner, Ronald; Kaiser, Karl

    2012-01-01

    This study evaluated the relationship between concentrations of operationally defined potentially bioavailable organic -carbon (PBOC) and hydrolyzable amino acids (HAAs) in sediments collected from a diverse range of chloroethene--contaminated sites. Concentrations of PBOC and HAA were measured using aquifer sediment samples collected at six selected study sites. Average concentrations of total HAA and PBOC ranged from 1.96 ± 1.53 to 20.1 ± 25.6 mg/kg and 4.72 ± 0.72 to 443 ± 65.4 mg/kg, respectively. Results demonstrated a statistically significant positive relationship between concentrations of PBOC and total HAA present in the aquifer sediment (p < 0.05). Higher levels of HAA were consistently observed at sites with greater levels of PBOC and first-order decay rates. Because amino acids are known to be readily biodegradable carbon compounds, this relationship suggests that the sequential chemical extraction procedure used to measure PBOC is a useful indicator of bioavailable carbon in aquifer sediments. This, in turn, is consistent with the interpretation that PBOC measurements can be used for estimating the amount of natural organic carbon available for driving the reductive dechlorination of chloroethenes in groundwater systems.

  16. The AEM and regional carbonate aquifer modeling.

    PubMed

    Johnson, Cady; Mifflin, Martin

    2006-01-01

    The analytic element method (AEM) has been applied to a 15,000-km2 area of the Paleozoic carbonate rock terrain of Nevada. The focus is the Muddy River springs area, which receives 1.44 m3/s (51 ft3/s) of regionally derived ground water, and forms the Muddy River. The study was undertaken early in 2000 to support the development of a cooling water supply for a gas-fired generation facility 20 km south of the Muddy River springs. The primary objectives of the AEM modeling were to establish a better understanding of regional fluxes and boundary conditions and to provide a framework for examination of more local transient effects using MODFLOW. Geochemical evidence available in 2000 suggested two separate flow fields, one in the north discharging at the springs, and a southern area of small hydraulic gradients. To be conservative, however, hydraulic continuity between the two areas was maintained in the 2000 AEM model. Using new monitoring well data collected in the south, and analyses confirming that seasonal pumping effects in the north are not propagated to the south, a later AEM model that included a barrier calibrated with relative ease. The analytic element model was well suited for simulating an area larger than the immediate area of interest, was easy to modify as more information became available, and facilitated the stepwise development of multiple conceptual models of the site. PMID:16405463

  17. Geochemical detection of carbon dioxide in dilute aquifers

    PubMed Central

    2009-01-01

    Background Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO2 storage reservoir. Specifically, we address the relationships between CO2 flux, groundwater flow, detection time and distance. The CO2 flux ranges from 103 to 2 × 106 t/yr (0.63 to 1250 t/m2/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure. Results For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO2 into an overlying aquifer because elevated CO2 yields a more acid pH than the ambient groundwater. CO2 leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO2 buoyancy. pH breakthrough curves demonstrate that CO2 leaks can be easily detected for CO2 flux ≥ 104 t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO2 dissolves in the aqueous phase in the lower most permeable

  18. A method for quantifying bioavailable organic carbon in aquifer sediments

    USGS Publications Warehouse

    Rectanus, H.V.; Widdowson, M.; Novak, J.; Chapelle, F.

    2005-01-01

    The fact that naturally occurring microorganisms can biodegrade PCE and TCE allows the use of monitored natural attenuation (MNA) as a remediation strategy at chlorinated solvent-contaminated sites. Research at numerous chlorinated solvent sites indicates an active dechlorinating microbial population coupled with an ample supply of organic carbon are conditions needed to sustain reductive dechlorination. A series of extraction experiments was used to compare the ability of the different extractants to remove organic carbon from aquifer sediments. The different extractants included pyrophosphate, sodium hydroxide, and polished water. Pyrophosphate served as a mild extractant that minimally alters the organic structure of the extracted material. Three concentrations (0.1, 0.5, and 1%) of pyrophosphate extracted 18.8, 24.9, and 30.8% of sediment organic carbon, respectively. Under alkali conditions (0.5 N NaOH), which provided the harshest extractant, 30.7% of the sediment organic carbon was recovered. Amorphous organic carbon, measured by potassium persulfate oxidization, consisted of 44.6% of the sediment organic carbon and served as a baseline control for maximum carbon removal. Conversely, highly purified water provided a minimal extraction control and extracted 5.7% of the sediment organic carbon. The removal of organic carbon was quantified by aqueous TOC in the extract and residual sediment organic carbon content. Characterization of the organic carbon extracts by compositional analysis prior and after exposure to the mixed culture might indicate the type organic carbon and functional groups used and/or generated by the organisms. This is an abstract of a paper presented at the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  19. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    SciTech Connect

    Garcia, Julio Enrique

    2003-12-18

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous

  20. Geochemical Detection of Carbon Dioxide in Dilute Aquifers

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Carroll, S.; Aines, R.

    2008-12-01

    Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. In this study we use the reactive transport simulations performed by the Nonisothermal Unsaturated Flow and Transport (NUFT) code to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. We address the relationships between CO2 flux, groundwater flow, and detection time and distance. The CO2 flux ranges from 103 to 2 x106t/yr to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure. The simulation results show the CO2 leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO2 buoyancy. Detection of CO2 leaks in aquifers by changes in pH and carbonate chemistry is readily available and well understood. Reactive transport modeling is a critical component to the design and effective performance of measurement, monitoring, and verification plans for carbon storage. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Studies and projections of hydraulic conductivity of Devonian Plavinu and Daugava carbonate aquifers in Latvia

    NASA Astrophysics Data System (ADS)

    Perkone, E.; Delina, A.; Saks, T.; Raga, B.; Jātnieks, J.; Klints, I.; Popovs, K.; Babre, A.; Bikše, J.; Kalvāns, A.; Retike, I.; Ukass, J.

    2012-04-01

    Carbonate aquifers show a very wide range of hydrogeological characteristics. Carbonate rock hydrogeology display two extremes: on one hand hydrogeological properties of the carbonates are governed by the pathways of the preferential groundwater flow typical in karstic regions, on the other - some carbonate aquifers behave almost like a homogeneous, isotropic, porous medium. Most lie between these extremes, but these case variations complicates the study of carbonate aquifer properties. In this study the results of the hydraulic conductivity in carbonate aquifers measurements, hydraulic conductivity correlation between sediments lithology and the aquifer surface depth and fractures research is presented. Upper Devonian Frasnian stage Pļaviņu and Daugava carbonate aquifers in the Latvian part of the Baltic basin is considered. The aim of this research is to elaborate characteristic hydraulic conductivity values for each aquifer based on existing data of the pumping test results and other aquifer properties. Pļaviņu and Daugava carbonate aquifers mainly consist of jointed dolomite with intermediate layers of dolomitic marlstone, limestone, clays and gypsum. These aquifers are prevalent in most of the study area, except Northern and South - Eastern parts of the territory. In geological structure Daugava aquifer lies above Pļaviņu aquifer. Daugava aquifer depth changes from 10 - 20 and even less meters in Eastern part to 250 - 300 m in South - West part of study area, but thickness varies from few meters to 30 m. Pļaviņu aquifer surface depth varies from 20 - 30 m, but in uplands surface depth reaches more than 120 m, in Eastern part to more than 300 m in South - West part of study area. Aquifer average thickness varies from 20 - 40 m, but in areas with buried valleys thickness can be less than 10 meters. Outcrops of these sediments are occurring in banks of largest rivers and in some areas aquifers are karstified. In studies of the carbonate aquifers it is

  2. Geostatistics applied to cross-well reflection seismic for imaging carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Parra, Jorge; Emery, Xavier

    2013-05-01

    Cross-well seismic reflection data, acquired from a carbonate aquifer at Port Mayaca test site near the eastern boundary of Lake Okeechobee in Martin County, Florida, are used to delineate flow units in the region intercepted by two wells. The interwell impedance determined by inversion from the seismic reflection data allows us to visualize the major boundaries between the hydraulic units. The hydraulic (flow) unit properties are based on the integration of well logs and the carbonate structure, which consists of isolated vuggy carbonate units and interconnected vug systems within the carbonate matrix. The vuggy and matrix porosity logs based on Formation Micro-Imager (FMI) data provide information about highly permeable conduits at well locations. The integration of the inverted impedance and well logs using geostatistics helps us to assess the resolution of the cross-well seismic method for detecting conduits and to determine whether these conduits are continuous or discontinuous between wells. A productive water zone of the aquifer outlined by the well logs was selected for analysis and interpretation. The ELAN (Elemental Log Analysis) porosity from two wells was selected as primary data and the reflection seismic-based impedance as secondary data. The direct and cross variograms along the vertical wells capture nested structures associated with periodic carbonate units, which correspond to connected flow units between the wells. Alternatively, the horizontal variogram of impedance (secondary data) provides scale lengths that correspond to irregular boundary shapes of flow units. The ELAN porosity image obtained by cokriging exhibits three similar flow units at different depths. These units are thin conduits developed in the first well and, at about the middle of the interwell separation region, these conduits connect to thicker flow units that are intercepted by the second well. In addition, a high impedance zone (low porosity) at a depth of about 275 m, after

  3. Field testing the hypothesis of Darcian flow through a carbonate aquifer.

    USGS Publications Warehouse

    Hickey, J.J.

    1984-01-01

    The acceptability of the hypothesis of Darcian flow through a semiconfined carbonate aquifer was tested prior to running a multiple-day aquifer test in Pinellas County, Florida. The approach used to test the hypothesis was to run a number of hour-long aquifer tests at different discharges with drawdown measured at the same time during each test in two observation wells, one at 35 feet and the other at 733 feet from the pumped well. The hypothesis of Darcian flow through the semiconfined carbonate aquifer was deemed acceptable.-from Author

  4. Hydrogeologic assessment of shallow clastic and carbonate rock aquifers in Hendry and Collier counties, southwestern Florida

    USGS Publications Warehouse

    Brown, C. Erwin; Krulikas, R.K.; Brendle, D.L.

    1996-01-01

    Direct-current electrical resistivity data were collected from 109 vertical electrical sounding sites in Hendry and Collier Counties, southwestern Florida. Selected direct-current electrical resistivity surveys, together with available borehole geologic and geophysical data, were used to determine the approximate areal extent of the shallow clastic aquifers composed of thick sands and carbonate lithologies. Results indicated that a complex pattern of shallow sands, clays, and carbonate lithologies occur throughout the area. Buried channel sands were found as deep as 50 meters below land surface in some places. The channels contain unconsolidated fine- to medium-grained quartz sand interbedded with sandy limestone, shell fragments, and gray-green sandy clay. Both surface and borehole geophysical techniques with lithologic data were necessary to approximately locate and define layers that might behave as confining layers and to locate and define the extent of any buried sand aquifers. The borehole geophysical data were used to analyze the zones of higher resistivity. Direct-current electrical resistivity data indicated the approximate location of certain layer boundaries. The conjunctive use of natural gamma and short- and long-normal resistivity logs was helpful in determining lithologic effects. Geohydrologic sections were prepared to identify potential locations of buried channels and carbonates containing freshwater. Buried channel sands and carbonate rock sections were identified in the subsurface that potentially may contain freshwater supplies.

  5. Microbial ecology and carbon cycling in Texas aquifers

    SciTech Connect

    Zhang, Chuanlun; Grossman, E.L. . Dept. of Geology); MacRae, M.; Ammerman, J.W. . Dept. of Oceanography)

    1992-01-01

    To evaluate the relationship between microbial activity and carbon cycling in the subsurface, the authors performed geochemical and microbiological analyses on ground-waters from 15 wells in three aquifers in Texas--the Edwards (Ed), the Wilcox-Carrizo (WC), and the Sparta-Queen City (SQC). Samples were collected from 128 to 976 m depth. Total bacteria enumerated by direct count methodology range from 1.6 [times] 10[sup 3] to 4.0 [times] 10[sup 4] cells/ml. In both the (SQC) and (WC) aquifers, total bacterial counts decrease with depth. Total counts in (SQC) waters decrease from 6 [times] 10[sup 3] cells/ml at 217 m to 2 [times] 10[sup 3] cells/ml at 616 m; total counts in (WC) waters decrease from 32 [times] 10[sup 3] cells/ml at 369 m to [approximately]5 [times] 10[sup 3] cells/ml at 907 m. Except for two wells, all of the waters contained trace to large amounts of methane. Carbon isotopic analyses of dissolved and head-gas methane range from [minus]80 to [minus]9[per thousand]. Light [delta] C-13 values for methane indicate methane production by bacteria without secondary alteration while heavy [delta] C-13 values for methane strongly suggest methane oxidation, probably by sulfate reduction. delta C-13 values of DIC for high bicarbonate waters indicate a source of CO[sub 2] associated with methanogenesis through fermentation reactions and CO[sub 2] reduction. No correlation is found between the response to the archaebacterial probe and methane content in water, probably due to the limited sensitivity of the archaebacterial probe. However, anaerobic laboratory incubations of water samples in nutrient media showed significant production of methane for all cultured samples except those showing isotopic evidence for methane oxidation. This suggests that methanogens may be present in all waters except those in which methane oxidation has occurred.

  6. Chemical and carbon isotopic composition of dissolved organic carbon in a regional confined methanogenic aquifer

    USGS Publications Warehouse

    Aravena, R.; Wassenaar, L.I.; Spiker, E. C.

    2004-01-01

    This study demonstrates the advantage of a combined use of chemical and isotopic tools to understand the dissolved organic carbon (DOC) cycle in a regional confined methanogenic aquifer. DOC concentration and carbon isotopic data demonstrate that the soil zone is a primary carbon source of groundwater DOC in areas close to recharge zones. An in-situ DOC source linked to organic rich sediments present in the aquifer matrix is controlling the DOC pool in the central part of the groundwater flow system. DOC fractions, 13C-NMR on fulvic acids and 14C data on DOC and CH4 support the hypothesis that the in-situ DOC source is a terrestrial organic matter and discard the Ordovician bedrock as a source of DOC. ?? 2004 Taylor and Francis Ltd.

  7. Carbonate aquifer of the Central Roswell Basin: recharge estimation by numerical modeling

    SciTech Connect

    Rehfeldt, K.R.; Gross, G.W.

    1982-02-01

    The flow of ground water in the Roswell, New Mexico, Artesian Basin, has been studied since the early 1900s and varied ideas have been proposed to explain different aspects of the ground water flow system. The purpose of the present study was to delineate the spatial distribution and source, or sources, of recharge to the carbonate aquifer of the central Roswell Basin. A computer model was used to simulate ground water flow in the carbonate aquifer, beneath and west of Roswell and in the Glorieta Sandstone and Yeso Formation west of the carbonate aquifer.

  8. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to an Unconfined Oxidizing Carbonate Aquifer

    SciTech Connect

    Wang, Guohui; Qafoku, Nikolla; Lawter, Amanda R.; Bowden, Mark E.; Harvey, Omar; Sullivan, E. C.; Brown, Christopher F.

    2015-07-15

    leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption) in the aquifer sediments and will support site selection, risk assessment, policy-making, and public education efforts associated with geologic carbon sequestration.

  9. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer

    PubMed Central

    Gray, Cassie J; Engel, Annette S

    2013-01-01

    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface. PMID:23151637

  10. Microbial Response to Carbon Dioxide Injection in a Shallow Aquifer

    NASA Astrophysics Data System (ADS)

    Rook, A.; Faehndrich, D.; O'Mullan, G.; Mailloux, B.; Matter, J.; Stute, M.; Goldberg, D.

    2007-12-01

    Extensive research is underway to investigate the geophysical and geochemical dynamics of subsurface carbon sequestration, but there has been only theoretical consideration of the microbial response. Microbial dynamics are capable of altering the range and rates of geochemical reactions in the subsurface. The goal of this field experiment is to link geochemical changes due to CO2 injection to alterations in the microbial community and to provide an initial characterization of the microbial response. A seven week push-pull experiment was conducted at the Lamont-Doherty Earth Observatory Test Well. 200L of groundwater was extracted, bubbled with carbon dioxide, augmented with a bromide tracer, and injected to 230m depth below ground surface. The hydraulically isolated injection zone marked the contact area between dolerite sill and sedimentary rock. Samples were taken on a weekly basis. Geochemically, a drop in pH from 9.4 to 4.5 at injection was coupled with a release of Fe2+ from the formation. As neutralization and mixing caused pH to return toward background levels, Fe2+ concentrations decreased. The aquifer remained anoxic throughout the experiment. DNA was successfully extracted and the gene encoding 16S ribosomal RNA was amplified from all samples with the exception of the injection fluid. Sequencing from clone libraries and tRFLP analyses were used to characterize microbial dynamics during the seven week study. Whereas the number of microbial groups detected remained relatively constant over the course of the experiment, changes were observed in both the dominant microbes phylogenetic identity and relative abundance. Methane concentrations increased from background levels (below 50 nM) to 4.2 nM after injection, but initial attempts to amplify archaeal and methanogen-specific genes were unsuccessful, bringing into question the presence of a significant methanogenic population. These results confirm that there is a microbial response to carbon dioxide

  11. Effect of Short-Circuit Pathways on Water Quality in Selected Confined Aquifers (Invited)

    NASA Astrophysics Data System (ADS)

    McMahon, P. B.

    2010-12-01

    Confined aquifers in the United States generally contain fewer anthropogenic contaminants than unconfined aquifers because confined aquifers often contain water recharged prior to substantial human development and redox conditions are more reducing, which favors degradation of common contaminants like nitrate and chlorinated solvents. Groundwater in a confined part of the High Plains aquifer near York, Nebraska had an adjusted radiocarbon age of about 2,000 years, and groundwater in a confined part of the Floridan aquifer near Tampa, Florida had apparent ages greater than 60 years on the basis of tritium measurements. Yet compounds introduced more recently into the environment (anthropogenic nitrate and volatile organic compounds) were detected in selected public-supply wells completed in both aquifers. Depth-dependent measurements of flow and chemistry in the pumping supply wells, groundwater age dating, numerical modeling of groundwater flow, and other monitoring data indicated that the confined aquifers sampled by the supply wells were connected to contaminated unconfined aquifers by short-circuit pathways. In the High Plains aquifer, the primary pathways appeared to be inactive irrigation wells screened in both the unconfined and confined aquifers. In the Floridan aquifer, the primary pathways were karst sinkholes and conduits. Heavy pumping in both confined systems exacerbated the problem by reducing the potentiometric surface and increasing groundwater velocities, thus enhancing downward gradients and reducing reaction times for processes like denitrification. From a broader perspective, several confined aquifers in the U.S. have experienced large declines in their potentiometric surfaces because of groundwater pumping and this could increase the potential for contamination in those aquifers, particularly where short-circuit pathways connect them to shallower, contaminated sources of water, such as was observed in York and Tampa.

  12. Carbonate Chemistry and Isotope Characteristics of Groundwater of Ljubljansko Polje and Ljubljansko Barje Aquifers in Slovenia

    PubMed Central

    2013-01-01

    Ljubljansko polje and Ljubljansko Barje aquifers are the main groundwater resources for the needs of Ljubljana, the capital of Slovenia. Carbonate chemistry and isotope analysis of the groundwater were performed to acquire new hydrogeological data, which should serve as a base for improvement of hydrogeological conceptual models of both aquifers. A total of 138 groundwater samples were collected at 69 sampling locations from both aquifers. Major carbonate ions and the stable isotope of oxygen were used to identify differences in the recharging areas of aquifers. Four groups of groundwater were identified: (1) Ljubljansko polje aquifer, with higher Ca2+values, as limestone predominates in its recharge area, (2) northern part of Ljubljansko Barje aquifer, with prevailing dolomite in its recharge area, (3) central part of Ljubljansko Barje aquifer, which lies below surface cover of impermeable clay and is poor in carbonate, and (4) Brest and Iški vršaj aquifer in the southern part of Ljubljansko Barje with higher Mg2+ in groundwater and dolomite prevailing in its recharge area. The radioactive isotope tritium was also used to estimate the age of groundwater. Sampled groundwater is recent with tritium activity between 4 and 8 TU and residence time of up to 10 years. PMID:24453928

  13. Modeling the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing Carbonate Aquifer

    SciTech Connect

    Bacon, Diana H.; Qafoku, Nikolla; Dai, Zhenxue; Keating, Elizabeth; Brown, Christopher F.

    2016-01-01

    Multiphase, reactive transport modeling was used to identify the mechanisms controlling trace metal release under elevated CO2 conditions from a well-characterized carbonate aquifer. Modeling was conducted for two experimental scenarios: batch experiments to simulate sudden, fast, and short-lived release of CO2 as would occur in the case of well failure during injection, and column experiments to simulate more gradual leaks such as those occurring along undetected faults, fractures, or well linings. Observed and predicted trace metal concentrations are compared to groundwater concentrations from this aquifer to determine the potential for leaking CO2 to adversely impact drinking water quality. Finally, a three-dimensional multiphase flow and reactive-transport simulation of CO2 leakage from an abandoned wellbore into a generalized model of the shallow, unconfined portion of the aquifer is used to determine potential impacts on groundwater quality. As a measure of adverse impacts on groundwater quality, both the EPA’s MCL limits and the maximum trace metal concentration observed in the aquifer were used as threshold values.

  14. Potential contaminant transport in the regional Carbonate Aquifer beneath Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Bredehoeft, John; King, Michael

    2010-05-01

    Yucca Mountain, Nevada is the site of the proposed US geologic repository for spent nuclear fuel and high-level radioactive waste. The repository is to be a mine, sited approximately 300 m below the crest of the mountain, in a sequence of variably welded and fractured mid-Miocene rhylolite tuffs, in the unsaturated zone, approximately 300 m above the water table. Beneath the proposed repository, at a depth of 2 km, is a thick sequence of Paleozoic carbonate rocks that contain the highly transmissive Lower Carbonate Aquifer. In the area of Yucca Mountain the Carbonate Aquifer integrates groundwater flow from north of the mountain, through the Amargosa Valley, through the Funeral Mountains to Furnace Creek in Death Valley, California where the groundwater discharges in a set of large springs. Data that describe the Carbonate Aquifer suggest a concept for flow through the aquifer, and based upon the conceptual model, a one-layer numerical model was constructed to simulate groundwater flow in the Carbonate Aquifer. Advective transport analyses suggest that the predicted travel time of a particle from Yucca Mountain to Death Valley through the Carbonate Aquifer might be as short as 100 years to as long 2,000 years, depending upon the porosity.

  15. Selective functionalization of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  16. Laboratory Experiments to Evaluate Diffusion of 14C into Nevada Test Site Carbonate Aquifer Matrix

    SciTech Connect

    Ronald L. Hershey; William Howcroft; Paul W. Reimus

    2003-03-01

    Determination of groundwater flow velocities at the Nevada Test Site is important since groundwater is the principal transport medium of underground radionuclides. However, 14C-based groundwater velocities in the carbonate aquifers of the Nevada Test Site are several orders of magnitude slower than velocities derived from the Underground Test Area regional numerical model. This discrepancy has been attributed to the loss or retardation of 14C from groundwater into the surrounding aquifer matrix making 14C-based groundwater ages appear much older. Laboratory experiments were used to investigate the retardation of 14C in the carbonate aquifers at the Nevada Test Site. Three sets of experiments were conducted evaluating the diffusion of 14C into the carbonate aquifer matrix, adsorption and/or isotopic exchange onto the pore surfaces of the carbonate matrix, and adsorption and/or isotopic exchange onto the fracture surfaces of the carbonate aquifer. Experimental results a nd published aquifer matrix and fracture porosities from the Lower Carbonate Aquifer were applied to a 14C retardation model. The model produced an extremely wide range of retardation factors because of the wide range of published aquifer matrix and fracture porosities (over three orders of magnitude). Large retardation factors suggest that groundwater with very little measured 14C activity may actually be very young if matrix porosity is large relative to the fracture porosity. Groundwater samples collected from highly fractured aquifers with large effective fracture porosities may have relatively small correction factors, while samples from aquifers with a few widely spaced fractures may have very large correction factors. These retardation factors were then used to calculate groundwater velocities from a proposed flow path at the Nevada Test Site. The upper end of the range of 14C correction factors estimated groundwater velocities that appear to be at least an order of magnitude too high compared

  17. Estimated Withdrawals from Stream-Valley Aquifers and Refined Estimated Withdrawals from Selected Aquifers in the United States, 2000

    USGS Publications Warehouse

    Sargent, B. Pierre; Maupin, Molly A.; Hinkle, Stephen R.

    2008-01-01

    The U.S. Geological Survey National Water Use Information Program compiles estimates of fresh ground-water withdrawals in the United States on a 5-year interval. In the year-2000 compilation, withdrawals were reported from principal aquifers and aquifer systems including two general aquifers - Alluvial and Other aquifers. Withdrawals from a widespread aquifer group - stream-valley aquifers - were not specifically identified in the year-2000 compilation, but they are important sources of ground water. Stream-valley aquifers are alluvial aquifers located in the valley of major streams and rivers. Stream-valley aquifers are long but narrow aquifers that are in direct hydraulic connection with associated streams and limited in extent compared to most principal aquifers. Based in large part on information published in U.S. Geological Survey reports, preliminary analysis of withdrawal data and hydrogeologic and surface-water information indicated areas in the United States where possible stream-valley aquifers were located. Further assessment focused on 24 states and the Commonwealth of Puerto Rico. Withdrawals reported from Alluvial aquifers in 16 states and withdrawals reported from Other aquifers in 6 states and the Commonwealth of Puerto Rico were investigated. Two additional States - Arkansas and New Jersey - were investigated because withdrawals reported from other principal aquifers in these two States may be from stream-valley aquifers. Withdrawals from stream-valley aquifers were identified in 20 States and were about 1,560 Mgal/d (million gallons per day), a rate comparable to withdrawals from the 10 most productive principal aquifers in the United States. Of the 1,560 Mgal/d of withdrawals attributed to stream-valley aquifers, 1,240 Mgal/d were disaggregated from Alluvial aquifers, 150 Mgal/d from glacial sand and gravel aquifers, 116 Mgal/d from Other aquifers, 28.1 Mgal/d from Pennsylvanian aquifers, and 24.9 Mgal/d from the Mississippi River Valley alluvial

  18. Radionuclide concentrations from waters of selected aquifers in Georgia. Technical report

    SciTech Connect

    Coker, G.; Olive, R.

    1989-01-01

    The report is part of the National Network for Environmental Management Studies under the auspices of the Office of Cooperative Environmental Management of the US Environmental Protection Agency. In 1988 the US Environmental Protection Agency, Region IV, began a pilot study to investigate the natural occurrence and concentration of Uranium 238, Thorium 232, and Uranium 235 radionuclide series in the ground water for selected aquifers in Georgia. Specific rock types, somewhat geologically homogeneous, were selected as representative of one or more aquifers for each of the geologic provinces in Georgia (Piedmont, Blue Ridge, Valley Ridge, and Coastal Plain). Aquifers sampled within the Piedmont provinces included pre-Cambrian and Paleozoic granite/gneisses and granites from four Piedmont county areas (Gwinnett/Barrow, Greene, Elbert/Oglethorpe, and Spalding/Pike). Ground waters from private water supply wells developed in these aquifers were sampled and analyzed for their radioisotopic and chemical characteristics. Preliminary analysis of 90 ground-water and radioisotopic samples from the pilot study indicates that the geologic setting of the differing aquifers an provinces strongly influences the occurrence of natural radioisotopes in drinking water. Extremely high concentrations of uranium, radium, radon 222, lead 210, and polonium 210 in some aquifers indicate radioisotope enrichment within and near the well bore for some areas. Based on these findings, the present public water monitoring scheme, which is based on gross alpha particle activity, may require modification depending on differing isotopes, rock types, and geological provinces.

  19. Identification and quantification of redox and pH buffering processes in a heterogeneous, low carbonate aquifer during managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Seibert, Simone; Atteia, Olivier; Ursula Salmon, S.; Siade, Adam; Douglas, Grant; Prommer, Henning

    2016-05-01

    Managed aquifer recharge of aerobic water into deep aquifers often induces the oxidation of pyrite, which can lead to groundwater acidification and metal mobilization. As circumneutral pH is often maintained by the dissolution of sedimentary calcite or high injectant alkalinity little attention is generally paid to potential alternative pH buffering processes. In contrast, this study analyzed water quality evolution from a 2 year long groundwater replenishment trial in an anaerobic, mostly carbonate free aquifer. While injection of aerobic, very low salinity water triggered pyrite oxidation, the comprehensive field data showed that in many aquifer zones pH was buffered without substantial release of inorganic carbon. A numerical analysis was performed to test and evaluate different conceptual models and suggested that either proton buffering or the dissolution of aluminosilicates, or a combination thereof, can explain the observed, rapid buffering at locations where carbonates were absent. In contrast to many previous managed aquifer recharge [MAR) studies, the oxidation of sedimentary pyrite by nitrate was found to be of minor importance or negligible. The study also highlights that the depositional history of the aquifer, and the associated differences in mineralogy and geochemistry, need to be considered when estimating groundwater quality evolution during the injection of various water types for aquifer replenishment or other management purposes.

  20. Methodology to evaluate the renewal period of carbonate aquifers: a key tool for their management in arid and semiarid regions, with the example of Becerrero aquifer, Spain

    NASA Astrophysics Data System (ADS)

    Martos-Rosillo, Sergio; Marín-Lechado, Carlos; Pedrera, Antonio; Vadillo, Iñaki; Motyka, Jacek; Molina, José Luis; Ortiz, Pilar; Ramírez, José María Martín

    2014-05-01

    A methodological procedure is proposed for determining the renewal period (RP), which expresses the ratio of total storage to recharge of carbonate aquifers, and it was applied to the overexploited moderate-size Becerrero carbonate aquifer (southern Spain). To this end, geological and subsurface data—time domain electromagnetic (TEM) soundings and borehole logs—were integrated to construct a three-dimensional (3D) geological model of the aquifer. The interconnected porosity was estimated by analyzing 73 rock samples. The resulting 3D geometrical model makes it possible to quantify the fractions of the aquifer having a confined or unconfined behaviour. Based on the total storage capacity (179 · 106-514 · 106 m3) and available aquifer recharge estimation (4.8 · 106-6.4 · 106 m3/year), an RP between 37 and 106 years is obtained. In view of the RP, an exploitation rate slightly lower than the average recharge of the system is recommended, so that the piezometric level will be stable but below the discharge head that is produced through the springs in natural conditions. The proposed methodology to obtain an aquifer RP and the management strategies designed accordingly are of broad interest, especially for carbonate aquifers, which are abundant in arid and semiarid regions.

  1. An atlas of eleven selected aquifers in New York

    USGS Publications Warehouse

    Waller, Roger Milton; Finch, Anne J.

    1982-01-01

    Water from 11 aquifer systems in New York, excluding Long Island , is used by 2.8 million people. Ten are in areas hydraulically connected with the master stream and have a shallow water table, the 11th is a buried valley system on the Lake Ontario Plain. In all systems, till, lake silt and clay, and bedrock knobs are interspersed within sand and gravel. Confining conditions occur locally in all systems and are extensive in some. Each area is partly urbanized, contains industry, and has an extensive transportation network, all of which may be sources of contamination. Well yields for public and industrial supply are commonly several hundred gallons per minute. More than 90 maps depict surficial geology, soil-zone permeability, aquifer dimensions and potential, water levels, and land use; tables of ground-water use, population served, and a summary of contamination potential are also given. Major concern in all areas is the potential for contamination and, in a few areas, adequacy of supply. The areas described are Schenectady, Endicott-Johnson City, Ramapo and Mahwah Rivers, Irondequoit Creek, Jamestown, Elmira-Horseheads-Big Flats, Cortland, Homer-Preble, Sprout and Fishkill Creeks, Fulton, and south Fallsburg-Woodbourne. (USGS)

  2. Factors Affecting Occurrence and Distribution of Selected Contaminants in Ground Water From Selected Areas in the Piedmont Aquifer System, Eastern United States, 1993-2003

    USGS Publications Warehouse

    Lindsey, Bruce D.; Falls, William F.; Ferrari, Matthew J.; Zimmerman, Tammy M.; Harned, Douglas A.; Sadorf, Eric M.; Chapman, Melinda J.

    2006-01-01

    Results of ground-water sampling from 255 wells and 19 springs in 11 studies done by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program within the Piedmont Aquifer System (PAS) were analyzed to determine the factors affecting occurrence and distribution of selected contaminants. The contaminants, which were selected on the basis of potential human-health effects, included nitrate, pesticides, volatile organic compounds (VOCs), and radon. The PAS was subdivided on the basis of the general rock type of the aquifers into three areas for the study-crystalline, carbonate, and siliciclastic. The 11 studies were designed to areally represent an individual aquifer rock type and overall are representative of the PAS in their distribution; 7 studies are in the crystalline-rock aquifers, 3 studies are in the siliciclastic-rock aquifers, and 1 study is in the carbonate-rock aquifers. Four of the studies were focused on land use, 1 in an agricultural area and 3 in urban areas. The remaining studies had wells representing a range of land-use types. Analysis of results of nitrate sampling indicated that in 8 of the 10 areas where nitrate concentrations were measured, median concentrations of nitrate were below 3 mg/L (milligrams per liter); 2 of the 10 areas had statistically significant higher median concentrations when compared to the other 8 areas. The agricultural land-use study in the carbonate-rock aquifer in the Lower Susquehanna River Basin had the highest median nitrate concentration (11 mg/L), and 60 percent of the wells sampled exceeded the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) of 10 mg/L. The major aquifer study in the crystalline-rock aquifer of the Lower Susquehanna River Basin Study Unit had the second-highest median nitrate concentration. Nitrate concentrations were positively correlated to the percentage of agricultural land use around the well, the total input of nitrogen from all sources

  3. Coupling fracture facies with in-situ permeability measurements to generate stochastic simulations of tight carbonate aquifer properties: Example from the Lower Cretaceous aquifer, Northern Provence, SE France

    NASA Astrophysics Data System (ADS)

    Bruna, Pierre-Olivier; Guglielmi, Yves; Viseur, Sophie; Lamarche, Juliette; Bildstein, Olivier

    2015-10-01

    The relationships between fracture facies and permeability distribution have been explored using a well-constrained 3D implicit structural model of hemipelagic low porosity/low permeability carbonate from the Northern Provence region, SE France. Fracture and permeability facies were determined using an extensive dataset of 99 hydrogeological wells. Data processing was undertaken using a step-by-step approach, involving: (i) identification of the fracture facies based on well logs detailing structure and stratigraphy; (ii) determination of permeability facies from the a priori correlation between the dimension of the hydraulic radius of influence (deduced from slug test analyses) and the type of reservoir heterogeneity (fissure, fracture, fault zone, etc.); (iii) three dimensional plot of fracture and permeability facies in the geological model using a variographic analysis of data. Thirty-three sequential indicator simulations (SIS) based on geostatistic analyses were realised on both fracture and permeability facies. Finally, a connectivity algorithm was developed to compute the probability of connection between selected infiltration areas and the major aquifer springs via moderate- to high-permeability geological bodies. Key results are: (i) fault zones have a greater role in controlling permeability facies distribution than on fracture facies repartition; (ii) there is little correlation between permeability and fracture facies distributions; (iii) connectivity results highlight the compartmentalisation of aquifers in the Cadarache area, the extensions of permeable geological bodies being limited by the N130 faults.

  4. Coupling fracture facies with in situ permeability measurements to generate stochastic simulations of tight carbonate aquifer properties: example from the Lower Cretaceous aquifer, Northern Provence, SE France

    NASA Astrophysics Data System (ADS)

    Bruna, Pierre-Olivier; Guglielmi, Yves; Viseur, Sophie; Lamarche, Juliette

    2015-04-01

    The relationships between fracture facies and permeability distribution have been explored using a well-constrained 3D implicit structural model of hemipelagic low porosity/low permeability carbonate from the Northern Provence region, SE France. Fracture and permeability facies were determined using an extensive dataset of 99 hydrogeological boreholes wells. Data processing was undertaken using a step-by-step approach, involving: i) identification of the fracture facies based on well logs detailing structure and stratigraphy ; ii) determination of permeability facies from the a priori correlation between the dimension of the hydraulic radius of influence (deduced from slug test analyses) and the type of reservoir heterogeneity (fissure, fracture, fault zone, etc.); iii) three dimensional plot of fracture and permeability facies in the geological model using a variographic analysis of data. Thirty-three sequential indicator simulations (SIS) were realised on both fracture and permeability facies. Finally, a connectivity algorithm was developed to compute the probability of connection between selected infiltration areas and the major aquifer springs via moderate-to high-permeability geological bodies. Key results are: i) fault zones have a greater role in controlling permeability facies distribution than on fracture facies repartition; ii) there is little correlation between permeability and fracture facies distributions ; iii) connectivity results highlight the compartmentalization of aquifers in the Cadarache area, the extensions of permeable geological bodies being limited by the N130 faults.

  5. INTERLABORATORY METHODS COMPARISON FOR THE TOTAL ORGANIC CARBON ANALYSIS OF AQUIFER MATERIALS

    EPA Science Inventory

    The total organic carbon (TOC) content of aquifer materials has been found to have significant effects on the movement of pollutants in the subsurface environment. Accurate quantification of TOC is therefore of great importance to research in groundwater contamination. owever, la...

