Science.gov

Sample records for selected energy epitaxial

  1. Effects of contamination on selective epitaxial growth

    NASA Astrophysics Data System (ADS)

    MacDonald, Brian J.; Paton, Eric; Adem, Ercan; En, Bill

    2004-06-01

    As MOSFET dimensions scale down in size, it has become increasingly difficult to maintain high drive current while suppressing the off-state leakage current. One method of avoiding short-channel effects is to scale the source/drain (S/D) junction depths proportionally with the gate length. Unfortunately, this increases the S/D resistance, which slows the circuit. To keep the S/D junction shallow without affecting the S/D resistance, a raised S/D (RSD) structure is required. Integrating RSD can be difficult. Selective epitaxial growth (SEG) is the process used to incorporate RSD. This process requires a relatively clean surface to initiate the growth. Insertion of SEG earlier in the process flow facilitates selective epitaxial growth. Insertion of SEG later in the process flow results in higher levels of contamination at the interface of the Si substrate and the RSD structure. In this paper, we identify some mechanisms that determine the quality of the selective epitaxial film. Results indicate that Si defects are not a dominant mechanism in SEG film quality. Instead, results suggest that higher levels of contamination increased the surface roughness of the epitaxial film. PMOS regions were found to have higher levels of contamination and rougher epitaxial films than NMOS regions. Hydrogen bake as high as 900 °C was required to lower the surface contamination and provide excellent epitaxial morphology. Unfortunately, this high temperature causes enhanced dopant diffusion and deactivation of the device. Previous work [H. van Meer, K. De Meyer, Symposium on VLSI Technology Digest of Technical Papers, 2002, p. 170.] identified an alternative integration that provides excellent quality selective epitaxy, without dopant diffusion and deactivation.

  2. Selective epitaxy using the GILD process

    SciTech Connect

    Weiner, K.H.

    1990-12-31

    The present invention comprises a method of selective epitaxy on a semiconductor substrate. The present invention provides a method of selectively forming high quality, thin GeSi layers in a silicon circuit, and a method for fabricating smaller semiconductor chips with a greater yield (more error free chips) at a lower cost. The method comprises forming an upper layer over a substrate, and depositing a reflectivity mask which is then removed over selected sections. Using a laser to melt the unmasked sections of the upper layer, the semiconductor material in the upper layer is heated and diffused into the substrate semiconductor material. By varying the amount of laser radiation, the epitaxial layer is formed to a controlled depth which may be very thin. When cooled, a single crystal epitaxial layer is formed over the patterned substrate. The present invention provides the ability to selectively grow layers of mixed semiconductors over patterned substrates such as a layer of Ge{sub x}Si{sub 1-x} grown over silicon. Such a process may be used to manufacture small transistors that have a narrow base, heavy doping, and high gain. The narrowness allows a faster transistor, and the heavy doping reduces the resistance of the narrow layer. The process does not require high temperature annealing; therefore materials such as aluminum can be used. Furthermore, the process may be used to fabricate diodes that have a high reverse breakdown voltage and a low reverse leakage current.

  3. Selective epitaxy using the gild process

    DOEpatents

    Weiner, Kurt H.

    1992-01-01

    The present invention comprises a method of selective epitaxy on a semiconductor substrate. The present invention provides a method of selectively forming high quality, thin GeSi layers in a silicon circuit, and a method for fabricating smaller semiconductor chips with a greater yield (more error free chips) at a lower cost. The method comprises forming an upper layer over a substrate, and depositing a reflectivity mask which is then removed over selected sections. Using a laser to melt the unmasked sections of the upper layer, the semiconductor material in the upper layer is heated and diffused into the substrate semiconductor material. By varying the amount of laser radiation, the epitaxial layer is formed to a controlled depth which may be very thin. When cooled, a single crystal epitaxial layer is formed over the patterned substrate. The present invention provides the ability to selectively grow layers of mixed semiconductors over patterned substrates such as a layer of Ge.sub.x Si.sub.1-x grown over silicon. Such a process may be used to manufacture small transistors that have a narrow base, heavy doping, and high gain. The narrowness allows a faster transistor, and the heavy doping reduces the resistance of the narrow layer. The process does not require high temperature annealing; therefore materials such as aluminum can be used. Furthermore, the process may be used to fabricate diodes that have a high reverse breakdown voltage and a low reverse leakage current.

  4. Low energy dislocation structures in epitaxy

    NASA Technical Reports Server (NTRS)

    Van Der Merwe, Jan H.; Woltersdorf, J.; Jesser, W. A.

    1986-01-01

    The principle of minimum energy was applied to epitaxial interfaces to show the interrelationship beteen misfit, overgrowth thickness and misfit dislocation spacing. The low energy dislocation configurations were presented for selected interfacial geometries. A review of the interfacial energy calculations was made and a critical assessment of the agreement between theory and experiment was presented. Modes of misfit accommodation were presented with emphasis on the distinction between kinetic effects and equilibrium conditions. Two-dimensional and three-dimensional overgrowths were treated together with interdiffusion-modified interfaces, and several models of interfacial structure were treated including the classical and the current models. The paper is concluded by indicating areas of needed investigation into interfacial structure.

  5. Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection.

    PubMed

    Ding, Hong; Dwaraknath, Shyam S; Garten, Lauren; Ndione, Paul; Ginley, David; Persson, Kristin A

    2016-05-25

    With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structures favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available. PMID:27145398

  6. Tuning a strain-induced orbital selective Mott transition in epitaxial VO2

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shantanu; Quackenbush, N. F.; Paik, H.; Schlueter, C.; Lee, T.-L.; Schlom, D. G.; Piper, L. F. J.; Lee, Wei-Cheng

    2016-06-01

    We present evidence of strain-induced modulation of electron correlation effects and increased orbital anisotropy in the rutile phase of epitaxial VO2/TiO2 films from hard x-ray photoelectron spectroscopy and soft V L-edge x-ray absorption spectroscopy, respectively. By using the U(1) slave spin formalism, we further argue that the observed anisotropic correlation effects can be understood by a model of orbital selective Mott transition at a filling that is noninteger but close to the half filling. Because the overlaps of wave functions between d orbitals are modified by the strain, orbital-dependent renormalizations of the bandwidths and the onsite energy occur. These renormalizations generally result in different occupation numbers in different orbitals. We find that if the system has a noninteger filling number near the half filling such as for VO2, certain orbitals could reach an occupation number closer to half filling under the strain, resulting in a strong reduction in the quasiparticle weight Zα of that orbital. Our work demonstrates that such an orbital selective Mott transition, defined as the case with Zα=0 in some but not all orbitals, could be accessed by epitaxial-strain engineering of correlated electron systems.

  7. Selective epitaxy of gallium nitride and related materials by metal-organic chemical vapor depostion

    NASA Astrophysics Data System (ADS)

    Kapolnek, David Joseph

    1999-11-01

    Selective epitaxy has been applied to many semiconductor materials for a variety of applications. We have developed basic selective epitaxy processes for Gallium Nitride, an important wide band gap semiconductor. This work has revealed that in many respects, GaN behaves similarly to other semiconductors. This makes possible such applications as regrown FET contacts and other three-dimensional device structures. In addition, selective growth using relatively small mask openings results in highly anisotropic growth that is exploited for a number of other applications. GaN pyramids grown using circular mask openings are ideal structures for GaN electron field emission devices. Lateral epitaxial overgrowth grown with linear mask openings is an exciting process that has recently been used for both GaN dislocation reduction and for buried structures in GaN epitaxial films. The discovery of GaN LEO has resulted in an explosion of research and has been applied in commercial GaN laser diodes. The fundamentals of Gallium Nitride selective epitaxy and the most important applications are contained in this dissertation.

  8. Facet-Selective Epitaxy of Compound Semiconductors on Faceted Silicon Nanowires.

    PubMed

    Mankin, Max N; Day, Robert W; Gao, Ruixuan; No, You-Shin; Kim, Sun-Kyung; McClelland, Arthur A; Bell, David C; Park, Hong-Gyu; Lieber, Charles M

    2015-07-01

    Integration of compound semiconductors with silicon (Si) has been a long-standing goal for the semiconductor industry, as direct band gap compound semiconductors offer, for example, attractive photonic properties not possible with Si devices. However, mismatches in lattice constant, thermal expansion coefficient, and polarity between Si and compound semiconductors render growth of epitaxial heterostructures challenging. Nanowires (NWs) are a promising platform for the integration of Si and compound semiconductors since their limited surface area can alleviate such material mismatch issues. Here, we demonstrate facet-selective growth of cadmium sulfide (CdS) on Si NWs. Aberration-corrected transmission electron microscopy analysis shows that crystalline CdS is grown epitaxially on the {111} and {110} surface facets of the Si NWs but that the Si{113} facets remain bare. Further analysis of CdS on Si NWs grown at higher deposition rates to yield a conformal shell reveals a thin oxide layer on the Si{113} facet. This observation and control experiments suggest that facet-selective growth is enabled by the formation of an oxide, which prevents subsequent shell growth on the Si{113} NW facets. Further studies of facet-selective epitaxial growth of CdS shells on micro-to-mesoscale wires, which allows tuning of the lateral width of the compound semiconductor layer without lithographic patterning, and InP shell growth on Si NWs demonstrate the generality of our growth technique. In addition, photoluminescence imaging and spectroscopy show that the epitaxial shells display strong and clean band edge emission, confirming their high photonic quality, and thus suggesting that facet-selective epitaxy on NW substrates represents a promising route to integration of compound semiconductors on Si. PMID:26057208

  9. Magnetite epitaxial growth on Ag(001): Selected orientation, seed layer, and interface sharpness

    NASA Astrophysics Data System (ADS)

    Lamirand, A. D.; Grenier, S.; Langlais, V.; Ramos, A. Y.; Tolentino, H. C. N.; Torrelles, X.; De Santis, M.

    2016-05-01

    Epitaxial iron oxide layers with different orientations were grown on Ag(001) surface by choosing the appropriate preparation conditions. A film with a hexagonal surface mesh interpreted as (111)-oriented magnetite was formed by reactive deposition of iron in molecular oxygen at room temperature (RT), followed by annealing in UHV. Instead, highly ordered epitaxial layers with P4m symmetry were obtained by a three-step process, optimized through in situ experiments. Following this method, an ultrathin Fe layer was first grown in coherent epitaxy on the substrate and then dosed twice with O2, first at RT and next during annealing. A structural analysis combining low-energy electron diffraction, scanning tunneling microscopy, and accurate surface x-ray diffraction measurements confirmed that these films consist of (001)-oriented magnetite, although with a slight tetragonal distortion induced by the substrate constraints. Both its surface and interface are atomically sharp, an essential requirement for its integration into spintronic based devices.

  10. GaAs/Si epitaxial integration utilizing a two-step, selectively grown Ge intermediate layer

    NASA Astrophysics Data System (ADS)

    Cederberg, Jeffrey G.; Leonhardt, Darin; Sheng, Josephine J.; Li, Qiming; Carroll, Malcolm S.; Han, Sang M.

    2010-04-01

    We describe efforts to epitaxially integrate GaAs with Si, using thin, relaxed Ge layers. The Ge films are deposited by molecular beam epitaxy using a self-assembled, selective-area growth technique, where atomic Ge etches an SiO 2 mask layer and then grows from pores extending to the Si substrate. The resulting Ge film coalesces over the SiO 2 mask and is planarized, using H 2O 2-based chemical-mechanical polishing. We subsequently deposit a GaAs/AlAs heterostructure on the polished Ge on Si substrate by metal-organic vapor phase epitaxy. While the initial Ge films were completely relaxed and dislocation-free, they contain a high density of stacking faults that propagate through the GaAs/AlAs heterostructure. These stacking faults create phase domains that appear as non-radiative recombination centers in cathodoluminescence images. Further development of two-step Ge epitaxy with an anneal near the Ge melting point eliminates stacking faults in the Ge, but decomposes the SiO 2 mask allowing threading dislocations to form and propagate through the GaAs/AlAs heterostructure. We discuss our strategy to prevent the loss of the SiO 2 mask and thus reduce threading dislocations.

  11. Selective epitaxial Si based layers and TiSi 2 deposition by integrated chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Regolini, J. L.; Margail, J.; Bodnar, S.; Maury, D.; Morin, C.

    1996-07-01

    High performance IC manufacturing requirements, such as large diameter wafer uniformity, reproducibility, throughput and reliability can be fulfilled by commercial integrated processing, single wafer cluster tools. This paper presents results obtained on an industrial cluster reactor for 200 mm wafers by combining epitaxial silicon related materials and selective deposition of TiSi 2. Low temperature epitaxial Si and SiGe alloys are studied for buried thin layers used in CMOS and HBT devices. The doping profile abruptness for B and P are within SIMS resolution limits. TheTiSi 2/Si selective deposition is also investigated, sequentially and in situ, as a technique for future salicidedS/D with a reduction in technological steps and interface contamination. Statistical electrical results obtained using 0.35 and 0.25 μm CMOS technologies in which the CVD silicide deposition is tested, are presented and compared with the standard salicide technique.

  12. A selective epitaxy collector module for high-speed Si/SiGe:C HBTs

    NASA Astrophysics Data System (ADS)

    Geynet, B.; Chevalier, P.; Brossard, F.; Vandelle, B.; Schwartzmann, T.; Buczko, M.; Avenier, G.; Dutartre, D.; Dambrine, G.; Danneville, F.; Chantre, A.

    2009-08-01

    This paper presents the results of investigations on high-speed self-aligned Si/SiGe:C HBTs featuring a selective epitaxial growth of the collector. We detail the dc and ac characteristics of the devices and demonstrate the improvement of the control of doping profiles at the base/collector junction. State-of-the-art f T value of 350 GHz has been achieved, the f T BV CEO product being equal to 525 GHz. V.

  13. Characterization of selective epitaxial graphene growth on silicon carbide: Limitations and opportunities

    NASA Astrophysics Data System (ADS)

    Zaman, Farhana

    The need for post-CMOS nanoelectronics has led to the investigation of innovative device structures and materials. Graphene, a zero bandgap semiconductor with ballistic transport properties, has great potential to extend diversification and miniaturization beyond the limits of CMOS. The goal of this work is to study the growth of graphene on SiC using the novel method of selective graphitization. The major contributions of this research are as follows — First, epitaxial graphene is successfully grown on selected regions of SiC not capped by AlN deposited by molecular beam epitaxy. This contribution enables the formation of electronic-grade graphene in desired patterns without having to etch the graphene or expose it to any detrimental contact with external chemicals. Etching of AlN opens up windows to the SiC in desirable patterns for subsequent graphitization without leaving etch-residues (determined by XPS). Second, the impact of process parameters on the growth of graphene is investigated. Temperature, time, and argon pressure are the primary growth-conditions altered. A temperature of 1400°C in 1 mbar argon for 20 min produced the most optimal graphene growth without significant damage to the AlN capping-layer. Third, first-ever electronic transport measurements are achieved on the selective epitaxial graphene. Hall mobility of about 1550 cm2/Vs has been obtained to date. Finally, the critical limitations of the selective epitaxial graphene growth are enumerated. The advent of enhanced processing techniques that will overcome these limitations will create a multitude of opportunities for applications for graphene grown in this manner. It is envisaged to be a viable approach to fabrication of radio-frequency field-effect transistors.

  14. Selective-area growth of heavily n-doped GaAs nanostubs on Si(001) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chang, Yoon Jung; Simmonds, Paul J.; Beekley, Brett; Goorsky, Mark S.; Woo, Jason C. S.

    2016-04-01

    Using an aspect ratio trapping technique, we demonstrate molecular beam epitaxy of GaAs nanostubs on Si(001) substrates. Nanoholes in a SiO2 mask act as a template for GaAs-on-Si selective-area growth (SAG) of nanostubs 120 nm tall and ≤100 nm in diameter. We investigate the influence of growth parameters including substrate temperature and growth rate on SAG. Optimizing these parameters results in complete selectivity with GaAs growth only on the exposed Si(001). Due to the confined-geometry, strain and defects in the GaAs nanostubs are restricted in lateral dimensions, and surface energy is further minimized. We assess the electrical properties of the selectively grown GaAs nanostubs by fabricating heterogeneous p+-Si/n+-GaAs p-n diodes.

  15. III-V Nanowire Array Growth by Selective Area Epitaxy

    NASA Astrophysics Data System (ADS)

    Chu, Hyung-Joon; Yeh, Tingwei; Stewart, Lawrence; Dapkus, P. Daniel

    2011-12-01

    III-V semiconductor nanowires are unique material phase due to their high aspect ratio, large surface area, and strong quantum confinement. This affords the opportunity to control charge transport and optical properties for electrical and photonic applications. Nanoscale selective area metalorganic chemical vapor deposition growth (NS-SAG) is a promising technique to maximize control of nanowire diameter and position, which are essential for device application. In this work, InP and GaAs nanowire arrays are grown by NS-SAG. We observe enhanced sidewall growth and array uniformity disorder in high growth rate condition. Disorder in surface morphology and array uniformity of InP nanowire array is explained by enhanced growth on the sidewall and stacking faults. We also find that AsH3 decomposition on the sidewall affects the growth behavior of GaAs nanowire arrays.

  16. III-V Nanowire Array Growth by Selective Area Epitaxy

    SciTech Connect

    Chu, Hyung-Joon; Stewart, Lawrence; Yeh, Tingwei; Dapkus, P. Daniel

    2011-12-23

    III-V semiconductor nanowires are unique material phase due to their high aspect ratio, large surface area, and strong quantum confinement. This affords the opportunity to control charge transport and optical properties for electrical and photonic applications. Nanoscale selective area metalorganic chemical vapor deposition growth (NS-SAG) is a promising technique to maximize control of nanowire diameter and position, which are essential for device application. In this work, InP and GaAs nanowire arrays are grown by NS-SAG. We observe enhanced sidewall growth and array uniformity disorder in high growth rate condition. Disorder in surface morphology and array uniformity of InP nanowire array is explained by enhanced growth on the sidewall and stacking faults. We also find that AsH{sub 3} decomposition on the sidewall affects the growth behavior of GaAs nanowire arrays.

  17. Phase-field simulations of GaN/InGaN quantum dot growth by selective area epitaxy

    NASA Astrophysics Data System (ADS)

    Aagesen, L. K.; Lee, L. K.; Ku, P.-C.; Thornton, K.

    2012-12-01

    Arrays of semiconductor quantum dots grown by selective area epitaxy, a process in which the size and position of the dots is determined by a lithographically patterned mask, can have a high degree of uniformity in both size and position. However, non-uniformity in the initial stages of growth causes broadening of the energy states of GaN/InGaN heterostructures grown using this technique, limiting their practical utility for device applications. A phase-field model was developed to simulate selective area epitaxy, accounting for a crystallographic-orientation-dependent deposition rate. Model parameters were varied to optimize the uniformity of the InGaN active layers. Conditions that led to the most uniform active layers included low total deposition rate, high surface diffusivity, low deposition of surface adatoms from the mask, and smaller contact angle at the mask-vapor-quantum dot interface. Other factors that improved uniformity were growth on (0001) substrates, which is the fastest growth direction, and more vertical orientation of the sidewalls of the mask holes.

  18. Surface stability and the selection rules of substrate orientation for optimal growth of epitaxial II-VI semiconductors

    SciTech Connect

    Yin, Wan-Jian; Yang, Ji-Hui; Zaunbrecher, Katherine; Gessert, Tim; Barnes, Teresa; Wei, Su-Huai; Yan, Yanfa

    2015-10-05

    The surface structures of ionic zinc-blende CdTe (001), (110), (111), and (211) surfaces are systematically studied by first-principles density functional calculations. Based on the surface structures and surface energies, we identify the detrimental twinning appearing in molecular beam epitaxy (MBE) growth of II-VI compounds as the (111) lamellar twin boundaries. To avoid the appearance of twinning in MBE growth, we propose the following selection rules for choosing optimal substrate orientations: (1) the surface should be nonpolar so that there is no large surface reconstructions that could act as a nucleation center and promote the formation of twins; (2) the surface structure should have low symmetry so that there are no multiple equivalent directions for growth. These straightforward rules, in consistent with experimental observations, provide guidelines for selecting proper substrates for high-quality MBE growth of II-VI compounds.

  19. Surface stability and the selection rules of substrate orientation for optimal growth of epitaxial II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Yin, Wan-Jian; Yang, Ji-Hui; Zaunbrecher, Katherine; Gessert, Tim; Barnes, Teresa; Yan, Yanfa; Wei, Su-Huai

    2015-10-01

    The surface structures of ionic zinc-blende CdTe (001), (110), (111), and (211) surfaces are systematically studied by first-principles density functional calculations. Based on the surface structures and surface energies, we identify the detrimental twinning appearing in molecular beam epitaxy (MBE) growth of II-VI compounds as the (111) lamellar twin boundaries. To avoid the appearance of twinning in MBE growth, we propose the following selection rules for choosing optimal substrate orientations: (1) the surface should be nonpolar so that there is no large surface reconstructions that could act as a nucleation center and promote the formation of twins; (2) the surface structure should have low symmetry so that there are no multiple equivalent directions for growth. These straightforward rules, in consistent with experimental observations, provide guidelines for selecting proper substrates for high-quality MBE growth of II-VI compounds.

  20. Slip propagation in epitaxial Mo (011) studied by low-energy electron microscopy

    NASA Astrophysics Data System (ADS)

    Mundschau, M.; Swięch, W.; Durfee, C. S.; Flynn, C. P.

    1999-10-01

    We report observations of slip processes in epitaxial films of Mo (011) grown on sapphire by molecular beam epitaxy. Low-energy electron microscopy is employed to follow the time evolution of the screw dislocation, the interfacial dislocation, and the surface step edge structure through which the slip takes place. Under certain conditions the dislocation system is observed to trap briefly as it meets successive surface steps.

  1. Process for selectively patterning epitaxial film growth on a semiconductor substrate

    DOEpatents

    Sheldon, Peter; Hayes, Russell E.

    1986-01-01

    A process is disclosed for selectively patterning epitaxial film growth on a semiconductor substrate. The process includes forming a masking member on the surface of the substrate, the masking member having at least two layers including a first layer disposed on the substrate and the second layer covering the first layer. A window is then opened in a selected portion of the second layer by removing that portion to expose the first layer thereunder. The first layer is then subjected to an etchant introduced through the window to dissolve a sufficient amount of the first layer to expose the substrate surface directly beneath the window, the first layer being adapted to preferentially dissolve at a substantially greater rate than the second layer so as to create an overhanging ledge portion with the second layer by undercutting the edges thereof adjacent to the window. The epitaxial film is then deposited on the exposed substrate surface directly beneath the window. Finally, an etchant is introduced through the window to dissolve the remainder of the first layer so as to lift-off the second layer and materials deposited thereon to fully expose the balance of the substrate surface.

  2. Process for selectively patterning epitaxial film growth on a semiconductor substrate

    DOEpatents

    Sheldon, P.; Hayes, R.E.

    1984-12-04

    Disclosed is a process for selectively patterning epitaxial film growth on a semiconductor substrate. The process includes forming a masking member on the surface of the substrate, the masking member having at least two layers including a first layer disposed on the substrate and the second layer covering the first layer. A window is then opened in a selected portion of the second layer by removing that portion to expose the first layer thereunder. The first layer is then subjected to an etchant introduced through the window to dissolve the first layer a sufficient amount to expose the substrate surface directly beneath the window, the first layer being adapted to preferentially dissolve at a substantially greater rate than the second layer so as to create an overhanging ledge portion with the second layer by undercutting the edges thereof adjacent the window. The epitaxial film is then deposited on the exposed substrate surface directly beneath the window. Finally, an etchant is introduced through the window to dissolve the remainder of the first layer so as to lift-off the second layer and materials deposited thereon to fully expose the balance of the substrate surface.

  3. Evolution of GaAs nanowire geometry in selective area epitaxy

    SciTech Connect

    Bassett, Kevin P.; Mohseni, Parsian K.; Li, Xiuling

    2015-03-30

    Nanowires (NWs) grown via selective area epitaxy (SAE) show great promise for applications in next generation electronic and photonic devices, yet the design of NW-based devices can be complicated due to the complex kinetics involved in the growth process. The presence of the patterned selective area mask, as well as the changing geometry of the NWs themselves during growth, leads to non-linear growth rates which can vary significantly based on location in the mask and the NW size. Here, we present a systematic study of the evolution of GaAs NW geometry during growth as a function of NW size and pitch. We highlight a breakdown of NW uniformity at extended growth times, which is accelerated for NW arrays with larger separations. This work is intended to outline potential fundamental growth challenges in achieving desired III–V NW array patterns and uniformity via SAE.

  4. Moiré induced organization of size-selected Pt clusters soft landed on epitaxial graphene

    PubMed Central

    Linas, Sébastien; Jean, Fabien; Zhou, Tao; Albin, Clément; Renaud, Gilles; Bardotti, Laurent; Tournus, Florent

    2015-01-01

    Two-dimensional hexagonal arrays of Pt nanoparticles (1.5 nm diameter) have been obtained by deposition of preformed and size selected Pt nanoparticles on graphene. This original self-organization is induced, at room temperature, by the 2D periodic undulation (the moiré pattern) of graphene epitaxially grown on the Ir(111) surface. By means of complementary techniques (scanning tunneling microscopy, grazing incidence X ray scattering), the Pt clusters shapes and organization are characterized and the structural evolution during annealing is investigated. The soft-landed clusters remain quasi-spherical and a large proportion appears to be pinned on specific moiré sites. The quantitative determination of the proportion of organized clusters reveals that the obtained hexagonal array of the almost spherical nanoparticles is stable up to 650 K, which is an indication of a strong cluster-surface interaction. PMID:26278787

  5. Thermodynamic guiding principles in selective synthesis of strontium iridate Ruddlesden-Popper epitaxial films

    NASA Astrophysics Data System (ADS)

    Nishio, Kazunori; Hwang, Harold Y.; Hikita, Yasuyuki

    2016-03-01

    We demonstrate the selective fabrication of Ruddlesden-Popper (RP) type SrIrO3, Sr3Ir2O7, and Sr2IrO4 epitaxial thin films from a single SrIrO3 target using pulsed laser deposition (PLD). We identified that the growth conditions stabilizing each phase directly map onto the phase diagram expected from thermodynamic equilibria. This approach allows precise cation stoichiometry control as evidenced by the stabilization of single phase Sr3Ir2O7 for the first time, overcoming the close thermodynamic stability between neighboring RP phases. Despite the non-equilibrium nature of PLD, these results highlight the importance of thermodynamic guiding principles to strategically synthesize the targeted phase in complex oxide thin films.

  6. Low thermal budget selective epitaxial growth for formation of elevated source/drain MOS transistors

    NASA Astrophysics Data System (ADS)

    Nakahata, Takumi; Sugihara, Kohei; Abe, Yuji; Ozeki, Tatsuo

    2004-03-01

    We studied the dependence of selective epitaxially grown silicon (SEG-Si) morphology under ultrahigh vacuum chemical vapor deposition (UHV-CVD) conditions by using a mixture of disilane (Si 2H 6) and chlorine (Cl 2) gases on Si(1 0 0) substrates patterned a metal oxide semiconductor transistor with Si 3N 4 sidewalls. We confirmed that the morphology of the SEG-Si is strongly dependent on the dry etching conditions used for formation of the sidewall structures and that the Cl 2 plasma etching process results in lower damage to the substrate surface than CHF 3/Ar plasma etching. It was demonstrated that by combining low-damage sidewall etching with Cl 2 plasma and the UHV-CVD process with deoxidation effects it was possible to flatten the SEG-Si surface at temperatures below 700°C without the need for preheating at a higher temperature.

  7. Fermi energy tuning with light to control doping profiles during epitaxy

    SciTech Connect

    Sanders, C. E.; Beaton, D. A.; Reedy, R. C.; Alberi, K.

    2015-05-04

    The influence of light stimulation and photogenerated carriers on the process of dopant surface segregation during growth is studied in molecular beam epitaxially grown Si-doped GaAs structures. The magnitude of surface segregation decreases under illumination by above-bandgap photons, wherein splitting of the quasi Fermi levels reduces the band bending at the growth surface and raises the formation energy of compensating defects that can enhance atomic diffusion. We further show that light-stimulated epitaxy can be used as a practical approach to diminish dopant carry-forward in device structures and improve the performance of inverted modulation-doped quantum wells.

  8. Atomic layer epitaxy of hematite on indium tin oxide for application in solar energy conversion

    DOEpatents

    Martinson, Alex B.; Riha, Shannon; Guo, Peijun; Emery, Jonathan D.

    2016-07-12

    A method to provide an article of manufacture of iron oxide on indium tin oxide for solar energy conversion. An atomic layer epitaxy method is used to deposit an uncommon bixbytite-phase iron (III) oxide (.beta.-Fe.sub.2O.sub.3) which is deposited at low temperatures to provide 99% phase pure .beta.-Fe.sub.2O.sub.3 thin films on indium tin oxide. Subsequent annealing produces pure .alpha.-Fe.sub.2O.sub.3 with well-defined epitaxy via a topotactic transition. These highly crystalline films in the ultra thin film limit enable high efficiency photoelectrochemical chemical water splitting.

  9. Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches

    SciTech Connect

    Jiang, S. Heyns, M.; Merckling, C.; Guo, W.; Waldron, N.; Caymax, M.; Vandervorst, W.; Seefeldt, M.

    2014-01-14

    The evolution of (001) and (111) facets for the epitaxial growth inside submicron trenches is systematically studied in this report. The analysis with the method of “Lagrange multiplier” indicates the equilibrium crystal shape. In the case of non-equilibrium without external fluxes, we employed the “weighted mean curvature” method to mathematically model the inter-facet migration rate for two extreme kinetic cases: “surface diffusion limited” and “surface attachment/detachment limited.” Coupled with external supply of atoms, the self-limited behavior of facet size is theoretically predicted. Moreover, we find that the self-limited stable facet size in trenches of different widths has a specific relationship determined by the surface energy ratio, kinetic rate ratio, and isolated growth rate difference. The two limited cases could be discriminated according to the mathematical fitting of one exponent in this relationship based on the stable facet size in trenches of different widths.

  10. Usage of antimony segregation for selective doping of Si in molecular beam epitaxy

    SciTech Connect

    Yurasov, D. V.; Drozdov, M. N.; Murel, A. V.; Shaleev, M. V.; Novikov, A. V.; Zakharov, N. D.

    2011-06-01

    An original approach to selective doping of Si by antimony (Sb) in molecular beam epitaxy (MBE) is proposed and verified experimentally. This approach is based on controllable utilization of the effect of Sb segregation. In particular, the sharp dependence of Sb segregation on growth temperature in the range of 300-550 deg. C is exploited. The growth temperature variations between the kinetically limited and maximum segregation regimes are suggested to be utilized in order to obtain selectively doped structures with abrupt doping profiles. It is demonstrated that the proposed technique allows formation of selectively doped Si:Sb layers, including delta ({delta}-)doped layers in which Sb concentrations can be varied from 5 x 10{sup 15} to 10{sup 20} cm{sup -3}. The obtained doped structures are shown to have a high crystalline quality and the short-term growth interruptions, which are needed to change the substrate temperature, do not lead to any significant accumulation of background impurities in grown samples. Realization of the proposed approach requires neither too low (<300 deg. C), nor too high (>600 deg. C) growth temperatures or any special equipment for the MBE machines.

  11. SiGe nanostructure fabrication through selective epitaxial growth using self-assembled nanotemplates

    NASA Astrophysics Data System (ADS)

    Park, Sang-Joon; Hwang, In Chan; Lee, Heung Soon; Yeog Son, Jong; Kim, Hyungjun

    2009-11-01

    Ordered SiGe nanostructures including nanodots (NDs) and nanowires (NWs) were fabricated via selective epitaxial growth (SEG) of SiGe using ultrahigh vacuum chemical vapour deposition (UHV-CVD) on Si openings fabricated using self-assembled nanotemplates of anodic anluminum oxide (AAO) and diblock copolymer (DBC) of polystyrene-block-polymethylmethacrylate (PS-b-PMMA), exhibiting hexagonally arranged nanoholes. SiGe SEG was processed through repeating the unit cycle composed of two separated steps of SiGe growth using disilane (Si2H6) and Germane (GeH4) and chlorine (Cl2 exposure. Cl2 was used to improve the selectivity of SiGe SEG between the Si openings and the oxide area. Ordered SiGe NDs and NWs were fabricated through SiGe SEG of 20 cycles and 400 cycles on AAO/Si, respectively. In addition, ordered SiGe NDs were obtained via SiGe SEG of 20 cycles on SiO2 template, fabricated through pattern transfer of nanoholes of PS-b-PMMA to SiO2/Si. SiGe nanostructure fabrication using both AAO and PS-b-PMMA showed good replication of the nanohole size of the nanotemplates. An erratum to this article was added by the author on 18 May 2010. The text of the erratum is appended to the PDF.

  12. Segregation of Sb in Ge epitaxial layers and its usage for the selective doping of Ge-based structures

    SciTech Connect

    Antonov, A. V.; Drozdov, M. N.; Novikov, A. V. Yurasov, D. V.

    2015-11-15

    The segregation of Sb in Ge epitaxial layers grown by the method of molecular beam epitaxy on Ge (001) substrates is investigated. For a growth temperature range of 180–325°C, the temperature dependence is determined for the segregation ratio of Sb in Ge, which shows a sharp increase (by more than three orders of magnitude) with increasing temperature. The strong dependence of the segregation properties of Sb on the growth temperature makes it possible to adapt a method based on the controlled use of segregation developed previously for the doping of Si structures for the selective doping of Ge structures with a donor impurity. Using this method selectively doped Ge:Sb structures, in which the bulk impurity concentration varies by an order of magnitude at distances of 3–5 nm, are obtained.

  13. Facet-selective nucleation and conformal epitaxy of Ge shells on Si nanowires

    DOE PAGESBeta

    Nguyen, Binh -Minh; Swartzentruber, Brian; Ro, Yun Goo; Dayeh, Shadi A.

    2015-10-08

    Knowledge of nanoscale heteroepitaxy is continually evolving as advances in material synthesis reveal new mechanisms that have not been theoretically predicted and are different than what is known about planar structures. In addition to a wide range of potential applications, core/shell nanowire structures offer a useful template to investigate heteroepitaxy at the atomistic scale. We show that the growth of a Ge shell on a Si core can be tuned from the theoretically predicted island growth mode to a conformal, crystalline, and smooth shell by careful adjustment of growth parameters in a narrow growth window that has not been exploredmore » before. In the latter growth mode, Ge adatoms preferentially nucleate islands on the {113} facets of the Si core, which outgrow over the {220} facets. Islands on the low-energy {111} facets appear to have a nucleation delay compared to the {113} islands; however, they eventually coalesce to form a crystalline conformal shell. As a result, synthesis of epitaxial and conformal Si/Ge/Si core/multishell structures enables us to fabricate unique cylindrical ring nanowire field-effect transistors, which we demonstrate to have steeper on/off characteristics than conventional core/shell nanowire transistors.« less

  14. Facet-selective nucleation and conformal epitaxy of Ge shells on Si nanowires

    SciTech Connect

    Nguyen, Binh -Minh; Swartzentruber, Brian; Ro, Yun Goo; Dayeh, Shadi A.

    2015-10-08

    Knowledge of nanoscale heteroepitaxy is continually evolving as advances in material synthesis reveal new mechanisms that have not been theoretically predicted and are different than what is known about planar structures. In addition to a wide range of potential applications, core/shell nanowire structures offer a useful template to investigate heteroepitaxy at the atomistic scale. We show that the growth of a Ge shell on a Si core can be tuned from the theoretically predicted island growth mode to a conformal, crystalline, and smooth shell by careful adjustment of growth parameters in a narrow growth window that has not been explored before. In the latter growth mode, Ge adatoms preferentially nucleate islands on the {113} facets of the Si core, which outgrow over the {220} facets. Islands on the low-energy {111} facets appear to have a nucleation delay compared to the {113} islands; however, they eventually coalesce to form a crystalline conformal shell. As a result, synthesis of epitaxial and conformal Si/Ge/Si core/multishell structures enables us to fabricate unique cylindrical ring nanowire field-effect transistors, which we demonstrate to have steeper on/off characteristics than conventional core/shell nanowire transistors.

  15. Selecting windows for energy efficiency

    SciTech Connect

    1997-05-01

    New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection.

  16. Conditions for high yield of selective-area epitaxy InAs nanowires on SiO x /Si(111) substrates.

    PubMed

    Robson, M T; Dubrovskii, V G; LaPierre, R R

    2015-11-20

    Experimental data and a model are presented which define the boundary values of V/III flux ratio and growth temperature for droplet-assisted nucleation of InAs semiconductor nanowires in selective-area epitaxy on SiO(x)/Si (111) substrates by molecular beam epitaxy. Within these boundaries, the substrate receives a balanced flux of group III and V materials allowing the growth of vertically oriented nanowires as compared to the formation of droplets or crystallites. PMID:26508403

  17. Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers

    PubMed Central

    2015-01-01

    Multilayered epitaxial nanofibers are exemplary model systems for the study of exciton dynamics and lasing in organic materials because of their well-defined morphology, high luminescence efficiencies, and color tunability. We use temperature-dependent continuous wave and picosecond photoluminescence (PL) spectroscopy to quantify exciton diffusion and resonance-energy transfer (RET) processes in multilayered nanofibers consisting of alternating layers of para-hexaphenyl (p6P) and α-sexithiophene (6T) serving as exciton donor and acceptor material, respectively. The high probability for RET processes is confirmed by quantum chemical calculations. The activation energy for exciton diffusion in p6P is determined to be as low as 19 meV, proving p6P epitaxial layers also as a very suitable donor material system. The small activation energy for exciton diffusion of the p6P donor material, the inferred high p6P-to-6T resonance-energy-transfer efficiency, and the observed weak PL temperature dependence of the 6T acceptor material together result in an exceptionally high optical emission performance of this all-organic material system, thus making it well suited, for example, for organic light-emitting devices. PMID:26191119

  18. Selective epitaxial growth of Ge(1 1 0) in trenches using the aspect ratio trapping technique

    NASA Astrophysics Data System (ADS)

    Destefanis, V.; Hartmann, J. M.; Baud, L.; Delaye, V.; Billon, T.

    2010-03-01

    The aim of this study was to assess the efficiency of aspect ratio trapping in improving the crystalline quality of relaxed Ge(1 1 0) layers selectively grown in trenches surrounded by SiO 2. The 400 °C growth of a few hundreds of nanometers thick Ge layers has first been studied on blanket Si(1 1 0) surfaces then in recessed areas of Si(1 1 0) patterned wafers. The influence of 1 min H 2 anneals (in-between 600 and 850 °C) on the surface morphology, crystalline quality and strain state of blanket Ge(1 1 0) layers has notably been quantified. Intermediate annealing temperatures (750 °C) have improved the crystalline quality and increased the macroscopic strain relaxation of those layers, without too high a surface roughening. (1 1 0) Si windows (surrounded by shallow trench isolation) of patterned wafers have then been recessed by ≈300 nm using gaseous HCl, with a definite faceting and a slight roughening of the resulting cavities. Epitaxial lateral overgrowth of Ge has then been implemented in those trenches, followed by 1' H 2 bakes at 750 °C. Chemical mechanical polishing has been used afterwards to get rid of the several hundreds of nm thick Ge layer overflowing on the SiO 2 areas (very reduced dishing and flat Ge(1 1 0) surfaces obtained in the end). The efficiency of aspect ratio trapping in reducing the defect density in those Ge(1 1 0) layers is not obvious. Indeed, some trapping of inclined defects in the SiO 2 sidewalls of narrow Ge(1 1 0) patterns (˜80 nm long) has been evidenced. However, the theoretically unexpected appearance of defects at 90° to the surface (i.e. normal to (1 1 0)) that were consequently not trapped was detrimental to defect density reduction. Those 90° defects may have arisen from interactions of inclined defects with one another. The reduction of the high defect density in relaxed (1 1 0) layers is thus still challenging and requires further investigations.

  19. Selective area epitaxy of monolithic white-light InGaN/GaN quantum well microstripes with dual color emission

    SciTech Connect

    Li, Yuejing; Tong, Yuying; Yang, Guofeng Yao, Chujun; Sun, Rui; Cai, Lesheng; Xu, Guiting; Wang, Jin; Zhang, Qing; Ye, Xuanchao; Wu, Mengting; Wen, Zhiqin

    2015-09-15

    Monolithic color synthesis is demonstrated using InGaN/GaN multiple quantum wells (QWs) grown on GaN microstripes formed by selective area epitaxy on SiO{sub 2} mask patterns. The striped microfacet structure is composed of (0001) and (11-22) planes, attributed to favorable surface polarity and surface energy. InGaN/GaN QWs on different microfacets contain spatially inhomogeneous compositions owing to the diffusion of adatoms among the facets. This unique property allows the microfacet QWs to emit blue light from the (11-22) plane and yellow light from the top (0001) plane, the mixing of which leads to the perception of white light emission.

  20. Surface energies for molecular beam epitaxy growth of HgTe and CdTe

    NASA Astrophysics Data System (ADS)

    Berding, M. A.; Krishnamurthy, Srinivasan; Sher, A.

    1991-10-01

    We present results for the surface binding energies for HgTe and CdTe that will serve as input for molecular beam epitaxy growth models. We have found that the surface binding energies are surface orientation dependent and are not simply proportional to the number of first-neighbor bonds being made to the underlying layer. Moreover, because of the possibility of charge transfer between cation and anion surface states, one may have large differences between the binding energy for the first and the last atom in a given layer, and these differences will be different for the narrow-gap, less ionic materials than for the wide gap, ionic materials. We also find that the surface states associated with an isolated surface atom or vacancy are extended in materials with small gaps and small effective masses, and thus call into question the modeling of surface binding by simple pair interactions.

  1. Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors

    SciTech Connect

    Liu, Zhaojun; Ma, Jun; Huang, Tongde; Liu, Chao; May Lau, Kei

    2014-03-03

    In this Letter, we report selective epitaxial growth of monolithically integrated GaN-based light emitting diodes (LEDs) with AlGaN/GaN high-electron-mobility transistor (HEMT) drivers. A comparison of two integration schemes, selective epitaxial removal (SER), and selective epitaxial growth (SEG) was made. We found the SER resulted in serious degradation of the underlying LEDs in a HEMT-on-LED structure due to damage of the p-GaN surface. The problem was circumvented using the SEG that avoided plasma etching and minimized device degradation. The integrated HEMT-LEDs by SEG exhibited comparable characteristics as unintegrated devices and emitted modulated blue light by gate biasing.

  2. Energy: An annotated selected bibliography

    NASA Technical Reports Server (NTRS)

    Blow, S. J. (Compiler); Peacock, R. W. (Compiler); Sholy, J. J. (Compiler)

    1979-01-01

    This updated bibliography contains approximately 7,000 selected references on energy and energy related topics from bibliographic and other data sources from June 1977. Under each subject heading the entries are arranged by the date, with the latest works first. Geothermal, solar, wind, and ocean/water power sources are included. Magnetohydrodynamics and electrohydrodynamics, electric power engineering, automotive power plants, and energy storage are also covered.

  3. Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si

    SciTech Connect

    Schmid, H. Borg, M.; Moselund, K.; Cutaia, D.; Riel, H.; Gignac, L.; Breslin, C. M.; Bruley, J.

    2015-06-08

    III–V nanoscale devices were monolithically integrated on silicon-on-insulator (SOI) substrates by template-assisted selective epitaxy (TASE) using metal organic chemical vapor deposition. Single crystal III–V (InAs, InGaAs, GaAs) nanostructures, such as nanowires, nanostructures containing constrictions, and cross junctions, as well as 3D stacked nanowires were directly obtained by epitaxial filling of lithographically defined oxide templates. The benefit of TASE is exemplified by the straightforward fabrication of nanoscale Hall structures as well as multiple gate field effect transistors (MuG-FETs) grown co-planar to the SOI layer. Hall measurements on InAs nanowire cross junctions revealed an electron mobility of 5400 cm{sup 2}/V s, while the alongside fabricated InAs MuG-FETs with ten 55 nm wide, 23 nm thick, and 390 nm long channels exhibit an on current of 660 μA/μm and a peak transconductance of 1.0 mS/μm at V{sub DS} = 0.5 V. These results demonstrate TASE as a promising fabrication approach for heterogeneous material integration on Si.

  4. In situ reflection high-energy electron diffraction observation of epitaxial LaNiO3 thin films

    NASA Astrophysics Data System (ADS)

    Chen, P.; Xu, S. Y.; Zhou, W. Z.; Ong, C. K.; Cui, D. F.

    1999-03-01

    Epitaxial LaNiO3 (LNO) thin films were grown on (001) SrTiO3 substrates by laser molecular-beam epitaxy. The growth process of the LNO films was monitored by in situ reflection high-energy electron diffraction (RHEED). Clear RHEED patterns and the intensity oscillation of RHEED were observed during the epitaxial growth process. The morphology of the films was studied by atomic force microscopy. The results show that the films grown by this method have a nanoscale smooth surface with the root-mean-square surface roughness smaller than 7 nm on an area of 1×1 μm2. X-ray diffraction patterns indicate that the crystalline LNO films exhibited preferred (00l) orientation. The resistivity of the thin film is 0.28 mΩ cm at 278 K and 0.06 mΩ cm at 80 K, respectively.

  5. Phase-field simulations of GaN growth by selective area epitaxy from complex mask geometries

    NASA Astrophysics Data System (ADS)

    Aagesen, Larry K.; Coltrin, Michael E.; Han, Jung; Thornton, Katsuyo

    2015-05-01

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. The model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. The model provides a route to optimize masks and processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.

  6. Epitaxial InN/InGaN quantum dots on Si: Cl‑ anion selectivity and pseudocapacitor behavior

    NASA Astrophysics Data System (ADS)

    Rodriguez, Paul E. D. Soto; Mari, Claudio Maria; Sanguinetti, Stefano; Ruffo, Riccardo; Nötzel, Richard

    2016-08-01

    Epitaxial InN quantum dots (QDs) on In-rich InGaN, applied as an electrochemical electrode, activate Cl‑-anion-selective surface attachment, bringing forth faradaic/pseudocapacitor-like behavior. In contrast to traditional pseudocapacitance, here, no chemical reaction of the electrode material occurs. The anion attachment is explained by the unique combination of the surface and quantum properties of the InN QDs. A high areal capacitance is obtained for this planar electrode together with rapid and reversible charge/discharge cycles. With the growth on cheap Si substrates, the InN/InGaN QD electrochemical electrode has great potential, opening up new application fields for III–nitride semiconductors.

  7. Phase-field simulations of GaN growth by selective area epitaxy from complex mask geometries

    SciTech Connect

    Aagesen, Larry K.; Thornton, Katsuyo; Coltrin, Michael E.; Han, Jung

    2015-05-21

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. The model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. The model provides a route to optimize masks and processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.

  8. Phase-field simulations of GaN growth by selective area epitaxy on complex mask geometries

    DOE PAGESBeta

    Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; Thornton, Katsuyo

    2015-05-15

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks andmore » processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.« less

  9. Phase-field simulations of GaN growth by selective area epitaxy on complex mask geometries

    SciTech Connect

    Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; Thornton, Katsuyo

    2015-05-15

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks and processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.

  10. All-epitaxial, lithographically defined, current- and mode-confined vertical-cavity surface-emitting laser based on selective interfacial fermi-level pinning

    SciTech Connect

    Ahn, J.; Lu, D.; Deppe, D.G.

    2005-01-10

    An approach is presented to fabricate a current- and mode-confined vertical-cavity surface-emitting laser that is all-epitaxial and lithographically defined. The device uses selective Fermi level pinning to self-align the electrical injection to a mode-confining intracavity phase-shifting mesa.

  11. In situ mask designed for selective growth of InAs quantum dots in narrow regions developed for molecular beam epitaxy system

    SciTech Connect

    Ohkouchi, Shunsuke; Nakamura, Yusui; Ikeda, Naoki; Sugimoto, Yoshimasa; Asakawa, Kiyoshi

    2007-07-15

    We have developed an in situ mask that enables the selective formation of molecular beam epitaxially grown layers in narrow regions. This mask can be fitted to a sample holder and removed in an ultrahigh-vacuum environment; thus, device structures can be fabricated without exposing the sample surfaces to air. Moreover, this mask enables the observation of reflection high-energy electron diffraction during growth with the mask positioned on the sample holder and provides for the formation of marker layers for ensuring alignment in the processes following the selective growth. To explore the effectiveness of the proposed in situ mask, we used it to grow quantum dot (QD) structures in narrow regions and verified the perfect selectivity of the QD growth. The grown QDs exhibited high optical quality with a photoluminescence peak at approximately 1.30 {mu}m and a linewidth of 30 meV at room temperature. The proposed technique can be applied for the integration of microstructures into optoelectronic functional devices.

  12. Energy: An annotated selected bibliography

    NASA Technical Reports Server (NTRS)

    Blow, S. J. (Compiler); Peacock, R. W. (Compiler); Sholy, J. J. (Compiler)

    1979-01-01

    This updated bibliography contains approximately 7,000 selected references on energy and energy related topics from bibliographic and other data sources from June 1977. Under each subject heading the entries are arranged by the data, with the latest works first. Subject headings include: resources supply/demand, and forecasting; policy, legislation, and regulation; environment; consumption, conservation, and economics; analysis, systems, and modeling, and information sources and documentation. Fossil fuels, hydrogen and other fuels, liquid/solid wastes and biomass, waste heat utilization, and nuclear power sources are also included.

  13. Impact of P/In flux ratio and epilayer thickness on faceting for nanoscale selective area growth of InP by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Fahed, M.; Desplanque, L.; Coinon, C.; Troadec, D.; Wallart, X.

    2015-07-01

    The impact of the P/In flux ratio and the deposited thickness on the faceting of InP nanostructures selectively grown by molecular beam epitaxy (MBE) is reported. Homoepitaxial growth of InP is performed inside 200 nm wide stripe openings oriented either along a [110] or [1-10] azimuth in a 10 nm thick SiO2 film deposited on an InP(001) substrate. When varying the P/In flux ratio, no major shape differences are observed for [1-10]-oriented apertures. On the other hand, the InP nanostructure cross sections strongly evolve for [110]-oriented apertures for which (111)B facets are more prominent and (001) ones shrink for large P/In flux ratio values. These results show that the growth conditions allow tailoring the nanocrystal shape. They are discussed in the framework of the equilibrium crystal shape model using existing theoretical calculations of the surface energies of different low-index InP surfaces as a function of the phosphorus chemical potential, directly related to the P/In ratio. Experimental observations strongly suggest that the relative (111)A surface energy is probably smaller than the calculated value. We also discuss the evolution of the nanostructure shape with the InP-deposited thickness.

  14. Impact of P/In flux ratio and epilayer thickness on faceting for nanoscale selective area growth of InP by molecular beam epitaxy.

    PubMed

    Fahed, M; Desplanque, L; Coinon, C; Troadec, D; Wallart, X

    2015-07-24

    The impact of the P/In flux ratio and the deposited thickness on the faceting of InP nanostructures selectively grown by molecular beam epitaxy (MBE) is reported. Homoepitaxial growth of InP is performed inside 200 nm wide stripe openings oriented either along a [110] or [1-10] azimuth in a 10 nm thick SiO2 film deposited on an InP(001) substrate. When varying the P/In flux ratio, no major shape differences are observed for [1-10]-oriented apertures. On the other hand, the InP nanostructure cross sections strongly evolve for [110]-oriented apertures for which (111)B facets are more prominent and (001) ones shrink for large P/In flux ratio values. These results show that the growth conditions allow tailoring the nanocrystal shape. They are discussed in the framework of the equilibrium crystal shape model using existing theoretical calculations of the surface energies of different low-index InP surfaces as a function of the phosphorus chemical potential, directly related to the P/In ratio. Experimental observations strongly suggest that the relative (111)A surface energy is probably smaller than the calculated value. We also discuss the evolution of the nanostructure shape with the InP-deposited thickness. PMID:26134951

  15. Low-energy electron diffraction investigation of epitaxial growth: Pt and Pd on Pd(100)

    SciTech Connect

    Flynn-Sanders, D.

    1990-09-21

    We investigate the epitaxial growth of Pt and Pd and Pd(100) via spot profile analysis using conventional low-energy electron diffraction (LEED). We resolve a central-spike and diffuse component in the spot profiles, reflecting the layer-occupations and pair-correlations, respectively. Kinetic limitations inhibit layer-by-layer growth at low temperatures. Our data suggest diffusion switches on at ca. 150 K for Pt and ca. 170 K for Pd indicating activation barriers to surface diffusion of ca. 10 and ca. 13 kcal/mol, respectively. To clarify the role of diffusion in determining the resulting film morphology, we develop a growth model that incorporates the adsorption-site requirement and predicts intensity oscillations. We present a new procedure to experimentally determine out-of-phase scattering conditions. At these energies, ring-structure is evident in the profiles during Pd growth between ca. 200 and 400 K. We report ring intensity oscillations as a function of coverage, which demonstrate the filling of individual layers.

  16. Selective-area growth of GaN microrods on strain-induced templates by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Lekhal, Kaddour; Bae, Si-Young; Lee, Ho-Jun; Mitsunari, Tadashi; Tamura, Akira; Deki, Manato; Honda, Yoshio; Amano, Hiroshi

    2016-05-01

    In this paper, we discuss the influence of parameters such as type of carrier gas and NH3/HCl flow ratio on the growth of vertical GaN microstructures by selective-area growth (SAG) hydride vapor phase epitaxy (HVPE). On various strain-induced templates such as GaN/sapphire, GaN/Si, and AlN/Si, regular arrays of Ga-polar GaN microrods were properly achieved by adjusting the growth parameters. The photoluminescence and micro-Raman measurements reveal not only the crystal quality of the GaN microrods but also strain distribution. These results will give insight into the control of the morphology of GaN microrods in terms of the strain induced from templates in SAG-HVPE. The precisely controlled arrays of GaN microrods can be used for next-generation light-emitting diodes (LEDs) by realizing InGaN/GaN multi-quantum wells (MQWs) with a radial structure.

  17. TMAH wet etching of silicon micro- and nano-fins for selective sidewall epitaxy of III-Nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Liu, Lianci; Myasishchev, Denis; Kuryatkov, Vladimir; Nikishin, Sergey; Holtz, Mark; Harris, Rusty

    2011-10-01

    We describe formation of silicon micro- and nano-fins, with (111)-plane sidewall facets, for selective sidewall epitaxy of III-Nitride semiconductors. The fins are produced by wet etching (110)-oriented silicon wafers. Silicon dioxide is deposited using plasma enhanced chemical vapor deposition for producing a hard mask. The silicon dioxide is patterned using photo- and electron-beam lithography for micro- and nano-fins, respectively, followed by wet etching in hydrofluoric acid. Wet etching to produce the silicon fins is carried out using tetramethyl ammonium hydroxide (TMAH) diluted with isopropyl alcohol (IPA). Atomic force microscopy and scanning electron microscopy are used to determine morphology including the surface roughness of the area between fins and the etching rate of silicon. We tune the etching time, temperature, and percentage of IPA in order to get the best surface on both (111) and (110) planes. Adding IPA is found to alter the etch rate and improve the surface between the fins without adversely affecting the sidewall morphology.

  18. Large-area GaN n-core/p-shell arrays fabricated using top-down etching and selective epitaxial overgrowth

    NASA Astrophysics Data System (ADS)

    Krylyuk, Sergiy; Paramanik, Dipak; King, Matt; Motayed, Abhishek; Ha, Jong-Yoon; Bonevich, John E.; Talin, Alec; Davydov, Albert V.

    2012-12-01

    We present large-area, vertically aligned GaN n-core and p-shell structures on silicon substrates. The GaN pillars were formed by inductively coupled plasma etching of lithographically patterned n-GaN epitaxial layer. Mg-doped p-GaN shells were formed using selective overgrowth by halide vapor phase epitaxy. The diameter of the cores ranged from 250 nm to 10 μm with varying pitch. The p-shells formed truncated hexagonal pyramids with {11¯01} side-facets. Room-temperature photoluminescence and Raman scattering measurements indicate strain-relaxation in the etched pillars and shells. Cross-sectional transmission electron microscopy revealed dislocation bending by 90° at the core-shell interface and reduction in their density in the shells.

  19. RAPID COMMUNICATION: Selective epitaxial fabrication of TBCCO microstrip devices and structures

    NASA Astrophysics Data System (ADS)

    Stevens, C. J.; Grovenor, C. R. M.; Edwards, D. J.

