Science.gov

Sample records for selected reaction monitoring

  1. Selected Reaction Monitoring Mass Spectrometry for Absolute Protein Quantification.

    PubMed

    Manes, Nathan P; Mann, Jessica M; Nita-Lazar, Aleksandra

    2015-01-01

    Absolute quantification of target proteins within complex biological samples is critical to a wide range of research and clinical applications. This protocol provides step-by-step instructions for the development and application of quantitative assays using selected reaction monitoring (SRM) mass spectrometry (MS). First, likely quantotypic target peptides are identified based on numerous criteria. This includes identifying proteotypic peptides, avoiding sites of posttranslational modification, and analyzing the uniqueness of the target peptide to the target protein. Next, crude external peptide standards are synthesized and used to develop SRM assays, and the resulting assays are used to perform qualitative analyses of the biological samples. Finally, purified, quantified, heavy isotope labeled internal peptide standards are prepared and used to perform isotope dilution series SRM assays. Analysis of all of the resulting MS data is presented. This protocol was used to accurately assay the absolute abundance of proteins of the chemotaxis signaling pathway within RAW 264.7 cells (a mouse monocyte/macrophage cell line). The quantification of Gi2 (a heterotrimeric G-protein α-subunit) is described in detail. PMID:26325288

  2. Protein Significance Analysis in Selected Reaction Monitoring (SRM) Measurements*

    PubMed Central

    Chang, Ching-Yun; Picotti, Paola; Hüttenhain, Ruth; Heinzelmann-Schwarz, Viola; Jovanovic, Marko; Aebersold, Ruedi; Vitek, Olga

    2012-01-01

    Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that provides sensitive and accurate protein detection and quantification in complex biological mixtures. Statistical and computational tools are essential for the design and analysis of SRM experiments, particularly in studies with large sample throughput. Currently, most such tools focus on the selection of optimized transitions and on processing signals from SRM assays. Little attention is devoted to protein significance analysis, which combines the quantitative measurements for a protein across isotopic labels, peptides, charge states, transitions, samples, and conditions, and detects proteins that change in abundance between conditions while controlling the false discovery rate. We propose a statistical modeling framework for protein significance analysis. It is based on linear mixed-effects models and is applicable to most experimental designs for both isotope label-based and label-free SRM workflows. We illustrate the utility of the framework in two studies: one with a group comparison experimental design and the other with a time course experimental design. We further verify the accuracy of the framework in two controlled data sets, one from the NCI-CPTAC reproducibility investigation and the other from an in-house spike-in study. The proposed framework is sensitive and specific, produces accurate results in broad experimental circumstances, and helps to optimally design future SRM experiments. The statistical framework is implemented in an open-source R-based software package SRMstats, and can be used by researchers with a limited statistics background as a stand-alone tool or in integration with the existing computational pipelines. PMID:22190732

  3. Monitoring PPARG-Induced Changes in Glycolysis by Selected Reaction Monitoring Mass Spectrometry.

    PubMed

    Hentschel, Andreas; Ahrends, Robert

    2016-01-01

    As cells develop and differentiate, they change in function and morphology, which often precede earlier changes in signaling and metabolic control. Here we present a selected reaction monitoring (SRM) approach which allows for the parallel quantification of metabolic regulators and their downstream targets.In particular we explain and describe how to monitor abundance changes of glycolytic enzymes upon PPARγ activation by using a label-free or a stable isotope-labeled standard peptide (SIS peptides) approach applying triple-quadrupole mass spectrometry. We further outline how to fractionate the cell lysate into cytosolic and nuclear fractions to enhance the sensitivity of the measurements and to investigate the dynamic concentration changes in those compartments. PMID:26700041

  4. Photo-SRM: laser-induced dissociation improves detection selectivity of Selected Reaction Monitoring mode.

    PubMed

    Enjalbert, Quentin; Simon, Romain; Salvador, Arnaud; Antoine, Rodolphe; Redon, Sébastien; Ayhan, Mehmet Menaf; Darbour, Florence; Chambert, Stéphane; Bretonnière, Yann; Dugourd, Philippe; Lemoine, Jérôme

    2011-11-30

    Selected Reaction Monitoring (SRM) carried out on triple-quadrupole mass spectrometers coupled to liquid chromatography has been a reference method to develop quantitative analysis of small molecules in biological or environmental matrices for years and is currently emerging as a promising tool in clinical proteomic. However, sensitive assays in complex matrices are often hampered by the presence of co-eluted compounds that share redundant transitions with the target species. On-the-fly better selection of the precursor ion by high-field asymmetric waveform ion mobility spectrometry (FAIMS) or increased quadrupole resolution is one way to escape from interferences. In the present work we document the potential interest of substituting classical gas-collision activation mode by laser-induced dissociation in the visible wavelength range to improve the specificity of the fragmentation step. Optimization of the laser beam pathway across the different quadrupoles to ensure high photo-dissociation yield in Q2 without detectable fragmentation in Q1 was assessed with sucrose tagged with a push-pull chromophore. Next, the proof of concept that photo-SRM ensures more specific detection than does conventional collision-induced dissociation (CID)-based SRM was carried out with oxytocin peptide. Oxytocin was derivatized by the thiol-reactive QSY® 7 C(5)-maleimide quencher on cysteine residues to shift its absorption property into the visible range. Photo-SRM chromatograms of tagged oxytocin spiked in whole human plasma digest showed better detection specificity and sensitivity than CID, that resulted in extended calibration curve linearity. We anticipate that photo-SRM might significantly improve the limit of quantification of classical SRM-based assays targeting cysteine-containing peptides. PMID:22002689

  5. Rapid Bacterial Identification, Resistance, Virulence and Type Profiling using Selected Reaction Monitoring Mass Spectrometry.