  6. INTERLABORATORY METHODS COMPARISON FOR THE TOTAL ORGANIC CARBON ANALYSIS OF AQUIFER MATERIALS

    EPA Science Inventory

    The total organic carbon (TOC) content of aquifer materials has been found to have significant effects on the movement of pollutants in the subsurface environment. Accurate quantification of TOC is therefore of great im- portance to research in groundwater contamination. However,...

  7. Multiphase fluid-rock reactions among supercritical carbon dioxide, brine, aquifer, and caprock: relevance to geologic sequestration of carbon

    SciTech Connect

    Kaszuba, J. P.; Janecky, D. R.; Snow, M. G.

    2004-01-01

    The reactive behavior of a multiphase fluid (supercritical CO{sub 2} and brine) under physical-chemical conditions relevant to geologic storage and sequestration in a carbon repository is largely unknown. Experiments were conducted in a flexible cell hydrothermal apparatus to evaluate multiphase fluid-rock (aquifer plus caprock) reactions that may impact repository integrity.

  8. Flow of ground water through fractured carbonate rocks in the Prairie du Chien-Jordan Aquifer, southeastern Minnesota

    SciTech Connect

    Ruhl, J.F.

    1989-01-01

    Contamination of groundwater from point and nonpoint sources is a recognized problem in the karst area of southeastern Minnesota. The US Geological Survey, in cooperation with the Minnesota Department of Natural Resources and the Legislative Commission on Minnesota Resources, began a study in October 1987 to improve the understanding of local groundwater flow through karst terrain in southeastern Minnesota. The objectives of the study are to: (1) describe the orientations of systematic rock fractures and solution channels of the Prairie du Chien Group of Ordovician-age carbonate rocks in southeastern Minnesota, and, if possible, to define the principal and minor axes of these orientations; and (2) evaluate the effect of fractures and solution channels in the Prairie due Chien Group on the local flow of groundwater. Groundwater in the Upper Carbonate aquifer regionally flows toward the periphery of the aquifer and locally flows into streams and bedrock valleys. The hydraulic gradient in this aquifer generally is greatest near areas of groundwater seepage to streams. Regional groundwater flow in the Prairie du Chien-Jordan aquifer generally is to the south and east in much of Fillmore and Houston Counties and in the southern parts of Olmsted and Winona Counties. Groundwater seepage to selected streams was evaluated by current-meter measurements of downstream gains or losses of stream-flow and by an experimental approach based on radon activity in streams. The activity of radon in groundwater ranges from two to four orders of magnitude greater than the activity in surface water; therefore, groundwater seepage to streams generally increases the in-stream radon activity. 6 refs., 2 figs.

  9. Flow of ground water through fractured carbonate rocks in the Prairie du Chien-Jordan Aquifer, southeastern Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.

    1989-01-01

    Contamination of groundwater from point and nonpoint sources (such as landfills, feedlots, agricultural chemicals applied to fields, and septic systems) is a recognized problem in the karst area of southeastern Minnesota. The US Geological Survey, in cooperation with the Minnesota Department of Natural Resources and the Legislative Commission on Minnesota Resources, Began a study in October 1987 to improve the understanding of local groundwater flow through karst terrain in southeastern Minnesota. The objectives of the study are to: (1) describe the orientations of systematic rock fractures and solution channels of the Prairie du Chien Group of Ordovician-age carbonate rocks in southeastern Minnesota, and, if possible, to define the principal and minor axes of these orientations; and (2) evaluate the effect of fractures and solution channels in the Prairie du Chien Group on the local flow of groundwater. Groundwater in the Upper Carbonate aquifer regionally flows toward the periphery of the aquifer and locally flows into streams and bedrock valleys. The hydraulic gradient in this aquifer generally is greatest near areas of groundwater seepage to streams. Regional groundwater flow in the Prairie du Chien-Jordan aquifer generally is to the south and east in much of Fillmore and Houston Counties and in the southern parts of Olmsted and Winona Counties. Groundwater seepage to selected streams was evaluated by current-meter measurements of downstream gains or losses of streamflow and by an experimental approach based on radon activity in streams. The activity of radon in groundwater ranges from two to four orders of magnitude greater than the activity in surface water; therefore, groundwater seepage to streams generally increases the in-stream radon activity.

  10. Hydrogeological impact of fault zones on a fractured carbonate aquifer, Semmering (Austria)

    NASA Astrophysics Data System (ADS)

    Mayaud, Cyril; Winkler, Gerfried; Reichl, Peter

    2015-04-01

    Fault zones are the result of tectonic processes and are geometrical features frequently encountered in carbonate aquifer systems. They can hamper the fluid migration (hydrogeological barriers), propagate the movement of fluid (draining conduits) or be a combination of both processes. Numerical modelling of fractured carbonate aquifer systems is strongly bound on the knowledge of a profound conceptual model including geological and tectonic settings such as fault zones. In further consequence, numerical models can be used to evaluate the conceptual model and its introduced approximations. The study was conducted in a fractured carbonate aquifer built up by permomesozoic dolo/limestones of the Semmering-Wechsel complex in the Eastern Alps (Austria). The aquifer has an assumed thickness of about 200 m and dips to the north. It is covered by a thin quartzite layer and a very low permeable layer of quartz-phyllite having a thickness of up to several hundred meters. The carbonate layer crops out only in the southern part of the investigation area, where it receives autogenic recharge. The geological complexity affects some uncertainties related to the extent of the model area, which was determined to be about 15 km². Three vertical fault zones cross the area approximately in a N-S direction. The test site includes an infrastructural pilot tunnel gallery of 4.3 km length with two pumping stations, respectively active since August 1997 and June 1998. The total pumping rate is about 90 l/s and the drawdown data were analysed analytically, providing a hydraulic conductivity of about 5E-05 m/s for the carbonate layer. About 120 m drawdown between the initial situation and situation with pumping is reported by piezometers. This led to the drying up of one spring located at the southern border of the carbonates. A continuum approach using MODFLOW-2005 was applied to reproduce numerically the observed aquifer behaviour and investigate the impact of the three fault zones. First

  11. Water Quality in the Nation's Streams and Aquifers Overview of Selected Findings, 1991-2001

    USGS Publications Warehouse

    Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2004-01-01

    This report accompanies the publication of the last 15 of 51 river basin and aquifer assessments by the USGS National Water-Quality Assessment (NAWQA) Program during 1991?2001. It highlights selected water-quality findings of regional and national interest through examples from river basins and aquifer systems across the Nation. Forthcoming reports in the USGS series ?The Quality of Our Nation?s Waters? will present comprehensive national syntheses of information collected in the 51 study units on pesticides in water, sediment, and fish; volatile organic compounds in major aquifers used for domestic and public supply; nutrients and trace elements in streams and ground water; and aquatic ecology. This report, summaries of the 51 water-quality assessments, and a 1999 national synthesis of information on nutrients and pesticides, are available free of charge as USGS Circulars and on the World Wide Web at http://water.usgs.gov/nawqa/nawqa_sumr.html.

  12. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    USGS Publications Warehouse

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was

  13. Multiphase modeling of geologic carbon sequestration in saline aquifers.

    PubMed

    Bandilla, Karl W; Celia, Michael A; Birkholzer, Jens T; Cihan, Abdullah; Leister, Evan C

    2015-01-01

    Geologic carbon sequestration (GCS) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface CO2 and resident brine migration for the design of injection operations, to demonstrate the permanence of CO2 storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of CO2 and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model GCS. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific GCS questions. Application of the modeling approaches is shown using five ongoing or proposed CO2 injection sites. For the selected sites, the majority of GCS models follow a simplified multiphase approach, especially for questions related to injection and local-scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the CO2 migration at one site to examine details of CO2 migration under the caprock. PMID:25662534

  14. Simulation of microbial transport and carbon tetrachloride biodegradation in intermittently-fed aquifer columns

    NASA Astrophysics Data System (ADS)

    Phanikumar, M. S.; Hyndman, David W.; Wiggert, David C.; Dybas, Michael J.; Witt, Michael E.; Criddle, Craig S.

    2002-04-01

    This paper evaluates the microbial transport and degradation processes associated with carbon tetrachloride (CT) biodegradation in laboratory aquifer columns operated with a pulsed microbial feeding strategy. A seven component reactive transport model based on modified saturation kinetics and on a two-site sorption model was developed to describe the linked physical, chemical, and biological processes involved in CT degradation by Pseudomonas stutzeri KC, a denitrifying bacterium that cometabolically converts CT to harmless end products. After evaluating several expressions for attachment and detachment, we selected a dynamic partitioning model in which strain KC detachment decreases at low substrate concentrations. The resulting model enabled improved understanding of the complex coupled processes operative within our system and enabled us to test a model for field-scale design and transport studies. Batch studies were used to identify initial degradation and microbial transport processes, and constrained optimization methods were used to estimate a set of reaction rates that best describe the column experiment data. The optimal set of parameters for one column provided a reasonable prediction of solute and microbial concentrations in a second column operated under different conditions, providing an initial test of the model. This modeling strategy improved our understanding of biodegradation processes and rates. The CT degradation rate in the columns was lower than values obtained from batch studies, and processes in addition to the growth and decay of strain KC cells (due to native flora) are necessary to describe the observed nitrate consumption.

  15. Selected hydrogeologic data for the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers in the Black Hills area, South Dakota

    USGS Publications Warehouse

    Galloway, J.M.

    1999-01-01

    This report presents selected hydrogeologic data on wells and springs in the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers in the Black Hills area of western South Dakota. The data were used to create potentiometric maps for these five aquifers.

  16. The character of organic carbon in recharge water and arsenic mobilization in Bangladesh aquifers

    NASA Astrophysics Data System (ADS)

    Pracht, L. E.; Fussell, A. H.; Polizzotto, M.; Badruzzaman, A. M.; Ali, M. A.; Neumann, R. B.

    2012-12-01

    In Bangladesh, arsenic-contaminated groundwater, used for both drinking and irrigation supplies, negatively affects the health of millions of people. Past work at our site in Munshiganj suggests that current patterns of arsenic concentration in the aquifer are related to groundwater flow and recharge chemistry. Constructed ponds and groundwater-irrigated rice fields serve as the primary aquifer recharge sources, with pond recharge evolving into high-arsenic groundwater and rice field recharge evolving into low-arsenic groundwater. The composition of these water types vary in concentrations and character of dissolved organic carbon, a presumed key component in the mechanism of arsenic release from sediments. Here we present results from an experiment-based laboratory study that directly tests the role of organic carbon character and bioavailability on arsenic mobilization. Incubation experiments using sediment samples collected from Bangladesh and waters with different carbon sources (e.g., pond and rice field recharge water and artificial water with model carbon compounds) were conducted to show the phase transformations carbon undergoes during arsenic mobilization processes, to isolate the carbon components and characteristics most responsible for mobilization reactions, and to investigate the importance of secondary chemical constituents for completion of these physiochemical reactions. Water, gas, and sediment samples collected from the incubations were analyzed for nutrient, metal, anion, and carbon concentrations, as well as carbon character. The results clarify the chemical components most critical in arsenic mobilization and provide insight into the in situ chemical reactions occurring in the aquifer. Moreover, this better chemical understanding helps elucidate the potential impact of altered recharge patterns and recharge chemistry on arsenic concentrations of Bangladeshi groundwater supplies.

  17. Plan of study for the Ohio-Indiana carbonate-bedrock and glacial- aquifer system

    USGS Publications Warehouse

    Bugliosi, E.F.

    1990-01-01

    The major aquifers of 35,000 sq mi area in western Ohio and eastern Indiana consist of Silurian and Devonian carbonate bedrock and Quaternary glacial deposits. These bedrock units and glacial deposits have been designated for study as part of the U.S. Geological Survey 's Regional Aquifer System Analysis program, a nationwide program to assess the regional hydrology, geology and water quality of the Nation 's most important aquifers. The purpose of the study is to define the hydrology, geochemistry, and geologic framework of the aquifer system within the Silurian and Devonian rocks and glacial deposits, with emphasis on describing the groundwater flow patterns and characterizing the water quality. The study, which began in 1988 , is expected to be completed in 1993. In 1980, the aquifers in the study area supplied more than 280 million gallons of water/day to industry, agriculture, and a population of more than 6.3 million people. With a projected future population growth to 7.1 million in 1990, and with intensified agricultural and industrial uses, water withdrawals from these bedrock and glacial aquifers are expected to be increased. The most significant groundwater problems in the study area result from the pronounced areal differences in availability and quality of the groundwater. These differences are related to the lateral discontinuity of many of the glacial deposits and to variations in secondary permeability of the bedrock aquifers associated with patterns of fracturing. Planned activities of the study include compilation of available geohydrologic and water quality data, such as groundwater levels, geohydrologic properties of aquifers, chemical analyses, land use and water use data, and ancillary data such as digital satellite images. Additional geohydrologic and water quality data may be collected from existing wells or wells that may be drilled for this study. A computerized, geographic information system will be used as a data base management tool and

  18. Geochemistry of silicate-rich rocks can curtail spreading of carbon dioxide in subsurface aquifers.

    PubMed

    Cardoso, S S S; Andres, J T H

    2014-01-01

    Pools of carbon dioxide are found in natural geological accumulations and in engineered storage in saline aquifers. It has been thought that once this CO2 dissolves in the formation water, making it denser, convection streams will transport it efficiently to depth, but this may not be so. Here, we assess theoretically and experimentally the impact of natural chemical reactions between the dissolved CO2 and the rock formation on the convection streams in the subsurface. We show that, while in carbonate rocks the streaming of dissolved carbon dioxide persists, the chemical interactions in silicate-rich rocks may curb this transport drastically and even inhibit it altogether. These results challenge our view of carbon sequestration and dissolution rates in the subsurface, suggesting that pooled carbon dioxide may remain in the shallower regions of the formation for hundreds to thousands of years. The deeper regions of the reservoir can remain virtually carbon free. PMID:25501650

  19. Geochemistry of silicate-rich rocks can curtail spreading of carbon dioxide in subsurface aquifers

    NASA Astrophysics Data System (ADS)

    Cardoso, S. S. S.; Andres, J. T. H.

    2014-12-01

    Pools of carbon dioxide are found in natural geological accumulations and in engineered storage in saline aquifers. It has been thought that once this CO2 dissolves in the formation water, making it denser, convection streams will transport it efficiently to depth, but this may not be so. Here, we assess theoretically and experimentally the impact of natural chemical reactions between the dissolved CO2 and the rock formation on the convection streams in the subsurface. We show that, while in carbonate rocks the streaming of dissolved carbon dioxide persists, the chemical interactions in silicate-rich rocks may curb this transport drastically and even inhibit it altogether. These results challenge our view of carbon sequestration and dissolution rates in the subsurface, suggesting that pooled carbon dioxide may remain in the shallower regions of the formation for hundreds to thousands of years. The deeper regions of the reservoir can remain virtually carbon free.

  20. Saline aquifer storage of carbon dioxide in the Sleipner project

    SciTech Connect

    Kongsjorden, H.; Kaarstad, O.; Torp, T.A.

    1998-07-01

    The offshore gas field named Sleipner--after the mythological horse with eight legs--is situated right in the middle of the North Sea, near the border line between United Kingdom and Norway. The distance from the nearest town on the Norwegian coast, Stavanger, is 240 km. Together with the even larger Troll gas field further north, Sleipner will produce a larger part of Norway`s gas supply to the European Union. It will function as a hub for a number of pipelines transferring this gas from north to south. The field is licensed to the companies Statoil, Esso Norge, Norsk Hydro, Elf Petroleum Norge and TOTAL Norge; with Statoil as field operator. The field was first discovered in 1974 with the gas containing reservoirs laying around 3,500 m under the sea bed. The natural gas coming from the reservoir contains 9% CO{sub 2}, while customer defined maximum is 2.5%. The extracted CO{sub 2} will be injected into the Utsira aquifer some 1000 meters under the sea through a separate injection well, instead of venting the nearly 1 million tonnes of CO{sub 2} yearly to the atmosphere.

  1. Effects of karst and geologic structure on the circulation of water and permeability in carbonate aquifers

    USGS Publications Warehouse

    Stringfield, V.T.; Rapp, J.R.; Anders, R.B.

    1979-01-01

    The results of the natural processes caused by solution and leaching of limestone, dolomite, gypsum, salt and other soluble rocks, is known as karst. Development of karst is commonly known as karstification, which may have a pronounced effect on the topography, hydrology and environment, especially where such karst features as sinkholes and vertical solution shafts extend below the land surface and intersect lateral solution passages, cavities, caverns and other karst features in carbonate rocks. Karst features may be divided into two groups: (1) surficial features that do not extend far below the surface; and (2) karst features such as sinkholes that extend below the surface and affect the circulation of water below. The permeability of the most productive carbonate aquifers is due chiefly to enlargement of fractures and other openings by circulation of water. Important controlling factors responsible for the development of karst and permeability in carbonate aquifers include: (1) climate, topography, and presence of soluble rocks; (2) geologic structure; (3) nature of underground circulation; and (4) base level. Another important factor is the condition of the surface of the carbonate rocks at the time they are exposed to meteoric water. A carbonate rock surface, with soil or relatively permeable, less soluble cover, is more favorable for initiation of karstification and solution than bare rocks. Water percolates downward through the cover to the underlying carbonate rocks instead of running off on the surface. Also, the water becomes more corrosive as it percolates through the permeable cover to the underlying carbonate rocks. Where there is no cover or the cover has been removed, the carbonate rocks become case hardened and resistant to erosion. However, in regions underlain not only by carbonate rocks but also by beds of anhydrite, gypsum and salt, such as the Hueco Plateau in southeastern New Mexico, subsurface solution may occur where water without natural

  2. Size-selective predation on groundwater bacteria by nanoflagellates in an organic-contaminated aquifer

    USGS Publications Warehouse

    Kinner, N.E.; Harvey, R.W.; Blakeslee, K.; Novarino, G.; Meeker, L.D.

    1998-01-01

    Time series incubations were conducted to provide estimates for the size selectivities and rates of protistan grazing that may be occurring in a sandy, contaminated aquifer. The experiments involved four size classes of fluorescently labeled groundwater bacteria (FLB) and 2- to 3-??m-long nanoflagellates, primarily Spumella guttula (Ehrenberg) Kent, that were isolated from contaminated aquifer sediments (Cape Cod, Mass.). The greatest uptake and clearance rates (0.77 bacteria flagellate-1 ?? h-1 and 1.4 nl. flagellate-1 ?? h-1, respectively) were observed for 0.8- to 1.5-??m- long FLB (0.21-??m3 average cell volume), which represent the fastest growing bacteria within the pore fluids of the contaminated aquifer sediments. The 19:1 to 67:1 volume ratios of nanoflagellate predators to preferred bacterial prey were in the lower end of the range commonly reported for other aquatic habitats. The grazing data suggest that the aquifer nanoflagellates can consume as much as 12 to 74% of the unattached bacterial community in 1 day and are likely to have a substantive effect upon bacterial degradation of organic groundwater contaminants.

  3. Assessing groundwater availability in a folded carbonate aquifer through the development of a numerical model

    NASA Astrophysics Data System (ADS)

    Di Salvo, Cristina; Romano, Emanuele; Guyennon, Nicolas; Bruna Petrangeli, Anna; Preziosi, Elisabetta

    2015-04-01

    The study of aquifer systems from a quantitative point of view is fundamental for adopting water management plans aiming at preserving water resources and reducing environmental risks related to groundwater level and discharge changes. This is also what the European Union Water Framework Directive (WFD, 2000/60/EC) states, holding the development of numerical models as a key aspect for groundwater management. The objective of this research is to i) define a methodology for modeling a complex hydrogeological structure in a structurally folded carbonate area and ii) estimate the concurrent effects of exploitation and climate changes on groundwater availability through the implementation of a 3D groundwater flow model. This study concerns the Monte Coscerno karst aquifer located in the Apennine chain in Central Italy in the Nera River Valley.This aquifer, is planned to be exploited in the near future for water supply. Negative trends of precipitation in Central Italy have been reported in relation to global climate changes, which are expected to affect the availability of recharge to carbonate aquifers throughout the region . A great concern is the combined impact of climate change and groundwater exploitation, hence scenarios are needed taking into account the effect of possible temperature and precipitation trends on recharge rates. Following a previous experience with model conceptualization and long-term simulation of groundwater flow, an integrated three-dimensional groundwater model has been developed for the Monte Coscerno aquifer. In a previous paper (Preziosi et al 2014) the spatial distribution of recharge to this aquifer was estimated through the Thornthwaite Mather model at a daily time step using as inputs past precipitation and temperature values (1951-2013) as well as soil and landscape properties. In this paper the numerical model development is described. On the basis of well logs from private consulting companies and literature cross sections the

  4. Megaporosity and permeability of Thalassinoides-dominated ichnofabrics in the Cretaceous karst-carbonate Edwards-Trinity aquifer system, Texas

    USGS Publications Warehouse

    Cunningham, Kevin J.; Sukop, Michael C.

    2012-01-01

    Current research has demonstrated that trace fossils and their related ichnofabrics can have a critical impact on the fluid-flow properties of hydrocarbon reservoirs and groundwater aquifers. Most petroleum-associated research has used ichnofabrics to support the definition of depositional environments and reservoir quality, and has concentrated on siliciclastic reservoir characterization and, to a lesser degree, carbonate reservoir characterization (for example, Gerard and Bromley, 2008; Knaust, 2009). The use of ichnology in aquifer characterization has almost entirely been overlooked by the hydrologic community because the dynamic reservoir-characterization approach has not caught on with hydrologists and so hydrology is lagging behind reservoir engineering in this area (de Marsily and others, 2005). The objective of this research is to show that (1) ichnofabric analysis can offer a productive methodology for purposes of carbonate aquifer characterization, and (2) a clear relation can exist between ichnofabrics and groundwater flow in carbonate aquifers.

  5. Multitracer experiment to evaluate the attenuation of selected organic micropollutants in a karst aquifer.

    PubMed

    Hillebrand, Olav; Nödler, Karsten; Sauter, Martin; Licha, Tobias

    2015-02-15

    The increasing pressure on drinking water resources necessitates an efficient management of potential and actual drinking water resources. Karst aquifers play a key role in the supply of the world's population with drinking water. Around one quarter of all drinking water is produced from these types of aquifers. Unfortunately due to the aquifer characteristics with extremely high hydraulic conductivities and short residence times, these systems are vulnerable to contamination. For successful management, a fundamental understanding of mass transport and attenuation processes with respect to potential contaminants is vital. In this study, a multitracer experiment was performed in a karst aquifer in SW-Germany for determining the attenuation capacity of a karst environment by assessing the environmental fate of selected relevant micropollutants. Uranine, acesulfame and carbamazepine were injected into a sinkhole as reference tracers together with the reactive compounds atenolol, caffeine, cyclamate, ibuprofen and paracetamol (also known as acetaminophen). The breakthrough of the tracers was monitored at a karst spring at a distance of ca. 3 km. The breakthrough curves of the reactive compounds were interpreted relative to the reference substances. No significant retardation was found for any of the investigated micropollutants. The determined half-lives of the reactive compounds range from 38 to 1,400 h (i.e. persistent within the investigation period) in the following order (from high to no observed attenuation): paracetamol>atenolol≈ibuprofen>caffeine≫cyclamate. The attenuation rates are generally in agreement with studies from other environmental compartments. The occurrence of the biotransformation product atenolol acid served as evidence for in-situ biodegradation within the aquifer system. PMID:25460968

  6. A groundwater conceptual model and karst-related carbon sink for a glacierized alpine karst aquifer, Southwestern China

    NASA Astrophysics Data System (ADS)

    Zeng, Cheng; Liu, Zaihua; Yang, Jianwen; Yang, Rui

    2015-10-01

    In the Jade Dragon Snow Mountain (JDSM) region, Yunnan Province, SW China, an extensive hydrochemical and stable isotopic study of a glacierized alpine karst aquifer was conducted during the period, 2011-2014. The objectives of the study were: first, to establish a conceptual hydrogeological model of the karst groundwater system; second, to estimate the proportion of extra glacier melt water infiltrating the karst aquifer that is being induced by the regional climate warming; third, to calculate the karst-related flux of carbon into the karst aquifer. Knowledge of the local hydrogeological background from previous work was the starting point of the hydrochemical and stable isotopic study. Some representative spring waters and recharge waters (i.e. glacier melt water and rainwater) were investigated both spatially and temporally by hydrochemical and isotopic techniques, including analysis of major and some minor ions and O and H stable isotopes. A conceptual hydrogeological model of a fracture-diffuse flow karst groundwater aquifer was proposed. The proportion of glacier melt water infiltrating into the karst aquifer was estimated by using the karst spring as a natural pluviometer, and with stable isotope analysis. Results show that (1) the JDSM karst aquifer is a diffuse flow system; (2) it has a number of discharge areas, and the Jinsha River is the karst drainage base level; (3) the proportion of the glacier melt water penetrating the karst aquifer is 29%; and (4) the karst-related carbon sink is 26.67 ± 3.44 t km-2 a-1 (as CO2), which is lower than that in non-glacierized karst aquifers but over ten times larger than the carbon sink flux from silicate weathering in non-karst areas, showing the control of both climate and lithology on the rock weathering-related carbon sink and the significance of carbonate weathering in the global carbon cycle.

  7. Geostatistical borehole image-based mapping of karst-carbonate aquifer pores

    USGS Publications Warehouse

    Michael Sukop; Cunningham, Kevin J.

    2016-01-01

    Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes.

  8. Geostatistical Borehole Image-Based Mapping of Karst-Carbonate Aquifer Pores.

    PubMed

    Sukop, Michael C; Cunningham, Kevin J

    2016-03-01

    Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes. PMID:26174850

  9. Groundwater pollution risk assessment. Application to different carbonate aquifers in south Spain

    NASA Astrophysics Data System (ADS)

    Jimenez Madrid, A.; Martinez Navarrete, C.; Carrasco Cantos, F.

    2009-04-01

    Water protection has been considered one of the most important environmental goals in the European politics since the 2000/60/CE Water Framework Directive came into force in 2000, and more specifically in 2006 with the 2006/118/CE Directive on groundwater protection. As one of the necessary requirements to tackle groundwater protection, a pollution risk assessment has been made through the analysis of both the existing hazard human activities map and the intrinsic aquifer vulnerability map, by applying the methodologies proposed by COST Action 620 in an experimental study site in south Spain containing different carbonated aquifers, which supply 8 towns ranging from 2000 to 2500 inhabitants. In order to generate both maps it was necessary to make a field inventory over a 1:10000 topographic base map, followed by Geographic Information System (GIS) processing. The outcome maps show a clear spatial distribution of both pollution risk and intrinsic vulnerability of the carbonated aquifers studied. As a final result, a map of the intensity of groundwater pollution risk is presented, representing and important base for the development of a proper methodology for the protection of groundwater resources for human consumption protection. Keywords. Hazard, Vulnerability, Risk, SIG, Protection

  10. Uncertainty assessment of carbon dioxide storage capacity evaluation in deep saline aquifer:a case study in Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yang, X.

    2012-12-01

    Carbon dioxide Capture and Storage techniques (CCS) are one of the effective measures for reduction Carbon dioxide emissions to the atmosphere to mitigate the global warming. Among the Carbon dioxide geological storage options, deep saline aquifers offer the largest storage potential and are widely distributed throughout the Earth. Implementation of carbon dioxide capture and geological storage to reduce greenhouse gas emissions requires carbon dioxide storage capacity in deep saline aquifers. The storage capacity estimation depends on the storage trapping mechanisms and the availability, resolution and certainty of data. There are five different types of trapping mechanisms in deep saline aquifers namely structural and stratigraphic trapping, residual gas trapping, solubility trapping, mineral trapping and hydrodynamic trapping in which storage capacity by solubility trapping is the largest. The carbon dioxide storage capacities in deep saline aquifer can be evaluated by the method recommended by Carbon Sequestration Leadership Forum (CSLF), which mainly depends on the area of study area, thickness and porosity of sandstone, density and carbon dioxide content (mass fraction) in formation water at initial and saturated state. Hydrogeological parameters in aquifer are uncertainty because of uncertainty of measurement and the spatial variety, which leads evaluation uncertainty of carbon dioxide storage capacity. In this paper, acceptance of evaluated carbon dioxide storage capacity in deep saline aquifer caused by hydrological parameters was discussed based on geostatistical methods and stochastic simulation. The stratum named Yaojialing group in the center depressed area of Songliao Basin was chosen as study area because of the rich data. The porosity of sandstone, thickness ration of sandstone to stratum and the total dissolved solid in formation water were regarded as the main source of the uncertainty of carbon dioxide storage capacity evaluation in deep saline

  11. Convective dissolution of carbon dioxide in saline aquifers

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome A.; Hesse, Marc A.; Riaz, Amir; Hallworth, Mark A.; Tchelepi, Hamdi A.; Huppert, Herbert E.

    2010-11-01

    Geological carbon dioxide (CO2) storage is a means of reducing anthropogenic emissions. Dissolution of CO2 into the brine, resulting in stable stratification, increases storage security. The dissolution rate is determined by convection in the brine driven by the increase of brine density with CO2 saturation. We present a new analogue fluid system that reproduces the convective behaviour of CO2-enriched brine. Laboratory experiments and high-resolution numerical simulations show that the convective flux scales with the Rayleigh number to the 4/5 power, in contrast with a classical linear relationship. A scaling argument for the convective flux incorporating lateral diffusion from downwelling plumes explains this nonlinear relationship for the convective flux, provides a physical picture of high Rayleigh number convection in a porous medium, and predicts the CO2 dissolution rates in CO2 accumulations. These estimates of the dissolution rate show that convective dissolution can play an important role in enhancing storage security.

  12. Dissolved organic carbon influences microbial community composition and diversity in managed aquifer recharge systems.

    PubMed

    Li, Dong; Sharp, Jonathan O; Saikaly, Pascal E; Ali, Shahjahan; Alidina, Mazahirali; Alarawi, Mohammed S; Keller, Stephanie; Hoppe-Jones, Christiane; Drewes, Jörg E

    2012-10-01

    This study explores microbial community structure in managed aquifer recharge (MAR) systems across both laboratory and field scales. Two field sites, the Taif River (Taif, Saudi Arabia) and South Platte River (Colorado), were selected as geographically distinct MAR systems. Samples derived from unsaturated riverbed, saturated-shallow-infiltration (depth, 1 to 2 cm), and intermediate-infiltration (depth, 10 to 50 cm) zones were collected. Complementary laboratory-scale sediment columns representing low (0.6 mg/liter) and moderate (5 mg/liter) dissolved organic carbon (DOC) concentrations were used to further query the influence of DOC and depth on microbial assemblages. Microbial density was positively correlated with the DOC concentration, while diversity was negatively correlated at both the laboratory and field scales. Microbial communities derived from analogous sampling zones in each river were not phylogenetically significantly different on phylum, class, genus, and species levels, as determined by 16S rRNA gene pyrosequencing, suggesting that geography and season exerted less sway than aqueous geochemical properties. When field-scale communities derived from the Taif and South Platte River sediments were grouped together, principal coordinate analysis revealed distinct clusters with regard to the three sample zones (unsaturated, shallow, and intermediate saturated) and, further, with respect to DOC concentration. An analogous trend as a function of depth and corresponding DOC loss was observed in column studies. Canonical correspondence analysis suggests that microbial classes Betaproteobacteria and Gammaproteobacteria are positively correlated with DOC concentration. Our combined analyses at both the laboratory and field scales suggest that DOC may exert a strong influence on microbial community composition and diversity in MAR saturated zones. PMID:22798375

  13. Dissolved Organic Carbon Influences Microbial Community Composition and Diversity in Managed Aquifer Recharge Systems

    PubMed Central

    Li, Dong; Sharp, Jonathan O.; Saikaly, Pascal E.; Ali, Shahjahan; Alidina, Mazahirali; Alarawi, Mohammed S.; Keller, Stephanie; Hoppe-Jones, Christiane

    2012-01-01

    This study explores microbial community structure in managed aquifer recharge (MAR) systems across both laboratory and field scales. Two field sites, the Taif River (Taif, Saudi Arabia) and South Platte River (Colorado), were selected as geographically distinct MAR systems. Samples derived from unsaturated riverbed, saturated-shallow-infiltration (depth, 1 to 2 cm), and intermediate-infiltration (depth, 10 to 50 cm) zones were collected. Complementary laboratory-scale sediment columns representing low (0.6 mg/liter) and moderate (5 mg/liter) dissolved organic carbon (DOC) concentrations were used to further query the influence of DOC and depth on microbial assemblages. Microbial density was positively correlated with the DOC concentration, while diversity was negatively correlated at both the laboratory and field scales. Microbial communities derived from analogous sampling zones in each river were not phylogenetically significantly different on phylum, class, genus, and species levels, as determined by 16S rRNA gene pyrosequencing, suggesting that geography and season exerted less sway than aqueous geochemical properties. When field-scale communities derived from the Taif and South Platte River sediments were grouped together, principal coordinate analysis revealed distinct clusters with regard to the three sample zones (unsaturated, shallow, and intermediate saturated) and, further, with respect to DOC concentration. An analogous trend as a function of depth and corresponding DOC loss was observed in column studies. Canonical correspondence analysis suggests that microbial classes Betaproteobacteria and Gammaproteobacteria are positively correlated with DOC concentration. Our combined analyses at both the laboratory and field scales suggest that DOC may exert a strong influence on microbial community composition and diversity in MAR saturated zones. PMID:22798375

  14. Groundwater salinization processes and reversibility of seawater intrusion in coastal carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Han, Dongmei; Post, Vincent E. A.; Song, Xianfang

    2015-12-01

    Seawater intrusion (SWI) has led to salinization of fresh groundwater reserves in coastal areas worldwide and has forced the closure of water supply wells. There is a paucity of well-documented studies that report on the reversal of SWI after the closure of a well field. This study presents data from the coastal carbonate aquifer in northeast China, where large-scale extraction has ceased since 2001 after salinization of the main well field. The physical flow and concomitant hydrogeochemical processes were investigated by analyzing water level and geochemical data, including major ion chemistry and stable water isotope data. Seasonal water table and salinity fluctuations, as well as changes of δ2H-δ18O values of groundwater between the wet and dry season, suggest local meteoric recharge with a pronounced seasonal regime. Historical monitoring testifies of the reversibility of SWI in the carbonate aquifer, as evidenced by a decrease of the Cl- concentrations in groundwater following restrictions on groundwater abstraction. This is attributed to the rapid flushing in this system where flow occurs preferentially along karst conduits, fractures and fault zones. The partially positive correlation between δ18O values and TDS concentrations of groundwater, as well as high NO3- concentrations (>39 mg/L), suggest that irrigation return flow is a significant recharge component. Therefore, the present-day elevated salinities are more likely due to agricultural activities rather than SWI. Nevertheless, seawater mixing with fresh groundwater cannot be ruled out in particular where formerly intruded seawater may still reside in immobile zones of the carbonate aquifer. The massive expansion of fish farming in seawater ponds in the coastal zone poses a new risk of salinization. Cation exchange, carbonate dissolution, and fertilizer application are the dominant processes further modifying the groundwater composition, which is investigated quantitatively using hydrogeochemical

  15. Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Cherkauer, Douglas S.

    Previous studies have shown that hydraulic conductivity of an aquifer seems to increase as the portion of the aquifer tested increases. To date, such studies have all relied on different methods to determine hydraulic conductivity at each scale of interest, which raises the possibility that the observed increase in hydraulic conductivity is due to the measurement method, not to the scale. This study analyzes hydraulic conductivity with respect to scale during individual aquifer tests in porous, heterogeneous carbonate rocks in southeastern Wisconsin, USA. Results from this study indicate that hydraulic conductivity generally increases during an individual test as the volume of aquifer impacted increases, and the rate of this increase is the same as the rate of increase determined by using different measurement methods. Thus, scale dependence of hydraulic conductivity during single tests does not depend on the method of measurement. This conclusion is supported by 22 of 26 aquifer tests conducted in porous-flow-dominated carbonate units within the aquifer. Instead, scale dependency is probably caused by heterogeneities within the aquifer, a conclusion supported by digital simulation. All of the observed types of hydraulic-conductivity variations with scale during individual aquifer tests can be explained by a conceptual model of a simple heterogeneous aquifer composed of high-conductivity zones within a low-conductivity matrix. Résumé Certaines études ont montré que la conductivité hydraulique d'un aquifère semble augmenter en même temps que la partie testée de l'aquifère s'étend. Jusqu'à présent, ces études ont toutes reposé sur des méthodes de détermination de la conductivité hydraulique différentes pour chaque niveau d'échelle, ce qui a conduit à penser que l'augmentation observée de la conductivité hydraulique pouvait être due aux méthodes de mesure et non à l'effet d'échelle. Cette étude analyse la conductivité hydraulique par

  16. Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA

    USGS Publications Warehouse

    Plummer, L.N.; Sprinkle, C.L.