    2000-12-01

    Tl-based high-temperature superconductors have attractive properties for applications in a range of high-frequency analogue and digital technologies. While the patterning of Tl-containing superconductors is a vital part of thin-film device preparation, the high degree of toxicity of Tl makes conventional patterning of Tl-containing films, which produce some toxic waste products, unattractive. Patterning of a Tl-free precursor before thallination is possible; but the precursor films can react with aqueous solutions, resulting in degraded superconductor properties. In order to achieve a high-resolution pattern with no chemical processing of the Tl-containing films and no exposure of precursor material to water we have successfully developed a selective growth technique based on patterning a buried SiN layer.

  20. A comparison between fine grain and epitaxial superconducting tunneling junctions for use as high energy resolution x-ray detectors

    NASA Astrophysics Data System (ADS)

    Saulnier, Gregory Gerard

    1994-01-01

    Superconducting tunneling junctions (STJ) show great promise in high energy resolution x-ray spectroscopy for use in x-ray astrophysics. An STJ is a sandwich of an insulator between two superconductors (S-I-S). Such a device has an intrinsic energy resolution an order of magnitude better than any existing semiconductor device, including the charge coupled device (CCD). The potential impact on x-ray astrophysics is enormous, with possible future use on sounding rockets and other as yet undefined satellite missions. This thesis compares two STJ's that have been fabricated using Nb/Al/Al2O3/Nb in the same ultra-high vacuum chamber with the same layer thicknesses with the only difference being that the base layers are either fine grain (polycrystalline) or epitaxial. The testing was done at temperatures between 0.4 K and 4.2 K. The comparison included subgap spectra from an Fe-55 x-ray source. The findings showed that the fine grain junction had a tunnel barrier of much higher quality and yielded higher energy resolution. It was determined that the epitaxial junction was much more sensitive to substrate events. Two peaks were found in the x-ray spectra. Each peak was attributed to x-ray interactions within one or the other superconducting films of the junction.

  1. Epitaxial growth of CZT(S,Se) on silicon

    DOEpatents

    Bojarczuk, Nestor A.; Gershon, Talia S.; Guha, Supratik; Shin, Byungha; Zhu, Yu

    2016-03-15

    Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.

  2. Fabrication and characterization of 4H-SiC P-N junction diodes by selective-epitaxial growth using TaC as the mask

    NASA Astrophysics Data System (ADS)

    Li, C.; Losee, P.; Seiler, J.; Bhat, I.; Chow, T. P.

    2005-04-01

    Selective nitrogen doping of 4H-SiC by epitaxial growth using TaC as the high-temperature mask has been demonstrated. Nomarski optical microscopy and scanning electron microscopy (SEM) were used to characterize selective growth of SiC. In addition, 250-µm, square-shaped, p-n junction diodes by selective n-type epitaxial growth on a p-type epilayer were fabricated. The refilled fingers with different width were designed to vary the periphery/area (P/A) ratio. The effects of P/A ratio on the current-voltage (J-V) characteristics have been investigated. The ideality factor extracted from J-V characteristics is ≈2 at a temperature range of 25-275°C, which indicates that the Shockley-Read-Hall recombination is the dominant mechanism in the conduction region. The reverse leakage current does not show dependence on P/A ratio for trench-refilled diodes. The room-temperature reverse leakage-current density at 100 V is less than 3.5×10-7 A/cm2 for all diodes. Also, the reverse leakage current does not increase significantly with temperature up to 275°C. The breakdown voltages measured at room temperature are about 450 V and 400 V for diodes without and with fingers, respectively.

  3. Large-scale self-assembled epitaxial growth of highly-ordered three-dimensional micro/nano single-crystalline PbSe pyramid arrays by selective chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Qiu, Jijun; Weng, Binbin; Li, Lin; Li, Xiaomin; Shi, Zhisheng

    2015-05-01

    Highly ordered three-dimensional micro- and nano- PbSe pyramid arrays were synthesized by using selective epitaxial self-assembled chemical bath deposition method. Each pyramid consists of a very sharp (111) tip with six smooth equivalent {100} facets. Every (100) facet forms an angle of about 54.7° with respect to the (111) facet. The structural features including pyramidal size and period could be precisely tailored by pre-patterned Au mask and etching time. Pyramids are self-assembled on the confined positions by the dual functions of one-dimensional and two-dimensional oriented attachment mechanisms along [110] directions on the (111) surface, following the Gibbs-Curie-Wulff minimum energy principle. This method could effectively create large, bottom-up 3D pyramidal surface patterns in a cost-effective and time-saving manner, which has potential applications in infrared photoconductors, solar cells and light emitting enhancement for display, etc.

  4. Selective-area growth of GaN nanowires on SiO2-masked Si (111) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kruse, J. E.; Lymperakis, L.; Eftychis, S.; Adikimenakis, A.; Doundoulakis, G.; Tsagaraki, K.; Androulidaki, M.; Olziersky, A.; Dimitrakis, P.; Ioannou-Sougleridis, V.; Normand, P.; Koukoula, T.; Kehagias, Th.; Komninou, Ph.; Konstantinidis, G.; Georgakilas, A.

    2016-06-01

    We analyze a method to selectively grow straight, vertical gallium nitride nanowires by plasma-assisted molecular beam epitaxy (MBE) at sites specified by a silicon oxide mask, which is thermally grown on silicon (111) substrates and patterned by electron-beam lithography and reactive-ion etching. The investigated method requires only one single molecular beam epitaxy MBE growth process, i.e., the SiO2 mask is formed on silicon instead of on a previously grown GaN or AlN buffer layer. We present a systematic and analytical study involving various mask patterns, characterization by scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy, as well as numerical simulations, to evaluate how the dimensions (window diameter and spacing) of the mask affect the distribution of the nanowires, their morphology, and alignment, as well as their photonic properties. Capabilities and limitations for this method of selective-area growth of nanowires have been identified. A window diameter less than 50 nm and a window spacing larger than 500 nm can provide single nanowire nucleation in nearly all mask windows. The results are consistent with a Ga diffusion length on the silicon dioxide surface in the order of approximately 1 μm.

  5. Origin of the low-energy emission band in epitaxially grown para-sexiphenyl nanocrystallites

    NASA Astrophysics Data System (ADS)

    Kadashchuk, A.; Schols, S.; Heremans, P.; Skryshevski, Yu.; Piryatinski, Yu.; Beinik, I.; Teichert, C.; Hernandez-Sosa, G.; Sitter, H.; Andreev, A.; Frank, P.; Winkler, A.

    2009-02-01

    A comparative study of steady-state and time-resolved photoluminescence of para-sexiphenyl (PSP) films grown by organic molecular beam epitaxy (OMBE) and hot wall epitaxy (HWE) under comparable conditions is presented. Using different template substrates [mica(001) and KCl(001) surfaces] as well as different OMBE growth conditions has enabled us to vary greatly the morphology of the PSP crystallites while keeping their chemical structure virtually untouched. We prove that the broad redshifted emission band has a structure-related origin rather than being due to monomolecular oxidative defects. We conclude that the growth conditions and type of template substrate impacts substantially on the film morphology (measured by atomic force microscopy) and emission properties of the PSP films. The relative intensity of the defect emission band observed in the delayed spectra was found to correlate with the structural quality of PSP crystallites. In particular, the defect emission has been found to be drastically suppressed when (i) a KCl template substrate was used instead of mica in HWE-grown films, and (ii) in the OMBE-grown films dominated by growth mounds composed of upright standing molecules as opposed to the films consisting of crystallites formed by molecules lying parallel to the substrate.

  6. Origin of the low-energy emission band in epitaxially grown para-sexiphenyl nanocrystallites

    SciTech Connect

    Kadashchuk, A.; Schols, S.; Heremans, P.; Skryshevski, Yu.; Piryatinski, Yu.; Beinik, I.; Teichert, C.; Hernandez-Sosa, G.; Sitter, H.; Andreev, A.; Frank, P.; Winkler, A.

    2009-02-28

    A comparative study of steady-state and time-resolved photoluminescence of para-sexiphenyl (PSP) films grown by organic molecular beam epitaxy (OMBE) and hot wall epitaxy (HWE) under comparable conditions is presented. Using different template substrates [mica(001) and KCl(001) surfaces] as well as different OMBE growth conditions has enabled us to vary greatly the morphology of the PSP crystallites while keeping their chemical structure virtually untouched. We prove that the broad redshifted emission band has a structure-related origin rather than being due to monomolecular oxidative defects. We conclude that the growth conditions and type of template substrate impacts substantially on the film morphology (measured by atomic force microscopy) and emission properties of the PSP films. The relative intensity of the defect emission band observed in the delayed spectra was found to correlate with the structural quality of PSP crystallites. In particular, the defect emission has been found to be drastically suppressed when (i) a KCl template substrate was used instead of mica in HWE-grown films, and (ii) in the OMBE-grown films dominated by growth mounds composed of upright standing molecules as opposed to the films consisting of crystallites formed by molecules lying parallel to the substrate.

  7. Temperature stability of Al(x)Ga(1-x)As (x = 0-1) thermal oxide masks for selective-area epitaxy

    NASA Technical Reports Server (NTRS)

    Jones, Stephen H.; Lau, Kei May; Pouch, John J.

    1988-01-01

    The use of thermal oxides of Al(x)Ga(1-x)As (x = 0-1) as masking materials for selective-area epitaxy by a organometallic chemical-vapor deposition has been investigated. It was found that the thermal oxide of GaAs is only applicable for low growth temperatures (less than or equal to 600 C), and the addition of aluminum significantly improves the thermal stability of the oxide. The oxide of Al(0.4)Ga(0.6)As is suitable for high-temperature deposition, but there are criteria for the thickness and oxidation temperature. Thin layers of AlAs oxidized at 475 C are excellent masks and allow precise thickness control. Promising results of selective-area deposition using these aluminum oxide masks have been obtained. High-quality single crystal grew in mask openings uniformly surrounded by dense and fine-grain polycrystalline deposits, producing a planar duplication of the original pattern.

  8. Temperature stability of Al(x)Ga(1-x)As (x = 0-1) thermal oxide masks for selective-area epitaxy

    NASA Astrophysics Data System (ADS)

    Jones, Stephen H.; Lau, Kei May; Pouch, John J.

    1988-07-01

    The use of thermal oxides of Al(x)Ga(1-x)As (x = 0-1) as masking materials for selective-area epitaxy by a organometallic chemical-vapor deposition has been investigated. It was found that the thermal oxide of GaAs is only applicable for low growth temperatures (less than or equal to 600 C), and the addition of aluminum significantly improves the thermal stability of the oxide. The oxide of Al(0.4)Ga(0.6)As is suitable for high-temperature deposition, but there are criteria for the thickness and oxidation temperature. Thin layers of AlAs oxidized at 475 C are excellent masks and allow precise thickness control. Promising results of selective-area deposition using these aluminum oxide masks have been obtained. High-quality single crystal grew in mask openings uniformly surrounded by dense and fine-grain polycrystalline deposits, producing a planar duplication of the original pattern.

  9. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure.

    PubMed

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A; Kuk, Young

    2016-01-01

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk. PMID:27503427

  10. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure

    PubMed Central

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A.; Kuk, Young

    2016-01-01

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk. PMID:27503427

  11. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure

    NASA Astrophysics Data System (ADS)

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A.; Kuk, Young

    2016-08-01

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk.

  12. Thermophotovoltaic energy converters based on thin film selective emitters and InGaAs photovoltaic cells

    SciTech Connect

    Fatemi, N.S.; Hoffman, R.H.; Wilt, D.M.; Lowe, R.A.; Garverick, L.M.; Scheiman, D.

    1996-02-01

    This paper presents the results of an investigation to demonstrate thermophotovoltaic energy conversion using InGaAs photovoltaic cells, yttrium-aluminum-garnet- (YAG-) based selective emitters, and bandpass/reflector filters, with the heat source operating at 1100{degree}C. InGaAs cells were grown on InP by organometallic vapor phase epitaxy with bandgaps of 0.60 and 0.75 eV and coupled to Ho-, Er-, and Er-Tm-doped YAG selective emitters. Infrared reflector and/or shortpass filters were also used to increase the ratio of in-band to out-of-band radiation from the selective emitters. Efficiencies as high as 13.2{percent} were recorded for filtered converters. {copyright} {ital 1996 American Institute of Physics.}

  13. Epitaxial silicon growth for solar cells

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Richman, D.

    1979-01-01

    The epitaxial procedures, solar cell fabrication, and evaluation techniques are described. The development of baseline epitaxial solar cell structures grown on high quality conventional silicon substrates is discussed. Diagnostic layers and solar cells grown on four potentially low cost silicon substrates are considered. The crystallographic properties of such layers and the performance of epitaxially grown solar cells fabricated on these materials are described. An advanced epitaxial reactor, the rotary disc, is described along with the results of growing solar cell structures of the baseline type on low cost substrates. The add on cost for the epitaxial process is assessed and the economic advantages of the epitaxial process as they relate to silicon substrate selection are examined.

  14. Optimization of SiGe selective epitaxy for source/drain engineering in 22 nm node complementary metal-oxide semiconductor (CMOS)

    NASA Astrophysics Data System (ADS)

    Wang, G. L.; Moeen, M.; Abedin, A.; Kolahdouz, M.; Luo, J.; Qin, C. L.; Zhu, H. L.; Yan, J.; Yin, H. Z.; Li, J. F.; Zhao, C.; Radamson, H. H.

    2013-09-01

    SiGe has been widely used for source/drain (S/D) engineering in pMOSFETs to enhance channel mobility. In this study, selective Si1-xGex growth (0.25 ≤ x ≤ 0.35) with boron concentration of 1-3 × 1020 cm-3 in the process for 22 nm node complementary metal-oxide semiconductor (CMOS) has been investigated and optimized. The growth parameters were carefully tuned to achieve deposition of high quality and highly strained material. The thermal budget was decreased to 800 °C to suppress dopant diffusion, to minimize Si loss in S/D recesses, and to preserve the S/D recess shape. Two layers of Si1-xGex were deposited: a bottom layer with high Ge content (x = 0.35) which filled the recess and a cap layer with low Ge content (x = 0.25) which was elevated in the S/D regions. The elevated SiGe cap layer was intended to be consumed during the Ni-silicidation process in order to avoid strain reduction in the channel region arising from strain relaxation in SiGe S/D. In this study, a kinetic gas model was also applied to predict the pattern dependency of the growth and to determine the epi-profile in different transistor arrays. The input parameters include growth temperature, partial pressures of reactant gases, and chip layout. By using this model, the number of test wafers for epitaxy experiments can be decreased significantly. When the epitaxy process parameters can be readily predicted by the model for epi-profile control in an advanced chip design, fast and cost-effective process development can be achieved.

  15. Antimony segregation in Ge and formation of n-type selectively doped Ge films in molecular beam epitaxy

    SciTech Connect

    Yurasov, D. V. Antonov, A. V.; Drozdov, M. N.; Schmagin, V. B.; Novikov, A. V.; Spirin, K. E.

    2015-10-14

    Antimony segregation in Ge(001) films grown by molecular beam epitaxy was studied. A quantitative dependence of the Sb segregation ratio in Ge on growth temperature was revealed experimentally and modeled theoretically taking into account both the terrace-mediated and step-edge-mediated segregation mechanisms. A nearly 5-orders-of-magnitude increase in the Sb segregation ratio in a relatively small temperature range of 180–350 °C was obtained, which allowed to form Ge:Sb doped layers with abrupt boundaries and high crystalline quality using the temperature switching method that was proposed earlier for Si-based structures. This technique was employed for fabrication of different kinds of n-type Ge structures which can be useful for practical applications like heavily doped n{sup +}-Ge films or δ-doped layers. Estimation of the doping profiles sharpness yielded the values of 2–5 nm per decade for the concentration gradient at the leading edge and 2–3 nm for the full-width-half-maximum of the Ge:Sb δ-layers. Electrical characterization of grown Ge:Sb structures revealed nearly full electrical activation of Sb atoms and the two-dimensional nature of charge carrier transport in δ-layers.

  16. Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography

    PubMed Central

    2011-01-01

    Highly uniform InGaN-based quantum dots (QDs) grown on a nanopatterned dielectric layer defined by self-assembled diblock copolymer were performed by metal-organic chemical vapor deposition. The cylindrical-shaped nanopatterns were created on SiNx layers deposited on a GaN template, which provided the nanopatterning for the epitaxy of ultra-high density QD with uniform size and distribution. Scanning electron microscopy and atomic force microscopy measurements were conducted to investigate the QDs morphology. The InGaN/GaN QDs with density up to 8 × 1010 cm-2 are realized, which represents ultra-high dot density for highly uniform and well-controlled, nitride-based QDs, with QD diameter of approximately 22-25 nm. The photoluminescence (PL) studies indicated the importance of NH3 annealing and GaN spacer layer growth for improving the PL intensity of the SiNx-treated GaN surface, to achieve high optical-quality QDs applicable for photonics devices. PMID:21711862

  17. Vacancies in epitaxial graphene

    SciTech Connect

    Davydov, S. Yu.

    2015-08-15

    The coherent-potential method is used to consider the problem of the influence of a finite concentration of randomly arranged vacancies on the density of states of epitaxial graphene. To describe the density of states of the substrate, simple models (the Anderson model, Haldane-Anderson model, and parabolic model) are used. The electronic spectrum of free single-sheet graphene is considered in the low-energy approximation. Charge transfer in the graphene-substrate system is discussed. It is shown that, in all cases, the density of states of epitaxial graphene decreases proportionally to the vacancy concentration. At the same time, the average charge transferred from graphene to the substrate increases.

  18. Renewable energy recovery through selected industrial wastes

    NASA Astrophysics Data System (ADS)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  19. Selective area growth of Bernal bilayer epitaxial graphene on 4H-SiC (0001) substrate by electron-beam irradiation

    SciTech Connect

    Dharmaraj, P.; Jeganathan, K.; Parthiban, S.; Kwon, J. Y.; Gautam, S.; Chae, K. H.; Asokan, K.

    2014-11-03

    We report selective area growth of large area homogeneous Bernal stacked bilayer epitaxial graphene (BLEG) on 4H-SiC (0001) substrate by electron-beam irradiation. Sublimation of Si occurs by energetic electron irradiations on SiC surface via breaking of Si–C bonds in the localized region, which allows the selective growth of graphene. Raman measurements ensure the formation of homogeneous BLEG with weak compressive strain of −0.08%. The carrier mobility of large area BLEG is ∼5100 cm{sup 2} V{sup −1} s{sup −1} with a sheet carrier density of 2.2 × 10{sup 13} cm{sup −2}. Current-voltage measurements reveal that BLEG on 4H-SiC forms a Schottky junction with an operation at mA level. Our study reveals that the barrier height at the Schottky junction is low (∼0.58 eV) due to the Fermi-level pinning above the Dirac point.

  20. Observation of reflection high-energy electron diffraction oscillation during metalorganic-molecular-beam epitaxy of AlAs and control of carbon incorporation

    NASA Astrophysics Data System (ADS)

    Ganapathy, Sasikala; Kurimoto, Makoto; Thilakan, Periyasamy; Uesugi, Kasturi; Suemune, Ikuo; Machida, Hideaki; Shimoyama, Norio

    2003-10-01

    The in situ observation of reflection high-energy electron diffraction (RHEED) oscillations during the metalorganic-molecular-beam epitaxy deposition of AlAs and AlGaAs epitaxial layers is reported. In situ RHEED oscillations as well as atomic force microscopy measurements confirmed the layer-by-layer growth of the AlAs as well as the AlGaAs layers on GaAs substrates. RHEED oscillation was successfully applied to the precise control of the AlAs/GaAs superlattices and of the alloy compositions in the AlGaAs alloys. High-resolution x-ray diffraction and Hall effect measurements revealed the unintentional doping of carbon into the AlGaAs layers, but it was found that the increase in the V/III ratio is able to reduce the carbon incorporation.

  1. Molecular-beam epitaxy of monolayer and bilayer WSe2: a scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy

    NASA Astrophysics Data System (ADS)

    Liu, H. J.; Jiao, L.; Xie, L.; Yang, F.; Chen, J. L.; Ho, W. K.; Gao, C. L.; Jia, J. F.; Cui, X. D.; Xie, M. H.

    2015-09-01

    Interest in two-dimensional (2D) transition-metal dichalcogenides (TMDs) has prompted some recent efforts to grow ultrathin layers of these materials epitaxially using molecular-beam epitaxy (MBE). However, growths of monolayer (ML) and bilayer (BL) WSe2—an important member of the TMD family—by the MBE method remain uncharted, probably because of the difficulty in generating tungsten fluxes from the elemental source. In this work, we present a scanning tunneling microscopy and spectroscopy (STM/S) study of MBE-grown WSe2 ML and BL, showing atomically flat epifilm with no domain boundary (DB) defect. This contrasts epitaxial MoSe2 films grown by the same method, where a dense network of the DB defects is present. The STS measurements of ML and BL WSe2 domains of the same sample reveal not only the bandgap narrowing upon increasing the film thickness from ML to BL, but also a band-bending effect across the boundary (step) between ML and BL domains. This band-bending appears to be dictated by the edge states at steps of the BL islands. Finally, comparison is made between the STS-measured electronic bandgaps with the exciton emission energies measured by photoluminescence, and the exciton binding energies in ML and BL WSe2 (and MoSe2) are thus estimated.

  2. Strain in epitaxial Bi2Se3 grown on GaN and graphene substrates: A reflection high-energy electron diffraction study

    NASA Astrophysics Data System (ADS)

    Li, Bin; Guo, Xin; Ho, Wingkin; Xie, Maohai

    2015-08-01

    Topological insulator (TI) has been one of the focus research themes in condensed matter physics in recent years. Due to the relatively large energy bandgap, Bi2Se3 has been identified as one of the most promising three-dimensional TIs with application potentials. Epitaxial Bi2Se3 by molecular-beam epitaxy has been reported by many groups using different substrates. A common feature is that Bi2Se3 grows readily along the c-axis direction irrespective of the type and condition of the substrate. Because of the weak van deer Waals interaction between Bi2Se3 quintuple layers, the grown films are reported to be strain-free, taking the lattice constant of the bulk crystal. At the very initial stage of Bi2Se3 deposition, however, strain may still exist depending on the substrate. Strain may bring some drastic effects to the properties of the TIs and so achieving strained TIs can be of great fundamental interests as well as practical relevance. In this work, we employ reflection high-energy electron diffraction to follow the lattice constant evolution of Bi2Se3 during initial stage depositions on GaN and graphene, two very different substrates. We reveal that epitaxial Bi2Se3 is tensile strained on GaN but strain-free on graphene. Strain relaxation on GaN is gradual.

  3. Copper Oxide Substrates and Epitaxial Copper Oxide/Zinc Oxide Thin Film Heterostructures for Solar Energy Conversion

    NASA Astrophysics Data System (ADS)

    Darvish, Davis Solomon

    Future fossil fuel scarcity and environmental degradation have demonstrated the need for renewable, low-carbon sources of energy to power an increasingly industrialized world. Solar energy with its infinite supply makes it an extraordinary resource that should not go unused. However with current materials, adoption is limited by cost and so a paradigm shift must occur to get everyone on the same page embracing solar technology. Cuprous Oxide (Cu2O) is a promising earth abundant material that can be a great alternative to traditional thin-film photovoltaic materials like CIGS, CdTe, etc. We have prepared Cu 2O bulk substrates by the thermal oxidation of copper foils as well Cu2O thin films deposited via plasma-assisted Molecular Beam Epitaxy. From preliminary Hall measurements it was determined that Cu2O would need to be doped extrinsically. This was further confirmed by simulations of ZnO/Cu2O heterojunctions. A cyclic interdependence between, defect concentration, minority carrier lifetime, film thickness, and carrier concentration manifests itself a primary reason for why efficiencies greater than 4% has yet to be realized. Our growth methodology for our thin-film heterostructures allow precise control of the number of defects that incorporate into our film during both equilibrium and nonequilibrium growth. We also report process flow/device design/fabrication techniques in order to create a device. A typical device without any optimizations exhibited open-circuit voltages Voc, values in excess 500mV; nearly 18% greater than previous solid state devices.

  4. EDITORIAL: Epitaxial graphene Epitaxial graphene

    NASA Astrophysics Data System (ADS)

    de Heer, Walt A.; Berger, Claire

    2012-04-01

    Graphene is widely regarded as an important new electronic material with interesting two-dimensional electron gas properties. Not only that, but graphene is widely considered to be an important new material for large-scale integrated electronic devices that may eventually even succeed silicon. In fact, there are countless publications that demonstrate the amazing applications potential of graphene. In order to realize graphene electronics, a platform is required that is compatible with large-scale electronics processing methods. It was clear from the outset that graphene grown epitaxially on silicon carbide substrates was exceptionally well suited as a platform for graphene-based electronics, not only because the graphene sheets are grown directly on electronics-grade silicon carbide (an important semiconductor in its own right), but also because these sheets are oriented with respect to the semiconductor. Moreover, the extremely high temperatures involved in production assure essentially defect-free and contamination-free materials with well-defined interfaces. Epitaxial graphene on silicon carbide is not a unique material, but actually a class of materials. It is a complex structure consisting of a reconstructed silicon carbide surface, which, for planar hexagonal silicon carbide, is either the silicon- or the carbon-terminated face, an interfacial carbon rich layer, followed by one or more graphene layers. Consequently, the structure of graphene films on silicon carbide turns out to be a rich surface-science puzzle that has been intensively studied and systematically unravelled with a wide variety of surface science probes. Moreover, the graphene films produced on the carbon-terminated face turn out to be rotationally stacked, resulting in unique and important structural and electronic properties. Finally, in contrast to essentially all other graphene production methods, epitaxial graphene can be grown on structured silicon carbide surfaces to produce graphene

  5. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Treu, J.; Speckbacher, M.; Saller, K.; Morkötter, S.; Döblinger, M.; Xu, X.; Riedl, H.; Abstreiter, G.; Finley, J. J.; Koblmüller, G.

    2016-02-01

    We delineate the optimized growth parameter space for high-uniformity catalyst-free InGaAs nanowire (NW) arrays on Si over nearly the entire alloy compositional range using selective area molecular beam epitaxy. Under the required high group-V fluxes and V/III ratios, the respective growth windows shift to higher growth temperatures as the Ga-content x(Ga) is tuned from In-rich to Ga-rich InGaAs NWs. Using correlated x-ray diffraction, transmission electron microscopy, and micro-photoluminescence spectroscopy, we identify structural defects to govern luminescence linewidths in In-rich (x(Ga) < 0.4) and Ga-rich (x(Ga) > 0.6) NWs, whereas limitations at intermediate Ga-content (0.4 < x(Ga) < 0.6) are mainly due to compositional inhomogeneities. Most remarkably, the catalyst-free InGaAs NWs exhibit a characteristic transition in crystal structure from wurtzite to zincblende (ZB) dominated phase near x(Ga) ˜ 0.4 that is further reflected in a cross-over from blue-shifted to red-shifted photoluminescence emission relative to the band edge emission of the bulk ZB InGaAs phase.

  6. Influence of the carrier Gas, trimethylgallium flow, and growth time on the character of the selective epitaxy of GaN

    SciTech Connect

    Rozhavskaya, M. M. Lundin, V. V.; Zavarin, E. E.; Troshkov, S. I.; Brunkov, P. N.; Tsatsulnikov, A. F.

    2013-03-15

    The influence of the carrier gas, trimethylgallium flow, and growth time on the character of the selective epitaxy of GaN in stripe windows oriented along the crystallographic direction Left-Pointing-Angle-Bracket 11-bar00 Right-Pointing-Angle-Bracket GaN for various widths of the mask between the stripes is studied. It is shown that the addition of nitrogen in the reactor atmosphere leads to changes in the form of the stripes in the case of wide (40 {mu}m) mask from a rectangular form restricted by a {l_brace}1 1-bar20{r_brace} lateral face to a trapezoidal form restricted by a {l_brace}1 1-bar22{r_brace} lateral face. It is also shown that during growth in the nitrogen-hydrogen mixture, the gallium flow starts to considerably affect the form of the growing stripes. It is shown that the process is significantly unstable, which leads to a noticeable variation in the form type as the transverse section of the stripe increases.

  7. Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide.

    PubMed

    Yu, Haohai; Chen, Xiufang; Zhang, Huaijin; Xu, Xiangang; Hu, Xiaobo; Wang, Zhengping; Wang, Jiyang; Zhuang, Shidong; Jiang, Minhua

    2010-12-28

    Graphene grown by thermal decomposition of a two-inch 6H silicon carbide (SiC) wafers surface was used to modulate a large energy pulse laser. Because of its saturable absorbing properties, graphene was used as a passive Q-switcher, and because of its high refractive index the SiC substrate was used as an output coupler. Together they formed a setup where the passively Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal laser was realized with the pulse energy of 159.2 nJ. Our results illustrate the feasibility of using graphene as an inexpensive Q-switcher for solid-state lasers and its promising applications in integrated optics. PMID:21058692

  8. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well

    NASA Astrophysics Data System (ADS)

    Achermann, Marc; Petruska, Melissa A.; Kos, Simon; Smith, Darryl L.; Koleske, Daniel D.; Klimov, Victor I.

    2004-06-01

    As a result of quantum-confinement effects, the emission colour of semiconductor nanocrystals can be modified dramatically by simply changing their size. Such spectral tunability, together with large photoluminescence quantum yields and high photostability, make nanocrystals attractive for use in a variety of light-emitting technologies-for example, displays, fluorescence tagging, solid-state lighting and lasers. An important limitation for such applications, however, is the difficulty of achieving electrical pumping, largely due to the presence of an insulating organic capping layer on the nanocrystals. Here, we describe an approach for indirect injection of electron-hole pairs (the electron-hole radiative recombination gives rise to light emission) into nanocrystals by non-contact, non-radiative energy transfer from a proximal quantum well that can in principle be pumped either electrically or optically. Our theoretical and experimental results indicate that this transfer is fast enough to compete with electron-hole recombination in the quantum well, and results in greater than 50 per cent energy-transfer efficiencies in the tested structures. Furthermore, the measured energy-transfer rates are sufficiently large to provide pumping in the stimulated emission regime, indicating the feasibility of nanocrystal-based optical amplifiers and lasers based on this approach.

  9. Epitaxial jumps

    NASA Astrophysics Data System (ADS)

    Stura, Enrico A.; Charbonnier, Jean-Baptiste; Taussig, Michael J.

    1999-01-01

    By a combination of seeding and changing the growth medium new crystal forms may be obtained. The procedure is called an epitaxial jump. The seeds used in the seeding are from crystals of the same or related protein. For example, seeding followed by an increase in precipitant concentration has given higher diffracting crystals of the complex between tissue factor, factor VIIa and the inhibitor 5L15. For both an anti-steroid antibody fragment and human placental alkaline phosphatase a polymorph was obtained by changing a low molecular weight polyethylene glycol (PEG) with one of a higher molecular weight. In the first case, in one direction and in the latter case, in the other direction. A change of conformation could also have contributed to this. A DsbA mutant illustrates how such changes, result in a different packing from that for the wild-type. Seeding from crystals of wild-type protein yields crystals which appear to be morphologically different from both the wild-type and mutant crystal forms.

  10. Reflection high-energy electron diffraction evaluation of thermal deoxidation of chemically cleaned Si, SiGe, and Ge layers for solid-source molecular beam epitaxy

    SciTech Connect

    Ali, Dyan; Richardson, Christopher J. K.

    2012-11-15

    The authors present a study on the thermal evolution of the reflection high-energy electron diffraction pattern of chemically cleaned (001)-oriented Si, Ge, and SiGe surfaces, associating observed changes in the reconstructions with the desorption of known residual contaminants for Si and Ge surfaces. The implications of residual oxides prior to epitaxy on stacking fault densities in the grown films are presented. Further evidence for the two-phase nature of oxides on SiGe surfaces is provided, demonstrating that it is necessary to heat a SiGe surface up to the thermal deoxidation temperature of a Si surface to obtain stacking fault-free growth.

  11. Epitaxial growth of III-nitride nanostructures and applications for visible emitters and energy generation

    NASA Astrophysics Data System (ADS)

    Pantha, Bed Nidhi

    III-nitride nanostructures and devices were synthesized by metal organic chemical vapor deposition (MOCVD) for their applications in various photonic, optoelectronic, and energy devices such as deep ultraviolet (DUV) photodetectors, solar cells, visible emitters, thermometric (TE) power generators, etc. Structural and optical properties in thicker AlN epilayers were found to be better than those in thinner AlN epilayers. Full-width at half maxima (FWHM) of x-ray diffraction (XRD) rocking curves as small as 63 and 437 arcsec were measured at (002) and (102) reflections, respectively in a thick AlN epilayer (4 mum). The dark current of the fabricated AlN detectors decreases drastically as AlN epilayer thickness increases. DUV photoluminescence (PL) spectroscopy and x-ray diffraction (XRD) measurements were employed to study the effect of biaxial stress in AlN epilayers grown on different substrates. Stress-induced band gap shift of 45 meV/GPa was obtained in AlN epilayers. The potential of InGaN alloys as TE materials for thermopower generation has been investigated. It was found that as In content increases, thermal conductivity decreases and power factor increases, which leads to an increase in the TE figure of merit (ZT). The value of ZT was found to be 0.08 at 300 K and reached 0.23 at 450 K for In0.36Ga0.64N alloy, which is comparable to that of SiGe based alloys. Single phase InxGa1- xN alloys inside the theoretically predicted miscibility gap region (x = 0.4 to 0.7) were successfully synthesized. A single peak of XRD o-2theta scans of the (002) plane in InGaN alloys confirms that there is no phase separation. Electrical properties and surface morphologies were found to be reasonably good. It was found that growth rate should be high enough (>400 nm/hr) to achieve high quality and single phase InxGa1-xN alloys in this miscibility gap region. Mg-doped InxGa1- xN alloys were synthesized and characterized by Hall-effect and PL measurements for their application as

  12. Strain in epitaxial Bi{sub 2}Se{sub 3} grown on GaN and graphene substrates: A reflection high-energy electron diffraction study

    SciTech Connect

    Li, Bin; Guo, Xin; Ho, Wingkin; Xie, Maohai

    2015-08-24

    Topological insulator (TI) has been one of the focus research themes in condensed matter physics in recent years. Due to the relatively large energy bandgap, Bi{sub 2}Se{sub 3} has been identified as one of the most promising three-dimensional TIs with application potentials. Epitaxial Bi{sub 2}Se{sub 3} by molecular-beam epitaxy has been reported by many groups using different substrates. A common feature is that Bi{sub 2}Se{sub 3} grows readily along the c-axis direction irrespective of the type and condition of the substrate. Because of the weak van der Waals interaction between Bi{sub 2}Se{sub 3} quintuple layers, the grown films are reported to be strain-free, taking the lattice constant of the bulk crystal. At the very initial stage of Bi{sub 2}Se{sub 3} deposition, however, strain may still exist depending on the substrate. Strain may bring some drastic effects to the properties of the TIs and so achieving strained TIs can be of great fundamental interests as well as practical relevance. In this work, we employ reflection high-energy electron diffraction to follow the lattice constant evolution of Bi{sub 2}Se{sub 3} during initial stage depositions on GaN and graphene, two very different substrates. We reveal that epitaxial Bi{sub 2}Se{sub 3} is tensile strained on GaN but strain-free on graphene. Strain relaxation on GaN is gradual.

  13. Energy use in selected metal casting facilities - 2003

    SciTech Connect

    Eppich, Robert E.

    2004-05-01

    This report represents an energy benchmark for various metal casting processes. It describes process flows and energy use by fuel type and processes for selected casting operations. It also provides recommendations for improving energy efficiency in casting.

  14. Assessment of Selected Energy Efficiency Policies

    EIA Publications

    2005-01-01

    This report responds to a request from Senator Byron L. Dorgan, asking the Energy Information Administration (EIA) to undertake a quantitative analysis of a variety of energy efficiency policies using assumptions provided by the Alliance to Save Energy (ASE).

  15. Cassava as an energy source: a selected bibliography

    SciTech Connect

    Sherman, C.

    1980-01-01

    This selected bibliography includes 250 articles on cassava as a potential energy source. Factors included are things which influence cassava growth; such as weeding, fertilizer, diseases and genetic selection, as well as the conversion of cassava to ethanol. (DP)

  16. Band Gap Engineering of PbI2 by Incommensurate Van der Waals Epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Shi, Jian

    Van der Waals epitaxial growth had been thought to have trivial contribution on inducing substantial epitaxial strain in thin films due to its weak nature of Van der Waals interfacial energy. Due to this, electrical and optical structure engineering via Van der Waals epitaxial strain has been rarely studied. However, by appropriate film-substrate selection, we show that significant band structure engineering could be achieved in a soft thin film material PbI2 via Van der Waals epitaxy. The thickness dependent photoluminescence of single crystal PbI2 flakes was studied and attributed to the substrate-film coupling effect via incommensurate Van der Waals epitaxy. It is proposed that the Van der Waals strain is resulted from the soft nature of PbI2 and large Van der Waals interaction due to the involvement of heavy elements. Such strain plays vital roles in modifying the band gap of PbI2. The deformation potential theory is used to quantitatively unveil the correlation between thickness, strain and band gap change. Our hypothesis is confirmed by the subsequent mechanical bending test and Raman characterization.

  17. Research and Energy Efficiency: Selected Success Stories

    DOE R&D Accomplishments Database

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  18. Improved crystalline properties of laser molecular beam epitaxy grown SrTiO{sub 3} by rutile TiO{sub 2} layer on hexagonal GaN

    SciTech Connect

    Luo, W. B.; Zhu, J.; Chen, H.; Wang, X. P.; Zhang, Y.; Li, Y. R.

    2009-11-15

    Epitaxial SrTiO{sub 3} films were fabricated by laser molecular beam epitaxy on bare and TiO{sub 2} buffered GaN(0002), respectively. The whole deposition processes were in situ monitored by reflection high energy electron diffraction (RHEED). X-ray diffraction (XRD) was carried out to study the growth orientation and crystalline quality of STO films. The interfacial characters and epitaxial relationships were also investigated by high revolution transition electron microscope and selected area electron diffraction (SAED). According to the RHEED observation, the lowest epitaxy temperature of STO on TiO{sub 2} buffered GaN was decreased compared with the direct deposited one. The epitaxial relationship was (111)[110]STO//(0002)[1120]GaN in both cases as confirmed by RHEED, XRD, and SAED. The full width at half maximum of omega-scan and PHI-scan of STO on TiO{sub 2} buffered GaN was reduced compared with that deposited on bare GaN, indicating that epitaxial quality of STO film is improved by inserting TiO{sub 2} layer. In summary, the lattice mismatch was reduced by inserting rutile TiO{sub 2}. As a result, the crystalline temperature was reduced and enhanced epitaxial quality of STO thin film was obtained.

  19. Thickness measurement of semiconductor thin films by energy dispersive X-ray fluorescence benchtop instrumentation: Application to GaN epilayers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Queralt, I.; Ibañez, J.; Marguí, E.; Pujol, J.

    2010-07-01

    The importance of thin films in modern high technology products, such as semiconductors, requires fast and non-destructive analysis. A methodology to determine the thickness of single layers with benchtop energy dispersive X-ray fluorescence (EDXRF) instrumentation is described and tested following analytical validation criteria. The experimental work was carried out on gallium nitride thin films epitaxially grown on sapphire substrate. The results of samples with layers in the range from 400 to 1000 nm exhibit a good correlation with the layer thickness determined by optical reflectance. Spectral data obtained using thin layered samples indicate the possibility to precisely evaluate layer thickness from 5 nm, with a low relative standard deviation (RSD < 2%) of the results. In view of the limits of optical reflectance for very thin layer determination, EDXRF analysis offers the potential for the thickness determination of such kind of samples.

  20. A Reflection High Energy Electron Diffraction-Reflectance Anisotropy Spectroscopy Study of Silicon Growth Dynamics During Gas Source Molecular Beam Epitaxy from Silanes

    NASA Astrophysics Data System (ADS)

    Joyce, B. A.; Zhang, J.; Taylor, A. G.; Lees, A. K.

    Molecular beam epitaxy (MBE) provides an ideal experimental vehicle for the in situ study of thin film growth dynamics. By using a combination of reflection high energy electron diffraction (RHEED) and reflectance anisotropy (difference) spectroscopy [RA(D)S], it is possible to separate morphological (long range order) and local electronic structure effects, which we demonstrate with the growth of silicon films from disilane (Si2H6) on Si(001) (2 × 1)+(1 × 2) reconstructed surfaces. The rate-limiting step in Si growth from both monosilane (SiH4) and disilane is the desorption of molecular hydrogen and we have found using RAS that, over a significant range of temperature and coverage, hydrogen desorption follows zeroth order kinetics as the result of a step-mediated process. Finally, we show how this influences the growth rate on substrates of differing degrees of vicinality.

  1. Observation of different reflected high-energy electron diffraction patterns during atomic layer epitaxy growth of CdTe epilayers

    NASA Astrophysics Data System (ADS)

    Faschinger, W.; Juza, P.; Sitter, H.

    1991-12-01

    We present the first RHEED observations during atomic layer epitaxy growth of CdTe on GaAs substrates. The evolution of the RHEED pattern shows that, despite the large lattice mismatch, growth becomes two-dimensional after the deposition of a few monolayers. We observe intensity variations of two RHEED spots under surface resonance conditions and show that this new approach is superior to the observation of the specular spot for the measurement of surface coverages and adsorption kinetics. From the variation of the spot intensities with substrate temperature, we deduce that the Cd and Te surface coverages drop to 0.5 at substrate temperatures higher than 315°C.

  2. Method of forming silicon structures with selectable optical characteristics

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); Schowalter, Leo (Inventor)

    1993-01-01

    Silicon and metal are coevaporated onto a silicon substrate in a molecular beam epitaxy system with a larger than stoichiometric amount of silicon so as to epitaxially grow particles of metal silicide embedded in a matrix of single crystal epitaxially grown silicon. The particles interact with incident photons by resonant optical absorption at the surface plasmon resonance frequency. Controlling the substrate temperature and deposition rate and time allows the aspect ratio of the particles to be tailored to desired wavelength photons and polarizations. The plasmon energy may decay as excited charge carriers or phonons, either of which can be monitored to indicate the amount of incident radiation at the selected frequency and polarization.

  3. Selected Energy Management Options for Small Business and Local Government.

    ERIC Educational Resources Information Center

    Wert, Jonathan M.; Worthington, Barry K.

    This document is a checklist of 257 energy management options for small business and local government. The energy management options are categorized under: (1) Energy management strategies; (2) Buildings; (3) Lighting; (4) Water; (5) Waste operations; (6) Equipment; (7) Transportation; and (8) Food preparation. To select options for…

  4. Theoretical minimum energies to produce steel for selected conditions

    SciTech Connect

    Fruehan, R. J.; Fortini, O.; Paxton, H. W.; Brindle, R.

    2000-03-01

    An ITP study has determined the theoretical minimum energy requirements for producing steel from ore, scrap, and direct reduced iron. Dr. Richard Fruehan's report, Theoretical Minimum Energies to Produce Steel for Selected Conditions, provides insight into the potential energy savings (and associated reductions in carbon dioxide emissions) for ironmaking, steelmaking, and rolling processes (PDF 459 KB).

  5. Magneto-transport properties of InAs nanowires laterally-grown by selective area molecular beam epitaxy on GaAs (110) masked substrates

    SciTech Connect

    Akabori, M.; Yamada, S.

    2013-12-04

    We prepared InAs nanowires (NWs) by lateral growth on GaAs (110) masked substrates in molecular beam epitaxy. We measured magneto-transport properties of the InAs NWs. In spite of parallel-NW multi-channels, we observed fluctuating magneto-conductance. From the fluctuation, we evaluated phase coherence length as a function of measurement temperature, and found decrease in the length with increase in the temperature. We also evaluate phase coherence length as a function of gate voltage.

  6. Solar energy recorder. [for converter site selection

    NASA Technical Reports Server (NTRS)

    Lollar, R. B.; Mandt, R. R.

    1974-01-01

    A serious obstacle to the large-scale terrestrial application of solar energy lies in the scarcity of reliable data on the amount of solar energy at candidate converter sites. This paper describes a system designed to monitor and record, automatically, the values of the direct and total (sun and sky) solar radiation which would be seen by either tracking or fixed-type solar converters. A further pressing need addressed by the system is the means for efficiency testing and evaluation of solar cells, solar collectors and solar concentrator systems, under outdoor exposure to natural sunlight and weather conditions for extended periods. The design was accomplished in support of the Marshall Space Flight Center, NASA, where design concepts and materials for large-scale terrestrial solar energy converters are currently being evaluated.

  7. Wind Energy Developments: Incentives In Selected Countries

    EIA Publications

    1999-01-01

    This paper discusses developments in wind energy for the countries with significant wind capacity. After a brief overview of world capacity, it examines development trends, beginning with the United States - the number one country in wind electric generation capacity until 1997.

  8. Selection of promising sites for magma energy experiments

    SciTech Connect

    Carson, C.C.

    1985-01-01

    The Long Valley and Coso Hot Springs areas of California have been identified as the most promising sites for conducting a magma energy extraction experiment. These two locations were selected from among the potential sites on the basis of several factors that are critical to the success of the proposed long-term energy extraction experiment. These factors include the likelihood of the existence of shallow magma targets as well as several other drilling, energy extraction and programmatic considerations. As the magma energy extraction program continues, these sites will be analyzed in detail so that one can be selected as the site for the planned magma experiment.

  9. Tissue Characterization Using Energy-Selective Computed Tomography

    NASA Astrophysics Data System (ADS)

    Alvarez, Robert E.; Marshall, William H.; Lewis, Roger

    1981-07-01

    Energy-selective computed tomography has several important properties useful for in-vivo tissue characterization. Most importantly, it produces more information than conventional computed tomography. This information can be considered to be an added dimension which can be used to eliminate the ambiguities in conventional CT data. The noise in energy-selective computed tomography is also two dimensional and an un-correlated coordinate system can be defined which is needed for studying the capabilities of the technique for characterizing tissues. By using the calibration material basis set, the information from energy-selective CT can be extracted with extreme accuracy. Our preliminary experiments indicate that the technique is accurate enough to characterize the difference between gray and white matter. Most conventional systems have difficulty in distinguishing these materials, much less characterizing the reason for their differing attenuation. Thus energy-selective CT has the promise of providing extremely accurate tissue characterization based on its physical properties.

  10. Energy dissipation channels affecting photoluminescence from resonantly excited Er{sup 3+} ions doped in epitaxial ZnO host films

    SciTech Connect

    Akazawa, Housei; Shinojima, Hiroyuki

    2015-04-21

    We identified prerequisite conditions to obtain intense photoluminescence at 1.54 μm from Er{sup 3+} ions doped in ZnO host crystals. The epitaxial ZnO:Er films were grown on sapphire C-plane substrates by sputtering, and Er{sup 3+} ions were resonantly excited at a wavelength of 532 nm between energy levels of {sup 4}I{sub 15/2} and {sup 2}H{sub 11/2}. There is a threshold deposition temperature between 500 and 550 °C, above which epitaxial ZnO films become free of miss-oriented domains. In this case, Er{sup 3+} ions are outside ZnO crystallites, having the same c-axis lattice parameters as those of undoped ZnO crystals. The improved crystallinity was correlated with enhanced emissions peaking at 1538 nm. Further elevating the deposition temperature up to 650 °C generated cracks in ZnO crystals to relax the lattice mismatch strains, and the emission intensities from cracked regions were three times as large as those from smooth regions. These results can be consistently explained if we assume that emission-active Er{sup 3+} ions are those existing at grain boundaries and bonded to single-crystalline ZnO crystallites. In contrast, ZnO:Er films deposited on a ZnO buffer layer exhibited very weak emissions because of their degraded crystallinity when most Er{sup 3+} ions were accommodated into ZnO crystals. Optimizing the degree of oxidization of ZnO crystals is another important factor because reduced films suffer from non-radiative decay of excited states. The optimum Er content to obtain intense emissions was between 2 and 4 at. %. When 4 at. % was exceeded, the emission intensity was severely attenuated because of concentration quenching as well as the degradation in crystallinity. Precipitation of Er{sub 2}O{sub 3} crystals was clearly observed at 22 at. % for films deposited above 650 °C. Minimizing the number of defects and impurities in ZnO crystals prevents energy dissipation, thus exclusively utilizing the excitation energy to emissions from

  11. Effects of high-flux low-energy ion bombardment on the low-temperature growth morphology of TiN(001) epitaxial layers

    SciTech Connect

    Karr, Brian W.; Cahill, David G.; Petrov, I.; Greene, J. E.

    2000-06-15

    Ultrahigh vacuum scanning tunneling microscopy (STM) is used to characterize the surface morphology of TiN(001) epitaxial layers grown by dc reactive magnetron sputtering at growth temperatures of T{sub s}=650 and T{sub s}=750 degree sign C. An auxiliary anode is used to bias the N{sub 2} plasma and produce a large flux of low-energy N{sub 2}{sup +} ions that bombard the film surface during growth: the ratio of the N{sub 2}{sup +} flux to the Ti growth flux is {approx_equal}25. At ion energies E{sub i} near the threshold for the production of bulk defects (E{sub i}=43 eV and T{sub s}=650 degree sign C), ion bombardment decreases the amplitude of the roughness, decreases the average distance between growth mounds, and reduces the sharpness of grooves between growth mounds. The critical island radius for second layer nucleation R{sub c} is approximately 12 and 17 nm at growth temperatures of 650 and 750 degree sign C respectively; at 650 degree sign C, R{sub c} is reduced to (approx =)10 nm by ion bombardment. (c) 2000 The American Physical Society.

  12. Energy and daylight performance of angular selective glazings

    SciTech Connect

    Sullivan, R.; Beltran,; Lee, E.S.; Rubin, M.; Selkowitz, S.E.

    1998-11-01

    This paper presents the results of a study investigating the energy and daylight performance of anisotropic angular selective glazings. The DOE-2.1E energy simulation program was used to determine the annual cooling, lighting and total electricity use, and peak electric demand. RADIANCE, a lighting simulation program, was used to determine daylight illuminance levels and distribution. We simulated a prototypical commercial office building module located in Blythe, California. We chose three hypothetical conventional windows for comparison: a single-pane tinted window, a double-pane low-E window, and a double-pane spectrally selective window. Daylighting controls were used. No interior shades were modeled in order to isolate the energy effects of the angular selective glazing. Our results show that the energy performance of the prototype angular selective windows is about the same as conventional windows for a 9.14 m (30 ft) deep south-facing perimeter zone with a large-area window in the hot, sunny climate of Blythe. It is theoretically possible to tune the angular selectivity of the glazing to achieve annual cooling energy reductions of 18%, total electricity use reductions of 15%, and peak electric demand reductions of 11% when compared to a conventional glazing with the same solar-optical properties at normal incidence. Angular selective glazings can provide more uniformly distributed daylight, particularly in the area next to the window, which will result in a more visually comfortable work environment.

  13. InGaAs heterostructure formation in catalyst-free GaAs nanopillars by selective-area metal-organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Shapiro, J. N.; Lin, A.; Wong, P. S.; Scofield, A. C.; Tu, C.; Senanayake, P. N.; Mariani, G.; Liang, B. L.; Huffaker, D. L.

    2010-12-01

    We investigate axial GaAs/InGaAs/GaAs heterostructures embedded in GaAs nanopillars via catalyst-free selective-area metal-organic chemical vapor deposition. Structural characterization by transmission electron microscopy with energy dispersive x-ray spectroscopy (EDS) indicates formation of axial InxGa1-xAs (x˜0.20) inserts with thicknesses from 36 to 220 nm with ±10% variation and graded Ga:In transitions controlled by In segregation. Using the heterointerfaces as markers, the vertical growth rate is determined to increase linearly during growth. Photoluminescence from 77 to 290 K and EDS suggest the presence of strain in the shortest inserts. This capability to control the formation of axial nanopillar heterostructures is crucial for optimized device integration.

  14. Screening and selection of lignocellulosic crops for energy

    SciTech Connect

    Turhollow, A.F.; Cushman, J.H.; Elmore, J.L.; Johnston, J.W.

    1985-01-01

    The Department of Energy's Herbaceous Energy Crops Program at Oak Ridge National Laboratory is beginning its research on lignocellulosic energy crops with five studies in the Southeast and Midwest/Lakes regions. Early objectives for these studies include selecting species that show promise on marginal croplands typical of the regions, determining productivity rates under various levels of management, defining cost-effective and environmentally sound production systems for each region, and identifying the most promising means of reducing costs. 2 tabs.

  15. Investigation of Sn surface segregation during GeSn epitaxial growth by Auger electron spectroscopy and energy dispersive x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Takahiro; Hirose, Nobumitsu; Kasamatsu, Akifumi; Mimura, Takashi; Matsui, Toshiaki; Suda, Yoshiyuki

    2015-02-01

    The mechanism of Sn surface segregation during the epitaxial growth of GeSn on Si (001) substrates was investigated by Auger electron spectroscopy and energy dispersive X-ray spectroscopy. Sn surface segregation depends on the growth temperature and Sn content of GeSn layers. During Sn surface segregation, Sn-rich nanoparticles form and move on the surface during the deposition, which results in a rough surface owing to facet formation. The Sn-rich nanoparticles moving on the surface during the deposition absorb Sn from the periphery and yield a lower Sn content, not on the surface but within the layer, because the Sn surface segregation and the GeSn deposition occur simultaneously. Sn surface segregation can occur at a lower temperature during the deposition compared with that during postannealing. This suggests that the Sn surface segregation during the deposition is strongly promoted by the migration of deposited Ge and Sn adatoms on the surface originating from the thermal effect of substrate temperature, which also suggests that limiting the migration of deposited Ge and Sn adatoms can reduce the Sn surface segregation and improve the crystallinity of GeSn layers.

  16. Oxidation study by Auger electron spectroscopy and electron energy-loss spectroscopy of GaSb(001) surfaces grown by molecular-beam epitaxy

    SciTech Connect

    Raisin, C.; Da Silva, F.W.O.; Lassabatere, L. , Place Eugene Bataillon, 34095 Montpellier-Cedex 5, France )

    1990-01-01

    GaSb (001) surfaces were prepared by molecular-beam epitaxy. Auger electron spectroscopy (AES) and electron energy-loss spectroscopy (EELS) are reported for clean surfaces exposed to oxygen, and during the process the ionization gauge of the vacuum system is turned on. Successive stages of chemisorption can be distinguished. For oxygen coverage up to 0.5 monolayer, the surface states are saturated by bonding of the oxygen with Ga and Sb atoms. Sb atoms desorb causing significant Sb depletion in the first layer. Larger exposures further increase the coverage and induce, in the EELS spectra, losses related to O(2{ital p}) and O(2{ital s}) atomic states and new plasmon excitations. In the AES spectra the shift of Auger emission lines which are characteristic of Sb and Ga oxide forms appear; at coverages of about one monolayer back bonds break forming Sb{sub 2}O{sub 3} and Ga{sub 2}O{sub 3}. Further exposures to oxygen result in thicker oxide layers of Ga and Sb.

  17. Probing optical band gaps at the nanoscale in NiFe₂O₄ and CoFe₂O₄ epitaxial films by high resolution electron energy loss spectroscopy

    SciTech Connect

    Dileep, K.; Loukya, B.; Datta, R.; Pachauri, N.; Gupta, A.

    2014-09-14

    Nanoscale optical band gap variations in epitaxial thin films of two different spinel ferrites, i.e., NiFe₂O₄ (NFO) and CoFe₂O₄ (CFO), have been investigated by spatially resolved high resolution electron energy loss spectroscopy. Experimentally, both NFO and CFO show indirect/direct band gaps around 1.52 eV/2.74 and 2.3 eV, and 1.3 eV/2.31 eV, respectively, for the ideal inverse spinel configuration with considerable standard deviation in the band gap values for CFO due to various levels of deviation from the ideal inverse spinel structure. Direct probing of the regions in both the systems with tetrahedral A site cation vacancy, which is distinct from the ideal inverse spinel configuration, shows significantly smaller band gap values. The experimental results are supported by the density functional theory based modified Becke-Johnson exchange correlation potential calculated band gap values for the different cation configurations.