    PubMed

    Charretier, Yannick; Dauwalder, Olivier; Franceschi, Christine; Degout-Charmette, Elodie; Zambardi, Gilles; Cecchini, Tiphaine; Bardet, Chloe; Lacoux, Xavier; Dufour, Philippe; Veron, Laurent; Rostaing, Hervé; Lanet, Veronique; Fortin, Tanguy; Beaulieu, Corinne; Perrot, Nadine; Dechaume, Dominique; Pons, Sylvie; Girard, Victoria; Salvador, Arnaud; Durand, Géraldine; Mallard, Frédéric; Theretz, Alain; Broyer, Patrick; Chatellier, Sonia; Gervasi, Gaspard; Van Nuenen, Marc; Roitsch, Carolyn Ann; Van Belkum, Alex; Lemoine, Jérôme; Vandenesch, François; Charrier, Jean-Philippe

    2015-01-01

    Mass spectrometry (MS) in Selected Reaction Monitoring (SRM) mode is proposed for in-depth characterisation of microorganisms in a multiplexed analysis. Within 60-80 minutes, the SRM method performs microbial identification (I), antibiotic-resistance detection (R), virulence assessment (V) and it provides epidemiological typing information (T). This SRM application is illustrated by the analysis of the human pathogen Staphylococcus aureus, demonstrating its promise for rapid characterisation of bacteria from positive blood cultures of sepsis patients. PMID:26350205

  6. Rapid Bacterial Identification, Resistance, Virulence and Type Profiling using Selected Reaction Monitoring Mass Spectrometry

    PubMed Central

    Charretier, Yannick; Dauwalder, Olivier; Franceschi, Christine; Degout-Charmette, Elodie; Zambardi, Gilles; Cecchini, Tiphaine; Bardet, Chloe; Lacoux, Xavier; Dufour, Philippe; Veron, Laurent; Rostaing, Hervé; Lanet, Veronique; Fortin, Tanguy; Beaulieu, Corinne; Perrot, Nadine; Dechaume, Dominique; Pons, Sylvie; Girard, Victoria; Salvador, Arnaud; Durand, Géraldine; Mallard, Frédéric; Theretz, Alain; Broyer, Patrick; Chatellier, Sonia; Gervasi, Gaspard; Van Nuenen, Marc; Ann Roitsch, Carolyn; Van Belkum, Alex; Lemoine, Jérôme; Vandenesch, François; Charrier, Jean-Philippe

    2015-01-01

    Mass spectrometry (MS) in Selected Reaction Monitoring (SRM) mode is proposed for in-depth characterisation of microorganisms in a multiplexed analysis. Within 60–80 minutes, the SRM method performs microbial identification (I), antibiotic-resistance detection (R), virulence assessment (V) and it provides epidemiological typing information (T). This SRM application is illustrated by the analysis of the human pathogen Staphylococcus aureus, demonstrating its promise for rapid characterisation of bacteria from positive blood cultures of sepsis patients. PMID:26350205

  7. Targeted Phosphoproteome Analysis Using Selected/Multiple Reaction Monitoring (SRM/MRM).

    PubMed

    Adachi, Jun; Narumi, Ryohei; Tomonaga, Takeshi

    2016-01-01

    Mass spectrometry-based phosphoproteomics has been rapidly spread based on the advancement of mass spectrometry and development of efficient enrichment techniques for phosphorylated proteins or peptides. Non-targeted approach has been employed in most of the studies for phosphoproteome analysis. However, targeted approach using selected/multiple reaction monitoring (SRM/MRM) is an indispensible technique used for the quantitation of known targets especially when we have many samples to quantitate phosphorylation events on proteins in biological or clinical samples. We herein describe the application of a large-scale phosphoproteome analysis and SRM-based quantitation for the systematic discovery and validation of biomarkers. PMID:26700043

  8. Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring.

    PubMed

    Lawless, Craig; Holman, Stephen W; Brownridge, Philip; Lanthaler, Karin; Harman, Victoria M; Watkins, Rachel; Hammond, Dean E; Miller, Rebecca L; Sims, Paul F G; Grant, Christopher M; Eyers, Claire E; Beynon, Robert J; Hubbard, Simon J

    2016-04-01

    Defining intracellular protein concentration is critical in molecular systems biology. Although strategies for determining relative protein changes are available, defining robust absolute values in copies per cell has proven significantly more challenging. Here we present a reference data set quantifying over 1800Saccharomyces cerevisiaeproteins by direct means using protein-specific stable-isotope labeled internal standards and selected reaction monitoring (SRM) mass spectrometry, far exceeding any previous study. This was achieved by careful design of over 100 QconCAT recombinant proteins as standards, defining 1167 proteins in terms of copies per cell and upper limits on a further 668, with robust CVs routinely less than 20%. The selected reaction monitoring-derived proteome is compared with existing quantitative data sets, highlighting the disparities between methodologies. Coupled with a quantification of the transcriptome by RNA-seq taken from the same cells, these data support revised estimates of several fundamental molecular parameters: a total protein count of ∼100 million molecules-per-cell, a median of ∼1000 proteins-per-transcript, and a linear model of protein translation explaining 70% of the variance in translation rate. This work contributes a "gold-standard" reference yeast proteome (including 532 values based on high quality, dual peptide quantification) that can be widely used in systems models and for other comparative studies. PMID:26750110

  9. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics

    SciTech Connect

    Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Weijun; Smith, Richard D.

    2012-04-01

    Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the pg/mL to low ng/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in the cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides or their posttranslational modifications (PTMs), as well as advances in MS instrumentation, which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.

  10. Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring*

    PubMed Central

    Lawless, Craig; Holman, Stephen W.; Brownridge, Philip; Lanthaler, Karin; Harman, Victoria M.; Watkins, Rachel; Hammond, Dean E.; Miller, Rebecca L.; Sims, Paul F. G.; Grant, Christopher M.; Eyers, Claire E.; Beynon, Robert J.