    2001-01-01

    Geochemical reaction models were evaluated to improve radiocarbon dating of dissolved inorganic carbon (DIC) in groundwater from confined parts of the Upper Floridan aquifer in central and northeastern Florida, USA. The predominant geochemical reactions affecting the 14C activity of DIC include (1) dissolution of dolomite and anhydrite with calcite precipitation (dedolomitization), (2) sulfate reduction accompanying microbial degradation of organic carbon, (3) recrystallization of calcite (isotopic exchange), and (4) mixing of fresh water with as much as 7% saline water in some coastal areas. The calculated cumulative net mineral transfers are negligibly small in upgradient parts of the aquifer and increase significantly in downgradient parts of the aquifer, reflecting, at least in part, upward leakage from the Lower Floridan aquifer and circulation that contacted middle confining units in the Floridan aquifer system. The adjusted radiocarbon ages are independent of flow path and represent travel times of water from the recharge area to the sample point in the aquifer. Downgradient from Polk City (adjusted age 1.7 ka) and Keystone Heights (adjusted age 0.4 ka), 14 of the 22 waters have adjusted 14C ages of 20-30 ka, indicating that most of the fresh-water resource in the Upper Floridan aquifer today was recharged during the last glacial period. All of the paleowaters are enriched in 18O and 2H relative to modern infiltration, with maximum enrichment in ??18O of approximately 2.0%o.

  17. Profile of a modern coastal mixing zone in Tertiary carbonate rocks of the Floridan aquifer, Pasco County, Florida

    SciTech Connect

    Jee, J.L.; Randazzo, A.F. ); Wicks, C.M.; Herman, J.S. )

    1991-03-01

    Rock-core and ground-water samples from the Floridan aquifer mixing zone water were studied to assess diagenesis and porosity and permeability development. This zone occurs in the Ocala Limestone (Eocene) and Suwannee Limestone (Oligocene); shallow-marine lithofacies thereof are grouped into eight informal lithologic units, five in the Ocala and three in the Suwannee. Most diagenetic features relate to episodic sea-level fluctuations throughout the {le} 50 my post depositional history. Paragenesis includes marine micritization and cementation, meteoric mineralogic stabilization, dissolution enhancement of porosity, and phreatic, equant calcite cements and echinoderm overgrowths. Dolomitization of selected intervals occurred relatively late in the paragenetic sequence and dolomite crystals show no evidence of subsequent alteration. Calcite cements are noncathodoluminescent and have {delta}{sup 13}C and {delta}{sup 18}O values higher in the Ocala and lower in the Suwannee. Dolomite crystals are nonstoichiometric and thinly zoned, alternating noncathodoluminescent and red-orange cathodoluminescent. Microprobe analysis revealed no systematic variations in Ca and Mg and concentrations of Mn, Fe, Sr and Na below reliable limits. Dolomite stable isotope value ranges are {minus}1.30 to +0.85 {delta}{sup 13}C (PDB) and +0.274 to +2.651 {delta}{sup 18}O (PDB). The modern regional meteoric aquifer is a mature, mineralogically stable carbonate sequence. Aqueous geochemical data indicate supersaturation with respect to stoichiometric calcite and dolomite, and slight supersaturation with respect to aragonite. Bulk solubility measurements show that observed water compositions are in approximate equilibrium with respect to aquifer rocks and there is little evidence of water/rock interaction in this modern mixing zone.

  18. Isotopic characterization of the Precambrian carbonate aquifers under the city of Bangui (Central African Republic)

    NASA Astrophysics Data System (ADS)

    Huneau, Frederic; Djebebe-Ndjiguim, Chantal-Laure; Foto, Eric; Ito, Mari; Celle-Jeanton, Helene; Garel, Emilie; Mabingui, Joseph

    2013-04-01

    The city of Bangui, the capital of the Central African Republic, is located on the right bank of the Ubangi River which is the northernmost tributary of the Congo River. From its foundation in 1889 this city has always suffered from serious problems of water management. This is related to the specificity of the site configuration (steep hills surrounding a large swampy flat valley poorly drained) and to the urbanisation process responsible for the waterproofing of soils and the associated increased runoff processes under tropical humid condition.This paper presents the results of a geochemical and isotopic survey carried out in 2011 aiming at evaluating the type and chemical quality of the groundwater resources of the Bangui region. By combining geological, hydrogeochemical and isotopic data it appears that the underground of Bangui seems favourable to the development of a secured and sustainable water supply from groundwater provided that the conditions of exploitation would be constrained by the local authorities. The deep fractured (and locally kastified) Precambrian carbonate aquifers known as Bimbo and Fatima formations are identified as target resources considering the relatively good quality of the resource from the chemical point of view, and the semi-confined structure of the aquifer preventing the mixing with shallow aquifers already strongly impacted by domestic and industrial pollutions.

  19. Potential Risks of Freshwater Aquifer Contamination from Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Little, M. G.; Jackson, R. B.

    2009-12-01

    Carbon Capture and Storage (CCS) represents a suite of technologies to separate, compress, transport and securely store CO2 produced from power plants and other industrial facilities. Currently, power plant flue gasses containing CO2 are released directly to the atmosphere where they contribute to the steady rise in atmospheric CO2 and thus climate change. The ultimate goal of CCS is to prevent this CO2 from reaching the atmosphere by securing it underground; however, a full understanding of the associated environmental risks is needed before large-scale implementation is feasible and generally accepted by the public. Deep saline aquifers hold the most promise for CCS, having long-term stability, the largest capacity in the U.S. and low leakage risk. Even so, levels of leakage acceptable for the prevention catastrophic climate change (<0.1 % annual leakage) may translate into tons of CO2 released from a given deep storage aquifer into intermediate and shallow strata. As freshwater aquifers used for drinking, industry and agriculture lie directly above many of the proposed CCS locations across the US and world, leaks may have the potential to negatively impact groundwater services. In this study, we access the potential risk of increasing heavy metal concentrations in shallower, drinking-water aquifers due to CO2 contamination. We have identified drinking-water aquifers with evidence of naturally occurring metals of health concern that overlie the most likely sites for CCS. Sediment samples from 4 aquifers that meet this criteria, Mahomet (Illinois), Ogallala (Texas), Columbia (Virginia) and Aquia (Maryland) have been subjected to an on-going, long-term CO2 contamination simulation. The simulated groundwater have been tested for a suite of elements (Cr, Mn, Ni, As, Se, Cd, Tl and Pb). Preliminary results show that CO2 can drive simulated groundwater concentrations of As and Cd to dangerous levels; however, these impacts are highly dependent on lithology. Preliminary

  20. Electrical Resistivity Tomography (ERT) Applied to Karst Carbonate Aquifers: Case Study from Amdoun, Northwestern Tunisia

    NASA Astrophysics Data System (ADS)

    Redhaounia, Belgacem; Ilondo, Batobo Ountsche; Gabtni, Hakim; Sami, Khomsi; Bédir, Mourad

    2016-04-01

    The Amdoun region is characterized by a high degree of karstification due to the climate impact (±1500 mm year-1) and the development of fracture network. Survey using electrical resistivity tomography (ERT) is deployed to provide a cost-effective characterization of the subsurface karst environments. A total of seven ERT profiles with lengths of 315 m were evaluated at the Béja governorate (NW Tunisia). The area represents a small syncline of Boudabbous limestone rocks (Lower Eocene), which is covered by a thin layer of clay. In this study, an ERT survey was conducted to examine the spatial distribution and shape of underground cavities in the karst area in Jebel Sabah anticline and Aïn Sallem-Zahret Medien syncline. In this study, geological, hydro-geological and electrical resistivity tomography (ERT) methods were applied to determine the geometry of the perched aquifer in the Amdoun region (NW Tunisia). The area is characterized by fractured and karstic limestone aquifer of Late Cretaceous (Abiod Fm.) and Lower Eocene (Boudabbous Fm.). The aquifers have a karstic functioning and drain aquifers of economical interest, despite some wells exploiting them. Seven resistivity profiles were conducted along the survey area at three sites. The orientation, extension and the degree of inclination of those profiles are shown in the location map. The correct resistivity data were interpreted using Earth Imager 2D software. The results of the interpreted geo-electrical sections showed that the resistivity of the carbonate aquifer varied between 2.5 to over 5794 Ωm. The thickness of the perched aquifer ranged from 15 to 50 m, while its depth from the surface lies between 10 and 60 m. The ERT not only provided precise near surface information, but was also very useful for establishing the 3D geometry and the position of several potential cavities and karts. The results show the presence of small to large isolated cavities at various depths. The low resistivity of cavities

  1. Mg Isotope Evolution During Water-Rock Interaction in a Carbonate Aquifer

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Jacobson, A. D.; Lundstrom, C. C.; Huang, F.

    2008-12-01

    To better understand how Mg isotopes behave during weathering and aqueous transport, we used a Nu Plasma MC-ICP-MS to measure δ26Mg values (relative to DSM-3) in water samples along a 236 km flow path in the Madison aquifer of South Dakota, a confined carbonate aquifer recharging in the igneous Black Hills. We also analyzed local granite and dolomite samples to characterize the Mg isotope composition of source rocks constituting the recharge zone and aquifer, respectively. Repeated analyses of Mg standard solutions yielded external precisions (2σ) better than 0.1 permil for δ26Mg(CAM-1, - 2.584±0.071, n=13; UIMg-1, -2.217±0.087, n=9.). The Madison aquifer provides a unique opportunity to quantify Mg isotope effects during water-rock interaction because (1) fluids and rock have chemically equilibrated over a much longer timescale (up to ~15 kyr) than can be simulated in laboratory experiments and (2) previous studies have determined the rates and mass-balances of de- dolomitization and other geochemical reactions controlling solute evolution along the flow path. Reactions important for changing the concentration and isotope composition of Mg include dolomite dissolution, Mg-for- Na ion exchange, calcite precipitation, and isotope exchange. δ26Mg values within the recharge region (0-17 km along flow path) vary between -1.08 and -1.63 permil, and then remain essentially constant at -1.408±0.010 permil(1σ, 5 samples) from 17 to 189 km. A final sample at 236 km shows an increase to -1.09 permil. Either mixing between different recharge waters or rapid isotope exchange between infiltrating waters and dolomite could control δ26Mg variability between 0 and 17 km. Likewise, reactive transport modeling suggests that preferential uptake of 24Mg during Mg-for-Na ion exchange might cause an increase in δ26Mg between 189 and 236 km. However, unchanging δ26Mg values observed throughout most of the aquifer clearly demonstrate that Mg isotopes are not fractionated during

  2. Estimation of groundwater residence time using environmental radioisotopes (14C,T) in carbonate aquifers, southern Poland.

    PubMed

    Samborska, Katarzyna; Różkowski, Andrzej; Małoszewski, Piotr

    2013-01-01

    Triassic carbonate aquifers in the Upper Silesia region, affected by intense withdrawal, have been investigated by means of isotopic analyses of (14)C, δ(13)C, δ(2)H, δ(18)O and (3)H. The isotopic examinations were carried out in the 1970s and in the early 1980s, and it was the first application of tracers to estimate age and vulnerability for the contamination of groundwater in this region. Similar isotopic analyses were conducted in 2007 and 2008 with the same Triassic carbonate formation. The isotopic examinations were performed within the confined part of the carbonate formation, wherein aquifers are covered by semi-permeable deposits. The direct recharge of the aquifer occurs in the outcrop areas, but it mainly takes place due to percolation of the water through aquitards and erosional windows. The Triassic aquifer has been intensively drained by wells and by lead-zinc mines. Nowadays, the declining water demand and closure of some mines have induced a significant increase in the water table level. The detailed analysis of the results, including the radiocarbon age corrections and the comparison of radioisotope activities, has made it possible to estimate the range of residence time within the carbonate Triassic aquifer. This range from several tens to several tens of thousands indicates that the recharge of aquifers might have occurred between modern times and the Pleistocene. The apparent age of the water estimated on the basis of (14)C activity was corrected considering the carbon isotope exchange and the diffusion between mobile water in fractures and stagnant water in micropores. The obtained corrected period of recharge corresponds to the result of investigations of noble gases, which were carried out in the 1990s. In almost half of the cases, groundwater is a mixture of young and old water. The mixing processes occur mainly in areas of heavy exploitation of the aquifer. PMID:22607326

  3. Optimization of Geological Environments for Carbon Dioxide Disposan in Saline Aquifers in the United States

    SciTech Connect

    Hovorka, Susan

    1999-02-01

    Recent research and applications have demonstrated technologically feasible methods, defined costs, and modeled processes needed to sequester carbon dioxide (CO{sub 2}) in saline-water-bearing formations (aquifers). One of the simplifying assumptions used in previous modeling efforts is the effect of real stratigraphic complexity on transport and trapping in saline aquifers. In this study we have developed and applied criteria for characterizing saline aquifers for very long-term sequestration of CO{sub 2}. The purpose of this pilot study is to demonstrate a methodology for optimizing matches between CO{sub 2} sources and nearby saline formations that can be used for sequestration. This project identified 14 geologic properties used to prospect for optimal locations for CO{sub 2} sequestration in saline-water-bearing formations. For this demonstration, we digitized maps showing properties of saline formations and used analytical tools in a geographic information system (GIS) to extract areas that meet variably specified prototype criteria for CO{sub 2} sequestration sites. Through geologic models, realistic aquifer properties such as discontinuous sand-body geometry are determined and can be used to add realistic hydrologic properties to future simulations. This approach facilitates refining the search for a best-fit saline host formation as our understanding of the most effective ways to implement sequestration proceeds. Formations where there has been significant drilling for oil and gas resources as well as extensive characterization of formations for deep-well injection and waste disposal sites can be described in detail. Information to describe formation properties can be inferred from poorly known saline formations using geologic models in a play approach. Resulting data sets are less detailed than in well-described examples but serve as an effective screening tool to identify prospects for more detailed work.

  4. Dissolved organic carbon lability increases with water residence time in the alluvial aquifer of a river floodplain ecosystem

    NASA Astrophysics Data System (ADS)

    Helton, Ashley M.; Wright, Meredith S.; Bernhardt, Emily S.; Poole, Geoffrey C.; Cory, Rose M.; Stanford, Jack A.

    2015-04-01

    We assessed spatial and temporal patterns of dissolved organic carbon (DOC) lability and composition throughout the alluvial aquifer of the 16 km2 Nyack Floodplain in northwest Montana, USA. Water influx to the aquifer derives almost exclusively from the Middle Fork of the Flathead River, and water residence times within the aquifer range from days to months. Across seasons and channel discharge conditions, we measured DOC concentration, lability, and optical properties of aquifer water sampled from 12 wells, both near and ~3 m below the water table. Concentrations of DOC were typically low (542 ± 22.7 µg L-1; mean ± se), and the percentage of labile DOC averaged 18 ± 12% during 3 day laboratory assays. Parallel factor analysis of fluorescence excitation-emission matrices revealed two humic-like and two amino acid-like fluorescence groups. Total DOC, humic-like components, and specific UV absorbance decreased with water residence time, consistent with sorption to aquifer sediments. However, labile DOC (both concentration and fraction) increased with water residence time, suggesting a concurrent influx or production of labile DOC. Thus, although the carbon-poor, oxygen-rich aquifer is a net sink for DOC, recalcitrant DOC appears to be replaced with more labile DOC along aquifer flow paths. Our observation of DOC production in long flow paths contrasts with studies of hyporheic DOC consumption along short (centimeters to meters) flow paths and highlights the importance of understanding the role of labile organic matter production and/or influx in alluvial aquifer carbon cycling.

  5. Descriptions of anisotropy and heterogeneity and their effect on ground-water flow and areas of contribution to public supply wells in a karst carbonate aquifer system

    USGS Publications Warehouse

    Knochenmus, Lari A.; Robinson, James L.

    1996-01-01

    MODFLOW and MODPATH numerical models were used to generate areas of contribution to public supply wells for simulated hypothetical anisotropy and heterogeneous carbonate aquifer systems. The simulations incorporated, to varying degrees, the anisotropy and heterogeneity observed in a karst carbonate aquifer system. These include: isotropic and homogeneous single-layer system, doubly-porous single-layer system, and interconnected vertically and horizontally heterogeneous system. The study indicated that the distribution and nature of aquifer anisotropy and heterogeneity will affect the simulated size, shape, and orientation of areas of contribution in karst carbonate aquifer systems.

  6. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    SciTech Connect

    Aines, R D; Wolery, T J; Hao, Y; Bourcier, W L

    2009-07-22

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir

  7. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    SciTech Connect

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline

  8. Compound-specific carbon isotopic fractionation during transport of phthalate esters in sandy aquifer.

    PubMed

    Liu, Hui; Li, YanXi; He, Xi; Sissou, Zakari; Tong, Lei; Yarnes, Chris; Huang, Xianyu

    2016-02-01

    The present paper aims to evaluate the carbon isotopic fractionation of phthalate esters (PAEs) during transport in an sandy aquifer. Breakthrough curves of di-methyl phthalate (DMP), di-ethyl phthalate (DEP), and di-n-butyl phthalate (DBP) in mixed solution were determined by miscible displacement experiment, and simulated using HYDRUS-1D software. The stable carbon isotopes (δ(13)C) of 3 PAEs in effluent were analyzed at different times. Results showed that, in the transport process in sandy sediment, PAEs are mainly trapped into the pore space instead of being adsorbed on the surface of particles. At the initial stage of transport, PAEs with lighter carbon tend to run faster in the sandy sediment, and PAEs with heavier carbon run after. However, there is no priority for the transport of PAEs with different carbon isotopes at Stage Ⅱ with mainly time-limited sorption. So the transport-based isotope fractionation occurs in the front area of contaminant plume. This effect may be relevant for interpreting carbon isotope signatures in the real contaminant site. PMID:26539707

  9. Implementation of a 3d numerical model of a folded multilayer carbonate aquifer

    NASA Astrophysics Data System (ADS)

    Di Salvo, Cristina; Guyennon, Nicolas; Romano, Emanuele; Bruna Petrangeli, Anna; Preziosi, Elisabetta

    2016-04-01

    The main objective of this research is to present a case study of the numerical model implementation of a complex carbonate, structurally folded aquifer, with a finite difference, porous equivalent model. The case study aquifer (which extends over 235 km2 in the Apennine chain, Central Italy) provides a long term average of 3.5 m3/s of good quality groundwater to the surface river network, sustaining the minimum vital flow, and it is planned to be exploited in the next years for public water supply. In the downstream part of the river in the study area, a "Site of Community Importance" include the Nera River for its valuable aquatic fauna. However, the possible negative effects of the foreseen exploitation on groundwater dependent ecosystems are a great concern and model grounded scenarios are needed. This multilayer aquifer was conceptualized as five hydrostratigraphic units: three main aquifers (the uppermost unconfined, the central and the deepest partly confined), are separated by two locally discontinuous aquitards. The Nera river cuts through the two upper aquifers and acts as the main natural sink for groundwater. An equivalent porous medium approach was chosen. The complex tectonic structure of the aquifer requires several steps in defining the conceptual model; the presence of strongly dipping layers with very heterogeneous hydraulic conductivity, results in different thicknesses of saturated portions. Aquifers can have both unconfined or confined zones; drying and rewetting must be allowed when considering recharge/discharge cycles. All these characteristics can be included in the conceptual and numerical model; however, being the number of flow and head target scarce, the over-parametrization of the model must be avoided. Following the principle of parsimony, three steady state numerical models were developed, starting from a simple model, and then adding complexity: 2D (single layer), QUASI -3D (with leackage term simulating flow through aquitards) and

  10. Quantifying and timing of long-term carbonate mobilisation in a limestone aquifer

    NASA Astrophysics Data System (ADS)

    Kirstein, J.; Gaupp, R.

    2012-04-01

    . The goal is to deliver basic data for a quantification of carbonate export and carbon dioxide consumption within the Thuringian basin Muschelkalk aquifer during the Late Quaternary.

  11. Aquifer environment selects for microbial species cohorts in sediment and groundwater.

    PubMed

    Hug, Laura A; Thomas, Brian C; Brown, Christopher T; Frischkorn, Kyle R; Williams, Kenneth H; Tringe, Susannah G; Banfield, Jillian F

    2015-08-01

    Little is known about the biogeography or stability of sediment-associated microbial community membership because these environments are biologically complex and generally difficult to sample. High-throughput-sequencing methods provide new opportunities to simultaneously genomically sample and track microbial community members across a large number of sampling sites or times, with higher taxonomic resolution than is associated with 16 S ribosomal RNA gene surveys, and without the disadvantages of primer bias and gene copy number uncertainty. We characterized a sediment community at 5 m depth in an aquifer adjacent to the Colorado River and tracked its most abundant 133 organisms across 36 different sediment and groundwater samples. We sampled sites separated by centimeters, meters and tens of meters, collected on seven occasions over 6 years. Analysis of 1.4 terabase pairs of DNA sequence showed that these 133 organisms were more consistently detected in saturated sediments than in samples from the vadose zone, from distant locations or from groundwater filtrates. Abundance profiles across aquifer locations and from different sampling times identified organism cohorts that comprised subsets of the 133 organisms that were consistently associated. The data suggest that cohorts are partly selected for by shared environmental adaptation. PMID:25647349

  12. Aquifer environment selects for microbial species cohorts in sediment and groundwater

    PubMed Central

    Hug, Laura A; Thomas, Brian C; Brown, Christopher T; Frischkorn, Kyle R; Williams, Kenneth H; Tringe, Susannah G; Banfield, Jillian F

    2015-01-01

    Little is known about the biogeography or stability of sediment-associated microbial community membership because these environments are biologically complex and generally difficult to sample. High-throughput-sequencing methods provide new opportunities to simultaneously genomically sample and track microbial community members across a large number of sampling sites or times, with higher taxonomic resolution than is associated with 16 S ribosomal RNA gene surveys, and without the disadvantages of primer bias and gene copy number uncertainty. We characterized a sediment community at 5 m depth in an aquifer adjacent to the Colorado River and tracked its most abundant 133 organisms across 36 different sediment and groundwater samples. We sampled sites separated by centimeters, meters and tens of meters, collected on seven occasions over 6 years. Analysis of 1.4 terabase pairs of DNA sequence showed that these 133 organisms were more consistently detected in saturated sediments than in samples from the vadose zone, from distant locations or from groundwater filtrates. Abundance profiles across aquifer locations and from different sampling times identified organism cohorts that comprised subsets of the 133 organisms that were consistently associated. The data suggest that cohorts are partly selected for by shared environmental adaptation. PMID:25647349

  13. Nonstationary porosity evolution in mixing zone in coastal carbonate aquifer using an alternative modeling approach.

    PubMed

    Laabidi, Ezzeddine; Bouhlila, Rachida

    2015-07-01

    In the last few decades, hydrogeochemical problems have benefited from the strong interest in numerical modeling. One of the most recognized hydrogeochemical problems is the dissolution of the calcite in the mixing zone below limestone coastal aquifer. In many works, this problem has been modeled using a coupling algorithm between a density-dependent flow model and a geochemical model. A related difficulty is that, because of the high nonlinearity of the coupled set of equations, high computational effort is needed. During calcite dissolution, an increase in permeability can be identified, which can induce an increase in the penetration of the seawater into the aquifer. The majority of the previous studies used a fully coupled reactive transport model in order to model such problem. Romanov and Dreybrodt (J Hydrol 329:661-673, 2006) have used an alternative approach to quantify the porosity evolution in mixing zone below coastal carbonate aquifer at steady state. This approach is based on the analytic solution presented by Phillips (1991) in his book Flow and Reactions in Permeable Rock, which shows that it is possible to decouple the complex set of equation. This equation is proportional to the square of the salinity gradient, which can be calculated using a density driven flow code and to the reaction rate that can be calculated using a geochemical code. In this work, this equation is used in nonstationary step-by-step regime. At each time step, the quantity of the dissolved calcite is quantified, the change of porosity is calculated, and the permeability is updated. The reaction rate, which is the second derivate of the calcium equilibrium concentration in the equation, is calculated using the PHREEQC code (Parkhurst and Apello 1999). This result is used in GEODENS (Bouhlila 1999; Bouhlila and Laabidi 2008) to calculate change of the porosity after calculating the salinity gradient. For the next time step, the same protocol is used but using the updated porosity

  14. Update on the aquifer/wetlands restoration project at Utica, Nebraska, with recommendations for remapping of the carbon tetrachloride contamination in groundwater.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2010-04-20

    develop this treatment approach, additional groundwater sampling was conducted to update the distribution of carbon tetrachloride in groundwater identified in the preliminary studies in 1992-1993. In March 1998, detailed mapping of the carbon tetrachloride plume was performed by using the Argonne cone penetrometer (CPT) vehicle to collect groundwater samples for analyses for volatile organic compounds (VOCs) at 13 locations (PS01-PS09, PS12, PS16, PS17, PS19; Figure 1.2). The samples were collected in vertical profiles through the aquifer, at 10-ft intervals. The results of this 1998 study (Table 1.2) demonstrated that the three-dimensional distribution of carbon tetrachloride in the aquifer is complex, with multiple 'hot spots' occurring in the plume at various depths and distances along its length (Argonne 2000). In October 2002, the CCC/USDA requested that Argonne perform targeted groundwater sampling at Utica to document the migration of the carbon tetrachloride plume since the 1998 sampling event. In February 2003, vertical-profile groundwater sampling for VOCs analyses was conducted at 8 selected locations (PS01, PS04-PS07, PS12, PS19, PS20; Figure 1.2 and Table 1.3). The lateral and vertical configuration of the carbon tetrachloride plume, as identified in the 2003 study (Argonne 2003), is illustrated in Figures 1.3-1.7. On the basis of the 2003 groundwater sampling results, a remedial system employing four extraction wells (GWEX 1-GWEX 4), with groundwater treatment by spray irrigation and conventional air stripping, was implemented at Utica, with the concurrence of the CCC/USDA and the agencies identified in Table 1.1. The principal components of the Utica system (shown in Figure 1.8) are described briefly in Section 1.2. Operation of well GWEX4 and the associated air stripper began on October 29, 2004, and routine operation of wells GWEX1-GWEX3 and the spray irrigation treatment units began on November 22, 2004.

  15. Selective Oxidizer For Removal Of Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Trocciola, John C.; Schroll, Craig R.; Lesieur, Roger R.

    1996-01-01

    Catalytic apparatus selectively oxidizes most of carbon monoxide (without oxidizing hydrogen) in stream of reformed fuel gas fed to low-temperature fuel cell. Multiple catalytic stages at progressively lower temperatures operate without becoming poisoned. Catalysts used to oxidize CO selectively include platinum on alumina and commercial catalyst known as "Selectoxo."

  16. Influence of topsoil of pyroclastic origin on microbial contamination of groundwater in fractured carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Naclerio, Gino; Petrella, Emma; Nerone, Valentina; Allocca, Vincenzo; de Vita, Pantaleone; Celico, Fulvio

    2008-09-01

    The aim of the research was to analyse the influence of a topsoil of pyroclastic origin on microbial contamination of groundwater in a carbonate aquifer and verify the reliability of thermotolerant coliforms and fecal enterococci as bacterial indicators. The research was carried out through hydrogeological and microbiological monitoring at an experimental field site in Italy during two hydrologic years and through column tests in a laboratory. The taxonomic classification of fecal indicators detected in spring water samples was performed using API20 galleries. Fecal enterococci were also identified by means of 16S rRNA gene sequencing. The topsoil of pyroclastic origin significantly retains both thermotolerant coliforms and fecal enterococci. Results of column tests carried out in soil blocks collected randomly within the test site suggest that Escherichia coli was more retained than Enterococcus faecalis, even though this difference is statistically significant in only two out of six soil samples. Thus, a non-uniform difference in retention is expected at field scale. This suggestion is in agreement with the results of the microbiological monitoring. In fact, fecal enterococci were a more reliable indicator than thermotolerant coliforms for detecting contamination at both seasonal springs of the aquifer system, while no significant differences were observed at the perennial spring.

  17. Hydrochemical changes due to intensive use of groundwater in the carbonate aquifers of Sierra de Estepa (Seville, Southern Spain)

    NASA Astrophysics Data System (ADS)

    Martos-Rosillo, S.; Moral, F.

    2015-09-01

    The carbonate aquifers of Sierra de Estepa, situated in southern Spain, are undergoing intensive groundwater exploitation. Consequently, the volume of pumping surpasses the average recharge for periods of several consecutive years. Under such conditions, nearby springs have either dried up or only function during short time periods, after very rainy episodes followed by long droughts. During the brief periods when the springs are active, their water and the water extracted by pumping are calcium bicarbonates, with a spatial-temporal variability of their physico-chemical characteristics that is mainly conditioned by the degree of functional karstification of each system. When the springs are inactive, the pumping water gradually increases in salinity and becomes HCO3ClCaNa, ClHCO3NaCa and ClNa. Under the new conditions caused by so much pumping, the main factors determining the hydrochemical changes are the mixing of waters and the subsequent reactions of dissolution-precipitation between (1) the recharge coming from rainwater, (2) the hypersaline inputs from the clay-evaporite aquitards situated on the edges and at the base of the aquifer, and (3) the water stored in each aquifer. The hydrochemical information acquired allowed us to characterize and model the groundwater of these aquifers, to study the causes of its great spatial and temporal variability, and explain the influence of exploitation. This research shows that making sustainable use of water resources associated with carbonate aquifers calls for sound knowledge of the relationship between the aquifer and other bodies of groundwater or surface water, the hydrochemical quality of these possible inputs, and the vulnerability of the aquifer to exploitation, which in turn is conditioned by the ratio between water reserves and recharge.

  18. Comparison of Caprock Mineral Characteristics at Field Demonstration Sites for Saline Aquifer Sequestration of Carbon Dioxide

    SciTech Connect

    Griffith, C.A.; Lowry, G.; Dzombak, D.; Soong, Yee; Hedges, S.W.

    2008-10-01

    In 2003 the U.S Department of Energy initiated regional partnership programs to address the concern for rising atmospheric CO2. These partnerships were formed to explore regional and economical means for geologically sequestering CO2 across the United States and to set the stage for future commercial applications. Several options exist for geological sequestration and among these sequestering CO2 into deep saline aquifers is one of the most promising. This is due, in part, to the possibility of stabilized permanent storage through mineral precipitation from chemical interactions of the injected carbon dioxide with the brine and reservoir rock. There are nine field demonstration sites for saline sequestration among the regional partnerships in Phase II development to validate the overall commercial feasibility for CO2 geological sequestration. Of the nine sites considered for Phase II saline sequestration demonstration, seven are profiled in this study for their caprock lithologic and mineral characteristics.

  19. Process and rate of dedolomitization: mass transfer and C14 dating in a regional carbonate aquifer.

    USGS Publications Warehouse

    Back, W.; Hanshaw, B.B.; Plummer, L.N.; Rahn, P.H.; Rightmire, C.T.; Rubin, M.

    1983-01-01

    Regional dedolomitization is the major process that controls the chemical character of water in the Mississippian Pahasapa Limestone (Madison equivalent) surrounding the Black Hills, South Dakota and Wyoming. The process of dedolomitization consists of dolomite dissolution and concurrent precipitation of calcite; it is driven by dissolution of gypsum. Deuterium and oxygen isotopic data from the ground water, coupled with regional potentiometric maps, show that recharge occurs on the western slope of the Black Hills and that the water flows N and W toward the Powder River Basin. Mass-balance and mass-transfer calculations were used to adjust 14C values to determine a range of groundwater flow velocities between 2 and 20 m/yr. The close agreement among the model results demonstrates that dedolomitization is controlling water-rock interactions in this regional carbonate aquifer system.-from Authors

  20. Water quality of the Mississippian carbonate aquifer in parts of middle Tennessee and northern Alabama, 1999

    USGS Publications Warehouse

    Kingsbury, James A.; Shelton, John M.

    2002-01-01

    Water-quality data for nitrate, fecal-indicator bacteria, pesticides, and volatile organic compounds collected in parts of Middle Tennessee and northern Alabama indicate that the Mississippian carbonate aquifer in these areas is susceptible to contamination from point and nonpoint sources. Thirty randomly located wells (predominantly domestic), two springs, and two additional public-supply wells were sampled in the summer of 1999 as part of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. These wells and springs were sampled to characterize the occurrence and distribution of the above constituents in this karst aquifer of Mississippian age and to determine the principal environmental factors related to their occurrence.Nitrate and fecal indicator bacteria were frequently detected at the sampled sites. Nitrate exceeded the drinking-water maximum contaminant level of 10 milligrams per liter in two samples; the median concentration for all samples was about 1.5 milligrams per liter. Correlation of nitrate concentrations to the amount of cropland near a site and to pesticide detections indicates that fertilizer application is the predominant source of nitrogen to the aquifer. Fecal-indicator bacteria were present in samples from about 40 percent of the sites. The presence of fecal-indicator bacteria is weakly correlated to the depth to ground water but is not correlated to a specific land use near the sites.Pesticides and pesticide breakdown products (metabolites) were detected at 74 percent of the sites sampled. Concentrations generally were less than 1 microgram per liter and no pesticide detections exceeded drinking-water maximum contaminant levels. The maximum total pesticide concentration measured was about 4 micrograms per liter. Intensity of pesticide use, proximity of sites to areas of pesticide application, and soil hydrologic group were the primary factors affecting the occurrence of pesticides.Volatile organic compounds were

  1. Water-quality along selected flowpaths in the Prairie du Chien-Jordan aquifer, southeastern Minnesota

    SciTech Connect

    Smith, S.E. )

    1994-04-01

    The Prairie du Chien-Jordan aquifer in southeastern Minnesota is comprised of the dolomitic Prairie du Chien Group and the underlying Jordan Sandstone. Differences in water quality between the Prairie du Chien and the Jordan parts of the aquifer were investigated by sampling 139 wells in six study areas within Hennepin, Dakota, and Olmsted Counties. The study areas, which represent paths of groundwater flow through the aquifer, averaged 13 miles long and 3 miles wide. The wells were screened in the Jordan, Prairie du Chien, and overlying aquifers. Concentrations of tritium, nitrite plus nitrate nitrogen, and chloride were useful indicators of the actual and potential extent of human-related contamination of the aquifer. Differences in water quality were related to land use, aquifer permeability, thickness and lithology of overlying units, presence of confining units, flow path length, and well construction. Water samples from wells completed in the Jordan aquifer have lower tritium, nitrite plus nitrate nitrogen, and chloride concentrations than samples from wells completed in the overlying Prairie du Chien, St. Peter, and glacial drift aquifers. The distribution of these indicators on vertical sections of the aquifer, geochemical analysis of saturation indices (WATEQF), piper diagrams, and statistical analyses were used to analyze the hydrogeology and sensitivity to contamination of the Prairie du Chien-Jordan aquifer.

  2. Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers

    SciTech Connect

    Maloszewski, P. ); Zuber, A. )

    1991-08-01

    The parallel fissure model coupled with the equation of diffusion into the matrix and with exchange reaction equations has been used to derive a simple formula for estimating the influence of matrix porosity and reaction parameters on the determination of radiocarbon ages in fissured carbonate rocks. Examples of evidently too great radiocarbon ages in carbonate formations, which are not explainable by models for the initial {sup 14}C corrections, can easily be explained by this formula. Parameters obtained for a chalk formation from a known multitracer experiment combined with a pumping test suggest a possibility of {sup 14}C ages more than three orders of magnitude greater than the ages which would be observed if the radiocarbon transport took place only in the mobile water in the fissures. It is shown that contrary to the solute movement on a small scale and with a variable input, the large-scale movement, characteristic for the {sup 14}C dating, does not necessarily require the knowledge of kinetic parameters, because they may be replaced by the distribution coefficient. Discordant tritium and {sup 14}C concentrations are commonly interpreted as a proof of mixing either in the aquifer or at the discharge site. For fissured carbonate formations, however, an alternative explanation is given by the derived model showing a considerable delay of {sup 14}C with respect to nonsorbable tracers.

  3. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    DOE PAGESBeta

    Bacon, Diana H.; Dai, Zhenxue; Zheng, Liange

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2more » leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.« less

  4. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    SciTech Connect

    Bacon, Diana H.; Dai, Zhenxue; Zheng, Liange

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2 leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.

  5. Distribution of carbonate-rock aquifers and the potential for their development, southern Nevada and adjacent parts of California, Arizona, and Utah

    USGS Publications Warehouse

    Dettinger, M.D.; Harrill, J.R.; Schmidt, D.L.; Hess, J.W.

    1995-01-01

    In 1985, the State of Nevada entered into a cooperative effort with the U.S. Department of the Interior to study and test the State's carbonate- rock aquifers. The studies were focused on southern Nevada and were intended to address the following concerns: Where is water potentially available in the aquifers?; How much water potentially can bewithdrawn from aquifers?; and What effects might result from development of the aquifers? The studies included basic-data collection, geologic mapping, geophysical and geochemical analyses, well drilling, and aquifer testing. The studies showed that the carbonate rocks are continuous and extensive enough to form regional aquifer systems only beneath thecentral third of the region. About 130,000 acre-feet per year of ground water flows through all the aquifers in this corridor (carbonate and noncarbonate), and about 77,000 acre-feet per year discharges directly from the carbonate-rock aquifers at regional springs in southern Nevada or at discharge areas in Death Valley, California. A larger volume of water -as much as 6 million acre-feet in the upper 100 feet alone-is stored in the rocks. Once depleted, however, that resource would be replenished by natural processes only very slowly. Ultimately, long-term development of the carbonate-rock aquifers would result in depletion of stored water, or in the capture of water that otherwise would discharge from the aquifers of southern Nevada and vicinity, or both. In manyplaces, development might extract water from both carbonate-rock and basin-fill aquifers. Possible effects of developing the carbonate-rock aquifers include declining water levels, decreasing springflow rates, drying up of some streams, playas, and meadows, and changing water quality. Specific impacts would depend upon the magnitude and length of development and site-specific conditions around the areas where the water is withdrawn. Confidence in predictions of the potential effects ofdevelopment of the carbonate

  6. Organic and inorganic carbon dynamics in a karst aquifer: Santa Fe River Sink-Rise system, north Florida, USA

    NASA Astrophysics Data System (ADS)

    Jin, Jin; Zimmerman, Andrew R.; Moore, Paul J.; Martin, Jonathan B.