  18. Developing a framework for energy technology portfolio selection

    NASA Astrophysics Data System (ADS)

    Davoudpour, Hamid; Ashrafi, Maryam

    2012-11-01

    Today, the increased consumption of energy in world, in addition to the risk of quick exhaustion of fossil resources, has forced industrial firms and organizations to utilize energy technology portfolio management tools viewed both as a process of diversification of energy sources and optimal use of available energy sources. Furthermore, the rapid development of technologies, their increasing complexity and variety, and market dynamics have made the task of technology portfolio selection difficult. Considering high level of competitiveness, organizations need to strategically allocate their limited resources to the best subset of possible candidates. This paper presents the results of developing a mathematical model for energy technology portfolio selection at a R&D center maximizing support of the organization's strategy and values. The model balances the cost and benefit of the entire portfolio.

  19. Measure Guideline: Energy-Efficient Window Performance and Selection

    SciTech Connect

    Carmody, J.; Haglund, K.

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  20. Measure Guideline. Energy-Efficient Window Performance and Selection

    SciTech Connect

    Carmody, John; Haglund, Kerry

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all U.S. climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The report also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well.

  1. Development of anion-selective membranes. [for energy storage

    NASA Technical Reports Server (NTRS)

    Lacey, R. E.; Cowsar, D. R.

    1975-01-01

    Methods were studied of preparing anion-exchange membranes that would have low resistance, high selectivity, and physical and chemical stability when used in acidic media in a redox energy storage system. Of the twelve systems selected for study, only the system that was based on crosslinked poly-4-vinylpyridinium chloride produced physically strong membranes when equilibrated in l M HCl. The resistivity of the best membrane was 12 ohm-cm, and the transference number for chloride ions was 0.81.

  2. Epitaxial solar cells fabrication

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Kressel, H.

    1975-01-01

    Silicon epitaxy has been studied for the fabrication of solar cell structures, with the intent of optimizing efficiency while maintaining suitability for space applications. SiH2CL2 yielded good quality layers and junctions with reproducible impurity profiles. Diode characteristics and lifetimes in the epitaxial layers were investigated as a function of epitaxial growth conditions and doping profile, as was the effect of substrates and epitaxial post-gettering on lifetime. The pyrolytic decomposition of SiH4 was also used in the epitaxial formation of highly doped junction layers on bulk Si wafers. The effects of junction layer thickness and bulk background doping level on cell performance, in particular, open-circuit voltage, were investigated. The most successful solar cells were fabricated with SiH2 CL2 to grow p/n layers on n(+) substrates. The best performance was obtained from a p(+)/p/n/n(+) structure grown with an exponential grade in the n-base layer.

  3. Energy availability influences microclimate selection of hibernating bats.

    PubMed

    Boyles, Justin G; Dunbar, Miranda B; Storm, Jonathan J; Brack, Virgil

    2007-12-01

    Many species hibernate to conserve energy during periods of low food and water availability. It has long been assumed that the optimal hibernation strategy involves long, deep bouts of torpor that minimize energy expenditure. However, hibernation has ecological (e.g. decreased predator avoidance) and physiological (e.g. sleep deprivation) costs that must be balanced with energy savings; therefore, individuals possessing sufficient energy reserves may reduce their use of deep torpor. We tested the hypothesis that energy (fat) availability influences temperature selection of two fat-storing bat species during hibernation. We predicted that individuals with small energy reserves would select colder temperatures for hibernation in order to minimize energy expenditure, while individuals with larger energy reserves would choose warmer temperatures to minimize the costs of hibernation. Results from our field experiment indicate that little brown myotis (Myotis lucifugus) hibernating in warm microclimates were significantly heavier than individuals hibernating in cooler microclimates. To determine if energy availability was mediating this relationship, we limited fatty acid availability with mercaptoacetate (MA) and quantified its effect on torpid metabolic rate (TMR) and thermal preference of big brown bats (Eptesicus fuscus). Administration of MA caused a 43% drop in TMR at 10 degrees C and caused bats to choose significantly colder temperatures for hibernation. Our results suggest that fat-storing bats minimize torpor expression using both physiological and behavioral mechanisms. PMID:18055623

  4. Model selection as a science driver for dark energy surveys

    NASA Astrophysics Data System (ADS)

    Mukherjee, Pia; Parkinson, David; Corasaniti, Pier Stefano; Liddle, Andrew R.; Kunz, Martin

    2006-07-01

    A key science goal of upcoming dark energy surveys is to seek time-evolution of the dark energy. This problem is one of model selection, where the aim is to differentiate between cosmological models with different numbers of parameters. However, the power of these surveys is traditionally assessed by estimating their ability to constrain parameters, which is a different statistical problem. In this paper, we use Bayesian model selection techniques, specifically forecasting of the Bayes factors, to compare the abilities of different proposed surveys in discovering dark energy evolution. We consider six experiments - supernova luminosity measurements by the Supernova Legacy Survey, SNAP, JEDI and ALPACA, and baryon acoustic oscillation measurements by WFMOS and JEDI - and use Bayes factor plots to compare their statistical constraining power. The concept of Bayes factor forecasting has much broader applicability than dark energy surveys.

  5. Energy Cane Breeding and Selection in Louisiana - A Progress Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2001, United States Department of Agriculture, Agricultural Research Service scientists at the Sugarcane Research Laboratory (SRL) in Houma, Louisiana, began assessing the energy potential of high-fiber sugarcanes (Saccharum spp.) in the Louisiana sugar belt. Test sites were selected geographica...

  6. Supply of and demand for selected energy related mineral commodities

    USGS Publications Warehouse

    Sibley, Scott F.

    2010-01-01

    In this report, subjects discussed include components of mineral supply, production, and consumption data, and information on selected mineral commodities in which the Energy Critical Elements Study Group has an interest, and U.S. Geological Survey (USGS) recycling studies, with some results of these studies.

  7. Epitaxial stabilization and phase instability of VO2 polymorphs

    DOE PAGESBeta

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-20

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. Bymore » investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. In conclusion, our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.« less

  8. Epitaxial stabilization and phase instability of VO2 polymorphs

    NASA Astrophysics Data System (ADS)

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.

  9. Epitaxial stabilization and phase instability of VO2 polymorphs

    PubMed Central

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices. PMID:26787259

  10. Epitaxial stabilization and phase instability of VO2 polymorphs.

    PubMed

    Lee, Shinbuhm; Ivanov, Ilia N; Keum, Jong K; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices. PMID:26787259

  11. Atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Goodman, Colin H. L.; Pessa, Markus V.

    1986-08-01

    Atomic layer epitaxy (ALE) is not so much a new technique for the preparation of thin films as a novel modification to existing methods of vapor-phase epitaxy, whether physical [e.g., evaporation, at one limit molecular-beam epitaxy (MBE)] or chemical [e.g., chloride epitaxy or metalorganic chemical vapor deposition (MOCVD)]. It is a self-regulatory process which, in its simplest form, produces one complete molecular layer of a compound per operational cycle, with a greater thickness being obtained by repeated cycling. There is no growth rate in ALE as in other crystal growth processes. So far ALE has been applied to rather few materials, but, in principle, it could have a quite general application. It has been used to prepare single-crystal overlayers of CdTe, (Cd,Mn)Te, GaAs and AlAs, a number of polycrystalline films and highly efficient electroluminescent thin-film displays based on ZnS:Mn. It could also offer particular advantages for the preparation of ultrathin films of precisely controlled thickness in the nanometer range and thus may have a special value for growing low-dimensional structures.

  12. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  13. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons.

    PubMed

    Ozel, Tuncay; Hernandez-Martinez, Pedro Ludwig; Mutlugun, Evren; Akin, Onur; Nizamoglu, Sedat; Ozel, Ilkem Ozge; Zhang, Qing; Xiong, Qihua; Demir, Hilmi Volkan

    2013-07-10

    We report selectively plasmon-mediated nonradiative energy transfer between quantum dot (QD) emitters interacting with each other via Förster-type resonance energy transfer (FRET) under controlled plasmon coupling either to only the donor QDs (i.e., donor-selective) or to only the acceptor QDs (i.e., acceptor-selective). Using layer-by-layer assembled colloidal QD nanocrystal solids with metal nanoparticles integrated at carefully designed spacing, we demonstrate the ability to enable/disable the coupled plasmon-exciton (plexciton) formation distinctly at the donor (exciton departing) site or at the acceptor (exciton feeding) site of our choice, while not hindering the donor exciton-acceptor exciton interaction but refraining from simultaneous coupling to both sites of the donor and the acceptor in the FRET process. In the case of donor-selective plexciton, we observed a substantial shortening in the donor QD lifetime from 1.33 to 0.29 ns as a result of plasmon-coupling to the donors and the FRET-assisted exciton transfer from the donors to the acceptors, both of which shorten the donor lifetime. This consequently enhanced the acceptor emission by a factor of 1.93. On the other hand, in the complementary case of acceptor-selective plexciton we observed a 2.70-fold emission enhancement in the acceptor QDs, larger than the acceptor emission enhancement of the donor-selective plexciton, as a result of the combined effects of the acceptor plasmon coupling and the FRET-assisted exciton feeding. Here we present the comparative results of theoretical modeling of the donor- and acceptor-selective plexcitons of nonradiative energy transfer developed here for the first time, which are in excellent agreement with the systematic experimental characterization. Such an ability to modify and control energy transfer through mastering plexcitons is of fundamental importance, opening up new applications for quantum dot embedded plexciton devices along with the development of new

  14. Controllable surface-plasmon resonance in engineered nanometer epitaxial silicide particles embedded in silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Ksendzov, A.; Iannelli, J. M.; George, T.

    1991-01-01

    Epitaxial CoSi2 particles in a single-crystal silicon matrix are grown by molecular-beam epitaxy using a technique that allows nanometer control over particle size in three dimensions. These composite layers exhibit resonant absorption predicted by effective-medium theory. Selection of the height and diameter of disklike particles through a choice of growth conditions allows tailoring of the depolarization factor and hence of the surface-plasmon resonance energy. Resonant absorption from 0.49 to 1.04 eV (2.5 to 1.2 micron) is demonstrated and shown to agree well with values predicted by the Garnett (1904, 1906) theory using the bulk dielectric constants for CoSi2 and Si.

  15. Energy-loss magnetic chiral dichroism study of epitaxial MnAs film on GaAs(001)

    SciTech Connect

    Fu, X.; Warot-Fonrose, B.; Arras, R.; Serin, V.; Demaille, D.; Eddrief, M.; Etgens, V.

    2015-08-10

    The room-temperature ferromagnetic behavior of MnAs/GaAs(001) thin film has been locally explored by Transmission Electron Microscope (TEM). We first differentiated hexagonal α-MnAs and quasi-hexagonal β-MnAs which are very similar in atomic structure by electron diffraction. Local magnetic moment information of the identified α-MnAs was extracted from manganese-L{sub 2,3} edges using Energy-loss Magnetic Circular Dichroism technique and the ratio of orbital to spin magnetic moment was measured. In this experiment, atomic structure identification, chemical analysis, and magnetic moment measurement were simultaneously achieved at high spatial resolution in TEM, thus providing a potential method for in-situ study of local properties of multiphase magnetic materials.

  16. Thermophotovoltaic energy conversion using photonic bandgap selective emitters

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-06-24

    A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

  17. 7 CFR 4280.193 - Selecting energy audit and renewable energy development assistance grant applications for award.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Selecting energy audit and renewable energy..., DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Energy Audit and Renewable Energy Development Assistance Grants § 4280.193 Selecting energy audit and renewable...

  18. 7 CFR 4280.193 - Selecting energy audit and renewable energy development assistance grant applications for award.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Selecting energy audit and renewable energy..., DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Energy Audit and Renewable Energy Development Assistance Grants § 4280.193 Selecting energy audit and renewable...

  19. 7 CFR 4280.193 - Selecting energy audit and renewable energy development assistance grant applications for award.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Selecting energy audit and renewable energy..., DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Energy Audit and Renewable Energy Development Assistance Grants § 4280.193 Selecting energy audit and renewable...

  20. Monitoring non-pseudomorphic epitaxial growth of spinel/perovskite oxide heterostructures by reflection high-energy electron diffraction

    SciTech Connect

    Schütz, P.; Pfaff, F.; Scheiderer, P.; Sing, M.; Claessen, R.

    2015-02-09

    Pulsed laser deposition of spinel γ-Al{sub 2}O{sub 3} thin films on bulk perovskite SrTiO{sub 3} is monitored by high-pressure reflection high-energy electron diffraction (RHEED). The heteroepitaxial combination of two materials with different crystal structures is found to be inherently accompanied by a strong intensity modulation of bulk diffraction patterns from inelastically scattered electrons, which impedes the observation of RHEED intensity oscillations. Avoiding such electron surface-wave resonance enhancement by de-tuning the RHEED geometry allows for the separate observation of the surface-diffracted specular RHEED signal and thus the real-time monitoring of sub-unit cell two-dimensional layer-by-layer growth. Since these challenges are essentially rooted in the difference between film and substrate crystal structure, our findings are of relevance for the growth of any heterostructure combining oxides with different crystal symmetry and may thus facilitate the search for novel oxide heterointerfaces.

  1. Epitaxy of GaN Nanowires on Graphene.

    PubMed

    Kumaresan, Vishnuvarthan; Largeau, Ludovic; Madouri, Ali; Glas, Frank; Zhang, Hezhi; Oehler, Fabrice; Cavanna, Antonella; Babichev, Andrey; Travers, Laurent; Gogneau, Noelle; Tchernycheva, Maria; Harmand, Jean-Christophe

    2016-08-10

    Epitaxial growth of GaN nanowires on graphene is demonstrated using molecular beam epitaxy without any catalyst or intermediate layer. Growth is highly selective with respect to silica on which the graphene flakes, grown by chemical vapor deposition, are transferred. The nanowires grow vertically along their c-axis and we observe a unique epitaxial relationship with the ⟨21̅1̅0⟩ directions of the wurtzite GaN lattice parallel to the directions of the carbon zigzag chains. Remarkably, the nanowire density and height decrease with increasing number of graphene layers underneath. We attribute this effect to strain and we propose a model for the nanowire density variation. The GaN nanowires are defect-free and they present good optical properties. This demonstrates that graphene layers transferred on amorphous carrier substrates is a promising alternative to bulk crystalline substrates for the epitaxial growth of high quality GaN nanostructures. PMID:27414518

  2. Near-Infrared Photoluminescence Enhancement in Ge/CdS and Ge/ZnS Core/Shell Nanocrystals: Utilizing IV/II-VI Semiconductor Epitaxy

    SciTech Connect

    Guo, Yijun; Rowland, Clare E; Schaller, Richard D; Vela, Javier

    2014-08-26

    Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent II–VI, III–V and IV–VI semiconductor quantum dots. Here, we use relatively unexplored IV/II–VI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch compared with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial II–VI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/II–VI nanocrystals are reproducibly 1–3 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/II–VI nanocrystals. We expect this synthetic IV/II–VI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials.

  3. Soft epitaxy of nanocrystal superlattices

    NASA Astrophysics Data System (ADS)

    Rupich, Sara M.; Castro, Fernando C.; Irvine, William T. M.; Talapin, Dmitri V.

    2014-12-01

    Epitaxial heterostructures with precise registry between crystal layers play a key role in electronics and optoelectronics. In a close analogy, performance of nanocrystal (NC) based devices depends on the perfection of interfaces formed between NC layers. Here we systematically study the epitaxial growth of NC layers for the first time to enable the fabrication of coherent NC layers. NC epitaxy reveals an exceptional strain tolerance. It follows a universal island size scaling behaviour and shows a strain-driven transition from layer-by-layer to Stranski-Krastanov growth with non-trivial island height statistics. Kinetic bottlenecks play an important role in NC epitaxy, especially in the transition from sub-monolayer to multilayer coverage and the epitaxy of NCs with anisotropic shape. These findings provide a foundation for the rational design of epitaxial structures in a fundamentally and practically important size regime between atomic and microscopic systems.

  4. Germanium epitaxy on silicon

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Yu, Jinzhong

    2014-04-01

    With the rapid development of on-chip optical interconnects and optical computing in the past decade, silicon-based integrated devices for monolithic and hybrid optoelectronic integration have attracted wide attention. Due to its narrow pseudo-direct gap behavior and compatibility with Si technology, epitaxial Ge-on-Si has become a significant material for optoelectronic device applications. In this paper, we describe recent research progress on heteroepitaxy of Ge flat films and self-assembled Ge quantum dots on Si. For film growth, methods of strain modification and lattice mismatch relief are summarized, while for dot growth, key process parameters and their effects on the dot density, dot morphology and dot position are reviewed. The results indicate that epitaxial Ge-on-Si materials will play a bigger role in silicon photonics.

  5. EFFECT OF ENERGY DRINKS ON SELECTED FINE MOTOR TASKS.

    PubMed

    Jacobson, B H; Hughes, P P; Conchola, E C; Hester, G M; Woolsey, C L

    2015-08-01

    This study assessed the effect of energy shots on selected fine motor tasks. The participants were college-age male (n=19; M age=20.5 yr., SD=0.7) and female (n=21; M age=21.1 yr., SD=0.7) volunteers who were assessed on hand steadiness, choice reaction time, rotary pursuit, and simple reaction time. The energy shots group scored significantly poorer on the hand steadiness tests and significantly better on choice reaction time and simple reaction time tests. The enhanced reaction time and disruption in hand steadiness afforded by energy shots would not be apparent in many gross motor activities, but it is possible that reaction time improvement could be beneficial in sports that require quick, reflexive movements. However, the potential adverse psychological and physiological effects warrant discretionary use of such products. PMID:26302190

  6. Materials selection guidelines for geothermal energy utilization systems

    SciTech Connect

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  7. Epitaxial Electronic Oxides on Semiconductors Using Pulsed-Laser Deposition

    SciTech Connect

    Norton, D.P.; Budai, J.D.; Chisholm, M.F.

    1999-12-01

    We describe the growth and properties of epitaxial (OO1) CeO{sub 2} on a (001) Ge surface using a hydrogen-assisted pulsed-laser deposition method. Hydrogen gas is introduced during film growth to eliminate the presence of the GeOs from the semiconductor surface during the initial nucleation of the metal oxide film. The hydrogen partial pressure and substrate temperature are selected to be sufficiently high such that the germanium native oxides are thermodynamically unstable. The Gibbs free energy of CeO{sub 2} is larger in magnitude than that of the Ge native oxides, making it more favorable for the metal oxide to reside at the interface in comparison to the native Ge oxides. By satisfying these criteria. the metal oxide/semiconductor interface is shown to be atomically abrupt with no native oxide present. Preliminary structural and electrical properties are reported.

  8. Analysis of interface formation mechanism in GaN double-polarity selective-area growth by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kuze, Kenta; Osumi, Noriyuki; Fujita, Yohei; Inoue, Yoku; Nakano, Takayuki

    2016-05-01

    The fabrication of quasi-phase-matching (QPM) crystals by selective-area growth on the two asymmetrically polar surfaces of GaN is examined. We attempted the fabrication of GaN-QPM crystals by one-time growth using a carbon mask. For GaN double-polarity selective-area growth (DP-SAG), we investigated the effect of varied nitriding times of the Al2O3 templates patterned with the carbon mask. We optimized the nitriding conditions for the DP-SAG process, and evaluated the substrate fabricated by the optimized DP-SAG process. In addition, we examined the interface formation mechanism of DP-GaN fabricated by GaN DP-SAG process. We determined that it is possible to fabricate DP-GaN with a sharp interface by optimizing the growth conditions.

  9. Very low temperature (450 °C) selective epitaxial growth of heavily in situ boron-doped SiGe layers

    NASA Astrophysics Data System (ADS)

    Aubin, J.; Hartmann, J. M.; Veillerot, M.; Essa, Z.; Sermage, B.

    2015-11-01

    We have investigated the feasibility of selectively growing SiGe:B layers at 450 °C, 20 Torr in a 300 mm industrial reduced pressure chemical vapor deposition tool. A reduced H2 carrier gas mass-flow has been used in order to have acceptable growth rates at such a temperature, which is very low indeed. We have first of all studied on blanket Si wafers the in situ boron doping of SiGe with Si2H6, GeH4 and B2H6. A growth rate increase by a factor close to 7 together with a Ge concentration decrease from 53% down to 32% occurred as the diborane mass-flow increased. Very high B+ ion concentrations were obtained in layers that were single crystalline and smooth. Their concentration increased almost linearly with the B2H6 mass-flow, from 1.8 up to 8.3 × 1020 cm-3. The associated resistivity dropped from 0.43 down to 0.26 mΩ cm. We have then tested whether or not selectivity versus SiO2 could be achieved by adding various amounts of HCl to Si2H6 + GeH4 +B2H6. Single crystalline growth rates of intrinsic SiGe(:B) on Si were very similar to poly-crystalline growth rates on SiO2-covered substrates irrespective of the HCl flow. Straightforward selectivity was thus not feasible with a co-flow approach. As a consequence, a 450 °C deposition/etch (DE) process was evaluated. Growth occurred at 20 Torr with the above-mentioned chemistry, while the selective etch of poly-SiGe:B versus c-SiGe:B was conducted at 740 Torr with a medium HCl mass-flow (F(HCl)/F(H2) = 0.2) and a high H2 flow. A 2.2 etch selectivity was achieved while retaining single crystalline if slightly rough SiGe:B layers.

  10. Greater sage-grouse winter habitat selection and energy development

    SciTech Connect

    Doherty, K.E.; Naugle, D.E.; Walker, B.L.; Graham, J.M.

    2008-01-15

    Recent energy development has resulted in rapid and large-scale changes to western shrub-steppe ecosystems without a complete understanding of its potential impacts on wildlife populations. We modeled winter habitat use by female greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB) of Wyoming and Montana, USA, to 1) identify landscape features that influenced sage-grouse habitat selection, 2) assess the scale at which selection occurred, 3) spatially depict winter habitat quality in a Geographic Information System, and 4) assess the effect of coal-bed natural gas (CBNG) development on winter habitat selection. We developed a model of winter habitat selection based on 435 aerial relocations of 200 radiomarked female sage-grouse obtained during the winters of 2005 and 2006. Percent sagebrush (Artemisia spp.) cover on the landscape was an important predictor of use by sage-grouse in winter. Sage-grouse were 1.3 times more likely to occupy sagebrush habitats that lacked CBNG wells within a 4-km{sup 2} area, compared to those that had the maximum density of 12.3 wells per 4 km{sup 2} allowed on federal lands. We validated the model with 74 locations from 74 radiomarked individuals obtained during the winters of 2004 and 2007. This winter habitat model based on vegetation, topography, and CBNG avoidance was highly predictive (validation R{sup 2} = 0.984). Our spatially explicit model can be used to identify areas that provide the best remaining habitat for wintering sage-grouse in the PRB to mitigate impacts of energy development.

  11. The influence of aluminum content on the surface morphology of heavily doped (Al)GaN mesastrip structures grown by selective metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Lundin, W. V.; Zavarin, E. E.; Popov, M. G.; Troshkov, S. I.; Sakharov, A. V.; Smirnova, I. P.; Kulagina, M. M.; Davydov, V. Yu.; Smirnov, A. N.; Tsatsulnikov, A. F.

    2015-10-01

    Heavily Si-doped Al x Ga1- x N mesastrip structures were grown by selective MOVPE technology. Al x Ga1- x N:Si mesastructures with x ~ 0.01-0.07 possess a smoother top and more even side surfaces as compared to those in analogous GaN:Si structures. During the growth of mesastructures with x ~ 0.03-0.07, a thin nanocrystalline AlN deposit appears on the Si3N4 mask. This deposit is not formed during the growth of structures with sufficiently low aluminum content.

  12. Energy band alignment of atomic layer deposited HfO{sub 2} oxide film on epitaxial (100)Ge, (110)Ge, and (111)Ge layers

    SciTech Connect

    Hudait, Mantu K.; Zhu Yan

    2013-03-21

    Crystallographically oriented epitaxial Ge layers were grown on (100), (110), and (111)A GaAs substrates by in situ growth process using two separate molecular beam epitaxy chambers. The band alignment properties of atomic layer hafnium oxide (HfO{sub 2}) film deposited on crystallographically oriented epitaxial Ge were investigated using x-ray photoelectron spectroscopy (XPS). Valence band offset, {Delta}E{sub v} values of HfO{sub 2} relative to (100)Ge, (110)Ge, and (111)Ge orientations were 2.8 eV, 2.28 eV, and 2.5 eV, respectively. Using XPS data, variation in valence band offset, {Delta}E{sub V}(100)Ge>{Delta}E{sub V}(111)Ge>{Delta}E{sub V}(110)Ge, was obtained related to Ge orientation. Also, the conduction band offset, {Delta}E{sub c} relation, {Delta}E{sub c}(110)Ge>{Delta}E{sub c}(111)Ge>{Delta}E{sub c}(100)Ge related to Ge orientations was obtained using the measured bandgap of HfO{sub 2} on each orientation and with the Ge bandgap of 0.67 eV. These band offset parameters for carrier confinement would offer an important guidance to design Ge-based p- and n-channel metal-oxide field-effect transistor for low-power application.

  13. Dimensionality and noise in energy selective x-ray imaging

    SciTech Connect

    Alvarez, Robert E.

    2013-11-15

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 10{sup 3}. With the soft tissue component, it is 2.7 × 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases

  14. Epitaxial Growth of Pure 28Si Thin Films Using Isotopically Purified Ion Beams

    NASA Astrophysics Data System (ADS)

    Tsubouchi, Nobuteru; Chayahara, Akiyoshi; Mokuno, Yoshiaki; Kinomura, Atsushi; Horino, Yuji

    2001-12-01

    Isotopically purified 28Si homoepitaxial films were grown by means of an ion-beam deposition (IBD) method with isotopically mass-selected negative 28Si- ion beams. The surface structural evolution during the film growth and the film structure after the growth were investigated using reflection high-energy electron diffraction (RHEED), cross-sectional transmission electron microscopy (TEM) and transmission electron diffraction (TED). The Si isotopic composition (28Si : 29Si : 30Si = 99.9982 : 0.0016 : 0.0002 at.%) of the resulting Si epitaxial film was determined by secondary-ion-mass spectrometry (SIMS).

  15. Epitaxial europium oxide on Ni(100) with single-crystal quality

    NASA Astrophysics Data System (ADS)

    Förster, Daniel F.; Klinkhammer, Jürgen; Busse, Carsten; Altendorf, Simone G.; Michely, Thomas; Hu, Zhiwei; Chin, Yi-Ying; Tjeng, L. H.; Coraux, Johann; Bourgault, Daniel

    2011-01-01

    High quality epitaxy of EuO on Ni(100) is developed in an in situ scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) study. A careful selection of the initial growth parameters is decisive to obtain a surface oxide suitable for the subsequent epitaxy of single phase EuO(100). After the creation of a three layer thick coalesced oxide film for the subsequent growth a distillation technique is applied. Appropriate annealing of films with up to 100 nm thickness generates sufficient conductivity for STM and electron spectroscopies. Oxygen vacancies are directly imaged by STM. They are of decisive importance for the metal-to-insulator transition around the temperature of the ferromagnetic-to-paramagnetic transition. A fast relaxation of the initial biaxial strain observed by LEED leaves little hope for an increase of the Curie temperature through epitaxial compression. Ex situ x-ray adsorption spectroscopy and magneto-optical Kerr effect microscopy measurements of thicker films are consistent with the stoichiometric single phase EuO with bulk properties.

  16. Pulsed Laser Deposition and Reflection High-Energy Electron Diffraction studies of epitaxial long range order, nano- and microstructured Ag thin films grown on MgO, Al2 O3 , STO and Si

    NASA Astrophysics Data System (ADS)

    Velazquez, Daniel; Seibert, Rachel; Man, Hamdi; Spentzouris, Linda; Terry, Jeff

    2015-03-01

    Pulsed Laser Deposition is a state-of-the-art technique that allows for the fine tunability of the deposition rate, highly uniform and epitaxial sample growth, the ability to introduce partial pressures of gases into the experimental chamber for growth of complex materials without interfering with the energy source (laser). An auxiliary in situ technique for growth monitoring, Reflection High-Energy Electron Diffraction, is a powerful characterization tool for predictability of the surface physical structure both, qualitatively and quantitatively. RHEED patterns during and post deposition of Ag thin films on MgO, Al2O3, Si and STO substrtates are presented and their interpretations are compared with surface imaging techniques (SEM, STM) to evidence the usefulness of the technique.

  17. Epitaxial piezoelectric thick film heterostructures on silicon

    NASA Astrophysics Data System (ADS)

    Kim, Dong Min

    The significantly higher dielectric permittivity, piezoelectric coefficients and electromechanical coupling coefficients of single crystal relaxor ferroelectrics make them very attractive for medical ultrasound transducers and microelectromechanical systems (MEMS) applications. The potential impact of thin-film relaxor ferroelectrics in integrated actuators and sensor on silicon has stimulated research on the growth and characterization of epitaxial piezoelectric thin films. We have fabricated heterostructures by (1) synthesizing optimally-oriented, epitaxial thin films of Pb(Mg1/3Nb2/3)O3-PbTiO 3 (PMN-PT) on miscut (001) Si wafers with epitaxial (001) SrTiO 3 template layers, where the single crystal form is known to have the giant piezoelectric response, and (2) nano-structuring to reduce the constraint imposed by the underlying silicon substrate. Up to now, the longitudinal piezoelectric coefficient (d33) values of PMN and PMN-PT thin films range from 50 to 200 pC/N have been reported, which are far inferior to the properties of bulk single crystals value (d33 ˜ 2000 pC/N). These might be attributed to substrate constraints, pyrochlore phases and other effects. Here, we have realized the giant d33 values by fabricating epitaxial PMN-PT thick films on silicon. When the PMN-PT film was subdivided into ˜1 mum2 capacitors by focused ion beam processing, a 4 mum thick film shows a low-field d33 of 800 pm/V that increases to over 1200 pm/V under bias, which is the highest d33 value ever realized on silicon substrates. These high piezo-reponse PMN-PT epitaxial heterostructures can be used for multilayered MEMS devices which function with low driving voltage, high frequency ultrasound transducer arrays for medical imaging, and capacitors for charge and energy storage. Since these PMN-PT films are epitaxially integrated with the silicon, they can make use of the well-developed fabrication process for patterning and micromachining of this large-area, cost

  18. Analysis of twin defects in GaAs nanowires and tetrahedra and their correlation to GaAs(1 1 1)B surface reconstructions in selective-area metal organic vapour-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroatsu; Ikejiri, Keitaro; Sato, Takuya; Hara, Shinjiroh; Hiruma, Kenji; Motohisa, Junichi; Fukui, Takashi

    2009-12-01

    We analyzed twin defects in GaAs nanowires as thin as 100-400 nm and tetrahedral structures as small as 1.0 μm, which were selectively grown by metal organic vapour-phase epitaxy (MOVPE) within a SiO 2 mask window fabricated on GaAs(1 1 1)B substrates. In particular, we focused on the correlation between the twins and GaAs(1 1 1)B surface reconstructions. We confirmed that the shape of GaAs crystals selectively grown on GaAs(1 1 1)B substrates changed from hexagonal nanowires to truncated tetrahedra when the size of the mask opening was increased from 100 to 1000 nm under the same growth conditions. The shape also changed from tetrahedral to hexagonal with decreasing growth temperature ( Tg: 600-800 °C) and with increasing arsine (AsH 3) partial pressure (1.0×10 -4 to 5.0×10 -4 atm). Rotational twins around the <1 1 1> axis were found in the tetrahedra by transmission electron microscopy (TEM) and scanning electron microscopy observations. In addition, the probability of twins developing in the tetrahedra increased with decreasing mask opening size, with decreasing Tg, and with increasing AsH 3 partial pressure. The TEM study also revealed the existence of a high density of rotational twins in the nanowires, and their density increased with decreasing nanowire diameter, suggesting a correlation between the twins and the shape/size of GaAs crystals. These findings were semi-quantitatively compared with a reported phase diagram for GaAs(1 1 1)B surface reconstruction. By analyzing the relationship between twin development and MOVPE conditions, we found that the shape change of GaAs crystals on GaAs(1 1 1)B and the formation of twins coincided well with the transition of GaAs surface reconstruction between the (2×2) and (√19×√19) structures.

  19. Implications of light energy on food quality and packaging selection.

    PubMed

    Duncan, Susan E; Chang, Hao-Hsun

    2012-01-01

    Light energy in the ultraviolet and visible light regions plays a critical role in overall food quality, leading to various degradation and oxidation reactions. Food degradation and oxidation result in the destruction of nutrients and bioactive compounds, the formation of off odors and flavors, the loss of food color, and the formation of toxic substances. Food compounds are sensitive to various light wavelengths. Understanding the effect that specific light wavelengths have on food compounds will allow the development of novel food packaging materials that block the most damaging light wavelengths to photostability of specific food compounds. Future research should focus more specifically on the effect of specific light wavelengths on the quality of specific food products, as there is limited published information on this particular topic. This information also can be directly related to the selection of food packaging materials to retain both high quality and visual clarity of food products exposed to light. PMID:23034114

  20. Atomic Scale Study of Interfaces Involved in Epitaxial Fe/MgO/Fe Magnetic Tunnel Junctions

    SciTech Connect

    Andrieu, S.; Serra, R.; Bonell, F.; Tiusan, C.; Calmels, L.; Snoeck, E.; Varela del Arco, Maria; Pennycook, Stephen J; Walls, M.; Colliex, C.

    2009-01-01

    Epitaxial Fe/MgO/Fe(001) magnetic tunnel junctions grown by Molecular Beam Epitaxy have been studied by using spatially resolved Electron Energy Loss Spectroscopy (EELS). The structure, the chemical composition as well as the bonding variations across the interfaces were investigated up to the atomic scale.

  1. Applications of Optimal Building Energy System Selection and Operation

    SciTech Connect

    Marnay, Chris; Stadler, Michael; Siddiqui, Afzal; DeForest, Nicholas; Donadee, Jon; Bhattacharya, Prajesh; Lai, Judy

    2011-04-01

    Berkeley Lab has been developing the Distributed Energy Resources Customer Adoption Model (DER-CAM) for several years. Given load curves for energy services requirements in a building microgrid (u grid), fuel costs and other economic inputs, and a menu of available technologies, DER-CAM finds the optimum equipment fleet and its optimum operating schedule using a mixed integer linear programming approach. This capability is being applied using a software as a service (SaaS) model. Optimisation problems are set up on a Berkeley Lab server and clients can execute their jobs as needed, typically daily. The evolution of this approach is demonstrated by description of three ongoing projects. The first is a public access web site focused on solar photovoltaic generation and battery viability at large commercial and industrial customer sites. The second is a building CO2 emissions reduction operations problem for a University of California, Davis student dining hall for which potential investments are also considered. And the third, is both a battery selection problem and a rolling operating schedule problem for a large County Jail. Together these examples show that optimization of building u grid design and operation can be effectively achieved using SaaS.

  2. A review of selected energy-related data sets

    SciTech Connect

    Nicholls, A.K.; Elliott, D.B.; Jones, M.L.; Hannifan, J.M.; Degroat, K.J.; Eichner, M.J.; King, J.E.

    1992-09-01

    DOE`s Office of Planning and Assessment (OPA) performs crosscutting technical, policy, and environmental assessments of energy technologies and markets. To support these efforts, OPA is in the process of creating a data base management system (DBMS) that will include relevant data compiled from other sources. One of the first steps is a review of selected data sets that may be considered for inclusion in the DBMS. The review covered data sets in five categories: buildings-specific data, industry-specific data, transportation-specific data, utilities-specific data, and crosscutting/general data. Reviewed data sets covered a broad array of energy efficiency, renewable, and/or benchmark technologies. Most data sets reviewed in this report are sponsored by Federal government entities and major industry organizations. Additional data sets reviewed are sponsored by the states of California and New York and regional entities in the Pacific Northwest. Prior to full review, candidate data sets were screened for their utility to OPA. Screening criteria included requirements that a data set be particularly applicable to OPA`s data needs, documented, current, and obtainable. To fully implement its DBMS, OPA will need to expand the review to other data sources, and must carefully consider the implications of differing assumptions and methodologies when comparing data.

  3. A review of selected energy-related data sets

    SciTech Connect

    Nicholls, A.K.; Elliott, D.B.; Jones, M.L. ); Hannifan, J.M.; Degroat, K.J.; Eichner, M.J.; King, J.E. )

    1992-09-01

    DOE's Office of Planning and Assessment (OPA) performs crosscutting technical, policy, and environmental assessments of energy technologies and markets. To support these efforts, OPA is in the process of creating a data base management system (DBMS) that will include relevant data compiled from other sources. One of the first steps is a review of selected data sets that may be considered for inclusion in the DBMS. The review covered data sets in five categories: buildings-specific data, industry-specific data, transportation-specific data, utilities-specific data, and crosscutting/general data. Reviewed data sets covered a broad array of energy efficiency, renewable, and/or benchmark technologies. Most data sets reviewed in this report are sponsored by Federal government entities and major industry organizations. Additional data sets reviewed are sponsored by the states of California and New York and regional entities in the Pacific Northwest. Prior to full review, candidate data sets were screened for their utility to OPA. Screening criteria included requirements that a data set be particularly applicable to OPA's data needs, documented, current, and obtainable. To fully implement its DBMS, OPA will need to expand the review to other data sources, and must carefully consider the implications of differing assumptions and methodologies when comparing data.

  4. Molecular beam epitaxy fabrication of SrTiO3 and Bi2Sr2CaCu2O8 heterostructures using a novel reflection high-energy electron diffraction monitoring technique

    NASA Astrophysics Data System (ADS)

    Bodin, Peter; Sakai, Shigeki; Kasai, Yuji

    1992-07-01

    SrTiO3 and Bi2Sr2CaCu2O8 layered structures were continuously grown by the molecular beam epitaxy technique with in situ reflection high-energy electron diffraction (RHEED). By using a new RHEED picture subtraction technique, intensity changes due to only the topmost layer could be displayed. This method allows us to sensitively detect roughness on the atomic scale and excess phase formation. The SrTiO3 layer could be grown by sequential shuttering as well as coevaporation. A heterostructure with a 60 a Bi2Sr2CaCu2O8 film had a superconducting transition temperature of 53 K.

  5. Defect structure of Cd{sub x}Hg{sub 1-x}Te films grown by liquid-phase epitaxy, studied by means of low-energy ion treatment

    SciTech Connect

    Izhnin, I. I. Izhnin, A. I.; Fitsych, E. I.; Smirnova, N. A.; Denisov, I. A.; Pociask, M.; Mynbaev, K. D.

    2011-09-15

    Treatment with low-energy ions and measurements of electrical parameters of samples have been used to study the defect structure of Cd{sub x}Hg{sub 1-x}Te films grown by liquid-phase epitaxy. The films contain neutral defects supposedly associated with tellurium nanoinclusions. Ion treatment electrically activates these defects, with a high concentration of donor centers ({approx}10{sup 17} cm{sup -3}) created in the films. These defects decompose in {approx}10{sup 3} min of aging at room temperature. Then the properties of the material are determined by the concentration of residual donors, which is found to be very low (down to {approx}10{sup 14} cm{sup -3}) for the films under study.

  6. Energy efficiency of substance and energy recovery of selected waste fractions.

    PubMed

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-04-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield. PMID:21145722

  7. Energy efficiency of substance and energy recovery of selected waste fractions

    SciTech Connect

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-04-15

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.

  8. Selection of herbaceous energy crops for the western corn belt

    SciTech Connect

    Anderson, I.C.; Buxton, D.R.; Hallam, J.A.

    1994-05-01

    The ultimate economic feasibility of biomass depends on its cost of production and on the cost of competing fuels. The purpose of this research project is to evaluate the production costs of several combinations of species and management systems for producing herbaceous biomass for energy use in Iowa. Herbaceous biomass production systems have costs similar to other crop production systems, such as corn, soybean, and forages. Thus, the factors influencing the costs of producing dedicated biomass energy crops include technological factors such as the cultivation system, species, treatments, soil type, and site and economic factors such as input prices and use of fixed resources. In order to investigate how these production alternatives are influenced by soil resources, and climate conditions, two locations in Iowa, Ames and Chariton, with different soil types and slightly different weather patterns were selected for both the agronomic and economic analyses. Nine crops in thirteen cropping systems were grown at the two sites for five years, from 1988 to 1992. Some of the systems had multiple cropping or interplanting, using combinations of cool-season species and warm-season species, in order to meet multiple objectives of maximum biomass, minimal soil loss, reduced nitrogen fertilization or diminished pesticide inputs. Six of the systems use continuous monocropping of herbaceous crops with an emphasis on production. The seven other systems consist of similar crops, but with crop rotation and soil conservation considerations. While the erosion and other off-site effects of these systems is an important consideration in their overall evaluation, this report will concentrate on direct production costs only.

  9. Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

    2013-02-19

    There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

  10. Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

    2015-01-06

    There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

  11. Population dynamics in epitaxial Er{sub 2}O{sub 3} thin films grown on Si(111)

    SciTech Connect

    Tawara, T.; Omi, H.; Hozumi, T.; Kaji, R.; Adachi, S.; Gotoh, H.; Sogawa, T.

    2013-06-17

    We grow single crystal erbium-oxide (Er{sub 2}O{sub 3}) epitaxially on a Si (111) substrate by using molecular beam epitaxy and investigate the population dynamics in Er{sup 3+} ions for the coherent manipulation of the population in Er{sub 2}O{sub 3}. Sharp and discrete Stark energy levels of the {sup 4}I{sub 13/2} manifold as small as 200 {mu}eV are observed with inhomogeneous broadening caused by the uniform crystal field of the epitaxial Er{sub 2}O{sub 3}. We also experimentally determine the time constant of the resonant population transfer between spatially distant Er{sup 3+}-ion sites, which is limited to the manipulation time of the population in the Er{sub 2}O{sub 3} crystals. Using selective excitation of the Stark level in the {sup 4}I{sub 13/2} manifold, we obtain the energy transfer times between spatially distant Er{sup 3+} ions, and they are about 2 {mu}s between sites whose crystallographic symmetry is different and 10 {mu}s between sites whose symmetry is the same.

  12. Large area epitaxial germanane for electronic devices

    NASA Astrophysics Data System (ADS)

    Amamou, Walid; Odenthal, Patrick M.; Bushong, Elizabeth J.; O'Hara, Dante J.; Luo, Yunqiu Kelly; van Baren, Jeremiah; Pinchuk, Igor; Wu, Yi; Ahmed, Adam S.; Katoch, Jyoti; Bockrath, Marc W.; Tom, Harry W. K.; Goldberger, Joshua E.; Kawakami, Roland K.

    2015-09-01

    We report the synthesis and transfer of epitaxial germanane (GeH) onto arbitrary substrates by electrochemical delamination and investigate its optoelectronic properties. GeH films with thickness ranging from 1 to 600 nm (2-1000 layers) and areas up to ˜1 cm2 have been reliably transferred and characterized by photoluminescence, x-ray diffraction, and energy-dispersive x-ray spectroscopy. Wavelength dependent photoconductivity measurements on few-layer GeH exhibit an absorption edge and provide a sensitive characterization tool for ultrathin germanane materials. The transfer process also enables the possibility of integrating germanane into vertically stacked heterostructures.

  13. Seed layer technique for high quality epitaxial manganite films

    NASA Astrophysics Data System (ADS)

    Graziosi, P.; Gambardella, A.; Calbucci, M.; O'Shea, K.; MacLaren, D. A.; Riminucci, A.; Bergenti, I.; Fugattini, S.; Prezioso, M.; Homonnay, N.; Schmidt, G.; Pullini, D.; Busquets-Mataix, D.; Dediu, V.

    2016-08-01

    We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived.

  14. Epitaxy: the motion picture

    NASA Astrophysics Data System (ADS)

    Finnie, Paul; Homma, Yoshikazu

    2002-03-01

    The engineering of many modern electronic devices demands control over a crystal down to the thickness of a single layer of atoms-and future demands will be even more challenging. Such control is achieved by the method of crystal growth known as epitaxy, and that makes this method the subject of intense study. More than that, recent advances are revolutionizing our knowledge of how surfaces grow. In fact, growing surfaces show a beautifully rich variety of phenomena, many of which are only now beginning to be uncovered. In the past few years many surface imaging techniques have been used to give us a close look at how crystals grow-while they are growing. The purpose of this article will be to illustrate some of the ways real surfaces grow and change as revealed by some of the latest in situ microscopic imaging technologies. It is often said that crystal growth is more of an art than a science. Here we will show that it is emphatically both.

  15. Epitaxial Pb(Zrx,Ti1-x)O3 (0.30 ≤ x ≤ 0.63) films on (100)MgO substrates for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Yeager, Charles B.; Trolier-McKinstry, Susan

    2012-10-01

    Piezoelectric energy harvesting systems are of interest as a long-term power source for low-power wireless sensors. Transduction from elastic to electrical energy depends on the product of the piezoelectric charge and voltage coefficients; optimization of this figure of merit is an essential step towards improved microelectromechanical energy harvesting devices. This work reports on the composition dependence on the dielectric and piezoelectric properties of epitaxial {001}Pb(Zrx, Ti1-x)O3 films grown by chemical solution deposition and crystallized at 650 °C on (100)Pt//(100)MgO substrates for 0.63 ≤ x ≤ 0.30. The power generation figure of merit shows the greatest magnitude at compositions near x = 0.52, for which e31,f = -12 C/m2 and ɛr = 420. Lattice parameters were determined as a function of [Zr] to assess when comparisons to single domain properties calculated from Landau-Devonshire theory were appropriate. Furthermore, films doped with 1 at. % Mn had the highest observed figure of merit, four times greater than of AlN.

  16. Net energy analysis - powerful tool for selecting elective power options

    SciTech Connect

    Baron, S.

    1995-12-01

    A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.

  17. Phase-field simulation of domain structures in epitaxial BiFeO3 films on vicinal substrates

    NASA Astrophysics Data System (ADS)

    Winchester, B.; Wu, P.; Chen, L. Q.

    2011-08-01

    The ferroelectric domain structures of epitaxial BiFeO3 thin films on miscut substrates were studied using a phase-field model. The effects of substrate vicinality towards (100) are considered by assuming charge-compensated surface and film/substrate interface. The predicted domain structures show remarkable agreement with existing experimental observations, including domain wall orientations and local topological domain configurations. The roles of elastic, electric, and gradient energies on the domain structures were analyzed. It is shown that the substrate strain anisotropy due to the miscut largely determines the domain variant selection and domain configurations.

  18. Fluorination of epitaxial oxides: Creating ferrite and nickelate oxyfluoride films

    NASA Astrophysics Data System (ADS)

    May, Steven; Moon, Eun; Xie, Yujun; Keavney, David; Goebel, Justin; Laird, Eric; Li, Christopher

    2013-03-01

    In ABO3 perovskites, the physical properties are directly coupled to the nominal valence state of the B-site cation. In epitaxial thin films, the dominant strategy to control B-site valence is through the selection of a di- or trivalent cation on the A-site. However, this approach is limited, particularly when electron doping on the B-site is desired. Here we report a simple method for realizing oxyfluoride films, where the substitution of F for O is expected to reduce the B-site valence, providing a new means to tune electronic, optical and magnetic properties in thin films. Fluorination is achieved by spin coating an oxygen deficient film with poly(vinylidene fluoride). The film/polymer bilayer is then annealed, promoting the diffusion of F into the film. We have used this method to synthesize SrFeO3-δFδ and LaNiO3-δFδ (δ ? 0.5) films, as confirmed by x-ray photoemission spectroscopy and x-ray absorption spectroscopy. This work is supported by the U. S. Army Research Office under grant number W911NF-12-1-0132. Work at the Advanced Photon Source is supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences under contract DE-AC02-06CH11357.

  19. Unusual role of epilayer–substrate interactions in determining orientational relations in van der Waals epitaxy

    PubMed Central

    Liu, Lei; Siegel, David A.; Chen, Wei; Liu, Peizhi; Guo, Junjie; Duscher, Gerd; Zhao, Chong; Wang, Hao; Wang, Wenlong; Bai, Xuedong; McCarty, Kevin F.; Zhang, Zhenyu; Gu, Gong

    2014-01-01

    Using selected-area low-energy electron diffraction analysis, we showed strict orientational alignment of monolayer hexagonal boron nitride (h-BN) crystallites with Cu(100) surface lattices of Cu foil substrates during atmospheric pressure chemical vapor deposition. In sharp contrast, the graphene–Cu(100) system is well-known to assume a wide range of rotations despite graphene’s crystallographic similarity to h-BN. Our density functional theory calculations uncovered the origin of this surprising difference: The crystallite orientation is determined during nucleation by interactions between the cluster’s edges and the substrate. Unlike the weaker B– and N–Cu interactions, strong C–Cu interactions rearrange surface Cu atoms, resulting in the aligned geometry not being a distinct minimum in total energy. The discovery made in this specific case runs counter to the conventional wisdom that strong epilayer–substrate interactions enhance orientational alignment in epitaxy and sheds light on the factors that determine orientational relation in van der Waals epitaxy of 2D materials. PMID:25385622

  20. Theoretical Minimum Energies to Produce Steel for Selected Conditions

    SciTech Connect

    Fruehan, R.J.; Fortini, O.; Paxton, H.W.; Brindle, R.

    2000-05-01

    The energy used to produce liquid steel in today's integrated and electric arc furnace (EAF) facilities is significantly higher than the theoretical minimum energy requirements. This study presents the absolute minimum energy required to produce steel from ore and mixtures of scrap and scrap alternatives. Additional cases in which the assumptions are changed to more closely approximate actual operating conditions are also analyzed. The results, summarized in Table E-1, should give insight into the theoretical and practical potentials for reducing steelmaking energy requirements. The energy values have also been converted to carbon dioxide (CO{sub 2}) emissions in order to indicate the potential for reduction in emissions of this greenhouse gas (Table E-2). The study showed that increasing scrap melting has the largest impact on energy consumption. However, scrap should be viewed as having ''invested'' energy since at one time it was produced by reducing ore. Increasing scrap melting in the BOF mayor may not decrease energy if the ''invested'' energy in scrap is considered.

  1. Low-temperature epitaxy of Si and Ge by direct ion beam deposition

    SciTech Connect

    Zuhr, R.A.; Appleton, B.R.; Herbots, N.; Larson, B.C.; Noggle, T.S.; Pennycook, S.J.

    1987-07-01

    Amorphous, polycrystalline, and epitaxial thin films of Si and Ge have been grown by ion beam deposition (IBD) under ultrahigh-vacuum conditions. IBD involves the direct deposition of ions onto single-crystal substrates from mass- and energy-analyzed beams with energies of 10 to 200 eV. The IBD films were characterized by Rutherford backscattering, ion channeling, cross-section transmission electron microscopy, and x-ray diffraction. The effects of substrate temperature, ion energy, and substrate cleaning were studied. Differences in the formation of epitaxial thin films on p- and n-type Si substrates were observed with n/sup -/ Si showing better epitaxy at low temperatures. Epitaxial overlayers which showed good minimum yields by ion channeling (3%--4%) have been produced at temperatures as low as 375/sup 0/C for Ge on Ge(100) and Si on Si(100).

  2. Selected Energy Education Activities for Pennsylvania Middle School Grades. Draft.

    ERIC Educational Resources Information Center

    Hack, Nancy; And Others

    These activities are intended to help increase awareness and understanding of the energy situation and to encourage students to become energy conservationists. The document is divided into sections according to discipline area. A final section is devoted to interdisciplinary activities involving several discipline areas integrated with the energy…

  3. Selected Energy Conservation Options for Homeowners: Options, Expenses and Payoffs.

    ERIC Educational Resources Information Center

    Lengyel, Dorothy L.; And Others

    This publication is a check list for homeowners and renters to help them reduce energy costs. The list consists of 126 energy conservation options. These options range from "change clothes instead of adjusting thermostat" and "air conditioners turned off when not home" to "use sink stopper" and "weatherstripping and caulking applied." For each…

  4. Summary of selected compressed air energy storage studies

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1985-01-01

    A descriptive summarily of research and development in compressed air energy storage technology is presented. Research funded primarily by the Department of Energy is described. Results of studies by other groups and experience at the Huntorf plant in West Germany are included. Feasibility studies performed by General Electric are summarized. The feasibility of air storage in dissolved salt cavities is also demonstrated. (BCS)

  5. A Data Envelopment Analysis Model for Renewable Energy Technology Selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Public and media interest in alternative energy sources, such as renewable fuels, has rapidly increased in recent years due to higher prices for oil and natural gas. However, the current body of research providing comparative decision making models that either rank these alternative energy sources a...

  6. Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE

    NASA Astrophysics Data System (ADS)

    Swift, Alicia; Schirato, Richard; McKigney, Edward; Hunter, James; Temple, Brian

    2015-09-01

    The Los Alamos Neutron Science Center (LANSCE) is a linear accelerator in Los Alamos, New Mexico that accelerates a proton beam to 800 MeV, which then produces spallation neutron beams. Flight path FP15R uses a tungsten target to generate neutrons of energy ranging from several hundred keV to ~600 MeV. The beam structure has micropulses of sub-ns width and period of 1.784 ns, and macropulses of 625 μs width and frequency of either 50 Hz or 100 Hz. This corresponds to 347 micropulses per macropulse, or 1.74 x 104 micropulses per second when operating at 50 Hz. Using a very fast, cooled ICCD camera (Princeton Instruments PI-Max 4), gated images of various objects were obtained on FP15R in January 2015. Objects imaged included blocks of lead and borated polyethylene; a tungsten sphere; and a tungsten, polyethylene, and steel cylinder. Images were obtained in 36 min or less, with some in as little as 6 min. This is novel because the gate widths (some as narrow as 10 ns) were selected to reject scatter and other signal not of interest (e.g. the gamma flash that precedes the neutron pulse), which has not been demonstrated at energies above 14 MeV. This proof-of-principle experiment shows that time gating is possible above 14MeV and is useful for selecting neutron energy and reducing scatter, thus forming clearer images. Future work (simulation and experimental) is being undertaken to improve camera shielding and system design and to precisely determine optical properties of the imaging system.

  7. Energy resources in southern Africa: a select bibliography

    SciTech Connect

    Cavan, A.

    1981-01-01

    The aims, progress, and possibilities involved in Southern Africa's energy development are the subject of this 473-item bibliography. The primary items of information described in this document are relatively recent (1975-81), originate from both indigenous and international sources, and are mostly in English, although a few are in French and Portuguese. The presented information focuses on the African continent, the Southern African region, and the nations of Angola, Botswana, Lesotho, Malawi, Mozambique, Namibia, Swaziland, South Africa, Tanzania, Zambia, and Zimbabwe. The energy source topics include alcohol, coal, gas, oil, solar, uranium, water, wind, and wood; as well as a general energy-development category.

  8. Selecting herbaceous energy crops for the southeast and midwest/lake states

    SciTech Connect

    Cushman, J.H.; Turhollow, A.F.

    1990-01-01

    This paper summarizes an approach to crop selection and development that has evolved through the five years of species screening and selection in the US Department of Energy's Herbaceous Energy Crops Program. The first phase of this program was designed to identify a number of species for development as energy crops for the Southeast and Midwest/Lake States, specifically as feedstocks for the biochemical and thermochemical conversion processes for alcohol fuels now under development. 14 refs., 1 tab.

  9. Calorimetry of epitaxial thin films.

    PubMed

    Cooke, David W; Hellman, F; Groves, J R; Clemens, B M; Moyerman, S; Fullerton, E E

    2011-02-01

    Thin film growth allows for the manipulation of material on the nanoscale, making possible the creation of metastable phases not seen in the bulk. Heat capacity provides a direct way of measuring thermodynamic properties of these new materials, but traditional bulk calorimetric techniques are inappropriate for such a small amount of material. Microcalorimetry and nanocalorimetry techniques exist for the measurements of thin films but rely on an amorphous membrane platform, limiting the types of films which can be measured. In the current work, ion-beam-assisted deposition is used to provide a biaxially oriented MgO template on a suspended membrane microcalorimeter in order to measure the specific heat of epitaxial thin films. Synchrotron x-ray diffraction showed the biaxial order of the MgO template. X-ray diffraction was also used to prove the high quality of epitaxy of a film grown onto this MgO template. The contribution of the MgO layer to the total heat capacity was measured to be just 6.5% of the total addenda contribution. The heat capacity of a Fe(.49)Rh(.51) film grown epitaxially onto the device was measured, comparing favorably to literature data on bulk crystals. This shows the viability of the MgO∕SiN(x)-membrane-based microcalorimeter as a way of measuring the thermodynamic properties of epitaxial thin films. PMID:21361612

  10. Growth of EuO/Si and EuO/SrO/Si heteroepitaxial structures by molecular-beam epitaxy

    SciTech Connect

    Teterin, P. E. Averyanov, D. V.; Sadofyev, Yu. G. Parfenov, O. E.; Likhachev, I. A.; Storchak, V. G.