    2016-01-01

    Defining intracellular protein concentration is critical in molecular systems biology. Although strategies for determining relative protein changes are available, defining robust absolute values in copies per cell has proven significantly more challenging. Here we present a reference data set quantifying over 1800 Saccharomyces cerevisiae proteins by direct means using protein-specific stable-isotope labeled internal standards and selected reaction monitoring (SRM) mass spectrometry, far exceeding any previous study. This was achieved by careful design of over 100 QconCAT recombinant proteins as standards, defining 1167 proteins in terms of copies per cell and upper limits on a further 668, with robust CVs routinely less than 20%. The selected reaction monitoring-derived proteome is compared with existing quantitative data sets, highlighting the disparities between methodologies. Coupled with a quantification of the transcriptome by RNA-seq taken from the same cells, these data support revised estimates of several fundamental molecular parameters: a total protein count of ∼100 million molecules-per-cell, a median of ∼1000 proteins-per-transcript, and a linear model of protein translation explaining 70% of the variance in translation rate. This work contributes a “gold-standard” reference yeast proteome (including 532 values based on high quality, dual peptide quantification) that can be widely used in systems models and for other comparative studies. PMID:26750110

  11. Protein quantification by MALDI-selected reaction monitoring mass spectrometry using sulfonate derivatized peptides.

    PubMed

    Lesur, Antoine; Varesio, Emmanuel; Hopfgartner, Gérard

    2010-06-15

    The feasibility of protein absolute quantification with matrix-assisted laser desorption/ionization (MALDI) using the selected reaction monitoring (SRM) acquisition mode on a triple quadrupole linear ion trap mass spectrometer (QqQ(LIT)) equipped with a high-frequency laser is demonstrated. A therapeutic human monoclonal antibody (mAb) was used as a model protein, and four tryptic peptides generated by fast tryptic digestion were selected as quantification surrogates. MALDI produces mostly singly charged peptides which hardly fragment under low-energy collision-induced dissociation (CID), and therefore the benefits of using 4-sulfophenyl isothiocyanate (SPITC) as a fragmentation enhancer derivatization agent were evaluated. Despite a moderate impact on the sensitivity, the N-terminus sulfonated peptides generate nearly complete y-ion ladders when native peptides produce few fragments. This aspect provides an alternative SRM transition set for each peptide. As a consequence, SRM transitions selectivity can be tuned more easily for peptide quantitation in complex matrices when monitoring several SRM transitions. From a quantitative point of view, the signal response depending on mAb concentration was found to be linear over 2.5 orders of magnitude for the most sensitive peptide, allowing precise and accurate measurement by MALDI-SRM/MS. PMID:20481516

  12. Ultrasensitive Sample Quantitation via Selected Reaction Monitoring Using CITP/CZE-ESI-Triple Quadrupole MS

    PubMed Central

    Wang, Chenchen; Lee, Cheng S.; Smith, Richard D.; Tang, Keqi

    2013-01-01

    We demonstrate the direct coupling of transient capillary isotachophoresis/ capillary zone electrophoresis (CITP/CZE) with a high sensitivity triple quadrupole mass spectrometer operating in selected reaction monitoring (SRM) mode for sample quantitation. The capability of CITP/CZE for in situ sample enrichment and separation has been shown to significantly improve the analytical figures of merit. A linear dynamic range spanning 4 orders of magnitude was observed. An average signal-to-noise ratio (S/N) of 49.6 was observed for 50 attomoles of targeted peptide in the presence of a complex and much more abundant bovine serum albumin (BSA) digest product. A correlation of variation (CV) less than 10 % for peak area was measured from triplicate sample analyses at 50 pM peptide concentration, showing good reproducibility of this online CITP/CZE-SRM mass spectrometry (MS) platform, and with limit of quantitation (LOQ) demonstrated to be well below 50 pM. PMID:23140208

  13. Ultrasensitive Sample Quantitation via Selected Reaction Monitoring Using CITP/CZE-ESI-Triple Quadrupole MS

    SciTech Connect

    Wang, Chenchen; Lee, Cheng S.; Smith, Richard D.; Tang, Keqi

    2012-11-10

    We demonstrate the direct coupling of transient capillary isotachophoresis/ capillary zone electrophoresis (CITP/CZE) with a high sensitivity triple quadrupole mass spectrometer operating in selected reaction monitoring (SRM) mode for sample quantitation. The capability of CITP/CZE for in situ sample enrichment and separation has been shown to significantly improve the analytical figures of merit. A linear dynamic range spanning more than 4 orders of magnitude was observed. An average signal-to-noise ratio (S/N) of 49.6 was observed for 50 attomoles of targeted peptide in the presence of a complex and much more abundant bovine serum albumin (BSA) digest products. A correlation of variation (CV) less than 10 % for peak area was measured from triplicate sample analyses at 50 pM peptide concentration, showing good reproducibility of this online CITP/CZE-SRM mass spectrometry (MS) platform, and with limit of quantitation (LOQ) demonstrated to be well below 50 pM.

  14. Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry.

    PubMed

    Ludwig, Christina; Claassen, Manfred; Schmidt, Alexander; Aebersold, Ruedi

    2012-03-01

    For many research questions in modern molecular and systems biology, information about absolute protein quantities is imperative. This information includes, for example, kinetic modeling of processes, protein turnover determinations, stoichiometric investigations of protein complexes, or quantitative comparisons of different proteins within one sample or across samples. To date, the vast majority of proteomic studies are limited to providing relative quantitative comparisons of protein levels between limited numbers of samples. Here we describe and demonstrate the utility of a targeting MS technique for the estimation of absolute protein abundance in unlabeled and nonfractionated cell lysates. The method is based on selected reaction monitoring (SRM) mass spectrometry and the "best flyer" hypothesis, which assumes that the specific MS signal intensity of the most intense tryptic peptides per protein is approximately constant throughout a whole proteome. SRM-targeted best flyer peptides were selected for each protein from the peptide precursor ion signal intensities from directed MS data. The most intense transitions per peptide were selected from full MS/MS scans of crude synthetic analogs. We used Monte Carlo cross-validation to systematically investigate the accuracy of the technique as a function of the number of measured best flyer peptides and the number of SRM transitions per peptide. We found that a linear model based on the two most intense transitions of the three best flying peptides per proteins (TopPep3/TopTra2) generated optimal results with a cross-correlated mean fold error of 1.8 and a squared Pearson coefficient R(2) of 0.88. Applying the optimized model to lysates of the microbe Leptospira interrogans, we detected significant protein abundance changes of 39 target proteins upon antibiotic treatment, which correlate well with literature values. The described method is generally applicable and exploits the inherent performance advantages of SRM

  15. Automated Selected Reaction Monitoring Software for Accurate Label-Free Protein Quantification

    PubMed Central

    2012-01-01

    Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5–19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology. PMID:22658081

  16. Selective monitoring

    NASA Astrophysics Data System (ADS)

    Homem-de-Mello, Luiz S.