    2014-03-01

    Spatiotemporal variations in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), major ions concentrations and other geochemical parameters including stable carbon isotopes of DIC (δ13CDIC), were measured in surface water and deep and shallow well water samples of the Santa Fe River Sink-Rise eogenetic karst system, north Florida, USA. Three end-member water sources were identified: one DOC-rich/DIC-poor/δ13CDIC-depleted, one DOC-poor/DIC-rich/δ13CDIC-enriched, and one enriched in major ions. Given their spatiotemporal distributions, they were presumed to represent soil water, upper aquifer groundwater, and deep aquifer water sources, respectively. Using assumed ratios of Na+, Cl, and SO42- for each end-member, a mixing model calculated the contribution of each water source to each sample. Then, chemical effects of biogeochemical reactions were calculated as the difference between those predicted by the mixing model and measured species concentrations. In general, carbonate mineral dissolution occurred throughout the Sink-Rise system, surface waters were net autotrophic and the subsurface was in metabolic balance, i.e., no net DOC or DIC production or consumption. However, there was evidence for chemolithoautotrophy, perhaps by hydrogen oxidizing microbes, at some deep aquifer sites. Mineralization of this autochthonous natural dissolved organic matter (NDOM) led to localized carbonate dissolution as did surface water-derived NDOM supplied to shallow well sites during the highest flow periods. This study demonstrates linkages between hydrology, abiotic and microbial processes and carbon dynamics and has important implications for groundwater quality, karst morphologic evolution, and hydrogeologic projects such as aquifer storage and recovery in karst systems.

  7. Remediation of an aquifer polluted with dissolved tetrachloroethylene by an array of wells filled with activated carbon.

    PubMed

    Bortone, I; Di Nardo, A; Di Natale, M; Erto, A; Musmarra, D; Santonastaso, G F

    2013-09-15

    In this work, an array of deep passive wells filled with activated carbon, namely a Discontinuous Permeable Adsorptive Barrier (PAB-D), has been proposed for the remediation of an aquifer contaminated by tetrachloroethylene (PCE). The dynamics of the aquifer in the particular PAB-D configuration chosen, including the contaminant transport in the aquifer and the adsorption onto the barrier material, has been accurately performed by means of a computer code which allows describing all the phenomena occurring in the aquifer, simultaneously. A PAB-D design procedure is presented and the main dimensions of the barrier (number and position of passive wells) have been evaluated. Numerical simulations have been carried out over a long time span to follow the contaminant plume and to assess the effectiveness of the remediation method proposed. The model results show that this PAB-D design allows for a complete remediation of the aquifer under a natural hydraulic gradient, the PCE concentrations flowing out of the barrier being always lower than the corresponding Italian regulation limit. Finally, the results have been compared with those obtained for the design of a more traditional continuous barrier (PAB-C) for the same remediation process. PMID:23876256

  8. Chloride mass balance to quantify the wastewater impact on karstified carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Nuseibeh, M.; Geyer, T.; Abdelghafour, D.; Al-Naji, G.; Bsharat, J.; Sawalhi, B.; Guttman, J.; Sauter, M.

    2012-04-01

    Groundwater resources are vulnerable to anthropogenic influences, like i.e. wastewater disposal in the environment. This is especially critical in karstified carbonate aquifers, because of the partially high flow velocities, resulting in an insufficient attenuation potential against pollutants. To assess the health risk associated with the pollution of the groundwater and for remediation measures planning, the wastewater impact on groundwater resources needs to be quantified. For this purpose the analysis of conservative tracer substances, abundant in the wastewater, is considered a suitable technique. Among the substances considered as tracers, chloride exhibits superior characteristics, the only drawback being the usually high natural background concentration in groundwater. As the chloride ion is not removed by common wastewater treatment processes, it is indicative of both treated and untreated wastewater. In this study, an example for a semi-arid karstified carbonate aquifer system is presented. The study area is located on the western margin of the Lower Jordan Valley (West Bank). The upper aquifer is discharged via several springs. For the springs in the study area, time series of chloride concentration in spring water from 1967-98 were interpreted. The study area displays a high population growth, which results in a steadily increasing wastewater discharge amount. The wastewater is mostly infiltrating into the karst system. First, the long-term average groundwater recharge rate of the local aquifers that fed the springs was quantified with the chloride mass balance method from groundwater data that are little influenced by anthropogenic impacts. The chloride concentration in the local precipitation is 9-10 mg/l and the average value in groundwater is 31 mg/l. This yields a mean recharge rate of around 30 percent. Second, the fraction of groundwater recharge, resulting from the infiltration of wastewater from leaky sewer systems and from wastewater disposal

  9. Influence of depositional setting and sedimentary fabric on mechanical layer evolution in carbonate aquifers

    USGS Publications Warehouse

    Graham, Wall B.R.

    2006-01-01

    Carbonate aquifers in fold-thrust belt settings often have low-matrix porosity and permeability, and thus groundwater flow pathways depend on high porosity and permeability fracture and fault zones. Methods from sedimentology and structural geology are combined to understand the evolution of fracture controlled flow pathways and determine their spatial distribution. Through this process bed-parallel pressure-solution surfaces (PS1) are identified as a fracture type which influences fragmentation in peritidal and basinal carbonate, and upon shearing provides a major flow pathway in fold - thrust belt carbonate aquifers. Through stratigraphic analysis and fracture mapping, depositional setting is determined to play a critical role in PS1 localization and spacing where peritidal strata have closer spaced and less laterally continuous PS1 than basinal strata. In the peritidal platform facies, units with planar lamination have bed-parallel pressure-solution seams along mudstone laminae. In contrast, burrowed units of peritidal strata have solution seams with irregular and anastamosing geometries. Laminated units with closely spaced bed-parallel solution seams are more fragmented than bioturbated units with anastamosing solution seams. In the deeper-water depositional environment, pelagic settling and turbidity currents are the dominant sedimentation processes, resulting in laterally continuous deposits relative to the peritidal platform environment. To quantify the fracture patterns in the basinal environment, mechanical layer thickness values were measured from regions of low to high bed dip. The results define a trend in which mechanical layer thickness decreases as layer dip increases. A conceptual model is presented that emphasizes the link between sedimentary and structural fabric for the peritidal and basinal environments, where solution seams localize in mud-rich intervals, and the resulting pressure-solution surface geometry is influenced by sedimentary geometry

  10. Condensation-corrosion speleogenesis above a carbonate-saturated aquifer: Devils Hole Ridge, Nevada

    NASA Astrophysics Data System (ADS)

    Dublyansky, Y. V.; Spötl, C.

    2015-01-01

    The Devils Hole Ridge, a small block of Paleozoic carbonate rocks surrounded by the Amargosa Desert in southern Nevada, is located at the discharge end of the Ash Meadows regional carbonate groundwater flow system. The massif hosts the famous Devils Hole, a near-vertical extensional fracture which intersects slightly thermal groundwater (33.6 °C) and whose walls are coated below the water table by thick mammillary calcite. The latter was deposited continuously over the last ca. 600 kyr, indicating that the water underneath Devils Hole Ridge was supersaturated with respect to calcite during this time span. Rocks, located more than 9 m above the present-day water table, remained in the unsaturated (vadose) zone. Continuous, long-term presence of thermal water and the extensional tectonic setting, creating underground thermal lakes in open fractures, is associated with intense dissolution above the water table. Condensation corrosion is responsible for modifications of the morphology of the subaerial parts of the tectonic caves. We also describe, for the first time, the Devils Hole Prospect Cave, which was created almost entirely by condensation corrosion. Caves and cavities in the Devils Hole Ridge are an interesting example of hypogene speleogenesis, by condensation corrosion, operating above an aquifer which was demonstrably supersaturated with respect to calcite for hundreds of thousands of years.

  11. Coupled numerical simulations of CO2 injection into the carbonate aquifer of the Upper Muschelkalk, N-Switzerland

    NASA Astrophysics Data System (ADS)

    Alt-Epping, P.; Almqvist, B. S. G.; Diamond, L. W.

    2012-04-01

    The Triassic Trigodonus Dolomite unit of Upper Muschelkalk, a saline carbonate-hosted aquifer in Northerm Switzerland, is considered a possible target for sequestering CO2. The porosity of the aquifer ranges from 4-25 %. The porosity can be divided into macropores (mm to cm scale) and micropores (µm to nm scale). Intermittent bedding-parallel layers of macroscopic pores (cm scale) are readily visible, and originate from dissolution of anhydrite nodules and bivalve shells. The porosity of the Muschelkalk therefore exhibits a moderate layered anisotropy. Lab measurements indicate correlated permeabilities with values of 5.1 to 2.7e-18 m2 for low porosity samples to larger than 1e-15 m2 for samples with a large fraction of macropores. The Upper Muschekalk is overlain by the Gipskeuper, an anhydrite-bearing clay-rich rock of low porosity and permeability. The Gipskeuper constitutes a hydraulic barrier to the rising CO2 plume. We use fully coupled reactive transport simulations to assess the implications of injecting CO2 into the Trigodonus Dolomite of the Muschelkalk aquifer. We track the movement of the plume and evaluate the efficiency of physical and chemical trapping mechanisms. Computations show that mineral trapping in the Muschelkalk aquifer is not effective. The global CO2 mass balance indicates the release of additional CO2 due to carbonate dissolution. However, while during and shortly after injection the dissolution of carbonate minerals dominates, after all free CO2 has dissolved into the brine, a rebound in pH at the injection site leads to carbonate re-precipitation. Diffusive influx of HCO3- and H+ from the Muschelkalk aquifer into the Gipskeuper dominates the alteration reactions in the lower part of the Gipskeuper. Clay minerals such as illite dissolve under acidic conditions and the release of cations causes carbonate minerals to precipitate. This in turn reduces the pore-space, enhancing the sealing capacity of the lower Gipskeuper. Thus although

  12. Heat Treated Carbon Fiber Material Selection Database

    NASA Technical Reports Server (NTRS)

    Effinger, M.; Patel, B.; Koenig, J.

    2008-01-01

    Carbon fibers are used in a variety high temperature applications and materials. However, one limiting factor in their transition into additional applications is an understanding of their functional properties during component processing and function. The requirements on the fibers are governed by the nature of the materials and the environments in which they will be used. The current carbon fiber vendor literature is geared toward the polymeric composite industry and not the ceramic composite industry. Thus, selection of carbon fibers is difficult, since their properties change as a function of heat treatment, processing or component operational temperature, which ever is greatest. To enable proper decisions to be made, a program was established wherein multiple fibers were selected and heat treated at different temperatures. The fibers were then examined for their physical and mechanical properties which are reported herein.

  13. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system

    NASA Astrophysics Data System (ADS)

    Choung, Sungwook; Zimmerman, Lisa R.; Allen-King, Richelle M.; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-01

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc = 0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen + black carbon was the dominant CM fraction extracted from the sediments and accounted for > 60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that > 80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration < 1000 μg L- 1. These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM.

  14. Use of Anticlines for Geologic Sequestration of Carbon Dioxide in a Saline Aquifer in Northwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Shin-Hsun; Liou, Tai-Sheng

    2013-04-01

    In this study, migration of CO2 in a deep saline aquifer with anticlines under various injection schemes was numerically simulated using the ECO2N simulator. The hypothetical study site was selected at the Taoyuan Plateau near the second largest coal-fired power plant, Datan power plant (annual CO2 emission of 1.5 Mt/yr), in Northwestern Taiwan. A 15x15 km2 simulation domain, containing two sub-parallel east-northeast Hukou and Pingzhen anticlines, was discretized into unstructured grid with spatial refinement at the injection borehole. Kueichulin sandstone and Chinshui shale in the simulation domain were considered as the storage formation and the cap rock, respectively. It was assumed that no CO2 exists in the aquifer prior to injection, and that the aquifer has a hydrostatic pressure distribution and a constant salinity of 3%. All boundaries were assumed to be "open". Isothermal simulations with 1 Mt/yr injection rate and 20 years of injection period were considered. van Genuchten capillary pressure and Corey relative permeability were assumed for all rock formations. Simulation results indicated that pressure buildup characterized the CO2 migration into three different phases: drainage of brine, formation dry-out, and dissolution and gravity take-over . It was found that the worst leakage scenario occurs if a single injection borehole is placed along the anticline axis. In this case, rock formations near the anticline axis provide a leakage path such that CO2 ultimately leaks out of the upper boundary. On the other hand, CO2 can be safely sequestrated in the storage formation if the injection borehole was placed away from the anticline axis. This is because gas phase CO2 migrates along the counter dipping direction of the anticline as a result of buoyancy. More favorable scenarios were found if a multiple-borehole injection scheme was used. In such cases, not only pressure buildup was significantly mitigated but the amount of precipitated salt was reduced. If a

  15. Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer

    USGS Publications Warehouse

    Brown, C.J.; Schoonen, M.A.A.; Candela, J.L.

    2000-01-01

    Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O2 and SO4/2- in the aerobic zone, and to the reduction of SO4/2- in the anaerobic zone; estimated rates of CO2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO2 production calculated from dissolved inorganic carbon mass transfer (2.55 x 10-4 to 48.6 x 10-4 mmol 1-1 yr-1) generally were comparable to the calculated rates of CO2 production by the combined reduction of O2, Fe(III) and SO4/2- (1.31 x 10-4 to 15 x 10-4 mmol 1-1 yr-1). The overall increase in SO4/2- concentrations along the flow path, together with the results of mass-balance calculations, and variations in ??34S values along the flow path indicate that SO4/2- loss through microbial reduction is exceeded by SO4/2- gain through diffusion from sediments and through the oxidation of FeS2. Geochemichal and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO4/2- -rich zones have localized SO4/2- -reducing zones in which the formation of iron disulfides been depleted by microbial reduction and resulted in decreases dissolved iron concentrations. These localized zones of SO4/2- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling. (C) 2000 Elsevier Science B.V.Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron

  16. Residence time, mineralization processes and groundwater origin within a carbonate coastal aquifer with a thick unsaturated zone

    NASA Astrophysics Data System (ADS)

    Santoni, S.; Huneau, F.; Garel, E.; Vergnaud-Ayraud, V.; Labasque, T.; Aquilina, L.; Jaunat, J.; Celle-Jeanton, H.

    2016-09-01

    This study aims at establishing groundwater residence times, identifying mineralization processes and determining groundwater origins within a carbonate coastal aquifer with thick unsaturated zone and lying on a granitic depression. A multi-tracer approach (major ions, SiO2, Br-, Ba+, Sr2+, 18O, 2H, 13C, 3H, Ne, Ar) combined with a groundwater residence time determination using CFCs and SF6 allows defining the global setting of the study site. A typical mineralization conditioned by the sea sprays and the carbonate matrix helped to validate the groundwater weighted residence times from using a binary mixing model. Terrigenic SF6 excesses have been detected and quantified, which permits to identify a groundwater flow from the surrounding fractured granites towards the lower aquifer principally. The use of CFCs and SF6 as a first hydrogeological investigation tool is possible and very relevant despite the thick unsaturated zone and the hydraulic connexion with a granitic environment.

  17. Disposal of carbon dioxide in aquifers in the U.S.

    SciTech Connect

    Winter, E.M.; Bergman, P.D.

    1995-11-01

    Deep saline aquifers were investigated as potential disposal sites for CO{sub 2}. The capacity of deep aquifers for CO{sub 2} disposal in the U.S. is highly uncertain. A rough estimate, derived from global estimates, is 5,500 Gt of CO{sub 2}. Saline aquifers underlie the regions in the U.S. where most utility power plants are situated. Therefore, approximately 65 percent of CO{sub 2} from power plants could possibly be injected directly into deep saline aquifers below these plants, without the need for long pipelines.

  18. Near-surface, marine seismic-reflection data defines potential hydrogeologic confinement bypass in a tertiary carbonate aquifer, southeastern Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.; Walker, Cameron; Westcott, Richard L.

    2012-01-01

    Approximately 210 km of near-surface, high-frequency, marine seismic-reflection data were acquired on the southeastern part of the Florida Platform between 2007 and 2011. Many high-resolution, seismic-reflection profiles, interpretable to a depth of about 730 m, were collected on the shallow-marine shelf of southeastern Florida in water as shallow as 1 m. Landward of the present-day shelf-margin slope, these data image middle Eocene to Pleistocene strata and Paleocene to Pleistocene strata on the Miami Terrace. This high-resolution data set provides an opportunity to evaluate geologic structures that cut across confining units of the Paleocene to Oligocene-age carbonate rocks that form the Floridan aquifer system.Seismic profiles image two structural systems, tectonic faults and karst collapse structures, which breach confining beds in the Floridan aquifer system. Both structural systems may serve as pathways for vertical groundwater flow across relatively low-permeability carbonate strata that separate zones of regionally extensive high-permeability rocks in the Floridan aquifer system. The tectonic faults occur as normal and reverse faults, and collapse-related faults have normal throw. The most common fault occurrence delineated on the reflection profiles is associated with karst collapse structures. These high-frequency seismic data are providing high quality structural analogs to unprecedented depths on the southeastern Florida Platform. The analogs can be used for assessment of confinement of other carbonate aquifers and the sealing potential of deeper carbonate rocks associated with reservoirs around the world.

  19. Stimulation of Microbially Mediated Arsenic Release in Bangladesh Aquifers by Young Carbon Indicated by Radiocarbon Analysis of Sedimentary Bacterial Lipids.

    PubMed

    Whaley-Martin, K J; Mailloux, B J; van Geen, A; Bostick, B C; Silvern, R F; Kim, C; Ahmed, K M; Choudhury, I; Slater, G F

    2016-07-19

    The sources of reduced carbon driving the microbially mediated release of arsenic to shallow groundwater in Bangladesh remain poorly understood. Using radiocarbon analysis of phospholipid fatty acids (PLFAs) and potential carbon pools, the abundance and carbon sources of the active, sediment-associated, in situ bacterial communities inhabiting shallow aquifers (<30 m) at two sites in Araihazar, Bangladesh, were investigated. At both sites, sedimentary organic carbon (SOC) Δ(14)C signatures of -631 ± 54‰ (n = 12) were significantly depleted relative to dissolved inorganic carbon (DIC) of +24 ± 30‰ and dissolved organic carbon (DOC) of -230 ± 100‰. Sediment-associated PLFA Δ(14)C signatures (n = 10) at Site F (-167‰ to +20‰) and Site B (-163‰ to +21‰) were highly consistent and indicated utilization of carbon sources younger than the SOC, likely from the DOC pool. Sediment-associated PLFA Δ(14)C signatures were consistent with previously determined Δ(14)C signatures of microbial DNA sampled from groundwater at Site F indicating that the carbon source for these two components of the subsurface microbial community is consistent and is temporally stable over the two years between studies. These results demonstrate that the utilization of relatively young carbon sources by the subsurface microbial community occurs at sites with varying hydrology. Further they indicate that these young carbon sources drive the metabolism of the more abundant sediment-associated microbial communities that are presumably more capable of Fe reduction and associated release of As. This implies that an introduction of younger carbon to as of yet unaffected sediments (such as those comprising the deeper Pleistocene aquifer) could stimulate microbial communities and result in arsenic release. PMID:27333443

  20. Drinking Water Quality Criterion - Based site Selection of Aquifer Storage and Recovery Scheme in Chou-Shui River Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Huang, H. E.; Liang, C. P.; Jang, C. S.; Chen, J. S.

    2015-12-01

    Land subsidence due to groundwater exploitation is an urgent environmental problem in Choushui river alluvial fan in Taiwan. Aquifer storage and recovery (ASR), where excess surface water is injected into subsurface aquifers for later recovery, is one promising strategy for managing surplus water and may overcome water shortages. The performance of an ASR scheme is generally evaluated in terms of recovery efficiency, which is defined as percentage of water injected in to a system in an ASR site that fulfills the targeted water quality criterion. Site selection of an ASR scheme typically faces great challenges, due to the spatial variability of groundwater quality and hydrogeological condition. This study proposes a novel method for the ASR site selection based on drinking quality criterion. Simplified groundwater flow and contaminant transport model spatial distributions of the recovery efficiency with the help of the groundwater quality, hydrological condition, ASR operation. The results of this study may provide government administrator for establishing reliable ASR scheme.

  1. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    USGS Publications Warehouse

    Williams, Lester J.; Dixon, Joann F.

    2015-01-01

    Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. The dataset contains structural surfaces depicting the top and base of the aquifer system, its major and minor hydrogeologic units and zones, geophysical marker horizons, and the altitude of the 10,000-milligram-per-liter total dissolved solids boundary that defines the approximate fresh and saline parts of the aquifer system. The thicknesses of selected major and minor units or zones were determined by interpolating points of known thickness or from raster surface subtraction of the structural surfaces. Additional data contained include clipping polygons; regional polygon features that represent geologic or hydrogeologic aspects of the aquifers and the minor units or zones; data points used in the interpolation; and polygon and line features that represent faults, boundaries, and other features in the aquifer system.

  2. A Study of the Connection Among Basin-Fill Aquifers, Carbonate-Rock Aquifers, and Surface-Water Resources in Southern Snake Valley, Nevada

    USGS Publications Warehouse

    U.S. Geological Survey

    2008-01-01

    The Secretary of the Interior through the Southern Nevada Public Lands Management Act approved funding for research to improve understanding of hydrologic systems that sustain numerous water-dependent ecosystems on Federal lands in Snake Valley, Nevada. Some of the streams and spring-discharge areas in and adjacent to Great Basin National Park have been identified as susceptible to ground-water withdrawals (Elliott and others, 2006) and research has shown a high potential for ground-water flow from southern Spring Valley into southern Snake Valley through carbonate rocks that outcrop along a low topographic divide known as the Limestone Hills (Welch and others, 2007). Comprehensive geologic, hydrologic, and chemical information will be collected and analyzed to assess the hydraulic connection between basin-fill aquifers and surface-water resources, water-dependent ecological features, and the regional carbonate-rock aquifer, the known source of many high-discharge springs. Understanding these connections is important because proposed projects to pump and export ground water from Spring and Snake Valleys in Nevada may result in unintended capture of water currently supplying springs, streams, wetlands, limestone caves, and other biologically sensitive areas (fig. 1). The methods that will be used in this study may be transferable to other areas in the Great Basin. The National Park Service, Bureau of Land Management, U.S. Fish and Wildlife Service, and U.S. Forest Service submitted the proposal for funding this research to facilitate science-based land management. Scientists from the U.S. Geological Survey (USGS) Water Resources and Geologic Disciplines, and the University of Nevada, Reno, will accomplish four research elements through comprehensive data collection and analysis that are concentrated in two distinct areas on the eastern and southern flanks of the Snake Range (fig. 2). The projected time line for this research is from July 2008 through September 2011.

  3. Type curves for selected problems of flow to wells in confined aquifers

    USGS Publications Warehouse

    Reed, J.E.

    1980-01-01

    This report presents type curves and related material for 11 conditions of flow to wells m confined aquifers. These solutions, compiled from hydrologic literature, span an interval of time from Theis (1935) to Papadopulos, Bredehoeft, and Cooper (1973). Solutions are presented for constant discharge, constant drawdown, and variable discharge for pumping wells that fully penetrate leaky and nonleaky aquifers. Solutions for wells that partially penetrate leaky and nonleaky aquifers are included. Also, solutions are included for the effect of finite well radius and the sudden injection of a volume of water for nonleaky aquifers. Each problem includes the partial differential equation, boundary and initial conditions, and solutions. Programs in FORTRAN for calculating additional function values are included for most of the solutions.

  4. Carbon Dioxide Disposal in Deep Aquifers: A Comparison between Modeled and Real Systems.

    NASA Astrophysics Data System (ADS)

    Apps, J. A.; Xu, T.; Pruess, K.

    2001-05-01

    The deep subsurface geologic disposal of CO2 produced during the burning of fossil fuels is being considered as a means of curtailing its progressive accumulation in the atmosphere. However, the long-term potential chemical consequences of such means of disposal are poorly understood. We are presently exploring these consequences by conducting one-dimensional radial flow "numerical experiments" to study the geochemical evolution in a deep saline aquifer in an arenaceous sedimentary host rock under both natural conditions and following injection of supercritical CO2. Comparison is facilitated through use of TOUGHREACT, a fully featured reactive chemical transport simulator, incorporating specific chemical thermodynamic and kinetic data for the participating minerals. Our modeling considers (1) relevant redox processes, (2) organic matter, (3) the kinetics of chemical interactions between the host rock minerals and the aqueous phase, and (4) CO2 solubility dependence on pressure, temperature and salinity of the system. Changes in porosity due to mineral alteration and the precipitation of secondary phases are monitored during the simulations. Of particular interest is the progressive accumulation of soluble carbonate salts in the aqueous phase at the interface with the advancing supercritical CO2 plume, and the effect this accumulation has on mineral alteration and the formation of secondary carbonate minerals. The simulations provide a basis for comparing model results with field observations of sedimentary diagenesis in relatively low CO2 partial pressure environments as well as with those less frequent occurrences of reservoirs of juvenile CO2 associated with magmatic activity. The simulations also provide useful insights into sequestration mechanisms, and controlling conditions and parameters, and finally, they serve to identify critical parameters that require more rigorous quantification.

  5. Carbon sequestration in saline aquifers connected to EOR fields: Modelling implications

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Nicot, J.

    2011-12-01

    Geological carbon sequestration (GS) adjacent to CO2-EOR projects (i.e. up or down-dip) is attractive due the economic advantages and availability of the necessary infrastructure. CO2 injection into an aquifer connected to an active EOR site provides the flexibility to deal with variable flow rates provided by capture units. Another advantage for operating companies is that down dip injection can help to avoid pressure losses to the aquifer, which helps achieve oil- CO2 miscibility pressure faster. A complication for simulating adjacent GS is that CO2-EOR activities will have significant boundary effects for nearby GS simulations. Another challenge is that most of the time due to confidentiality or lack of data, modeling of oil production in EOR sites is not possible. What is needed is a simple approach for handling EOR activities that have significant impact on GS simulations. The method we have used to simplify the neighboring (up-dip) multi-phase region for applying reasonable boundary conditions for down-dip GS involves replacing oil production with cumulative liquid produced (hydrocarbons + brine) and modifying production rates and the permeability field only in the EOR region. An obvious advantage of removing the oil zone and replacing it with brine is reduced simulation time due to reduced number of components and flow complexity which will allow computation time to be focused on simulating the GS domain without considering the oil phase and production specifics up dip. In this study we derive the required modification based on the pressure propagation speed in different fluids. The first step consists in modifying the permeability field to ensure the same pressure propagation observations in reservoir. The second step adjusts the production rates in EOR site to match the actual bottom hole pressure at producers. Justification of our analytical derivations with numerical simulations from CMG-IMEX and CMG-GEM shows at distances of our interest, estimated

  6. Effect of faults on fluid flow and chloride contamination in a carbonate aquifer system

    USGS Publications Warehouse

    Maslia, M.L.; Prowell, D.C.

    1990-01-01

    A unified, multidiscipline hypothesis is proposed to explain the anomalous pattern by which chloride has been found in water of the Upper Floridan aquifer in Brunswick, Glynn County, Georgia. Analyses of geophysical, hydraulic, water chemistry, and aquifer test data using the equivalent porous medium (EPM) approach are used to support the hypothesis and to improve further the understanding of the fracture-flow system in this area. Using the data presented herein we show that: (1) four major northeast-southwest trending faults, capable of affecting the flow system of the Upper Floridan aquifer, can be inferred from structural analysis of geophysical data and from regional fault patterns; (2) the proposed faults account for the anomalous northeastward elongation of the potentiometric surface of the Upper Floridan aquifer; (3) the faults breach the nearly impermeable units that confine the Upper Floridan aquifer from below, allowing substantial quantities of water to leak vertically upward; as a result, aquifer transmissivity need not be excessively large (as previously reported) to sustain the heavy, long-term pumpage at Brunswick without developing a steep cone of depression in the potentiometric surface; (4) increased fracturing at the intersection of the faults enhances the development of conduits that allow the upward migration of high-chloride water in response to pumping from the Upper Floridan aquifer; and (5) the anomalous movement of the chloride plume is almost entirely controlled by the faults. ?? 1990.

  7. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    SciTech Connect

    Inyo County

    2006-07-26

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

  8. Groundwater Quality Impacts Related to Carbon Dioxide, Brine and Trace Metal Leakage into a Shallow, Unconfined Limestone Aquifer

    NASA Astrophysics Data System (ADS)

    Bacon, D. H.; Hou, Z.; Dai, Z.; Zheng, L.

    2012-12-01

    Accurate prediction of the impact of leaks related to geologic carbon sequestration on groundwater quality is limited by the complexity of subsurface aquifers and the geochemical reactions that control drinking water compositions. As a result, there is a high uncertainty associated with predictions, hampering monitoring plans, interpretation of the monitoring results, and mitigation plans for a given site. As a part of the National Risk Assessment Program (NRAP), funded by the U.S. Department of Energy, a model of the Edwards Aquifer in Texas has been developed to examine the geochemical impacts of leakage of CO2 and brine containing trace metals into an oxidizing unconfined, carbonate aquifer. We use STOMP-CO2-R, which is a multiphase flow simulator, coupled with the reactive transport module ECKEChem, both developed at PNNL, to simulate CO2 sequestration in deep saline formations and the associated reactions with formation minerals. The limestone almost entirely consists of calcite, with lesser amounts of dolomite and trace metals adsorbed on minor amounts of clay and iron oxides. A reduced order model of this more complex chemistry and physics based model has been developed to be included in a framework for quantifying the overall risks associated with CO2 injection, leaks and groundwater impacts. The aquifer model uses reduced-order models, provided by other NRAP groups, of CO2 and brine leakage from wellbores and faults as inputs. Geochemical input parameters were varied to determine parameter sensitivity and to generate a response surface of output variables. The output variables were pH < 6.5 or TDS > 500 ppm plume size and CO2 flux to atmosphere, as well the volume of aquifer with trace metal concentrations greater than their U.S. Environmental Protection Agency Maximum Contaminant Levels. The uncertain input parameters were CO2/brine leak rate, brine composition, mineral surface area and volumetric percent, equilibrium coefficients, and kinetic rates

  9. Distribution of selected chemical constituents in water from the Floridan aquifer, Southwest Florida Water Management District

    USGS Publications Warehouse

    Corral, M.A., Jr.

    1983-01-01

    Generalized maps showing variations in concentration of chlorides, sulfates, hardness, and dissolved solids in the Floridan aquifer have been prepared as part of a cooperative program with the Southwest Florida Water Management District. This report covers 10 counties and parts of 6 others comprising the District. Data used to develop the report were retrieved from the water-quality files of the U.S. Geological Survey. Considerable vertical and areal variation of chemical constituents was found in ground water of the Floridan aquifer. In general, ground water becomes more mineralized with increasing depth and with increasing distance from recharge areas due to solution of minerals from the aquifer. Ground water was also more mineralized with proximity to the coast, due to saltwater intrusion. (USGS)

  10. Structural and hydrogeological features of a Lias carbonate aquifer in the Triffa Plain, NE Morocco

    NASA Astrophysics Data System (ADS)

    Sardinha, J.; Carneiro, J. F.; Zarhloule, Y.; Barkaoui, A.; Correia, A.; Boughriba, M.; Rimi, A.; El Houadi, B.

    2012-09-01

    The rising demand for water and the contamination of shallow water table aquifers has led authorities in NE Morocco to look for deeper groundwater resources in the Triffa Plain, namely in Lower Jurassic (Lias) dolomitic limestones. The liassic aquifer is of strategic importance for the development of the region, however, its hydrodynamic behaviour is poorly understood due to lack of hydrogeological data and block structure. This article presents a first effort towards understanding the structure and hydraulic behaviour of the aquifer. Exploration borehole data and results from geophysical campaigns were integrated into a GIS environment to build a preliminary model of the aquifer structure. The aquifer behaves as an unconfined aquifer in the northern part of the Béni Snassen Mountains (the recharge area), but as it dips to the north, it becomes confined by marls and shales of the Middle/Upper Jurassic. Even though piezometric level data are scarce, a tentative piezometric map was produced. Three blocks separated by NW-SE trending faults in a horst and graben structure, with distinct flow behaviours were identified: Berkane, Fezouane and Sidi Rahmoun blocks. Those blocks also show differences in hydraulic conductivity distribution. As a result of the reaction with the dolomitic limestones, the groundwater is of calcium-magnesium bicarbonate type. Groundwater temperature as measured in springs ranges from 29 °C to 37 °C in springs and constitutes a potential low enthalpy geothermal resource.

  11. Geostatistical Evaluation of Spring Water Quality in an Urbanizing Carbonate Aquifer

    NASA Astrophysics Data System (ADS)

    McGinty, A.; Welty, C.

    2003-04-01

    As part of an investigation of the impacts of urbanization on the hydrology and ecology of Valley Creek watershed near Philadelphia, Pennsylvania, we have analyzed the chemical composition of 110 springs to assess the relative influence of geology and anthropogenic activities on water quality. The 60 km^2 watershed is underlain by productive fractured rock aquifers composed of Cambrian and Ordovician carbonate rocks in the central valley and Cambrian crystalline and siliciclastic rocks (quartzite and phyllite) in the north and south hills that border the valley. All tributaries of the surface water system originate in the crystalline and siliciclastic hills. The watershed is covered by 17% impervious area and contains 6 major hazardous waste sites, one active quarrying operation and one golf course; 25% of the area utilizes septic systems for sewage disposal. We identified 172 springs, 110 of which had measurable flow rates ranging from 0.002 to 5 l/s. The mapped surficial geology appears as an anisotropic pattern, with long bands of rock formations paralleling the geographic orientation of the valley. Mapped development appears as a more isotropic pattern, characterized by isolated patches of land use that are not coincident with the evident geologic pattern. Superimposed upon these characteristics is a dense array of depressions and shallow sinkholes in the carbonate rocks, and a system of major faults at several formation contacts. We used indicator geostatistics to quantitatively characterize the spatial extent of the major geologic formations and patterns of land use. Maximum correlation scales for the rock types corresponded with strike direction and ranged from 1000 to 3000 m. Anisotropy ratios ranged from 2 to 4. Land-use correlation scales were generally smaller (200 to 500 m) with anisotropy ratios of around 1.2, i.e., nearly isotropic as predicted. Geostatistical analysis of spring water quality parameters related to geology (pH, specific conductance

  12. Elevated pCO2 effects on the geochemistry of carbonate aquifers: calcite dissolution as a driver of elevated metal concentrations

    NASA Astrophysics Data System (ADS)

    Wunsch, A.; Navarre-Sitchler, A. K.; Moore, J.; McCray, J. E.

    2012-12-01

    Geological carbon capture, utilization and storage has gained momentum in the last decade as a viable option of reducing anthropogenic emissions of CO2, with several demonstration projects completed, in progress or planned for upcoming years. However, large-scale CO2-injection operations are accompanied by concerns of CO2 leakage from deep geological repositories and subsequent contact with shallower aquifers, such as underground sources of drinking water. Direct toxicity of CO2 is of lesser concern; rather, it is the acidification of aquifers from increased CO2 partial-pressures (pCO2), which may lead to release of metals into groundwater through mineral dissolution and metal desorption. Previous geochemical studies have suggested that the presence of calcite in aquifer material would reduce the hazard of metal release by effectively buffering acidity via calcite dissolution at elevated pCO2, thus placing carbonate aquifers at lesser risk in case of CO2 leakage. Yet calcite is rarely found in pure form, and often contains a wide range of impurities, including metals such as As, Cr, and Pb, in solid-solution. Dissolution of calcite during acidity buffering is accompanied by release of these impurities from the calcite lattice. We show through experimental work that dissolution of calcite is the primary mechanism responsible for elevated concentrations of metals in carbonate aquifers at high pCO2. It is also evident that the mechanism responsible for metal release, i.e. dissolution or desorption, is metal-specific and pCO2-specific. Modeling work based on our experimental results suggests that in reducing aquifers calcite can contribute more to release of metals than sulfides, which are generally viewed as likely sources of metals in aquifers, during a hypothetical 30-year CO2 leak. In addition, modeling work suggests that when sulfide minerals are present in a carbonate aquifer, metals release would be more sensitive to pO2 than to pCO2.

  13. Chemical character of ground water in the shallow water-table aquifer at selected localities in the Memphis area, Tennessee

    USGS Publications Warehouse

    Parks, William Scott; Graham, D.D.; Lowery, J.F.

    1981-01-01

    Eight deep wells are being monitored in the Memphis, Tenn., area to detect any changes in the chemical character of water moving through the Memphis Sand towards major pumping centers. These wells are strategically located so as to intercept groundwater enroute through the Memphis Sand from the outcrop-recharge area. Although water quality analyses are available for many wells in the shallow water-table aquifer, no specific investigation has been made to characterize the quality of the water in this aquifer from which the Memphis Sand also receives part of its recharge. This investigation is to determine the chemical character of groundwater in the shallow water-table aquifer at selected localities in the Memphis area. Methods used to install eight shallow wells at abandoned dump sites containing chemical and/or industrial waste are described. Water samples from the eight shallow wells and two deep wells in the Memphis Sand were collected and analyzed. Results of the analysis are presented and the locations of the wells and dumps are shown on maps. (USGS)

  14. Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers.