    2015-01-15

    Epitaxial EuO thin films with thickness up to 60 nm have been grown by molecular beam epitaxy both on SrO sublayers and directly on Si (001) substrates. Crystal structure has been controlled in situ by reflection high energy electron diffraction. Ex situ studies by X-ray diffraction and Rutherford backscattering have confirmed high crystalline quality of the films.

  11. ENVIRONMENTAL, OPERATIONAL, AND ECONOMIC ASPECTS OF THIRTEEN SELECTED ENERGY TECHNOLOGIES

    EPA Science Inventory

    This report covers the environmental, operational, and economic aspects of thirteen (13) current and developing technologies as applied to the generation of electric power, steam generation, and the conversion of fossil energy into alternative foorms. The following technologies a...

  12. Spectrally Selective Surface Coatings for Energy Efficiency and Solar Applications.

    ERIC Educational Resources Information Center

    Granqvist, C. G.

    1984-01-01

    Outlines how the radiative properties of a surface can be tailored so as to be favorable for efficient utilization of energy. The radiative properties of concern are transmittance, reflectance, absorptance, and emittance. (JN)

  13. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect

    Shawn M. Allan; Patricia M. Strickland; Holly S. Shulman

    2009-11-11

    Ceralink Inc. developed FastFuse™, a rapid, new, energy saving process for lamination of glass and composites using radio frequency (RF) heating technology. The Inventions and Innovations program supported the technical and commercial research and development needed to elevate the innovation from bench scale to a self-supporting technology with significant potential for growth. The attached report provides an overview of the technical and commerical progress achieved for FastFuse™ during the course of the project. FastFuse™ has the potential to revolutionize the laminate manufacturing industries by replacing energy intensive, multi-step processes with an energy efficient, single-step process that allows higher throughput. FastFuse™ transmits RF energy directly into the interlayer to generate heat, eliminating the need to directly heat glass layers and the surrounding enclosures, such as autoclaves or vacuum systems. FastFuse™ offers lower start-up and energy costs (up to 90% or more reduction in energy costs), and faster cycles times (less than 5 minutes). FastFuse™ is compatible with EVA, TPU, and PVB interlayers, and has been demonstrated for glass, plastics, and multi-material structures such as photovoltaics and transparent armor.

  14. Line-on-Line Coincidence: A New Type of Epitaxy Found in Organic-Organic Heterolayers

    NASA Astrophysics Data System (ADS)

    Mannsfeld, Stefan C.; Leo, Karl; Fritz, Torsten

    2005-02-01

    We propose a new type of epitaxy, line-on-line coincidence (LOL), which explains the ordering in the organic-organic heterolayer system PTCDA on HBC on graphite. LOL epitaxy is similar to point-on-line coincidence (POL) in the sense that all overlayer molecules lie on parallel, equally spaced lines. The key difference to POL is that these lines are not restricted to primitive lattice lines of the substrate lattice. Potential energy calculations demonstrate that this new type of epitaxy is indeed characterized by a minimum in the overlayer-substrate interaction potential.

  15. Critical issues of complex, epitaxial oxide growth and integration with silicon by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lettieri, James

    Molecular beam epitaxy was used to grow epitaxial oxides on silicon substrates. The growth of BaO, SrO, EuO, and SrTiO3 are discussed with a focus on the general theme of integration of functional, epitaxial oxides into a silicon environment. Oxidation studies of various metal systems relevant for oxide on silicon epitaxy and integration are reported. Results demonstrate the catalytic nature of an alkaline earth metal at small concentrations to enable the oxidation of the poorly oxidizing metals at pressures lower than during deposition of the pure metal alone. Results from the deposition of various elements are presented. The aspects of the growth of alkaline earth oxides on silicon are explained. The transition from the silicon to the alkaline earth oxide as described through reflection high energy electron diffraction (RHEED) is presented and used to understand issues related to each stage of the growth. High quality, commensurate alkaline earth oxides are grown on silicon at room temperature and P O2 background ˜ 3 x 10-8 Torr. The growth of alkaline earth and rare earth oxide solid solutions and rare earth oxides (EuO) are described. The first reported epitaxial EuO on silicon is reported, enabled by the use of a thin buffer layer (13 A) of SrO. Using a strategy of transition from simple structures to the more complex, the growth of a perovskite (SrTiO3) on silicon is demonstrated. Growth of a structurally optimized perovskite structure entails the transformation of a thin interfacial alkaline earth oxide layer into the initial perovskite cells. SrTiO3 and La-doped SrTiO3 on silicon are used to integrate a piezoelectric relevant for microelectromechanical systems (MEMS) applications and a ferroelectric relevant for a ferroelectric random access memory (FRAM) architecture. A d33 value of over 400 pm/V under bias is measured for the piezoelectric (Pb(Mn1/3Nb 2/3)O3 -PbTiO3) and a remanent polarization of 25 muC/cm2 and fatigue free behavior (>1012 cycles) for a

  16. Method for making an aluminum or copper substrate panel for selective absorption of solar energy

    NASA Technical Reports Server (NTRS)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1978-01-01

    A panel is described for selectively absorbing solar energy comprising an aluminum substrate. A zinc layer was covered by a layer of nickel and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a nickel layer. A layer of solar energy absorbing nickel oxide distal from the copper substrate was included. A method for making these panels is disclosed.

  17. Epitaxial BaTiO{sub 3}(100) films on Pt(100): A low-energy electron diffraction, scanning tunneling microscopy, and x-ray photoelectron spectroscopy study

    SciTech Connect

    Foerster, Stefan; Huth, Michael; Schindler, Karl-Michael; Widdra, Wolf

    2011-09-14

    The growth of epitaxial ultrathin BaTiO{sub 3} films on a Pt(100) substrate has been studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and x-ray photoelectron spectroscopy (XPS). The films have been prepared by radio-frequency-assisted magnetron sputter deposition at room temperature and develop a long-range order upon annealing at 900 K in O{sub 2}. By adjusting the Ar and O{sub 2} partial pressures of the sputter gas, the stoichiometry was tuned to match that of a BaTiO{sub 3}(100) single crystal as determined by XPS. STM reveals the growth of continuous BaTiO{sub 3} films with unit cell high islands on top. With LEED already for monolayer thicknesses, the formation of a BaTiO{sub 3}(100)-(1 x 1) structure has been observed. Films of 2-3 unit cell thickness show a brilliant (1 x 1) LEED pattern for which an extended set of LEED I-V data has been acquired. At temperatures above 1050 K the BaTiO{sub 3} thin film starts to decay by formation of vacancy islands. In addition (4 x 4) and (3 x 3) surface reconstructions develop upon prolonged heating.

  18. Energy Saving Glass Lamination via Selective Radio-Frequency Heating

    SciTech Connect

    Shulman, Holly S.; Allan, Shawn M.

    2009-11-11

    This Inventions and Innovations program supported the technical and commercial research and development needed to elevate Ceralink's energy saving process for flat glass lamination from bench scale to a self-supporting technology with significant potential for growth. Radio-frequency heating was any un-explored option for laminating glass prior to this program. With significant commercial success through time and energy savings in the wood, paper, and plastics industries, RF heating was found to have significant promise for the energy intensive glass lamination industry. A major technical goal of the program was to demonstrate RF lamination across a wide range of laminate sizes and materials. This was successfully accomplished, dispelling many skeptics' concerns about the abilities of the technology. Ceralink laminated panels up to 2 ft x 3 ft, with four sets processed simultaneously, in a 3 minute cycle. All major categories of interlayer materials were found to work with RF lamination. In addition to laminating glass, other materials including photovoltaic silicon solar cells, light emitting diodes, metallized glass, plastics (acrylic and polycarbonate), and ceramics (alumina) were found compatible with the RF process. This opens up a wide range of commercial opportunities beyond the initially targeted automotive industry. The dramatic energy savings reported for RF lamination at the bench scale were found to be maintained through the scale up of the process. Even at 2 ft x 3 ft panel sizes, energy savings are estimated to be at least 90% compared to autoclaving or vacuum lamination. With targeted promotion through conference presentations, press releases and internet presence, RF lamination has gained significant attention, drawing large audiences at American Ceramic Society meetings. The commercialization success of the project includes the establishment of a revenue-generating business model for providing process development and demonstrations for potential RF

  19. Method of depositing epitaxial layers on a substrate

    DOEpatents

    Goyal, Amit

    2003-12-30

    An epitaxial article and method for forming the same includes a substrate having a textured surface, and an electrochemically deposited substantially single orientation epitaxial layer disposed on and in contact with the textured surface. The epitaxial article can include an electromagnetically active layer and an epitaxial buffer layer. The electromagnetically active layer and epitaxial buffer layer can also be deposited electrochemically.

  20. Scanning Tunneling Spectroscopy of Proximity Superconductivity in Epitaxial Multilayer Graphene

    PubMed Central

    Natterer, Fabian D.; Ha, Jeonghoon; Baek, Hongwoo; Zhang, Duming; Cullen, William; Zhitenev, Nikolai B.; Kuk, Young; Stroscio, Joseph A.

    2016-01-01

    We report on spatial measurements of the superconducting proximity effect in epitaxial graphene induced by a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial multilayer graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting energy gap with increasing separation from the graphene-aluminum edges. The spectra were well described by Bardeen-Cooper-Schrieffer (BCS) theory. The decay length for the superconducting energy gap in graphene was determined to be greater than 400 nm. Deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers. PMID:27088134

  1. Analyses of Selected Provisions of Proposed Energy Legislation: 2003

    EIA Publications

    2003-01-01

    This study responds to a July 31, 2003 request from Senator Byron L. Dorgan. The study is based primarily on analyses the Energy Information Administration has previously done for studies requested by Congress. It includes analysis of the Renewable Portfolio Standard, Renewable Fuels Standard, production in the Alaskan National Wildlife Refuge, the construction of an Alaskan Natural Gas pipeline, and various tax provisions.

  2. Energy Savings in School Buildings: A Selected Checklist.

    ERIC Educational Resources Information Center

    Wismer, Don, Comp.

    The 43 references in this booklet emphasize practical, rather than theoretical, information. They were chosen on that basis from two computer-retrievable data bases maintained by the U.S. Department of Energy. The citations, for the most part, are arranged by source and include industry pamphlets, journal articles, and state and consultant…

  3. Determinants of Household Use of Selected Energy Star Appliances

    EIA Publications

    2016-01-01

    The main objective of this paper is to test a series of hypotheses regarding the influences of household characteristics (such as education, age, sex, race, income, and size of household), building characteristics (such as age, ownership, and type), and electricity prices on the use of ENERGY STAR appliances.

  4. Selected comments on the ORNL Residential Energy-Use Model

    SciTech Connect

    Herbert, J.H.

    1980-06-01

    This report assesses critical technical aspects of the Oak Ridge National Laboratory (ORNL) Residential Energy Use Model. An important component of the ORNL Model is determination of the thermal performance of new equipment or structures. The examples presented here are illustrative of the type of analytic problems discovered in a detailed assessment of the model. A list of references is appended.

  5. Conducting (Si-doped) aluminum nitride epitaxial films grown by molecular beam epitaxy

    SciTech Connect

    Kim, J.G.; Moorthy, M.; Park, R.M.

    1999-07-01

    As a member of the III-V nitride semiconductor family, AlN, which has a direct energy-gap of 6.2eV, has received much attention as a promising material for many applications. However, despite the promising attributes of AlN for various semiconductor devices, research on AlN has been limited and n-type conducting AlN has not been reported. The objective of this research was to understand the factors impacting the conductivity of AlN and to control the conductivity of this material through intentional doping. Prior to the intentional doping study, growth of undoped AlN epilayers was investigated. Through careful selection of substrate preparation methods and growth parameters, relatively low-temperature molecular beam epitaxial growth of AlN films was established which resulted in insulating material. Intentional Si doping during epilayer growth was found to result in conducting films under specific growth conditions. Above a growth temperature of 900 C, AlN films were insulating, however, below a growth temperature of 900 C, the AlN films were conducting. The magnitude of the conductivity and the growth temperature range over which conducting AlN films could be grown were strongly influenced by the presence of a Ga flux during growth. For instance, conducting, Si-doped, AlN films were grown at a growth temperature of 940 C in the presence of a Ga flux while the films were insulating when grown in the absence of a Ga flux at this particular growth temperature. Also, by appropriate selection of the growth parameters, epilayers with n-type conductivity values as large as 0.2 {Omega}{sup {minus}1} cm{sup {minus}1} for AlN and 17 {Omega}{sup {minus}1} cm{sup {minus}1} for Al{sub 0.75}Ga{sub 0.25}N were grown in this work for the first time.

  6. Dark Energy, Anthropic Selection Effects, Entropy and Life

    NASA Astrophysics Data System (ADS)

    Egan, Chas A.

    2010-05-01

    According to the standard LCDM model, the matter and dark energy densities (rho_m and rho_DE) are only comparable for a brief time. We address the cosmic coincidence problem under LCDM and generalized dark energy models by considering the temporal distribution of terrestrial planets. We compare the Sun to representative stellar samples in 11 properties plausibly related to life. We find the Sun to be most anomalous in mass and galactic orbital eccentricity. When the 11 properties are considered together, the observed "anomalies" are consistent with statistical noise. This contrasts with previous work suggesting anthropic explanations for the Sun's high mass. The long-term future of dissipative processes (such as life) depends on the continued ability to use free energy to increase the total entropy. The entropy budget of the present observable Universe is dominated by supermassive black holes in galactic cores. We report a new entropy budget of the Universe with quantified uncertainties for all components. We find the total entropy in the observable Universe to be S_{obs} = 3.1^{+3.0}_{-1.7} x 10^{104} k, at least an order of magnitude higher than previous estimates due to improved measurements of the mass function of supermassive black holes (which dominate the budget). We evaluate upper bounds on the entropy of a comoving volume. Under the assumption that energy in matter is constant in a comoving volume, the availability of free energy is found to be finite and the future entropy in the volume is limited to a constant of order 10^{123} k. Through this work we uncover a number of unresolved questions with implications for the ultimate fate of the Universe.

  7. Multicriteria Decision Analysis of Material Selection of High Energy Performance Residential Building

    NASA Astrophysics Data System (ADS)

    Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva

    2013-11-01

    In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic

  8. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J.; Baldasaro, Paul F.; DePoy, David M.

    2010-09-07

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  9. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J.; DePoy, David Moore; Baldasaro, Paul Francis

    2007-01-23

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  10. Surface-phonon dispersion in ultrathin epitaxial films of Ni on Cu(001)

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamed H.; Kim, Jae-Sung; Kesmodel, L. L.

    1989-07-01

    New measurements by high-resolution electron-energy-loss spectroscopy confirm the presence of localized film modes for ultrathin epitaxial films of nickel on a copper (001) substrate. These film modes, predicted recently in lattice-dynamical calculations by Chen, Wu, Yao, and Tong [Phys. Rev. B 39, 5617 (1989)] lie above the Cu-substrate bands and correspond to vibrational motion localized in the Ni overlayer. The Rayleigh-mode dispersion for the epitaxial overlayers is also reported.

  11. Selective chemical detection by energy modulation of sensors

    DOEpatents

    Stetter, J.R.; Otagawa, T.

    1985-05-20

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulating means for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor means compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. 4 figs.

  12. Apparatus for generating coherent infrared energy of selected wavelength

    DOEpatents

    Stevens, C.G.

    A tunable source of coherent infrared energy includes a heat pipe having an intermediate region at which cesium is heated to vaporizing temperature and end regions at which the vapor is condensed and returned to the intermediate region for reheating and recirculation. Optical pumping light is directed along the axis of the heat pipe through a first end window to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window. A porous walled tubulation extends along the axis of the heat pipe and defines a region in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light. Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light.

  13. Apparatus for generating coherent infrared energy of selected wavelength

    DOEpatents

    Stevens, Charles G.

    1985-01-01

    A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).

  14. Evaluation of selected energy-recovery systems. Working paper

    SciTech Connect

    Desai, T.M.; Salama, S.Y.; Kothari, V.S.

    1983-02-28

    The purpose of the paper is to document key inputs and results of work performed in the area of Energy Recovery Systems (ERS) in support of the Industrial Utilization (IU) staff. This support consisted of the following four main activities: Integration and validation of technology performance and cost data generated by technology developers under contract with GRI; Developing characteristics of the industrial test markets and refining the representation of these markets when needed, e.g., segmentation of certain markets into more-detailed unit size categories or further characterization of competing process; Evaluation and analysis of future market potentials for each ERS in all applicable markets; and Projecting the total impacts of these ERS on energy and gas demand.

  15. Selective chemical detection by energy modulation of sensors

    DOEpatents

    Stetter, Joseph R.; Otagawa, Takaaki

    1991-01-01

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulator for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor which compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. In particular, the concentration of the component of interest is proportional to the amplitude of the modulated output signal, while the identifying activation output energy of the chemical interaction indicative of that component is proportional to a normalized parameter equal to the peak-to-peak amplitude divided by the height of the upper peaks above a base line signal level.

  16. Selective chemical detection by energy modulation of sensors

    DOEpatents

    Stetter, J.R.; Otagawa, T.

    1991-09-10

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulator for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor which compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. In particular, the concentration of the component of interest is proportional to the amplitude of the modulated output signal, while the identifying activation output energy of the chemical interaction indicative of that component is proportional to a normalized parameter equal to the peak-to-peak amplitude divided by the height of the upper peaks above a base line signal level. 5 figures.

  17. Energy/Environment/Economy. An Annotated Bibliography of Selected U.S. Government Publications Concerning United States Energy Policy.

    ERIC Educational Resources Information Center

    ENVIRO/INFO, Green Bay, WI.

    This annotated bibliography attempts to provide a selective listing of 109 U.S. federal government publications germane to the energy crisis and its attendant environmental and economic implications. Primary emphasis is placed upon documents presenting energy policy issues which have emerged, plus statistical reportage which provides quantitative…

  18. Energy/Environment/Economy. An Annotated Bibliography of Selected U.S. Government Publications Concerning United States Energy Policy, Supplement.

    ERIC Educational Resources Information Center

    ENVIRO/INFO, Green Bay, WI.

    This annotated bibliography supplements ED 077 704. It provides a selective listing of 93 U.S. Federal Government publications germane to the energy crisis and its attendant environmental and economic implications. Primary emphasis is placed upon documents presenting energy policy issues which have emerged, plus statistical reportage which…

  19. ENVIRONMENTAL CONSIDERATIONS OF SELECTED ENERGY-CONSERVING MANUFACTURING PROCESS OPTIONS. VOLUME XVII. NITROGEN OXIDES SUMMARY REPORT

    EPA Science Inventory

    Arthur D. Little, Inc. undertook a study of the 'Environmental Consideration of Selected Energy-Conserving Manufacturing Process Options.' Some 80 industrial process options were examined in 13 industrial sectors. Results were published in 15 volumes, including a summary, industr...

  20. ENVIRONMENTAL CONSIDERATIONS OF SELECTED ENERGY-CONSERVING MANUFACTURING PROCESS OPTIONS. VOLUME XX: TOXICS/ORGANICS

    EPA Science Inventory

    Arthur D. Little, Inc. undertook a study of the 'Environmental Considerations of Selected Energy-Conserving Manufacturing Process Options.' Some 80 industrial process options were examined in13 industrial sectors. Results were published in 15 volumes, including a summary, industr...

  1. Efficient Interlayer Relaxation and Transition of Excitons in Epitaxial and Non-epitaxial MoS2/WS2 Heterostructures

    DOE PAGESBeta

    Yu, Yifei; Hu, Shi; Su, Liqin; Huang, Lujun; Liu, Yi; Jin, Zhenghe; Puretzky, Alexander A.; Geohegan, David B.; Kim, Ki Wook; Zhang, Yong; et al

    2014-12-03

    Semiconductor heterostructurs provide a powerful platform for the engineering of excitons. Here we report on the excitonic properties of two-dimensional (2D) heterostructures that consist of monolayer MoS2 and WS2 stacked epitaxially or non-epitaxially in the vertical direction. We find similarly efficient interlayer relaxation and transition of excitons in both the epitaxial and non-epitaxial heterostructures. This is manifested by a two orders of magnitude decrease in the photoluminescence and an extra absorption peak at low energy region of both heterostructures. The MoS2/WS2 heterostructures show weak interlayer coupling and essentially act as an atomic-scale heterojunction with the intrinsic band structures of themore » two monolayers largely preserved. They are particularly promising for the applications that request efficient dissociation of excitons and strong light absorption, including photovoltaics, solar fuels, photodetectors, and optical modulators. Our results also indicate that 2D heterostructures promise to provide capabilities to engineer excitons from the atomic level without concerns of interfacial imperfection.« less

  2. Efficient Interlayer Relaxation and Transition of Excitons in Epitaxial and Non-epitaxial MoS2/WS2 Heterostructures

    SciTech Connect

    Yu, Yifei; Hu, Shi; Su, Liqin; Huang, Lujun; Liu, Yi; Jin, Zhenghe; Puretzky, Alexander A.; Geohegan, David B.; Kim, Ki Wook; Zhang, Yong; Cao, Linyou

    2014-12-03

    Semiconductor heterostructurs provide a powerful platform for the engineering of excitons. Here we report on the excitonic properties of two-dimensional (2D) heterostructures that consist of monolayer MoS2 and WS2 stacked epitaxially or non-epitaxially in the vertical direction. We find similarly efficient interlayer relaxation and transition of excitons in both the epitaxial and non-epitaxial heterostructures. This is manifested by a two orders of magnitude decrease in the photoluminescence and an extra absorption peak at low energy region of both heterostructures. The MoS2/WS2 heterostructures show weak interlayer coupling and essentially act as an atomic-scale heterojunction with the intrinsic band structures of the two monolayers largely preserved. They are particularly promising for the applications that request efficient dissociation of excitons and strong light absorption, including photovoltaics, solar fuels, photodetectors, and optical modulators. Our results also indicate that 2D heterostructures promise to provide capabilities to engineer excitons from the atomic level without concerns of interfacial imperfection.

  3. Black tungsten selective optical coatings for photothermal solar energy conversion

    NASA Astrophysics Data System (ADS)

    Gesheva, K. A.; Gogova, D. S.; Stoyanov, G.

    1992-08-01

    By pyrolytic decomposition of W(CO)6 in the presence of an oxygen bleed black tungsten solar selective coatings have been deposited on different substrates - quartz, silicon and stainless steel. Quartz substrates were used to check the opacity of the films deposited; the silicon substrates were used to study the possibility of obtaining low-resistance material when fully annealed and the steel substrates to study the properties of the films on substrates suitable for a large scale application. The films were obtained at a temperature of 400°C and further partially annealed in a reducing atmosphere. The dependence of the structure and chemical composition on the annealing temperature was studied, as well as reflectance measurements in the visible and in the infrared region.

  4. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy.

    PubMed

    Cortesi, M; Dangendorf, V; Zboray, R; Prasser, H-M

    2014-07-01

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels. PMID:25085132

  5. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy

    SciTech Connect

    Cortesi, M.; Prasser, H.-M.; Dangendorf, V.; Zboray, R.

    2014-07-15

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  6. Self-selection and the estimation of energy conservation program benefits

    SciTech Connect

    Horowitz, M.J.

    1995-12-31

    The necessity to correct behavioral models for selectivity bias has long been recognized within the economics profession as critical to deriving parameter estimates that are unbiased and consistent. The purpose of this paper is to examine the problem of selectivity bias, specifically self-selection and free riders, in the estimation of behavioral models of energy conservation program benefits. Like for all social programs, objective assessment of the social and private value of energy conservation programs requires accurate quantification of their direct benefits. Particular attention is given in this paper to the nature of energy conservation program self-selection when these programs provide goods and services that are capable of being purchased privately in competitive markets. In this case, the source of the selectivity problem can be traced to two interrelated decisions, that is, the decision to participate in energy efficiency programs and the decision to invest in energy efficiency measures that are promoted by the program. This paper describes why it is necessary to recognize, and correct for, both forms of selectivity. It also offers suggestions for what the underlying determinants of self-selection might be and how they may affect the estimates of program impacts.

  7. Magnetic properties of novel epitaxial films

    SciTech Connect

    Bader, S.D.; Moog, E.R.

    1986-09-01

    The surface magneto-optic Kerr effect (SMOKE) is used to explore the magnetism of ultra-thin Fe Films extending into the monolayer regime. Both bcc ..cap alpha..-Fe and fcc ..gamma..-Fe single-crystalline, multilayer films are prepared on the bulk-terminated (1 x 1) structures of Au(100) and Cu(100), respectively. The characterizations of epitaxy and growth mode are performed using low energy electron diffraction and Auger electron spectroscopy. Monolayer-range Fe/Au(100) is ferromagnetic with a lower Curie temperature than bulk ..cap alpha..-Fe. The controversial ..gamma..-Fe/Cu(100) system exhibits a striking, metastable, surface magnetic phase at temperatures above room temperature, but does not exhibit bulk ferromagnetism.

  8. DOE (Department of Energy) Epidemiologic Research Program: Selected bibliography

    SciTech Connect

    Not Available

    1991-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and from the operation of DOE facilities. The program has been divided into seven general areas of activity: the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the genetic aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 380 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliograhpy is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by national laboratory and by year. Multi-authored studies are indicated only once, according to the main supporting laboratory.

  9. Selective excitation, relaxation, and energy channeling in molecular systems

    SciTech Connect

    Rhodes, W.C.

    1993-08-01

    Research involves theoretical studies of response, relaxation, and correlated motion in time-dependent behavior of large molecular systems ranging from polyatomic molecules to protein molecules in their natural environment. Underlying theme is subsystem modulation dynamics. Main idea is that quantum mechanical correlations between components of a system develop with time, playing a major role in determining the balance between coherent and dissipative forces. Central theme is interplay of coherence and dissipation in determining the nature of dynamic structuring and energy flow in molecular transformation mechanisms. Subsystem equations of motion are being developed to show how nonlinear, dissipative dynamics of a particular subsystem arise from correlated interactions with the rest of the system (substituent groups, solvent, lattice modes, etc.); one consequence is resonance structures and networks. Quantum dynamics and thermodynamics are being applied to understand control and energy transfer mechanisms in biological functions of protein molecules; these mechanisms are both global and local. Besides the above theory, the research deals with phenomenological aspects of molecular systems.

  10. High spin spectroscopy near the N=Z line: Channel selection and excitation energy systematics

    SciTech Connect

    Svensson, C.E.; Cameron, J.A.; Flibotte, S.

    1996-12-31

    The total {gamma}-ray and charged-particle energies emitted in fusion-evaporation reactions leading to N=Z compound systems in the A = 50-70 mass region have been measured with the 8{pi} {gamma}-ray spectrometer and the miniball charged-particle detector array. A new method of channel selection has been developed which combines particle identification with these total energy measurements and greatly improves upon the selectivity possible with particle detection alone. In addition, the event by event measurement of total {gamma}-ray energies using the BGO ball of the 8{pi} spectrometer has allowed a determination of excitation energies following particle evaporation for a large number of channels in several different reactions. The new channel selection procedure and excitation energy systematics are illustrated with data from the reaction of {sup 24}Mg on {sup 40}Ca at E{sub lab} = 80MeV.

  11. Quantification of correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism in lizards

    PubMed Central

    Artacho, Paulina; Saravia, Julia; Ferrandière, Beatriz Decencière; Perret, Samuel; Le Galliard, Jean-François

    2015-01-01

    Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior. PMID:26380689

  12. Observation of core-level binding energy shifts between (100) surface and bulk atoms of epitaxial CuInSe{sub 2}

    SciTech Connect

    Nelson, A.J.; Berry, G.; Rockett, A.

    1997-04-01

    Core-level and valence band photoemission from semiconductors has been shown to exhibit binding energy differences between surface atoms and bulk atoms, thus allowing one to unambiguously distinguish between the two atomic positions. Quite clearly, surface atoms experience a potential different from the bulk due to the lower coordination number - a characteristic feature of any surface is the incomplete atomic coordination. Theoretical accounts of this phenomena are well documented in the literature for III-V and II-VI semiconductors. However, surface state energies corresponding to the equilibrium geometry of (100) and (111) surfaces of Cu-based ternary chalcopyrite semiconductors have not been calculated or experimental determined. These compounds are generating great interest for optoelectronic and photovoltaic applications, and are an isoelectronic analog of the II-VI binary compound semiconductors. Surface core-level binding energy shifts depend on the surface cohesive energies, and surface cohesive energies are related to surface structure. For ternary compound semiconductor surfaces, such as CuInSe{sub 2}, one has the possibility of variations in surface stoichiometry. Applying standard thermodynamical calculations which consider the number of individual surface atoms and their respective chemical potentials should allow one to qualitatively determine the magnitude of surface core-level shifts and, consequently, surface state energies.

  13. Guided-wave approaches to spectrally selective energy absorption

    NASA Technical Reports Server (NTRS)

    Stegeman, G. I.; Burke, J. J.

    1987-01-01

    Results of experiments designed to demonstrate spectrally selective absorption in dielectric waveguides on semiconductor substrates are reported. These experiments were conducted with three waveguides formed by sputtering films of PSK2 glass onto silicon-oxide layers grown on silicon substrates. The three waveguide samples were studied at 633 and 532 nm. The samples differed only in the thickness of the silicon-oxide layer, specifically 256 nm, 506 nm, and 740 nm. Agreement between theoretical predictions and measurements of propagation constants (mode angles) of the six or seven modes supported by these samples was excellent. However, the loss measurements were inconclusive because of high scattering losses in the structures fabricated (in excess of 10 dB/cm). Theoretical calculations indicated that the power distribution among all the modes supported by these structures will reach its steady state value after a propagation length of only 1 mm. Accordingly, the measured loss rates were found to be almost independent of which mode was initially excited. The excellent agreement between theory and experiment leads to the conclusion that low loss waveguides confirm the predicted loss rates.

  14. Carbon-Water-Energy Relations for Selected River Basins

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1998-01-01

    A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.

  15. Growth-induced electronic properties of epitaxial graphene

    NASA Astrophysics Data System (ADS)

    First, Phillip

    2012-02-01

    The growth of epitaxial graphene on silicon carbide is challenging to understand and control, yet rife with scientific and technological opportunities. This is due in part to different growth-induced structures such as the ``moire'' alignment of graphene layers in multilayer epitaxial graphene on SiC(0001) and the formation of sidewall ribbons at natural and lithographically-defined SiC(0001) step-bunches (nanofacets). We apply scanning tunneling microscopy (STM) and spectroscopy (STS) to probe the local energy bands of such growth-induced structures. STS at cryogenic temperatures and large magnetic fields creates a comb of discrete Landau level energies that we use to quantitatively characterize the local electronic properties.

  16. Energy-selective SESD imaging utilizing a CMA

    NASA Astrophysics Data System (ADS)

    Larson, L. A.; Soria, F.; Poppa, H.

    1980-12-01

    A particularly simple conversion of a scanning Auger system for ESD ion energy distributions and scanning ESD has been developed. This approach combines the advantages of the small spot-size electron guns and mapping systems developed for SAM with the capability of ESD for the detection of hydrogen. Our intended use for the device is detection and mapping of surface concentrations of hydrogen on metals. The characteristics of SESD are illustrated with the preliminary results of an investigation into the ESD properties of hydrogenic adsorbates on Nb. It is shown that the ESDIED exhibit distinct differences indicative of the surface preparation, and that the ESD ion angular distributions have an effect on the observed contrast relationships in SESD.

  17. Energy-selective filtration of dental x-ray beams

    SciTech Connect

    Gelskey, D.E.; Baker, C.G.

    1981-11-01

    Samarium is known for its ability to filter simultaneously low- and high-energy x-ray photons from an x-ray beam that are not useful in producing a diagnostic radiograph. This study was undertaken to determine the optimum thickness of samarium required to minimize patient exposure and exposure time. The results indicate that use of a filter thickness of 0.16 mm. minimized patient radiation exposure and permitted the use of an exposure time sufficiently short to minimize motion unsharpness. The incorporation of a 0.16 mm. samarium filter in the x-ray beam reduced exposure by about 40 percent as compared to a 2.5 mm. aluminum filter; the exposure time must be increased approximately twice to obtain optical densities equivalent to those produced with aluminum filtration.

  18. BVRI Standard Stars Near Selected Very High Energy Blazars

    NASA Astrophysics Data System (ADS)

    Pace, Cameron; Pearson, R.; Moody, J. W.; Joner, M. D.

    2010-01-01

    The nature of blazar variability is a test of the standard model of Active Galactic Nuclei (AGN). To be useful, measurements of blazar intensity must be compared to standard stars that have been tied into a standard photometric system. To aid the long-term study of blazars, we have measured BVRI magnitudes for six to eight comparison stars near the eight northern Very High Energy (VHE) blazars published by Horan & Weekes (2008). Our magnitudes have been tied into the standard stars published by Landolt (2009). The stars we have measured bracket the expected range of magnitudes between active and inactive phases of the blazars. Preliminary analysis of our results indicates an RMS error better than 0.02 magnitudes in all bands. Our measurements of comparison stars generally agree very well with previously published values. We are grateful to Brigham Young University and the National Science Foundation for their financial support.

  19. Catalog of selected heavy duty transport energy management models

    NASA Technical Reports Server (NTRS)

    Colello, R. G.; Boghani, A. B.; Gardella, N. C.; Gott, P. G.; Lee, W. D.; Pollak, E. C.; Teagan, W. P.; Thomas, R. G.; Snyder, C. M.; Wilson, R. P., Jr.

    1983-01-01

    A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle.

  20. On the density of states of disordered epitaxial graphene

    SciTech Connect

    Davydov, S. Yu.

    2015-05-15

    The study is concerned with two types of disordered epitaxial graphene: (i) graphene with randomly located carbon vacancies and (ii) structurally amorphous graphene. The former type is considered in the coherent potential approximation, and for the latter type, a model of the density of states is proposed. The effects of two types of substrates, specifically, metal and semiconductor substrates are taken into account. The specific features of the density of states of epitaxial graphene at the Dirac point and the edges of the continuous spectrum are analyzed. It is shown that vacancies in epitaxial graphene formed on the metal substrate bring about logarithmic nulling of the density of states of graphene at the Dirac point and the edges of the continuous spectrum. If the Dirac point corresponds to the middle of the band gap of the semiconductor substrate, the linear trend of the density of states to zero in the vicinity of the Dirac point in defect-free graphene transforms into a logarithmic decrease in the presence of vacancies. In both cases, the graphene-substrate interaction is assumed to be weak (quasi-free graphene). In the study of amorphous epitaxial graphene, a simple model of free amorphous graphene is proposed as the initial model, in which account is taken of the nonzero density of states at the Dirac point, and then the interaction of the graphene sheet with the substrate is taken into consideration. It is shown that, near the Dirac point, the quadratic behavior of the density of states of free amorphous graphene transforms into a linear dependence for amorphous epitaxial graphene. In the study, the density of states of free graphene corresponds to the low-energy approximation of the electron spectrum.

  1. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect

    Allan, Shawn M; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  2. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect

    Allan, Shawn M.

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  3. The Controller Synthesis of Metastable Oxides Utilizing Epitaxy and Epitaxial Stabilization

    SciTech Connect

    Schlom, Darrell

    2003-12-02

    Molecular beam epitaxy (MBE) has achieved unparalleled control in the integration of semiconductors at the nanometer. These advances were made through the use of epitaxy, epitaxial stabilization, and a combination of composition-control techniques including adsorption-controlled growth and RHEED-based composition control that we have developed, understood, and utilized for the growth of oxides. Also key was extensive characterization (utilizing RHEED, four-circle x-ray diffraction, AFM, TEM, and electrical characterization techniques) in order to study growth modes, optimize growth conditions, and probe the structural, dielectric, and ferroelectric properties of the materials grown. The materials that we have successfully engineered include titanates (PbTiO3, Bi4Ti3O12), tantalates (SrBi2Ta2O9), and niobates (SrBi2Nb2O9); layered combinations of these perovskite-related materials (Bi4Ti3O12-SrTiO3 and Bi4Ti3O12-PbTiO3 Aurivillius phases and metastable PbTiO3/SrTiO3 and BaTiO3/SrTiO3 superlattices), and new metastable phases (Srn+1TinO3n+1 Ruddlesden-Popper phases). The films were grown by reactive MBE and pulsed laser deposition (PLD). Many of these materials are either new or have been synthesized with the highest perfection ever reported. The controlled synthesis of such layered oxide heterostructures offers great potential for tailoring the superconducting, ferroelectric, and dielectric properties of these materials. These properties are important for energy technologies.

  4. Photoluminescence properties of ZnTe layers grown by photo-assisted metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Gheyas, Syed Irfan; Ikejiri, Makoto; Ogata, Toshihiro; Ogawa, Hiroshi; Nishio, Mitsuhiro

    1994-12-01

    Effects of light illumination on the photoluminescence (PL) properties of ZnTe has been investigated by using epitaxial layers grown with different carrier gases, transport rate of source materials and light sources or by introducing triethylaluminum (TEAl) as a dopant. Free exciton emission can be observed in only the epitaxial layers grown with illumination under H 2 atmosphere, implying that the illumination is effective for the growth of good quality ZnTe layers. The illumination strengthens the transition due to excitons bound to donor impurities, namely Cl which is substituted into Te lattice site, at low substrate temperature. These effects are closely related to the use of photons having an energy higher than the bandgap of ZnTe. It seems that the photo-assisted metalorganic vapor phase epitaxy (MOVPE) technique also brings about the effective formation of Al donor by suppressing the generation of the complex of Al and Zn-vacancy in the ZnTe epitaxial layer.

  5. Erosive wear of selected materials for fossil energy applications

    SciTech Connect

    Adler, Thomas A.; Rawers, James C.; Tylczak, Joseph H.; Hawk, Jeffrey A.

    2001-01-01

    A number of materials have been evaluated to determine their erosion resistance for fossil energy applications. This is part of a larger program to study wear and corrosion at Albany Research Center. This paper will present the results for some of these materials, including FeAl, FeAl cermets, WC-Co cemented carbides, Si3N4-MoSi2, Si3N4, Stellite 6B, white cast irons and 440C steel. Trends in erosion rates due to material properties and erosive conditions will be presented. FeAl cermets performed well compared to the WC-Co cemented carbides. The interparticle spacing of the WC-Co cemented carbides correlated with the erosion rate. The erosion rate of the WC-Co cemented carbides decreased as the interparticle spacing decreased. It is important to realize that erosion resistance is not an intrinsic material property, but is a system response. A change in the wear environment can significantly alter the relative rankings of materials with respect to their wear rate. For example, at relatively low velocities, the carbides in the white cast irons are more erosion resistant than the matrix, while at higher velocities the matrix is more erosion resistant.

  6. Energy Conservation: A Workshop for Selected Eastern U.S. Industrial Arts Teacher Educators.

    ERIC Educational Resources Information Center

    Wenig, Robert E., Ed.

    This set of 25 instructional modules was produced by a group of industrial arts teacher educators, local teachers, and supervisors from eastern United States. Topic areas of these modules include: societal implications of the energy situation; awareness of energy terms, supply, and use; assessment of conventional and selected renewable alternative…

  7. Aluminium or copper substrate panel for selective absorption of solar energy

    NASA Technical Reports Server (NTRS)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1979-01-01

    A method for making panels which selectively absorb solar energy is disclosed. The panels are comprised of an aluminum substrate, a layer of zinc thereon, a layer of nickel over the zinc layer and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a layer of nickel thereon and a layer of solar energy absorbing nickel oxide distal from the copper substrate.

  8. Market impact of selected industrial energy efficient technologies. Final report Jun 81-May 82

    SciTech Connect

    Lerner, M.O.; Salama, S.; Kothari, V.S.

    1982-09-01

    This analysis is designed to assist the Gas Research Institute (GRI) in evaluating technologies within the Industrial Utilization (IU) program. The main focus of the study is to assess the market impacts of selected projects designed by GRI to improve industrial sector energy efficiency and reduce energy-related cost. Market impacts examined for GRI include the energy savings and consumer savings that could result from these industrial technologies sponsored by GRI.

  9. The Energy-Wise Homebuyer: A Guide to Selecting an Energy-Efficient Home.

    ERIC Educational Resources Information Center

    Hogarth, Peter T.; And Others

    Presented is a guide for purchasers of new or used homes who wish to make informed comparisons of energy costs. Included are 12 energy features to look for, detailed energy checklists, and charts for calculating energy expenses. Among the considerations discussed are heating systems, insulation, thermostats, caulking and weatherstripping, and…

  10. Epitaxial growth and heterostructure synthesis by ion beam deposition (IBD)

    SciTech Connect

    Herbots, N.; Appleton, B.R.; Noggle, T.S.; Pennycook, S.J.; Zuhr, R.A.; Zehner, D.M.

    1986-01-01

    The synthesis of heterostructures and the possibility of low-temperature epitaxy by direct ion beam deposition at low energies (10 to 200 eV) were investigated both theoretically and experimentally. Monte-Carlo simulations of ion-solid interactions were used to study collision processes during IBD and have led to a qualitative understanding of the physical parameters involved in the deposition process. /sup 30/Si and /sup 74/Ge were deposited on Si(100) and Ge(100) directly from mass- and energy-analyzed ion beams. Ge/Si multilayers with interfaces as sharp as 0.35 nm were formed by IBD at 65 eV. Reactive ion etching with 20 eV /sup 37/Cl was used to clean Si surfaces in-situ at 625 and 870/sup 0/K. IBD epitaxy was then observed between 625 and 870/sup 0/K with ion energies ranging from 10 to 65 eV. /sup 30/Si films on Si(100) grown at 700/sup 0/K exhibited an ion channeling minimum yield of 4.8%. The dopant species in the substrate affected the occurrence of silicon epitaxy below 870/sup 0/K. Cross-section transmission electron microscopy (TEM) showed that dislocation loops were formed within the substrate during heated deposition, at a depth larger than 40 nm below the bombarded region. A uniaxial lattice expansion normal to the surface was measured in IBD crystals by x-ray Bragg reflection profiling and ion channeling. It is concluded that epitaxial layers and heterostructures can be formed at low temperature by IBD.

  11. Characterization of single crystal films of molybdenum (011) grown by molecular beam epitaxy on sapphire (112¯0) and studied by low-energy electron microscopy

    NASA Astrophysics Data System (ADS)

    Świȩch, W.; Mundschau, M.; Flynn, C. P.

    1999-08-01

    Films of molybdenum grown on the (112¯0) plane of sapphire (Al 2O 3) are characterized using low-energy microscopy and low-energy electron diffraction. Stress fields observed on the Mo surface originate at dislocations and at miscut steps of the buried molybdenum-alumina vicinal interface. As-grown films contain small-angle grain boundaries. These are largely eliminated upon heating to 1700 K as edge dislocations that form the boundaries become extremely mobile. Edge dislocations attract and annihilate one another, and the small-angle grain boundaries disappear. Mobility of edge dislocations is correlated with rapid diffusion of carbon, which apparently pins dislocations up to temperatures that allow diffusion of carbon from dislocations into the bulk. The main contaminants of the Mo surface are carbon, oxygen and carbon monoxide. The most stable impurities are carbides that persist to 1700 K. Oxygen promotes bunching of monatomic steps into groups of two, three and four. Electron beams dissociate CO with energy less than 1 eV and deposit residues of carbon. Fairly ideal single crystal films of Mo produced by annealing exhibit monatomic surface step and terrace structure, and a minimum of dislocations. The quality of surfaces on these films exceeds that of typical single crystal bulk samples and is well suited for fundamental studies in surface science.

  12. Features of impurity photoconductivity in Si:Er/Si epitaxial diodes

    SciTech Connect

    Antonov, A. V.; Kudryavtsev, K. E. Shengurov, D. V.; Shmagin, V. B.; Krasilnik, Z. F.

    2013-11-15

    The photocurrent spectra of Si:Er/Si epitaxial diode structures are studied. It is shown that the nature of the sub-band-gap photoresponse is determined by the epitaxial growth temperature of the Si:Er layer and is not related to the composition of erbium emission centers. It is found that the absorption of light with photon energies lower than the energy-gap of silicon is determined by impurity-defect complexes that appear during the growth of the epitaxial layer and form a quasi-continuous spectrum of states in the energy gap of silicon. It is assumed that these impurity centers are not related to optically active erbium centers and are not involved in excitation-energy transfer to the rare-earth impurity.

  13. Epitaxial Cd3As2 Thin Films Synthesized by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Schumann, Timo; Goyal, Manik; Stemmer, Susanne

    Cd3As2 is a three-dimensional (3D) Dirac semimetal, i.e. it possesses Dirac cones in a 3D bulk state where the band dispersion relation is linear near the Fermi energy. Cd3As2 is has raised considerable interest due to its high electron mobilities in bulk crystals and for novel quantum phenomena, such as chiral anomalies. However, few studies have been performed using thin films of Cd3As2. In this presentation, we report on the synthesis of Cd3As2 thin films by molecular beam epitaxy (MBE). Single phase, epitaxial films were grown on undoped GaSb(111)B substrates with the (112) facet of Cd3As2 parallel to the GaSb(111) surface. We report on the structural quality and orientation variants in the films. Electrical transport properties indicate electron mobilities exceeding 6000 cm2V-1s-1. We discuss the impact of the MBE growth parameters and substrate preparation on the structural and electrical properties of the films.

  14. Epitaxial growth of europium monoxide on diamond

    SciTech Connect

    Melville, A.; Heeg, T.; Mairoser, T.; Schmehl, A.; Fischer, M.; Gsell, S.; Schreck, M.; Awschalom, D. D.; Holländer, B.; Schubert, J.; Schlom, D. G.

    2013-11-25

    We report the epitaxial integration of phase-pure EuO on both single-crystal diamond and on epitaxial diamond films grown on silicon utilizing reactive molecular-beam epitaxy. The epitaxial orientation relationship is (001) EuO ‖ (001) diamond and [110] EuO ‖[100] diamond. The EuO layer is nominally unstrained and ferromagnetic with a transition temperature of 68 ± 2 K and a saturation magnetization of 5.5 ± 0.1 Bohr magnetons per europium ion on the single-crystal diamond, and a transition temperature of 67 ± 2 K and a saturation magnetization of 2.1 ± 0.1 Bohr magnetons per europium ion on the epitaxial diamond film.

  15. Laser Induced Surface Chemical Epitaxy

    NASA Astrophysics Data System (ADS)

    Stinespring, Charter D.; Freedman, Andrew

    1990-02-01

    Studies of the thermal and photon-induced surface chemistry of dimethyl cadmium (DMCd) and dimethyl tellurium (DMTe) on GaAs(100) substrates under ultrahigh vacuum conditions have been performed for substrate temperatures in the range of 123 K to 473 K. Results indicate that extremely efficient conversion of admixtures of DMTe and DMCd to CdTe can be obtained using low power (5 - 10 mJ cm-2) 193 nm laser pulses at substrate temperatures of 123 K. Subsequent annealing at 473 K produces an epitaxial film.

  16. Highly ordered growth of PTCDA on epitaxial bilayer graphene

    NASA Astrophysics Data System (ADS)

    Meissner, Matthias; Gruenewald, Marco; Sojka, Falko; Udhardt, Christian; Forker, Roman; Fritz, Torsten

    2012-11-01

    For using the unique electronic properties of graphene in future nanoelectronic devices, control of the band structure is essential. While it has been shown already in the literature that this can be achieved by the deposition of organic molecules, little attention has been paid so far to the precise structural characterization of the interface. Here, we report on the epitaxial growth of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) layers on graphene, epitaxially grown on silicon carbide (SiC). The description of low energy electron diffraction (LEED) patterns of graphene on SiC by multiscattering is revisited. By means of a home-made algorithm used to correct radial distortions of the LEED images we are able to provide precise structural data of the PTCDA layers. By that, two different point-on-line types of PTCDA could be identified, one of which has neither been reported on graphite nor on graphene before.

  17. Epitaxial growth of VO{sub 2} by periodic annealing

    SciTech Connect

    Tashman, J. W.; Paik, H.; Merz, T. A.; Lee, J. H.; Moyer, J. A.; Schiffer, P.; Misra, R.; Mundy, J. A.; Spila, T.; Schubert, J.; Muller, D. A.; Schlom, D. G.

    2014-02-10

    We report the growth of ultrathin VO{sub 2} films on rutile TiO{sub 2} (001) substrates via reactive molecular-beam epitaxy. The films were formed by the cyclical deposition of amorphous vanadium and its subsequent oxidation and transformation to VO{sub 2} via solid-phase epitaxy. Significant metal-insulator transitions were observed in films as thin as 2.3 nm, where a resistance change ΔR/R of 25 was measured. Low angle annular dark field scanning transmission electron microscopy was used in conjunction with electron energy loss spectroscopy to study the film/substrate interface and revealed the vanadium to be tetravalent and the titanium interdiffusion to be limited to 1.6 nm.

  18. Epitaxial interactions between molecular overlayers and ordered substrates

    NASA Astrophysics Data System (ADS)

    Hillier, Andrew C.; Ward, Michael D.

    1996-11-01

    A framework for evaluating the epitaxy of crystalline organic overlayers of generic symmetry on ordered substrates is described, which combines a computationally efficient analytical method for explicit determination of the type of epitaxy (i.e., commensurism, coincidence, or incommensurism) and overlayer azimuthal orientation with an analysis of the elastic properties of the overlayer and the overlayer-substrate interface. The azimuthal orientations predicted by the analytical method agree with values predicted by semiempirical potential-energy calculations and observed experimentally for previously reported organic overlayers which are demonstrated here to be coincident. Calculations based on this analytical approach are much less computationally intensive than potential-energy calculations, as the number of computational operations is independent of the overlayer size chosen for analysis. This enables analyses to be performed for the large overlayer basis sets common for molecular overlayers. Furthermore, this facilitates the analysis of coincident overlayers, for which the overlayer size needs to be large enough to establish a phasing relationship between a substrate and a large nonprimitive overlayer supercell so that the global minimum with respect to azimuthal angle can be determined. The computational efficiency of this method also enables a convenient examination of numerous possible reconstructed overlayer configurations in which the lattice parameters are bracketed around those of the native overlayer, thereby allowing examination of possible epitaxy-driven overlayer reconstructions. When combined with calculated intralayer- and overlayer-substrate elastic constants, this method provides a strategy for the design of heteroepitaxial molecular films.

  19. Stability and Rupture of Alloyed Atomic Terraces on Epitaxial Interfaces

    NASA Astrophysics Data System (ADS)

    Michailov, Michail

    The detailed knowledge of the fine atomic structure of epitaxial interface is of fundamental importance for design and fabrication of electronic devices with exotic physical properties. Recently, it has been shown that accounting for diffusion energy barriers at specific sites on the epitaxial interface (atomic terraces, steps, kinks and imperfections), allows fine tuning of the adatom thermal energy which opens up a way for specific nanoscale surface design. Hence, through simple temperature variation, the surface migration of foreign atoms and clusters leads to formation of a variety of alloyed or pure terraces, alloyed islands and alloyed atomic stripes thus forming nanoscale surface patterns. A key role in this scenario plays the density of steps and kinks at the epitaxial interface. On that physical background, in the present paper we discuss the structure, stability and rupture of alloyed terraces as a first step towards the formation of alloyed two-dimensional islands on pure, non-alloyed substrate. The atomistic simulational model reveals a temperature-dependent critical terrace width for rupture and specifies criteria for thermodynamic stability. In the case of incomplete alloying we analyze the competition and overlapping of the elastic strain fields generated by opposite terrace edges. The specific atomic ordering in alloyed islands is also discussed. The simulation results frame the limits of incomplete surface-confined intermixing and point to a path to nanoscale surface design.

  20. Expected Satiety: Application to Weight Management and Understanding Energy Selection in Humans

    PubMed Central

    Forde, Ciarán G.; Almiron-Roig, Eva; Brunstrom, Jeffrey M.

    2016-01-01

    Recent advances in the approaches used to quantify expectations of satiation and satiety have led to a better understanding of how humans select and consume food, and the associated links to energy intake regulation. When compared calorie for calorie some foods are expected to deliver several times more satiety than others, and multiple studies have demonstrated that people are able to discriminate between similar foods reliably and with considerable sensitivity. These findings have implications for the control of meal size and the design of foods that can be used to lower the energy density of diets. These methods and findings are discussed in terms of their implications for weight management. The current paper also highlights why expected satiety may also play an important role beyond energy selection, in moderating appetite sensations after a meal has been consumed, through memory for recent eating and the selection of foods across future meals. PMID:26627096

  1. Fibrous materials for selective line emission application in a thermal-electrical energy conversion system

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Adair, Peter L.; Rose, M. Frank

    1997-01-01

    Fibrous rare earth composite emitters were developed for the application of thermophotovoltaic (TPV) energy conversion to increase the energy conversion efficiency of the system. In this paper, the authors demonstrated that fibrous composite emitters, with higher selective efficiency and good mechanical properties, were fabricated using a unique material processing technology. The spectra of the emitters, as well as their mechanical properties, were investigated. Some observations in this research have indicated that by using our current technology, we are able to tailor the spectrum by designing the emitter materials. Therefore, in order to achieve high energy conversion efficiency the designed emitters can be matched to the energy bandgap of new developing photovoltaic cells.

  2. Epitaxial SrCoOx oxygen sponge

    NASA Astrophysics Data System (ADS)

    Lee, H. N.; Jeen, H.; Choi, W. S.; Biegalski, M. D.; Shin, D.; Chisholm, M. F.; Folkman, C. M.; Fong, D. D.; Freeland, J. W.; Tung, I.-C.; Ohta, H.

    2014-03-01

    Perovskite-based transition metal oxides have been actively developed as the replacements of noble metal-based electrodes in energy and environmental devices due to their high catalytic activity and ionic conductivity. However, the high thermodynamic barrier and the robust cation's oxidation state have limited the realization of fast catalysis and bulk diffusion at low temperature, which can reduce thermomechanical degradation in such devices. Here, we report a low-temperature reversible redox reaction in SrCoOx grown directly by pulsed laser epitaxy as one of two distinct crystalline phases, either the perovskite SrCoO3-δ or the brownmillerite SrCoO2.5.[2] Based on real-time temperature dependent x-ray diffraction, we found that the distinct valence state in each phase can be reversibly switched at a remarkably reduced temperature (200 ~ 300 °C) in a considerably short time (<1 min) without destroying the parent framework. Therefore, our results on low temperature reversible redox reactions provide valuable insight not only in understanding the structure-physical property relationship in multivalent oxides, but also for developing new strategies to avoid thermomechanical degradation in high temperature electrochemical devices, such as solid oxide fuel cells. The work was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  3. Proximity induced Superconductivity in Epitaxial Graphene

    NASA Astrophysics Data System (ADS)

    Natterer, Fabian D.; Ha, Jeonghoon; Baek, Hongwoo; Zhang, Duming; Cullen, William; Zhitenev, Nikolai B.; Kuk, Young; Stroscio, Joseph A.

    The intimate electrical contact of a superconductor with a normal metal leads to an exchange of carriers through their boundary. Cooper pairs leak into the normal metal via Andreev reflection and enable the normal metal to acquire superconducting-like properties. The electron-hole conversion process in graphene is prominent due to relativistic quantum mechanics governing low energy chiral carriers in a multi-valley system. In the present experiment, we reveal spatial measurements of the proximity effect in graphene from a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to the substrate to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting gap width with increasing separation from the graphene-aluminum edges. The decay length for the superconducting energy gap extends beyond 400 nm. Subtle deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers. Funding from SNSF (project 158468), NIST/CNST Grant 70NANB10H193, and KRF-2010-00349.

  4. First Attempts on Energy-selective Neutron Imaging at IBR-2

    NASA Astrophysics Data System (ADS)

    Lukin, E. V.; Kozlenko, D. P.; Kichanov, S. E.; Rutkauskas, A. V.; Bokuchava, G. D.; Savenko, B. N.

    A new neutron imaging facility has been started at the IBR-2 high flux pulsed reactor. It isattractive not only for traditional neutron imaging applications but in particular also for thedevelopment of modern energy-selective techniques using a time-of-flight methods.A short overview of the first obtained results of theenergy-selected experiments by means of time-of-flight methods realised on neutron radiography and tomography station on high-flux pulsed reactor IBR-2 are presented.