    1992-04-01

    While in NASA's earlier space missions such as Voyager the number of sensors was in the hundreds, future platforms such as the Space Station Freedom will have tens of thousands sensors. For these planned missions it will be impossible to use the comprehensive monitoring strategy that was used in the past in which human operators monitored all sensors all the time. A selective monitoring strategy must be substituted for the current comprehensive strategy. This selective monitoring strategy uses computer tools to preprocess the incoming data and direct the operators' attention to the most critical parts of the physical system at any given time. There are several techniques that can be used to preprocess the incoming information. This paper presents an approach to using diagnostic reasoning techniques to preprocess the sensor data and detect which parts of the physical system require more attention because components have failed or are most likely to have failed. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that assertions can be made from instantaneous measurements. And the system must be such that changes are slow enough to allow the computation.

  17. Targeted Selected Reaction Monitoring Mass Spectrometric Immunoassay for Insulin-like Growth Factor 1

    PubMed Central

    Niederkofler, Eric E.; Phillips, David A.; Krastins, Bryan; Kulasingam, Vathany; Kiernan, Urban A.; Tubbs, Kemmons A.; Peterman, Scott M.; Prakash, Amol; Diamandis, Eleftherios P.; Lopez, Mary F.; Nedelkov, Dobrin

    2013-01-01

    Insulin-like growth factor 1 (IGF1) is an important biomarker of human growth disorders that is routinely analyzed in clinical laboratories. Mass spectrometry-based workflows offer a viable alternative to standard IGF1 immunoassays, which utilize various pre-analytical preparation strategies. In this work we developed an assay that incorporates a novel sample preparation method for dissociating IGF1 from its binding proteins. The workflow also includes an immunoaffinity step using antibody-derivatized pipette tips, followed by elution, trypsin digestion, and LC-MS/MS separation and detection of the signature peptides in a selected reaction monitoring (SRM) mode. The resulting quantitative mass spectrometric immunoassay (MSIA) exhibited good linearity in the range of 1 to 1,500 ng/mL IGF1, intra- and inter-assay precision with CVs of less than 10%, and lowest limits of detection of 1 ng/mL. The linearity and recovery characteristics of the assay were also established, and the new method compared to a commercially available immunoassay using a large cohort of human serum samples. The IGF1 SRM MSIA is well suited for use in clinical laboratories. PMID:24278387

  18. Detection and quantification of plasma amyloid-β by selected reaction monitoring mass spectrometry.

    PubMed

    Kim, Jun Seok; Ahn, Hee-Sung; Cho, Soo Min; Lee, Ji Eun; Kim, YoungSoo; Lee, Cheolju

    2014-08-20

    Amyloid-β (Aβ) in human plasma was detected and quantified by an antibody-free method, selected reaction monitoring mass spectrometry (SRM-MS) in the current study. Due to its low abundance, SRM-based quantification in 10 μL plasma was a challenge. Prior to SRM analysis, human plasma proteins as a whole were digested by trypsin and high pH reversed-phase liquid chromatography (RPLC) was used to fractionate the tryptic digests and to collect peptides, Aβ(1-5), Aβ(6-16), Aβ(17-28) and Aβ(29-40(42)) of either Aβ(1-40) or Aβ(1-42). Among those peptides, Aβ(17-28) was selected as a surrogate to measure the total Aβ level. Human plasma samples obtained from triplicate sample preparations were analyzed, obtaining 4.20 ng mL(-1) with a CV of 25.3%. Triplicate measurements for each sample preparation showed CV of <5%. Limit of quantification was obtained as 132 pM, which corresponded to 570 pg mL(-1) of Aβ(1-40). Until now, most quantitative measurements of Aβ in plasma or cerebrospinal fluid have required antibody-based immunoassays. Since quantification of Aβ by immunoassays is highly dependent on the extent of epitope exposure due to aggregation or plasma protein binding, it is difficult to accurately measure the actual concentration of Aβ in plasma. Our diagnostic method based on SRM using a surrogate peptide of Aβ is promising in that actual amounts of total Aβ can be measured regardless of the conformational status of the biomarker. PMID:25086887

  19. Determination of alkanolamines in cattails (Typha latifolia) utilizing electrospray ionization with selected reaction monitoring and ion-exchange chromatography.

    PubMed

    Peru, Kerry M; Headley, John V; Doucette, William J

    2004-01-01

    Selected reaction monitoring (SRM) with electrospray ionization was used as a specific detection technique for the analysis of alkanolamines in plant tissue extracts. Ion-exchange chromatography was used as the method of separation. Quantification was based on monitoring the loss of either H2O or 2(H2O) from the protonated molecule [M+H]+. The method provided increased selectivity for all analytes and better detection limits for three of the six analytes investigated compared with an earlier method using selected ion monitoring with liquid chromatography. Instrumental detection limits ranged from 6-300 pg injected for monoethanolamine (MEA), monoisopropanolamine (MIPA), diethanolamine (DEA), methyldiethanolamine (MDEA), diisopropanolamine (DIPA), and triethanolamine (TEA). Method robustness and selectivity were demonstrated by the determination of DIPA and a known transformation product MIPA in over 35 plant extract samples derived from a laboratory study of plant uptake mechanisms. PMID:15282789

  20. Development of Mass Spectrometry Selected Reaction Monitoring Method for Quantitation and Pharmacokinetic Study of Stepharine in Rabbit Plasma

    PubMed Central

    Kopylov, Arthur T.; Kuznetsova, Ksenia G.; Mikhailova, Olga M.; Moshkin, Andrey G.; Turkin, Vladimir V.; Alimov, Andrei A.