    PubMed

    Höyng, Dominik; Prommer, Henning; Blum, Philipp; Grathwohl, Peter; D'Affonseca, Fernando Mazo

    2015-03-01

    Compound-specific isotope analysis (CSIA) of organic pollutants has become a well-established tool for assessing the occurrence and extent of biodegradation processes in contaminated aquifers. However, the precision of CSIA is influenced by the degree to which assumptions underlying CSIA data interpretation hold under realistic field-scale conditions. For the first time this study demonstrates how aquifer analogs combined with reactive transport models offer an underexplored way to develop generic process understanding, evaluate monitoring and quantification strategies in highly heterogeneous subsurface settings. Data from high-resolution aquifer analogs were used in numerical experiments to track the propagation of a representative oxidizable organic compound (toluene) within a variety of realistic heterogeneous aquifers and to investigate its detailed fate. The simulations were used to analyze (1) the effects of physical aquifer heterogeneities on spatiotemporal patterns of contaminant concentrations and isotope signatures, (2) the performance of the commonly applied Rayleigh equation and (3) the applicability of an extension of the Rayleigh equation for complex hydrogeological conditions. The results indicate that if field-derived enrichment factors are applied without corrections for dilution, the conventional Rayleigh equation is inaccurate and estimates for biodegradation are typically overestimated and unreliable in heterogeneous aquifers. Underestimations can occur due to the partial source zone depletion. In contrast, if dilution can be accurately accounted for, field-derived enrichment factors comprise a suitable alternative to laboratory-derived and redox-specific enrichment factors. The study also examines to what extent variations in monitoring/sampling strategies influence the obtained results. Especially measurements from long-screened wells (>1 m) reveal to be inappropriate for the application of the Rayleigh equation in the investigated aquifer

  15. Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Höyng, Dominik; Prommer, Henning; Blum, Philipp; Grathwohl, Peter; Mazo D'Affonseca, Fernando

    2015-03-01

    Compound-specific isotope analysis (CSIA) of organic pollutants has become a well-established tool for assessing the occurrence and extent of biodegradation processes in contaminated aquifers. However, the precision of CSIA is influenced by the degree to which assumptions underlying CSIA data interpretation hold under realistic field-scale conditions. For the first time this study demonstrates how aquifer analogs combined with reactive transport models offer an underexplored way to develop generic process understanding, evaluate monitoring and quantification strategies in highly heterogeneous subsurface settings. Data from high-resolution aquifer analogs were used in numerical experiments to track the propagation of a representative oxidizable organic compound (toluene) within a variety of realistic heterogeneous aquifers and to investigate its detailed fate. The simulations were used to analyze (1) the effects of physical aquifer heterogeneities on spatiotemporal patterns of contaminant concentrations and isotope signatures, (2) the performance of the commonly applied Rayleigh equation and (3) the applicability of an extension of the Rayleigh equation for complex hydrogeological conditions. The results indicate that if field-derived enrichment factors are applied without corrections for dilution, the conventional Rayleigh equation is inaccurate and estimates for biodegradation are typically overestimated and unreliable in heterogeneous aquifers. Underestimations can occur due to the partial source zone depletion. In contrast, if dilution can be accurately accounted for, field-derived enrichment factors comprise a suitable alternative to laboratory-derived and redox-specific enrichment factors. The study also examines to what extent variations in monitoring/sampling strategies influence the obtained results. Especially measurements from long-screened wells (> 1 m) reveal to be inappropriate for the application of the Rayleigh equation in the investigated aquifer

  16. Evaluating degradation of hexachlorcyclohexane (HCH) isomers within a contaminated aquifer using compound-specific stable carbon isotope analysis (CSIA).

    PubMed

    Bashir, Safdar; Hitzfeld, Kristina L; Gehre, Matthias; Richnow, Hans H; Fischer, Anko

    2015-03-15

    The applicability of compound-specific stable carbon isotope analysis (CSIA) for assessing biodegradation of hexachlorocyclohexane (HCH) isomers was investigated in a contaminated aquifer at a former pesticide processing facility. A CSIA method was developed and tested for efficacy in determining carbon isotope ratios of HCH isomers in groundwater samples using gas chromatography - isotope ratio mass spectrometry (GC-IRMS). The carbon isotope ratios of HCHs measured for samples taken from the field site confirmed contaminant source zones at former processing facilities, a storage depot and a waste dump site. The (13)C-enrichment in HCHs provided evidence for biodegradation of HCHs especially downstream of the contaminant source zones. CSIA from monitoring campaigns in 2008, 2009 and 2010 revealed temporal trends in HCH biodegradation. Thus, the impact and progress of natural attenuation processes could be evaluated within the investigated aquifer. Calculations based on the Rayleigh-equation approach yielded levels of HCH biodegradation ranging from 30 to 86 %. Moreover, time- and distance-dependent in situ first-order biodegradation rate constants were estimated with maximal values of 3 × 10(-3) d(-1) and 10 × 10(-3) m(-1) for α-HCH, 11 × 10(-3) d(-1) and 37 × 10(-3) m(-1) for β-HCH, and 6 × 10(-3) d(-1) and 19 × 10(-3) m(-1) for δ-HCH, respectively. This study highlights the applicability of CSIA for the assessment of HCH biodegradation within contaminated aquifers. PMID:25617603

  17. Assessing Connectivity Between an Overlying Aquifer and a Coal Seam Gas Resource Using Methane Isotopes, Dissolved Organic Carbon and Tritium.

    PubMed

    Iverach, Charlotte P; Cendón, Dioni I; Hankin, Stuart I; Lowry, David; Fisher, Rebecca E; France, James L; Nisbet, Euan G; Baker, Andy; Kelly, Bryce F J

    2015-01-01

    Coal seam gas (CSG) production can have an impact on groundwater quality and quantity in adjacent or overlying aquifers. To assess this impact we need to determine the background groundwater chemistry and to map geological pathways of hydraulic connectivity between aquifers. In south-east Queensland (Qld), Australia, a globally important CSG exploration and production province, we mapped hydraulic connectivity between the Walloon Coal Measures (WCM, the target formation for gas production) and the overlying Condamine River Alluvial Aquifer (CRAA), using groundwater methane (CH4) concentration and isotopic composition (δ(13)C-CH4), groundwater tritium ((3)H) and dissolved organic carbon (DOC) concentration. A continuous mobile CH4 survey adjacent to CSG developments was used to determine the source signature of CH4 derived from the WCM. Trends in groundwater δ(13)C-CH4 versus CH4 concentration, in association with DOC concentration and (3)H analysis, identify locations where CH4 in the groundwater of the CRAA most likely originates from the WCM. The methodology is widely applicable in unconventional gas development regions worldwide for providing an early indicator of geological pathways of hydraulic connectivity. PMID:26530701

  18. Assessing Connectivity Between an Overlying Aquifer and a Coal Seam Gas Resource Using Methane Isotopes, Dissolved Organic Carbon and Tritium

    NASA Astrophysics Data System (ADS)

    Iverach, Charlotte P.; Cendón, Dioni I.; Hankin, Stuart I.; Lowry, David; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.; Baker, Andy; Kelly, Bryce F. J.

    2015-11-01

    Coal seam gas (CSG) production can have an impact on groundwater quality and quantity in adjacent or overlying aquifers. To assess this impact we need to determine the background groundwater chemistry and to map geological pathways of hydraulic connectivity between aquifers. In south-east Queensland (Qld), Australia, a globally important CSG exploration and production province, we mapped hydraulic connectivity between the Walloon Coal Measures (WCM, the target formation for gas production) and the overlying Condamine River Alluvial Aquifer (CRAA), using groundwater methane (CH4) concentration and isotopic composition (δ13C-CH4), groundwater tritium (3H) and dissolved organic carbon (DOC) concentration. A continuous mobile CH4 survey adjacent to CSG developments was used to determine the source signature of CH4 derived from the WCM. Trends in groundwater δ13C-CH4 versus CH4 concentration, in association with DOC concentration and 3H analysis, identify locations where CH4 in the groundwater of the CRAA most likely originates from the WCM. The methodology is widely applicable in unconventional gas development regions worldwide for providing an early indicator of geological pathways of hydraulic connectivity.

  19. Assessing Connectivity Between an Overlying Aquifer and a Coal Seam Gas Resource Using Methane Isotopes, Dissolved Organic Carbon and Tritium

    PubMed Central

    Iverach, Charlotte P.; Cendón, Dioni I.; Hankin, Stuart I.; Lowry, David; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.; Baker, Andy; Kelly, Bryce F. J.

    2015-01-01

    Coal seam gas (CSG) production can have an impact on groundwater quality and quantity in adjacent or overlying aquifers. To assess this impact we need to determine the background groundwater chemistry and to map geological pathways of hydraulic connectivity between aquifers. In south-east Queensland (Qld), Australia, a globally important CSG exploration and production province, we mapped hydraulic connectivity between the Walloon Coal Measures (WCM, the target formation for gas production) and the overlying Condamine River Alluvial Aquifer (CRAA), using groundwater methane (CH4) concentration and isotopic composition (δ13C-CH4), groundwater tritium (3H) and dissolved organic carbon (DOC) concentration. A continuous mobile CH4 survey adjacent to CSG developments was used to determine the source signature of CH4 derived from the WCM. Trends in groundwater δ13C-CH4 versus CH4 concentration, in association with DOC concentration and 3H analysis, identify locations where CH4 in the groundwater of the CRAA most likely originates from the WCM. The methodology is widely applicable in unconventional gas development regions worldwide for providing an early indicator of geological pathways of hydraulic connectivity. PMID:26530701

  20. Effects of natural and human factors on groundwater quality of basin-fill aquifers in the southwestern United States-conceptual models for selected contaminants

    USGS Publications Warehouse

    Bexfield, Laura M.; Thiros, Susan A.; Anning, David W.; Huntington, Jena M.; McKinney, Tim S.

    2011-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, the Southwest Principal Aquifers (SWPA) study is building a better understanding of the factors that affect water quality in basin-fill aquifers in the Southwestern United States. The SWPA study area includes four principal aquifers of the United States: the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; the Rio Grande aquifer system in New Mexico and Colorado; and the California Coastal Basin and Central Valley aquifer systems in California. Similarities in the hydrogeology, land- and water-use practices, and water-quality issues for alluvial basins within the study area allow for regional analysis through synthesis of the baseline knowledge of groundwater-quality conditions in basins previously studied by the NAWQA Program. Resulting improvements in the understanding of the sources, movement, and fate of contaminants are assisting in the development of tools used to assess aquifer susceptibility and vulnerability. This report synthesizes previously published information about the groundwater systems and water quality of 15 information-rich basin-fill aquifers (SWPA case-study basins) into conceptual models of the primary natural and human factors commonly affecting groundwater quality with respect to selected contaminants, thereby helping to build a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to those contaminants. Four relatively common contaminants (dissolved solids, nitrate, arsenic, and uranium) and two contaminant classes (volatile organic compounds (VOCs) and pesticide compounds) were investigated for sources and controls affecting their occurrence and distribution above specified levels of concern in groundwater of the case-study basins. Conceptual models of factors that are important to aquifer vulnerability with respect to those contaminants and contaminant classes were subsequently formed. The

  1. Hydrologic characteristics of soils in the High Plains, northern Great Plains, and Central Texas Carbonates Regional Aquifer Systems

    USGS Publications Warehouse

    Dugan, Jack T.; Hobbs, Ryne D.; Ihm, Laurie A.

    1990-01-01

    Certain physical characteristics of soils, including permeability, available water capacity, thickness, and topographic position, have a measurable effect on the hydrology of an area. These characteristics control the rate at which precipitation infiltrates or is transmitted through the soil, and thus they have an important role in determining the rates of actual evapotranspiration (consumptive water use), groundwater recharge, and surface runoff. In studies of groundwater hydrology, it is useful to differentiate soils spatially according to their physical characteristics and to assign values that indicate their hydrologic responses.The principal purpose of this report is to describe the relation between the hydrologic characteristics of the soils in the study area and those environmental factors that affect the development and distribution of the soils. This objective will be achieved by (1) defining both qualitatively and quantitatively those soil characteristics that affect hydrology, and (2) classifying and delineating the boundaries of the soils in the study area according to these hydrologic characteristics.The study area includes the High Plains, Northern Great Plains, the Central Texas Carbonates, and parts of the Central Midwest Regional Aquifer Systems as described by the U.S. Geological Survey Regional Aquifer-System Analysis (RASA) Program (Sun, 1986, p.5and Sun, personal commun., June 1985) and shown in figures 1 through 5. The spatial patterns of the soils classified according to their quantifiable hydrologic characteristics will subsequently serve as an integral component in the analysis of actual evapotranspiration (consumptive water use), consumptive irrigation requirements, and potential ground-water recharge of the study area.The classification system used to describe the soils in this report is compatible with that of Dugan (1986). Dugan described the same characteristics of soils that are immediately underlain by principal aquifers of

  2. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.

    PubMed

    Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-15

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration <1000 μgL(-1). These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM. PMID:25168960

  3. Hydraulic characterisation of carbonate aquifers with pumping tests - comparison of analytical and numerical data evaluation methods

    NASA Astrophysics Data System (ADS)

    Baierl, M.; Kordilla, J.; Reimann, T.; Dörfliger, N.; Sauter, M.; Geyer, T.

    2012-04-01

    This work deals with the analysis of pumping tests in strongly heterogeneous media. Pumping tests were performed in the catchment area of the Lez spring (South of France), which is composed of carbonate rocks. Pumping rates for the different tests varied between 0.04 l/s - 0.7 l/s, i.e. the radius of influence of the cone of depression is small. The investigated boreholes are characterised by tight rocks, moderate fractures and karstified zones. The observed drawdown curves are clearly influenced by the rock characteristics. Single drawdown curves show S-shape character. Data evaluation was performed with the solution approaches of Theis (1935) and Gringarten-Ramey (1974), which are implemented in the employed software AQTESOLV (Pro 4.0). Parameters were varied in reliable data ranges with consideration of reported values in the literature. The Theis method analyses unsteady flow in homogeneous confined aquifers. The Gringarten-Ramey solution describes the drawdown in a well connected to a single horizontal fracture. The Theis curve fails to represent the characteristics for nearly all of the measured drawdown curves, while the Gringarten-Ramey method shows moderate graphical fits with a small residual sum of squares between fitted and observed drawdown curves. This highlights the importance of heterogeneities in the hydraulic parameter field at local scale. The determined hydraulic conductivities of the rock are in reasonable ranges varying between 1E-04 m/s and 1E-08 m/s. Wellbore skin effects need to be discussed further in detail. While the analytical solutions are only valid for specific geometrical and hydraulic configurations, numerical models can be applied to simulate pumping tests in complex heterogeneous media with different boundary conditions. For that reason, a two dimensional, axisymmetric numerical model, using COMSOL (Multiphysics 4.1), is set up. In a first step, the model is validated with the simulated curves from the analytical solutions under

  4. Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA

    NASA Astrophysics Data System (ADS)

    Plummer, Niel; Sprinkle, Craig

    2001-03-01

    Geochemical reaction models were evaluated to improve radiocarbon dating of dissolved inorganic carbon (DIC) in groundwater from confined parts of the Upper Floridan aquifer in central and northeastern Florida, USA. The predominant geochemical reactions affecting the 14C activity of DIC include (1) dissolution of dolomite and anhydrite with calcite precipitation (dedolomitization), (2) sulfate reduction accompanying microbial degradation of organic carbon, (3) recrystallization of calcite (isotopic exchange), and (4) mixing of fresh water with as much as 7% saline water in some coastal areas. The calculated cumulative net mineral transfers are negligibly small in upgradient parts of the aquifer and increase significantly in downgradient parts of the aquifer, reflecting, at least in part, upward leakage from the Lower Floridan aquifer and circulation that contacted middle confining units in the Floridan aquifer system. The adjusted radiocarbon ages are independent of flow path and represent travel times of water from the recharge area to the sample point in the aquifer. Downgradient from Polk City (adjusted age 1.7 ka) and Keystone Heights (adjusted age 0.4 ka), 14 of the 22 waters have adjusted 14C ages of 20-30 ka, indicating that most of the fresh-water resource in the Upper Floridan aquifer today was recharged during the last glacial period. All of the paleowaters are enriched in 18O and 2H relative to modern infiltration, with maximum enrichment in δ18O of approximately 2.0‰. Résumé. Les modèles de réactions géochimiques ont été évalués afin de tester la datation par le radiocarbone du carbone minéral dissous (CMD) des eaux souterraines dans les parties captives de la nappe supérieure de Floride, en Floride centrale et nord-orientale (États-Unis). Les réactions géochimiques prédominantes affectant l'activité en 14C du CMD comprennent (1) la dissolution de la dolomite et de l'anhydrite accompagnée de la précipitation de la calcite (d

  5. Selected Hydrogeologic Data for the High Plains Aquifer in Southwestern Laramie County, Wyoming, 1931-2006

    USGS Publications Warehouse

    Hallberg, Laura L.; Mason, Jon P.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming State Engineer's Office, created a hydrogeologic database for southwestern Laramie County, Wyoming. The database contains records from 166 wells and test holes drilled during 1931-2006. Several types of information, including well construction; well or test hole locations; lithologic logs; gamma, neutron, spontaneous-potential, and single-point resistivity logs; water levels; and transmissivities and storativities estimated from aquifer tests, are available in the database. Most wells and test holes in the database have records containing information about construction, location, and lithology; 77 wells and test holes have geophysical logs; 70 wells have tabulated water-level data; and 60 wells have records of aquifer-test results.

  6. A zonal evaluation of intrinsic susceptibility in selected principal aquifers of the United States

    USGS Publications Warehouse

    Wellman, Tristan P.; Kauffman, Leon; Clark, Brian

    2012-01-01

    A method was developed to evaluate intrinsic groundwater susceptibility in 11 study areas across the United States. Calibrated groundwater-flow models and a variable-advection particle-tracking scheme that accounts for uncertainty were used to derive ranges of conservative solute concentration and groundwater age within spatially defined zones from solute loading to the water table. Aquifers were partitioned into six zones; four relative depth zones and two zones to represent pumping wells and surface water. Five years after solute was introduced in simulated recharge and stream leakage, normalized zone concentrations were detected at values above 10-4 in the shallowest aquifer zone, well zone, and surface-water zone for 10 of the 11 study areas. At the 125-year time scale, 9 out of the 11 study areas exhibited detectable concentrations in all zones and the majority of zones possess concentrations that are substantial relative to the source concentration (ClCo > 10-1). Thresholds defined by the time representing the earliest 1% of groundwater-transit times were used to identify fast transport pathways within the groundwater. The 1% thresholds occurred in a period of days to years for the shallow zone, days to decades for the well and surface-water zones, and years to millennia for the deeper zones. Thresholds defined by the 99th percentile of groundwater travel times were used to reflect late-time response and ranged considerably between study area (~102 to ~106 years), which highlights the potential for chemical constituents to persist in groundwater for long periods under a conservative state. The results of this investigation provide an instructive example of the intricate relations between climate and aquifer characteristics and their role on solute transport in groundwater. The proposed method accounts for dynamical processes in the aquifer and complements more traditional assessments of susceptibility using (apparent) mean water age.

  7. Molecular Selectivity of Brown Carbon Chromophores

    SciTech Connect

    Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey; Roach, Patrick J.; Eckert, Peter A.; Gilles, Mary K.; Wang, Bingbing; Lee, Hyun Ji; Hu, Qichi

    2014-10-21

    Complementary methods of high-resolution mass spectrometry and micro-spectroscopy were utilized for molecular analysis of secondary organic aerosol (SOA) generated from ozonolysis of two structural monoterpene isomers: D-limonene (LSOA) and a-pinene (PSOA). Laboratory simulated aging of LSOA and PSOA, through conversion of carbonyls into imines mediated by NH3 vapors in humid air, resulted in selective browning of the LSOA sample, while the PSOA sample remained white. Comparative analysis of the reaction products in the aged LSOA and PSOA samples provided insights into chemistry relevant to formation of brown carbon chromophores. A significant fraction of carbonyl-imine conversion products with identical molecular formulas were detected in both samples. This reflects the high level of similarity in the molecular composition of these two closely related SOA materials. Several highly conjugated products were detected exclusively in the brown LSOA sample and were identified as potential chromophores responsible for the observed color change. The majority of the unique products in the aged LSOA sample with the highest number of double bonds contain two nitrogen atoms. We conclude that chromophores characteristic of the carbonyl- imine chemistry in LSOA are highly conjugated oligomers of secondary imines (Schiff bases) present at relatively low concentrations. Formation of this type of conjugated compounds in PSOA is hindered by the structural rigidity of the a-pinene oxidation products. Our results suggest that the overall light-absorbing properties of SOA may be determined by trace amounts of strong brown carbon chromophores.

  8. Investigating Vertical Mixing Between Two Carbonate Aquifers Using a Multiport Well, Central Texas

    NASA Astrophysics Data System (ADS)

    Kromann, J.; Wong, C. I.; Hunt, B.; Smith, B.; Banner, J. L.

    2011-12-01

    Determining the occurrence and extent of mixing between vertically-adjacent aquifers is critical to dual-aquifer management. This can be challenging due to variable well depths and uncertainty as to hydrostratigraphic sources of groundwater. This study uses a multiport monitor well to investigate the degree of aquifer mixing between the overlying Edwards aquifer and underlying Trinity aquifer in central Texas. The results will inform dual-aquifer management as the Trinity aquifer is being developed as an alternative water source to the Edwards aquifer due to pumping limits and projections of increasing water demand. Water levels from isolated hydrostratigraphic units (n = 19) were measured monthly in the well as climate conditions transitioned from wet to dry (Sept 2010 to May 2011). Groundwater was sampled over a two-week interval in May to June 2011. At the start of the monitoring interval, water levels were high in the Edwards and the uppermost units of the Trinity relative to the rest of the Trinity units. Water levels decreased to lower elevations, from about 635 to 585 ft-msl, under dry conditions. Water levels in the lowermost Trinity declined less, from about 630 to 620 ft-msl, under dry conditions. Two zones separating the Edwards and lowermost Trinity showed almost no head change during this period. The water-level variations between the two aquifers suggest that: i) vertical flow potential from the Edwards to the Trinity occurs during dry conditions, ii) the uppermost stratigraphic units of the Trinity and Edwards are mixing, and iii) portions of the Trinity behave as an aquitard, providing hydrologic separation between the Edwards and lowermost Trinity units. Groundwater samples indicate the presence of three distinct hydrochemical facies: Ca-HCO3 (Edwards), Ca-HCO3-SO4 (lowermost Trinity), and Ca-SO4 (Trinity-Glen Rose Fm), suggesting little vertical flow and mixing. Covariation between groundwater 87Sr/86Sr values and SO4 concentrations from units of

  9. Natural Attenuation of Anthropogenic Chromium in Selected Puye Formation in Regional Aquifer System of LOS Alamos, New Mexico

    NASA Astrophysics Data System (ADS)

    Brown, D. B.; Ding, M.; WoldeGabriel, G. W.; Cheshire, M.; Rearick, M.; Conradson, S.; Kluk, E.; Katzman, D.

    2014-12-01

    Routine groundwater monitoring conducted in 2005 revealed significant chromium (Cr) contamination in regional groundwater in Los Alamos, New Mexico. Previous use of potassium dichromate (K2Cr2O7) in cooling towers at Los Alamos National Laboratory's main power plant is believed to be the source of the elevated chromium levels. From 1956 to 1972 between 31,000 and 72,000 Kg of toxic Cr(IV) was released into Sandia Canyon. Initial investigations of the vadose zone using chromium isotopes indicated that reduction of anthropogenic Cr(IV) had occurred. However, to justify the use of Monitoring Natural Attenuation (MNA) as a valid remediation strategy, the Cr attenuation mechanism and the reduction capacity of the regional aquifer needs to be determined. Conventional batch sorption and synchrotron-based X-ray absorption spectroscopy studies were performed. Two samples were selected from the Puye formation, a silicoclastic sedimentary rock sequence located within the contaminated aquifer. Additionally, two Los Alamos Puye outcrop samples with no chromium exposure were selected for comparison. Each sample was subsequently sorted based on grain size, magnetic, and clay fractions. Groundwater with a known concentration of Cr(IV) was used in the batch experiments. Spectroscopy measurements of Puye samples before and after exposure to the same contaminated groundwater were conducted at the Stanford Synchrotron Radiation Lightsource (SSRL). Batch sorption results indicated little to no attenuation, as indicated by the small measured sorption coefficient (Kd < 5 Kg/L). Spectroscopic measurements suggest that attenuation of hexavalent chromium in groundwater is due to reduction of Cr(VI) to Cr(III) in the Puye and may be attributed almost exclusively to the clay fraction. These results indicate that the tested Puye sediments occurring in the regional aquifer have minor ability to naturally attenuate anthropogenic Cr(IV), with the clay fraction dominating the reduction process

  10. Diversity and geochemical structuring of bacterial communities along a salinity gradient in a carbonate aquifer subject to seawater intrusion.

    PubMed

    Héry, Marina; Volant, Aurélie; Garing, Charlotte; Luquot, Linda; Elbaz Poulichet, Françoise; Gouze, Philippe

    2014-12-01

    In aquifers subject to saline water intrusion, the mixing zone between freshwater and saltwater displays strong physico-chemical gradients. Although the microbial component of these specific environments has been largely disregarded, the contribution of micro-organisms to biogeochemical reactions impacting water geochemistry has previously been conjectured. The objective of this study was to characterize and compare bacterial community diversity and composition along a vertical saline gradient in a carbonate coastal aquifer using high throughput sequencing of 16S rRNA genes. At different depths of the mixing zone, stable geochemical and hydrological conditions were associated with autochthonous bacterial communities harboring clearly distinct structures. Diversity pattern did not follow the salinity gradient, although multivariate analysis indicated that salinity was one of the major drivers of bacterial community composition, with organic carbon, pH and CO2 partial pressure. Correlation analyses between the relative abundance of bacterial taxa and geochemical parameters suggested that rare taxa may contribute to biogeochemical processes taking place at the interface between freshwater and saltwater. Bacterial respiration or alternative metabolisms such as sulfide oxidation or organic acids production may be responsible for the acidification and the resulting induced calcite dissolution observed at a specific depth of the mixing zone. PMID:25348057

  11. Identifying microbial carbon sources during ethanol and toluene biodegradation in a pilot-scale experimental aquifer system using isotopic analysis

    NASA Astrophysics Data System (ADS)

    Clay, S.; McLeod, H.; Smith, J. E.; Roy, J. W.; Slater, G. F.

    2013-12-01

    Combining ethanol with gasoline has become increasingly common in order to create more environmentally conscience transportation fuels. These blended fuels are favourable alternatives since ethanol is a non-toxic and highly labile renewable biomass-based resource which is an effective fuel oxygenate that reduces air pollution. Recent research however, has indicated that upon accidental release into groundwater systems, the preferential microbial metabolism of ethanol can cause progressively reducing conditions leading to slower biodegradation of petroleum hydrocarbons. Therefore, the presence of ethanol can result in greater persistence of BTEX compounds and longer hydrocarbon plumes in groundwater systems. Microbial biodegradation and community carbon sources coupled to aqueous geochemistry were monitored in a pilot-scale laboratory tank (80cm x 525cm x 175cm) simulating an unconfined sand aquifer. Dissolved ethanol and toluene were continuously injected into the aquifer at a controlled rate over 330 days. Carbon isotope analyses were performed on phospholipid fatty acid (PLFA) samples collected from 4 different locations along the aquifer. Initial stable carbon isotope values measured over days 160-185 in the bacterial PLFA ranged from δ13C = -10 to -21‰, which is indicative of dominant ethanol incorporation by the micro-organisms based on the isotopic signature of ethanol derived from corn, a C4 plant. A negative shift to δ13C = -10 to -30‰ observed over days 185-200, suggests a change in microbial metabolisms associated with less ethanol incorporation. This generally corresponds to a decrease in ethanol concentrations from day 40 to full attenuation at approximately day 160, and the onset of toluene depletion observed on day 120 and continuing thereafter. In addition, aqueous methane concentrations first detected on day 115 continued to rise to 0.38-0.70 mmol/L at all monitoring locations, demonstrating a significant redox shift to low energy methanogenic

  12. STABLE CARBON ISOTOPE BIOGEOCHEMISTRY OF A SHALLOW SAND AQUIFER CONTAMINATED WITH FUEL HYDROCARBONS

    EPA Science Inventory

    Ground-water chemistry and the stable C isotope composition ( 13CDIC) of dissolved C (DIC) were measured in a sand aquifer contaminated with JP-4 fuel hydrocarbons. Results show that ground water in the upgradient zone was characterized by DIC content of 14-20 mg C/L and 13CDIC...

  13. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    NASA Astrophysics Data System (ADS)

    Maeng, Sung Kyu; Sharma, Saroj K.; Abel, Chol D. T.; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L.

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM.

  14. Molecular selectivity of brown carbon chromophores.

    PubMed

    Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey A; Roach, Patrick; Eckert, Peter; Gilles, Mary K; Wang, Bingbing; Lee, Hyun Ji Julie; Hu, Qichi

    2014-10-21

    Complementary methods of high-resolution mass spectrometry and microspectroscopy were utilized for molecular analysis of secondary organic aerosol (SOA) generated from ozonolysis of two structural monoterpene isomers: D-limonene SOA (LSOA) and α-pinene SOA (PSOA). The LSOA compounds readily formed adducts with Na(+) under electrospray ionization conditions, with only a small fraction of compounds detected in the protonated form. In contrast, a significant fraction of PSOA compounds appeared in the protonated form because of their increased molecular rigidity. Laboratory simulated aging of LSOA and PSOA, through conversion of carbonyls into imines mediated by NH3 vapors in humid air, resulted in selective browning of the LSOA sample, while the PSOA sample remained white. Comparative analysis of the reaction products in the aged LSOA and PSOA samples provided insights into chemistry relevant to formation of brown carbon chromophores. A significant fraction of carbonyl-imine conversion products with identical molecular formulas was detected in both samples. This reflects the high level of similarity in the molecular composition of these two closely related SOA materials. Several highly conjugated products were detected exclusively in the brown LSOA sample and were identified as potential chromophores responsible for the observed color change. The majority of the unique products in the aged LSOA sample with the highest number of double bonds contain two nitrogen atoms. We conclude that chromophores characteristic of the carbonyl-imine chemistry in LSOA are highly conjugated oligomers of secondary imines (Schiff bases) present at relatively low concentrations. Formation of this type of conjugated compounds in PSOA is hindered by the structural rigidity of the α-pinene oxidation products. Our results suggest that the overall light-absorbing properties of SOA may be determined by trace amounts of strong brown carbon chromophores. PMID:25233355

  15. Preliminary hydrogeologic framework of the Silurian and Devonian carbonate aquifer system in the Midwestern Basins and Arches Region of Indiana, Ohio, Michigan, and Illinois

    SciTech Connect

    Casey, G.D. )

    1992-01-01

    The aquifer and confining units have been identified; data on the thickness, extent, and structural configuration of these units have been collected; and thickness and structure-contour maps have been generated. Hydrologic information for the confining units and the aquifer also has been compiled. Where present, the confining unit that caps the carbonate aquifer consists of shales of Middle and Upper Devonian age and Lower Mississippian age, however, these units have been eroded from a large part of the study area. The regional carbonate aquifer consists of Silurian and Devonian limestones and dolomites. The rocks that comprise the aquifer in Indiana and northwestern Illinois are grouped into four major stratigraphic units: Brassfield and Sexton Creek Limestones or the Cataract Formation, the Salamonie Dolomite, the Salina Group, and the Detroit River and Traverse Formations or the Muscatatuck Group. In Ohio and southern Michigan the aquifer is grouped into ten stratigraphic units: Brassfield Limestone and Cataract Formation, the Dayton Limestone, the Rochester Shale equivalent, the Lockport Dolomite, the Salina Formation, the Hillsboro Sandstone, the Detroit River Group, the Columbus Limestone, the Delaware Limestone, and the Traverse Formation. The thickness of the carbonate aquifer increases from the contact with the outcropping Ordovician shales in the south-central part of the study area from the contact into the Appalachian Foreland Structural Basin from 0 ft at the contact to more than 700 ft at the eastern boundary of the study area, to more than 1,000 ft beneath Lake Erie and greater than 1,200 ft in southeastern Michigan. At the edge of the Michigan Intercontinental Structural Basin in western Ohio and eastern Indiana, the thickness ranges from 700 to 900 ft. and from 200 ft to 300 ft in south-central Indiana along the northeastern edge of the Illinois Intercontinental Structural Basin.

  16. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1

    SciTech Connect

    Bacon, Diana H.

    2013-03-31

    The National Risk Assessment Partnership (NRAP) consists of 5 U.S DOE national laboratories collaborating to develop a framework for predicting the risks associated with carbon sequestration. The approach taken by NRAP is to divide the system into components, including injection target reservoirs, wellbores, natural pathways including faults and fractures, groundwater and the atmosphere. Next, develop a detailed, physics and chemistry-based model of each component. Using the results of the detailed models, develop efficient, simplified models, termed reduced order models (ROM) for each component. Finally, integrate the component ROMs into a system model that calculates risk profiles for the site. This report details the development of the Groundwater Geochemistry ROM for the Edwards Aquifer at PNNL. The Groundwater Geochemistry ROM for the Edwards Aquifer uses a Wellbore Leakage ROM developed at LANL as input. The detailed model, using the STOMP simulator, covers a 5x8 km area of the Edwards Aquifer near San Antonio, Texas. The model includes heterogeneous hydraulic properties, and equilibrium, kinetic and sorption reactions between groundwater, leaked CO2 gas, brine, and the aquifer carbonate and clay minerals. Latin Hypercube sampling was used to generate 1024 samples of input parameters. For each of these input samples, the STOMP simulator was used to predict the flux of CO2 to the atmosphere, and the volume, length and width of the aquifer where pH was less than the MCL standard, and TDS, arsenic, cadmium and lead exceeded MCL standards. In order to decouple the Wellbore Leakage ROM from the Groundwater Geochemistry ROM, the response surface was transformed to replace Wellbore Leakage ROM input parameters with instantaneous and cumulative CO2 and brine leakage rates. The most sensitive parameters proved to be the CO2 and brine leakage rates from the well, with equilibrium coefficients for calcite and dolomite, as well as the number of illite and kaolinite

  17. Nitrogen-isotope analysis of groundwater nitrate in carbonate aquifers: Natural sources versus human pollution

    NASA Astrophysics Data System (ADS)

    Kreitler, Charles W.; Browning, Lawrence A.

    1983-02-01

    Results of nitrogen-isotope analyses of nitrate in the waters of the Cretaceous Edwards aquifer in Texas, U.S.A., indicate that the source of the nitrate is naturally-occurring nitrogen compounds in the recharge streams. In contrast, nitrogen isotopes of nitrate in the fresh waters of the Pleistocene Ironshore Formation on Grand Cayman Island, West Indies, indicate that human wastes are the source of the nitrate. The Cretaceous Edwards Limestone is a prolific aquifer that produces principally from fracture porosity along the Balcones Fault Zone. Recharge is primarily by streams crossing the fault zone. Rainfall is ˜ 70 cm yr. -1, and the water table is generally deeper than 30 m below land surface. The δ15 N of 73 samples of nitrate from Edwards waters ranged from + 1.9 to + 10‰ with an average of + 6.2‰. This δ15 N range is within the range of nitrate in surface water in the recharge streams ( δ 15N range = + 1 to + 8.3‰ ) and within the range of nitrate in surface water from the Colorado River, Texas, ( δ 15N range = + 1 to + 11‰ ). No sample was found to be enriched in 15N, which would suggest the presence of nitrate from animal waste ( δ 15N range = + 10 to + 22‰ ). The Ironshore Formation contains a small freshwater lens that is recharged entirely by percolation through the soil. Average rainfall is 165 cm yr. -1, and the water table is within 3 m of land surface. The δ15 N of four nitrate samples from water samples of the Ironshore Formation ranged from + 18 to + 23.9‰, which indicates a cesspool/septictank source of the nitrate. Limestone aquifers in humid environments that are recharged by percolation through the soil appear to be more susceptible to contamination by septic tanks than are aquifers in subhumid environments that feature thick unsaturated sections and are recharged by streams.

  18. Carbon, Metals, and Grain Size Correlate with Bacterial Community Structure in Sediments of a High Arsenic Aquifer

    PubMed Central

    Legg, Teresa M.; Zheng, Yan; Simone, Bailey; Radloff, Kathleen A.; Mladenov, Natalie; González, Antonio; Knights, Dan; Siu, Ho Chit; Rahman, M. Moshiur; Ahmed, K. Matin; McKnight, Diane M.; Nemergut, Diana R.