  5. Free energy calculation provides insight into the action mechanism of selective PARP-1 inhibitor.

    PubMed

    Cao, Ran

    2016-04-01

    Selective poly (ADP-ribose) polymerase (PARP)-1 inhibitor represents promising therapy against cancers with a good balance between efficacy and safety. Owing to the conserved structure between PARP-1 and PARP-2, most of the clinical and experimental drugs show equivalent inhibition against both targets. Most recently, it's disclosed a highly selective PARP-1 inhibitor (NMS-P118) with promising pharmacokinetic properties. Herein, we combined molecular simulation with free energy calculation to gain insights into the selective mechanism of NMS-P118. Our results suggest the reduction of binding affinity for PARP-2 is attributed to the unfavorable conformational change of protein, which is accompanied by a significant energy penalty. Alanine-scanning mutagenesis study further reveals the important role for a tyrosine residue of donor loop (Tyr889(PARP-1) and Tyr455(PARP-2)) in contributing to the ligand selectivity. Retrospective structural analysis indicates the ligand-induced movement of Tyr455(PARP-2) disrupts the intra-molecule hydrogen bonding network, which partially accounts for the "high-energy" protein conformation in the presence of NMS-P118. Interestingly, such effect isn't observed in other non-selective PARP inhibitors including BMN673 and A861695, which validates the computational prediction. Our work provides energetic insight into the subtle variations in the crystal structures and could facilitate rational design of new selective PARP inhibitor. PMID:26969680

  6. Integrated environmental and safety assessment of selected mechanical energy storage systems

    NASA Astrophysics Data System (ADS)

    1982-01-01

    The environmental, safety, and social impacts of two mechanical storage systems, underground pumped hydro (UPH) and compressed air energy storage (CAES) are similar to those of existing peaking power plants. These impacts, with engineering factors, form a methodology for selecting sites for these two systems. Application of this methodology to a hypothetical case indicates that, although design alternatives which mitigate adverse environmental impacts are recommended, site selection effectively limits the environmental effect of CAES or UPH plants. Public perception of CAES and UPH energy storage facilities should generally be positive, provided that those affected are informed and allowed to participate in the siting process.

  7. Final report on implementation of energy conservation practices training in selected public housing developments

    SciTech Connect

    Not Available

    1991-10-01

    This report on the implementation of energy conservation practices training in selected public housing developments represents an initiative of the Research and Education Division, Office of Minority Economic Impact, US Department of Energy. The Office of Minority Economic Impact (MI) was created by Congress in 1979, within the US Department of Energy, to afford the Secretary advice on the effect policies, regulations and other actions of DOE respecting minority participation in energy programs. The Director of MI is responsible for the conduct of ongoing research into the effects, including socio-economic and environmental, of national energy programs, policies, and regulations of the Department of minorities. Public housing in the United States is dominated by minorities, public housing is a large consumer of residential energy. Consequently, this project is a logical merging of these two factors and an attempt to somehow influence energy savings through improving public housing residents` energy-consumption practices. This final report attempts to capture the results of this current demonstration, and incorporate the historical basis for today`s results by renewing the efforts that preceded the implementation of energy conservation practices training in selected public housing developments.

  8. Final report on implementation of energy conservation practices training in selected public housing developments

    SciTech Connect

    Not Available

    1991-10-01

    This report on the implementation of energy conservation practices training in selected public housing developments represents an initiative of the Research and Education Division, Office of Minority Economic Impact, US Department of Energy. The Office of Minority Economic Impact (MI) was created by Congress in 1979, within the US Department of Energy, to afford the Secretary advice on the effect policies, regulations and other actions of DOE respecting minority participation in energy programs. The Director of MI is responsible for the conduct of ongoing research into the effects, including socio-economic and environmental, of national energy programs, policies, and regulations of the Department of minorities. Public housing in the United States is dominated by minorities, public housing is a large consumer of residential energy. Consequently, this project is a logical merging of these two factors and an attempt to somehow influence energy savings through improving public housing residents' energy-consumption practices. This final report attempts to capture the results of this current demonstration, and incorporate the historical basis for today's results by renewing the efforts that preceded the implementation of energy conservation practices training in selected public housing developments.

  9. Transport and energy selection of laser generated protons for postacceleration with a compact linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Turchetti, Giorgio; Londrillo, Pasquale; Rossi, Francesco; Giove, Dario; De Martinis, Carlo; Sumini, Marco

    2013-03-01

    Laser accelerated proton beams have a considerable potential for various applications including oncological therapy. However, the most consolidated target normal sheath acceleration regime based on irradiation of solid targets provides an exponential energy spectrum with a significant divergence. The low count number at the cutoff energy seriously limits at present its possible use. One realistic scenario for the near future is offered by hybrid schemes. The use of transport lines for collimation and energy selection has been considered. We present here a scheme based on a high field pulsed solenoid and collimators which allows one to select a beam suitable for injection at 30 MeV into a compact linac in order to double its energy while preserving a significant intensity. The results are based on a fully 3D simulation starting from laser acceleration.

  10. Select Results from the Energy Assessor Experiment in the 2012 Commercial Buildings Energy Consumption Survey

    EIA Publications

    2015-01-01

    As part of an effort to make EIA’s energy consumption surveys as accurate and efficient as possible, EIA invited the National Research Council (NRC) to review the Commercial Buildings Energy Consumption Survey (CBECS) data-gathering process and make recommendations for improvements. The NRC suggested sending professional energy assessors to some sites and comparing the data obtained from the survey to the data collected by the assessors. Results from the energy assessment data collection have largely confirmed the quality of data gathered by CBECS interviewers.

  11. Dual-energy X-ray photon counting using an LSO-MPPC spectrometer and an energy-selecting device

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Oda, Yasuyuki; Yamaguchi, Satoshi; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Watanabe, Manabu; Kusachi, Shinya

    2015-08-01

    Dual-energy photon counting was performed using an energy-selecting device (ESD) and a detector, consisting of a Lu2(SiO4)O [LSO)] crystal and a multipixel photon counter (MPPC). The ESD is used to determine a low-energychannel range for CT and consists of two comparators and a microcomputer (MC). The two threshold channels in proportion to energies are determined using low and high-energy comparators, respectively. The MC in the ESD produces a single logical pulse when only a logical pulse from the low-energy comparator is input to the MC. To determine the high-energy-channel range for CT, logical pulses from the high-energy comparator are input to the MC outside the ESD. Logical pulses from the two MCs are input to frequency-voltage converters (FVCs) to convert count rates into voltages. The output voltages from the two FVCs are sent to a personal computer through an analog-digital converter to reconstruct tomograms. Dual-energy computed tomography was accomplished at a tube voltage of 70 kV and a maximum count rate of 14.3 kilocounts per second, and two-different-energy tomograms were obtained simultaneously.

  12. Self-doping effects in epitaxially grown graphene

    SciTech Connect

    Siegel, David A.; Zhou, Shuyun Y.; El Gabaly, Farid; Fedorov, Alexei V.; Schmid, Andreas K.; Lanzara, Alessandra

    2008-09-19

    Self-doping in graphene has been studied by examining single-layer epitaxially grown graphene samples with differing characteristic lateral terrace widths. Low energy electron microscopy was used to gain real-space information about the graphene surface morphology, which was compared with data obtained by angle-resolved photoemission spectroscopy to study the effect of the monolayer graphene terrace width on the low energy dispersions. By altering the graphene terrace width, we report significant changes in the electronic structure and quasiparticle relaxation time of the material, in addition to a terrace width-dependent doping effect.

  13. Energy Opinions of Southern, Northern and Academically Prepared Energy Students in Selected Secondary Schools.

    ERIC Educational Resources Information Center

    Karst, Ralph R.

    1985-01-01

    Examines the effects of sex, grade level, region, and academic preparation of secondary school students on energy opinions. Assesses the responses of students on energy items related to the government, cars, and conservation. Results reveal significant regional and sex differences. (ML)

  14. Dislocation reduction of InAs nanofins prepared on Si substrate using metal-organic vapor-phase epitaxy

    PubMed Central

    2012-01-01

    InAs nanofins were prepared on a nanopatterned Si (001) substrate by metal-organic vapor-phase epitaxy. The threading dislocations, stacked on the lowest-energy-facet plane {111}, move along the SiO2 walls, resulting in a dislocation reduction, as confirmed by transmission electron microscopy. The dislocations were trapped within a thin InAs epilayer. The obtained 90-nm-wide InAs nanofins with an almost etching-pit-free surface do not require complex intermediate-layer epitaxial growth processes and large thickness typically required for conventional epitaxial growth. PMID:23176442

  15. Current and future industrial energy service characterizations. Volume III. Energy data on 15 selected states' manufacturing subsector

    SciTech Connect

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-11-01

    An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchased by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)

  16. Selected bibliography: cost and energy savings of conservation and renewable energy technologies

    SciTech Connect

    1980-05-01

    This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

  17. Epitaxial 3-5 semiconductors for integrated electro-optics

    NASA Astrophysics Data System (ADS)

    Anderson, Wayne A.; Beachley, O. T., Jr.; Kwok, H. S.; Liu, P. L.; Wie, C. R.

    1988-06-01

    Research has been conducted on the synthesis and evaluation of new organometallics (OM), growth of epitaxial layers by OMCVD and laser chemical vapor deposition (LCVD), laser interaction with materials, structural and chemical evaluation of epitaxial layers, electrical evaluation of epitaxial layers and radiation effects in semiconductors and insulators. New OM precursors were developed and used in OMCVD. New OM sources are considered for lower toxicity and more efficient reaction. For the first time, InSb was grown in CdTe by OMCVD. A quadrupole mass analyzer and low temperature luminescence were installed for in situ diagnostics. Laser interaction studies reveal the importance of tunneling ionization for carrier generation in low bandgap materials. Ion emission has been measured from a metal surface due to laser irradiation. Ions were observed at low laser fluence and at a frequency corresponding to an energy less than the material work function. Rocking curve studies of MBE-grown strained GaInAs on GaAs is the most reliable technique for strains less than 0.3 percent. LO-TO splitting in ion damaged GaAs has been explained by the effective ionic charge of the ion beam-induced point defects. Deep level transient spectroscopy studies of irradiated p-InP has revealed trap levels and annealing effects of importance in extraterrestrial applications. A Yb/p-InP device has shown good linearity and improved stability as a temperature sensor from 100 to 400K.

  18. Compliant substrate epitaxy: Au on MoS2

    NASA Astrophysics Data System (ADS)

    Zhou, Yuzhi; Kiriya, Daisuke; Haller, E. E.; Ager, Joel W.; Javey, Ali; Chrzan, D. C.

    2016-02-01

    A theory for the epitaxial growth of Au on MoS2 is developed and analyzed. The theory combines continuum linear elasticity theory with density functional theory to analyze epitaxial growth in this system. It is demonstrated that if one accounts for interfacial energies and strains, the presence of misfit dislocations, and the compliance of the MoS2 substrate, the experimentally observed growth orientation is favored despite the fact that it represents a larger elastic mismatch than two competing structures. The stability of the experimentally preferred orientation is attributed to the formation of a large number of strong Au-S bonds, and it is noted that this strong bond may serve as a means to exfoliate and transfer large single layers sheets of MoS2, as well as to engineer strain within single layers of MoS2. The potential for using a van der Waals-bonded layered material as a compliant substrate for applications in 2D electronic devices and epitaxial thin film growth is discussed.

  19. Noise assisted excitation energy transfer in a linear model of a selectivity filter backbone strand.

    PubMed

    Bassereh, Hassan; Salari, Vahid; Shahbazi, Farhad

    2015-07-15

    In this paper, we investigate the effect of noise and disorder on the efficiency of excitation energy transfer (EET) in a N = 5 sites linear chain with 'static' dipole-dipole couplings. In fact, here, the disordered chain is a toy model for one strand of the selectivity filter backbone in ion channels. It has recently been discussed that the presence of quantum coherence in the selectivity filter is possible and can play a role in mediating ion-conduction and ion-selectivity in the selectivity filter. The question is 'how a quantum coherence can be effective in such structures while the environment of the channel is dephasing (i.e. noisy)?' Basically, we expect that the presence of the noise should have a destructive effect in the quantum transport. In fact, we show that such expectation is valid for ordered chains. However, our results indicate that introducing the dephasing in the disordered chains leads to the weakening of the localization effects, arising from the multiple back-scatterings due to the randomness, and then increases the efficiency of quantum energy transfer. Thus, the presence of noise is crucial for the enhancement of EET efficiency in disordered chains. We also show that the contribution of both classical and quantum mechanical effects are required to improve the speed of energy transfer along the chain. Our analysis may help for better understanding of fast and efficient functioning of the selectivity filters in ion channels. PMID:26061758

  20. Angular selective window systems: Assessment of technical potential for energy savings

    SciTech Connect

    Fernandes, Luis L.; Lee, Eleanor S.; McNeil, Andrew; Jonsson, Jacob C.; Nouidui, Thierry; Pang, Xiufeng; Hoffmann, Sabine

    2014-10-16

    Static angular selective shading systems block direct sunlight and admit daylight within a specific range of incident solar angles. The objective of this study is to quantify their potential to reduce energy use and peak demand in commercial buildings using state-of-the art whole-building computer simulation software that allows accurate modeling of the behavior of optically-complex fenestration systems such as angular selective systems. Three commercial systems were evaluated: a micro-perforated screen, a tubular shading structure, and an expanded metal mesh. This evaluation was performed through computer simulation for multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAE 90.1-2004 and 2010) and lighting control configurations (with and without). The modeling of the optical complexity of the systems took advantage of the development of state-of-the-art versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant reductions in perimeter zone energy use; the best system reached 28% and 47% savings, respectively without and with daylighting controls (ASHRAE 90.1-2004, south facade, Chicago,WWR=0.45). As a result, angular selectivity and thermal conductance of the angle-selective layer, as well as spectral selectivity of low-emissivity coatings, were identified as factors with significant impact on performance.

  1. Angular selective window systems: Assessment of technical potential for energy savings

    DOE PAGESBeta

    Fernandes, Luis L.; Lee, Eleanor S.; McNeil, Andrew; Jonsson, Jacob C.; Nouidui, Thierry; Pang, Xiufeng; Hoffmann, Sabine

    2014-10-16

    Static angular selective shading systems block direct sunlight and admit daylight within a specific range of incident solar angles. The objective of this study is to quantify their potential to reduce energy use and peak demand in commercial buildings using state-of-the art whole-building computer simulation software that allows accurate modeling of the behavior of optically-complex fenestration systems such as angular selective systems. Three commercial systems were evaluated: a micro-perforated screen, a tubular shading structure, and an expanded metal mesh. This evaluation was performed through computer simulation for multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAEmore » 90.1-2004 and 2010) and lighting control configurations (with and without). The modeling of the optical complexity of the systems took advantage of the development of state-of-the-art versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant reductions in perimeter zone energy use; the best system reached 28% and 47% savings, respectively without and with daylighting controls (ASHRAE 90.1-2004, south facade, Chicago,WWR=0.45). As a result, angular selectivity and thermal conductance of the angle-selective layer, as well as spectral selectivity of low-emissivity coatings, were identified as factors with significant impact on performance.« less

  2. Ion implanted epitaxially grown ZnSe

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The epitaxial growth of ZnSe on (100) Ge using the close-spaced transport process is described. Substrate temperature of 575 C and source temperatures of 675 C yield 10 micron, single crystal layers in 10 hours. The Ge substrates provides a nonreplenishable chemical transport agent and the epitaxial layer thickness is limited to approximately 10 microns. Grown epitaxial layers show excellent photoluminescence structure at 77 K. Grown layers exhibit high resistivity, and annealing in Zn vapor at 575 C reduces the resistivity to 10-100 ohms-cm. Zinc vapor annealing quenches the visible photoluminescence.

  3. Epitaxial silicon devices for dosimetry applications

    SciTech Connect

    Bruzzi, M.; Bucciolini, M.; Casati, M.; Menichelli, D.; Talamonti, C.; Piemonte, C.; Svensson, B. G.

    2007-04-23

    A straightforward improvement of the efficiency and long term stability of silicon dosimeters has been obtained with a n{sup +}-p junction surrounded by a guard-ring structure implanted on an epitaxial p-type Si layer grown on a Czochralski substrate. The sensitivity of devices made on 50-{mu}m-thick epitaxial Si degrades by only 7% after an irradiation with 6 MeV electrons up to 1.5 kGy, and shows no significant further decay up to 10 kGy. These results prove the enhanced radiation tolerance and stability of epitaxial diodes as compared to present state-of-the-art Si devices.

  4. Electroless epitaxial etching for semiconductor applications

    DOEpatents

    McCarthy, Anthony M.

    2002-01-01

    A method for fabricating thin-film single-crystal silicon on insulator substrates using electroless etching for achieving efficient etch stopping on epitaxial silicon substrates. Microelectric circuits and devices are prepared on epitaxial silicon wafers in a standard fabrication facility. The wafers are bonded to a holding substrate. The silicon bulk is removed using electroless etching leaving the circuit contained within the epitaxial layer remaining on the holding substrate. A photolithographic operation is then performed to define streets and wire bond pad areas for electrical access to the circuit.

  5. High throughput vacuum chemical epitaxy

    NASA Astrophysics Data System (ADS)

    Fraas, L. M.; Malocsay, E.; Sundaram, V.; Baird, R. W.; Mao, B. Y.; Lee, G. Y.

    1990-10-01

    We have developed a vacuum chemical epitaxy (VCE) reactor which avoids the use of arsine and allows multiple wafers to be coated at one time. Our vacuum chemical epitaxy reactor closely resembles a molecular beam epitaxy system in that wafers are loaded into a stainless steel vacuum chamber through a load chamber. Also as in MBE, arsenic vapors are supplied as reactant by heating solid arsenic sources thereby avoiding the use of arsine. However, in our VCE reactor, a large number of wafers are coated at one time in a vacuum system by the substitution of Group III alkyl sources for the elemental metal sources traditionally used in MBE. Higher wafer throughput results because in VCE, the metal-alkyl sources for Ga, Al, and dopants can be mixed at room temperature and distributed uniformly though a large area injector to multiple substrates as a homogeneous array of mixed element molecular beams. The VCE reactor that we have built and that we shall describe here uniformly deposits films on 7 inch diameter substrate platters. Each platter contains seven two inch or three 3 inch diameter wafers. The load chamber contains up to nine platters. The vacuum chamber is equipped with two VCE growth zones and two arsenic ovens, one per growth zone. Finally, each oven has a 1 kg arsenic capacity. As of this writing, mirror smooth GaAs films have been grown at up to 4 μm/h growth rate on multiple wafers with good thickness uniformity. The background doping is p-type with a typical hole concentration and mobility of 1 × 10 16/cm 3 and 350 cm 2/V·s. This background doping level is low enough for the fabrication of MESFETs, solar cells, and photocathodes as well as other types of devices. We have fabricated MESFET devices using VCE-grown epi wafers with peak extrinsic transconductance as high as 210 mS/mm for a threshold voltage of - 3 V and a 0.6 μm gate length. We have also recently grown AlGaAs epi layers with up to 80% aluminum using TEAl as the aluminum alkyl source. The Al

  6. Selected Resource Materials for Developing Energy Conservation Programs in the Government Sector.

    ERIC Educational Resources Information Center

    Lengyel, Dorothy L.; And Others

    This annotated bibliography is a selected listing of reference materials for use by local government officials in the development of energy conservation programs. The references are listed under the agency through which they are available. Agency listings are alphabetized and include complete mailing addresses. There are 46 agency listings, many…

  7. THE IMPACT OF COVERT MANIPULATION OF MACRONUTRIENT INTAKE ON ENERGY INTAKE (EI) AND MACRONUTRIENT SELECTION.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of covert manipulation of macronutrient intake on energy intake (EI) and macronutrient selection. William Rumpler, David Paul, Donna Rhodes. Beltsville Human Nutrition Research Center, Beltsville, MD 20705 Twelve men were fed a defined beverage continuously for two 8-week periods but ...

  8. Selective Energy Feasibility Study -- Richmond College, City University of New York

    ERIC Educational Resources Information Center

    Consulting Engineer, 1974

    1974-01-01

    A study of the presently available data on magnitude, duration, and coincidence of electrical demands determined that onsite electrical power generation in the form of a selective energy system should be incorporated within the central utilities plant projected for the Richmond College Campus of the City University of New York (CUNY). (Author/MLF)

  9. CPAC: Energy-Efficient Data Collection through Adaptive Selection of Compression Algorithms for Sensor Networks

    PubMed Central

    Lee, HyungJune; Kim, HyunSeok; Chang, Ik Joon

    2014-01-01

    We propose a technique to optimize the energy efficiency of data collection in sensor networks by exploiting a selective data compression. To achieve such an aim, we need to make optimal decisions regarding two aspects: (1) which sensor nodes should execute compression; and (2) which compression algorithm should be used by the selected sensor nodes. We formulate this problem into binary integer programs, which provide an energy-optimal solution under the given latency constraint. Our simulation results show that the optimization algorithm significantly reduces the overall network-wide energy consumption for data collection. In the environment having a stationary sink from stationary sensor nodes, the optimized data collection shows 47% energy savings compared to the state-of-the-art collection protocol (CTP). More importantly, we demonstrate that our optimized data collection provides the best performance in an intermittent network under high interference. In such networks, we found that the selective compression for frequent packet retransmissions saves up to 55% energy compared to the best known protocol. PMID:24721763

  10. Evaluation and Selection of Renewable Energy Technologies for Highway Maintenance Facilities

    NASA Astrophysics Data System (ADS)

    Andrews, Taylor

    The interest in renewable energy has been increasing in recent years as attempts to reduce energy costs as well the consumption of fossil fuels are becoming more common. Companies and organizations are recognizing the increasing reliance on limited fossil fuels' resources, and as competition and costs for these resources grow, alternative solutions are becoming more appealing. Many federally run buildings and associations also have the added pressure of meeting the mandates of federal energy policies that dictate specific savings or reductions. Federal highway maintenance facilities run by the Department of Transportation fall into this category. To help meet energy saving goals, an investigation into potential renewable energy technologies was completed for the Ohio Department of Transportation. This research examined several types of renewable energy technologies and the major factors that affect their performance and evaluated their potential for implementation at highway maintenance facilities. Facilities energy usage data were provided, and a facility survey and site visits were completed to enhance the evaluation of technologies and the suitability for specific projects. Findings and technology recommendations were presented in the form of selection matrices, which were designed to help make selections in future projects. The benefits of utilization of other tools such as analysis software and life cycle assessments were also highlighted. These selection tools were designed to be helpful guides when beginning the pursuit of a renewable energy technology for highway maintenance facilities, and can be applied to other similar building types and projects. This document further discusses the research strategies and findings as well as the recommendations that were made to the personnel overseeing Ohio's highway maintenance facilities.

  11. Depth-selective X-ray absorption spectroscopy by detection of energy-loss Auger electrons

    NASA Astrophysics Data System (ADS)

    Isomura, Noritake; Soejima, Narumasa; Iwasaki, Shiro; Nomoto, Toyokazu; Murai, Takaaki; Kimoto, Yasuji

    2015-11-01

    A unique X-ray absorption spectroscopy (XAS) method is proposed for depth profiling of chemical states in material surfaces. Partial electron yield mode detecting energy-loss Auger electrons, called the inelastic electron yield (IEY) mode, enables a variation in the probe depth. As an example, Si K-edge XAS spectra for a well-defined multilayer sample (Si3N4/SiO2/Si) have been investigated using this method at various kinetic energies. We found that the peaks assigned to the layers from the top layer to the substrate appeared in the spectra in the order of increasing energy loss relative to the Auger electrons. Thus, the probe depth can be changed by the selection of the kinetic energy of the energy loss electrons in IEY-XAS.

  12. Nanoengineering of Ruddlesden-Popper phases using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Haeni, Jeffrey Hewlett

    Epitaxial films including superlattices of the A n+1BnO3 n+1 Ruddlesden-Popper homologous series with A=Sr and Ba and B=Ti and Ru have been grown by reactive molecular beam epitaxy (MBE) on (LaAlO3)0.3--(SrAl0.5Ta 0.5O3)0.7 (LSAT), SrTiO3, DyScO 3 and Si substrates. The strict composition control necessary for the synthesis of these phases was achieved through the use of reflection high-energy electron diffraction (RHEED) intensity oscillations. The first five members of the Srn+1 TinO3n+1 and the Sr n+1RunO3 n+1 Ruddlesden-Popper homologous series, i.e., Sr 2TiO4, Sr3Ti2O7, Sr 4Ti3O10, Sr5Ti4O13 , and Sr6Ti5O16, and Sr2RuO 4, Sr3Ru2O7, Sr4Ru 3O10, Sr5Ru4O13, and Sr 6Ru5O16, respectively, were grown with layer-by-layer deposition. Dielectric measurements indicate that the dielectric constant tensor coefficient epsilon33 of the Srn +1TinO3n +1 series increases from a minimum of 44 +/- 4 in the n = 1 (Sr2TiO4) film to a maximum of 263 +/- 2 in the n = infinity (SrTiO3) film. XPS measurements on Sr2TiO4/SrTiO3 heterostructures indicate a type II interface between the two materials, with a valence band offset of -0.40 +/- 0.1 eV, and a conduction band offset of -0.2 +/- 0.1 eV. Epitaxial SrTiO3 thin films grown on DyScO3 and LSAT substrates show dramatically different dielectric properties, as measured with interdigitated electrodes. The film on DyScO3 is under biaxial tensile strain and shows significant room temperature tunability and a sharp Curie-Weiss peak at 293 K. Under biaxial compressive strain, the SrTiO 3 exhibits negligible room temperature tunability. Epitaxial SrTiO3/BaTiO3 short period superlattices were grown with nearly atomically-abrupt interfaces that are maintained even after annealing to high temperature. In addition, cross-sectional TEM reveals that all superlattice periods grown are coherently strained to the underlying (001) SrTiO3 and (001) LSAT substrates. Epitaxial SrRuO3 layers were grown on Si (100) on which a thin epitaxial (Ba,Sr)O/SrSi2

  13. Amorphous/epitaxial superlattice for thermoelectric application

    NASA Astrophysics Data System (ADS)

    Ishida, Akihiro; Thao, Hoang Thi Xuan; Shibata, Mamoru; Nakashima, Seisuke; Tatsuoka, Hirokazu; Yamamoto, Hidenari; Kinoshita, Yohei; Ishikiriyama, Mamoru; Nakamura, Yoshiaki

    2016-08-01

    An amorphous/epitaxial superlattice system is proposed for application to thermoelectric devices, and the superlattice based on a PbGeTeS system was prepared by the alternate deposition of PbS and GeTe using a hot wall epitaxy technique. The structure was analyzed by high-resolution transmission electron microscopy (HRTEM) and X-ray analysis, and it was found that the superlattice consists of an epitaxial PbTe-based layer and a GeS-based amorphous layer by the reconstruction of the constituents. A reduction in thermal conductivity due to the amorphous/epitaxial system was confirmed by a 2ω method. Electrical and thermoelectric properties were measured for the samples.

  14. Epitaxial growth of silicon for layer transfer

    SciTech Connect

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  15. Crystallinity improvements of Ge waveguides fabricated by epitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Oda, Katsuya; Okumura, Tadashi; Kasai, Junichi; Kako, Satoshi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-04-01

    Ge waveguides (WGs) were successfully fabricated on an SiO2 layer by combining epitaxial lateral overgrowth, chemical mechanical polishing (CMP), and reactive ion etching (RIE) of a Ge layer selectively grown on SiO2 patterns using low-pressure chemical vapor deposition. Selectivity was promoted by increasing the growth temperature; the length of the epitaxial lateral overgrown Ge layer reached 5 µm on the SiO2 layer under conditions of optimal selective growth at a temperature of 750 °C. The Ge layers were planarized using CMP down to a thickness of 1 µm, and then Ge WGs as active regions for light emitting devices were formed by using RIE on the planarized Ge layers. After defective regions around the Ge/Si interface were removed, 4-times-higher photoluminescence was obtained from the Ge WGs compared with one that contained the Ge/Si interface. These results indicate that this combined technique efficiently improved the performance of Ge light-emitting devices.

  16. Epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin-film epitaxial growth. The unique LEO space environment is expected to yield 10-ftorr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume (about 100 cu m) without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and throughput of epitaxially grown materials, including semiconductors, magnetic materials, and thin-film high-temperature superconductors.

  17. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  18. Silicon Holder For Molecular-Beam Epitaxy

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.

    1993-01-01

    Simple assembly of silicon wafers holds silicon-based charge-coupled device (CCD) during postprocessing in which silicon deposited by molecular-beam epitaxy. Attains temperatures similar to CCD, so hotspots suppressed. Coefficients of thermal expansion of holder and CCD equal, so thermal stresses caused by differential thermal expansion and contraction do not develop. Holder readily fabricated, by standard silicon processing techniques, to accommodate various CCD geometries. Silicon does not contaminate CCD or molecular-beam-epitaxy vacuum chamber.

  19. Optimal energy window selection of a CZT-based small-animal SPECT for quantitative accuracy

    NASA Astrophysics Data System (ADS)

    Park, Su-Jin; Yu, A. Ram; Choi, Yun Young; Kim, Kyeong Min; Kim, Hee-Joung

    2015-05-01

    Cadmium zinc telluride (CZT)-based small-animal single-photon emission computed tomography (SPECT) has desirable characteristics such as superior energy resolution, but data acquisition for SPECT imaging has been widely performed with a conventional energy window. The aim of this study was to determine the optimal energy window settings for technetium-99 m (99mTc) and thallium-201 (201Tl), the most commonly used isotopes in SPECT imaging, using CZT-based small-animal SPECT for quantitative accuracy. We experimentally investigated quantitative measurements with respect to primary count rate, contrast-to-noise ratio (CNR), and scatter fraction (SF) within various energy window settings using Triumph X-SPECT. The two ways of energy window settings were considered: an on-peak window and an off-peak window. In the on-peak window setting, energy centers were set on the photopeaks. In the off-peak window setting, the ratios of energy differences between the photopeak from the lower- and higher-threshold varied from 4:6 to 3:7. In addition, the energy-window width for 99mTc varied from 5% to 20%, and that for 201Tl varied from 10% to 30%. The results of this study enabled us to determine the optimal energy windows for each isotope in terms of primary count rate, CNR, and SF. We selected the optimal energy window that increases the primary count rate and CNR while decreasing SF. For 99mTc SPECT imaging, the energy window of 138-145 keV with a 5% width and off-peak ratio of 3:7 was determined to be the optimal energy window. For 201Tl SPECT imaging, the energy window of 64-85 keV with a 30% width and off-peak ratio of 3:7 was selected as the optimal energy window. Our results demonstrated that the proper energy window should be carefully chosen based on quantitative measurements in order to take advantage of desirable characteristics of CZT-based small-animal SPECT. These results provided valuable reference information for the establishment of new protocol for CZT

  20. Fuzzy C-Means Clustering and Energy Efficient Cluster Head Selection for Cooperative Sensor Network.

    PubMed

    Bhatti, Dost Muhammad Saqib; Saeed, Nasir; Nam, Haewoon

    2016-01-01

    We propose a novel cluster based cooperative spectrum sensing algorithm to save the wastage of energy, in which clusters are formed using fuzzy c-means (FCM) clustering and a cluster head (CH) is selected based on a sensor's location within each cluster, its location with respect to fusion center (FC), its signal-to-noise ratio (SNR) and its residual energy. The sensing information of a single sensor is not reliable enough due to shadowing and fading. To overcome these issues, cooperative spectrum sensing schemes were proposed to take advantage of spatial diversity. For cooperative spectrum sensing, all sensors sense the spectrum and report the sensed energy to FC for the final decision. However, it increases the energy consumption of the network when a large number of sensors need to cooperate; in addition to that, the efficiency of the network is also reduced. The proposed algorithm makes the cluster and selects the CHs such that very little amount of network energy is consumed and the highest efficiency of the network is achieved. Using the proposed algorithm maximum probability of detection under an imperfect channel is accomplished with minimum energy consumption as compared to conventional clustering schemes. PMID:27618061

  1. Linking habitat selection to fitness-related traits in herbivores: the role of the energy landscape.

    PubMed

    Long, Ryan A; Bowyer, R T; Porter, Warren P; Mathewson, Paul; Monteith, Kevin L; Findholt, Scott L; Dick, Brian L; Kie, John G

    2016-07-01

    Animals may partially overcome environmental constraints on fitness by behaviorally adjusting their exposure to costs and supplies of energy. Few studies, however, have linked spatiotemporal variation in the energy landscape to behaviorally mediated measures of performance that ostensibly influence individual fitness. We hypothesized that strength of selection by North American elk (Cervus elaphus) for areas that reduced costs of thermoregulation and activity, and increased access to high-quality forage, would influence four energetically mediated traits related to fitness: birth mass of young, nutritional condition of adult females at the onset of winter, change in nutritional condition of females between spring and winter, and neonatal survival. We used a biophysical model to map spatiotemporally explicit costs of thermoregulation and activity experienced by elk in a heterogeneous landscape. We then combined model predictions with data on forage characteristics, animal locations, nutritional condition, and mass and survival of young to evaluate behaviorally mediated effects of the energy landscape on fitness-related traits. During spring, when high-quality forage was abundant, female elk that consistently selected low-cost areas before parturition gave birth to larger young than less-selective individuals, and birth mass had a strong, positive influence on probability of survival. As forage quality declined during autumn, however, lactating females that consistently selected the highest quality forage available accrued more fat and entered winter in better condition than less-selective individuals. Results of our study highlight the importance of understanding the dynamic nature of energy landscapes experienced by free-ranging animals. PMID:27003702

  2. Energy and Site Selectivity in O-Atom Photodesorption from Nanostructured MgO

    SciTech Connect

    Beck, Kenneth M.; Joly, Alan G.; Diwald, Oliver E.; Stankic, Slavica; Trevisanutto, P. E.; Sushko, Petr V.; Shluger, Alexander L.; Hess, Wayne P.

    2008-06-01

    Electronic excitation of wide gap ionic solids can induce desorption of neutral atoms with distinct hyperthermal and thermal kinetic energy distributions. Hyperthermal atomic desorption results from electronic surface excitation while thermal desorption is initiated primarily by bulk excitation. Calculations indicate that surface-localized transitions can be excited independently from bulk transitions using selected photon energies. The photon energy required to excite specific surface sites depends upon the site coordination with successively lower energies required to excite terrace, step, and corner sites. Here, we excite low-coordinated surface sites of nanostructured MgO samples using 4.7 eV UV laser pulses and observe dominant hyperthermal O-atom emission. We then selectively excite bulk sites of nanostructured MgO, using a 7.9 eV laser, and observe dominant thermal O-atom desorption. These results are analyzed in terms of laser desorption models developed previously for alkali halide crystals. We propose a multi-step mechanism for hyperthermal O-atom desorption, under surface selective excitation, based on hole trapping at 3C (corner) O-atom sites followed by exciton decomposition. The proposed “hole plus exciton” model has similarities to the surface exciton desorption model, established for alkali halides, but is more complex and requires more steps. Nonetheless, the principle of site-specific photoreaction, established for alkali halide crystals, is clearly extendable to a prototypical metal oxide.

  3. Frequency-sweeping: A new technique for energy-selective transport

    SciTech Connect

    Mynick, H.E.; Pomphrey, N.

    1994-02-01

    A new method is described for inducing energy-selective transport by `sweeping` the frequency of applied low-n magnetic perturbations. The mechanism, formally analogous to the `rising buckets` concept in accelerator physics, can move particles with a selected velocity in a nondiffusive fashion from one specified radius to another. The technique is considered principally as a means for removal of Helium ash. Other likely applications are as a method for burn control, profile control, as a diagnostic, and perhaps as a nonstochastic means of effecting the direct coupling of alpha power recently discussed by Fisch and Rax.

  4. The LILIA experiment: Energy selection and post-acceleration of laser generated protons

    NASA Astrophysics Data System (ADS)

    Turchetti, Giorgio; Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Sumini, Marco; Giove, Dario; De Martinis, Carlo

    2012-12-01

    The LILIA experiment is planned at the SPARCLAB facility of the Frascati INFN laboratories. We have simulated the laser acceleration of protons, the transport and energy selection with collimators and a pulsed solenoid and the post-acceleration with a compact high field linac. For the highest achievable intensity corresponding to a = 30 over 108 protons at 30 MeV with a 3% spread are selected, and at least107 protons are post-accelerated up to 60 MeV. If a 10 Hz repetition rated can be achieved the delivered dose would be suitable for the treatment of small superficial tumors.

  5. The LILIA experiment: Energy selection and post-acceleration of laser generated protons

    SciTech Connect

    Turchetti, Giorgio; Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Sumini, Marco; Giove, Dario; De Martinis, Carlo

    2012-12-21

    The LILIA experiment is planned at the SPARCLAB facility of the Frascati INFN laboratories. We have simulated the laser acceleration of protons, the transport and energy selection with collimators and a pulsed solenoid and the post-acceleration with a compact high field linac. For the highest achievable intensity corresponding to a= 30 over 10{sup 8} protons at 30 MeV with a 3% spread are selected, and at least10{sup 7} protons are post-accelerated up to 60 MeV. If a 10 Hz repetition rated can be achieved the delivered dose would be suitable for the treatment of small superficial tumors.

  6. ENERGY: Selected Resource Materials for Developing Energy Education/Conservation Programs. Revised Edition.

    ERIC Educational Resources Information Center

    Wert, Jonathan M.; Worthington, Barry K.

    This annotated bibliography presents resource materials for energy education programs. The materials are listed by the agency from which they are available. The agencies are alphabetized and, for each agency, a mailing address is given. Fifty given agencies are included, many of which have several references listed under them. For each reference,…

  7. Magnetic anisotropy of strained epitaxial manganite films

    SciTech Connect

    Demidov, V. V. Borisenko, I. V.; Klimov, A. A.; Ovsyannikov, G. A.; Petrzhik, A. M.; Nikitov, S. A.

    2011-05-15

    The in-plane magnetic anisotropy of epitaxial La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) films is studied at room temperature by the following three independent techniques: magnetooptical Kerr effect, ferromagnetic resonance at a frequency of 9.61 GHz, and recording of absorption spectra of electromagnetic radiation at a frequency of 290.6 MHz. The films are deposited onto NdGaO{sub 3} (NGO) substrates in which the (110)NGO plane is tilted at an angle of 0-25.7 Degree-Sign to the substrate plane. The uniaxial magnetic anisotropy induced by the strain of the film is found to increase with the tilt angle of the (110)NGO plane. A model is proposed to describe the change in the magnetic anisotropy energy with the tilt angle. A sharp increase in the radio-frequency absorption in a narrow angular range of a dc magnetic field near a hard magnetization axis is detected The anisotropy parameters of the LSMO films grown on (110)NGO, (001)SrTiO{sub 3}, and (001)[(LaAlO{sub 3}){sub 0.3} + (Sr{sub 2}AlTaO{sub 6}){sub 0.7}] substrates are compared.

  8. Epitaxial Cu2ZnSnS4 thin film on Si (111) 4° substrate

    NASA Astrophysics Data System (ADS)

    Song, Ning; Young, Matthew; Liu, Fangyang; Erslev, Pete; Wilson, Samual; Harvey, Steven P.; Teeter, Glenn; Huang, Yidan; Hao, Xiaojing; Green, Martin A.

    2015-06-01

    To explore the possibility of Cu2ZnSnS4 (CZTS)/Si based tandem solar cells, the heteroepitaxy of tetragonal Cu2ZnSnS4 thin films on single crystalline cubic Si (111) wafers with 4° miscut is obtained by molecular beam epitaxy. The X-ray θ-2θ scan and selected area diffraction patterns of the CZTS thin films and Si substrates, and the high resolution transmission electron microscopy image of the CZTS/Si interface region demonstrate that the CZTS thin films are epitaxially grown on the Si substrates. A CZTS/Si P-N junction is formed and shows photovoltaic responses, indicating the promising application of epitaxial CZTS thin films on Si.

  9. Near optimal energy selective x-ray imaging system performance with simple detectors

    SciTech Connect

    Alvarez, Robert E.

    2010-02-15

    Purpose: This article describes a method to achieve near optimal performance with low energy resolution detectors. Tapiovaara and Wagner [Phys. Med. Biol. 30, 519-529 (1985)] showed that an energy selective x-ray system using a broad spectrum source can produce images with a larger signal to noise ratio (SNR) than conventional systems using energy integrating or photon counting detectors. They showed that there is an upper limit to the SNR and that it can be achieved by measuring full spectrum information and then using an optimal energy dependent weighting. Methods: A performance measure is derived by applying statistical detection theory to an abstract vector space of the line integrals of the basis set coefficients of the two function approximation to the x-ray attenuation coefficient. The approach produces optimal results that utilize all the available energy dependent data. The method can be used with any energy selective detector and is applied not only to detectors using pulse height analysis (PHA) but also to a detector that simultaneously measures the total photon number and integrated energy, as discussed by Roessl et al. [Med. Phys. 34, 959-966 (2007)]. A generalization of this detector that improves the performance is introduced. A method is described to compute images with the optimal SNR using projections in a ''whitened'' vector space transformed so the noise is uncorrelated and has unit variance in both coordinates. Material canceled images with optimal SNR can also be computed by projections in this space. Results: The performance measure is validated by showing that it provides the Tapiovaara-Wagner optimal results for a detector with full energy information and also a conventional detector. The performance with different types of detectors is compared to the ideal SNR as a function of x-ray tube voltage and subject thickness. A detector that combines two bin PHA with a simultaneous measurement of integrated photon energy provides near ideal

  10. Comparative analyisis of energy consumption of selected buildings on morehead state university's main campus

    NASA Astrophysics Data System (ADS)

    Brandt, Ronald E.

    Currently there is a need for energy efficiency on the main campus of Morehead State University main campus. Evidence shows that there is room for improvement in order to lower the usage and cost efficiency at MSU. The purpose of this study is to propose, that Net Zero technology should be implemented towards the main campus of Morehead State University in the near future. The goal is to come up with a study of comparing selected current traditional buildings with the LEED buildings (Wellness Recreational Center and CHER building). To form this analysis will be applied using SPC software on Energy usage for year by year trends from 2012. In conclusion, Net-Zero construction has steadily increased since then, with the number of completed buildings more than doubling since 2008, according to the latest study. Thanks to advances in structural insulation, energy-efficient appliances, this will help the MSU campus in the near future. As for energy efficiency, to make sure we have plenty of energy in the future, it's up to all of us to use energy wisely. We must all conserve energy and use it efficiently. It's also up to those who will create the new energy technologies of the future..

  11. Chemical beam epitaxy for high efficiency photovoltaic devices

    SciTech Connect

    Bensaoula, A.; Freundlich, A.; Vilela, M. F.; Medelci, N.; Renaud, P.

    1994-09-01

    InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes recent results on PV devices and demonstrates the strength of this new technology.

  12. Chemical beam epitaxy for high efficiency photovoltaic devices

    NASA Technical Reports Server (NTRS)

    Bensaoula, A.; Freundlich, A.; Vilela, M. F.; Medelci, N.; Renaud, P.

    1994-01-01

    InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes our recent results on PV devices and demonstrates the strength of this new technology.

  13. Application configuration selection for energy-efficient execution on multicore systems

    SciTech Connect

    Wang, Shinan; Luo, Bing; Shi, Weisong; Tiwari, Devesh

    2015-09-21

    Balanced performance and energy consumption are incorporated in the design of modern computer systems. Several runtime factors, such as concurrency levels, thread mapping strategies, and dynamic voltage and frequency scaling (DVFS) should be considered in order to achieve optimal energy efficiency fora workload. Selecting appropriate run-time factors, however, is one of the most challenging tasks because the run-time factors are architecture-specific and workload-specific. And while most existing works concentrate on either static analysis of the workload or run-time prediction results, we present a hybrid two-step method that utilizes concurrency levels and DVFS settings to achieve the energy efficiency configuration for a worldoad. The experimental results based on a Xeon E5620 server with NPB and PARSEC benchmark suites show that the model is able to predict the energy efficient configuration accurately. On average, an additional 10% EDP (Energy Delay Product) saving is obtained by using run-time DVFS for the entire system. An off-line optimal solution is used to compare with the proposed scheme. Finally, the experimental results show that the average extra EDP saved by the optimal solution is within 5% on selective parallel benchmarks.

  14. Quantum mechanical resonance calculations using an energy selected basis in hyperspherical coordinates

    NASA Astrophysics Data System (ADS)

    Montgomery, Jason

    2007-12-01

    Scattering resonances play a key role in many chemical processes, including unimolecular and bimolecular reactions and photodissociation. A significant theoretical emphasis over the past several decades has been placed on accurate resonance calculations for polyatomic systems. In spite of such efforts, a quantum treatment of molecular systems which exhibit a high density of states and strong coordinate coupling near dissociation remains a formidable task. The research described herein employs improved quantum mechanical methods to calculate a representation of nuclear motion, both bound and unbound, which is used subsequently to calculate accurate resonance energies and lifetimes for two triatomic systems: the neon trimer and ozone. Specifically, theory and results are given regarding the construction of an optimal, L2 eigenbasis using techniques such as the discrete variable representation, the energy selected basis (ESB) method, and iterative diagonalization methods. A new energy selection method is also developed and implemented for the neon trimer. Subsequent resonance calculations are described which make use of the artificial boundary inhomogeneity (ABI) method, adapted to work with the above mentioned ESB and hyperspherical coordinates. The ABI method is used to calculate a set of linearly independent wavefunctions (LIWs) at a given energy for the representation of the scattering wavefunction. Resonance parameters are obtained by imposing scattering boundary conditions on a linear combination of LIWs and solving for the S-matrix, S, its energy derivative, dS/dE, and the Smith lifetime matrix, Q. When available, comparisons are made with previously reported calculations.

  15. Application configuration selection for energy-efficient execution on multicore systems

    DOE PAGESBeta

    Wang, Shinan; Luo, Bing; Shi, Weisong; Tiwari, Devesh

    2015-09-21

    Balanced performance and energy consumption are incorporated in the design of modern computer systems. Several runtime factors, such as concurrency levels, thread mapping strategies, and dynamic voltage and frequency scaling (DVFS) should be considered in order to achieve optimal energy efficiency fora workload. Selecting appropriate run-time factors, however, is one of the most challenging tasks because the run-time factors are architecture-specific and workload-specific. And while most existing works concentrate on either static analysis of the workload or run-time prediction results, we present a hybrid two-step method that utilizes concurrency levels and DVFS settings to achieve the energy efficiency configuration formore » a worldoad. The experimental results based on a Xeon E5620 server with NPB and PARSEC benchmark suites show that the model is able to predict the energy efficient configuration accurately. On average, an additional 10% EDP (Energy Delay Product) saving is obtained by using run-time DVFS for the entire system. An off-line optimal solution is used to compare with the proposed scheme. Finally, the experimental results show that the average extra EDP saved by the optimal solution is within 5% on selective parallel benchmarks.« less

  16. Selectiveness of laser processing due to energy coupling localization: case of thin film solar cell scribing

    NASA Astrophysics Data System (ADS)

    Račiukaitis, G.; Grubinskas, S.; Gečys, P.; Gedvilas, M.

    2013-07-01

    Selectiveness of the laser processing is the top-most important for applications of the processing technology in thin-film electronics, including photovoltaics. Coupling of laser energy in multilayered thin-film structures, depending on photo-physical properties of the layers and laser wavelength was investigated experimentally and theoretically. Energy coupling within thin films highly depends on the film structure. The finite element and two-temperature models were applied to simulate the energy and temperature distributions inside the stack of different layers of a thin-film solar cell during a picosecond laser irradiation. Reaction of the films to the laser irradiation was conditioned by optical properties of the layers at the wavelength of laser radiation. Simulation results are consistent with the experimental data achieved in laser scribing of copper-indium-gallium diselenide (CIGS) solar cells on a flexible polymer substrate using picosecond-pulsed lasers. Selection of the right laser wavelength (1064 nm or 1572 nm) enabled keeping the energy coupling in a well-defined volume at the interlayer interface. High absorption at inner interface of the layers triggered localized temperature increase. Transient stress caused by the rapid temperature rise facilitating peeling of the films rather than evaporation. Ultra-short pulses ensured high energy input rate into absorbing material permitting peeling of the layers with no influence on the remaining material.

  17. In situ growth of epitaxial cerium tungstate (100) thin films.

    PubMed

    Skála, Tomáš; Tsud, Nataliya; Orti, Miguel Ángel Niño; Menteş, Tevfik Onur; Locatelli, Andrea; Prince, Kevin Charles; Matolín, Vladimír

    2011-04-21

    The deposition of ceria on a preoxidized W(110) crystal at 870 K has been studied in situ by photoelectron spectroscopy and low-energy electron diffraction. Formation of an epitaxial layer of crystalline cerium tungstate Ce(6)WO(12)(100), with the metals in the Ce(3+) and W(6+) chemical states, has been observed. The interface between the tungsten substrate and the tungstate film consists of WO suboxide. At thicknesses above 0.89 nm, cerium dioxide grows on the surface of Ce(6)WO(12), favoured by the limited diffusion of tungsten from the substrate. PMID:21399780

  18. Stable Algorithms for Modeling Thin-Film Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Seyfarth, Greg; Vollmayr-Lee, Benjamin

    2013-03-01

    We search for stable time-stepping schemes for a phase-field model of thin film epitaxial growth. In particular, we consider a class of linear semi-implicit schemes which ensure the free energy decreases with time, a property called gradient stability. System dynamics slow at late times, so gradient stable schemes which allow adaptive time stepping are highly desirable. We perform a linear stability analysis and support it with numerical testing, revealing a region in parameter space of gradient stable semi-implicit schemes. Funded by NSF REU Grant #PHY-1156964.

  19. Self-assembly of Epitaxial Monolayers for Vacuum Wafer Bonding.

    NASA Astrophysics Data System (ADS)

    Altfeder, Igor; Huang, Biqin; Appelbaum, Ian; Walker, Barry

    2007-03-01

    Self-assembled epitaxial metal monolayers can be used for hetero-integration of mismatched semiconductors, leading to simultaneously low interfacial resistance and high optical transparency. Lattice-mismatched wafers of Si(100) and Si(111) were bonded at room temperature in situ after vacuum deposition of a single atomic layer of Ag on them. The interfacial resistance was measured to be 3.9x 10-4 ohm. cm^ 2 and the optical transmission of the interface at 2500 nm is approximately 98%. We discuss the important role of electron confinement in ultrathin Ag layers as a possible contributor to the bonding energy.

  20. Self-assembly of epitaxial monolayers for vacuum wafer bonding

    NASA Astrophysics Data System (ADS)

    Altfeder, Igor; Huang, Biqin; Appelbaum, Ian; Walker, B. C.

    2006-11-01

    Self-assembled epitaxial metal monolayers can be used for heterointegration of mismatched semiconductors, leading to simultaneously low interfacial resistance and high optical transparency. Lattice-mismatched wafers of Si(100) and Si(111) were bonded at room temperature in situ after vacuum deposition of a single atomic layer of Ag. The interfacial resistance was measured to be 3.9×10-4Ωcm2 and the optical transmission of the interface at 2500nm is approximately 98%. Electron confinement in ultrathin Ag layers as a possible contributor to the bonding energy.

  1. Single-Nucleus Polycrystallization in Thin Film Epitaxial Growth

    SciTech Connect

    Sadowski, J. T.; Nishikata, S.; Al-Mahboob, A.; Fujikawa, Y.; Nakajima, K.; Sakurai, T.; Sazaki, G.; Tromp, R. M.

    2007-01-26

    We have observed, by use of low-energy electron microscopy, the first direct evidence of self-driven polycrystallization evolved from a single nucleus in the case of epitaxial pentacene growth on the Si(111)-H terminated surface. In this Letter we demonstrate that such polycrystallization can develop in anisotropic systems (in terms of crystal structure and/or the intermolecular interactions) when kinetic growth conditions force the alignment of the intrinsic preferential growth directions along the density gradient of diffusing molecules. This finding gives new insight into the crystallization of complex molecular systems, elucidating the importance of nanoscale control of the growth conditions.

  2. Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.

  3. Delayed Shutters For Dual-Beam Molecular Epitaxy

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.; Liu, John L.; Hancock, Bruce

    1989-01-01

    System of shutters for dual-molecular-beam epitaxy apparatus delays start of one beam with respect to another. Used in pulsed-beam equipment for deposition of low-dislocation layers of InAs on GaAs substrates, system delays application of arsenic beam with respect to indium beam to assure proper stoichiometric proportions on newly forming InAs surface. Reflectance high-energy electron diffraction (RHEED) instrument used to monitor condition of evolving surface of deposit. RHEED signal used to time pulsing of molecular beams in way that minimizes density of defects and holds lattice constant of InAs to that of GaAs substrate.

  4. Energy-selective neutron imaging for morphological and phase analysis of iron-nickel meteorites.

    PubMed

    Peetermans, S; Grazzi, F; Salvemini, F; Lehmann, E H; Caporali, S; Pratesi, G

    2013-09-21

    We propose energy-selective neutron imaging as a new and non-destructive method to investigate rare metallic meteorites. It is based on attenuation of a neutron beam of limited spectral distribution in a sample depending on the elemental composition and crystalline structure. Radiography and tomography allow obtaining the presence, morphology and orientation information in the bulk of mineral inclusions, oxide crust and crystalline structure. Its usage in classification and meteor formation studies would be of great value. PMID:23869384

  5. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  6. Running behavior and its energy cost in mice selectively bred for high voluntary locomotor activity.

    PubMed

    Rezende, Enrico L; Gomes, Fernando R; Chappell, Mark A; Garland, Theodore

    2009-01-01

    Locomotion is central to behavior and intrinsic to many fitness-critical activities (e.g., migration, foraging), and it competes with other life-history components for energy. However, detailed analyses of how changes in locomotor activity and running behavior affect energy budgets are scarce. We quantified these effects in four replicate lines of house mice that have been selectively bred for high voluntary wheel running (S lines) and in their four nonselected control lines (C lines). We monitored wheel speeds and oxygen consumption for 24-48 h to determine daily energy expenditure (DEE), resting metabolic rate (RMR), locomotor costs, and running behavior (bout characteristics). Daily running distances increased roughly 50%-90% in S lines in response to selection. After we controlled for body mass effects, selection resulted in a 23% increase in DEE in males and a 6% increase in females. Total activity costs (DEE - RMR) accounted for 50%-60% of DEE in both S and C lines and were 29% higher in S males and 5% higher in S females compared with their C counterparts. Energetic costs of increased daily running distances differed between sexes because S females evolved higher running distances by running faster with little change in time spent running, while S males also spent 40% more time running than C males. This increase in time spent running impinged on high energy costs because the majority of running costs stemmed from "postural costs" (the difference between RMR and the zero-speed intercept of the speed vs. metabolic rate relationship). No statistical differences in these traits were detected between S and C females, suggesting that large changes in locomotor behavior do not necessarily effect overall energy budgets. Running behavior also differed between sexes: within S lines, males ran with more but shorter bouts than females. Our results indicate that selection effects on energy budgets can differ dramatically between sexes and that energetic constraints in S

  7. Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures

    SciTech Connect

    Crook, Adam M.; Nair, Hari P.; Ferrer, Domingo A.; Bank, Seth R.

    2011-08-15

    We present a growth method that overcomes the mismatch in rotational symmetry of ErAs and conventional III-V semiconductors, allowing for epitaxially integrated semimetal/semiconductor heterostructures. Transmission electron microscopy and reflection high-energy electron diffraction reveal defect-free overgrowth of ErAs layers, consisting of >2x the total amount of ErAs that can be embedded with conventional layer-by-layer growth methods. We utilize epitaxial ErAs nanoparticles, overgrown with GaAs, as a seed to grow full films of ErAs. Growth proceeds by diffusion of erbium atoms through the GaAs spacer, which remains registered to the underlying substrate, preventing planar defect formation during subsequent GaAs growth. This growth method is promising for metal/semiconductor heterostructures that serve as embedded Ohmic contacts to epitaxial layers and epitaxially integrated active plasmonic devices.

  8. Perpendicularly magnetized {tau}-MnAl (001) thin films epitaxied on GaAs

    SciTech Connect

    Nie, S. H.; Zhu, L. J.; Lu, J.; Pan, D.; Wang, H. L.; Yu, X. Z.; Xiao, J. X.; Zhao, J. H.