    2014-01-01

    Highly sensitive liquid chromatography mass spectrometry method on triple quadrupole (QQQ) mass spectrometer was successfully applied for pharmacokinetic study of stepharine in rabbit plasma. Specific ion transitions of stepharine protonated precursor ion were selected and recorded in the certain retention time employing dynamic selected reaction monitoring mode. The developed method facilitated quantitative measurements of stepharine in plasma samples in linear range of five orders of magnitude with high accuracy and low standard deviation coefficient and pharmacokinetics parameters were calculated. The apparent volume of stepharine distribution (estimated as ratio of clearance to elimination rate constant, data not shown) allows us to assume that stepharine was extensively distributed throughout the body. PMID:24696679

  1. Targeted Multiplexed Selected Reaction Monitoring Analysis Evaluates Protein Expression Changes of Molecular Risk Factors for Major Psychiatric Disorders

    PubMed Central

    Wesseling, Hendrik; Gottschalk, Michael G.

    2015-01-01

    Background: Extensive research efforts have generated genomic, transcriptomic, proteomic, and functional data hoping to elucidate psychiatric pathophysiology. Selected reaction monitoring, a recently developed targeted proteomic mass spectrometric approach, has made it possible to evaluate previous findings and hypotheses with high sensitivity, reproducibility, and quantitative accuracy. Methods: Here, we have developed a labelled multiplexed selected reaction monitoring assay, comprising 56 proteins previously implicated in the aetiology of major psychiatric disorders, including cell type markers or targets and effectors of known psychopharmacological interventions. We analyzed postmortem anterior prefrontal cortex (Brodmann area 10) tissue of patients diagnosed with schizophrenia (n=22), bipolar disorder (n=23), and major depressive disorder with (n=11) and without (n=11) psychotic features compared with healthy controls (n=22). Results: Results agreed with several previous studies, with the finding of alterations of Wnt-signalling and glutamate receptor abundance predominately in bipolar disorder and abnormalities in energy metabolism across the neuropsychiatric disease spectrum. Calcium signalling was predominantly affected in schizophrenia and affective psychosis. Interestingly, we were able to show a decrease of all 4 tested oligodendrocyte specific proteins (MOG, MBP, MYPR, CNPase) in bipolar disorder and to a lesser extent in schizophrenia and affective psychosis. Finally, we provide new evidence linking ankyrin 3 specifically to affective psychosis and the 22q11.2 deletion syndrome-associated protein septin 5 to schizophrenia. Conclusions: Our study highlights the potential of selected reaction monitoring to evaluate the protein abundance levels of candidate markers of neuropsychiatric spectrum disorders, providing a high throughput multiplex platform for validation of putative disease markers and drug targets. PMID:25539505

  2. ANALYSIS FOR B-LACTAM ANTIBIOTICS IN KIDNEY TISSUE BY LIQUID CHROMATOGRAPHY WITH ELECTROSPRAY IONIZATION AND SELECTIVE REACTION MONITORING/TANDEM ION TRAP MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eleven B-lactams antibiotics were analyzed in fortified and incurred beef kidney tissue using high-performance liquid chromatography/selective reaction monitoring/tandem ion trap mass spectrometry. The analytes included: deacetylcephapirin, amoxicillin, cephapirin, desfuroylceftiofur cysteine disul...

  3. Diet-induced neuropeptide expression: feasibility of quantifying extended and highly charged endogenous peptide sequences by selected reaction monitoring.

    PubMed

    Schmidlin, Thierry; Boender, Arjen J; Frese, Christian K; Heck, Albert J R; Adan, Roger A H; Altelaar, A F Maarten

    2015-10-01

    Understanding regulation and action of endogenous peptides, especially neuropeptides, which serve as inter- and intracellular signal transmitters, is key in understanding a variety of functional processes, such as energy balance, memory, circadian rhythm, drug addiction, etc. Therefore, accurate and reproducible quantification of these bioactive endogenous compounds is highly relevant. The biosynthesis of endogenous peptides, involving multiple possible trimming and modification events, hinders the de novo prediction of the active peptide sequences, making MS-based measurements very valuable in determining the actual active compounds. Here, we report an extended selected reaction monitoring (SRM)-based strategy to reproducibly and quantitatively monitor the abundances of a set of 15 endogenously occurring peptides from Rattus norvegicus hypothalamus. We demonstrate that SRM can be extended toward reproducible detection and quantification of peptides, bearing characteristics very different from tryptic peptides. We show that long peptide sequences, producing precursors with up to five and MS2 fragment ions with up to three charges, can be targeted by SRM on a triple quadrupole instrument. Using this approach to quantify endogenous peptide levels in hypothalami of animals subjected to different diets revealed several significant changes, most notably the significant upregulation of VGF-derived signaling peptide AQEE-30 upon high caloric feeding. PMID:26376940

  4. Mass Spectrometric-Based Selected Reaction Monitoring of Protein Phosphorylation during Symbiotic Signaling in the Model Legume, Medicago truncatula

    PubMed Central

    Maeda, Junko; Barrett-Wilt, Gregory A.; Sussman, Michael R.

    2016-01-01

    Unlike the major cereal crops corn, rice, and wheat, leguminous plants such as soybean and alfalfa can meet their nitrogen requirement via endosymbiotic associations with soil bacteria. The establishment of this symbiosis is a complex process playing out over several weeks and is facilitated by the exchange of chemical signals between these partners from different kingdoms. Several plant components that are involved in this signaling pathway have been identified, but there is still a great deal of uncertainty regarding the early events in symbiotic signaling, i.e., within the first minutes and hours after the rhizobial signals (Nod factors) are perceived at the plant plasma membrane. The presence of several protein kinases in this pathway suggests a mechanism of signal transduction via posttranslational modification of proteins in which phosphate is added to the hydroxyl groups of serine, threonine and tyrosine amino acid side chains. To monitor the phosphorylation dynamics and complement our previous untargeted 'discovery' approach, we report here the results of experiments using a targeted mass spectrometric technique, Selected Reaction Monitoring (SRM) that enables the quantification of phosphorylation targets with great sensitivity and precision. Using this approach, we confirm a rapid change in the level of phosphorylation in 4 phosphosites of at least 4 plant phosphoproteins that have not been previously characterized. This detailed analysis reveals aspects of the symbiotic signaling mechanism in legumes that, in the long term, will inform efforts to engineer this nitrogen-fixing symbiosis in important non-legume crops such as rice, wheat and corn. PMID:27203723

  5. Mass Spectrometric-Based Selected Reaction Monitoring of Protein Phosphorylation during Symbiotic Signaling in the Model Legume, Medicago truncatula.