    2011-01-01

    Bacterial communities can exert significant influence on the biogeochemical cycling of arsenic (As). This has globally important implications since As in drinking water affects the health of over 100 million people worldwide, including in the Ganges–Brahmaputra Delta region of Bangladesh where geogenic arsenic in groundwater can reach concentrations of more than 10 times the World Health Organization’s limit. Thus, the goal of this research was to investigate patterns in bacterial community composition across gradients in sediment texture and chemistry in an aquifer with elevated groundwater As concentrations in Araihazar, Bangladesh. We characterized the bacterial community by pyrosequencing 16S rRNA genes from aquifer sediment samples collected at three locations along a groundwater flow path at a range of depths between 1.5 and 15 m. We identified significant differences in bacterial community composition between locations in the aquifer. In addition, we found that bacterial community structure was significantly related to sediment grain size, and sediment carbon (C), manganese (Mn), and iron (Fe) concentrations. Deltaproteobacteria and Chloroflexi were found in higher proportions in silty sediments with higher concentrations of C, Fe, and Mn. By contrast, Alphaproteobacteria and Betaproteobacteria were in higher proportions in sandy sediments with lower concentrations of C and metals. Based on the phylogenetic affiliations of these taxa, these results may indicate a shift to more Fe-, Mn-, and humic substance-reducers in the high C and metal sediments. It is well-documented that C, Mn, and Fe may influence the mobility of groundwater arsenic, and it is intriguing that these constituents may also structure the bacterial community. PMID:22470368

  19. Microbial and geochemical investigations of dissolved organic carbon and microbial ecology of native waters from the Biscayne and Upper Floridan Aquifers

    USGS Publications Warehouse

    Lisle, John T.; Harvey, Ron W.; Aiken, George R.; Metge, David W.

    2010-01-01

    Groundwater resources in the United States are under ever-increasing demands for potable, irrigation, and recreational uses. Additionally, aquifer systems are being used or targeted for use as storage areas for treated surface waters and (or) groundwaters via injection (for example, aquifer storage and recovery). To date, the influence that the nutrients, including carbon, in the injected water have on native microbial communities and the biogeochemistry in the subsurface zones used for storage of the injectate has not been determined. In this report, we describe a series of experiments that establishes a baseline dataset for the quantity and quality of organic and inorganic carbon and nutrients in the Biscayne Aquifer (BA) and Upper Floridan Aquifer (UFA) in south Florida. The most significant differences between the BA (26 meters below surface) and UFA (366 meters below surface) are the average specific conductance (0.552 and 6.12 microsiemens per centimeter, respectively), dissolved oxygen (1.6 and 0 milligrams per liter, respectively), and oxidation-reduction potential (40.3 and -358 millivolts, respectively). The dissolved organic carbon from the BA is characterized by carbon originating from terrestrial sources and microbial activities, while the UFA has a distinctive microbial signature. Acetate and lactate are the dominant carbon constituents in both aquifers. Additionally, components of the dissolved organic carbon from the UFA have a total trihalomethane-formation potential that is approximately threefold greater than the maximum contaminat level of 80 micrograms per liter established by the U.S. Environmental Protection Agency. The average native bacterial abundances in the aquifers are similar with 4.69x10^4 cells per milliliter in the BA and 1.33x10^4 cells per milliliter in the UFA. The average bacteriophage abundances are also similar with 1.15x10^5 virus-like particles in the BA and 1.92x10^5 virus-like particles in the UFA. Interestingly, ciliated

  20. Effect of Sulfate and Organic Carbon Supplements on Reductive Dehalogenation of Chloroanilines in Anaerobic Aquifer Slurries

    PubMed Central

    Kuhn, Elmar P.; Townsend, G. Todd; Suflita, Joseph M.

    1990-01-01

    When di-, tri-, and tetrachloroaniline were incubated in methanogenic groundwater slurries, they were reductively dehalogenated by the aquifer microbiota. 2,3,4-Trichloroaniline was metabolized by two pathways. Primary dehalogenation occurred at either the meta or ortho position of this substrate to form 2,4- and 3,4-dichloroaniline, respectively. The latter chemical could be stoichiometrically converted to 3-chloroaniline. 2,3,4,5-Tetrachloroaniline was degraded by the sequential removal of halogens from the para and then the ortho position to form 3,5-dichloroaniline. An additional pathway was observed with this substrate when the aquifer slurries were amended with butyrate. That is, halogens could be removed from both the meta and ortho positions of tetrachloroaniline. The amendment of sulfate to methanogenic aquifer slurries slowed the rate of 2,3,4,5-tetrachloroaniline degradation and increased the amount of substrate channeled through the additional pathway. The reported intermediates or end products are identified by their chromatographic mobility and mass-spectral profiles. PMID:16348273

  1. Identifying aquifer type in fractured rock aquifers using harmonic analysis.

    PubMed

    Rahi, Khayyun A; Halihan, Todd

    2013-01-01

    Determining aquifer type, unconfined, semi-confined, or confined, by drilling or performing pumping tests has inherent problems (i.e., cost and complex field issues) while sometimes yielding inconclusive results. An improved method to cost-effectively determine aquifer type would be beneficial for hydraulic mapping of complex aquifer systems like fractured rock aquifers. Earth tides are known to influence water levels in wells penetrating confined aquifers or unconfined thick, low-porosity aquifers. Water-level fluctuations in wells tapping confined and unconfined aquifers are also influenced by changes in barometric pressure. Harmonic analyses of water-level fluctuations of a thick (~1000 m) carbonate aquifer located in south-central Oklahoma (Arbuckle-Simpson aquifer) were utilized in nine wells to identify aquifer type by evaluating the influence of earth tides and barometric-pressure variations using signal identification. On the basis of the results, portions of the aquifer responded hydraulically as each type of aquifer even though there was no significant variation in lithostratigraphy. The aquifer type was depth dependent with confined conditions becoming more prevalent with depth. The results demonstrate that harmonic analysis is an accurate and low-cost method to determine aquifer type. PMID:22463080

  2. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer.

    PubMed

    Doerr, Nora A; Ptacek, Carol J; Blowes, David W

    2005-06-01

    The Nickel Rim aquifer has been impacted for five decades by a metal-rich plume generated from the Nickel Rim mine tailings impoundment. Metals released by the oxidation of pyrrhotite in the unsaturated zone of the tailings migrate into the downgradient aquifer, affecting both the groundwater and the aquifer solids. A reactive barrier has been installed in the aquifer to remove sulfate and metals from the groundwater. The effect of the reactive barrier on metal concentrations in the aquifer solids has not previously been studied. In this study, a series of selective extraction procedures was applied to cores of aquifer sediment, to ascertain the distribution of metals among various solid phases present in the aquifer. Extraction results were combined with groundwater chemistry, geochemical modelling and solid-phase microanalyses, to assess the potential mobility of metals under changing geochemical conditions. Reactions within the reactive barrier caused an increase in the solid-phase carbonate content downgradient from the barrier. The concentrations of poorly crystalline, oxidized phases of Mn and Fe, as well as concentrations of Cr(III) associated with oxidized Fe, and poorly crystalline Zn, are lower downgradient from the barrier, whereas total solid-phase metal concentrations remain constant. Iron and Mn accumulate as oxidized, easily extractable forms in a peat layer overlying the aquifer. Although these oxides may buffer reducing plumes, they also have the potential to release metals to the groundwater, should a reduced condition be imposed on the aquifer by remedial actions. PMID:15949605

  3. Digital surfaces and thicknesses of selected hydrogeologic units within the Ozark Plateaus aquifer system, northwestern Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.; Bolyard, Susan E.; Hart, Rheannon M.; Clark, Jimmy M.

    2014-01-01

    Digital surfaces and thicknesses of nine hydrogeologic units of the Ozark Plateaus aquifer system from land surface to the top of the Gunter Sandstone in northwestern Arkansas were created using geophysical logs, drillers’ logs, geologist-interpreted formation tops, and previously published maps. The 6,040 square mile study area in the Ozark Plateaus Province includes Benton, Washington, Carroll, Madison, Boone, Newton, Marion, and Searcy Counties. The top of each hydrogeologic unit delineated on geophysical logs was based partly on previously published reports and maps and also from drillers’ logs. These logs were then used as a basis to contour digital surfaces showing the top and thickness of the Fayetteville Shale, the Boone Formation, the Chattanooga Shale, the Everton Formation, the Powell Dolomite, the Cotter Dolomite, the Roubidoux Formation, the Gasconade Dolomite, and the Gunter Sandstone.

  4. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer and intermediate aquifer system in southwest Florida

    USGS Publications Warehouse

    Sacks, Laura A.; Tihansky, Ann B.

    1996-01-01

    In southwest Florida, sulfate concentrations in water from the Upper Floridan aquifer and overlying intermediate aquifer system are commonly above 250 milligrams per liter (the drinking water standard), particularly in coastal areas. Possible sources of sulfate include dissolution of gypsum from the deeper part of the Upper Floridan aquifer or the middle confining unit, saltwater in the aquifer, and saline waters from the middle confining unit and Lower Floridan aquifer. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated for the Peace and Myakka River Basins and adjacent coastal areas of southwest Florida. Samples were collected from 63 wells and a saline spring, including wells finished at different depth intervals of the Upper Floridan aquifer and intermediate aquifer system at about 25 locations. Sampling focused along three ground-water flow paths (selected based on a predevelopment potentiometric-surface map). Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (delta deuterium, oxygen-18, carbon-13 of inorganic carbon, and sulfur-34 of sulfate and sulfide); the ratio of strontium-87 to strontium-86 was analyzed for waters along one of the flow paths. Chemical and isotopic data indicate that dedolomitization reactions (gypsum and dolomite dissolution and calcite precipitation) control the chemical composition of water in the Upper Floridan aquifer in inland areas. This is confirmed by mass-balance modeling between wells in the shallowest interval in the aquifer along the flow paths. However, gypsum occurs deeper in the aquifer than these wells. Upwelling of sulfate-rich water that previously dissolved gypsum in deeper parts of the aquifer is a more likely source of sulfate than gypsum dissolution in shallow parts of the aquifer. This deep ground water moves to shallower zones in the aquifer discharge area. Saltwater from the Upper Floridan aquifer

  5. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    NASA Astrophysics Data System (ADS)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  6. Origin of the groundwater salinity and geochemical processes in detrital and carbonate aquifers: Case of Chougafiya basin (Central Tunisia)

    NASA Astrophysics Data System (ADS)

    Farid, Intissar; Zouari, Kamel; Rigane, Adel; Beji, Ridha

    2015-11-01

    Comprehensive investigations of groundwaters were performed in the detrital and carbonate aquifers of the Chougafiya basin, central Tunisia. In the present review, hydrochemistry and isotopic tools were combined to get an insight into the processes controlling mineralization, recharge conditions, flow pattern of groundwater and C chemistry in the investigated hydrological system. Analysis of the dissolved constituents revealed that several processes controlled the observed chemical composition: (i) the dissolution of evaporitic minerals, (ii) cation exchange reactions, (iii) sulfate reduction under anaerobic conditions, (iv) incongruent dissolution of carbonate minerals (calcite, dolomite) coupled with gypsum dissolution and calcite precipitation, and (v) silicates weathering. Data inferred from 18O and deuterium isotopes in groundwater samples indicated recharge with modern rainfall. Water characterized by lower δ18O and δ2H values is interpreted as recharged by non-evaporated rainfall originating from Mediterranean and Atlantic air masses. However, water with relatively enriched δ18O and δ2H contents is thought to reflect the occurrence of an evaporation process related to the long term practice of flood irrigation. The radiogenic (3H) isotope data provided insight into the presence of two recharge periods in the investigated groundwaters. Waters with 3H contents of <1 TU indicated a pre-nuclear recharge. Waters with 3H contents of >1 TU clearly suggested the occurrence of a contemporaneous recharge probably during the last two decades. Carbon isotopes provided some insights into the timescales of groundwater flow, but mainly revealed that main sources of C are active in the system. These are likely: dissolved biogenic CO2, carbonate dissolution and incongruent reaction of the carbonate matrix. Mean residence times were determined after correction of the initial activities for dead C from the rock matrix and suggest ages ranging from the present day to the

  7. New Insight into Carbon Nanotube Electronic Structure Selectivity

    SciTech Connect

    Sumpter, Bobby G; Meunier, Vincent; Jiang, Deen

    2009-01-01

    The fundamental role of aryl diazonium salts for post synthesis selectivity of carbon nanotubes is investigated using extensive electronic structure calculations. The resulting understanding for diazonium salt based selective separation of conducting and semiconducting carbon nanotubes shows how the primary contributions come from the interplay between the intrinsic electronic structure of the carbon nanotubes and that of the anion of the salt. We demonstrate how the electronic transport properties change upon the formation of charge transfer complexes and upon their conversion into covalently attached functional groups. Our results are found to correlate well with experiments and provide for the first time an atomistic description for diazonium salt based chemical separation of carbon nanotubes

  8. Numerical simulation of the basin scale hydrogeological impacts of carbon sequestration in deep saline aquifers of the St. Lawrence Lowlands

    NASA Astrophysics Data System (ADS)

    Girou, O.; Lemieux, J. M.; Malo, M.

    2015-12-01

    Full-scale carbon capture and storage in deep saline aquifers implies injecting important quantities of carbon in order to significantly reduce greenhouse gases emissions. At the basin scale, impacts related to CO2 injection are pressure perturbation as well as brine migration into freshwater aquifers. In this study, potential impacts of an industrial-scale carbon capture and storage project in Bécancour (Quebec, Canada), in the St. Lawrence Lowlands basin, are discussed, as well as the role played by regional normal faults that divide the basin into multiple compartments. The basin is 300 km long and 90 km wide, formed by sub-horizontal Paleozoic formations on top of which the Utica and Lorraine shale formations represent the caprock of the potential CO2reservoir. These formations cover most of the basin, except in its eroded northwestern part, located between 10 to 40 km away from the potential injection sites. Three injection scenarios were considered, corresponding to greenhouse gases emissions from large emitters located; in Bécancour industrial park, in a larger area that allow affordable transport and in the entire basin without considering transport costs (1, 5, 10 Mt/yr). The numerical model FEFLOW was used to simulate CO2 injection into different compartments to evaluate pressure build up propagation and brine migration in order to define which compartments are best suited for long-term storage. The simulations considered an injection period of 100 years and post-injections period of 1000 years. Numerical simulations indicate that normal faults, which exhibit a low hydraulic conductivity, play a major role orienting pressure build-up and brine migration. Due to the presence of normal faults, no pressure build up occurred close to the surface. Similarly, preliminary mass transport simulations show very limited brine migration. These first results indicate that basin-scale impacts of carbon injection are low for the 3 injection scenarios, however, the

  9. Lithologic properties of carbonate-rock aquifers at five test wells in the Coyote Spring Valley Area, southern Nevada, as determined from geophysical logs. Water resources investigation report

    SciTech Connect

    Berger, D.L.

    1992-01-01

    Regional ground-water flow systems in the carbonate-rock aquifers in southern Nevada were evaluated as potential sources for water supply as part of the Nevada Carbonate Aquifers Program. Geophysical log analyses indicated that the test wells penetrate carbonate rocks, which vary in composition from limestone to dolomite and include mixtures of both. Calcite was found to be the predominant matrix mineral and shales made up of only a small percentage of the overall rock. Bulk-density measurements averaged 2.65 grams per cubic centimeter and the matrix density estimates averaged 2.76 grams per cubic centimeter. Increased amounts of silica in the matrix mineralogy were associated with greater total porosity values. The log analyses indicated an average of 4.7 percent porosity for 43 zones in the test wells.

  10. Method and apparatus for selective removal of carbon monoxide

    DOEpatents

    Borup, Rodney L.; Skala, Glenn W.; Brundage, Mark A.; LaBarge, William J.

    2000-01-01

    There is provided a method and apparatus for treatment of a hydrogen-rich gas to reduce the carbon monoxide content thereof by reacting the carbon monoxide in the gas with an amount of oxygen sufficient to oxidize at least a portion of the carbon monoxide in the presence of a catalyst in a desired temperature range without substantial reaction of hydrogen. The catalyst is an iridium-based catalyst dispersed on, and supported on, a carrier. In the presence of the catalyst, carbon monoxide in a hydrogen-rich feed gas is selectively oxidized such that a product stream is produced with a very low carbon monoxide content.

  11. Carbon-14 age and chemical evolution of Ca(HCO3)2-type groundwater of age less than 8,000 years in a confined sandy and muddy Pleistocene aquifer, Japan

    NASA Astrophysics Data System (ADS)

    Machida, Isao; Suzuki, Yohey; Takeuchi, Mio

    2013-09-01

    The Pleistocene Kimitsu aquifer was selected for examination of the relationship between groundwater age and chemical evolution of Ca(HCO3)2-type groundwater. For the most part, the aquifer is confined and composed mainly of quartz and feldspar with a small amount of calcite. The groundwater ages calculated by 14C were adjusted by using a carbon mass-balance method and corrected for effects of 14C diffusion. Groundwater ages in the Kimitsu aquifer vary from modern (upgradient) to approximately 2,400 years at 4.4 km from the edge of the recharge area. The 14C age was verified by groundwater velocity calculated from the hydraulic gradient and hydraulic conductivity. The confined groundwater evolved to Ca(HCO3)2-type around 50 years after recharge and this has been maintained for more than 8,300 years due to low chemical reactivity, derived from equilibrium with calcite, kaolinite and Ca-montmorillonite. In addition, high pH prevents the dissolution of Fe and Mn. Consequently, the rate of increase in electrical conductivity ranges from 10 to 30 μS/cm per 1,000 years. On the other hand, leakage from the deep region, which is recognized from high Cl- levels, causes remarkable increases in CH4 and HCO3 - concentrations, resulting in an apparent sulfidic zone at 500-m depth in most downgradient regions.

  12. Analysis of Responses From Hydraulic Testing of the Lower Carbonate Aquifer at Yucca Flat, Nevada Test Site, Nye County, Nevada

    NASA Astrophysics Data System (ADS)

    Bhark, E. W.; Ruskauff, G.

    2005-12-01

    The Yucca Flat corrective action unit extends over an approximately 120 square-mile basin at the Nevada Test Site (NTS), southern Nevada, and was the site for over 650 historical underground nuclear tests. The lower carbonate aquifer (LCA), roughly 1,800 feet below ground surface at Yucca Flat and with a confined thickness of several thousand feet, is the primary aquifer for much of southern Nevada and underlies the full extent of Yucca Flat. Within the last decade, long-term (multiple-day) single- and multiple-well hydraulic tests have been performed to better define aquifer properties over larger scales. The LCA is highly heterogeneous, both laterally and vertically across Yucca Flat, reflecting differences in fracturing and fault density. As such, analysis of the recent testing data requires the consideration of heterogeneous hydraulic properties at multiple spatial scales. Three individual hydraulic tests are presented that portray the marked spatial variability of hydraulic properties related to both local fracturing and basin-scale faulting across Yucca Flat. Two ten-day single-well tests (wells ER-7-1, ER-6-2) and one ninety-day multiple-well test (well cluster ER-6-1) are considered. Interpretive and numerical analyses are based upon the log-log diagnostic plots of drawdown and recovery from pumping, utilizing both the head change and derivative. Heterogeneity is considered using the flow dimension, which represents a variable formation area of flow away from the well, and proves to be a fundamental analytical tool. All hydraulic parameter estimates, including flow dimension, are complete with a measure of uncertainty. The composite interpretation of all data results in a conceptual flow model representative of two spatially continuous scales. At the larger basin (km) scale, the data indicate a fracture- or high permeability strip-dominated flow regime created by fault-related features. Ubiquitous north-south trending faults throughout Yucca Flat appear to

  13. Microbial community evolution during simulated managed aquifer recharge in response to different biodegradable dissolved organic carbon (BDOC) concentrations.

    PubMed

    Li, Dong; Alidina, Mazahirali; Ouf, Mohamed; Sharp, Jonathan O; Saikaly, Pascal; Drewes, Jörg E

    2013-05-01

    This study investigates the evolution of the microbial community in laboratory-scale soil columns simulating the infiltration zone of managed aquifer recharge (MAR) systems and analogous natural aquifer sediment ecosystems. Parallel systems were supplemented with either moderate (1.1 mg/L) or low (0.5 mg/L) biodegradable dissolved organic carbon (BDOC) for a period of six months during which time, spatial (1 cm, 30 cm, 60 cm, 90 cm, and 120 cm) and temporal (monthly) analyses of sediment-associated microbial community structure were analyzed. Total microbial biomass associated with sediments was positively correlated with BDOC concentration where a significant decline in BDOC was observed along the column length. Analysis of 16S rRNA genes indicated dominance by Bacteria with Archaea comprising less than 1 percent of the total community. Proteobacteria was found to be the major phylum in samples from all column depths with contributions from Betaproteobacteria, Alphaproteobacteria and Gammaproteobacteria. Microbial community structure at all the phylum, class and genus levels differed significantly at 1 cm between columns receiving moderate and low BDOC concentrations; in contrast strong similarities were observed both between parallel column systems and across samples from 30 to 120 cm depths. Samples from 1 cm depth of the low BDOC columns exhibited higher microbial diversity (expressed as Shannon Index) than those at 1 cm of moderate BDOC columns, and both increased from 5.4 to 5.9 at 1 cm depth to 6.7-8.3 at 30-120 cm depths. The microbial community structure reached steady state after 3-4 months since the initiation of the experiment, which also resulted in an improved DOC removal during the same time period. This study suggested that BDOC could significantly influence microbial community structure regarding both composition and diversity of artificial MAR systems and analogous natural aquifer sediment ecosystems. PMID:23490107

  14. HADES : A Mission Concept for the Identification of New Saline Aquifer Sites Suitable for Carbon Capture & Storage (CCS)

    NASA Astrophysics Data System (ADS)

    Pechorro, Ed; Lecuyot, Arnaud; Bacon, Andrew; Chalkley, Simon; Milnes, Martin; Williams, Ivan; Williams, Stuart; Muthu, Kavitha

    2014-05-01

    The Hidden Aquifer & Deep Earth Sounder (HADES) is a ground penetrating radar mission concept for identifying new saline aquifer sites suitable for Carbon Capture & Storage (CCS). HADES uses a newly proposed type of Earth Observation technique, previously deployed in Mars orbit to search for water. It has been proposed to globally map the sub-surface layers of Earth's land area down to a maximum depth of 3km to detect underground aquifers of suitable depth and geophysical conditions for CCS. We present the mission concept together with the approach and findings of the project from which the concept has arisen, a European Space Agency (ESA) study on "Future Earth Observation Missions & Techniques for the Energy Sector" performed by a consortium of partners comprising CGI and SEA. The study aims to improve and increase the current and future application of Earth Observation in provision of data and services to directly address long term energy sector needs for a de-carbonised economy. This is part of ESA's cross-agency "Space and Energy" initiative. The HADES mission concept is defined by our specification of (i) mission requirements, reflecting the challenges and opportunities with identifying CCS sites from space, (ii) the observation technique, derived from ground penetrating radar, and (iii) the preliminary system concept, including specification of the resulting satellite, ground and launch segments. Activities have also included a cost-benefit analysis of the mission, a defined route to technology maturation, and a preliminary strategic plan towards proposed implementation. Moreover, the mission concept maps to a stakeholder analysis forming the initial part of the study. Its method has been to first identify the user needs specific to the energy sector in the global transition towards a de-carbonised economy. This activity revealed the energy sector requirements geared to the identification of suitable CCS sites. Subsequently, a qualitative and quantitative

  15. The effect of hydrogeological conditions on variability and dynamic of groundwater recharge in a carbonate aquifer at local scale

    NASA Astrophysics Data System (ADS)

    Dvory, Noam Zach; Livshitz, Yakov; Kuznetsov, Michael; Adar, Eilon; Yakirevich, Alexander

    2016-04-01

    Groundwater recharge in fractured karstic aquifers is particularly difficult to quantify due to the rock mass's heterogeneity and complexity that include preferential flow paths along karst conduits. The present study's major goals were to assess how the changes in lithology, as well as the fractured karst systems, influence the flow mechanism in the unsaturated zone, and to define the spatial variation of the groundwater recharge at local scale. The study area is located within the fractured carbonate Western Mountain aquifer (Yarkon-Taninim), west of the city of Jerusalem at the Ein Karem (EK) production well field. Field monitoring included groundwater level observations in nine locations in the study area during years 1990-2014. The measured groundwater level series were analyzed with the aid of one-dimensional, dual permeability numerical model of water flow in variably saturated fractured-porous media, which was calibrated and used to estimate groundwater recharge at nine locations. The recharge values exhibit significant spatial and temporal variation with mean and standard deviation values of 216 and 113 mm/year, respectively. Based on simulations, relationships were established between precipitation and groundwater recharge in each of the nine studied sites and compared with similar ones obtained in earlier regional studies. Simulations show that fast and slow flow paths conditions also influence annual cumulative groundwater recharge dynamic. In areas where fast flow paths exist, most of the groundwater recharge occurs during the rainy season (60-80% from the total recharge for the tested years), while in locations with slow flow path conditions the recharge rate stays relatively constant with a close to linear pattern and continues during summer.

  16. Removal of dissolved organic carbon by aquifer material: Correlations between column parameters, sorption isotherms and octanol-water partition coefficient.

    PubMed

    Pradhan, Snigdhendubala; Boernick, Hilmar; Kumar, Pradeep; Mehrotra, Indu

    2016-07-15

    The correlation between octanol-water partition coefficient (KOW) and the transport of aqueous samples containing single organic compound is well documented. The concept of the KOW of river water containing the mixture of organics was evolved by Pradhan et al. (2015). The present study aims at determining the KOW and sorption parameters of synthetic aqueous samples and river water to finding out the correlation, if any. The laboratory scale columns packed with aquifer materials were fed with synthetic and river water samples. Under the operating conditions, the compounds in the samples did not separate, and all the samples that contain more than one organic compound yielded a single breakthrough curve. Breakthrough curves simulated from sorption isotherms were compared with those from the column runs. The sorption parameters such as retardation factor (Rf), height of mass transfer zone (HMTZ), rate of mass transfer zone (RMTZ), breakpoint column capacity (qb) and maximum column capacity (qx) estimated from column runs, sorption isotherms and models developed by Yoon-Nelson, Bohart-Adam and Thomas were in agreement. The empirical correlations were found between the KOW and sorption parameters. The transport of the organics measured as dissolved organic carbon (DOC) through the aquifer can be predicted from the KOW of the river water and other water samples. The novelty of the study is to measure KOW and to envisage the fate of the DOC of the river water, particularly during riverbank filtration. Statistical analysis of the results revealed a fair agreement between the observed and computed values. PMID:27082255

  17. Understanding of the carbon dioxide sequestration in extremely low-permeability saline aquifers in the Ordos Basin

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Xie, J.; Hu, L.; Wang, Y.; Chen, M.

    2014-12-01

    A full-chain CCS demonstration project was started in 2010 by capturing and injecting around 100,000 tons of CO2 per annum into extremely low-permeability sandstone formations in the northeastern Ordos basin, Inner Mongonia, China. It is the first demonstration project in China for the purpose of public interests by sequestrating in the deep saline aquifers massive amount of CO2 captured from a coal liquefaction company. The injection takes place in overall five brine-bearing geological units that are composed of four sandstones and one carbonate, which are interbedded with various mudstone caprocks. A single vertical well was drilled to the depth of 2826m. Injection screens are opened to more than 20 thin aquifers distributed between the depth 1690m-2453m with a total of 88 m injecting thickness. The permeability for all the storage formations is less 10 md and porosity is in the range of 1-12%. Hydraulic fracturing and formation acidizing were conducted at 10 layers for reservoir improvement. Up to present, total injection of CO2 is about 280,000 tons. Injection pressure drops from around 8.5 MP at the beginning to less than 5MP at present and most CO2 goes to shallowest injection formation at the depth interval 1690-1699 m, which has not been conducted any reservoir improvement. We intend to understand the improving injectivity of such low permeability reservoirs with numerical simulations. The modeling results reasonably describe the spreading of the CO2 plume. After 3 years of injection of CO2, the maximum migrating distance of CO2 plume is about 500 m and the pore pressure build-up is slightly less than 15 MPa. The major storage reservoir at the depth interval 1690-1699 m contributes over 80% of the storage capacity of the entire reservoir system.

  18. Well-based stable carbon isotope leakage monitoring of an aquifer overlying the CO2 storage reservoir at the Ketzin pilot site, Germany

    NASA Astrophysics Data System (ADS)

    Nowak, Martin; Myrttinen, Anssi; Zimmer, Martin; van Geldern, Robert; Barth, Johannes A. C.

    2014-05-01

    At the pilot site for CO2 storage in Ketzin, a new well-based leakage-monitoring concept was established, comprising geochemical and hydraulic observations of the aquifer directly above the CO2 reservoir (Wiese et al., 2013, Nowak et al. 2013). Its purpose was to allow early detection of un-trapped CO2. Within this monitoring concept, we established a stable carbon isotope monitoring of dissolved inorganic carbon (DIC). If baseline isotope values of aquifer DIC (δ13CDIC) and reservoir CO2 (δ13CCO2) are known and distinct from each other, the δ13CDIC has the potential to serve as an an early indicator for an impact of leaked CO2 on the aquifer brine. The observation well of the overlying aquifer was equipped with an U-tube sampling system that allowed sampling of unaltered brine. The high alkaline drilling mud that was used during well drilling masked δ13CDIC values at the beginning of the monitoring campaign. However, subsequent monitoring allowed observing on-going re-equilibration of the brine, indicated by changing δ13CDIC and other geochemical values, until values ranging around -23 ‰ were reached. The latter were close to baseline values before drilling. Baselineδ13CDIC and δ13CCO2 values were used to derive a geochemical and isotope model that predicts evolution of δ13CDIC, if CO2 from the reservoir would leak into the aquifer. The model shows that equilibrium isotope fractionation would have to be considered if CO2 dissolves in the brine. The model suggests that stable carbon isotope monitoring is a suitable tool to assess the impact of injected CO2 in overlying groundwater aquifers. However, more data are required to close gaps of knowledge about fractionation behaviour within the CO2(g) - DIC system under elevated pressures and temperatures. Nowak, M., Myrttinen, A., Zimmer, M., Wiese, B., van Geldern, R., Barth, J.A.C., 2013. Well-based, Geochemical Leakage Monitoring of an Aquifer Immediately Above a CO2 Storage Reservoir by Stable Carbon

  19. Selective Functionalization of Carbon Nanotubes: Part II

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Khare, Bishun

    2010-01-01

    An alternative method of low-temperature plasma functionalization of carbon nanotubes provides for the simultaneous attachment of molecular groups of multiple (typically two or three) different species or different mixtures of species to carbon nanotubes at different locations within the same apparatus. This method is based on similar principles, and involves the use of mostly the same basic apparatus, as those of the methods described in "Low-Temperature Plasma Functionalization of Carbon Nanotubes" (ARC-14661-1), NASA Tech Briefs, Vol. 28, No. 5 (May 2004), page 45. The figure schematically depicts the basic apparatus used in the aforementioned method, with emphasis on features that distinguish the present alternative method from the other. In this method, one exploits the fact that the composition of the deposition plasma changes as the plasma flows from its source in the precursor chamber toward the nanotubes in the target chamber. As a result, carbon nanotubes mounted in the target chamber at different flow distances (d1, d2, d3 . . .) from the precursor chamber become functionalized with different species or different mixtures of species. In one series of experiments to demonstrate this method, N2 was used as the precursor gas. After the functionalization process, the carbon nanotubes from three different positions in the target chamber were examined by Fourier-transform infrared spectroscopy to identify the molecular groups that had become attached. On carbon nanotubes from d1 = 1 cm, the attached molecular groups were found to be predominantly C-N and C=N. On carbon nanotubes from d2 = 2.5 cm, the attached molecular groups were found to be predominantly C-(NH)2 and/or C=NH2. (The H2 was believed to originate as residual hydrogen present in the nanotubes.) On carbon nanotubes from d3 = 7 cm no functionalization could be detected - perhaps, it was conjectured, because this distance is downstream of the plasma source, all of the free ions and free radicals of

  20. Reactive Transport Modeling of the Enhancement of Density-Driven CO2 Convective Mixing in Carbonate Aquifers and its Potential Implication on Geological Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Islam, Akand; Sun, Alexander Y.; Yang, Changbing

    2016-04-01

    We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the density increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Early saturation of the reservoir can have negative impact on CO2 sequestration.

  1. Reactive transport modeling of the enhancement of density-driven CO2 convective mixing in carbonate aquifers and its potential implication on geological carbon sequestration

    DOE PAGESBeta

    Islam, Akand; Sun, Alexander Y.; Yang, Changbing

    2016-04-20

    We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the densitymore » increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Furthermore, early saturation of the reservoir can have negative impact on CO2 sequestration.« less

  2. Reactive Transport Modeling of the Enhancement of Density-Driven CO2 Convective Mixing in Carbonate Aquifers and its Potential Implication on Geological Carbon Sequestration.

    PubMed

    Islam, Akand; Sun, Alexander Y; Yang, Changbing

    2016-01-01

    We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the density increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Early saturation of the reservoir can have negative impact on CO2 sequestration. PMID:27094448

  3. Reactive Transport Modeling of the Enhancement of Density-Driven CO2 Convective Mixing in Carbonate Aquifers and its Potential Implication on Geological Carbon Sequestration

    PubMed Central

    Islam, Akand; Sun, Alexander Y.; Yang, Changbing

    2016-01-01

    We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the density increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Early saturation of the reservoir can have negative impact on CO2 sequestration. PMID:27094448

  4. Methods for selective functionalization and separation of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H (Inventor); Smalley, Richard E. (Inventor); Marek, legal representative, Irene Marie (Inventor)

    2011-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  5. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 1. Sulfate from confining beds as an oxidant in microbial CO2 production

    USGS Publications Warehouse

    Chapelle, F.H.; McMahon, P.B.

    1991-01-01

    A primary source of dissolved inorganic carbon (DIC) in the Black Creek aquifer of South Carolina is carbon dioxide produced by microbially mediated oxidation of sedimentary organic matter. Groundwater chemistry data indicate, however, that the available mass of inorganic electron acceptors (oxygen, Fe(III), and sulfate) and observed methane production is inadequate to account for observed CO2 production. Although sulfate concentrations are low (approximately 0.05-0.10 mM) in aquifer water throughout the flow system, sulfate concentrations are greater in confining-bed pore water (0.4-20 mM). The distribution of culturable sulfate-reducing bacteria in these sediments suggests that this concentration gradient is maintained by greater sulfate-reducing activity in sands than in clays. Calculations based on Fick's Law indicate that possible rates of sulfate diffusion to aquifer sediments are sufficient to explain observed rates of CO2 production (about 10-5 mmoll-1 year-1), thus eliminating the apparent electron-acceptor deficit. Furthermore, concentrations of dissolved hydrogen in aquifer water are in the range characteristic of sulfate reduction (2-6 nM), which provides independent evidence that sulfate reduction is the predominant terminal electron-accepting process in this system. The observed accumulation of pyrite- and calcite-cemented sandstones at sand-clay interfaces is direct physical evidence that these processes have been continuing over the history of these sediments. ?? 1991.

  6. EXPERIMENTAL EVALUATION OF CHEMICAL SEQUESTRATION OF CARBON DIOXIDE IN DEEP AQUIFER MEDIA - PHASE II

    SciTech Connect

    Neeraj Gupta; Bruce Sass; Jennifer Ickes

    2000-11-28

    In 1998 Battelle was selected by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under a Novel Concepts project grant to continue Phase II research on the feasibility of carbon dioxide (CO{sub 2}) sequestration in deep saline formations. The focus of this investigation is to conduct detailed laboratory experiments to examine factors that may affect chemical sequestration of CO{sub 2} in deep saline formations. Reactions between sandstone and other geologic media from potential host reservoirs, brine solutions, and CO{sub 2} are being investigated under high-pressure conditions. Some experiments also include sulfur dioxide (SO{sub 2}) gases to evaluate the potential for co-injection of CO{sub 2} and SO{sub 2} related gases in the deep formations. In addition, an assessment of engineering and economic aspects is being conducted. This current Technical Progress Report describes the status of the project as of September 2000. The major activities undertaken during the quarter included several experiments conducted to investigate the effects of pressure, temperature, time, and brine composition on rock samples from potential host reservoirs. Samples (both powder and slab) were taken from the Mt. Simon Sandstone, a potential CO{sub 2} host formation in the Ohio, the Eau Claire Shale, and Rome Dolomite samples that form the caprock for Mt. Simon Sandstone. Also, a sample with high calcium plagioclase content from Frio Formation in Texas was used. In addition, mineral samples for relatively pure Anorthite and glauconite were experimented on with and without the presence of additional clay minerals such as kaolinite and montmorillonite. The experiments were run for one to two months at pressures similar to deep reservoirs and temperatures set at 50 C or 150 C. Several enhancements were made to the experimental equipment to allow for mixing of reactants and to improve sample collection methods. The resulting fluids (gases and liquids) as

  7. Surface selective membranes for carbon dioxide separation

    SciTech Connect

    Luebke, D.R.; Pennline, H.W.; Myers, C.R.

    2005-09-01

    In this study, hybrid membranes have been developed for the selective separation of CO2 from mixtures containing H2. Beginning with commercially available Pall alumina membrane tubes with nominal pore diameter of 5 nm, hybrids were produced by silation with a variety of functionalities designed to facilitate the selective adsorption of CO2 onto the pore surface. The goal is to produce a membrane which can harness the power of surface diffusion to give the selectivity of polymer membranes with the permeance of inorganic membranes.