    2013-04-15

    Perpendicularly magnetized {tau}-MnAl films have been epitaxied on GaAs (001) by molecular-beam epitaxy. Crystalline quality and magnetic properties of the samples were strongly dependent on growth temperature. The highest coercivity of 10.7 kOe, saturation magnetization of 361.4 emu/cm{sup 3}, perpendicular magnetic anisotropy constant of 13.65 Merg/cm{sup 3}, and magnetic energy product of 4.44 MGOe were achieved. These tunable magnetic properties make MnAl films valuable as excellent and cost-effective alternative for not only high density perpendicular magnetic recording storage and spintronics devices but also permanent magnets.

  9. Electronic property of Na-doped epitaxial graphenes on SiC

    NASA Astrophysics Data System (ADS)

    Choi, Seon-Myeong; Jhi, Seung-Hoon

    2009-04-01

    The electronic property of epitaxial graphenes with Na adsorption or intercalation is studied with the use of pseudopotential density functional method. It is found that the charge transfer and the Na binding energy show strong coverage dependence. Calculated energetics shows that Na prefers the intercalation between the buffer and top graphene layers to the adsorption on top graphene layer. The buffer layer is inert to Na adsorption on top graphene layer but it is charged when Na atoms are intercalated. This indicates that the conduction of epitaxial graphenes can be affected significantly by Na intercalation.

  10. Ion-irradiation enhanced epitaxial growth of sol-gel TiO2 films

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Kun; Jung, Hyun Suk; Wang, Yongqiang; Theodore, N. David; Alford, Terry L.; Nastasi, Michael

    2011-04-01

    We report the epitaxial growth of sol-gel TiO2 films by using ion-irradiation enhanced synthesis. Our present study shows that the ion-beam process can provide highly crystalline TiO2 even at 350°C. Nuclear energy deposition at amorphous/crystalline interface plays a dominant role in the epitaxial growth of the films at the reduced temperature via a defect-migration mechanism. In addition, the ion irradiation allows for increasing the film density by balancing the crystallization rate and the escape rate of organic components.

  11. Engineering epitaxial graphene with oxygen

    NASA Astrophysics Data System (ADS)

    Kimouche, Amina; Martin, Sylvain; Winkelmann, Clemens; Fruchart, Olivier; Courtois, Hervé; Coraux, Johann; Hybrid system at low dimension Team

    2013-03-01

    Almost free-standing graphene can be obtained on metals by decoupling graphene from its substrate, for instance by intercalation of atoms beneath graphene, as it was shown with oxygen atoms. We show that the interaction of oxygen with epitaxial graphene on iridium leads to the formation of an ultrathin crystalline oxide extending between graphene and the metallic substrate via the graphene wrinkles. Graphene studied in this work was prepared under ultra-high vacuum by CVD. The samples were studied by combining scanning probe microscopy (STM, AFM) and spatially resolved spectroscopy (Raman, STS). The ultrathin oxide forms a decoupling barrier layer between graphene and Ir, yielding truly free-standing graphene whose hybridization and charge transfers with the substrate have been quenched. Our work presents novel types of graphene-based nanostructures, and opens the route to the transfer-free preparation of graphene directly onto an insulating support contacted to the metallic substrate which could serve as a gate electrode. Work supported by the EU-NMP GRENADA project

  12. Spin transport in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Tbd, -

    2014-03-01

    Spintronics is a paradigm focusing on spin as the information vector in fast and ultra-low-power non volatile devices such as the new STT-MRAM. Beyond its widely distributed application in data storage it aims at providing more complex architectures and a powerful beyond CMOS solution for information processing. The recent discovery of graphene has opened novel exciting opportunities in terms of functionalities and performances for spintronics devices. We will present experimental results allowing us to assess the potential of graphene for spintronics. We will show that unprecedented highly efficient spin information transport can occur in epitaxial graphene leading to large spin signals and macroscopic spin diffusion lengths (~ 100 microns), a key enabler for the advent of envisioned beyond-CMOS spin-based logic architectures. We will also show that how the device behavior is well explained within the framework of the Valet-Fert drift-diffusion equations. Furthermore, we will show that a thin graphene passivation layer can prevent the oxidation of a ferromagnet, enabling its use in novel humide/ambient low-cost processes for spintronics devices, while keeping its highly surface sensitive spin current polarizer/analyzer behavior and adding new enhanced spin filtering property. These different experiments unveil promising uses of graphene for spintronics.

  13. Development of a carbonaceous selective absorber for solar thermal energy collection and process for its formation

    NASA Astrophysics Data System (ADS)

    Garrison, John D.

    1989-02-01

    The main goal of the US Department of Energy supported part of this project is to develop information about controlling the complicated chemical processes involved in the formation of a carbonaceous selective absorber and learn what equipment will allow production of this absorber commercially. The work necessary to accomplish this goal is not yet complete. Formation of the carbonaceous selective absorber in the conveyor oven tried so far has been unsatisfactory, because the proper conditions for applying the carbonaceous coating in each conveyor oven fabricated, either have been difficult to obtain, or have been difficult to maintain over an extended period of time. A new conveyor oven is nearing completion which is expected to allow formation of the carbonaceous selective absorber on absorber tubes in a continuous operation over many days without the necessity of cleaning the conveyor oven or changing the thickness of the electroplated nickel catalyst to compensate for changes in the coating environment in the oven. Work under this project concerned with forming and sealing glass panels to test ideas on evacuated glass solar collector designs and production have been generally quite satisfactory. Delays in completion of the selective absorber work, has caused postponement of the fabrication of a small prototype evacuated glass solar collector panel. Preliminary cost estimates of the selective absorber and solar collector panel indicate that this collector system should be lower in cost than evacuated solar collectors now on the market.

  14. Decoupling of epitaxial graphene via gold intercalation probed by dispersive Raman spectroscopy

    SciTech Connect

    Pillai, P. B. E-mail: m.desouza@sheffield.ac.uk; DeSouza, M. E-mail: m.desouza@sheffield.ac.uk; Narula, R.; Reich, S.; Wong, L. Y.; Batten, T.; Pokorny, J.

    2015-05-14

    Signatures of a superlattice structure composed of a quasi periodic arrangement of atomic gold clusters below an epitaxied graphene (EG) layer are examined using dispersive Raman spectroscopy. The gold-graphene system exhibits a laser excitation energy dependant red shift of the 2D mode as compared to pristine epitaxial graphene. The phonon dispersions in both the systems are mapped using the experimentally observed Raman signatures and a third-nearest neighbour tight binding electronic band structure model. Our results reveal that the observed excitation dependent Raman red shift in gold EG primarily arise from the modifications of the phonon dispersion in gold-graphene and shows that the extent of decoupling of graphene from the underlying SiC substrate can be monitored from the dispersive nature of the Raman 2D modes. The intercalated gold atoms restore the phonon band structure of epitaxial graphene towards free standing graphene.

  15. Low temperature growth of crystalline magnesium oxide on hexagonal silicon carbide (0001) by molecular beam epitaxy

    SciTech Connect

    Goodrich, T. L.; Parisi, J.; Cai, Z.; Ziemer, K. S.

    2007-01-22

    Magnesium oxide (111) was grown epitaxially on hexagonal silicon carbide (6H-SiC) (0001) substrates at low temperatures by molecular beam epitaxy and a remote oxygen plasma source. The films were characterized by reflection high-energy electron diffraction, Auger electron spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy. Crystal structure, morphology, and growth rate of the magnesium oxide (MgO) films were found to be dependent on the magnesium flux, indicating a magnesium adsorption controlled growth mechanism. The single crystalline MgO thin films had an epitaxial relationship where MgO (111) parallel 6H-SiC (0001) and were stable in both air and 10{sup -9} Torr up to 1023 K.

  16. Growth of epitaxial iron nitride ultrathin film on zinc-blende gallium nitride

    SciTech Connect

    Pak, J.; Lin, W.; Wang, K.; Chinchore, A.; Shi, M.; Ingram, D. C.; Smith, A. R.; Sun, K.; Lucy, J. M.; Hauser, A. J.; Yang, F. Y.

    2010-07-15

    The authors report the growth of iron nitride on zinc-blende gallium nitride using molecular beam epitaxy. First, zinc-blende GaN is grown on a magnesium oxide substrate having (001) orientation; second, an ultrathin layer of FeN is grown on top of the GaN layer. In situ reflection high-energy electron diffraction is used to monitor the surface during growth, and a well-defined epitaxial relationship is observed. Cross-sectional transmission electron microscopy is used to reveal the epitaxial continuity at the gallium nitride-iron nitride interface. Surface morphology of the iron nitride, similar to yet different from that of the GaN substrate, can be described as plateau valley. The FeN chemical stoichiometry is probed using both bulk and surface sensitive methods, and the magnetic properties of the sample are revealed.

  17. Growth of CdTe films on GaAs by ionized cluster beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tang, H. P.; Feng, J. Y.; Fan, Y. D.; Li, H. D.

    1991-06-01

    Stoichiometric epitaxial films of CdTe were grown on (100)GaAs substrates by ionized cluster beam (ICB) epitaxy. Streaky RHEED patterns indicated good crystallinity and surface flatness of the epitaxial CdTe films. CdTe(100) orientation was obtained when the substrate preheating temperature was 480°C, while CdTe growth inboth (100) and (111) orientations occured when the substrate preheating temperature was above 550°C. The characteristics of the ICB growth process were investigated and the cluster-involving growth behavior has been evidenced. When sufficient clusters were generated in the deposition beam under adequate source vapor pressures, the crystalline quality of the resulting CdTe epilayers improved significantly with the increase of kinetic energy of the CdTe clusters. The best CdTe epilayer obtained exhibited a CdTe(400) double crystal rocking curve (DCRC) having a FWHM of 630 arc sec.

  18. Strain-induced magneto-optical anisotropy in epitaxial hcp Co films

    NASA Astrophysics Data System (ADS)

    Arregi, J. A.; González-Díaz, J. B.; Idigoras, O.; Berger, A.

    2015-11-01

    We investigate the existence and origin of magneto-optical anisotropy in epitaxial hcp Co films. Our results show that a significant magneto-optical anisotropy exists in our samples and, more importantly, they reveal that its amplitude is directly correlated with epitaxial strain. We find a linear coefficient of 16.8 % magneto-optical anisotropy per every 1% epitaxial strain, which is in stark contrast to an isotropic magneto-optical coupling factor Q , a very frequent and common assumption in magneto-optics of metallic thin films and multilayers. In addition, the Co films exhibit a similar strain-induced increase of the magnetocrystalline anisotropy energy, evidencing the fact that both magneto-optical anisotropy and magnetocrystalline anisotropy are dependent on the modification of the spin-orbit coupling introduced by anisotropic lattice distortions.

  19. The investigation of selective pre-pattern free self-assembled Ge nano-dot formed by excimer laser annealing

    PubMed Central

    2012-01-01

    Localized Ge nano-dot formation by laser treatment was investigated and discussed in terms of strain distribution. The advantage of this technique is patterning localization of nano-dots without selective epitaxial growth, reducing costs and improving throughput. Self-assembled Ge nano-dots produced by excimer laser annealing statistically distributed dot density and size dependent on laser energy. Improvement in the crystallization quality of the dots was also studied, and a strain analysis was undertaken. PMID:22709630

  20. Van der Waals Epitaxy of Ultrathin Halide Perovkistes

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Shi, Yunfeng; Shi, Jian

    We present our understanding, with CH3NH3PbX3 as a model system, on the 2D van der Waals growth and kinetics of 3D parent materials. We show the successful synthesis of ultrathin (sub-10 nm), large scale (a few tens of μm) single crystalline 2D perovskite thin films on layered mica substrate by van der Waals (VDW) epitaxy. Classical nucleation and growth model explaining conventional epitaxy has been modified to interpret the unique 2D results under VDW mechanism. The generalization of our model shows that a 3D crystal with low cohesive energy tends to favor the 2D growth while the one with strong cohesive energy has less kinetic window. With Monte Carlo simulations, we show that the fractal 2D morphology in perovskite precisely manifests the kinetic competition between VDW diffusivity and thermodynamic driving force, a unique phenomenon to VDW growth, suggesting a fundamental limit on the morphology stability of the 2D form of a 3D material. On the other hand, our single crystal thin film growth results and subsequent cryogenic study in the iodide perovskite provide a perfect resource for the exploration of its complex optical and electronic properties and unveiling the origins of its popularity in the energy conversion field.

  1. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    NASA Astrophysics Data System (ADS)

    Puybaret, Renaud; Patriarche, Gilles; Jordan, Matthew B.; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Voss, Paul L.; de Heer, Walt A.; Berger, Claire; Ougazzaden, Abdallah

    2016-03-01

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5-8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  2. Report on HVAC option selections for a relocatable classroom energy and indoor environmental quality field study

    SciTech Connect

    Apte, Michael G.; Delp, Woody W.; Diamond, Richard C.; Hodgson, Alfred T.; Kumar, Satish; Rainer, Leo I.; Shendell, Derek G.; Sullivan, Doug P.; Fisk, William J.

    2001-10-11

    It is commonly assumed that efforts to simultaneously develop energy efficient building technologies and to improve indoor environmental quality (IEQ) are unfeasible. The primary reason for this is that IEQ improvements often require additional ventilation that is costly from an energy standpoint. It is currently thought that health and productivity in work and learning environments requires adequate, if not superior, IEQ. Despite common assumptions, opportunities do exist to design building systems that provide improvements in both energy efficiency and IEQ. This report outlines the selection of a heating, ventilation, and air conditioning (HVAC) system to be used in demonstrating such an opportunity in a field study using relocatable school classrooms. Standard classrooms use a common wall mounted heat pump HVAC system. After reviewing alternative systems, a wall-mounting indirect/direct evaporative cooling system with an integral hydronic gas heating is selected. The anticipated advantages of this system include continuous ventilation of 100 percent outside air at or above minimum standards, projected cooling energy reductions of about 70 percent, inexpensive gas heating, improved airborne particle filtration, and reduced peak load electricity use. Potential disadvantages include restricted climate regions and possible increases in indoor relative humidity levels under some conditions.

  3. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al{sub 2}O{sub 3}(0001) substrates

    SciTech Connect

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-05-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al{sub 2}O{sub 3}(0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively.

  4. Selection of energy optimized pump concepts for multi core and multi mode erbium doped fiber amplifiers.

    PubMed

    Krummrich, Peter M; Akhtari, Simon

    2014-12-01

    The selection of an appropriate pump concept has a major impact on amplifier cost and power consumption. The energy efficiency of different pump concepts is compared for multi core and multi mode active fibers. In preamplifier stages, pump power density requirements derived from full C-band low noise WDM operation result in superior energy efficiency of direct pumping of individual cores in a multi core fiber with single mode pump lasers compared to cladding pumping with uncooled multi mode lasers. Even better energy efficiency is achieved by direct pumping of the core in multi mode active fibers. Complexity of pump signal combiners for direct pumping of multi core fibers can be reduced by deploying integrated components. PMID:25606957

  5. Selective in-plane nitrogen doping of graphene by an energy-controlled neutral beam

    NASA Astrophysics Data System (ADS)

    Okada, Takeru; Samukawa, Seiji

    2015-12-01

    Nitrogen-doped graphene promises to improve current electronic devices, sensors, and energy-based devices. To this end, the bonding states between carbon and nitrogen atoms can be manipulated to tailor the properties of the doped graphene. For example, graphitic nitrogen is known to promote desired catalytic activities in graphene fuel-cell systems, resulting from a four-electron reaction. However, established nitrogen-doping methods lack selectivity in dopant chemical identity and in dopant location; both are key factors in graphene property design because the properties depend on the chemical identity and location of the dopant. Here, we utilize a nitrogen neutral beam (NB) technique—with exquisite beam energy control—to dope graphene with nitrogen. Using x-ray photoelectron and Raman spectroscopy, we show that the energy of the nitrogen NB not only determines the chemistry of the nitrogen dopant introduced to graphene, but it also dictates the doping locations within graphene layers.

  6. Selective in-plane nitrogen doping of graphene by an energy-controlled neutral beam.

    PubMed

    Okada, Takeru; Samukawa, Seiji

    2015-12-01

    Nitrogen-doped graphene promises to improve current electronic devices, sensors, and energy-based devices. To this end, the bonding states between carbon and nitrogen atoms can be manipulated to tailor the properties of the doped graphene. For example, graphitic nitrogen is known to promote desired catalytic activities in graphene fuel-cell systems, resulting from a four-electron reaction. However, established nitrogen-doping methods lack selectivity in dopant chemical identity and in dopant location; both are key factors in graphene property design because the properties depend on the chemical identity and location of the dopant. Here, we utilize a nitrogen neutral beam (NB) technique-with exquisite beam energy control-to dope graphene with nitrogen. Using x-ray photoelectron and Raman spectroscopy, we show that the energy of the nitrogen NB not only determines the chemistry of the nitrogen dopant introduced to graphene, but it also dictates the doping locations within graphene layers. PMID:26559390

  7. A design study of the energy selection system for carbon-ion therapy

    NASA Astrophysics Data System (ADS)

    Hahn, Garam; An, Dong Hyun; Hong, Bong Hwan; Kim, Geun Beom; Yim, Heejoong; Chang, Hong Seok; Jung, In Su; Kang, Kun Uk; Nam, Sang Hoon; Park, Inkyu

    2015-02-01

    KHIMA, a research project to construct a carbon radio-therapy facility in Korea, has been developing a superconducting cyclotron named KIRAMS-430 as a carbon(12 C 6+) particle accelerator. Due to the fixed beam energy of the cyclotron, an energy selection system (ESS) is required for treatment of tumors located at various depths in the human body. In the present paper, two design stages of the ESS are discussed. First, the beam tracks behind the degrader block and the statistical twiss parameters for the entire energy range were calculated by using the GEANT4 simulation toolkit. Analysis of the beam transmission and the contamination ratios were performed. In the second stage, the beam optics was designed to support the same phase profile at the end regardless of the variations in all of input twiss parameters and the emittance.

  8. Multi-Frame Energy-Selective Imaging System for Fast-Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Dangendorf, Volker; Bar, Doron; Bromberger, Benjamin; Feldman, Gennady; Goldberg, Mark Benjamin; Lauck, Ronald; Mor, Ilan; Tittelmeier, Kai; Vartsky, David; Weierganz, Mathias

    2009-06-01

    A new instrument for high resolution imaging of fast-neutrons is presented here. It is designed for energy selective radiography in nanosecond-pulsed broad-energy (1 - 10 MeV) neutron beams. The device presented here is based on hydrogenous scintillator screens and single- or multiple-gated intensified camera systems (ICCD). A key element is a newly developed optical amplifier which generates sufficient light for the high-speed intensified camera system, even from such faint light sources as fast plastic and liquid scintillators. Utilizing the Time-of-Flight (TOF) method, the detector incorporating the above components is capable of simultaneously taking up to 8 images, each at a different neutron energy.

  9. Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows.

    PubMed

    Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal

    2014-01-01

    All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m(2) mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems. PMID:25321890

  10. Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Behafarid, F.; Cuenya, B. Roldan

    2016-06-01

    Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ~6 nm) having lower adhesion energies than smaller NPs (e.g. ~1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the interface rather than a lattice distortion that may propagate through the smaller NPs. In addition, identically prepared Pt NPs of the same shape were found to display a lower adhesion energy compared to Pd NPs. While in both cases, a transition from a lattice distortion to interface dislocations is expected to occur with increasing NP size, the higher elastic energy in Pt leads to a lower transition size, which in turn lowers the adhesion energy of Pt NPs compared to Pd.Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ~6 nm) having lower adhesion energies than smaller NPs (e.g. ~1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the

  11. Phase diagram of epitaxial ferromagnets: Erbium (0001) on sapphire (112¯0)

    NASA Astrophysics Data System (ADS)

    Durfee, C. S.; Flynn, C. P.

    2000-10-01

    We have accurately determined the elastic state and the magnetic phase diagram of epitaxially clamped Er on Al2O3 through the range of strong bulk magnetostriction. The elastic free energy is too small to explain the observed change of the Curie point. The additional required energy of ˜5% of the self-energy for full perpendicular magnetization must arise from differences of domain configuration between the magnetized bulk and the film.

  12. Characterizing China's energy consumption with selective economic factors and energy-resource endowment: a spatial econometric approach

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Ji, Minhe; Bai, Ling

    2015-06-01

    Coupled with intricate regional interactions, the provincial disparity of energy-resource endowment and other economic conditions in China have created spatially complex energy consumption patterns that require analyses beyond the traditional ones. To distill the spatial effect out of the resource and economic factors on China's energy consumption, this study recast the traditional econometric model in a spatial context. Several analytic steps were taken to reveal different aspects of the issue. Per capita energy consumption (AVEC) at the provincial level was first mapped to reveal spatial clusters of high energy consumption being located in either well developed or energy resourceful regions. This visual spatial autocorrelation pattern of AVEC was quantitatively tested to confirm its existence among Chinese provinces. A Moran scatterplot was employed to further display a relatively centralized trend occurring in those provinces that had parallel AVEC, revealing a spatial structure with attraction among high-high or low-low regions and repellency among high-low or low-high regions. By a comparison between the ordinary least square (OLS) model and its spatial econometric counterparts, a spatial error model (SEM) was selected to analyze the impact of major economic determinants on AVEC. While the analytic results revealed a significant positive correlation between AVEC and economic development, other determinants showed some intricate influential patterns. The provinces endowed with rich energy reserves were inclined to consume much more energy than those otherwise, whereas changing the economic structure by increasing the proportion of secondary and tertiary industries also tended to consume more energy. Both situations seem to underpin the fact that these provinces were largely trapped in the economies that were supported by technologies of low energy efficiency during the period, while other parts of the country were rapidly modernized by adopting advanced

  13. Characterizing China's energy consumption with selective economic factors and energy-resource endowment: a spatial econometric approach

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Ji, Minhe; Bai, Ling

    2014-09-01

    Coupled with intricate regional interactions, the provincial disparity of energy-resource endowment and other economic conditions in China have created spatially complex energy consumption patterns that require analyses beyond the traditional ones. To distill the spatial effect out of the resource and economic factors on China's energy consumption, this study recast the traditional econometric model in a spatial context. Several analytic steps were taken to reveal different aspects of the issue. Per capita energy consumption (AVEC) at the provincial level was first mapped to reveal spatial clusters of high energy consumption being located in either well developed or energy resourceful regions. This visual spatial autocorrelation pattern of AVEC was quantitatively tested to confirm its existence among Chinese provinces. A Moran scatterplot was employed to further display a relatively centralized trend occurring in those provinces that had parallel AVEC, revealing a spatial structure with attraction among high-high or low-low regions and repellency among high-low or low-high regions. By a comparison between the ordinary least square (OLS) model and its spatial econometric counterparts, a spatial error model (SEM) was selected to analyze the impact of major economic determinants on AVEC. While the analytic results revealed a significant positive correlation between AVEC and economic development, other determinants showed some intricate influential patterns. The provinces endowed with rich energy reserves were inclined to consume much more energy than those otherwise, whereas changing the economic structure by increasing the proportion of secondary and tertiary industries also tended to consume more energy. Both situations seem to underpin the fact that these provinces were largely trapped in the economies that were supported by technologies of low energy efficiency during the period, while other parts of the country were rapidly modernized by adopting advanced

  14. Epitaxial growth and optical properties of Al- and N-polar AlN films by laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chen, X. W.; Jia, C. H.; Chen, Y. H.; Wang, H. T.; Zhang, W. F.

    2014-03-01

    Epitaxial aluminum nitride (AlN) films with c-axis orientation were grown on both (1 1 1) MgO and c-sapphire substrates by laser molecular beam epitaxy. The in-plane epitaxial relationships were determined to be [1 1 \\bar{{2}} 0]AlN‖[0 \\bar{{1}} 1]MgO and [1 \\bar{{1}} 0 0]AlN‖[1 1 \\bar{{2}} 0]sapphire, and the lattice mismatch was 4.2% and 13.2% for AlN films on MgO and sapphire, respectively. The AlN films were shown to be Al- and N-polar on MgO and sapphire, respectively. The former is assumed to be caused by the centre of inversion symmetry of (1 1 1) MgO substrate, while the latter is due to the O polarity of sapphire. The full-width at half-maximum of the ω-scanning spectrum for AlN film on (1 1 1) MgO substrate is smaller than that on the c-sapphire substrate. The optical band-gap energies for AlN films grown on MgO and sapphire were found to be 5.93 and 5.84 eV, close to the standard band gap of 6.2 eV, and the calculated Urbach energies were 0.27 eV and 0.53 eV, respectively. These results indicate a lower amorphous content and/or less defects/impurities in Al-polar than N-polar AlN.

  15. Thermodynamic Theory of Epitaxial Alloys: First-Principles Mixed-Basis Cluster Expansion of (In,Ga)N Alloy Film

    SciTech Connect

    Liu, J. Z.; Zunger, A.

    2009-01-01

    Epitaxial growth of semiconductor alloys onto a fixed substrate has become the method of choice to make high quality crystals. In the coherent epitaxial growth, the lattice mismatch between the alloy film and the substrate induces a particular form of strain, adding a strain energy term into the free energy of the alloy system. Such epitaxial strain energy can alter the thermodynamics of the alloy, leading to a different phase diagram and different atomic microstructures. In this paper, we present a general-purpose mixed-basis cluster expansion method to describe the thermodynamics of an epitaxial alloy, where the formation energy of a structure is expressed in terms of pair and many-body interactions. With a finite number of first-principles calculation inputs, our method can predict the energies of various atomic structures with an accuracy comparable to that of first-principles calculations themselves. Epitaxial (In, Ga)N zinc-blende alloy grown on GaN(001) substrate is taken as an example to demonstrate the details of the method. Two (210) superlattice structures, (InN){sub 2}/(GaN){sub 2} (at x = 0.50) and (InN){sub 4}/(GaN){sub 1} (at x = 0.80), are identified as the ground state structures, in contrast to the phase-separation behavior of the bulk alloy.

  16. Thermodynamic theory of epitaxial alloys: first-principles mixed-basis cluster expansion of (In, Ga)N alloy film.

    PubMed

    Liu, Jefferson Zhe; Zunger, Alex

    2009-07-22

    Epitaxial growth of semiconductor alloys onto a fixed substrate has become the method of choice to make high quality crystals. In the coherent epitaxial growth, the lattice mismatch between the alloy film and the substrate induces a particular form of strain, adding a strain energy term into the free energy of the alloy system. Such epitaxial strain energy can alter the thermodynamics of the alloy, leading to a different phase diagram and different atomic microstructures. In this paper, we present a general-purpose mixed-basis cluster expansion method to describe the thermodynamics of an epitaxial alloy, where the formation energy of a structure is expressed in terms of pair and many-body interactions. With a finite number of first-principles calculation inputs, our method can predict the energies of various atomic structures with an accuracy comparable to that of first-principles calculations themselves. Epitaxial (In, Ga)N zinc-blende alloy grown on GaN(001) substrate is taken as an example to demonstrate the details of the method. Two (210) superlattice structures, (InN)(2)/(GaN)(2) (at x = 0.50) and (InN)(4)/(GaN)(1) (at x = 0.80), are identified as the ground state structures, in contrast to the phase-separation behavior of the bulk alloy. PMID:21828531

  17. Thermodynamic theory of epitaxial alloys: first-principles mixed-basis cluster expansion of (In, Ga)N alloy film

    NASA Astrophysics Data System (ADS)

    Liu, Jefferson Zhe; Zunger, Alex

    2009-07-01

    Epitaxial growth of semiconductor alloys onto a fixed substrate has become the method of choice to make high quality crystals. In the coherent epitaxial growth, the lattice mismatch between the alloy film and the substrate induces a particular form of strain, adding a strain energy term into the free energy of the alloy system. Such epitaxial strain energy can alter the thermodynamics of the alloy, leading to a different phase diagram and different atomic microstructures. In this paper, we present a general-purpose mixed-basis cluster expansion method to describe the thermodynamics of an epitaxial alloy, where the formation energy of a structure is expressed in terms of pair and many-body interactions. With a finite number of first-principles calculation inputs, our method can predict the energies of various atomic structures with an accuracy comparable to that of first-principles calculations themselves. Epitaxial (In, Ga)N zinc-blende alloy grown on GaN(001) substrate is taken as an example to demonstrate the details of the method. Two (210) superlattice structures, (InN)2/(GaN)2 (at x = 0.50) and (InN)4/(GaN)1 (at x = 0.80), are identified as the ground state structures, in contrast to the phase-separation behavior of the bulk alloy.

  18. Selective Determination of Trinitrotoluene Based on Energy Transfer between Carbon Dots and Gold Nanoparticles.

    PubMed

    Mosaei Oskoei, Yones; Fattahi, Hassan; Hassanzadeh, Javad; Mousavi Azar, Ali

    2016-01-01

    A fluorescence resonance energy transfer (FRET) system between carbon dots (C-dots) and amine-capped gold nanoparticles (AuNPs) was developed for the selective determination of 2,4,6-trinitrotoluene (TNT). C-dots have an intrinsic florescence emission depending on their exciting wavelength. In the presence of AuNPs, C-dots adsorb on the Au surfaces, and NPs treat as energy acceptor, which can receive light emitted by C-dots, leading to decrease the fluorescence intensity of C-dots. Furthermore, it is observed that nitroaromatic compounds, especially TNT, could restore this fluorescence due to selective interaction with AuNPs via amine groups, and so releasing the C-dots. Based on this effect, a sensitive and selective fluorescence turn-on probe was designed for the determination of TNT. Some important factors including AuNPs and C-dot concentrations and media pH, which would affect the efficiency of the probe, were optimized. Under the optimum experimental conditions, good linear relationships in the range of 7 - 250 nmol L(-1) TNT with the detection limit of 2.2 nmol L(-1) were obtained. The proposed method was satisfactorily applied to the determination of TNT in the environmental water samples. Compared with previous reports, the developed method has relatively high sensitivity, short analysis time, low cost and ease of operation. PMID:26860565

  19. Energy expenditure of trans-tibial amputees during ambulation at self-selected pace.

    PubMed

    Gailey, R S; Wenger, M A; Raya, M; Kirk, N; Erbs, K; Spyropoulos, P; Nash, M S

    1994-08-01

    The purpose of this investigation was two-fold: 1) to compare the metabolic cost (VO2), heart rate (HR), and self-selected speed of ambulation of trans-tibial amputees (TTAs) with those of non-amputee subjects; and 2) to determine whether a correlation exists between either stump length or prosthesis mass and the energy cost of ambulation at the self-selected ambulation pace of TTAs. Subjects were thirty-nine healthy male non-vascular TTAs between the ages of 22 and 75 years (mean +/- sd = 47 +/- 16). All had regularly used their prosthesis for longer than six months and were independent of assistive ambulation devices. Twenty-one healthy non-amputee males aged 27-47 years (31 +/- 6) served as controls. Subjects ambulated at a self-selected pace over an indoor course, with steady-state VO2, HR, and ambulation speed averaged across minutes seven, eight and nine of walking. Results showed that HR and VO2 for TTAs were 16% greater, and the ambulation pace 11% slower than the non-amputee controls. Significant correlations were not observed between stump length or prosthesis mass, and the energy cost of ambulation. However, when the TTA subject pool was stratified on the basis of long and short stump length, the former sustained significantly lower steady-state VO2 and HR than the latter while walking at comparable pace. These data indicate that stump length may influence the metabolic cost of ambulation in TTAs. PMID:7991365

  20. Characteristics of the telescope for high energy gamma-ray astronomy selected for definition studies on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Hughes, E. B.; Hofstadter, R.; Rolfe, J.; Johansson, A.; Bertsch, D. L.; Cruickshank, W. J.; Ehrmann, C. H.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.

    1980-01-01

    The high energy gamma-ray telescope selected for definition studies on the Gamma Ray Observatory provides a substantial improvement in observational capability over earlier instruments. It will have about 20 times more sensitivity, cover a much broader energy range, have considerably better energy resolution and provide a significantly improved angular resolution. The design and performance are described.

  1. Characteristics of the Telescope for High Energy Gamma-ray Astronomy Selected for Definition Studies on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Hughes, E. B.; Hofstadter, R.; Johansson, A.; Rolfe, J.; Bertsch, D. L.; Cruickshank, W. J.; Ehrmann, C. H.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.

    1979-01-01

    The high energy gamma-ray selected for definition studies on the Gamma Ray Observatory provides a substantial improvement in observational capability over earlier instruments. It will have about 20 times more sensitivity, cover a much broader energy range, have considerably better energy resolution and provide a significantly improved angular resolution. The design and performance are described.

  2. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    SciTech Connect

    Nelson, Caleb; Reis, Chuck; Nelson, Eric; Armer, James; Arthur, Rob; Heath, Richard; Rono, James; Hirsch, Adam; Doebber, Ian

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  3. Epitaxial growth of two-dimensional stanene

    NASA Astrophysics Data System (ADS)

    Zhu, Feng-Feng; Chen, Wei-Jiong; Xu, Yong; Gao, Chun-Lei; Guan, Dan-Dan; Liu, Can-Hua; Qian, Dong; Zhang, Shou-Cheng; Jia, Jin-Feng

    2015-10-01

    Following the first experimental realization of graphene, other ultrathin materials with unprecedented electronic properties have been explored, with particular attention given to the heavy group-IV elements Si, Ge and Sn. Two-dimensional buckled Si-based silicene has been recently realized by molecular beam epitaxy growth, whereas Ge-based germanene was obtained by molecular beam epitaxy and mechanical exfoliation. However, the synthesis of Sn-based stanene has proved challenging so far. Here, we report the successful fabrication of 2D stanene by molecular beam epitaxy, confirmed by atomic and electronic characterization using scanning tunnelling microscopy and angle-resolved photoemission spectroscopy, in combination with first-principles calculations. The synthesis of stanene and its derivatives will stimulate further experimental investigation of their theoretically predicted properties, such as a 2D topological insulating behaviour with a very large bandgap, and the capability to support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall effect.

  4. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    NASA Astrophysics Data System (ADS)

    Hofmann, Ingo

    2013-04-01

    Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length approximately equals its diameter. The scaling also shows that this is usually not the case above a few MeV; consequently, a solenoid needs to be pulsed or superconducting, whereas the quadrupoles can remain conventional. It is also important that the transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al. [Phys. Rev. Lett. 103, 135001 (2009PRLTAO0031-900710.1103/PhysRevLett.103.135001].

  5. Multiple growths of epitaxial lift-off solar cells from a single InP substrate

    SciTech Connect

    Lee, Kyusang; Shiu, Kuen-Ting; Zimmerman, Jeramy D.; Forrest, Stephen R.; Renshaw, Christopher K.

    2010-09-06

    We demonstrate multiple growths of flexible, thin-film indium tin oxide-InP Schottky-barrier solar cells on a single InP wafer via epitaxial lift-off (ELO). Layers that protect the InP parent wafer surface during the ELO process are subsequently removed by selective wet-chemical etching, with the active solar cell layers transferred to a thin, flexible plastic host substrate by cold welding at room temperature. The first- and second-growth solar cells exhibit no performance degradation under simulated Atmospheric Mass 1.5 Global (AM 1.5G) illumination, and have a power conversion efficiency of {eta}{sub p}=14.4{+-}0.4% and {eta}{sub p}=14.8{+-}0.2%, respectively. The current-voltage characteristics for the solar cells and atomic force microscope images of the substrate indicate that the parent wafer is undamaged, and is suitable for reuse after ELO and the protection-layer removal processes. X-ray photoelectron spectroscopy, reflection high-energy electron diffraction observation, and three-dimensional surface profiling show a surface that is comparable or improved to the original epiready wafer following ELO. Wafer reuse over multiple cycles suggests that high-efficiency; single-crystal thin-film solar cells may provide a practical path to low-cost solar-to-electrical energy conversion.

  6. Multiple growths of epitaxial lift-off solar cells from a single InP substrate

    SciTech Connect

    Lee, K.; Shiu, K. T.; Zimmerman, J.; Forrest, Stephen R.

    2010-01-01

    We demonstrate multiple growths of flexible, thin-film indium tin oxide-InP Schottky-barriersolar cells on a single InP wafer via epitaxial lift-off (ELO). Layers that protect the InP parent wafer surface during the ELO process are subsequently removed by selective wet-chemical etching, with the active solar cell layers transferred to a thin, flexible plastic host substrate by cold welding at room temperature. The first- and second-growth solar cells exhibit no performance degradation under simulated Atmospheric Mass 1.5 Global (AM 1.5G) illumination, and have a power conversion efficiency of η{sub p}=14.4±0.4% and η{sub p}=14.8±0.2%, respectively. The current-voltage characteristics for the solar cells and atomic force microscope images of the substrate indicate that the parent wafer is undamaged, and is suitable for reuse after ELO and the protection-layer removal processes. X-ray photoelectron spectroscopy, reflection high-energy electron diffraction observation, and three-dimensional surface profiling show a surface that is comparable or improved to the original epiready wafer following ELO. Wafer reuse over multiple cycles suggests that high-efficiency; single-crystal thin-filmsolar cells may provide a practical path to low-cost solar-to-electrical energy conversion.

  7. Magnetism and deformation of epitaxial Pd and Rh thin films

    NASA Astrophysics Data System (ADS)

    KáÅa, Tomáš; Hüger, Erwin; Legut, Dominik; Čák, Miroslav; Šob, Mojmír

    2016-04-01

    By means of ab initio calculations, we investigated structural and magnetic properties of Pd and Rh thin films, determining their lattice parameters and epitaxial stresses when they are grown on various substrates, and provided a comparison with available experimental data. Further, we studied in detail the magnetic properties of Pd in the higher-energy hcp structure and of Rh in the higher-energy bcc structure. The results predict that the hcp (11 2 ¯0 ) Pd films [grown by epitaxy on the Nb(001) substrate] should not be ferromagnetically ordered. Concerning the hcp Pd, we mainly investigated the influence of the hcp c /a ratio on the hcp film stability and on the ferromagnetic order. It turns out that the c /a ratio has to be below 1.622 to induce the ferromagnetic order in hcp Pd. We proposed a technological route for obtaining ferromagnetic hcp (11 2 ¯0 ) Pd films and explained the experimentally observed ferromagnetism in twinned Pd nanoparticles induced by strain. We also found that bcc Rh is ferromagnetically ordered, but it cannot be stabilized in the form of thin films. Therefore, we investigated the dependence of ferromagnetic order in bct Rh on the tetragonal c /a ratio and compared our results with experiments performed on Rh/Fe(001) multilayers.

  8. Epitaxy and Microstructure Evolution in Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Basak, Amrita; Das, Suman

    2016-07-01

    Metal additive manufacturing (AM) works on the principle of incremental layer-by-layer material consolidation, facilitating the fabrication of objects of arbitrary complexity through the controlled melting and resolidification of feedstock materials by using high-power energy sources. The focus of metal AM is to produce complex-shaped components made of metals and alloys to meet demands from various industrial sectors such as defense, aerospace, automotive, and biomedicine. Metal AM involves a complex interplay between multiple modes of energy and mass transfer, fluid flow, phase change, and microstructural evolution. Understanding the fundamental physics of these phenomena is a key requirement for metal AM process development and optimization. The effects of material characteristics and processing conditions on the resulting epitaxy and microstructure are of critical interest in metal AM. This article reviews various metal AM processes in the context of fabricating metal and alloy parts through epitaxial solidification, with material systems ranging from pure-metal and prealloyed to multicomponent materials. The aim is to cover the relationships between various AM processes and the resulting microstructures in these material systems.

  9. Modeling of a water vapor selective membrane unit to increase the energy efficiency of humidity harvesting

    NASA Astrophysics Data System (ADS)

    Bergmair, D.; Metz, S. J.; de Lange, H. C.; van Steenhoven, A. A.

    2012-11-01

    Air humidity is a promising source of clean and safe drinking water. However, in conventional systems a lot of energy is wasted on the production of cold air, rather than the condensation of water vapor. This study examines the possibility of using a hollow fiber membrane module to make this process more energy efficient, by separating the vapor from other gases, prior to the cooling process with the help of selective membranes. The water vapor concentration within a fiber has been modeled using a random walker approach, and the membrane permeability has been implemented as a re-bounce probability for simulation particles interacting with the membrane. Considering the additional work requirement for driving a feed flow through the membrane section and the computed water vapor permeation it could be shown that the energy demand per unit water is lowest for slow flow speeds and favors short and thin fibers. The total energy requirement was estimated to be less than half of the conventional one. Comparison with other CFD simulations and a real life module has shown a good level of agreement, indicating that a membrane section could improve the energy efficiency of humidity harvesting significantly.

  10. Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles.

    PubMed

    Ahmadi, M; Behafarid, F; Cuenya, B Roldan

    2016-06-01

    Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ∼6 nm) having lower adhesion energies than smaller NPs (e.g. ∼1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the interface rather than a lattice distortion that may propagate through the smaller NPs. In addition, identically prepared Pt NPs of the same shape were found to display a lower adhesion energy compared to Pd NPs. While in both cases, a transition from a lattice distortion to interface dislocations is expected to occur with increasing NP size, the higher elastic energy in Pt leads to a lower transition size, which in turn lowers the adhesion energy of Pt NPs compared to Pd. PMID:27216883

  11. sDFIRE: Sequence-specific statistical energy function for protein structure prediction by decoy selections.

    PubMed

    Hoque, Md Tamjidul; Yang, Yuedong; Mishra, Avdesh; Zhou, Yaoqi

    2016-05-01

    An important unsolved problem in molecular and structural biology is the protein folding and structure prediction problem. One major bottleneck for solving this is the lack of an accurate energy to discriminate near-native conformations against other possible conformations. Here we have developed sDFIRE energy function, which is an optimized linear combination of DFIRE (the Distance-scaled Finite Ideal gas Reference state based Energy), the orientation dependent (polar-polar and polar-nonpolar) statistical potentials, and the matching scores between predicted and model structural properties including predicted main-chain torsion angles and solvent accessible surface area. The weights for these scoring terms are optimized by three widely used decoy sets consisting of a total of 134 proteins. Independent tests on CASP8 and CASP9 decoy sets indicate that sDFIRE outperforms other state-of-the-art energy functions in selecting near native structures and in the Pearson's correlation coefficient between the energy score and structural accuracy of the model (measured by TM-score). © 2016 Wiley Periodicals, Inc. PMID:26849026

  12. Epitaxial thin films for hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Fullager, D.; Alisafaee, H.; Tsu, R.; Fiddy, M. A.

    2014-02-01

    Recent progress in the area of hyperbolic metamaterials (HMMs) has sparked interest in transparent conducting oxides (TCOs) that behave as plasmonic media in the near-IR and at optical frequencies for imaging and sensing applications. It has been shown that by depositing alternating layers of negative-epsilon/positive-epsilon materials, a medium can be created with unusual index values such as near zero. HMMs support high-k waves corresponding to a diverging photonic density of states (PDOS), the quantity determining phenomena such as spontaneous and thermal emission. Also, modeling such structures allows evanescent fields containing sub-wavelength information to be coupled to propagating radiation. We investigate the optical, electronic, and physical properties of radio frequency plasma-assisted molecular beam epitaxial (RF-MBE) growth of alternating layers of ZnO and TCO of uniform thickness for HMM applications. Preliminary work creating HMMs with ZnO and Al-doped ZnO (AZO) has shown a negative real part of the permittivity at near-IR whose modulus is proportional to the number density of Al dopant. However, increasing the Al content of the AZO increases the transmission losses to unacceptable levels for device applications at industry standard wavelengths. A TCO with conductivity and physical structure superior to that of AZO is gallium-doped ZnO (GZO). Uniformly grown GZO has been demonstrated to possess improved crystal quality over AZO due to the higher diffusivity of Al in the ZnO. AZO and GZO HMM structures grown by RF-MBE are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Hall effect, four-point probing, deeplevel transient spectroscopy (DLTS), ellipsometry, visible and ultraviolet spectroscopy (UV-VIS) and in-situ reflection high energy electron diffraction (RHEED).

  13. Chemical vapor deposition of epitaxial silicon

    DOEpatents

    Berkman, Samuel

    1984-01-01

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  14. Energy and Raw Materials in the Selection of Technologies for Iron and Steel

    NASA Astrophysics Data System (ADS)

    Fortini, Otavio Macedo

    2016-05-01

    This paper discusses the selection of metal extraction technologies according to the regional availability of energy resources. The most important energy sources in iron and steel production are determined from a review of current technologies to inform possible future scenarios of capacity replacement or expansion according to geography. Alternative technologies are not discussed, considering that actual investment in capacity is most often dominated by high degrees of risk aversion. As such, only technologies proven at a reasonable scale are included in the selection matrix. Scenarios of capacity choice are defined in terms of actions from external agents, those which are not directly involved in the industry but have the capacity to regulate actions by metal producing players. Two extreme scenarios corresponding to closed and open economies are used to set bounds for future expectations. Among steelmaking processes under fully open trade conditions, it is found that EAF steelmaking with charge pre-heat should be the technology of choice in all regions of the world except for South America and Europe, where Integrated Steel Mills have a cost advantage. In fully closed exchange scenarios, Integrated Steel Mills would be the prevalent technology in South America, Sub-Saharan Africa, India, and the former USSR, EAF with scrap pre-heating prevailing in all other regions. On the other hand, HYL-ZR would be the iron making technology of choice in all regions under full exchange scenarios. Under fully closed exchange conditions, Mini-Blast Furnaces, COREX, and HYL-ZR would find regional applications. Increases in raw materials and energy costs of 38 pct in steelmaking and 63 pct in ironmaking are found in going from fully open to fully closed exchange regimes. It is also found that Southeast Asia is the most suitable region for deploying new steelmaking capacity, while Australia and Russia are the best selection for new iron making capacity.

  15. Energy deposition in selected-mammalian cell for several-MeV single-proton beam

    NASA Astrophysics Data System (ADS)

    Ding, K.; Yu, Z.

    2007-05-01

    The phenomena resulting from interaction between ion beam and mammalian cell pose important problems for biological applications. Classic Bethe-Bloch theory utilizing attached V79 mammalian cell has been conducted in order to establish the stopping powers of the mammalian cell for several-MeV single-proton microbeam. Based on the biological structure of the mammalian cell, a physical model is proposed which presumes that the attached cell is simple MWM model. According to this model and Monte Carlo simulation, we studied the energy deposition and its ratio on the selected attached mammalian cell for MeV proton implantation.

  16. Preparation of GaAs and Ga1-xAlxAs Multi-Layer Structures by Metalorganic Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Tokumitsu, Eisuke; Katoh, Toshiaki; Kimura, Ryuhei; Konagai, Makoto; Takahashi, Kiyoshi

    1986-08-01

    Metalorganic molecular beam epitaxial (MOMBE) growth of GaAs and (GaAl)As using triethylgallium (TEG) and triethylaluminum (TEA) has been studied. N-GaAs/p-GaAs multi-layer structures were prepared by applying an alternating ionization voltage to hydrogen. Single-crystal Ga1-xAlxAs ternary alloy with good surface mophology was successfully grown by introducing TEA as an Al source. The epitaxial layers typically showed p-type conduction with a carrier concentration of more than 1018 cm-3, this being due to residual carbon. A (GaAl)As/GaAs multiquantum well (MQW) heterostructure was fabricated by switching TEA and it was observed that the photoluminescence peak energies from the MQW structures were shifted to the higher energy position. Furthermore, selective growth of GaAs and (GaAl)As on a partly SiO2 masked GaAs substrate was investigated. In the MOMBE growth of (GaAl)As, polycrystalline film was deposited on the SiO2 masked region, while no deposition took place in the growth of GaAs.

  17. Control of laser induced reactions in solids using selected photon energies and pulse pairs

    NASA Astrophysics Data System (ADS)

    Hess, Wayne; Joly, Alan; Beck, Kenneth; Gerrity, Daniel; Dickinson, J. Thomas; Sushko, Peter; Shluger, Alexander

    2002-03-01

    Laser control of reaction dynamics is an intensely studied area of chemical physics. Sophisticated quantum and optimal control schemes have been developed to overcome difficulties associated with rapid energy redistribution from laser-prepared initial states. Experiment and theory have demonstrated how specific product pathways can be selected by irradiation with one or more laser beams. Although most laser control research has focused on small gas-phase molecules, product and quantum state control of laser desorption from solids is possible using delayed pulse pairs, selected pulse duration or by judicious choice of laser wavelength. Theory indicates that it is possible to excite the surface of ionic crystals, over the bulk, using tunable laser sources.[1] We recently demonstrated control of ion emission from MgO surfaces[2] using femtosecond pulse pairs and nearly exclusive emission of hyperthermal Br (2P3/2) from laser excited KBr.[3] Here, we explore the mechanism of laser desorption in experiments using delayed pulse pairs and tunable single pulses. The first laser pulse induces formation of transient species and the second pulse then excites the intermediate state to induce desorption of selected species or quantum states. Selective desorption raises the intriguing prospect of selective surface modification. The principles described here should be extendable to other alkali halides and metal oxides. References: [1] A.L. Shluger, P.V. Sushko, and L.N. Kantorovich, Phys. Rev. B. 59, (1999) 2417. [2] K.M. Beck, A.G. Joly, and W.P. Hess, Sur. Sci. 451, 166 (2000). [3] W. P. Hess, A. G. Joly, K. M. Beck, D. P. Gerrity, P. V. Sushko, and A. L. Shluger, J. Chem. Phys. 115, 9463 (2001).

  18. Crossing statistic: Bayesian interpretation, model selection and resolving dark energy parametrization problem

    SciTech Connect

    Shafieloo, Arman

    2012-05-01

    By introducing Crossing functions and hyper-parameters I show that the Bayesian interpretation of the Crossing Statistics [1] can be used trivially for the purpose of model selection among cosmological models. In this approach to falsify a cosmological model there is no need to compare it with other models or assume any particular form of parametrization for the cosmological quantities like luminosity distance, Hubble parameter or equation of state of dark energy. Instead, hyper-parameters of Crossing functions perform as discriminators between correct and wrong models. Using this approach one can falsify any assumed cosmological model without putting priors on the underlying actual model of the universe and its parameters, hence the issue of dark energy parametrization is resolved. It will be also shown that the sensitivity of the method to the intrinsic dispersion of the data is small that is another important characteristic of the method in testing cosmological models dealing with data with high uncertainties.

  19. The comparison and selection of programming languages for high energy physics applications

    SciTech Connect

    White, B.

    1991-06-01

    This paper discusses the issues surrounding the comparison and selection of a programming language to be used in high energy physics software applications. The evaluation method used was specifically devised to address the issues of particular importance to high energy physics (HEP) applications, not just the technical features of the languages considered. The method assumes a knowledge of the requirements of current HEP applications, the data-processing environments expected to support these applications and relevant non-technical issues. The languages evaluated were Ada, C, FORTRAN 77, FORTRAN 99 (formerly 8X), Pascal and PL/1. Particular emphasis is placed upon the past, present and anticipated future role of FORTRAN in HEP software applications. Upon examination of the technical and practical issues, conclusions are reached and some recommendations are made regarding the role of FORTRAN and other programming languages in the current and future development of HEP software. 54 refs.

  20. Accurate determination of optical bandgap and lattice parameters of Zn{sub 1-x}Mg{sub x}O epitaxial films (0{<=}x{<=}0.3) grown by plasma-assisted molecular beam epitaxy on a-plane sapphire

    SciTech Connect

    Laumer, Bernhard; Schuster, Fabian; Stutzmann, Martin; Bergmaier, Andreas; Dollinger, Guenther; Eickhoff, Martin

    2013-06-21

    Zn{sub 1-x}Mg{sub x}O epitaxial films with Mg concentrations 0{<=}x{<=}0.3 were grown by plasma-assisted molecular beam epitaxy on a-plane sapphire substrates. Precise determination of the Mg concentration x was performed by elastic recoil detection analysis. The bandgap energy was extracted from absorption measurements with high accuracy taking electron-hole interaction and exciton-phonon complexes into account. From these results a linear relationship between bandgap energy and Mg concentration is established for x{<=}0.3. Due to alloy disorder, the increase of the photoluminescence emission energy with Mg concentration is less pronounced. An analysis of the lattice parameters reveals that the epitaxial films grow biaxially strained on a-plane sapphire.

  1. The influence of mitigation on sage-grouse habitat selection within an energy development field.

    PubMed

    Fedy, Bradley C; Kirol, Christopher P; Sutphin, Andrew L; Maechtle, Thomas L

    2015-01-01

    Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may

  2. The Influence of Mitigation on Sage-Grouse Habitat Selection within an Energy Development Field

    PubMed Central

    Fedy, Bradley C.; Kirol, Christopher P.; Sutphin, Andrew L.; Maechtle, Thomas L.

    2015-01-01

    Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may

  3. Lattice dynamics and electron/phonon interactions in epitaxial transition-metal nitrides

    NASA Astrophysics Data System (ADS)

    Mei, Antonio Rodolph Bighetti

    Transition metal (TM) nitrides, due to their unique combination of remarkable physical properties and simple NaCl structure, are presently utilized in a broad range of applications and as model systems in the investigation of complex phenomena. Group-IVB nitrides TiN, ZrN, and HfN have transport properties which include superconductivity and high electrical conductivity; consequentially, they have become technologically important as electrodes and contacts in the semiconducting and superconducting industries. The Group-VB nitride VN, which exhibits enhanced ductility, is a fundamental component in superhard and tough nanostructured hard coatings. In this thesis, I investigate the lattice dynamics responsible for controlling superconductivity and electrical conductivities in Group-IVB nitrides and elasticity and structural stability of the NaCl-structure Group-VB nitride VN. Our group has already synthesized high-quality epitaxial TiN, HfN, and CeN layers on MgO(001) substrates. By irradiating the growth surface with high ion fluxes at energies below the bulk lattice-atom displacement threshold, dense epitaxial single crystal TM nitride films with extremely smooth surfaces have been grown using ultra-high vacuum magnetically-unbalanced magnetron sputter deposition. Using this approach, I completed the Group-IVB nitride series by growing epitaxial ZrN/MgO(001) films and then grew Group-VB nitride VN films epitaxially on MgO(001), MgO(011), and MgO(111). The combination of high-resolution x-ray diffraction (XRD) reciprocal lattice maps (RLMs), high-resolution cross-sectional transmission electron microscopy (HR-XTEM), and selected-area electron diffraction (SAED) show that single-crystal stoichiometric ZrN films grown at 450 °C are epitaxially oriented cube-on-cube with respect to their MgO(001) substrates, (001) ZrN||(001)MgO and [100]ZrN||[100]MgO. The layers are essentially fully relaxed with a lattice parameter of 0.4575 nm. X-ray reflectivity results reveal that

  4. Encapsulated solid phase epitaxy of a Ge quantum well embedded in an epitaxial rare earth oxide.

    PubMed

    Laha, Apurba; Bugiel, E; Jestremski, M; Ranjith, R; Fissel, A; Osten, H J

    2009-11-25

    An efficient method based on molecular beam epitaxy has been developed to integrate an epitaxial Ge quantum well buried into a single crystalline rare earth oxide. The monolithic heterostructure comprised of Gd2O3-Ge-Gd2O3 grown on an Si substrate exhibits excellent crystalline quality with atomically sharp interfaces. This heterostructure with unique structural quality could be used for novel nanoelectronic applications in quantum-effect devices such as nanoscale transistors with a high mobility channel, resonant tunneling diode/transistors, etc. A phenomenological model has been proposed to explain the epitaxial growth process of the Ge layer under oxide encapsulation using a solid source molecular beam epitaxy technique. PMID:19875877

  5. Optimum filter selection for Dual Energy X-ray Applications through Analytical Modeling

    NASA Astrophysics Data System (ADS)

    Koukou, V.; Martini, N.; Michail, C.; Sotiropoulou, P.; Kalyvas, N.; Kandarakis, I.; Nikiforidis, G.; Fountos, G.

    2015-09-01

    In this simulation study, an analytical model was used in order to determine the optimal acquisition parameters for a dual energy breast imaging system. The modeled detector system, consisted of a 33.91mg/cm2 Gd2O2S:Tb scintillator screen, placed in direct contact with a high resolution CMOS sensor. Tungsten anode X-ray spectra, filtered with various filter materials and filter thicknesses were examined for both the low- and high-energy beams, resulting in 3375 combinations. The selection of these filters was based on their K absorption edge (K-edge filtering). The calcification signal-to-noise ratio (SNRtc) and the mean glandular dose (MGD) were calculated. The total mean glandular dose was constrained to be within acceptable levels. Optimization was based on the maximization of the SNRtc/MGD ratio. The results showed that the optimum spectral combination was 40kVp with added beam filtration of 100 μm Ag and 70kVp Cu filtered spectrum of 1000 μm for the low- and high-energy, respectively. The minimum detectable calcification size was 150 μm. Simulations demonstrate that this dual energy X-ray technique could enhance breast calcification detection.