    PubMed

    Van Ness, Lori K; Jayaraman, Dhileepkumar; Maeda, Junko; Barrett-Wilt, Gregory A; Sussman, Michael R; Ané, Jean-Michel

    2016-01-01

    Unlike the major cereal crops corn, rice, and wheat, leguminous plants such as soybean and alfalfa can meet their nitrogen requirement via endosymbiotic associations with soil bacteria. The establishment of this symbiosis is a complex process playing out over several weeks and is facilitated by the exchange of chemical signals between these partners from different kingdoms. Several plant components that are involved in this signaling pathway have been identified, but there is still a great deal of uncertainty regarding the early events in symbiotic signaling, i.e., within the first minutes and hours after the rhizobial signals (Nod factors) are perceived at the plant plasma membrane. The presence of several protein kinases in this pathway suggests a mechanism of signal transduction via posttranslational modification of proteins in which phosphate is added to the hydroxyl groups of serine, threonine and tyrosine amino acid side chains. To monitor the phosphorylation dynamics and complement our previous untargeted 'discovery' approach, we report here the results of experiments using a targeted mass spectrometric technique, Selected Reaction Monitoring (SRM) that enables the quantification of phosphorylation targets with great sensitivity and precision. Using this approach, we confirm a rapid change in the level of phosphorylation in 4 phosphosites of at least 4 plant phosphoproteins that have not been previously characterized. This detailed analysis reveals aspects of the symbiotic signaling mechanism in legumes that, in the long term, will inform efforts to engineer this nitrogen-fixing symbiosis in important non-legume crops such as rice, wheat and corn. PMID:27203723

  6. Rapid determination of parabens in personal care products by stable isotope GC-MS/MS with dynamic selected reaction monitoring.

    PubMed

    Wang, Perry G; Zhou, Wanlong

    2013-06-01

    In this study, a rapid and sensitive analytical method for the determination of methyl-, ethyl-, propyl-, and butyl esters of para-hydroxy benzoic acid (parabens) in personal care products was developed and fully validated. Test portions were extracted with methanol followed by vortexing, sonication, centrifugation, and filtration without derivatization. The four parabens were quantified by GC-MS/MS in the electron ionization mode. Four corresponding isotopically labeled parabens were selected as internal standards, which were added at the beginning of the sample preparation and used to correct for recovery and matrix effects. Sensitivity, extraction efficiency, and recovery of the respective analytes were evaluated. The coefficients of determination (r(2)) were all greater than 0.995 for the four parabens investigated. The recoveries ranged from 97 to 107% at three spiked levels and a one-time (single) extraction efficiency greater than 97% was obtained. This method has been applied to screen 26 personal care products. This is the first time that a unique GC-MS/MS method with dynamic selected reaction monitoring and confirmation of analytes has been used to determine these parabens in cosmetic personal care products. PMID:23494853

  7. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadrupole Mass Spectrometry

    SciTech Connect

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-24

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ion injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. Lastly, the sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.

  8. Selected reaction monitoring as an effective method for reliable quantification of disease-associated proteins in maple syrup urine disease.

    PubMed

    Fernández-Guerra, Paula; Birkler, Rune I D; Merinero, Begoña; Ugarte, Magdalena; Gregersen, Niels; Rodríguez-Pombo, Pilar; Bross, Peter; Palmfeldt, Johan

    2014-09-01

    Selected reaction monitoring (SRM) mass spectrometry can quantitatively measure proteins by specific targeting of peptide sequences, and allows the determination of multiple proteins in one single analysis. Here, we show the feasibility of simultaneous measurements of multiple proteins in mitochondria-enriched samples from cultured fibroblasts from healthy individuals and patients with mutations in branched-chain α-ketoacid dehydrogenase (BCKDH) complex. BCKDH is a mitochondrial multienzyme complex and its defective activity causes maple syrup urine disease (MSUD), a rare but severe inherited metabolic disorder. Four different genes encode the catalytic subunits of BCKDH: E1α (BCKDHA), E1β (BCKDHB), E2 (DBT), and E3 (DLD). All four proteins were successfully quantified in healthy individuals. However, the E1α and E1β proteins were not detected in patients carrying mutations in one of those genes, whereas mRNA levels were almost unaltered, indicating instability of E1α and E1β monomers. Using SRM we elucidated the protein effects of mutations generating premature termination codons or misfolded proteins. SRM is a complement to transcript level measurements and a valuable tool to shed light on molecular mechanisms and on effects of pharmacological therapies at protein level. SRM is particularly effective for inherited disorders caused by multiple proteins such as defects in multienzyme complexes. PMID:25333063

  9. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadrupole Mass Spectrometry

    DOE PAGESBeta

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-24

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ionmore » injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. Lastly, the sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.« less

  10. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadruple Mass Spectrometry

    SciTech Connect

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-07-21

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ion injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. The sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.

  11. 18O-Labeled Proteome Reference as Global Internal Standards for Targeted Quantification by Selected Reaction Monitoring-Mass Spectrometry

    SciTech Connect

    Kim, Jong Seo; Fillmore, Thomas L.; Liu, Tao; Robinson, Errol W.; Hossain, Mahmud; Champion, Boyd L.; Moore, Ronald J.; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2011-10-11