  8. Testing the 14C ages and conservative behavior of dissolved 14C in a carbonate aquifer in Yucca Flat, Nevada (USA), using 36Cl from groundwater and packrat middens

    NASA Astrophysics Data System (ADS)

    Kwicklis, Edward; Farnham, Irene

    2014-09-01

    Corrected groundwater 14C ages from the carbonate aquifer in Yucca Flat at the former Nevada Test Site (now the Nevada National Security Site), USA, were evaluated by comparing temporal variations of groundwater 36Cl/Cl estimated with these 14C ages with published records of meteoric 36Cl/Cl variations preserved in packrat middens (piles of plant fragments, fecal matter and urine). Good agreement between these records indicates that the groundwater 14C ages are reasonable and that 14C is moving with chloride without sorbing to the carbonate rock matrix or fracture coatings, despite opposing evidence from laboratory experiments. The groundwater 14C ages are consistent with other hydrologic evidence that indicates significant basin infiltration ceased 8,000 to 10,000 years ago, and that recharge to the carbonate aquifer is from paleowater draining through overlying tuff confining units along major faults. This interpretation is supported by the relative age differences as well as hydraulic head differences between the alluvial and volcanic aquifers and the carbonate aquifer. The carbonate aquifer 14C ages suggest that groundwater velocities throughout much of Yucca Flat are about 2 m/yr, consistent with the long-held conceptual model that blocking ridges of low-permeability rock hydrologically isolate the carbonate aquifer in Yucca Flat from the outlying regional carbonate flow system.

  9. Influence of a compost layer on the attenuation of 28 selected organic micropollutants under realistic soil aquifer treatment conditions: insights from a large scale column experiment.

    PubMed

    Schaffer, Mario; Kröger, Kerrin Franziska; Nödler, Karsten; Ayora, Carlos; Carrera, Jesús; Hernández, Marta; Licha, Tobias

    2015-05-01

    Soil aquifer treatment is widely applied to improve the quality of treated wastewater in its reuse as alternative source of water. To gain a deeper understanding of the fate of thereby introduced organic micropollutants, the attenuation of 28 compounds was investigated in column experiments using two large scale column systems in duplicate. The influence of increasing proportions of solid organic matter (0.04% vs. 0.17%) and decreasing redox potentials (denitrification vs. iron reduction) was studied by introducing a layer of compost. Secondary effluent from a wastewater treatment plant was used as water matrix for simulating soil aquifer treatment. For neutral and anionic compounds, sorption generally increases with the compound hydrophobicity and the solid organic matter in the column system. Organic cations showed the highest attenuation. Among them, breakthroughs were only registered for the cationic beta-blockers atenolol and metoprolol. An enhanced degradation in the columns with organic infiltration layer was observed for the majority of the compounds, suggesting an improved degradation for higher levels of biodegradable dissolved organic carbon. Solely the degradation of sulfamethoxazole could clearly be attributed to redox effects (when reaching iron reducing conditions). The study provides valuable insights into the attenuation potential for a wide spectrum of organic micropollutants under realistic soil aquifer treatment conditions. Furthermore, the introduction of the compost layer generally showed positive effects on the removal of compounds preferentially degraded under reducing conditions and also increases the residence times in the soil aquifer treatment system via sorption. PMID:25723339

  10. Mesoporous Carbon Membranes for Selective Gas Separations

    SciTech Connect

    2009-04-01

    This factsheet describes a study whose focus is on translating a novel class of material developed at Oak Ridge National Laboratory—selfassembled mesoporous carbon—into robust, efficient membrane systems for selective industrial gas separations.

  11. Integrating NZVI and carbon substrates in a non-pumping reactive wells array for the remediation of a nitrate contaminated aquifer.

    PubMed

    Hosseini, Seiyed Mossa; Tosco, Tiziana

    2015-08-01

    The work explores the efficacy of a biochemical remediation of a nitrate-contaminated aquifer by a combination of nanoscale zero-valent iron (NZVI) and bacteria supported by carbon substrates. Nitrate removal was first assessed in batch tests, and then in a laboratory bench-scale aquifer model (60cm length×40cm width×50cm height), in which a background flow was maintained. Water and natural sandy material of a stratified aquifer were used in the tests to enhance the reliability of the results. An array of non-pumping-reactive wells (NPRWs) filled with NZVI (d50=50nm, and SSA=22.5m(2)/g) mixed with carbon substrates (beech sawdust and maize cobs) was installed in the bench-scale aquifer model to intercept the flow and remove nitrate (NO3(-) conc.=105mg/l). The NPRW array was preferred to a continuous permeable reactive barrier (PRB) since wells can be drilled at greater depths compared to PRBs. The optimal well diameter, spacing among the NPRWs and number of wells in the bench-scale model were designed based on flow simulations using the semi-analytical particle tracking (advection) model, PMPATH. An optimal configuration of four wells, 35mm diameter, and capture width of 1.8 times the well diameter was obtained for a hydraulic conductivity contrast between reactive materials in the wells and aquifer media (KPM/Kaq=16.5). To avoid excessive proximity between wells, the system was designed so that the capture of the contaminated water was not complete, and several sequential arrays of wells were preferred. To simulate the performance of the array, the water that passed through the bench-scale NPRW system was re-circulated to the aquifer inlet, and a nitrate degradation below the limit target concentration (10mg/l) was obtained after 13days (corresponding to 13 arrays of wells in the field). The results of this study demonstrated that using the NZVI-mixed-carbon substrates in the NPRW system has a great potential for in-situ nitrate reduction in contaminated

  12. Selection and preparation of activated carbon for fuel gas storage

    DOEpatents

    Schwarz, James A.; Noh, Joong S.; Agarwal, Rajiv K.

    1990-10-02

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  13. Status of water levels and selected water-quality conditions in the Sparta-Memphis aquifer in Arkansas and the Sparta aquifer in Louisiana, spring-summer 2001

    USGS Publications Warehouse

    Schrader, T.P.

    2004-01-01

    During the spring of 2001, water levels were measured in 427 wells in the Sparta-Memphis aquifer in Arkansas and the Sparta aquifer in Louisiana. Water-quality samples were collected for temperature and specific-conductance measurements during the spring and summer of 2001 from 150 wells in Arkansas in the Sparta-Memphis aquifer. Dissolved chloride samples were collected and analyzed for 87 of the 150 wells. Water-quality samples were not collected in Louisiana. Maps of areal distribution of potentiometric surface, difference in water-level measurements from 1997 to 2001, and specific conductance generated from these data reveal spatial trends across the study area. The highest water-level altitude measured in Arkansas was 328 feet above National Geodetic Vertical Datum of 1929 (NGVD of 1929) in Grant County; the lowest water-level altitude was 197 feet below NGVD of 1929 in Union County. The highest water-level altitude measured in Louisiana was 235 feet above NGVD of 1929 in Bienville Parish; the lowest water-level altitude was 218 feet below NGVD of 1929 in Ouachita Parish. The regional direction of ground-water flow in the Sparta-Memphis aquifer in Arkansas generally is to the south-southwest in the northern half of Arkansas and to the east and south in the southern half of Arkansas; the ground-water flow in the Sparta aquifer in northern Louisiana generally is in an easterly direction toward the Mississippi River. Four cones of depression are shown in the 2001 potentiometric-surface map, centered in Columbia, Jefferson, and Union Counties in Arkansas and Ouachita Parish in Louisiana as a result of large withdrawals for industrial and public supplies. A broad depression exists in western Poinsett, Cross, and St. Francis Counties in Arkansas. A map for water-level changes from 1997 to 2001 was constructed using water-level measurements from 278 wells. The largest rise in water level measured in Arkansas was about 35 feet in Prairie County. The largest decline in

  14. Demonstration optimization analyses of pumping from selected Arapahoe aquifer municipal wells in the west-central Denver Basin, Colorado, 2010–2109

    USGS Publications Warehouse

    Banta, Edward R.; Paschke, Suzanne S.

    2012-01-01

    Declining water levels caused by withdrawals of water from wells in the west-central part of the Denver Basin bedrock-aquifer system have raised concerns with respect to the ability of the aquifer system to sustain production. The Arapahoe aquifer in particular is heavily used in this area. Two optimization analyses were conducted to demonstrate approaches that could be used to evaluate possible future pumping scenarios intended to prolong the productivity of the aquifer and to delay excessive loss of saturated thickness. These analyses were designed as demonstrations only, and were not intended as a comprehensive optimization study. Optimization analyses were based on a groundwater-flow model of the Denver Basin developed as part of a recently published U.S. Geological Survey groundwater-availability study. For each analysis an optimization problem was set up to maximize total withdrawal rate, subject to withdrawal-rate and hydraulic-head constraints, for 119 selected municipal water-supply wells located in 96 model cells. The optimization analyses were based on 50- and 100-year simulations of groundwater withdrawals. The optimized total withdrawal rate for all selected wells for a 50-year simulation time was about 58.8 cubic feet per second. For an analysis in which the simulation time and head-constraint time were extended to 100 years, the optimized total withdrawal rate for all selected wells was about 53.0 cubic feet per second, demonstrating that a reduction in withdrawal rate of about 10 percent may extend the time before the hydraulic-head constraints are violated by 50 years, provided that pumping rates are optimally distributed. Analysis of simulation results showed that initially, the pumping produces water primarily by release of water from storage in the Arapahoe aquifer. However, because confining layers between the Denver and Arapahoe aquifers are thin, in less than 5 years, most of the water removed by managed-flows pumping likely would be supplied

  15. Selecting activated carbon for water and wastewater treatability studies

    SciTech Connect

    Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C.

    2007-10-15

    A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.

  16. Spring Database for the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Pavelko, Michael T.

    2007-01-01

    A database containing nearly 3,400 springs was developed for the Basin and Range carbonate-rock aquifer system study area in White Pine County, Nevada, and adjacent areas in Nevada and Utah. The spring database provides a foundation for field verification of springs in the study area. Attributes in the database include location, geographic and general geologic settings, and available discharge and temperature data for each spring.

  17. Water Levels and Selected Water-Quality Conditions in the Sparta-Memphis Aquifer (Middle Claiborne Aquifer) in Arkansas, Spring-Summer 2007

    USGS Publications Warehouse

    Schrader, T.P.

    2009-01-01

    The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group (herein referred to as the Sparta Sand and the Memphis Sand, respectively), since the 1920s. Groundwater withdrawals have increased while water levels have declined since monitoring was initiated. Herein, aquifers in the Sparta Sand and Memphis Sand will be referred to as the Sparta-Memphis aquifer throughout Arkansas. During the spring of 2007, 309 water levels were measured in wells completed in the Sparta-Memphis aquifer. During the summer of 2007, 129 water-quality samples were collected and measured for temperature and specific conductance and 102 were collected and analyzed for chloride from wells completed in the Sparta-Memphis aquifer. Water-level measurements collected in wells screened in the Sparta-Memphis aquifer were used to produce a regional potentiometric-surface map. The regional direction of groundwater flow in the Sparta-Memphis aquifer is generally to the south-southeast in the northern half of Arkansas and to the east and south in the southern half of Arkansas, away from the outcrop area except where affected by large ground-water withdrawals. The highest water-level altitude measured in the Sparta-Memphis aquifer was 326 feet above National Geodetic Vertical Datum of 1929, located in Grant County in the outcrop at the western boundary of the study area; the lowest water-level altitude was 161 feet below National Geodetic Vertical Datum of 1929 in Union County near the southern boundary of the study area. Eight cones of depression (generally represented by closed contours) are located in the following counties: Bradley, Drew, and Ashley; Calhoun; Cleveland; Columbia; Crittenden; Arkansas, Jefferson, and Lincoln; Cross and Poinsett; and Union. Two large depressions are shown on the 2007 potentiometric-surface map, centered

  18. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  19. Hydrogeologic and geospatial data for the assesment of focused recharge to the Carbonate-Rock Aquifer in Genesee County, New York

    USGS Publications Warehouse

    Reddy, James E.; Kappel, William M.

    2010-01-01

    Existing hydrogeologic and geospatial data useful for the assessment of focused recharge to the carbonate-rock aquifer in the central part of Genesee County, NY, were compiled from numerous local, State, and Federal agency sources. Data sources utilized in this pilot study include available geospatial datasets from Federal and State agencies, interviews with local highway departments and the Genesee County Soil and Water Conservation District, and an initial assessment of karst features through the analysis of ortho-photographs, with minimal field verification. The compiled information is presented in a series of county-wide and quadrangle maps. The county-wide maps present generalized hydrogeologic conditions including distribution of geologic units, major faults, and karst features, and bedrock-surface and water-table configurations. Ten sets of quadrangle maps of the area that overlies the carbonate-rock aquifer present more detailed and additional information including distribution of bedrock outcrops, thin and (or) permeable soils, and karst features such as sinkholes and swallets. Water-resource managers can utilize the information summarized in this report as a guide to their assessment of focused recharge to, and the potential for surface contaminants to reach the carbonate-rock aquifer.

  20. Computation of bedrock-aquifer recharge in northern Westchester County, New York, and chemical quality of water from selected bedrock wells

    USGS Publications Warehouse

    Wolcott, Stephen W.; Snow, Robert F.

    1995-01-01

    An empirical technique was used to calculate the recharge to bedrock aquifers in northern Westchester County. This method requires delineation of ground-water divides within the aquifer area and values for (1) the extent of till and exposed bedrock within the aquifer area, and (2) mean annual runoff. This report contains maps and data needed for calculation of recharge in any given area within the 165square-mile study area. Recharge was computed by this technique for a 93-square-mile part of the study area and used a ground-water-flow model to evaluate the reliability of the method. A two-layer, steady-state model of the selected area was calibrated. The area consists predominantly of bedrock overlain by small localized deposits of till and stratified drill Ground-water-level and streamflow data collected in mid-November 1987 were used for model calibration. The data set approximates average annual conditions. The model was calibrated from (1) estimates of recharge as computed through the empirical technique, and (2) a range of values for hydrologic properties derived from aquifer tests and published literature. Recharge values used for model simulation appear to be reasonable for average steady-state conditions. Water-quality data were collected from 53 selected bedrock wells throughout northern Westchester County to define the background ground-water quality. The constituents and properties for which samples were analyzed included major cations and anions, temperature, pH, specific conductance, and hardness. Results indicate little difference in water quality among the bedrock aquifers within the study area. Ground water is mainly the calcium-bicarbonate type and is moderately hard. Average concentrations of sodium, sulfate, chloride, nitrate, iron, and manganese were within acceptable limits established by the U.S. Environmental Protection Agency for domestic water supply.

  1. Installation and sampling of observation wells and analyses of water from the shallow aquifer at selected waste-disposal sites in the Memphis area, Tennessee

    USGS Publications Warehouse

    Parks, W.S.; Graham, D.D.; Lowery, J.F.

    1982-01-01

    Observation wells were installed and sampled at six abandoned waste-disposal sites in the Memphis area that have been identified as having received unknown quantities and types of industrial waste. Ten wells were installed adjacent to and downgradient from these sites in the shallow water-table aquifer. Water samples were collected from these 10 wells and from two other wells in the shallow water-table aquifer. Most wells were sampled twice -- initially in the early summer when water levels were high and again in the fall when water levels were low. Other wells were sampled only once in either the summer or fall. The water was analyzed for common constituents, selected trace constituents, and selected organic compounds. (USGS)

  2. An approach towards site selection for water banking in unconfined aquifers through artificial recharge

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Chandrashekhar

    2015-04-01

    Selection of sites for water banking is very crucial for successful recovery of groundwater at the time of need. Attempts were made earlier to demarcate artificial recharge sites, and several indices were proposed for post-event evaluation of site-efficiency. In the present study a step-by-step method has been proposed for pre-event site selection for groundwater banking, based on meteorological, hydrological, hydraulic and hydrogeological parameters. Further, an index has been developed to evaluate site-efficiency. The proposed Normalized Difference Water Recovery Index (NDWRI) is the normalized ratio of water input and output in terms of recharge and productivity. Greater the value of yield, productivity, and the NDWRI higher is the suitability of the site for subsurface water banking. The index assumes a linear relation between recharge and sustainability of well productivity. In this article, the proposed methodology is explained and the related issues are discussed with a case study in the hard-rock Aravalli terrain of India.

  3. A 3D density-dependent model for assessment and optimization of water management policy in a coastal carbonate aquifer exploited for water supply and fish farming

    NASA Astrophysics Data System (ADS)

    Nocchi, M.; Salleolini, M.

    2013-06-01

    The Ansedonia promontory (southern Tuscany, Italy) is characterized by the presence of fish farms that pump thermal saline groundwater. The water is extracted from a carbonate aquifer with high permeability due to fracturing and karstification that is also exploited for irrigation purposes and domestic use. Such exploitation has led to the degradation of groundwater quality, producing conflict among the different users. The conceptualization of the aquifer allowed the development of a 3D finite element density-dependent numerical model using the FEFLOW code. The slightly negative freshwater budget in the very humid hydrologic year of 2004-2005 revealed that the aquifer was overexploited, especially due to the extraction of freshwater (along with seawater) from fish farm wells and pumping from public supply wells. The model was also used to forecast the quantitative and qualitative evolution of resources over time, thus testing the effects of different management hypotheses. Results demonstrate that the sustainable management of the aquifer mostly depends on withdrawals from public supply wells; the quantity extracted by fish farms only significantly affects the freshwater/saltwater interface and, locally, the salinity of groundwater. Actions to counteract seawater intrusion are proposed.

  4. Influence of Carbon and Microbial Community Priming on the Attenuation of Uranium in a Contaminated Floodplain Aquifer.

    PubMed

    Mouser, P J; N'Guessan, L A; Qafoku, N P; Sinha, M; Williams, K H; Dangelmayr, M; Resch, C T; Peacock, A; Wang, Z; Figueroa, L; Long, P E

    2015-01-01

    The capacity for subsurface sediments to sequester radionuclide contaminants, such as uranium (U), and retain them after bioremediation efforts are completed is critical to the long-term stewardship of re-mediated sites. In U bioremediation strategies, carbon amendment stimulates bioreduction of U(VI) to U(IV), immobilizing it within the sediments. Sediments enriched in natural organic matter are naturally capable of sequestering significant U, but may serve as sources to the aquifer, contributing to plume persistence. Two types of organic-rich sediments were compared to better understand U release mechanisms. Sediments that were artificially primed for U removal were retrieved from an area previously biostimulated while detrital-rich sediments were collected from a location never subject to amendment. Batch incubations demonstrated that primed sediments rapidly removed uranium from the groundwater, whereas naturally reduced sediments released a sizeable portion of U before U(VI)-reduction commenced. Column experiments confirmed that U release persisted for 65 pore volumes in naturally reduced sediments, demonstrating their sink-source behavior. Acetate addition to primed sediments shifted the microbial community from sulfate-reducing bacteria within Desulfobacteraceae to the iron-reducing Geobacteraceae and Firmicutes, associated with efficient U(VI) removal and retention, respectively. In contrast, Geobacteraceae communities in naturally reduced sediments were replaced by sequences with similarity to Pseudomonas spp. during U release, while U(VI) removal only occurred with enrichment of Firmicutes. These investigations stress the importance of characterizing zones with heterogeneous carbon pools at U-contaminated sites prior to the determination of a remedial strategy to identify areas, which may contribute to long-term sourcing of the contaminants. PMID:25047748

  5. Biodegradation of selected phenolic compounds in a simulated sandy surficial Florida aquifer

    SciTech Connect

    Lin, C.

    1989-01-01

    In this research the sorption and biodegradation of phenol, 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP) were investigated. The soil materials used were characterized as fine grained sands with negligible organic carbon contents. Freundlich sorption coefficients of 0.0158 for phenol and 0.0547 for 2,4-DCP were found. Pentachlorophenol was more strongly adsorbed with an adsorption coefficient to 1.12. In multi-compound systems competitive sorption was evident, and adsorption capacities were reduced by a margin ranging from 709S, for phenol to 309 for both DCP and PCP. All three compounds exhibited nonlinear sorption behavior with a range of exponent values from 0.56 to 0.7. Desorption coefficients showed little difference from adsorption for phenol and 2,4-DCP, but were significantly different for PCP, indicating hysteresis of PCP sorptions. The retardation factors were 1.03 for phenol, 1.16 for 2,4-DCP and 2.26 for PCP. In batch biodegradation studies using indigenous soil bacteria phenol degraded quickly t{sub {1/2}} = 12 hours and was completely destroyed within three days. 2,4-DCP was also completely degraded but had taken 23 days (t = 7 days). PCP was resistant to biodegradation with an average half-life of 120 days. In multi-compound systems, phenol gradation rates dropped off to O.4 day{sup {minus}1} (t{sub {1/2}} = 1.7 days) but PCP degradation rates increased to 0.008 day{sup {minus}1} (t{sub {1/2}} = 86 days). Biodegradation rates in column studies were obviously greater than in batch experiments, with the rate increase for PCP degradation being especially noticeable (t{sub {1/2}} = 12 days), because of larger bacterial population and the dynamic flow conditions made the substrates more available to the bacteria.

  6. U-isotopes and (226)Ra as tracers of hydrogeochemical processes in carbonated karst aquifers from arid areas.

    PubMed

    Guerrero, José Luis; Vallejos, Ángela; Cerón, Juan Carlos; Sánchez-Martos, Francisco; Pulido-Bosch, Antonio; Bolívar, Juan Pedro

    2016-07-01

    Sierra de Gádor is a karst macrosystem with a highly complex geometry, located in southeastern Spain. In this arid environment, the main economic activities, agriculture and tourism, are supported by water resources from the Sierra de Gádor aquifer system. The aim of this work was to study the levels and behaviour of some of the most significant natural radionuclides in order to improve the knowledge of the hydrogeochemical processes involved in this groundwater system. For this study, 28 groundwater and 7 surface water samples were collected, and the activity concentrations of the natural U-isotopes ((238)U, (235)U and (234)U) and (226)Ra by alpha spectrometry were determined. The activity concentration of (238)U presented a large variation from around 1.1 to 65 mBq L(-1). Elevated groundwater U concentrations were the result of oxidising conditions that likely promoted U dissolution. The PHREEQC modelling code showed that dissolved U mainly existed as uranyl carbonate complexes. The (234)U/(238)U activity ratios were higher than unity for all samples (1.1-3.8). Additionally, these ratios were in greater disequilibrium in groundwater than surface water samples, the likely result of greater water-rock contact time. (226)Ra presented a wide range of activity concentrations, (0.8 up to about 4 × 10(2) mBq L(-1)); greatest concentrations were detected in the thermal area of Alhama. Most of the samples showed (226)Ra/(234)U activity ratios lower than unity (median = 0.3), likely the result of the greater mobility of U than Ra in the aquifer system. The natural U-isotopes concentrations were strongly correlated with dissolution of sulphate evaporites (mainly gypsum). (226)Ra had a more complex behaviour, showing a strong correlation with water salinity, which was particularly evident in locations where thermal anomalies were detected. The most saline samples showed the lowest (234)U/(238)U activity ratios, probably due to fast uniform bulk mineral dissolution

  7. Selective stabilization of aliphatic organic carbon by iron oxide

    PubMed Central

    Adhikari, Dinesh; Yang, Yu

    2015-01-01

    Stabilization of organic matter in soil is important for natural ecosystem to sequestrate carbon and mitigate greenhouse gas emission. It is largely unknown what factors govern the preservation of organic carbon in soil, casting shadow on predicting the response of soil to climate change. Iron oxide was suggested as an important mineral preserving soil organic carbon. However, ferric minerals are subject to reduction, potentially releasing iron and decreasing the stability of iron-bound organic carbon. Information about the stability of iron-bound organic carbon in the redox reaction is limited. Herein, we investigated the sorptive interactions of organic matter with hematite and reductive release of hematite-bound organic matter. Impacts of organic matter composition and conformation on its sorption by hematite and release during the reduction reaction were analyzed. We found that hematite-bound aliphatic carbon was more resistant to reduction release, although hematite preferred to sorb more aromatic carbon. Resistance to reductive release represents a new mechanism that aliphatic soil organic matter was stabilized by association with iron oxide. Selective stabilization of aliphatic over aromatic carbon can greatly contribute to the widely observed accumulation of aliphatic carbon in soil, which cannot be explained by sorptive interactions between minerals and organic matter. PMID:26061259

  8. Copper crystallite in carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1993-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfurfuryl alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  9. Copper modified carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1992-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfunctional alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  10. Grafting of activated carbon cloths for selective adsorption

    NASA Astrophysics Data System (ADS)

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  11. Hydrogeology and simulation of source areas of water to production wells in a colluvium-mantled carbonate-bedrock aquifer near Shippensburg, Cumberland and Franklin Counties, Pennsylvania

    USGS Publications Warehouse

    Lindsey, Bruce D.

    2005-01-01

    This report presents the results of a study by the U.S. Geological Survey in cooperation with the Shippensburg Borough Authority to evaluate the source areas of water to production wells in a colluvium-mantled carbonate-bedrock aquifer in Cumberland and Franklin Counties, Pa. The areal extent of the zone of contribution was simulated for three production wells near Shippensburg, Pa. by use of a ground-water-flow model. A 111-square-mile area was selected as the model area and includes areas of the South Mountain Section and the Great Valley Section of the Valley and Ridge Physiographic Province. Within the model area, the geologic units in the South Mountain area are predominantly metamorphic rocks and the geologic units in the Great Valley are predominantly carbonate rocks. Hydrologic and geologic information were compiled to establish a conceptual model of ground-water flow. Characteristics of aquifer materials were determined, and streamflow and water levels were measured. Streamflow measurements in November 2003 showed all streams lost water as they flowed from South Mountain over the colluvium-mantled carbonate aquifer into the Great Valley. Some streams lost more than 1 cubic foot per second to the aquifer in this area. The Shippensburg Borough Authority owns three production wells in the model area. Two wells, Cu 969 and Fr 823, are currently (2004) used as production wells and produce 500,000 and 800,000 gallons per day, respectively. Well Cu 970 is intended to be brought on line as a production well in the future. Water levels were measured in 43 wells to use for model calibration. Water-level fluctuations and geophysical logs indicated confined conditions in well Cu 970. Ground-water flow was simulated with a model that consisted of two vertical layers, with five zones in each layer. The units were hydrostratigraphic units that initially were based on geologic formations, but boundaries were adjusted during model calibration. Model calibration resulted in

  12. Feasibility of Geophysical Monitoring of Carbon-Sequestrated Deep Saline Aquifers

    SciTech Connect

    Mallick, Subhashis; Alvarado, Vladimir

    2013-09-30

    As carbon dioxide (CO{sub 2}) is sequestered from the bottom of a brine reservoir and allowed to migrate upward, the effects of the relative permeability hysteresis due to capillary trapping and buoyancy driven migration tend to make the reservoir patchy saturated with different fluid phases over time. Seismically, such a patchy saturated reservoir induces an effective anisotropic behavior whose properties are primarily dictated by the nature of the saturation of different fluid phases in the pores and the elastic properties of the rock matrix. By combining reservoir flow simulation and modeling with seismic modeling, it is possible to derive these effective anisotropic properties, which, in turn, could be related to the saturation of CO{sub 2} within the reservoir volume any time during the post-injection scenario. Therefore, if time-lapse seismic data are available and could be inverted for the effective anisotropic properties of the reservoir, they, in combination with reservoir simulation could potentially predict the CO{sub 2} saturation directly from the time-lapse seismic data. It is therefore concluded that the time-lapse seismic data could be used to monitor the carbon sequestrated saline reservoirs. But for its successful implementation, seismic modeling and inversion methods must be integrated with the reservoir simulations. In addition, because CO{sub 2} sequestration induces an effective anisotropy in the sequestered reservoir and anisotropy is best detected using multicomponent seismic data compared to single component (P-wave) data, acquisition, processing, and analysis is multicomponent seismic data is recommended for these time-lapse studies. Finally, a successful implementation of using time-lapse seismic data for monitoring the carbon sequestrated saline reservoirs will require development of a robust methodology for inverting multicomponent seismic data for subsurface anisotropic properties.

  13. Selective detection of Escherichia coli DNA using fluorescent carbon spindles.

    PubMed

    Roy, Anurag; Chatterjee, Sabyasachi; Pramanik, Srikrishna; Devi, Parukuttyamma Sujatha; Suresh Kumar, Gopinatha

    2016-04-28

    We investigate the interaction of hydrophilic blue emitting carbon spindles with various deoxyribonucleic acids (DNA) having different base pair compositions, such as Herring testes (HT), calf thymus (CT), Escherichia coli (EC) and Micrococcus lysodeikticus (ML) DNA, to understand the mode of interaction. Interestingly, the fluorescent carbon spindles selectively interacted with E. coli DNA resulting in enhanced fluorescence of the former. Interaction of the same carbon with other DNAs exhibited insignificant changes in fluorescence. In addition, in the presence of EC DNA, the D band in the Raman spectrum attributed to the defect state completely disappeared, resulting in enhanced crystallinity. Microscopy images confirmed the wrapping of DNA on the carbon spindles leading to the assembly of spindles in the form of flowers. Dissociation of double-stranded DNA occurred upon interaction with carbon spindles, resulting in selective E. coli DNA interaction. The carbon spindles also exhibited a similar fluorescence enhancement upon treating with E. coli bacteria. These results confirm the possibility of E. coli detection in water and other liquid foods using such fluorescent carbon. PMID:27081680

  14. Selective Formation of Trimethylene Carbonate (TMC): Atmospheric Pressure Carbon Dioxide Utilization

    PubMed Central

    Buckley, Benjamin R; Patel, Anish P; Wijayantha, K G Upul

    2015-01-01

    Carbon dioxide utilisation (CDU) is currently gaining increased interest due to the abundance of CO2 and its possible application as a C1 building block. We herein report the first example of atmospheric pressure carbon dioxide incorporation into oxetane to selectively form trimethylene carbonate (TMC), which is a significant challenge as TMC is thermodynamically less favoured than its corresponding co-polymer. PMID:26213485

  15. A Review of Carbon Dioxide Selective Membranes: A Topical Report

    SciTech Connect

    Dushyant Shekhawat; David R. Luebke; Henry W. Pennline

    2003-12-01

    Carbon dioxide selective membranes provide a viable energy-saving alternative for CO2 separation, since membranes do not require any phase transformation. This review examines various CO2 selective membranes for the separation of CO2 and N2, CO2 and CH4, and CO2 and H2 from flue or fuel gas. This review attempts to summarize recent significant advances reported in the literature about various CO2 selective membranes, their stability, the effect of different parameters on the performance of the membrane, the structure and permeation properties relationships, and the transport mechanism applied in different CO2 selective membranes.

  16. Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, H.; Schröckenfuchs, T. C.; Decker, K.

    2016-03-01

    This study presents a comparative, field-based hydrogeological characterization of exhumed, inactive fault zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic importance supplying 60 % of the drinking water of Austria's capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (<1 mD) domains along faults. Fractured rocks with fracture densities varying by a factor of 10 and fracture porosities varying by a factor of 3, and dilation breccias with average porosities >3 % and permeabilities >1,000 mD form high-permeability domains. With respect to fault-zone architecture and rock content, which is demonstrated to be different for dolostone and limestone, four types of faults are presented. Faults with single-stranded minor fault cores, faults with single-stranded permeable fault cores, and faults with multiple-stranded fault cores are seen as conduits. Faults with single-stranded impermeable fault cores are seen as conduit-barrier systems. Karstic carbonate dissolution occurs along fault cores in limestones and, to a lesser degree, dolostones and creates superposed high-permeability conduits. On a regional scale, faults of a particular deformation event have to be viewed as forming a network of flow conduits directing recharge more or less rapidly towards the water table and the springs. Sections of impermeable fault cores only very locally have the potential to create barriers.

  17. Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, H.; Schröckenfuchs, T. C.; Decker, K.

    2016-08-01

    This study presents a comparative, field-based hydrogeological characterization of exhumed, inactive fault zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic importance supplying 60 % of the drinking water of Austria's capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (<1 mD) domains along faults. Fractured rocks with fracture densities varying by a factor of 10 and fracture porosities varying by a factor of 3, and dilation breccias with average porosities >3 % and permeabilities >1,000 mD form high-permeability domains. With respect to fault-zone architecture and rock content, which is demonstrated to be different for dolostone and limestone, four types of faults are presented. Faults with single-stranded minor fault cores, faults with single-stranded permeable fault cores, and faults with multiple-stranded fault cores are seen as conduits. Faults with single-stranded impermeable fault cores are seen as conduit-barrier systems. Karstic carbonate dissolution occurs along fault cores in limestones and, to a lesser degree, dolostones and creates superposed high-permeability conduits. On a regional scale, faults of a particular deformation event have to be viewed as forming a network of flow conduits directing recharge more or less rapidly towards the water table and the springs. Sections of impermeable fault cores only very locally have the potential to create barriers.

  18. Hydrogeologic framework and geochemistry of the intermediate aquifer system in parts of Charlotte, De Soto, and Sarasota counties, Florida

    USGS Publications Warehouse

    Torres, A.E.; Sacks, L.A.; Yobbi, D.K.; Knochenmus, L.A.; Katz, B.G.

    2001-01-01

    The hydrogeologic framework underlying the 600-square-mile study area in Charlotte, De Soto, and Sarasota Counties, Florida, consists of the surficial aquifer system, the intermediate aquifer system, and the Upper Floridan aquifer. The hydrogeologic framework and the geochemical processes controlling ground-water composition were evaluated for the study area. Particular emphasis was given to the analysis of hydrogeologic and geochemical data for the intermediate aquifer system. Flow regimes are not well understood in the intermediate aquifer system; therefore, hydrogeologic and geochemical information were used to evaluate connections between permeable zones within the intermediate aquifer system and between overlying and underlying aquifer systems. Knowledge of these connections will ultimately help to protect ground-water quality in the intermediate aquifer system. The hydrogeology was interpreted from lithologic and geophysical logs, water levels, hydraulic properties, and water quality from six separate well sites. Water-quality samples were collected from wells located along six ground-water flow paths and finished at different depth intervals. The selection of flow paths was based on current potentiometric-surface maps. Ground-water samples were analyzed for major ions; field parameters (temperature, pH, specific conductance, and alkalinity); stable isotopes (deuterium, oxygen-18, and carbon-13); and radioactive isotopes (tritium and carbon-14). The surficial aquifer system is the uppermost aquifer, is unconfined, relatively thin, and consists of unconsolidated sand, shell, and limestone. The intermediate aquifer system underlies the surficial aquifer system and is composed of clastic sediments interbedded with carbonate rocks. The intermediate aquifer system is divided into three permeable zones, the Tamiami/Peace River zone (PZ1), the Upper Arcadia zone (PZ2), and the Lower Arcadia zone (PZ3). The Tamiami/Peace River zone (PZ1) is the uppermost zone and is

  19. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  20. Carbonate aquifers with hydraulically non-active matrix: A case study from Poland

    NASA Astrophysics Data System (ADS)

    Rzonca, Bartłomiej

    2008-06-01

    SummaryThe Devonian carbonate (karst) rocks of the Holy Cross Mountains (Góry Świętokrzyskie) in Poland, which constitute a major water supply for the region, are the subject of the presented study. Using standard laboratory methods, the matrix hydrogeological properties (open porosity, permeability and specific yield) of the limestones and dolomites were determined. The test results showed very low open porosities of the samples, as well as an extremely low permeability. The specific yield in all the cases was zero. There was a very slight correlation between the permeability (represented by the hydraulic conductivity) and the open porosity for limestones - and no correlation for dolomites. The measured parameters do not depend on the structure of the rock matrix (classified as pelite, sparite or crystalline) nor does the occurrence of fractures. Differences in open porosity (but not in hydraulic conductivity) were observed between the samples from different structural units.

  1. Geochemical and Mineralogical Investigation for Carbon Capture and Storage, Within the Arbuckle Aquifer, Kansas

    NASA Astrophysics Data System (ADS)

    Datta, S.; Campbell, B.; Vega, M.; Barker, R. L.; Holubnyak, E.; Watney, W. L.

    2013-12-01

    A class VI permit site under U.S. Department of Energy has been proposed for carbon sequestration in south-central Kansas. In an effort to maintain environmental stability three wells have been drilled to basement rock, two being near the injection site, KGS 1-32 and KGS 1-28, and one being to the western annex, Cutter KGS #1. The western annex site, Cutter, is being utilized as a cross-comparison for mineralogical, geochemical, and structural component to the eastern sites in Wellington. A link will be determined of the continuity of three zones of interest: the Mississippian pay zone (3670'-3700'), a potential baffle zone in the upper Arbuckle (4400'-4550'), and the proposed CO2 injection zone (4900'-5050'). 11 depths within Cutter have been swabbed, and samples taken to investigate the chemistry of the subsurface formation water. The different depths will allow for a quantitative determination of how the brine composition varies with depth, and also provides a baseline for future monitoring. Initial chemical analysis by ICP-OES and HR-ICP-MS show a hyper saline brine (50,000-190,000TDS), dominated by Cl, Na, and Ca ions. pH ranges from 6.4 to 7.5, and total alkalinity from 124 and 378 mg/L of HCO¬3-. One complex, yet intriguing, species is Iron. It could potentially allow for further precipitation of the CO2¬ from the formation of Fe carbonates, such as siderite. Cores and thin sections were taken from a variety of depths ranging from 3681.9' to 5176.9' (Wellington) and 5564.3' to 7540.2' (Cutter). Dominant mineralogy consists of dolomite with varying forms of silicic intrusions, usually in the form of chert nodules with sulfide minerals and argillaceous materials in between. Extensive vugs and microfractures allow for varying porosity within each interval. Pay zone rocks typically display fine-grained cherty dolomite with subhedral to euhedral dolomite rhombs as well as oil stains oriented in parallel blotches. Characteristics such as high porosity and small

  2. Estimates for self-supplied domestic withdrawals and population served for selected principal aquifers, calendar year 2005

    USGS Publications Warehouse

    Maupin, Molly A.; Arnold, Terri L.