  6. Product energy partitioning in the decomposition of state-selectively excited HOOH and HOOD

    SciTech Connect

    Rizzo, T.R.; Hayden, C.C.; Crim, F.F.

    1985-01-01

    Direct excitation of overtone vibrations is a highly selective energy-deposition technique which permits detailed studies of unimolecular reaction dynamics when combined with laser-induced fluorescence for state-resolved product detection. Applying this method to hydrogen peroxide and its partially deuterated analogue (HOOD) provides vibrational overtone excitation spectra of the molecules in the region of the nu = 6 level of the OH stretching vibration and determines the OH or OD product rotational energy distributions. Partially deuterating HOOH produces a dramatic change in the shape of the pure stretching transition while other features, which apparently involve the deuterated portion of the molecule, move to lower frequencies. The decomposition products are formed in rotational states up to the limit of the available energy but have a markedly non-thermal distribution, with the populations decreasing sharply at high rotational levels. Detecting the OD fragment following excitation of the OH stretching transition in the parent molecule reveals an energy disposal pattern which is similar to that in the undeuterated case.

  7. Internal energy selection in vacuum ultraviolet photoionization of ethanol and ethanol dimers

    NASA Astrophysics Data System (ADS)

    Bodi, Andras

    2013-10-01

    Internal energy selected ethanol monomer and ethanol dimer ions were prepared by threshold photoionization of a supersonic molecular beam seeded with ethanol. The dissociative photoionization processes of the monomer, the lowest-energy CH3-loss channel of the dimer, and the fragmentation of larger clusters were found to be disjunct from the ionization onset to about 12 eV, which made it possible to determine the 0 K appearance energy of C-C bond breaking in the H-donor unit of the ethanol dimer cation as 9.719 ± 0.004 eV. This reaction energy is used together with ab initio calculations in a thermochemical cycle to determine the binding energy change from the neutral ethanol dimer to a protonated ethanol-formaldehyde adduct. The cycle also shows general agreement between experiment, theory, and previously published enthalpies of formation. The role of the initial ionization site, or rather the initial photoion state, is also discussed based on the dimer breakdown diagram and excited state calculations. There is no evidence for isolated state behavior, and the ethanol dimer dissociative photoionization processes appear to be governed by statistical theory and the ground electronic state of the ion. In the monomer breakdown diagram, the smoothly changing branching ratio between H and CH3 loss is at odds with rate theory predictions, and shows that none of the currently employed few-parameter rate models, appropriate for experimental rate curve fitting, yields a correct description for this process in the experimental energy range.

  8. Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells

    NASA Astrophysics Data System (ADS)

    Takeda, Yasuhiko; Ichiki, Akihisa; Kusano, Yuya; Sugimoto, Noriaki; Motohiro, Tomoyoshi

    2015-09-01

    Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs) and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs.

  9. The 1992 Pacific Northwest Residential Energy Survey : Phase 1 : Book 5 : Selected Crosstabulations.

    SciTech Connect

    United States. Bonneville Power Administration. End-Use Research Section; Applied Management & Planning Group

    1993-06-01

    This book constitutes a portion of the primary documentation for the 1992 Pacific Northwest Residential Energy Survey, Phase I. The complete 33-volume set of primary documentation provides information needed by energy analysts and interpreters with respect to planning, execution, data collection, and data management of the PNWRES92-I process. Thirty of these volumes are devoted to different ``views`` of the data themselves, with each view having a special purpose or interest as its focus. Analyses and interpretations of these data will be the subjects of forthcoming publications. Conducted during the late summer and fall months of 1992, PNWRES92-I had the over-arching goal of satisfying basic requirements for a variety of information about the stock of residential units in Bonneville`s service region. Surveys with a similar goal were conducted in 1979 and 1983. Selected crosstabulations for the Pacific Northwest Region are recorded. ``Selected crosstabulations`` refers to a set of nine survey items of wide interest (Dwelling Type, Ownership Type, Year-of-Construction, Dwelling Size, Primary Space-Heating Fuel, Primary Water-Heating Fuel, Household Income for 1991, Utility Type, and Space-Heating Fuels: Systems and Equipment) that were crosstabulated among themselves.

  10. Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells

    SciTech Connect

    Takeda, Yasuhiko Sugimoto, Noriaki; Ichiki, Akihisa; Kusano, Yuya; Motohiro, Tomoyoshi

    2015-09-28

    Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs) and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs.

  11. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    SciTech Connect

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu; Zuo, Jianmin; Braun, Paul V.; Sardela, Mauro; Balaji, Manavaimaran; Lourdudoss, Sebastian; Sun, Yan-Ting

    2015-12-14

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured Ga{sub x}In{sub 1−x}P (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.

  12. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu; Sardela, Mauro; Zuo, Jianmin; Balaji, Manavaimaran; Lourdudoss, Sebastian; Sun, Yan-Ting; Braun, Paul V.

    2015-12-01

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured GaxIn1-xP (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.

  13. Epitaxial solar-cell fabrication, phase 2

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Kressel, H.

    1977-01-01

    Dichlorosilane (SiH2Cl2) was used as the silicon source material in all of the epitaxial growths. Both n/p/p(+) and p/n/n(+) structures were studied. Correlations were made between the measured profiles and the solar cell parameters, especially cell open-circuit voltage. It was found that in order to obtain consistently high open-circuit voltage, the epitaxial techniques used to grow the surface layer must be altered to obtain very abrupt doping profiles in the vicinity of the junction. With these techniques, it was possible to grow reproducibly both p/n/n(+) and n/p/p(+) solar cell structures having open-circuit voltages in the 610- to 630-mV range, with fill-factors in excess of 0.80 and AM-1 efficiencies of about 13%. Combinations and comparisons of epitaxial and diffused surface layers were also made. Using such surface layers, we found that the blue response of epitaxial cells could be improved, resulting in AM-1 short-circuit current densities of about 30 mA/cm sq. The best cells fabricated in this manner had AM-1 efficiency of 14.1%.

  14. Epitaxy of semiconductor-superconductor nanowires.

    PubMed

    Krogstrup, P; Ziino, N L B; Chang, W; Albrecht, S M; Madsen, M H; Johnson, E; Nygård, J; Marcus, C M; Jespersen, T S

    2015-04-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and seems to solve the soft-gap problem in superconducting hybrid structures. PMID:25581626

  15. Assessing risk to birds from industrial wind energy development via paired resource selection models.

    PubMed

    Miller, Tricia A; Brooks, Robert P; Lanzone, Michael; Brandes, David; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Duerr, Adam; Katzner, Todd

    2014-06-01

    When wildlife habitat overlaps with industrial development animals may be harmed. Because wildlife and people select resources to maximize biological fitness and economic return, respectively, we estimated risk, the probability of eagles encountering and being affected by turbines, by overlaying models of resource selection for each entity. This conceptual framework can be applied across multiple spatial scales to understand and mitigate impacts of industry on wildlife. We estimated risk to Golden Eagles (Aquila chrysaetos) from wind energy development in 3 topographically distinct regions of the central Appalachian Mountains of Pennsylvania (United States) based on models of resource selection of wind facilities (n = 43) and of northbound migrating eagles (n = 30). Risk to eagles from wind energy was greatest in the Ridge and Valley region; all 24 eagles that passed through that region used the highest risk landscapes at least once during low altitude flight. In contrast, only half of the birds that entered the Allegheny Plateau region used highest risk landscapes and none did in the Allegheny Mountains. Likewise, in the Allegheny Mountains, the majority of wind turbines (56%) were situated in poor eagle habitat; thus, risk to eagles is lower there than in the Ridge and Valley, where only 1% of turbines are in poor eagle habitat. Risk within individual facilities was extremely variable; on average, facilities had 11% (SD 23; range = 0-100%) of turbines in highest risk landscapes and 26% (SD 30; range = 0-85%) of turbines in the lowest risk landscapes. Our results provide a mechanism for relocating high-risk turbines, and they show the feasibility of this novel and highly adaptable framework for managing risk of harm to wildlife from industrial development. PMID:24405249

  16. Growth and characterization of epitaxial silver indium diselenide

    NASA Astrophysics Data System (ADS)

    Pena Martin, Pamela

    Photovoltaics (solar cells) are a key player in the renewable energy frontier, and will become increasingly important as their cost per watt continues to drop, especially if fossil fuel costs increase. One particularly promising photovoltaic technology is based on chalcopyrite-structure semiconductors. Within the chalcopyrite compounds the highest efficiency thin film solar cell absorber material to date is Cu(In,Ga)Se2 (CIGS). While current efficiency records are over 21% for single-junction cells, there is still room for improvement. Replacing some of the Cu with Ag has been shown to be beneficial in CIGS devices. However, the Ag- containing chalcopyrites are still relatively unknown in terms of their growth mechanism, energetics, and surface atomic and electronic properties. These are best inferred through study of epitaxial films, yet they have little mention in literature and have not been the subject of a detailed study. This work describes the growth of epitaxial AgInSe2 (AIS) on GaAs substrates, studying the morphology, structure, and surface properties to understand how growth takes place. It also seeks to experimentally determine the surface electronic and atomic structure at the atomic scale to gain insight into the part of the material that forms the heterojunction that collects photon energy in the device. Finally, this work seeks to compare and contrast these findings with what is known about CIGS to determine where similarities and, more importantly, the differences may lie. This study has found that single phase tetragonal AIS can be epitaxially grown on GaAs, as illustrated by x-ray diffraction (XRD), transmission electron microscope (TEM), and surface morphology data. Like CIGS, the close packed polar (112) planes have the lowest energy. The morphology points to a difference in step dynamics, leading to less faceted, straight edged island shapes compared to CIGS. Epitaxial temperature as a function of growth direction shows a different trend in

  17. Argon-assisted growth of epitaxial graphene on Cu(111)

    NASA Astrophysics Data System (ADS)

    Robinson, Zachary R.; Tyagi, Parul; Mowll, Tyler R.; Ventrice, Carl A., Jr.; Hannon, James B.

    2012-12-01

    The growth of graphene by catalytic decomposition of ethylene on Cu(111) in an ultrahigh vacuum system was investigated with low-energy electron diffraction, low-energy electron microscopy, and atomic force microscopy. Attempts to form a graphene overlayer using ethylene at pressures as high as 10 mTorr and substrate temperatures as high as 900 ∘C resulted in almost no graphene growth. By using an argon overpressure, the growth of epitaxial graphene on Cu(111) was achieved. The suppression of graphene growth without the use of an argon overpressure is attributed to Cu sublimation at elevated temperatures. During the initial stages of growth, a random distribution of rounded graphene islands is observed. The predominant rotational orientation of the islands is within ±1∘ of the Cu(111) substrate lattice.

  18. Shape transition and dislocation nucleation in strained epitaxial islands

    NASA Astrophysics Data System (ADS)

    Trushin, Oleg; Granato, Enzo; Ying, See Chen; Jalkanen, Jari; Ala-Nissila, Tapio

    2004-03-01

    We study numerically the equilibrium shape and dislocation nucleation of strained epitaxial islands with a two-dimensional atomistic model, using interatomic potentials of Lennard-Jones type. Relaxation processes from coherent to incoherent states for different transition paths are studied using a systematic saddle point and transition path search based on the Nudged Elastic Band method. We obtain the phase diagram for island shapes, as a function of island size and lattice misfit with the substrate, as well the energy barrier for first order shape transitions. The minimum energy barrier and transition path for dislocation nucleation is also obtained for different island shapes. It is found that dislocations can nucleate spontaneously at the edges of the adsorbate-substrate interface above a critical size.

  19. Probing cosmology with weak lensing selected clusters. II. Dark energy and f(R) gravity models

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Hamana, Takashi; Yoshida, Naoki

    2016-02-01

    Ongoing and future wide-field galaxy surveys can be used to locate a number of clusters of galaxies with cosmic shear measurement alone. We study constraints on cosmological models using statistics of weak lensing selected galaxy clusters. We extend our previous theoretical framework to model the statistical properties of clusters in variants of cosmological models as well as in the standard ΛCDM model. Weak lensing selection of clusters does not rely on conventional assumptions such as the relation between luminosity and mass and/or hydrostatic equilibrium, but a number of observational effects compromise robust identification. We use a large set of realistic mock weak lensing catalogs as well as analytic models to perform a Fisher analysis and make a forecast for constraining two competing cosmological models, the wCDM model and f(R) model proposed by Hu and Sawicki (2007, Phys. Rev. D, 76, 064004), with our lensing statistics. We show that weak lensing selected clusters are excellent probes of cosmology when combined with cosmic shear power spectrum even in the presence of galaxy shape noise and masked regions. With the information from weak lensing selected clusters, the precision of cosmological parameter estimates can be improved by a factor of ˜1.6 and ˜8 for the wCDM model and f(R) model, respectively. The Hyper Suprime-Cam survey with sky coverage of 1250 degrees squared can constrain the equation of state of dark energy w0 with a level of Δw0 ˜ 0.1. It can also constrain the additional scalar degree of freedom in the f(R) model with a level of |fR0| ˜ 5 × 10-6, when constraints from cosmic microwave background measurements are incorporated. Future weak lensing surveys with sky coverage of 20000 degrees squared will place tighter constraints on w0 and |fR0| even without cosmic microwave background measurements.

  20. Formation of epitaxial Co{sub 1-x}Ni{sub x}Si{sub 2} nanowires on thin-oxide-capped (001)Si

    SciTech Connect

    Li, Wun-Shan; Lee, Chung-Yang; Liu, Chun-Yi; Chu, Yen-Chang; Chen, Sheng-Yu; Chen, Lih-Juann

    2013-02-28

    Epitaxial Co{sub 1-x}Ni{sub x}Si{sub 2} alloy nanowires have been grown on (001)Si substrates by a combination of reactive deposition epitaxy and oxide-mediated epitaxy. The thin native oxide layer can serve as a diffusion barrier to diminish the flux of metal atoms from the top of oxide layer to Si surface and promote the growth of nanowires. The elemental distributions of Ni and Co in nanowires were determined by energy dispersive spectroscopy in a transmission electron microscope. The factors that cause the distributions of Ni and Co in nanowires were discussed.

  1. Substrate Preparations in Epitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; George, M. A.

    2000-01-01

    Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. Annealing-temperature dependence of ZnO substrates was studied. ZnO films grown on sapphire substrates have also been investigated for comparison purposes and the annealing temperature of A1203 substrates is 1000 C. Substrates and films were characterized using photoluminescence (PL) spectrum, x-ray diffraction, atomic force microscope, energy dispersive spectrum, and electric transport measurements. It has been found that the ZnO film properties were different when films were grown on the two polarity surfaces of ZnO substrates and the A1203 substrates. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of homoepitaxial ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  2. Point defects in epitaxial silicene on Ag(111) surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Hongsheng; Feng, Haifeng; Du, Yi; Chen, Jian; Wu, Kehui; Zhao, Jijun

    2016-06-01

    Silicene, a counterpart of graphene, has achieved rapid development due to its exotic electronic properties and excellent compatibility with the mature silicon-based semiconductor technology. Its low room-temperature mobility of ∼100 cm2 V‑1 s‑1, however, inhibits device applications such as in field-effect transistors. Generally, defects and grain boundaries would act as scattering centers and thus reduce the carrier mobility. In this paper, the morphologies of various point defects in epitaxial silicene on Ag(111) surfaces have been systematically investigated using first-principles calculations combined with experimental scanning tunneling microscope (STM) observations. The STM signatures for various defects in epitaxial silicene on Ag(111) surface are identified. In particular, the formation energies of point defects in Ag(111)-supported silicene sheets show an interesting dependence on the superstructures, which, in turn, may have implications for controlling the defect density during the synthesis of silicene. Through estimating the concentrations of various point defects in different silicene superstructures, the mystery of the defective appearance of \\sqrt{13}× \\sqrt{13} and 2\\sqrt{3}× 2\\sqrt{3} silicene in experiments is revealed, and 4 × 4 silicene sheet is thought to be the most suitable structure for future device applications.

  3. Development of Crystal Al MKIDs by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Naruse, M.; Sekimoto, Y.; Noguchi, T.; Miyachi, A.; Nitta, T.; Uzawa, Y.

    2011-11-01

    We report here the effect of film qualities in superconductors on the properties of Microwave Kinetic Inductance Detectors (MKIDs). The sensitivity of MKIDs between crystal aluminum films and amorphous aluminum films is compared. The good quality and crystallized aluminum films have been prepared by using molecular beam epitaxy. We have confirmed that epitaxial Al(111) films were grown on Si(111) substrates with X-ray diffraction and in-situ reflection high-energy electron diffraction measurements. The amorphous aluminum films on the Si(111) wafers have been deposited by electron beam evaporation. We have measured transmission losses of MKIDs, noise spectrum and relaxation time against optical pulses, changing MKIDs' bath temperature from 0.11 K to 0.55 K in a dilution refrigerator. Despite of the improvement in normal resistivity, the quasiparticle decay time of both films are equivalent and 450 μs at 0.11 K. The electrical noise equivalent power of the both MKIDs are also comparable and around 10^{-17} W/sqrt{Hz}. Fabrication details and performance data of both films are presented.

  4. Structure and transport of topological insulators on epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Kally, James; Reifsnyder Hickey, Danielle; Lin, Yu-Chuan; Richardella, Anthony; Lee, Joon Sue; Robinson, Joshua; Mkhoyan, K. Andre; Samarth, Nitin

    Recent advancements in spintronics have shown that a class of materials, topological insulators (TI), can be used as a spin-current generator or detector. Topological insulators have protected surface states with the electron's spin locked to its momentum. To access these surface states, (Bi, Sb)2Te3 can be grown by molecular beam epitaxy to have the Fermi energy near the Dirac point so that transport occurs only through the spin-dependent surface states. Graphene is another 2D material of great interest for spintronics because of its very long spin diffusion length. This is an ideal material to act as a spin channel in devices. The van der Waals nature of the growth exhibited by 2D materials such as (Bi, Sb)2Te3 and graphene allows heterostructures to be formed despite the large lattice mismatch. We explore the structure and transport of (Bi, Sb)2Te3 grown on epitaxial graphene on 6H-SiC substrates for spintronic applications. This work was supported in part by C-SPIN and LEAST, two of the six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  5. Dewetting of Epitaxial Silver Film on Silicon by Thermal Annealing

    NASA Astrophysics Data System (ADS)

    Sanders, Charlotte E.; Kellogg, Gary L.; Shih, C.-K.

    2013-03-01

    It has been shown that noble metals can grow epitaxially on semiconducting and insulating substrates, despite being a non-wetting system: low temperature deposition followed by room temperature annealing leads to atomically flat film morphology. However, the resulting metastable films are vulnerable to dewetting, which has limited their utility for applications under ambient conditions. The physics of this dewetting is of great interest but little explored. We report on an investigation of the dewetting of epitaxial Ag(111) films on Si(111) and (100). Low energy electron microscopy (LEEM) shows intriguing evolution in film morphology and crystallinity, even at temperatures below 100oC. On the basis of these findings, we can begin to draw compelling inferences about film-substrate interaction and the kinetics of dewetting. Financial support is from NSF, DGE-0549417 and DMR-0906025. This work was performed, in part, at the Center for Integrated Nanotechnologies, User Facility operated for the U.S. DOE Office of Science. Sandia National Lab is managed and operated by Sandia Corp., a subsidiary of Lockheed Martin Corp., for the U.S. DOE's National Nuclear Security Administration under DE-AC04-94AL85000.

  6. GaAs surface cleaning by thermal oxidation and sublimation in molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Saito, Junji; Nanbu, Kazuo; Ishikawa, Tomonori; Kondo, Kazuo

    1988-01-01

    GaAs surface cleaning by thermal oxidation and sublimation prior to molecular-beam-epitaxial growth has been investigated as a means of reducing the carrier depletion at the substrate and epitaxial layer interface. The carrier depletion between the substrate and epitaxial films, measured by a C-V carrier profiling technique, was shown to decrease significantly with an increase in the thickness of the thermal oxidation. The concentration of carbon contamination near the substrate-epitaxial interface was measured using secondary ion mass spectroscopy. The carbon concentration correlated very well with the carrier depletion. Therefore, the main origin of the carrier depletion is believed to be the carbon concentration of the initial growth surface. Based on these results, the thermal oxidation and sublimation of a semi-insulating GaAs substrate was successfully applied to improve the mobility and sheet concentration of the two-dimensional electron gas in selectively doped GaAs/N-Al0.3Ga0.7As heterostructures with very thin GaAs buffer layers.

  7. Performance optimization of total momentum filtering double-resonance energy selective electron heat pump

    NASA Astrophysics Data System (ADS)

    Ding, Ze-Min; Chen, Lin-Gen; Ge, Yan-Lin; Sun, Feng-Rui

    2016-04-01

    A theoretical model for energy selective electron (ESE) heat pumps operating with two-dimensional electron reservoirs is established in this study. In this model, a double-resonance energy filter operating with a total momentum filtering mechanism is considered for the transmission of electrons. The optimal thermodynamic performance of the ESE heat pump devices is also investigated. Numerical calculations show that the heating load of the device with two resonances is larger, whereas the coefficient of performance (COP) is lower than the ESE heat pump when considering a single-resonance filter. The performance characteristics of the ESE heat pumps in the total momentum filtering condition are generally superior to those with a conventional filtering mechanism. In particular, the performance characteristics of the ESE heat pumps considering a conventional filtering mechanism are vastly different from those of a device with total momentum filtering, which is induced by extra electron momentum in addition to the horizontal direction. Parameters such as resonance width and energy spacing are found to be associated with the performance of the electron system.

  8. Characterization and assessment of selected solar thermal energy systems for residential and process heat applications

    SciTech Connect

    D'Alessio, Gregory J.; Blaustein, Robert P.

    1980-09-01

    The results of studies of seven solar thermal energy applications are presented. Five of these are residential applications: space heating-active liquid, space heating-active air, domestic hot water-active, space heating-passive, and space heating and cooling- active liquid. Denver, Colorado, was selected as a representative location for each of the above applications. The remaining two applications produce industrial process heat: a flat-plate collector system producing 50/sup 0/C to 100/sup 0/C hot water for a commercial laundry in Indianapolis, Indiana; and a concentrating collector system that could produce 100/sup 0/C to 300/sup 0/C process heat adequate to the needs of a pulp mill in Madison, Wisconsin. For each application, a representative system model and preliminary designs of major system elements were established. Then the following data were generated: annual useful energy produced, type and weight of the basic component materials, environmental residuals generated during system operation, and land and water requirements. These data were generalized for other TASE study purposes by expressing them as quantities per 10/sup 15/ Btu of useful energy. The system characteristics are discussed and the environmental impacts are evaluated. To allow the reader to estimate system performance at other geographic locations than those studied, insolation and other pertinent data are provided.

  9. Auger, zero-energy photoelectron, coincidence spectroscopy (AZEPECO): Chemical-site-selective Auger electron spectroscopy

    SciTech Connect

    Lee, K.; Ji, D.; Hanson, D.M.; Hulbert, S.L.; Kuiper, P.

    1993-12-31

    The Auger electron spectrum associated with decay of a core-hole on the terminal nitrogen and that associated with the central nitrogen of nitrous oxide, N{sub 2}O, are obtained individually through the use of a coincidence technique. Specifically, each of the two Auger electron spectra is obtained by detection of Auger electrons in coincidence with near zero energy (threshold) photoelectrons at the respective ionization thresholds. These zero energy electrons serve to identify the core-ionization continuum associated with the different Auger electrons. The salient features of the experimental spectra are in good agreement with theoretical calculations. The low counting rate generally associated with coincidence experiments, especially in the gas phase, is not encountered because the low energy electrons are collected over a 4{pi} solid angle. Also, velocity discrimination is accomplished by a spatial filter rather than by time-of-flight to utilize the maximum duty cycle of the synchrotron source. These data are believed to be the first examples of chemical-site-selective molecular Auger spectra.

  10. Predicting and mapping potential Whooping Crane stopover habitat to guide site selection for wind energy projects.

    PubMed

    Belaire, J Amy; Kreakie, Betty J; Keitt, Timothy; Minor, Emily

    2014-04-01

    Migratory stopover habitats are often not part of planning for conservation or new development projects. We identified potential stopover habitats within an avian migratory flyway and demonstrated how this information can guide the site-selection process for new development. We used the random forests modeling approach to map the distribution of predicted stopover habitat for the Whooping Crane (Grus americana), an endangered species whose migratory flyway overlaps with an area where wind energy development is expected to become increasingly important. We then used this information to identify areas for potential wind power development in a U.S. state within the flyway (Nebraska) that minimize conflicts between Whooping Crane stopover habitat and the development of clean, renewable energy sources. Up to 54% of our study area was predicted to be unsuitable as Whooping Crane stopover habitat and could be considered relatively low risk for conflicts between Whooping Cranes and wind energy development. We suggest that this type of analysis be incorporated into the habitat conservation planning process in areas where incidental take permits are being considered for Whooping Cranes or other species of concern. Field surveys should always be conducted prior to construction to verify model predictions and understand baseline conditions. PMID:24372936

  11. Influence of epitaxial strain on the magnetic properties of (110) SmFe{sub 2} thin film

    SciTech Connect

    Fuente, C. de la; Arnaudas, J. I.; Ciria, M.; Moral, A. del; Dufour, C.; Dumesnil, K.

    2009-03-30

    A novel nonlinear influence of the magnetoelastic energy because of the epitaxial strain allows us to explain the spontaneous magnetization and the cubic magnetostriction of a molecular-beam-epitaxy-grown SmFe{sub 2} thin film. Under this scope, new crystal-field parameters A{sub 4} and A{sub 6} and exchange coupling parameter {lambda}{sub ex} have been found. These new parameters could account for the change of the energy balance in the spin reorientation transition and explain the softening it has with respect to the bulk case.

  12. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in

  13. Method of fabricating low-dislocation-density epitaxially-grown films with textured surfaces

    DOEpatents

    Li, Qiming; Wang, George T

    2015-01-13

    A method for forming a surface-textured single-crystal film layer by growing the film atop a layer of microparticles on a substrate and subsequently selectively etching away the microparticles to release the surface-textured single-crystal film layer from the substrate. This method is applicable to a very wide variety of substrates and films. In some embodiments, the film is an epitaxial film that has been grown in crystallographic alignment with respect to a crystalline substrate.

  14. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    PubMed

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate. PMID:26161636

  15. State-selective charge transfer in ion-ion interactions at intermediate and high energies

    NASA Astrophysics Data System (ADS)

    Samanta, R.; Purkait, M.; Mandal, C. R.

    2010-12-01

    The total and state-selective cross sections for charge transfer in H++He+, He2++Li2+, He2++He+ and Li3++Li2+ collisions were calculated using the boundary corrected continuum intermediate state approximation with an energy range of 30-2000 keV amu-1. In this model, distortion in the final channel related to the Coulomb continuum states of the projectile ion and the electron in the field of the residual target is included. The sub-shell distribution of total charge transfer cross section has been reported in tabular form. Comparison of the results is made with those of other recent theoretical investigations and experimental findings. The present results are found to be in very good agreement with the available experimental findings.

  16. Exploring the optimal performances of irreversible single resonance energy selective electron refrigerators

    NASA Astrophysics Data System (ADS)

    Zhou, Junle; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2016-05-01

    Applying finite-time thermodynamics (FTT) and electronic transport theory, the optimal performances of irreversible single resonance energy selective electron (ESE) refrigerator are analyzed. The effects of heat leakage between two electron reservoirs on optimal performances are discussed. The influences of system operating parameters on cooling load, coefficient of performance (COP), figure of merit and ecological function are demonstrated using numerical examples. Comparative performance analyses among different objective functions show that performance characteristics at maximum ecological function and maximum figure of merit are of great practical significance. Combining the two optimization objectives of maximum ecological function and maximum figure of merit together, more specific optimal ranges of cooling load and COP are obtained. The results can provide some advices to the design of practical electronic machine systems.

  17. Free-standing electronic character of monolayer MoS2 in van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, HoKwon; Dumcenco, Dumitru; Frégnaux, Mathieu; Benayad, Anass; Chen, Ming-Wei; Kung, Yen-Cheng; Kis, Andras; Renault, Olivier

    2016-08-01

    We have evaluated as-grown Mo S2 crystals, epitaxially grown on a monocrystalline sapphire by chemical vapor deposition (CVD), with direct electronic band-structure measurements by energy-filtered k -space photoelectron emission microscopy performed with a conventional laboratory vacuum ultraviolet He I light source under off-normal illumination. The valence states of the epitaxial Mo S2 were mapped in momentum space down to 7 eV below the Fermi level. Despite the high nucleation density within the imaged area, the CVD Mo S2 possesses an electronic structure similar to the free-standing monolayer Mo S2 single crystal, and it exhibits hole effective masses of 2.41 ±0.05 m0 , and 0.81 ±0.05 m0 , respectively, at Γ and K high-symmetry points that are consistent with the van der Waals epitaxial growth mechanism. This demonstrates the excellent ability of the Mo S2 CVD on sapphire to yield a highly aligned growth of well-stitched grains through epitaxial registry with a strongly preferred crystallographic orientation.

  18. The hydride vapor phase epitaxy of GaN on silicon covered by nanostructures

    NASA Astrophysics Data System (ADS)

    Jahn, U.; Musolino, M.; Lähnemann, J.; Dogan, P.; Fernández Garrido, S.; Wang, J. F.; Xu, K.; Cai, D.; Bian, L. F.; Gong, X. J.; Yang, H.

    2016-06-01

    GaN several tens of μm thick has been deposited on a silicon substrate using a two-step hydride vapor phase epitaxy (HVPE) process. The substrates were covered by AlN layers and GaN nanostructures grown by plasma-assisted molecular-beam epitaxy. During the first low-temperature (low-T) HVPE step, stacking faults (SF) form, which show distinct luminescence lines and stripe-like features in the cathodoluminescence images of the cross-section of the layers. These cathodoluminescence features provide an insight into the growth process. During a second high-temperature (high-T) step, the SFs disappear, and the luminescence of this part of the GaN layer is dominated by the donor-bound exciton. For templates consisting of both a thin AlN buffer and GaN nanostructures, the incorporation of silicon into the GaN grown by HVPE is not observed. Moreover, the growth mode of the (high-T) HVPE step depends on the specific structure of the AlN/GaN template, where in the first case, epitaxy is dominated by the formation of slowly growing facets, while in the second case, epitaxy proceeds directly along the c-axis. For templates without GaN nanostructures, cathodoluminescence spectra excited close to the Si/GaN interface show a broadening toward higher energies, indicating the incorporation of silicon at a high dopant level.

  19. Correlations between coercivity and exchange bias in epitaxial NiO-Co(110) bilayers

    NASA Astrophysics Data System (ADS)

    Dubourg, S.; Bobo, J. F.; Ousset, J. C.; Warot, B.; Snoeck, E.

    2002-05-01

    We have sputtered epitaxial NiO-Co samples on MgO (110) substrates. NiO epitaxially grows on the isostructural fcc MgO substrate but, due to surface energy minimization, its surface morphology is saw-tooth-like with terraces aligned along [001] direction and either (100) or (010) termination planes. The obtained nanostructures are 80-200 Å wide facets with micron-size length. Subsequently deposited Co layers adopt a fcc structure conformal with the NiO nanofacets. It consists thus in a set of connected nanostripes as evidenced by complementary structural characterizations. Shape anisotropy induces a strong easy axis along the stripe edges [001] and a hard axis along the [-110] MgO direction. Magnetization loops recorded along [001] have a total squareness. Thermal treatments were done in zero field for investigating the NiO/Co exchange thermal stability and activation. We observed thermally assisted exchange bias field (HE) variations on 1000 Oe field treated samples for various temperatures between 300 K and 400 K. Similar experiments were also performed on polycrystalline bilayers for comparison. For all samples (polycrystalline and epitaxial), thermal treatments induce a HE raise with a kinetics related to the anneal temperature. However, while the coercive field HC of epitaxial samples is significantly reduced, one of the polycrystalline samples remains constant. The ferromagnetic domain wall pinning at antiferromagnetic antiphase boundaries explains both results.

  20. Investigation of epitaxial silicon layers as a material for radiation hardened silicon detectors

    SciTech Connect

    Li, Z.; Eremin, V.; Ilyashenko, I.; Ivanov, A.; Verbitskaya, E.; CERN RD-48 ROSE Collaboration

    1997-12-01

    Epitaxial grown thick layers ({ge} 100 micrometers) of high resistivity silicon (Epi-Si) have been investigated as a possible candidate of radiation hardened material for detectors for high-energy physics. As grown Epi-Si layers contain high concentration (up to 2 {times} 10{sup 12} cm{sup {minus}3}) of deep levels compared with that in standard high resistivity bulk Si. After irradiation of test diodes by protons (E{sub p} = 24 GeV) with a fluence of 1.5 {times} 10{sup 11} cm{sup {minus}2}, no additional radiation induced deep traps have been detected. A reasonable explanation is that there is a sink of primary radiation induced defects (interstitial and vacancies), possibly by as-grown defects, in epitaxial layers. The ``sinking`` process, however, becomes non-effective at high radiation fluences (10{sup 14} cm{sup {minus}2}) due to saturation of epitaxial defects by high concentration of radiation induced ones. As a result, at neutron fluence of 1 {times} 10{sup 14} cm{sup {minus}2} the deep level spectrum corresponds to well-known spectrum of radiation induced defects in high resistivity bulk Si. The net effective concentration in the space charge region equals to 3 {times} 10{sup 12} cm{sup {minus}3} after 3 months of room temperature storage and reveals similar annealing behavior for epitaxial as compared to bulk silicon.

  1. Investigation of epitaxial silicon layers as a material for radiation hardened silicon detectors

    SciTech Connect

    Li, Z.; Eremin, V.; Ilyashenko, I.; Ivanov, A.

    1997-11-01

    Epitaxial grown thick layers (>100 {mu}m) of high resistivity silicon (Epi-Si) have been investigated as a possible candidate of radiation hardened material for detectors for high-energy physics. As grown Epi-Si layers contain high concentration (up to 2{center_dot}10{sup 12} cm{sup {minus}3}) of deep levels compared with that in standard high resistivity bulk Si. After irradiation of test diodes by protons (E{sub p} = 24 GeV) with a fluence of 1.5{center_dot}10{sup 11} cm{sup {minus}2}, no additional radiation induced deep traps have been detected. A reasonable explanation is that there is a sink of primary radiation induced defects, in epitaxial layers. The {open_quotes}sinking{close_quotes} process, however, becomes non-effective at high radiation fluences (10{sup 14} cm{sup {minus}2}) due to saturation of epitaxial defects by high concentration of radiation induced ones. As a result, at neutron fluence of 1{center_dot}10{sup 14}cm{sup {minus}2} the deep level spectrum corresponds to well-known spectrum of radiation induced defects in high resistivity bulk Si. The net effective concentration in the space charge region equals to 3{center_dot}10{sup 12} cm{sup {minus}3} after 3 months of room temperature storage and reveals similar annealing behavior for epitaxial as compared to bulk silicon.

  2. A frequency selective bolometer camera for measuring millimeter spectral energy distributions

    NASA Astrophysics Data System (ADS)

    Logan, Daniel William

    2009-06-01

    Bolometers are the most sensitive detectors for measuring millimeter and submillimeter wavelength astrophysical signals. Cameras comprised of arrays of bolometers have already made significant contributions to the field of astronomy. A challenge for bolometer cameras is obtaining observations at multiple wavelengths. Traditionally, observing in multiple bands requires a partial disassembly of the instrument to replace bandpass filters, a task which prevents immediate spectral interrogation of a source. More complex cameras have been constructed to observe in several bands using beam splitters and dichroic filters, but the added complexity leads to physically larger instruments with reduced efficiencies. The SPEctral Energy Distribution camera (SPEED) is a new type of bolometer camera designed to efficiently observe in multiple wavebands without the need for excess bandpass filters and beam splitters. SPEED is a ground-based millimeter-wave bolometer camera designed to observe at 2.1, 1.3, 1.1, and 0.85 mm simultaneously. SPEED makes use of a new type of bolometer, the frequency selective bolometer (FSB), to observe all of the wavebands within each of the camera's four pixels. FSBs incorporate frequency selective dipole surfaces as absorbing elements allowing each detector to absorb a single, narrow band of radiation and pass all other radiation with low loss. Each FSB also contains a superconducting transition-edge sensor (TES) that acts as a sensitive thermistor for measuring the temperature of the FSB. This thesis describes the development of the SPEED camera and FSB detectors. The design of the detectors used in the instrument is described as well as the the general optical performance of frequency selective dipole surfaces. Laboratory results of both the optical and thermal properties of millimeter- wave FSBs are also presented. The SPEED instrument and its components are highlighted and the optical design of the optics which couple SPEED to the Heinrich Hertz

  3. Mass-selective soft-landing of protein assemblies with controlled landing energies.

    PubMed

    Mikhailov, Victor A; Mize, Todd H; Benesch, Justin L P; Robinson, Carol V

    2014-08-19

    Selection and soft-landing of bionanoparticles in vacuum is potentially a preparative approach to separate heterogeneous mixtures for high-resolution structural study or to deposit homogeneous materials for nanotechnological applications. Soft-landing of intact protein assemblies however remains challenging, due to the difficulties of manipulating these heavy species in mass-selective devices and retaining their structure during the experiment. We have developed a tandem mass spectrometer with the capability for controlled ion soft-landing and ex situ visualization of the soft-landed particles by means of transmission electron microscopy. The deposition conditions can be controlled by adjusting the kinetic energies of the ions by applying accelerating or decelerating voltages to a set of ion-steering optics. To validate this approach, we have examined two cage-like protein complexes, GroEL and ferritin, and studied the effect of soft-landing conditions on the method's throughput and the preservation of protein structure. Separation, based on mass-to-charge ratio, of holo- and apo-ferritin complexes after electrospray ionization enabled us to soft-land independently the separated complexes on a grid suitable for downstream transmission electron microscopy analysis. Following negative staining, images of the soft-landed complexes reveal that their structural integrity is largely conserved, with the characteristic central cavity of apoferritin, and iron core of holoferritin, surviving the phase transition from liquid to gas, soft-landing, and dehydration in vacuum. PMID:25026391

  4. SiC Homoepitaxy, Etching and Graphene Epitaxial Growth on SiC Substrates Using a Novel Fluorinated Si Precursor Gas (SiF4)

    NASA Astrophysics Data System (ADS)

    Rana, Tawhid; Chandrashekhar, M. V. S.; Daniels, Kevin; Sudarshan, Tangali

    2016-04-01

    Tetrafluorosilane (SiF4 or TFS), a novel precursor gas, has been demonstrated to perform three primary operations of silicon carbide-related processing: SiC etching, SiC epitaxial growth and graphene epitaxial growth. TFS etches SiC substrate vigorously in a H2 ambient by efficient Si removal from the surface, where SiC etch rate is a function of TFS gas concentration. In this SiC etching process, Si is removed by TFS and C is removed by H2. When propane is added to a H2 and TFS gas mixture, etching is halted and high-quality SiC epitaxy takes place in a Si droplet-free condition. TFS's ability to remove Si can also be exploited to grow epitaxial graphene in a controllable manner in an inert (Ar) ambient. Here, TFS enhances graphene growth by selective etching of Si from the SiC surface.

  5. Epitaxial growth of Ruddlesden-Popper Lan+1NinO3n+1 series using reactive molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, June Hyuk; Tung, I.-Cheng; Moyer, Jarrett; Luo, Guangfu; Chang, Seo Hyoung; Morgan, Dane; Hong, Hawoong; Schiffer, Peter; Fong, Dillon; Freeland, John

    2014-03-01

    We report the growth of single crystalline Lan+1NinO3n+1 epitaxial thin films using reactive molecular-beam epitaxy. Ruddlesden-Popper Lan+1NinO3n+1 compounds, consisting of LaO+ and NiO2- layers, have been considered a potential candidate for solid-oxide fuel cell cathodes and thermoelectrics. However, the growth of higher order Lan+1NinO3n+1 single crystals has not been possible so far. We utilize synchrotron x-ray diffraction at the Advanced Photon Source during layer?by?layer deposition together with density functional theory calculations to understand how LaO+ and NiO2- oxide layers re-arrange dynamically during growth. Using this layer re-arrangement, epitaxial La2NiO4, La3Ni2O7,andLaSUB>4Ni3O10 films on (001)-oriented SrTiO3 have been synthesized with the proper nickel valance state and structure. Here we will discuss the connection between structure and electrical transport properties. Work at the APS, Argonne is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  6. Conceptual framework for describing selected urban and community impacts of federal energy policies

    SciTech Connect

    Morris, F.A,; Marcus, A.A.; Keller, D.

    1980-06-01

    A conceptual framework is presented for describing selected urban and community impacts of Federal energy policies. The framework depends on a simple causal model. The outputs of the model are impacts, changes in the state of the world of particular interest to policymakers. At any given time, a set of determinants account for the state of the world with respect to an impact category. Application of the model to a particular impact category requires: establishing a definition and measure for the impact category and identifying the determinants of these impacts. Analysis of the impact of a particular policy requires the following: identifying the policy and its effects (as estimated by others), isolating any effects that themselves constitute an urban and community impact, identifying any effects that change the value of determinants, and describing the impact with reference to the new values of determinants. This report provides a framework for these steps. Three impacts addressed are: neighborhood stability, housing availability, and quality and availability of public services. In each chapter, a definition and measure for the impact are specified; its principal determinants are identified; how the causal model can be used to estimate impacts by applying it to three illustrative Federal policies (domestic oil price decontrol, building energy performance standards, and increased Federal aid for mass transit) is demonstrated. (MCW)

  7. Selected problems in experimental intermediate energy. Progress report, February 1, 1994--January 31, 1997

    SciTech Connect

    Mayes, B.W.; Hungerford, E.V.; Pinsky, L.S.

    1995-09-01

    A complete description of the research program of the intermediate energy group at the University of Houston may be found in previous progress reports, renewal proposals, and proposals to the various accelerator advisory committees. Recent documents are appended to this report and summaries of current research activities are presented in the next section. The objectives of the research program are to: (1) investigate selected, forefront problems in experimental intermediate energy physics; (2) educate students in this field of research; and, (3) develop the instrumentation necessary to undertake this experimental program. Generally, the research is designed to search for physical processes which cannot be explained by conventional models of elementary interactions. As one example, we use nuclear targets where the nucleus provides a many body environment of strongly interacting particles, and where one attempts to observe the perturbation of a known interaction by this environment. These effects, however, may be masked by the complexity of the many body problem and may be difficult to observe. Therefore, experiments of this type must be carefully chosen and analyzed for deviations from the more conventional models.

  8. Epitaxial Cu{sub 2}ZnSnS{sub 4} thin film on Si (111) 4° substrate

    SciTech Connect

    Song, Ning; Liu, Fangyang; Huang, Yidan; Hao, Xiaojing E-mail: xj.hao@unsw.edu.au; Green, Martin A.; Young, Matthew; Erslev, Pete; Harvey, Steven P.; Teeter, Glenn E-mail: xj.hao@unsw.edu.au; Wilson, Samual

    2015-06-22

    To explore the possibility of Cu{sub 2}ZnSnS{sub 4} (CZTS)/Si based tandem solar cells, the heteroepitaxy of tetragonal Cu{sub 2}ZnSnS{sub 4} thin films on single crystalline cubic Si (111) wafers with 4° miscut is obtained by molecular beam epitaxy. The X-ray θ-2θ scan and selected area diffraction patterns of the CZTS thin films and Si substrates, and the high resolution transmission electron microscopy image of the CZTS/Si interface region demonstrate that the CZTS thin films are epitaxially grown on the Si substrates. A CZTS/Si P-N junction is formed and shows photovoltaic responses, indicating the promising application of epitaxial CZTS thin films on Si.

  9. Application of hydrogenation to low-temperature cleaning of the Si(001) surface in the processes of molecular-beam epitaxy: Investigation by scanning tunneling microscopy, reflected high-energy electron diffraction, and high resolution transmission electron microscopy

    SciTech Connect

    Arapkina, L. V.; Krylova, L. A.; Chizh, K. V.; Chapnin, V. A.; Uvarov, O. V.; Yuryev, V. A.

    2012-07-01

    Structural properties of the clean Si(001) surface obtained as a result of low-temperature (470-650 Degree-Sign C) pre-growth annealings of silicon wafers in a molecular-beam epitaxy chamber have been investigated. To decrease the cleaning temperature, a silicon surface was hydrogenated in the process of a preliminary chemical treatment in HF and NH{sub 4}F aqueous solutions. It has been shown that smooth surfaces composed of wide terraces separated by monoatomic steps can be obtained by dehydrogenation at the temperatures Greater-Than-Or-Equivalent-To 600 Degree-Sign C, whereas clean surfaces obtained at the temperatures <600 Degree-Sign C are rough. It has been found that there exists a dependence of structural properties of clean surfaces on the temperature of hydrogen thermal desorption and the process of the preliminary chemical treatment. The frequency of detachment/attachment of Si dimers from/to the steps and effect of the Ehrlich-Schwoebel barrier on ad-dimer migration across steps have been found to be the most probable factors determining a degree of the resultant surface roughness.

  10. Silicon Carbide Epitaxial Films Studied by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Silicon carbide (SiC) holds great potential as an electronic material because of its wide band gap energy, high breakdown electric field, thermal stability, and resistance to radiation damage. Possible aerospace applications of high-temperature, high-power, or high-radiation SiC electronic devices include sensors, control electronics, and power electronics that can operate at temperatures up to 600 C and beyond. Commercially available SiC devices now include blue light-emitting diodes (LED's) and high-voltage diodes for operation up to 350 C, with other devices under development. At present, morphological defects in epitaxially grown SiC films limit their use in device applications. Research geared toward reducing the number of structural inhomogeneities can benefit from an understanding of the type and nature of problems that cause defects. The Atomic Force Microscope (AFM) has proven to be a useful tool in characterizing defects present on the surface of SiC epitaxial films. The in-house High-Temperature Integrated Electronics and Sensors (HTIES) Program at the NASA Lewis Research Center not only extended the dopant concentration range achievable in epitaxial SiC films, but it reduced the concentration of some types of defects. Advanced structural characterization using the AFM was warranted to identify the type and structure of the remaining film defects and morphological inhomogeneities. The AFM can give quantitative information on surface topography down to molecular scales. Acquired, in part, in support of the Advanced High Temperature Engine Materials Technology Program (HITEMP), the AFM had been used previously to detect partial fiber debonding in composite material cross sections. Atomic force microscopy examination of epitaxial SiC film surfaces revealed molecular-scale details of some unwanted surface features. Growth pits propagating from defects in the substrate, and hillocks due, presumably, to existing screw dislocations in the substrates, were

  11. Wafer bonded epitaxial templates for silicon heterostructures

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A., Jr. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcubera I (Inventor)

    2008-01-01

    A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.

  12. Domain epitaxy for thin film growth

    DOEpatents

    Narayan, Jagdish

    2005-10-18

    A method of forming an epitaxial film on a substrate includes growing an initial layer of a film on a substrate at a temperature T.sub.growth, said initial layer having a thickness h and annealing the initial layer of the film at a temperature T.sub.anneal, thereby relaxing the initial layer, wherein said thickness h of the initial layer of the film is greater than a critical thickness h.sub.c. The method further includes growing additional layers of the epitaxial film on the initial layer subsequent to annealing. In some embodiments, the method further includes growing a layer of the film that includes at least one amorphous island.

  13. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures

    NASA Astrophysics Data System (ADS)

    Fafard, S.; York, M. C. A.; Proulx, F.; Valdivia, C. E.; Wilkins, M. M.; Arès, R.; Aimez, V.; Hinzer, K.; Masson, D. P.

    2016-02-01

    Optical to electrical power converting semiconductor devices were achieved with breakthrough performance by designing a Vertical Epitaxial Heterostructure Architecture. The devices are featuring modeled and measured conversion efficiencies greater than 65%. The ultrahigh conversion efficiencies were obtained by monolithically integrating several thin GaAs photovoltaic junctions tailored with submicron absorption thicknesses and grown in a single crystal by epitaxy. The heterostructures that were engineered with a number N of such ultrathin junctions yielded an optimal external quantum efficiencies approaching 100%/N. The heterostructures are capable of output voltages that are multiple times larger than the corresponding photovoltage of the input light. The individual nanoscale junctions are each generating up to ˜1.2 V of output voltage when illuminated in the infrared. We compare the optoelectronic properties of phototransducers prepared with designs having 5 to 12 junctions and that are exhibiting voltage outputs between >5 V and >14 V.

  14. The Demand for Scientific and Technical Manpower in Selected Energy-Related Industries, 1970-85: A Methodology Applied to a Selected Scenario of Energy Output. A Summary.

    ERIC Educational Resources Information Center

    Gutmanis, Ivars; And Others

    The primary purpose of the study was to develop and apply a methodology for estimating the need for scientists and engineers by specialty in energy and energy-related industries. The projections methodology was based on the Case 1 estimates by the National Petroleum Council of the results of "maximum efforts" to develop domestic fuel sources by…

  15. Hetero epitaxial graphene on various substrates

    NASA Astrophysics Data System (ADS)

    Harris, Gary; Kaut, Gurpreet; Taylor, Crawford

    2015-03-01

    Large-scale production of graphene is pivotal for the development of graphene-based electronics. These results focus on the synthesis and characterization of graphene layers. Two methods were used to grow graphene films. First, graphene films were epitaxially grown on silicon carbide substrates by thermal decomposition of SiC at high temperature and low pressure. In-house built reactor consisting of induction furnace was used to form epitaxial films for electronic applications. Second, chemical vapor deposition method was used for direct graphene synthesis on 3C-SiC with the use of copper as a catalyst. In thermal CVD process, hydrogen and methane gases were used as precursors. Methane acts as a carbon source and annealing and cooling were done hydrogen environment. Different polytypes of silicon carbide (6H-SiC and 3C-SiC) and their crystal orientations were exploited as substrates to form epitaxial graphene. Hetero epitaxial 3C-SiC epilayer was first deposited on Si substrate using chemical vapor deposition technique in cold wall, low pressure, and horizontal CVD reactor. The reactor temperature, argon pressure, flow rates and concentration of different gases (propane, silane, hydrogen and argon) was investigated to control the growth of 3C-SiC and silicon sublimation rate. The resulting graphene films were confirmed using Raman spectroscopy. Further, graphene films have been characterized with the tools of atomic force microscopy (AFM) and scanning electron microscopy (SEM). Mobility, electrical resistivity and carrier density measurements were taken using hall measurements. NSF_PRDM

  16. Optical Epitaxial Growth of Gold Nanoparticle Arrays.

    PubMed

    Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L

    2015-09-01

    We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm. PMID:26230429

  17. An epitaxial ferroelectric tunnel junction on silicon.

    PubMed

    Li, Zhipeng; Guo, Xiao; Lu, Hui-Bin; Zhang, Zaoli; Song, Dongsheng; Cheng, Shaobo; Bosman, Michel; Zhu, Jing; Dong, Zhili; Zhu, Weiguang

    2014-11-12

    Epitaxially grown functional perovskites on silicon (001) and the ferroelectricity of a 3.2 nm thick BaTiO3 barrier layer are demonstrated. The polarization-switching-induced change in tunneling resistance is measured to be two orders of magnitude. The obtained results suggest the possibility of integrating ferroelectric tunnel junctions as binary data storage media in non-volatile memory cells on a silicon platform. PMID:25200550

  18. Method of deposition by molecular beam epitaxy

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-01-10

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time. 9 figures.

  19. Method of deposition by molecular beam epitaxy

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time.

  20. Interfacial structure in epitaxial perovskite oxides on (001) Ge crystal

    SciTech Connect

    Shen, Xuan; Ahmadi-Majlan, K.; Ngai, Joseph H.; Wu, Di; Su, Dong

    2015-01-19

    We investigated the interfacial structure of hetero-epitaxial SrZr{sub 0.68}Ti{sub 0.32}O{sub 3} thin film deposited on (001) Ge single crystal via transmission electron microscopy (TEM). The results from high-resolution scanning TEM and electron energy-loss spectroscopy show an atomically abrupt interface without secondary phase. We found misfit dislocations with Burgers vector of 1/2a 〈111〉 and threading dislocations with Burgers vector of a 〈100〉. Furthermore, we observed the coupling between dislocation half-loop and anti-phase boundary induced by the lattice terrace of Ge along 〈100〉 direction and their decoupling after annealing. We proposed models based on half-loop theory to interpret the coupling and the dislocation reactions.

  1. 1/f Noise in Gated Epitaxial Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Vail, Owen; Yang, Jeremy; Miettinen, Anna; Hankinson, John; Berger, Claire; de Heer, Walter; Jiang, Zhigang

    Epitaxial Graphene Nanoribbons (EGNR) grown on sidewall SiC have gained interest as a high-quality interconnect enabling room temperature ballistic transport over micron lengths. To be useful as an interconnect a proper characterization of the noise level in the EGNR needs to be determined. Toward this end, we fabricated EGNR devices with an Aluminum-Oxide top gate and use field effect to tune the fermi energy in the graphene channel. Our studies of the electronic noise and its dependence on the charge density in the ribbon reveal information about the subband structure of the density of states in addition to the ribbon's spectral density at low frequencies. Comparisons to the widely reported 1/f noise in silicon and other forms of graphene provide strong references for analyzing our results.

  2. Compensation in epitaxial cubic SiC films

    NASA Technical Reports Server (NTRS)

    Segall, B.; Alterovitz, S. A.; Haugland, E. J.; Matus, L. G.

    1986-01-01

    Hall measurements on four n-type cubic SiC films epitaxially grown by chemical vapor deposition on SiC substrates are reported. The temperature dependent carrier concentrations indicate that the samples are highly compensated. Donor ionization energies, E sub D, are less than one half the values previously reported. The values for E sub D and the donor concentration N sub D, combined with results for small bulk platelets with nitrogen donors, suggest the relation E sub D (N sub D) = E sub D(O) - alpha N sub N sup 1/3 for cubic SiC. A curve fit gives alpha is approx 2.6x10/5 meV cm and E sub D (O) approx 48 meV, which is the generally accepted value of E sub D(O) for nitrogen donors in cubic SiC.

  3. Urbach absorption edge in epitaxial erbium-doped silicon

    SciTech Connect

    Shmagin, V. B. Kudryavtsev, K. E.; Shengurov, D. V.; Krasilnik, Z. F.

    2015-02-07

    We investigate the dependencies of the photocurrent in Si:Er p-n junctions on the energy of the incident photons. The exponential absorption edge (Urbach edge) just below fundamental edge of silicon was observed in the absorption spectra of epitaxial Si:Er layers grown at 400–600 C. It is shown that the introduction of erbium significantly enhances the structural disorder in the silicon crystal which was estimated from the slope of the Urbach edge. We discuss the possible nature of the structural disorder in Si:Er and a new mechanism of erbium excitation, which does not require the presence of deep levels in the band gap of silicon.

  4. Wafer Bonding and Epitaxial Transfer of GaSb-based Epitaxy to GaAs for Monolithic Interconnection of Thermophotovoltaic Devices

    SciTech Connect

    C.A. Wang; D.A. Shiau; P.G. Murphy; P.W. O'brien; R.K. Huang; M.K. Connors; A.C. Anderson; D. Donetsky; S. Anikeev; G. Belenky; D.M. Depoy; G. Nichols

    2003-06-16

    GaInAsSb/AlGaAsSb/InAsSb/GaSb epitaxial layers were bonded to semi-insulating GaAs handle wafers with SiO{sub x}/Ti/Au as the adhesion layer for monolithic interconnection of thermophotovoltaic (TPV) devices. Epitaxial transfer was completed by removal of the GaSb substrate, GaSb buffer, and InAsSb etch-stop layer by selective chemical etching. The SiO{sub x}/TiAu provides not only electrical isolation, but also high reflectivity and is used as an internal back-surface reflector. Characterization of wafer-bonded epitaxy by high-resolution x-ray diffraction and time-decay photoluminescence indicates minimal residual stress and enhancement in optical quality. 0.54-eV GaInAsSb cells were fabricated and monolithically interconnected in series. A 10-junction device exhibited linear voltage building with an open-circuit voltage of 1.8 V.

  5. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    SciTech Connect

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  6. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels.

    PubMed

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-01-01

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source's radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks. PMID:26927119

  7. Electron holography of devices with epitaxial layers

    SciTech Connect

    Gribelyuk, M. A. Ontalus, V.; Baumann, F. H.; Zhu, Z.; Holt, J. R.