    Selected reaction monitoring-mass spectrometry (SRM-MS) is an emerging technology for high throughput targeted protein quantification and verification in biological and biomarker discovery studies; however, the cost associated with the use of stable isotope labeled synthetic peptides as internal standards is prohibitive for quantitatively screening large numbers of candidate proteins as often required in the pre-verification phase of biomarker discovery. Herein we present the proof-of-concept experiments of using an 18O-labeled 'universal' reference as comprehensive internal standards for quantitative SRM-MS analysis. With an 18O-labeled whole proteome sample as reference, every peptide of interest will have its own corresponding heavy isotope labeled internal standard, thus providing an ideal approach for quantitative screening of a large number of candidates using SRM-MS. Our results showed that the 18O incorporation efficiency using a recently improved protocol was >99.5% for most peptides investigated, a level comparable to 13C/15N labeled synthetic peptides in terms of heavy isotope incorporation. The accuracy, reproducibility, and linear dynamic range of quantification were further assessed based on known ratios of standard proteins spiked into mouse plasma with an 18O-labeled mouse plasma reference. A dynamic range of four orders of magnitude in relative concentration was obtained with high reproducibility (i.e., coefficient of variance <10%) based on the 16O/18O peak area ratios. Absolute and relative quantification of C-reactive protein and prostate-specific antigen were demonstrated by coupling an 18O-labeled reference with standard additions of protein standards. Collectively, our results demonstrated that the use of 18O-labeled reference provides a convenient and effective strategy for quantitative SRM screening of large number of candidate proteins.

  12. Enhanced Sensitivity for Selected Reaction Monitoring Mass Spectrometry-based Targeted Proteomics Using a Dual Stage Electrodynamic Ion Funnel Interface*

    PubMed Central

    Hossain, Mahmud; Kaleta, David T.; Robinson, Errol W.; Liu, Tao; Zhao, Rui; Page, Jason S.; Kelly, Ryan T.; Moore, Ronald J.; Tang, Keqi; Camp, David G.; Qian, Wei-Jun; Smith, Richard D.

    2011-01-01

    Selected reaction monitoring mass spectrometry (SRM-MS) is playing an increasing role in quantitative proteomics and biomarker discovery studies as a method for high throughput candidate quantification and verification. Although SRM-MS offers advantages in sensitivity and quantification compared with other MS-based techniques, current SRM technologies are still challenged by detection and quantification of low abundance proteins (e.g. present at ∼10 ng/ml or lower levels in blood plasma). Here we report enhanced detection sensitivity and reproducibility for SRM-based targeted proteomics by coupling a nanospray ionization multicapillary inlet/dual electrodynamic ion funnel interface to a commercial triple quadrupole mass spectrometer. Because of the increased efficiency in ion transmission, significant enhancements in overall signal intensities and improved limits of detection were observed with the new interface compared with the original interface for SRM measurements of tryptic peptides from proteins spiked into non-depleted mouse plasma over a range of concentrations. Overall, average SRM peak intensities were increased by ∼70-fold. The average level of detection for peptides also improved by ∼10-fold with notably improved reproducibility of peptide measurements as indicated by the reduced coefficients of variance. The ability to detect proteins ranging from 40 to 80 ng/ml within mouse plasma was demonstrated for all spiked proteins without the application of front-end immunoaffinity depletion and fractionation. This significant improvement in detection sensitivity for low abundance proteins in complex matrices is expected to enhance a broad range of SRM-MS applications including targeted protein and metabolite validation. PMID:20410378

  13. Peptides quantification by liquid chromatography with matrix-assisted laser desorption/ionization and selected reaction monitoring detection.

    PubMed

    Lesur, Antoine; Varesio, Emmanuel; Domon, Bruno; Hopfgartner, Gérard

    2012-10-01

    We present a novel analytical platform for peptides quantitative assays in biological matrices based on microscale liquid chromatography fractionation and matrix-assisted laser desorption/ionization mass spectrometric detection using the selected reaction monitoring (SRM) mode. The MALDI source was equipped with a high frequency Nd:YAG laser (1000 Hz) and mounted on a triple quadrupole/linear ion trap mass spectrometer (MALDI-QqQ(LIT)). Compared to conventional LC-ESI-SRM/MS, the separated analytes are "time-frozen" onto the MALDI plate in fractions, and navigation through the LC chromatogram makes it possible to perform SRM experiments as well as enhanced product ion spectra acquisition for confirmatory analyses without time constraints. The LC spots were analyzed using different rastering speeds ranging from 0.25 to 4 mm/sec with the shortest analysis time of 425 ms/spot. Since the LC runs can be multiplexed and do not need a comprehensive investigation, the present platform offers a valuable alternative to LC-ESI-SRM/MS for high throughput proteomic analyses. In addition, the derivatization of the N-terminal α-amino group by sulfonation was found to be key for the fragmentation of singly charged peptides under low collision energy regime. Under such conditions, y-ion series were observed in the MS/MS spectra, and thus the design of SRM experiments was greatly simplified. The quantitative performance of the platform was compared to that of LC-ESI-SRM/MS by spiking yeast tryptic peptides in human plasma digests. Both platforms exhibited similar sensitivities, accuracy (within ±20%) and precision (under 20%) in the relative quantification mode. As a proof of principle, the relative and absolute quantification of proteins associated with glycolysis, glyoxylate and tricarboxylic acid (TCA) cycles over a growth time course of Saccharomyces cerevisiae on glucose media was successfully performed using isotopic dilution. PMID:22897511

  14. ATAQS: A computational software tool for high throughput transition optimization and validation for selected reaction monitoring mass spectrometry

    PubMed Central

    2011-01-01

    Background Since its inception, proteomics has essentially operated in a discovery mode with the goal of identifying and quantifying the maximal number of proteins in a sample. Increasingly, proteomic measurements are also supporting hypothesis-driven studies, in which a predetermined set of proteins is consistently detected and quantified in multiple samples. Selected reaction monitoring (SRM) is a targeted mass spectrometric technique that supports the detection and quantification of specific proteins in complex samples at high sensitivity and reproducibility. Here, we describe ATAQS, an integrated software platform that supports all stages of targeted, SRM-based proteomics experiments including target selection, transition optimization and post acquisition data analysis. This software will significantly facilitate the use of targeted proteomic techniques and contribute to the generation of highly sensitive, reproducible and complete datasets that are particularly critical for the discovery and validation of targets in hypothesis-driven studies in systems biology. Result We introduce a new open source software pipeline, ATAQS (Automated and Targeted Analysis with Quantitative SRM), which consists of a number of modules that collectively support the SRM assay development workflow for targeted proteomic experiments (project management and generation of protein, peptide and transitions and the validation of peptide detection by SRM). ATAQS provides a flexible pipeline for end-users by allowing the workflow to start or end at any point of the pipeline, and for computational biologists, by enabling the easy extension of java algorithm classes for their own algorithm plug-in or connection via an external web site. This integrated system supports all steps in a SRM-based experiment and provides a user-friendly GUI that can be run by any operating system that allows the installation of the Mozilla Firefox web browser. Conclusions Targeted proteomics via SRM is a powerful

  15. Bioanalytical high-throughput selected reaction monitoring-LC/MS determination of selected estrogen receptor modulators in human plasma: 2000 samples/day.