    2010-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey has groundwater studies that focus on water-quality conditions in principal aquifers of the United States. The Program specifically focuses on aquifers that are important to public supply, domestic, and other major uses. Estimates for self-supplied domestic withdrawals and the population served for 20 aquifers in the United States for calendar year 2005 are provided in this report. These estimates are based on county-level data for self-supplied domestic groundwater withdrawals and the population served by those withdrawals, as compiled by the National Water Use Information Program, for areas within the extent of the 20 aquifers. In 2005, the total groundwater withdrawals for self-supplied domestic use from the 20 aquifers represented about 63 percent of the total self-supplied domestic groundwater withdrawals in the United States; the population served by the withdrawals represented about 61 percent of the total self-supplied domestic population in the United States.

  3. Selected Well Data Used in Determining Ground-Water Availability in the North and South Carolina Atlantic Coastal Plain Aquifer Systems

    USGS Publications Warehouse

    Harrelson, Larry G.; Fine, Jason M.

    2006-01-01

    The data presented in this report are for selected wells in North and South Carolina that are located in the Atlantic Coastal Plain aquifer system. The data represent a partial inventory of wells in the study area and are to be used to update a regional flow model for North and South Carolina. This inventory includes a total of 813 wells in North Carolina and 461 wells in South Carolina. The well data include well-identification numbers, well locations by latitude and longitude, land-surface elevations, hole depths, well depths, open or screened interval(s), well diameters, depth to water, dates of water-level measurements, and aquifer assignment and transmissivity. Ground-water data presented in this report were obtained from field investigations and compiled from existing well records, both published and unpublished.

  4. Influence of Carbon and Microbial Community Priming on the Attenuation of Uranium in a Contaminated Floodplain Aquifer

    SciTech Connect

    Mouser, Paula J.; N'Guessan, A. Lucie; Qafoku, Nikolla; Sinha, M.; Williams, K. H.; Dangelmayr, M.; Resch, Charles T.; Peacock, Aaron D.; Wang, Zheming; Figueroa, Linda A.; Long, P. E.

    2015-07-01

    The capacity for subsurface sediments to sequester metal contaminants, such as uranium (U), and retain them after bioremediation efforts are completed is critical to site stewardship. Sediments enriched in natural organic matter are capable of sequestering significant quantities of U, but may also serve as sources to the aquifer, contributing to plume persistence. Two types of sediments were compared to better understand the mechanisms contributing to the sequestration and release of U in the presence of organic matter. Artificially bioreduced sediments were retrieved from a field experimental plot previously stimulated with acetate while naturally bioreduced sediments were collected from a location enriched in organic matter but never subject to acetate amendment. Batch incubations demonstrated that the artificially bioreduced sediments were primed to rapidly remove uranium from the groundwater whereas naturally bioreduced sediments initially released a sizeable portion of sediment U before U(VI)-removal commenced. Column experiments confirmed that U release persisted for 65 pore volumes in naturally bioreduced sediments, demonstrating the sink-source behavior of this sediment. Acetate addition to artificially bioreduced sediments shifted the microbial community from one dominated by sulfate-reducing bacteria within Desulfobacteraceae to the iron-reducing family Geobacteraceae and Firmicutes during U(VI) reduction. In contrast, initial Geobacteraceae communities innaturally reduced sediments were replaced by clone sequences with similarity to opportunistic Pseudomonas spp. during U release, while U(VI) removal occurred concurrent with enrichment of Firmicutes. These investigations stress the importance of characterizing zones with heterogeneous carbon pools at U contaminated sites prior to the determination of a remedial strategy.

  5. Water quality assessment of carbonate aquifers in southern Latium region, Central Italy: a case study for irrigation and drinking purposes

    NASA Astrophysics Data System (ADS)

    Sappa, Giuseppe; Ergul, Sibel; Ferranti, Flavia

    2014-06-01

    In southern Latium region, Central Italy, groundwater and spring water resources in the carbonate aquifers are the major contributors of drinking and irrigation water supply. The aim of this study was to review hydrochemical processes that control the groundwater chemistry and to determine the suitability of springs and groundwater for irrigation and drinking purposes on the basis of the water quality indices. Physical (pH, electrical conductivity, total dissolved solids) and hydrochemical characteristics (Na+, K+, Ca2+, Mg2+, HCO3 -, Cl-, and SO4 -) of springs and groundwater were determined. To assess the water quality, chemical parameters like sodium adsorption ratio (SAR), total hardness, Mg-hazard (MH), sodium percentage (Na %), salinity hazard, permeability index, and Kelly's ratio were calculated based on the analytical results. A Durov diagram plot revealed that the groundwater has been evolved from Ca to HCO3 recharge water, followed by mixing and reverse ion exchange processes, due to the respective dominance of Na-Cl and Ca-Cl water types. According to Gibbs's diagram plots, chemical weathering of rock forming minerals is the major driving force controlling water chemistry in this area. Groundwater and spring samples were grouped into six categories according to irrigation water quality assessment diagram of US Salinity Laboratory classification and most of the water samples distributed in category C2-S1 and C3-S1 highlighting medium to high salinity hazard and low sodium content class. The results of hydrochemical analyses and the calculated water quality parameters suggest that most of the water samples are suitable for irrigation and drinking purposes, except for the samples influenced by seawater and enhanced water-rock interaction. High values of salinity, Na %, SAR, and MH at certain sites, restrict the suitability for agricultural uses.

  6. Selective carbon-carbon bond cleavage for the stereoselective synthesis of acyclic systems.

    PubMed

    Marek, Ilan; Masarwa, Ahmad; Delaye, Pierre-Olivier; Leibeling, Markus

    2015-01-01

    Most of the efforts of organic chemists have been directed to the development of creative strategies to build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. In this Review, we show an alternative approach where challenging molecular skeletons could be prepared through selective cleavage of carbon-carbon bonds. We demonstrate that it has the potential to be a general principle in organic synthesis for the regio-, diastereo-, and even enantioselective preparation of adducts despite the fact that C-C single bonds are among the least reactive functional groups. The development of such strategies may have an impact on synthesis design and can ultimately lead to new selective and efficient processes for the utilization of simple hydrocarbons. PMID:25266824

  7. Hydrostratigraphic Framework and Selection and Correlation of Geophysical Log Markers in the Surficial Aquifer System, Palm Beach County, Florida

    USGS Publications Warehouse

    Reese, Ronald S.; Wacker, Michael A.

    2007-01-01

    The surficial aquifer system is the major source of freshwater for public water supply in Palm Beach County, Florida, yet many previous studies of the hydrogeology of this aquifer system have focused only on the eastern one-half to one-third of the county in the more densely populated coastal area (Land and others, 1973; Swayze and others, 1980; Swayze and Miller, 1984; Shine and others, 1989). Population growth in the county has resulted in the westward expansion of urbanized areas into agricultural areas and has created new demands on the water resources of the county. Additionally, interest in surface-water resources of central and western areas of the county has increased. In these areas, plans for additional surface-water storage reservoirs are being made under the Comprehensive Everglades Restoration Plan originally proposed by the U.S. Army Corps of Engineers and the South Florida Water Management District (1999), and stormwater treatment areas have been constructed by the South Florida Water Management District. Surface-water and ground-water interactions in the Everglades are thought to be important to water budgets, water quality, and ecology (Harvey and others, 2002). Most of the previous hydrogeologic and ground-water flow simulation studies of the surficial aquifer system have not utilized a hydrostratigraphic framework, in which stratigraphic or sequence stratigraphic units, such as those proposed in Cunningham and others (2001), are delineated in this stratigraphically complex aquifer system. A thick zone of secondary permeability mapped by Swayze and Miller (1984) was not subdivided and was identified as only being within the Anastasia Formation of Pleistocene age. Miller (1987) published 11 geologic sections of the surficial aquifer system, but did not delineate any named stratigraphic units in these sections. This limited interpretation has resulted, in part, from the complex facies changes within rocks and sediments of the surficial aquifer

  8. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of

  9. Microbiological monitoring of carbon dioxide storage in a subsurface saline aquifer in Ketzin/Germany within the scope of CO2SINK

    NASA Astrophysics Data System (ADS)

    Wandrey, M.; Morozova, D.; Zemke, K.; Lerm, S.; Scherf, A.-K.; Vieth, A.; Würdemann, H.; Co2SINK Group

    2009-04-01

    Within the scope of the EU project CO2SINK (www.co2sink.org) a research facility in Ketzin (Germany, west of Berlin) is operated to store CO2 in a saline subsurface aquifer (Würdemann et al., EGU General Assembly 2009). In order to examine the influence of CO2 storage on the environment a comprehensive monitoring program is applied at this site including molecular and microbiological investigations. With the injection of CO2 into the geological formation chemical and physical reservoir characteristics are changed. This may influence the composition and activities of the deep biosphere at the storage horizon. Mineral precipitation, dissolution and corrosion of reservoir casing may be consequences, influencing permeability and long-term stability of the reservoir. The objective of the microbial monitoring program is the characterisation of the microbial community (biocenosis) in fluid samples, as well as in samples from reservoir and cap rock before and during CO2storage using molecular biological methods. 16S rRNA taxonomic studies, Fluorescence in situ hybridisation (FISH), and RealTime PCR are used to examine the composition of the biocenosis. First results of fluid sampling revealed that the microbial community of the saline aquifer is dominated by haloalkaliphilic fermentative bacteria and extremophilic organisms, coinciding with reduced conditions, high salinity and pressure. RealTime RT-PCR of selected genes and the creation and analysis of cDNA libraries will allow the prediction of microbial metabolic activities. In addition, the analysis of organic and inorganic components of the samples will add to the knowledge of possible metabolic shifts during CO2 storage. In order to simulate the storage conditions in situ, long term laboratory experiments in high pressure incubators have been set up using original rock cores from Ketzin. Since DNA and RNA analysis techniques are very sensitive, contamination entries from the adjacent environment have to be excluded

  10. Revised Geostatistical Analysis of the Inventory of Carbon Tetrachloride in the Unconfined Aquifer in the 200 West Area of the Hanford Site

    SciTech Connect

    Murray, Christopher J.; Bott, Yi-Ju

    2008-12-30

    This report provides an updated estimate of the inventory of carbon tetrachloride (CTET) in the unconfined aquifer in the 200 West Area of the Hanford Site. The contaminant plumes of interest extend within the 200-ZP-1 and 200-UP-1 operable units. CH2M HILL Plateau Remediation Company (CHPRC) currently is preparing a plan identifying locations for groundwater extraction wells, injection wells, transfer stations, and one or more treatment facilities to address contaminants of concern identified in the 200-ZP-1 CERCLA Record of Decision. To accomplish this, a current understanding of the inventory of CTET is needed throughout the unconfined aquifer in the 200 West Area. Pacific Northwest National Laboratory (PNNL) previously developed an estimate of the CTET inventory in the area using a Monte Carlo approach based on geostatistical simulation of the three-dimensional (3D) distribution of CTET and chloroform in the aquifer. Fluor Hanford, Inc. (FH) (the previous site contractor) requested PNNL to update that inventory estimate using as input a set of geostatistical realizations of CTET and chloroform recently created for a related but separate project, referred to as the mapping project. The scope of work for the inventory revision complemented the scope of work for the mapping project, performed for FH by PNNL. This report briefly describes the spatial and univariate distribution of the CTET and chloroform data, along with the results of the geostatistical analysis and simulation performed for the mapping project.

  11. MAINE AQUIFERS

    EPA Science Inventory

    AQFRS24 contains polygons of significant aquifers in Maine (glacial deposits that are a significant ground water resource) mapped at a scale 1:24,000. This statewide coverage was derived from aquifer boundaries delineated and digitized by the Maine Geological Survey from data com...

  12. Groundwater flow in an `underfit' carbonate aquifer in a semiarid climate: application of environmental tracers to the Salt Basin, New Mexico (USA)

    NASA Astrophysics Data System (ADS)

    Sigstedt, Sophia C.; Phillips, Fred M.; Ritchie, Andre B. O.

    2016-06-01

    The Salt Basin is a semiarid hydrologically closed drainage basin in southern New Mexico, USA. The aquifers in the basin consist largely of Permian limestone and dolomite. Groundwater flows from the high elevations (˜2,500 m) of the Sacramento Mountains south into the Salt Lakes, which are saline playas. The aquifer is `underfit' in the sense that depths to groundwater are great (˜300 m), implying that the aquifer could transmit much more water than it does. In this study, it is speculated that this characteristic is a result of a geologically recent reduction in recharge due to warming and drying at the end of the last glacial period. Water use is currently limited, but the basin has been proposed for large-scale groundwater extraction and export projects. Wells in the basin are of limited utility for hydraulic testing; therefore, the study focused on environmental tracers (major-ion geochemistry, stable isotopes of O, H, and C, and 14C dating) for basin analysis. The groundwater evolves from a Ca-HCO3 type water into a Ca-Mg (Na) - HCO3-Mg (Cl) water as it flows toward the center of the basin due to dedolomitization driven by gypsum dissolution. Carbon-14 ages corrected for dedolomitization ranged from less than 1,000 years in the recharge area to 19,000 years near the basin center. Stable isotopes are consistent with the presence of glacial-period recharge that is much less evaporated than modern. This supports the hypothesis that the underfit nature of the aquifer is a result of a geologically recent reduction in recharge.

  13. Groundwater flow in an `underfit' carbonate aquifer in a semiarid climate: application of environmental tracers to the Salt Basin, New Mexico (USA)

    NASA Astrophysics Data System (ADS)

    Sigstedt, Sophia C.; Phillips, Fred M.; Ritchie, Andre B. O.

    2016-04-01

    The Salt Basin is a semiarid hydrologically closed drainage basin in southern New Mexico, USA. The aquifers in the basin consist largely of Permian limestone and dolomite. Groundwater flows from the high elevations (˜2,500 m) of the Sacramento Mountains south into the Salt Lakes, which are saline playas. The aquifer is `underfit' in the sense that depths to groundwater are great (˜300 m), implying that the aquifer could transmit much more water than it does. In this study, it is speculated that this characteristic is a result of a geologically recent reduction in recharge due to warming and drying at the end of the last glacial period. Water use is currently limited, but the basin has been proposed for large-scale groundwater extraction and export projects. Wells in the basin are of limited utility for hydraulic testing; therefore, the study focused on environmental tracers (major-ion geochemistry, stable isotopes of O, H, and C, and 14C dating) for basin analysis. The groundwater evolves from a Ca-HCO3 type water into a Ca-Mg (Na) - HCO3-Mg (Cl) water as it flows toward the center of the basin due to dedolomitization driven by gypsum dissolution. Carbon-14 ages corrected for dedolomitization ranged from less than 1,000 years in the recharge area to 19,000 years near the basin center. Stable isotopes are consistent with the presence of glacial-period recharge that is much less evaporated than modern. This supports the hypothesis that the underfit nature of the aquifer is a result of a geologically recent reduction in recharge.

  14. Lattice Boltzmann methods applied to large-scale three-dimensional virtual cores constructed from digital optical borehole images of the karst carbonate Biscayne aquifer in southeastern Florida

    USGS Publications Warehouse

    Michael Sukop; Cunningham, Kevin J.

    2014-01-01

    Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s−1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.

  15. Lattice Boltzmann methods applied to large-scale three-dimensional virtual cores constructed from digital optical borehole images of the karst carbonate Biscayne aquifer in southeastern Florida

    NASA Astrophysics Data System (ADS)

    Sukop, Michael C.; Cunningham, Kevin J.

    2014-11-01

    Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s-1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.

  16. Hydrogeology of, and ground-water flow in, a valley-fill and carbonate-rock aquifer system near Long Valley in the New Jersey Highlands

    USGS Publications Warehouse

    Nicholson, R.S.; McAuley, S.D.; Barringer, J.L.; Gordon, A.D.

    1996-01-01

    The hydrogeology of and ground-water flow in a valley-fill and carbonate-rock aquifer system were evaluated by using numerical-modeling techniques and geochemical interpretations to address concerns about the adequacy of the aquifer system to meet increasing demand for water. The study was conducted during 1987-90 by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection and Energy. The effects of recent and anticipated ground-water withdrawals on water levels, stream base flows, and water budgets were estimated. Simulation results indicate that recent withdrawals of 4.7 million gallons per day have resulted in water-level declines of up to 35 feet. Under conditions of increases in withdrawals of 121 percent, water levels would decline up to an additional 28 feet. The magnitude of predicted average base-flow depletion, when compared with historic low flows, indicates that projected increases in withdrawals may substantially deplete seasonal low flow of Drakes Brook and South Branch Raritan River. Results of a water-budget analysis indicate that the sources of water to additional supply wells would include leakage from the overlying valley-fill aquifer and induced leakage of surface water into the aquifer system. Results of water-quality analyses indicate that human activities are affecting the quality of the ground water. With the exception of an elevated iron concentration in water from one well, concentrations of inorganic constituents in water from 75 wells did not exceed New Jersey primary or secondary drinking-water regulations. Volatile organic compounds were detected in water from several wells; in two samples, concentrations of specific compounds exceeded drinking-water regulations.

  17. Evolution of porosity in the saltwater freshwater mixing zone of coastal carbonate aquifers: An alternative modelling approach

    NASA Astrophysics Data System (ADS)

    Romanov, Douchko; Dreybrodt, Wolfgang

    2006-10-01

    SummaryDissolution of calcium carbonate in the saltwater-freshwater mixing zone in carbonate islands and coastal aquifers up to now has been treated by coupling geochemical equilibrium programmes to a reactive-transport model. The result is a complex nonlinearly coupled set of differential transport-advection equations, which need high computational efforts. If dissolution rates of calcite are sufficiently fast, such that one can assume the solution to be in equilibrium with respect to calcite a highly simplified modelling approach can be used. By use of the concept of Phillips in his book: Flow and Reactions in Permeable Rock, Cambridge University Press, New York (1991) and its more general formulation by De Simoni et al. [De Simoni, M., Carrera, J., Sánchez-Vila, X., Guadagnini, A., 2005. A procedure for the solution of multicomponent reactive transport problems, Water Resource Research, 41, W11410.], it is possible to decouple the complex set of equations. To calculate initial changes of porosity in the rock matrix one needs solely to solve the advection-transport equation for salinity s. Current codes on density driven flow such as SEAWAT can be used. To obtain the dissolution capacity of the mixed saltwater-freshwater solution the calcium equilibrium concentration ceq( s) is obtained as a function of salinity by PHREEQC-2. Initial porosity changes can then be calculated by a simple analytical expression of the gradient of the spatial distribution s( x, y) of salinity, the distribution of flow fluxes q( x, y) and the second derivative of the calcium equilibrium concentration ceq( s) with respect to salinity s. This approach does no longer require large dispersivities on the order of meters; but reasonable results are obtained with dispersivity on the scale of the pore size of the porous rock, which correctly describes mixing on the molecular scale. The method is applied to a simple 1-D-domain without convective flow and a constant gradient of salinity as

  18. An environmental tracers approach to characterize groundwater recharge within a carbonate coastal aquifer (Corse-du-Sud, France)

    NASA Astrophysics Data System (ADS)

    Garel, Emilie; Huneau, Frederic; Khoumeri, Beatrice; Travi, Yves

    2013-04-01

    Bonifacio is a coastal city, highly touristic, located in the southest part of Corsica Island. One million people visit the city in July and August, whereas 3000 inhabitants live throughout the year. Bonifacio lies on a small limestone plateau with a potential aquifer poorly understood. Actually there is a strong need to characterize the hydrogeological behavior for the reason that the economic development of the region is highly dependent of the groundwater supply potential. The Miocene sedimentary basin of Bonifacio has an area of 25 km2 with a depth up to 250 m in the center. It is based and surrounded by a Hercynian granitic substratum. The basin is open to the Mediterranean Sea on its south and east sides. The formation is calcareous-sandstone and is divided in 3 sedimentary units. The upper unit is highly calcareous and sandstone with a pseudo-karstic morphology, the intermediary unit is more silty-sandstone than the last but less than the unit from below. To establish a conceptual model of the groundwater flows of the Bonifacio aquifer, a hydrochemical (major ions, δ18O, δ2H, 3H) and hydrodynamic investigation was carried out on 12 wells, 1 spring and 1 river since May 2011. Vertical recharge is dominant in the centre of the aquifer where unsaturated zone is thicker, while on the aquifer boundaries with the granitic area, lateral flow was significant. Environmental tracers approach had clearly showed the important role of the boundaries conditions for the groundwater flow behavior of the aquifer of Bonifacio and the necessity of an investigation larger than the aquifer itself due to its limited spatial extension.

  19. New solar selective coating based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Abendroth, Thomas; Leupolt, Beate; Mäder, Gerrit; Härtel, Paul; Grählert, Wulf; Althues, Holger; Kaskel, Stefan; Beyer, Eckhard

    2016-05-01

    Carbon nanotubes (CNTs) can be applied to assemble a new type of solar selective coating system for solar thermal applications. In this work the predominant absorption processes occurring by interaction with π-plasmon and Van Hove singularities (VHS) were investigated by UV-VIS-NIR spectroscopy and ellipsometry. Not only optical properties for as deposited SWCNT thin films itself, but also the potential for systematic tailoring will be presented. Besides low cost technologies required, the adjustability of optical properties, as well as their thermal stability render CNT based solar selective coatings as promising alternative to commercially available coating systems.

  20. Occurrence and distribution of selected contaminants in public drinking-water supplies in the surficial aquifer in Delaware

    USGS Publications Warehouse

    Ferrari, Matthew J.

    2001-01-01

    Water samples were collected from August through November 2000 from 30 randomly selected public drinking-water supply wells screened in the unconfined aquifer in Delaware, and analyzed to assess the occurrence and distribution of selected pesticide compounds, volatile organic compounds, major inorganic ions, and nutrients. Water from a subset of 10 wells was sampled and analyzed for radium and radon. The average age of ground water entering the well screens in all the wells was determined to be generally less than 20 years. Low concentrations of pesticide compounds and volatile organic compounds were detected throughout the State of Delaware, with several compounds often detected in each water sample. Pesticide and metabolite (pesticide degradation products) concentrations were generally less than 1 microgram per liter, and were detected in sam-ples from 27 of 30 wells. Of the 45 pesticides and 13 metabolites analyzed, 19 compounds (13 pesticides and 6 metabolites) were detected in at least 1 of the 30 samples. Desethylatrazine, alachlor ethane sulfonic acid, metolachlor ethane sulfonic acid, metolachlor, and atrazine were the most frequently detected pesticide compounds, and were present in at least half the samples. None of the pesticide detections was above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. Volatile organic compounds also were present at low concentrations (generally less than 1 microgram per liter) in samples from all 30 wells. Of the 85 volatile organic com-pounds analyzed, 34 compounds were detected in at least 1 of the 30 samples. Chloroform, tetrachloroethene, and methyl tert-butyl ether were the most frequently detected volatile organic compounds, and were found in at least half the samples. None of the volatile organic compound detections was above U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. A few samples contained compounds with

  1. Application of carbonate cyclostratigraphy and borehole geophysics to delineate porosity and preferential flow in the karst limestone of the Biscayne aquifer, SE Florida

    USGS Publications Warehouse

    Cunningham, K.J.; Renken, R.A.; Wacker, M.A.; Zygnerski, M.R.; Robinson, E.; Shapiro, A.M.; Wingard, G.L.

    2006-01-01

    platform carbonates. Clearly, a cyclostratigraphic approach that translates carbonate aquifer heterogeneity into a consistent framework of correlative units will improve simulation of karst groundwater flow. ?? 2006 Geological Society of America.

  2. Hydrogeological properties of fault zones in a karstified carbonate aquifer and their impact on groundwater circulation (Northern Calcareous Alps, Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, Helene; Schröckenfuchs, Theresa Christina; Decker, Kurt

    2016-04-01

    This study presents a comparative, field-based hydrogeological characterization of exhumed, inactive fault zones in low porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic importance supplying 60% of the drinking water of Austria`s capital Vienna. The hydrogeology (groundwater storage and flow) of the massif has been reported to be essentially governed by karstified, large-scale faults. Previous work has shown that faults that formed during the Oligocene to Miocene lateral extrusion of the Eastern Alps act as groundwater pathways draining the karst massif preferably in E-W-direction. We present hydrogeological relevant data from these types of fault zones and a conceptual model, which supports the idea that fault-zone networks also have the potential to contribute significantly to the storage capacity of the aquifer. With respect to fault zone architecture and rock content, four types of faults are presented: (1) faults with single stranded, minor fault cores, (2) faults with single stranded, permeable fault cores, (3) faults with single stranded, impermeable fault cores, and (4) faults with multiple stranded, permeable fault cores. Within these faults cataclastic rocks and strongly cemented cataclastic breccias form low-permeability (< 1 mD) domains. Fractured rocks with fracture densities varying by a factor of 10 show significantly elevated porosities (> 3%) with respect to the country rock (< 1%). Dilation breccias with average porosities > 3% and permeabilities > 1000 mD form high-permeability domains. Our data illustrates significant differences in the architectural build-up of fault zones in dolostone (multiple-stranded cataclastic fault cores of weak lateral continuity, high volumes of intensely fractured rock) and limestone (laterally distinct, single-stranded fault cores, Riedel-shear fractures dominating fracture patterns). Karstic carbonate dissolution occurs preferentially along faults cores in

  3. Comparison of natural aquifer geochemical variability with uncertainty from model-predicted CO2 induced geochemical changes: How detectable is leakage from carbon sequestration sites?

    NASA Astrophysics Data System (ADS)

    Navarre-Sitchler, A. K.; Moore, J.

    2012-12-01

    Leakage of CO2 from underground formations poses risk to the storage permanence goal of 99% of injected CO2 remaining sequestered from the atmosphere, which is needed to mitigate potential global climate change. Additionally, leaked CO2 that invades overlying shallow aquifers may cause deleterious changes to groundwater quality and pose risks to environmental and human health. For these reasons, technologies for monitoring, measurement and accounting of injected CO2 are necessary for regulation and permitting of CO2 sequestration operations. Changes in groundwater geochemistry induced by CO2 leakage offer a potential diagnostic tool for identifying leakage into shallow aquifers. In order to confidently use geochemical parameters as indicators of leakage, however, natural variability in geochemical concentrations and uncertainty in predicted geochemical changes induced by CO2 leakage must be quantitatively evaluated. For leakage monitoring, spatial variability of geochemical parameters such as alkalinity, pH, and specific conductivity is less relevant than temporal variability of these parameters within a given well. We used geochemical data from the Ohio Environmental Protection Agency, Ambient Ground Water Monitoring Network to characterize geochemical variability within individual wells. We selected wells from limestone, sandstone, and unconsolidated aquifers with ≥15 samples (typically annual) and statistically analyzed variability in alkalinity, pH, and specific conductance using median and interquartile range (IQR) to avoid influence by outliers and non-gaussian distributions. Neither the medians nor the IQRs showed correlation with well depth, sampling month, or number of samples. Our results indicate that variability in alkalinity and pH (4 - 12%) within individual wells is lower than specific conductance (28 - 32%), and thus, alkalinity and pH potentially provide more robust indicators. Uncertainty in predicted alkalinity and pH changes due to uncertainty

  4. Sedimentary processes related to the groundwater flows from the Mesozoic Carbonate Aquifer of the Iberian Chain in the Tertiary Ebro Basin, northeast Spain

    NASA Astrophysics Data System (ADS)

    Sánchez, J. A.; Coloma, P.; Pérez, A.

    1999-12-01

    In this work, the importance of groundwater in the formation and evolution of evaporitic lacustrine facies in the Iberian Chain and Ebro Basin contact (Spain) is studied. There are outcrops of geological materials from Palaeozoic to Quaternary times. These materials have been classified into eight hydrostratigraphic units. The Jurassic `carniolas' and limestones in the Iberian Chain (HU 4 and 5) are the materials which have the best hydraulic properties for underground water catchment and for forming the regional aquifer. The Triassic gypsum and marl of HU 3 form the impermeable substratum of the overlying Jurassic and Cretaceous carbonated aquifers, and they are therefore the impermeable base of the aquifers being studied. The equipotential line map of the regional aquifer shows the pattern of the groundwater flowing to specific points which mark the springs producing the underground drainage of the Iberian Chain. The volume of water throughout the aquifer is currently evaluated at approximately 250 hm 3/year, which discharge through springs with high flowrates, or through diffuse discharges in the riverbeds and in wetlands (saline lakes). The water discharged in these springs has a high mineralisation, with a dry residue of over 1000 mg/l. Calcium sulphate compositions dominate, originating in the presence of soluble anhydrous materials within the Lias and Keuper formations. The current sedimentation in relation to the groundwater flows from the Iberian Chain can only be found in the areas of diffuse discharge where the evaporitic sedimentation can be observed because of the frequently endorheic character. On the right bank of the Ebro River more than 60 depressions are known, where very mineralised lakes form. These are locally referred to as `saladas'. During the Miocene, the hydrogeological functioning would be similar to the present one, leaving the groundwater and the dissolved salts in a non-marine basin. They would therefore accumulate in large areas of

  5. The origin and isotopic composition of dissolved sulfide in groundwater from carbonate aquifers in Florida and Texas

    USGS Publications Warehouse

    Rye, R.O.; Back, W.; Hanshaw, B.B.; Rightmire, C.T.; Pearson, F.J., Jr.

    1981-01-01

    The ??34S values of dissolved sulfide and the sulfur isotope fractionations between dissolved sulfide and sulfate species in Floridan ground water generally correlate with dissolved sulfate concentrations which are related to flow patterns and residence time within the aquifer. The dissolved sulfide derives from the slow in situ biogenic reduction of sulfate dissolved from sedimentary gypsum in the aquifer. In areas where the water is oldest, the dissolved sulfide has apparently attained isotopic equilibrium with the dissolved sulfate (??34S = 65 per mil) at the temperature (28??C) of the system. This approach to equilibrium reflects an extremely slow reduction rate of the dissolved sulfate by bacteria; this slow rate probably results from very low concentrations of organic matter in the aquifer. In the reducing part of the Edwards aquifer, Texas, there is a general down-gradient increase in both dissolved sulfide and sulfate concentrations, but neither the ??34S values of sulfide nor the sulfide-sulfate isotope fractionation correlates with the ground-water flow pattern. The dissolved sulfide species appear to be derived primarily from biogenic reduction of sulfate ions whose source is gypsum dissolution although upgradient diffusion of H2S gas from deeper oil field brines may be important in places. The sulfur isotope fractionation for sulfide-sulfate (about 38 per mil) is similar to that observed for modern oceanic sediments and probably reflects moderate sulfate reduction in the reducing part of the aquifer owing to the higher temperature and significant amount of organic matter present; contributions of isotopically heavy H2S from oil field brines are also possible. ?? 1981.

  6. Determining sources of water and contaminants to wells in a carbonate aquifer near Martinsburg, Blair County, Pennsylvania, by use of geochemical indicators, analysis of anthropogenic contaminants, and simulation of ground-water flow

    USGS Publications Warehouse

    Lindsey, Bruce D.; Koch, Michele L.

    2004-01-01

    Water supply for the Borough of Martinsburg, Pa., is from two well fields (Wineland and Hershberger) completed in carbonate-bedrock aquifers in the Morrison Cove Valley. Water supply is plentiful; however, waters with high concentrations of nitrate are a concern. This report describes the sources of water and contaminants to the supply wells. A review of previous investigations was used to establish the aquifer framework and estimate aquifer hydraulic properties. Aquifer framework and simulation of ground-water flow in a 25-square-mile area using the MODFLOW model helped to further constrain aquifer hydraulic properties and identify water-source areas in the zone of contribution of ground water to the well fields. Flow simulation identified potential contaminant-source areas. Data on contaminants and geochemical characteristics of ground water at the well fields were compared to the results of flow simulation. The Woodbury Anticline controls the aquifer framework near the well fields and four carbonate-bedrock formations contain the primary aquifers. Three carbonate-bedrock aquifers of Ordovician age overlie the Gatesburg aquifer of Cambrian age on the flanks of the anticline. Fracture, not conduit, permeability was determined to be the dominant water-bearing characteristic of the bedrock. The horizontal hydraulic conductivity of the Gatesburg aquifer is about 36 feet per day. The other carbonate aquifers (Nittany/Stonehenge, Bellefonte/Axemann, and Coburn through Loysburg aquifers) overlying and flanking the Gatesburg aquifer have horizontal hydraulic conductivities of about 1 foot per day. Regional directions of ground-water flow are toward the major streams with Clover Creek as the major discharge point for ground water in the east. Ground-water flow to the well fields is anisotropic with a 5:1 preferential horizontal direction along strike of the axial fold of the anticline. Thus, the zone of contribution of ground water to the well fields is elongate in a

  7. Furnace for the selective incineration or carbonization of waste materials

    SciTech Connect

    Angelo, J.F. II

    1988-03-29

    A combustion device for selectively incinerating, or carbonizing a carbonaceous feed material by a process of controlled devolatilization is described comprising: a. an elongated cylindrical siln inclined slightly from the horizontal and having an upper end and a lower end; b. means operable to introduce a solid carbonaceous feed material into the upper end of the kiln; c. means operable to elevate the temperature of the feed material in the kiln to either incineration or carbonizing temperature, only until the desired temperature is obtained; d. means located in an upper portion of the kiln to introduce air into the full length of the kiln into the upper portion thereof only; e. draft inducing means operable to create a draft in the kiln toward an outlet end thereof, and f. afterburner means interconnected to the draft outlet of the kiln, and operable to produce combustion of combustible gaseous or solid components entrained in the draft.

  8. Hydrogeologic atlas of aquifers in Indiana

    USGS Publications Warehouse

    Fenelon, Joseph M.; Bobay, K.E.; Greeman, T.K.; Hoover, M.E.; Cohen, D.A.; Fowler, K.K.; Woodfield, M.C.; and Durbin, J. M.

    1994-01-01

    Aquifers in 12 water-management basins of Indiana are identified in a series of 104 hydrogeologic sections and 12 maps that show the thickness and configuration of aquifers. The vertical distribution of water-bearing units and a generalized potentiometric profile are shown along 3,500 miles of section lines that were constructed from drillers' logs of more than 4,200 wells. The horizontal scale of the sections is 1:125,000. Maps of aquifers showing the areal distribution of each aquifer type were drawn at a scale of 1:500,000. Unconsolidated aquifers are the most widely used aquifers in Indiana and include surficial, buried, and discontinuous layers of sand and gravel. Most of the surficial sand and gravel is in large outwash plains in northern Indiana and along the major rivers. Buried sand and gravel aquifers are interbedded with till deposits in much of the northern two-thirds of Indiana. Discontinuous sand and gravel deposits are present as isolated lenses, primarily in glaciated areas. The bedrock aquifers generally have lower yields than most of the sand and gravel aquifers; however, bedrock aquifers are areally widespread and are an important source of water. Bedrock aquifer types consist of carbonates; sandstones; complexly interbedded sandstones, siltstones, shales, limestones, and coals; and an upper weathered zone in low permeability rock. Carbonate aquifers underlie about one-half of Indiana and are the most productive of the bedrock aquifers. The other principal bedrock aquifer type, sandstone, underlies large areas in the southwestern one-fifth of Indiana. No aquifer is known to be present in the southeastern corner of Indiana.

  9. Selective Oxidation of Amorphous Carbon Layers without Damaging Embedded Single Wall Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Choi, Young Chul; Lim, Seong Chu

    2013-11-01

    Single wall carbon nanotubes (SWCNTs) were synthesized by arc discharge, and then purified by selective oxidation of amorphous carbon layers that were found to encase SWCNT bundles and catalyst metal particles. In order to remove selectively the amorphous carbon layers with SWCNTs being intact, we have systematically investigated the thermal treatment conditions; firstly, setting the temperature by measuring the activation energies of SWCNTs and amorphous carbon layers, and then, secondly, finding the optimal process time. As a consequence, the optimal temperature and time for the thermal treatment was found to be 460 °C and 20 min, respectively. The complete elimination of surrounding amorphous carbon layers makes it possible to efficiently disperse the SWCNT bundles, resulting in high absorbance of SWCNT-ink. The SWCNTs which were thermal-treated at optimized temperature (460 °C) and duration (20 min) showed much better crystallinity, dispersibility, and transparent conducting properties, compared with as-synthesized and the nanotubes thermal-treated at different experimental conditions.

  10. 40 CFR 60.2115 - What if I do not use a wet scrubber, fabric filter, activated carbon injection, selective...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., fabric filter, activated carbon injection, selective noncatalytic reduction, an electrostatic... filter, activated carbon injection, selective noncatalytic reduction, an electrostatic precipitator, or a... than a wet scrubber, activated carbon injection, selective noncatalytic reduction, fabric filter,...