    2014-11-07

    Applicability of electron holography to deep submicron Si devices with epitaxial layers is limited due to lack of the mean inner potential data and effects of the sample tilt. The mean inner potential V{sub 0} = 12.75 V of the intrinsic epitaxial SiGe was measured by electron holography in devices with Ge content C{sub Ge} = 18%. Nanobeam electron diffraction analysis performed on the same device structure showed that SiGe is strain-free in [220] direction. Our results showed good correlation with simulations of the mean inner potential of the strain-free SiGe using density function theory. A new method is proposed in this paper to correct electron holography data for the overlap of potentials of Si and the epitaxial layer, which is caused by the sample tilt. The method was applied to the analysis of the dopant diffusion in p-Field-effect Transistor devices with the identical gate length L = 30 nm, which had alternative SiGe geometry in the source and drain regions and was subjected to different thermal processing. Results have helped to understand electrical data acquired from the same devices in terms of dopant diffusion.

  8. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  9. Application of Systems Engineering to U.S. Department of Energy Privatization Project Selection at the Hanford Nuclear Reservation

    SciTech Connect

    J. A. Layman

    1999-06-01

    The privatization efforts at the U.S. Department of Energy's Hanford Nuclear Reservation have been very successful primarily due to a disciplined process for project selection and execution. Early in the development of Privatization at Hanford, the Department of Energy determined that a disciplined alternatives generation and analysis (AGA) process would furnish the candidate projects with the best probability for success. Many factors had to be considered in the selection of projects. Westinghouse Hanford Company was assigned to develop this process and facilitate the selection of the first round of candidate privatization projects. Team members for the AGA process were assembled from all concerned organizations and skill groups. Among the selection criteria were legal, financial and technical considerations which had to be weighed.

  10. Red photoluminescence in praseodymium-doped titanate perovskite films epitaxially grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Takashima, Hiroshi; Ueda, Kazushige; Itoh, Mitsuru

    2006-12-01

    Intense red photoluminescence (PL) under ultraviolet (UV) excitation was observed in epitaxially grown Pr-doped Ca0.6Sr0.4TiO3 perovskite films. The films were grown on SrTiO3 (100) substrates by pulsed laser deposition, and their epitaxial growth was confirmed by x-ray diffraction and reflected high-energy electron diffraction. The observed sharp PL peak centered at 610nm was assigned to the transition of Pr3+ ions from the D21 state to the H43 state. The PL intensity was markedly enhanced by postannealing treatments at 1000°C, above the film-growth temperature of 600 or 800°C. Because the excitation and absorption spectra are similar to each other, it was suggested that the UV energy absorbed by the host lattice was transferred to the Pr ions, resulting in the red luminescence.

  11. Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves

    NASA Astrophysics Data System (ADS)

    Shang, Shuai; Yang, Shizhong; Liu, Jing; Shan, Meng; Cao, Hailin

    2016-07-01

    In this paper, a metamaterial electromagnetic energy harvester constructed via the capacitive loading of metal circular split rings is presented. Each energy-harvesting cell is loaded with a resistance that imitates the input impedance of a rectifier circuit. Specifically, the metamaterial energy harvester has high selective harvesting for left- and right-handed circularly polarized waves. Here, the energy absorption is mostly induced by the resistive load; thus, effective energy harvesting can be achieved. Moreover, the proposed energy harvester exhibits a high-efficiency harvesting for right-handed circularly polarized waves over a wide range of incident angles. Further, a transmission line model is adopted to interpret the energy harvesting mechanism, which shows that a good impedance matching and low dielectric loss can further enhance the harvesting efficiency. To demonstrate the design, a 15 × 15 unit-cell prototype is fabricated and measured, and the measured results reasonably agree with the simulated ones.

  12. Selection and improvement of herbaceous energy crops for the southeastern USA

    SciTech Connect

    Bransby, D.I.; Sladden, S.E.; Kee, D.E. . Dept. of Agronomy and Soils)

    1990-07-01

    The general aim of this research program was to screen herbaceous species and evaluate management practices for biomass production on marginal soils in Alabama and the southeastern USA. The program started with a 5 year evaluation of selected warm-cool season species rotations. Rainfall during the 5-year program was mostly below the long-term average, except in 1989 when it was above normal. Due to low rainfall yields of perennial species took longer than expected to reach full production potential, increasing each year throughout the 5-year program. Cave-in-Rock'' switchgrass, sericea lespedeza and johnsongrass provided the highest yields from the warm season perennial species. The most significant trend in biomass composition was the notably high lignin and nitrogen content of sericea lespedeza when compared to the perennial grass species. During the course of the program additional experiments were initiated which new species and additional varieties of switchgrass. Napiergrass and energy cane provided yields from 24 to 32 Mg biomass ha{sup {minus}1} in the second and third year after establishment, but sustainability of these yields are uncertain because no severely cold weather was experienced during the experimental period. In the second year after establishment Alamo'' switchgrass yielded 17.5 Mg biomass ha{sup {minus}1}. This progress represented a major improvement on yields and production costs when compared to the original experiments. If yields of this level can be sustained and possibly improved a little more it is likely that the production basis for an economically viable herbaceous biomass-to-biofuel industry will be achieved in another 5 years. Future work should concentrate on optimizing management factors such as row spacing and harvesting regime, and on improving yield by plant breeding and selection. 5 refs., 3 figs., 29 tabs.

  13. Epitaxial Approaches to Carbon Nanotube Organization

    NASA Astrophysics Data System (ADS)

    Ismach, Ariel

    Carbon nanotubes have unique electronic, mechanical, optical and thermal properties, which make them ideal candidates as building blocks in nano-electronic and electromechanical systems. However, their organization into well-defined geometries and arrays on surfaces remains a critical challenge for their integration into functional nanosystems. In my PhD, we developed a new approach for the organization of carbon nanotubes directed by crystal surfaces. The principle relies on the guided growth of single-wall carbon nanotubes (SWNTs) by atomic features presented on anisotropic substrates. We identified three different modes of surface-directed growth (or 'nanotube epitaxy'), in which the growth of carbon nanotubes is directed by crystal substrates: We first observed the nanotube unidirectional growth along atomic steps ('ledge-directed epitaxy') and nanofacets ('graphoepitaxy') on the surface of miscut C-plane sapphire and quartz. The orientation along crystallographic directions ('lattice-directed epitaxy') was subsequently observed by other groups on different crystals. We have proposed a "wake growth" mechanism for the nanotube alignment along atomic steps and nanofacets. In this mechanism, the catalyst nanoparticle slides along the step or facet, leaving the nanotube behind as a wake. In addition, we showed that the combination of surface-directed growth with external forces, such as electric-field and gas flow, can lead to the simultaneous formation of complex nanotube structures, such as grids and serpentines. The "wake growth" model, which explained the growth of aligned nanotubes, could not explain the formation of nanotube serpentines. For the latter, we proposed a "falling spaghetti" mechanism, in which the nanotube first grows by a free-standing process, aligned in the direction of the gas flow, then followed by absorption on the stepped surface in an oscillatory manner, due to the competition between the drag force caused by the gas flow on the suspended

  14. Band gap engineering of a soft inorganic compound PbI2 by incommensurate van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Sun, Yi-Yang; Zhang, Shengbai; Lu, Toh-Ming; Shi, Jian

    2016-01-01

    Van der Waals epitaxial growth had been thought to have trivial contribution on inducing substantial epitaxial strain in thin films due to its weak nature of van der Waals interfacial energy. Due to this, electrical and optical structure engineering via van der Waals epitaxial strain has been rarely studied. In this report, we show that significant band structure engineering could be achieved in a soft thin film material PbI2 via van der Waals epitaxy. The thickness dependent photoluminescence of single crystal PbI2 flakes was studied and attributed to the substrate-film coupling effect via incommensurate van der Waals epitaxy. It is proposed that the van der Waals strain is resulted from the soft nature of PbI2 and large van der Waals interaction due to the involvement of heavy elements. Such strain plays vital roles in modifying the band gap of PbI2. The deformation potential theory is used to quantitatively unveil the correlation between thickness, strain, and band gap change. Our hypothesis is confirmed by the subsequent mechanical bending test and Raman characterization.

  15. Bulk-like pentacene epitaxial films on hydrogen-terminated Si(111)

    SciTech Connect

    Shimada, Toshihiro; Nogawa, Hiroyuki; Hasegawa, Tetsuya; Okada, Ryusuke; Ichikawa, Hisashi; Ueno, Keiji; Saiki, Koichiro

    2005-08-08

    The epitaxial growth of pentacene on hydrogen-terminated Si(111) is reported. Reflection high energy electron diffraction (RHEED) revealed that the crystal packing resembles that in the bulk crystal even at a monolayer thickness, which was maintained in multilayers. A ripening effect was clearly observed by atomic force microscopy (AFM). These results are important to obtain oriented crystalline films of pentacene combined with silicon microdevices with reduced defect densities.

  16. Carrier dynamics in ZnxCd1-xO films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Cheng, F. J.; Lee, Y. C.; Hu, S. Y.; Lin, Y. C.; Tiong, K. K.; Chou, W. C.

    2016-05-01

    In this work, the carrier dynamics in Zn1-xCdxO thin films with different Cd contents grown by molecular beam epitaxy system have been investigated using photoluminescence and time-resolved photoluminescence measurements. The carrier lifetime can be estimated from the PL decay curve fitted by triple exponential function. The emission energy dependence and temperature dependence of the PL decay time indicate that carrier localization dominate the luminescence mechanism of the ZnCdO alloy semiconductor.

  17. Gas source molecular beam epitaxy of GaN with hydrazine on spinel substrates

    NASA Astrophysics Data System (ADS)

    Nikishin, S. A.; Temkin, H.; Antipov, V. G.; Guriev, A. I.; Zubrilov, A. S.; Elyukhin, V. A.; Faleev, N. N.; Kyutt, R. N.; Chin, A. K.

    1998-05-01

    Growth of high quality wurtzite-structure GaN layers on (111) MgAl2O4 by gas source molecular beam epitaxy is described. Hydrazine was used as a source of active nitrogen. In situ reflection high energy electron diffraction was used to monitor the growth mode. Two-dimensional growth was obtained at temperatures above 750 °C on multi-step GaN buffer layers. The resulting GaN films show excellent luminescence properties.

  18. Antimony-assisted carbonization of Si(111) with solid source molecular beam epitaxy

    SciTech Connect

    Hackley, Justin; Richardson, Christopher J. K.; Sarney, Wendy L.

    2013-11-15

    The carbonization of an antimony-terminated Si (111) surface in a solid source molecular beam epitaxy system is presented. Reflection high-energy electron diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and cross-sectional transmission electron microscopy are used to characterize samples grown with and without antimony termination. It is shown that the antimony-terminated surface promotes the formation of thin, smooth and continuous SiC films at a relatively low temperature of 800 °C.

  19. Fabrication of precision high quality facets on molecular beam epitaxy material

    DOEpatents

    Petersen, Holly E.; Goward, William D.; Dijaili, Sol P.

    2001-01-01

    Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.

  20. Structural characterization of metastable hcp-Ni thin films epitaxially grown on Au(100) single-crystal underlayers

    SciTech Connect

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-05-15

    Ni(1120) epitaxial thin films with hcp structure were prepared on Au(100) single-crystal underlayers at 100 deg. C by ultra high vacuum molecular beam epitaxy. The detailed film structure is studied by in situ reflection high energy electron diffraction, x-ray diffraction, and transmission electron microscopy. The hcp-Ni film consists of two types of variants whose c-axes are rotated around the film normal by 90 deg. each other. An atomically sharp boundary is recognized between the film and the underlayer, where misfit dislocations are introduced. Presence of such dislocations seems to relieve the strain caused by the lattice mismatch between the film and the underlayer.

  1. Strain effects in epitaxial Mn{sub 2}O{sub 3} thin film grown on MgO(100)

    SciTech Connect

    Dang Duc Dung; Duong Van Thiet; Duong Anh Tuan; Cho, Sunglae

    2013-05-07

    We report on the epitaxial growth and magnetic properties of Mn{sub 2}O{sub 3} thin films grown on MgO(001) substrate by molecular beam epitaxy. We observed the reduction in binding energy of Mn valence states, the increase in satellite separation up to 12.7 eV, and the smaller band gap of 3.32 eV. In addition, the antiferromagnetic ordering below 90 K in bulk changed to ferrimagnetic up to 175 K. The results were possibly to be explained by a lattice mismatch strain on Mn{sub 2}O{sub 3} film on MgO(001) substrate.

  2. Influence of a thin interfacial oxide layer on the ion beam assisted epitaxial crystallization of deposited Si

    NASA Astrophysics Data System (ADS)

    Priolo, F.; La Ferla, A.; Spinella, C.; Rimini, E.; Ferla, G.; Baroetto, F.; Licciardello, A.

    1988-12-01

    The epitaxial crystallization of chemical vapor deposited Si layers on <100> Si substrates with a thin interfacial oxide layer was induced by a 600 keV Kr beam in the temperature range 350-500 °C. During irradiation the single crystal-amorphous interface velocity was measured in situ by monitoring the reflectivity of He-Ne laser light. We show that a critical irradiation dose is needed before the interfacial oxide breaks down and epitaxial regrowth can take place. This critical dose depends exponentially on the reciprocal temperature with an activation energy of 0.44 eV.

  3. Building-Integrated Solar Energy Devices based on Wavelength Selective Films

    NASA Astrophysics Data System (ADS)

    Ulavi, Tejas

    A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin film photovoltaics or daylighting. In this study, two hybrid concepts, a hybrid photovoltaic/thermal (PV/T) collector and a hybrid 'solar window', are presented and analyzed to evaluate technical performance. In both concepts, a wavelength selective film is coupled with a compound parabolic concentrator (CPC) to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber. The visible portion of the spectrum is transmitted through the concentrator to either a thin film Cadmium Telluride (CdTe) solar panel for electricity generation or into the interior space for daylighting. Special attention is given to the design of the hybrid devices for aesthetic building integration. An adaptive concentrator design based on asymmetrical truncation of CPCs is presented for the hybrid solar window concept. The energetic and spectral split between the solar thermal module and the PV or daylighting module are functions of the optical properties of the wavelength selective film and the concentrator geometry, and are determined using a Monte Carlo Ray-Tracing (MCRT) model. Results obtained from the MCRT can be used in conjugation with meteorological data for specific applications to study the impact of CPC design parameters including the half-acceptance angle thetac, absorber diameter D and truncation on the annual thermal and PV/daylighting efficiencies. The hybrid PV/T system is analyzed for a rooftop application in Phoenix, AZ. Compared to a system of the same area with independent solar thermal and PV modules, the hybrid PV/T provides 20% more energy, annually. However, the increase in total delivered energy is due solely to the addition of the thermal module and is achieved at an expense of a decrease in the annual electrical efficiency from 8.8% to 5.8% due to shading by

  4. Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel.

    PubMed

    Medovoy, David; Perozo, Eduardo; Roux, Benoît

    2016-07-01

    Potassium (K(+)) channels are transmembrane proteins that passively and selectively allow K(+) ions to flow through them, after opening in response to an external stimulus. One of the most critical functional aspects of their function is their ability to remain very selective for K(+) over Na(+) while allowing high-throughput ion conduction at a rate close to the diffusion limit. Classically, it is assumed that the free energy difference between K(+) and Na(+) in the pore relative to the bulk solution is the critical quantity at the origin of selectivity. This is the thermodynamic view of ion selectivity. An alternative view assumes that kinetic factors play the dominant role. Recent results from a number of studies have also highlighted the great importance of the multi-ion single file on the selectivity of K(+) channels. The data indicate that having multiple K(+) ions bound simultaneously is required for selective K(+) conduction, and that a reduction in the number of bound K(+) ions destroys the multi-ion selectivity mechanism utilized by K(+) channels. In the present study, multi-ion potential of mean force molecular dynamics computations are carried out to clarify the mechanism of ion selectivity in the KcsA channel. The computations show that the multi-ion character of the permeation process is a critical element for establishing the selective ion conductivity through K(+)-channels. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26896693

  5. Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel

    PubMed Central

    Medovoy, David; Perozo, Eduardo; Roux, Benoît

    2016-01-01

    Potassium (K+) channels are transmembrane proteins that passively and selectively allow K+ ions to flow through them, after opening in response to an external stimulus. One of the most critical functional aspects of their function is their ability to remain very selective for K+ over Na+ while allowing high-throughput ion conduction at a rate close to the diffusion limit. Classically, it is assumed that the free energy difference between K+ and Na+ in the pore relative to the bulk solution is the critical quantity at the origin of selectivity. This is the thermodynamic view of ion selectivity. An alternative view assumes that kinetic factor play the dominant role. Recent results from a number of studies have also highlighted the great importance of the multi-ion single file on the selectivity of K+ channels. The data indicate that having multiple K+ ions bound simultaneously is required for selective K+ conduction, and that a reduction in the number of bound K+ ions destroys the multi-ion selectivity mechanism utilized by K+ channels. In the present study, multi-ion potential of mean force molecular dynamics computations are carried out to clarify the mechanism of ion selectivity in the KcsA channel. The computations show that the multi-ion character of the permeation process is a critical element for establishing the selective ion conductivity through K+-channels. PMID:26896693

  6. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  7. Parameter Selection for Department of Energy Spent Nuclear Fuel to be Used in the Yucca Mountain License Application

    SciTech Connect

    D. L. Fillmore

    2003-10-01

    This report contains the chemical, physical, and radiological parameters that were chosen to represent the U.S. Department of Energy spent nuclear fuel in the Yucca Mountain license application. It also contains the selected packaging requirements for the various fuel types and the criticality controls that were used. The data are reported for representative fuels and bounding fuels in groups of fuels that were selected for the analysis. The justification for the selection of each parameter is given. The data reported were not generated under any quality assurance program.

  8. Parameter selection for Department of Energy spent nuclear fuel to be used in the Yucca Mountain Viability Assessment

    SciTech Connect

    Fillmore, D.L.

    1998-06-01

    This report contains the chemical, physical, and radiological parameters that were chosen to represent the Department of Energy spent nuclear fuel in the Yucca Mountain Viability Assessment. It also contains the selected packaging requirements for the various fuel types and the criticality controls that were used. The data is reported for representative fuels in groups of fuels that were selected for the analysis. The justification for the selection of each parameter is given. The data reported was not generated under any Q.A. Program.

  9. Epitaxial growth of HgCdTe 1.55-um avalanche photodiodes by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    de Lyon, Terence J.; Baumgratz, B.; Chapman, G. R.; Gordon, E.; Hunter, Andrew T.; Jack, Michael D.; Jensen, John E.; Johnson, W.; Johs, Blaine D.; Kosai, K.; Larsen, W.; Olson, G. L.; Sen, M.; Walker, B.

    1999-04-01

    Separate absorption and multiplication avalanche photodiode (SAM-APD) device structures, operating in the 1.1 - 1.6 micrometer spectral range, have been fabricated in the HgCdTe material system by molecular-beam epitaxy. These HgCdTe device structures, which offer an alternative technology to existing III-V APD detectors, were grown on CdZnTe(211)B substrates using CdTe, Te, and Hg sources with in situ In and As doping. The alloy composition of the HgCdTe layers was adjusted to achieve both efficient absorption of IR radiation in the 1.1 - 1.6 micrometer spectral range and low excess-noise avalanche multiplication. To achieve resonant enhancement of hole impact ionization from the split-off valence band, the Hg(subscript 1-x)Cd(subscript x)Te alloy composition in the gain region of the device, x equals 0.73, was chosen to achieve equality between the bandgap energy and spin-orbit splitting. The appropriate value of this alloy composition was determined from analysis of the 300 K bandgap and spin-orbit splitting energies of a set of calibration layers, using a combination of IR transmission and spectroscopic ellipsometry measurements. MBE-grown APD epitaxial wafers were processed into passivated mesa-type discrete device structures and diode mini-arrays using conventional HgCdTe process technology. Device spectral response, dark current density, and avalanche gain measurements were performed on discrete diodes and diode mini- arrays on the processed wafers. Avalanche gains in the range of 30 - 40 at reverse bias of 85 - 90 V and array-median dark current density below 2 X 10(superscript -4) A/cm(superscript 2) at 40 V reverse bias have been demonstrated.

  10. What types of nutrition menu labelling lead consumers to select less energy-dense fast food? An experimental study.

    PubMed

    Morley, Belinda; Scully, Maree; Martin, Jane; Niven, Philippa; Dixon, Helen; Wakefield, Melanie

    2013-08-01

    This study assessed whether the inclusion of kilojoule labelling alone or accompanied by further nutrition information on menus led adults to select less energy-dense fast food meals. A between-subjects experimental design was used with online menu boards systematically varied to test the following labelling conditions: none (control); kilojoule; kilojoule+percent daily intake; kilojoule+traffic light; and kilojoule+traffic light+percent daily intake. Respondents were 1294 adults aged 18-49 in Victoria, Australia who had purchased fast food in the last month and were randomly assigned to conditions. Respondents in the no labelling condition selected meals with the highest mean energy content and those viewing the kilojoule and kilojoule+traffic light information selected meals with a significantly lower mean energy content, that constituted a reduction of around 500kJ (120kcal). Respondents most commonly reported using the traffic light labels in making their selections. These findings provide support for the policy of disclosure of energy content on menus at restaurant chains. Given the magnitude of the reduction in energy density reported, and the prevalence of fast food consumption, this policy initiative has the potential to yield health benefits at the population level. PMID:23523666

  11. Studies of the epitaxial monolayer NbSe2 by ultra-low-temperature scanning tunnelling microscope

    NASA Astrophysics Data System (ADS)

    Ji, Shuai-Hua

    Monolayer NbSe2 has been successfully synthesized by molecular beam epitaxy on the graphitized SiC(0001) surface. Wide substrate temperature window from 200°C to 650°C for the epitaxial growth has been observed. The polycrystalline nature of the epitaxial sheet, which is caused by the weak Van der Waals interaction with substrate, has been evidenced by reflection high-energy electron diffraction and locally by scanning tunnelling microscope. Under the high temperature growth condition, grain size could reach as large as hundreds of nanometers. The shape of grain boundary is strongly depended on the misaligned angle between adjacent grains. Mainly, three type grain boundaries have been identified at the atomic scale by the local scanning probe. The BCS-like superconducting gap and the spatial fluctuation of order parameter have been revealed by ultra-low temperature scanning tunnelling microscope in the sub-Kelvin range.

  12. Raman and morphology visualization in epitaxial graphene on 4H-SiC by Nitrogen or Argon ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Fu, Gang; Wang, Xue-Lin

    2015-12-01

    Graphene is a one-atom-thick planar sheet of carbon atoms that are densely packed into a honeycomb crystal lattice and is attracting tremendous interest since being discovered in 2004. Epitaxial growth of graphene on silicon carbide (SiC) is an effective method to obtain high quality layers. In this work, the effects of irradiation on epitaxial SiC/graphene were studied. The samples were irradiated with Nitrogen and Argon ions at an energy of 200 keV and different fluence with 4 × 1012 ions/cm2 to 1 × 1013 ions/cm2. The results of Raman measurements indicate that ion beam irradiation causes defects and disorder in the graphene crystal structure, and the level of defects increases with increasing ion fluence. Surface morphology images are obtained by atomic force microscope (AFM). This work is valuable for the potential application of epitaxial graphene on SiC in the field of optoelectronics devices.

  13. Epitaxial growth and electrochemical transfer of graphene on Ir(111)/α-Al2O3(0001) substrates

    NASA Astrophysics Data System (ADS)

    Koh, Shinji; Saito, Yuta; Kodama, Hideyuki; Sawabe, Atsuhito

    2016-07-01

    Low-pressure chemical vapor deposition growth of graphene on Iridium (Ir) layers epitaxially deposited on α-Al2O3 (0001) substrates was investigated. The X-ray diffraction, Raman and reflection high energy electron diffraction characterizations revealed that graphene films were epitaxially grown on Ir(111) layers, and the in-plane epitaxial relationship between graphene, Ir(111), and α-Al2O3(0001) was graphene ⟨ 1 1 ¯ 00 ⟩//Ir⟨ 11 2 ¯ ⟩//α-Al2O3⟨ 11 2 ¯ 0 ⟩. The graphene on Ir(111) was electrochemically transferred onto SiO2/Si substrates. We also demonstrated the reuse of the Ir(111)/α-Al2O3(0001) substrates in multiple growth and transfer cycles.

  14. High-index Cu2O (113) film on faceted MgO (110) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Huo, Wenxing; Shi, Jin'an; Mei, Zengxia; Liu, Lishu; Li, Junqiang; Gu, Lin; Du, Xiaolong; Xue, Qikun

    2015-06-01

    We report the growth of single-oriented Cu2O (113) film on faceted MgO (110) substrate by radio-frequency plasma assisted molecular beam epitaxy. A MgO {100} faceted homoepitaxial layer was introduced beforehand as a template for epitaxy of Cu2O film. The epitaxial relationship is determined to be Cu2O (113)//MgO (110) with a tilt angle of 4.76° and Cu2O [ 1 1 bar 0]//MgO [ 1 1 bar 0] by the combined study of in-situ reflection high-energy electron diffraction and ex-situ X-ray diffraction and transmission electron microscopy. The film demonstrates a good p-type conductivity and excellent optical properties, indicating that this unique approach is potentially applicable for high-index film preparation and device applications.

  15. Epitaxial self-assembly of binary molecular components into branched nanowire heterostructures for photonic applications.

    PubMed

    Kong, Qinghua; Liao, Qing; Xu, Zhenzhen; Wang, Xuedong; Yao, Jiannian; Fu, Hongbing

    2014-02-12

    We report a sequential epitaxial growth to prepare organic branched nanowire heterostructures (BNwHs) consisting of a microribbon trunk of 1,4-dimethoxy-2,5-di[4'-(cyano)styryl]benzene (COPV) with multiple nanowire branches of 2,4,5-triphenylimidazole (TPI) in a one-pot solution synthesis. The synthesis involves a seeded-growth process, where COPV microribbons are grown first as a trunk followed by a seeded-growth of TPI nanowire branches at the pregrown trunk surfaces. Selected area electron diffraction characterizations reveal that multiple hydrogen-bonding interactions between TPI and COPV components play an essential role in the epitaxial growth as a result of the structural matching between COPV and TPI crystals. A multichannel optical router was successfully realized on the basis of the passive waveguides of COPV green photoluminescence (PL) along TPI nanowire branches in a single organic BNwH. PMID:24446808

  16. Epitaxial aluminum on hybridized InAs/GaSb quantum wells

    NASA Astrophysics Data System (ADS)

    Tong, Bing-Bing; Li, Ting-Xin; Mu, Xiao-Yang; Zhang, Chi; Du, Rui-Rui

    Hybridized InAs/GaSb quantum wells (QW) are approved the existence of helical edge channels. According to the theoretical prediction, the combination with superconductor will lead to superconducting topological phase and realization of Majorana bound state (MBS). Besides, InAs/GaSb material shows a low Schottky barrier to superconductor, and high quality of superconductor-topological insulator interface will result in hard induced gap. In recent report, under low temperature of substrate, there is a good lattice match between InAs naowire and Al in the same direction. In our lab, we perform aluminum epitaxy on the in-situ cleaved InAs/GaSb QW with similar methods in our ultra-high vacuum STM system. After metal epitaxy, the Al layer can be selectively etched for fabricating the superconductor-topological insulator junction devices.

  17. Soft-chemistry-based routes to epitaxial α-quartz thin films with tunable textures.

    PubMed

    Carretero-Genevrier, A; Gich, M; Picas, L; Gazquez, J; Drisko, G L; Boissiere, C; Grosso, D; Rodriguez-Carvajal, J; Sanchez, C

    2013-05-17

    Piezoelectric nanostructured quartz films of high resonance frequencies are needed for microelectronic devices; however, synthesis methods have been frustrated by the inhomogeneous crystal growth, crystal twinning, and loss of nanofeatures upon crystallization. We report the epitaxial growth of nanostructured polycrystalline quartz films on silicon [Si(100)] substrates via the solution deposition and gelation of amorphous silica thin films, followed by thermal treatment. Key to the process is the combined use of either a strontium (Sr(2+)) or barium (Ba(2+)) catalyst with an amphiphilic molecular template. The silica nanostructure constructed by cooperative self-assembly permits homogeneous distribution of the cations, which are responsible for the crystallization of quartz. The low mismatch between the silicon and α-quartz cell parameters selects this particular polymorph, inducing epitaxial growth. PMID:23687040

  18. InAs nanowire growth modes on Si (111) by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Robson, M. T.; LaPierre, R. R.

    2016-02-01

    InAs nanowires (NWs) were grown on silicon substrates by gas source molecular beam epitaxy using five different growth modes: (1) Au-assisted growth, (2) positioned (patterned) Au-assisted growth, (3) Au-free growth, (4) positioned Au-assisted growth using a patterned oxide mask, and (5) Au-free selective-area epitaxy (SAE) using a patterned oxide mask. Optimal growth conditions (temperature, V/III flux ratio) were identified for each growth mode for control of NW morphology and vertical NW yield. The highest yield (72%) was achieved with the SAE method at a growth temperature of 440 °C and a V/III flux ratio of 4. Growth mechanisms are discussed for each of the growth modes.

  19. Method utilizing laser-processing for the growth of epitaxial p-n junctions

    DOEpatents

    Young, R.T.; Narayan, J.; Wood, R.F.

    1979-11-23

    This invention is a new method for the formation of epitaxial p-n junctions in silicon. The method is relatively simple, rapid, and reliable. It produces doped epitaxial layers which are of well-controlled thickness and whose electrical properties are satisfactory. An illustrative form of the method comprises co-depositing a selected dopant and amorphous silicon on a crystalline silicon substrate to form a doped layer of amorphous silicon thereon. This layer then is irradiated with at least one laser pulse to generate a melt front which moves through the layer, into the silicon body to a depth effecting melting of virginal silicon, and back to the surface of the layer. The method may be conducted with dopants (e.g., boron and phosphorus) whose distribution coefficients approximate unity.

  20. Layer matching epitaxy of NiO thin films on atomically stepped sapphire (0001) substrates

    PubMed Central

    Yamauchi, Ryosuke; Hamasaki, Yosuke; Shibuya, Takuto; Saito, Akira; Tsuchimine, Nobuo; Koyama, Koji; Matsuda, Akifumi; Yoshimoto, Mamoru

    2015-01-01

    Thin-film epitaxy is critical for investigating the original properties of materials. To obtain epitaxial films, careful consideration of the external conditions, i.e. single-crystal substrate, temperature, deposition pressure and fabrication method, is significantly important. In particular, selection of the single-crystal substrate is the first step towards fabrication of a high-quality film. Sapphire (single-crystalline α-Al2O3) is commonly used in industry as a thin-film crystal-growth substrate, and functional thin-film materials deposited on sapphire substrates have found industrial applications. However, while sapphire is a single crystal, two types of atomic planes exist in accordance with step height. Here we discuss the need to consider the lattice mismatch for each of the sapphire atomic layers. Furthermore, through cross-sectional transmission electron microscopy analysis, we demonstrate the uniepitaxial growth of cubic crystalline thin films on bistepped sapphire (0001) substrates. PMID:26402241

  1. Reforming the energy sector in transition economies: Selected experience and lessons. World Bank discussion paper

    SciTech Connect

    Gray, D.

    1995-08-01

    ;Contents: Background and Characteristics of the Energy Sector at the Beginning of the Reform Process; Energy Demand and Efficiency; Major Energy Production Issues in Central and Eastern Europe and Former Soviet Union; Changing Structure of East-West Energy Trade; Energy Pricing; Energy Sector Revenues and Finances; Experience in Energy Reform Commercialization, Privatization and Links to the Macroeconomy; Lessons, Conclusions and Approaches to Improve; and Annexes.

  2. Characterization of CdTe, HgTe, and Hg1-xCdxTe grown by chemical beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wagner, B. K.; Rajavel, D.; Benz, R. G.; Summers, C. J.

    1991-10-01

    Detailed characterization of chemical beam epitaxially (CBE) grown CdTe and Hg1-xCdxTe layers are reported. These characterizations include photoluminescence, infrared transmission, energy dispersive x-ray analysis, and variable temperature (10-300 K) Hall effect and resistivity measurements. The results indicate that high quality HgCdTe layers can be grown by CBE.

  3. Electron charging in epitaxial germanium quantum dots on silicon (100)

    NASA Astrophysics Data System (ADS)

    Ketharanathan, Sutharsan

    The electron charging behavior of self assembled epitaxial Ge quantum dots on Si(100) grown using molecular beam epitaxy has been studied. Ge quantum dots encapsulated in n-type Si matrix were incorporated into Schottky diodes to investigate their charging behavior using capacitance-voltage measurements. These experimental results were interpreted in the context of theoretical models to assess the degree of charge localization to the dot. Experiments involving Ge quantum dot growth, growth of Sb-doped Si and morphological evolution during encapsulation of the Ge dots during Si overgrowth were performed in order to optimize the conditions for obtaining distinct Ge quantum dot morphologies. This investigation included finding a suitable method to minimize Sb segregation while maintaining good dot epitaxy and overall crystal quality. Holes are confined to the Ge dots for which the valence band offsets are large (˜650 meV). Electrons are confined to the strained Si regions adjacent to the Ge quantum dots which have relatively smaller confinement potentials (˜100--150 meV). Experimentally, it was found that but and pyramid clusters in the range from 20--40 nm in diameter confine ˜1electron per dot while dome clusters in the range from 60--80 nm diameter confine ˜6--8 electrons per dot. Theoretical simulations predict that similar pyramid structures confine ˜0.4 electrons per dot and dome structures confine ˜2.2--3 electrons per dot. Even though the theory and the experimental results disagree due to various uncertainties and approximations, the ratio between theory and experiment agree remarkably well for both island types. We also investigated constructive three-dimensional nanolithography. Nanoscale Au rich dots and pure Ge dots were deposited on SiO2 and Si3N4 substrates by decomposing adsorbed precursors using a focused electron beam in an environmental transmission electron microscope. Dimethyl acetylacetonate gold was used for Au and digermane was used to

  4. 5f band dispersion in epitaxial films of UO2

    SciTech Connect

    Durakiewicz, Tomasz; Jia, Quanxi; Roy, Lindsay E; Martin, Richard L; Joyce, John J

    2009-01-01

    Polymer-assisted deposition of epitaxial films utilizes lattice pinning to produce films of very high stability and properties identical with bulk crystal. Dispersion of the 5f band is shown for the first time in a actinide Mott insulator system, which suggestes hybridization as a leading process in establishing the electronic structure. Hybrid density functional is succesfully employed to calculate the electronic structure of UO{sub 2} in agreement with experiments. UO{sub 2} continues to be a mysterious and elusive compound in terms of understanding the physical properties of a material. Most actinide oxides, including UO{sub 2} are predicted to be metallic. However, UO{sub 2} is an antiferromagnetic insulator with a relatively large gap of about 2eV. The f orbital charater of the excitations across the gap places UO{sub 2} in a Mott insulator category, but no states at the gap center have ever been measured directly, in spite of intensive efforts. In this work we present the first results of the electronic structure investigation of a epitaxial film of UO{sub 2}, where we find even more unexpected properties, like the dispersive nature of 5f bands. We also demonstrate the unexpected, very high stability of the epitaxial film of UO{sub 2}. In the lattice-pinning scheme, the crystalline nature of the film is preserved all the way up to the topmost layers even after prolonged exposure to atmospheric conditions. Hybridized, dispersive bands are common in the itinerant uranium compounds. One usually finds hybridization of f-orbitals with conduction band to be quite common in f-electron systems at low temperatures. Such bands may reside in the vicinity of the Fermi level and participate in the construction of the Fermi surface. However, in the insulator like UO{sub 2}, one expects a more atomic band nature, where f-bands are relatively flat and shifted away from the Fermi level by the gap energy scale. Precise location of UO{sub 2} on the localization

  5. Study of structural properties of cubic InN films on GaAs(001) substrates by molecular beam epitaxy and migration enhanced epitaxy

    SciTech Connect

    Casallas-Moreno, Y. L.; Perez-Caro, M.; Gallardo-Hernandez, S.; Ramirez-Lopez, M.; Martinez-Velis, I.; Lopez-Lopez, M.; Escobosa-Echavarria, A.

    2013-06-07

    InN epitaxial films with cubic phase were grown by rf-plasma-assisted molecular beam epitaxy (RF-MBE) on GaAs(001) substrates employing two methods: migration-enhanced epitaxy (MEE) and conventional MBE technique. The films were synthesized at different growth temperatures ranging from 490 to 550 Degree-Sign C, and different In beam fluxes (BEP{sub In}) ranging from 5.9 Multiplication-Sign 10{sup -7} to 9.7 Multiplication-Sign 10{sup -7} Torr. We found the optimum conditions for the nucleation of the cubic phase of the InN using a buffer composed of several thin layers, according to reflection high-energy electron diffraction (RHEED) patterns. Crystallographic analysis by high resolution X-ray diffraction (HR-XRD) and RHEED confirmed the growth of c-InN by the two methods. We achieved with the MEE method a higher crystal quality and higher cubic phase purity. The ratio of cubic to hexagonal components in InN films was estimated from the ratio of the integrated X-ray diffraction intensities of the cubic (002) and hexagonal (1011) planes measured by X-ray reciprocal space mapping (RSM). For MEE samples, the cubic phase of InN increases employing higher In beam fluxes and higher growth temperatures. We have obtained a cubic purity phase of 96.4% for a film grown at 510 Degree-Sign C by MEE.

  6. Energy-selective neutron imaging with high spatial resolution and its impact on the study of crystalline-structured materials

    NASA Astrophysics Data System (ADS)

    Lehmann, E. H.; Peetermans, S.; Josic, L.; Leber, H.; van Swygenhoven, H.

    2014-01-01

    Crystalline-structured materials with preferentially large grains were investigated by means of energy-selective neutron imaging methods (transmission radiography and tomography) under the conditions of the best possible spatial resolution at the ICON facility, SINQ, and PSI. Because of the cold spectrum at that beam line, access to the Bragg diffraction features was possible even when the energy resolution of the used selector device was only 15%. Grains with a size below the detector resolution (approximately 25 μm) are not visible, and a quasi-homogeneous contrast variation is found when the neutron energy is varied.In the cases of welded stainless steel samples and rolled Al plates, we obtained structural information from a very short exposure of approximately 60 s. Tomographic examinations of these samples at suitable neutron energies qualitatively verified the radiographic findings by showing the same features in the bulk. Comparison to common electron backscatter diffraction (EBSD) investigations in selected regions of the samples provided a complete verification of the neutron-image data with respect to the grain size and the different grain orientations. The method of energy-selective neutron imaging provides an easy and straightforward approach for non-invasive material research that can be performed without any sample preparation if the most suitable neutron energy is chosen. Further studies will be necessary to extend the experimental data base to other materials with different crystal structures and grain sizes. A comparison to diffraction data will enhance the quantitative value of the investigations.

  7. Potential social, institutional, and environmental impacts of selected energy-conservation measures in two Washington communities. [Seattle and Yakima

    SciTech Connect

    Edelson, E.; Olsen, M.

    1980-03-01

    The likely environmental, social, and institutional impacts of selected energy-conservation measures in two communities in Washington state are reported. The five conservation measures investigated in this study were: (1) retrofitting existing buildings; (2) district heating and Integrated Community Energy Systems (ICES); (3) small automobiles and vehicle redesign; (4) land-use and housing modifications; and (5) electric-utility rate reform. Twenty potential impact areas were selected for analysis. These areas were divided into five categories of environmental impacts, economic impacts, community impacts, personal impacts, and overall quality of life in the community. The research was conducted in Seattle and Yakima, Washington. In each location, about two dozen public officials and business, labor, and community leaders were interviewed. Their diverse views are summarized. The Seattle respondents saw energy conservation as a highly desirable policy with a number of temporary, transitional problems arising as energy-conservation measures were implemented. Yakima respondents, in contrast, did not expect to encounter many serious energy problems in the foreseeable future and consequently viewed energy conservation as a relatively minor community concern. Moreover, they anticipated that many conservation measures, if implemented by the government, would encounter either apathy or resistance in their community. Two broad generalizations can bedrawn from these interviews: (1) energy conservation will basically be beneficial for the natural environment and our society; and (2) if energy conservation does become a dominant thrust in our society, it could stimulate and reinforce a much broader process of fundamental social change. (LCL)

  8. Stereo-epitaxial growth of single-crystal Ni nanowires and nanoplates from aligned seed crystals

    NASA Astrophysics Data System (ADS)

    Lee, Hyoban; Yoo, Youngdong; Kang, Taejoon; Lee, Jiyoung; Kim, Eungwang; Fang, Xiaosheng; Lee, Sungyul; Kim, Bongsoo

    2016-05-01

    Epitaxially grown anisotropic Ni nanostructures are promising building blocks for the development of miniaturized and stereo-integrated data storage kits because they can store multiple magnetic domain walls (DWs). Here, we report stereo-epitaxially grown single-crystalline Ni nanowires (NWs) and nanoplates, and their magnetic properties. Vertical and inclined Ni NWs were grown at the center and edge regions of c-cut sapphire substrates, respectively. Vertical Ni nanoplates were grown on r-cut sapphire substrates. The morphology and growth direction of Ni nanostructures can be steered by seed crystals. Cubic Ni seeds grow into vertical Ni NWs, tetrahedral Ni seeds grow into inclined Ni NWs, and triangular Ni seeds grow into vertical Ni nanoplates. The shapes of the Ni seeds are determined by the interfacial energy between the bottom plane of the seeds and the substrates. The as-synthesized Ni NWs and nanoplates have blocking temperature values greater than 300 K at 500 Oe, verifying that these Ni nanostructures can form large magnetic DWs with high magnetic anisotropy properties. We anticipate that epitaxially grown Ni NWs and nanoplates will be used in various types of 3-dimensional magnetic devices.Epitaxially grown anisotropic Ni nanostructures are promising building blocks for the development of miniaturized and stereo-integrated data storage kits because they can store multiple magnetic domain walls (DWs). Here, we report stereo-epitaxially grown single-crystalline Ni nanowires (NWs) and nanoplates, and their magnetic properties. Vertical and inclined Ni NWs were grown at the center and edge regions of c-cut sapphire substrates, respectively. Vertical Ni nanoplates were grown on r-cut sapphire substrates. The morphology and growth direction of Ni nanostructures can be steered by seed crystals. Cubic Ni seeds grow into vertical Ni NWs, tetrahedral Ni seeds grow into inclined Ni NWs, and triangular Ni seeds grow into vertical Ni nanoplates. The shapes of the Ni

  9. Hydrothermal epitaxy of perovskite thin films

    NASA Astrophysics Data System (ADS)

    Chien, Allen T.

    1998-12-01

    This work details the discovery and study of a new process for the growth of epitaxial single crystal thin films which we call hydrothermal epitaxy. Hydrothermal epitaxy is a low temperature solution route for producing heteroepitaxial thin films through the use of solution chemistry and structurally similar substrates. The application of this synthesis route has led to the growth of a variety of epitaxial perovskite (BaTiOsb3, SrTiOsb3, and Pb(Zr,Ti)Osb3 (PZT)) thin films which provides a simple processing pathway for the formation of other materials of technological interest. BaTiOsb3 and PZT heteroepitaxial thin films and powders were produced by the hydrothermal method at 90-200sp°C using various alkali bases. XRD and TEM analysis shows that, in each case, the films and powders form epitaxially with a composition nearly identical to that of the starting precursors. Sequential growth experiments show that film formation initiates by the nucleation of submicron faceted islands at the step edges of the SrTiOsb3 substrates followed by coalescence after longer growth periods. A Ba-rich interfacial layer between the BaTiOsb3 islands and the SrTiOsb3 surface is seen by cross-section TEM during early growth periods. Electrophoretic and Basp{2+} adsorption data provide a chemical basis for the existence of the interfacial layer. Homoepitaxial growth of SrTiOsb3 on SrTiOsb3 also occurs by island growth, suggesting that the growth mode may be a consequence of the aqueous surface chemistry inherent in the process. Film formation is shown to be affected by any number of factors including type of base, pH, temperature, and substrate pretreatments. Different cation bases (Na-, K-, Rb-, Cs-, TMA-OH) demonstrated pronounced changes in powder and film morphology. For example, smaller cation bases (e.g., NaOH, KOH and RbOH) resulted the formation of 1.5 mum \\{100\\} faceted perovskite PbTiOsb3 blocks while larger cation bases (e.g., CsOH and TMA-OH) produced 500 nm sized

  10. Assessing the ligand selectivity of sphingosine kinases using molecular dynamics and MM-PBSA binding free energy calculations.

    PubMed

    Fang, Liang; Wang, Xiaojian; Xi, Meiyang; Liu, Tianqi; Yin, Dali

    2016-04-22

    The dynamic balance of sphingolipids plays a crucial role in diverse biological processes such as mitogenesis, cell migration and angiogenesis. Sphingosine kinases (SKs) including SK1 and SK2 phosphorylate sphingosine to sphingosine 1-phosphate (S1P), and control the critical balance. SK1 overexpression was reported to increase cell survival and proliferation. Although several SK1 selective inhibitors have been reported, detailed analysis toward their selectivity to understand the molecular mechanism has not been performed to our knowledge. Herein, the crystal structure of SK1 and a homology model of SK2 were used to dock five inhibitors (1, 2, 3, 4 and 5). Protein-ligand complexes were then subjected to a molecular dynamics study and MM-PBSA binding free energy calculations. By analyzing the binding model of these inhibitors, we found that residues ILE170, PHE188 and THR192 in SK1 significantly contribute a favorable binding energy to the selectivity. PMID:26927311

  11. World Best Practice Energy Intensity Values for SelectedIndustrial Sectors

    SciTech Connect

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

    2007-06-05

    "World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

  12. Sequential imposed layer epitaxy of cuprate films

    SciTech Connect

    Laguees, M.; Tebbji, H.; Mairet, V.; Hatterer, C.; Beuran, C.F.; Hass, N.; Xu, X.Z. ); Cavellin, C.D. )

    1994-02-01

    Layer-by-layer epitaxy has been used to grow cuprate films since the discovery of high-Tc compounds. This deposition technique is in principle suitable for the growth of layered crystalline structures. However, the sequential deposition of atomic layer by atomic layer of cuprate compounds has presently not been optimized. Nevertheless, this deposition process is the only one which allows one to build artificial cell structures such as Bi[sub 2]Sr[sub 2]Ca[sub (n[minus]1)]Cu[sub n]O[sub y] with n as large as 10. This process will also be the best one to grow films of the so-called infinite layer phase compounds belonging to the Sr[sub 1[minus]x]Ca[sub x]CuO[sub 2] family, in order to improve the transport properties and the morphological properties of the cuprate films. When performed at high substrate temperature (typically more than 600[degree]C), the layer-by-layer epitaxy of cuprates exhibits usually 3D aggregate nucleation. Then the growth of the film no longer obeys the layer-by-layer sequence imposed during the deposition. We present here two experimental situations of true 2D sequential imposed layer epitaxy; the growth at 500[degree]C under atomic oxygen pressure of Bi[sub 2]Sr[sub 2]CuO[sub 6] and of Sr[sub 1[minus]x]Ca[sub y]CuO[sub 2] phases. 20 refs., 2 figs.

  13. Balancing Energy Budget in a Central-Place Forager: Which Habitat to Select in a Heterogeneous Environment?

    PubMed Central

    Patenaude-Monette, Martin; Bélisle, Marc; Giroux, Jean-François

    2014-01-01

    Foraging animals are influenced by the distribution of food resources and predation risk that both vary in space and time. These constraints likely shape trade-offs involving time, energy, nutrition, and predator avoidance leading to a sequence of locations visited by individuals. According to the marginal-value theorem (MVT), a central-place forager must either increase load size or energy content when foraging farther from their central place. Although such a decision rule has the potential to shape movement and habitat selection patterns, few studies have addressed the mechanisms underlying habitat use at the landscape scale. Our objective was therefore to determine how Ring-billed gulls (Larus delawarensis) select their foraging habitats while nesting in a colony located in a heterogeneous landscape. Based on locations obtained by fine-scale GPS tracking, we used resource selection functions (RSFs) and residence time analyses to identify habitats selected by gulls for foraging during the incubation and brood rearing periods. We then combined this information to gull survey data, feeding rates, stomach contents, and calorimetric analyses to assess potential trade-offs. Throughout the breeding season, gulls selected landfills and transhipment sites that provided higher mean energy intake than agricultural lands or riparian habitats. They used landfills located farther from the colony where no deterrence program had been implemented but avoided those located closer where deterrence measures took place. On the other hand, gulls selected intensively cultured lands located relatively close to the colony during incubation. The number of gulls was then greater in fields covered by bare soil and peaked during soil preparation and seed sowing, which greatly increase food availability. Breeding Ring-billed gulls thus select habitats according to both their foraging profitability and distance from their nest while accounting for predation risk. This supports the

  14. Infrared Spectral Energy Distribution Decomposition of WISE-selected, Hyperluminous Hot Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Han, Yunkun; Nikutta, Robert; Drouart, Guillaume; Knudsen, Kirsten K.

    2016-06-01

    We utilize a Bayesian approach to fit the observed mid-IR-to-submillimeter/millimeter spectral energy distributions (SEDs) of 22 WISE-selected and submillimeter-detected, hyperluminous hot dust-obscured galaxies (Hot DOGs), with spectroscopic redshift ranging from 1.7 to 4.6. We compare the Bayesian evidence of a torus plusgraybody (Torus+GB) model with that of a torus-only (Torus) model and find that the Torus+GB model has higher Bayesian evidence for all 22 Hot DOGs than the torus-only model, which presents strong evidence in favor of the Torus+GB model. By adopting the Torus+GB model, we decompose the observed IR SEDs of Hot DOGs into torus and cold dust components. The main results are as follows. (1) Hot DOGs in our submillimeter-detected sample are hyperluminous ({L}{IR}≥slant {10}13{L}ȯ ), with torus emission dominating the IR energy output. However, cold dust emission is non-negligible, contributing on average ˜ 24% of total IR luminosity. (2) Compared to QSO and starburst SED templates, the median SED of Hot DOGs shows the highest luminosity ratio between mid-IR and submillimeter at rest frame, while it is very similar to that of QSOs at ˜ 10{--}50 μ {{m}}, suggesting that the heating sources of Hot DOGs should be buried AGNs. (3) Hot DOGs have high dust temperatures ({T}{dust}˜ 72 K) and high IR luminosity of cold dust. The {T}{dust}{--}{L}{IR} relation of Hot DOGs suggests that the increase in IR luminosity for Hot DOGs is mostly due to the increase of the dust temperature, rather than dust mass. Hot DOGs have lower dust masses than submillimeter galaxies (SMGs) and QSOs within a similar redshift range. Both high IR luminosity of cold dust and relatively low dust mass in Hot DOGs can be expected by their relatively high dust temperatures. (4) Hot DOGs have high dust-covering factors (CFs), which deviate from the previously proposed trend of the dust CF decreasing with increasing bolometric luminosity. Finally, we can reproduce the observed

  15. Infrared Spectral Energy Distribution Decomposition of WISE-selected, Hyperluminous Hot Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Han, Yunkun; Nikutta, Robert; Drouart, Guillaume; Knudsen, Kirsten K.

    2016-06-01

    We utilize a Bayesian approach to fit the observed mid-IR-to-submillimeter/millimeter spectral energy distributions (SEDs) of 22 WISE-selected and submillimeter-detected, hyperluminous hot dust-obscured galaxies (Hot DOGs), with spectroscopic redshift ranging from 1.7 to 4.6. We compare the Bayesian evidence of a torus plusgraybody (Torus+GB) model with that of a torus-only (Torus) model and find that the Torus+GB model has higher Bayesian evidence for all 22 Hot DOGs than the torus-only model, which presents strong evidence in favor of the Torus+GB model. By adopting the Torus+GB model, we decompose the observed IR SEDs of Hot DOGs into torus and cold dust components. The main results are as follows. (1) Hot DOGs in our submillimeter-detected sample are hyperluminous ({L}{IR}≥slant {10}13{L}ȯ ), with torus emission dominating the IR energy output. However, cold dust emission is non-negligible, contributing on average ∼ 24% of total IR luminosity. (2) Compared to QSO and starburst SED templates, the median SED of Hot DOGs shows the highest luminosity ratio between mid-IR and submillimeter at rest frame, while it is very similar to that of QSOs at ∼ 10{--}50 μ {{m}}, suggesting that the heating sources of Hot DOGs should be buried AGNs. (3) Hot DOGs have high dust temperatures ({T}{dust}∼ 72 K) and high IR luminosity of cold dust. The {T}{dust}{--}{L}{IR} relation of Hot DOGs suggests that the increase in IR luminosity for Hot DOGs is mostly due to the increase of the dust temperature, rather than dust mass. Hot DOGs have lower dust masses than submillimeter galaxies (SMGs) and QSOs within a similar redshift range. Both high IR luminosity of cold dust and relatively low dust mass in Hot DOGs can be expected by their relatively high dust temperatures. (4) Hot DOGs have high dust-covering factors (CFs), which deviate from the previously proposed trend of the dust CF decreasing with increasing bolometric luminosity. Finally, we can reproduce the observed

  16. Perspective: Oxide molecular-beam epitaxy rocks!

    SciTech Connect

    Schlom, Darrell G.

    2015-06-01

    Molecular-beam epitaxy (MBE) is the “gold standard” synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.

  17. Epitaxial growth dynamics in gallium arsenide

    NASA Astrophysics Data System (ADS)

    Ballestad, Anders

    The problem of a complete theory describing the far-from-equilibrium statistical mechanics of epitaxial crystal growth remains unsolved. Besides its academic importance, this problem is also interesting from the point of view of device manufacturing. In order to improve on the quality and performance of lateral nanostructures at the lengthscales required by today's technology, a better understanding of the physical mechanisms at play during epitaxial growth and their influence on the evolution of the large-scale morphology is required. In this thesis, we present a study of the morphological evolution of GaAs (001) during molecular beam epitaxy by experimental investigation, theoretical considerations and computational modeling. Experimental observations show that initially rough substrates smooth during growth and annealing towards a steady-state interface roughness, as dictated by kinetic roughening theory. This smoothing indicates that there is no need for a destabilizing step-edge barrier in this material system. In fact, generic surface growth models display a much better agreement with experiments when a weak, negative barrier is used. We also observe that surface features grow laterally, as well as vertically during epitaxy. A growth equation that models smoothing combined with lateral growth is the nonlinear, stochastic Kardar-Parisi-Zhang (KPZ) equation. Simulation fits match the experimentally observed surface morphologies quite well, but we argue that this agreement is coincidental and possibly a result of limited dynamic range in our experimental measurements. In light of these findings, we proceed by developing a coupled growth equations (CGE) model that describes the full morphological evolution of both flat and patterned starting surfaces. The resulting fundamental model consists of two coupled, spatially dependent rate equations that describe the interaction between diffusing adatoms and the surface through physical processes such as adatom diffusion

  18. Local transport measurements on epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Baringhaus, J.; Edler, F.; Neumann, C.; Stampfer, C.; Forti, S.; Starke, U.; Tegenkamp, C.

    2013-09-01

    Growth of large-scale graphene is still accompanied by imperfections. By means of a four-tip scanning tunneling and electron microscope (4-tip STM/SEM), the local structure of graphene grown on SiC(0001) was correlated with scanning electron microscope images and spatially resolved transport measurements. The systematic variation of probe spacings and substrate temperature has clearly revealed two-dimensional transport regimes of Anderson localization as well as of diffusive transport. The detailed analysis of the temperature dependent data demonstrates that the local on-top nano-sized contacts do not induce significant strain to the epitaxial graphene films.

  19. Materials issues in molecular beam epitaxy

    SciTech Connect

    Tsao, J.Y.

    1993-12-31

    The technology of crystal growth has advanced enormously during the past two decades; among those advances, the development and refinement of molecular beam epitaxy (MBE) has been among the most important. Crystals grown by MBE are more precisely controlled than those grown by any other method, and today form the basis for many of the most advanced device structures in solid-state physics, electronics and optoelectronics. In addition to its numerous device applications, MBE is also an enormously rich and interesting area of materials science in and of itself. This paper, discusses a few examples of some of these materials issues, organized according to whether they involve bulk, thin films, or surfaces.

  20. Perspective: Oxide molecular-beam epitaxy rocks!

    NASA Astrophysics Data System (ADS)

    Schlom, Darrell G.

    2015-06-01

    Molecular-beam epitaxy (MBE) is the "gold standard" synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.