    PubMed

    Zweigenbaum, J; Henion, J

    2000-06-01

    The high-throughput determination of small molecules in biological matrixes has become an important part of drug discovery. This work shows that increased throughput LC/MS/MS techniques can be used for the analysis of selected estrogen receptor modulators in human plasma where more than 2000 samples may be analyzed in a 24-h period. The compounds used to demonstrate the high-throughput methodology include tamoxifen, raloxifene, 4-hydroxytamoxifen, nafoxidine, and idoxifene. Tamoxifen and raloxifene are used in both breast cancer therapy and osteoporosis and have shown prophylactic potential for the reduction of the risk of breast cancer. The described strategy provides LC/MS/MS separation and quantitation for each of the five test articles in control human plasma. The method includes sample preparation employing liquid-liquid extraction in the 96-well format, an LC separation of the five compounds in less than 30 s, and selected reaction monitoring detection from low nano- to microgram per milliter levels. Precision and accuracy are determined where each 96-well plate is considered a typical "tray" having calibration standards and quality control (QC) samples dispersed through each plate. A concept is introduced where 24 96-well plates analyzed in 1 day is considered a "grand tray", and the method is cross-validated with standards placed only at the beginning of the first plate and the end of the last plate. Using idoxifene-d5 as an internal standard, the results obtained for idoxifene and tamoxifen satisfy current bioanalytical method validation criteria on two separate days where 2112 and 2304 samples were run, respectively. Method validation included 24-h autosampler stability and one freeze-thaw cycle stability for the extracts. Idoxifene showed acceptable results with accuracy ranging from 0.3% for the high quality control (QC) to 15.4% for the low QC and precision of 3.6%-13.9% relative standard deviation. Tamoxifen showed accuracy ranging from 1.6% to 13

  16. Simultaneous selected reaction monitoring, MS/MS and MS3 quantitation for the analysis of pharmaceutical compounds in human plasma using chip-based infusion.

    PubMed

    Leuthold, Luc Alexis; Grivet, Chantal; Allen, Mark; Baumert, Mark; Hopfgartner, Gérard

    2004-01-01

    An assay method with mass spectrometric detection was developed for the quantitative analysis of a pharmaceutical compound and its major metabolite in human plasma using chip-based infusion. Liquid-liquid extraction sample preparation was found to be essential to minimize matrix suppression and to achieve a limit of quantitation (LOQ) of 2.5 ng/mL using a 100 microL plasma aliquot. The potential for simultaneous quantitation in selected reaction monitoring (SRM), tandem mass spectrometry (MS/MS) (enhanced product ion), and MS(3) was investigated and found to be very beneficial in improving assay selectivity. A novel concept for monitoring quantitative assay performance using a SRM/MS(3) ratio is proposed. PMID:15329867

  17. Reaction Selectivity in Heterogeneous Catalysis

    SciTech Connect

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  18. A Label-free Selected Reaction Monitoring Workflow Identifies a Subset of Pregnancy Specific Glycoproteins as Potential Predictive Markers of Early-onset Pre-eclampsia*

    PubMed Central

    Blankley, Richard T.; Fisher, Christal; Westwood, Melissa; North, Robyn; Baker, Philip N.; Walker, Michael J.; Williamson, Andrew; Whetton, Anthony D.; Lin, Wanchang; McCowan, Lesley; Roberts, Claire T.; Cooper, Garth J. S.; Unwin, Richard D.; Myers, Jenny E.

    2013-01-01

    Pre-eclampsia (PE) is a serious complication of pregnancy with potentially life threatening consequences for both mother and baby. Presently there is no test with the required performance to predict which healthy first-time mothers will go on to develop PE. The high specificity, sensitivity, and multiplexed nature of selected reaction monitoring holds great potential as a tool for the verification and validation of putative candidate biomarkersfor disease states. Realization of this potential involves establishing a high throughput, cost effective, reproducible sample preparation workflow. We have developed a semi-automated HPLC-based sample preparation workflow before a label-free selected reaction monitoring approach. This workflow has been applied to the search for novel predictive biomarkers for PE. To discover novel candidate biomarkers for PE, we used isobaric tagging to identify several potential biomarker proteins in plasma obtained at 15 weeks gestation from nulliparous women who later developed PE compared with pregnant women who remained healthy. Such a study generates a number of “candidate” biomarkers that require further testing in larger patient cohorts. As proof-of-principle, two of these proteins were taken forward for verification in a 100 women (58 PE, 42 controls) using label-free SRM. We obtained reproducible protein quantitation across the 100 samples and demonstrated significant changes in protein levels, even with as little as 20% change in protein concentration. The SRM data correlated with a commercial ELISA, suggesting that this is a robust workflow suitable for rapid, affordable, label-free verification of which candidate biomarkers should be taken forward for thorough investigation. A subset of pregnancy-specific glycoproteins (PSGs) had value as novel predictive markers for PE. PMID:23897580

  19. Fast and selective determination of triterpenic compounds in olive leaves by liquid chromatography-tandem mass spectrometry with multiple reaction monitoring after microwave-assisted extraction.

    PubMed

    Sánchez-Avila, N; Priego-Capote, F; Ruiz-Jiménez, J; de Castro, M D Luque

    2009-04-15

    A method for fast and selective determination of the main triterpenic compounds present in olive leaves - oleanolic, ursolic and maslinic acids as triterpenic acids and, uvaol and erythrodiol as triterpenic dialcohols - is reported here. Quantitative isolation of the analytes has been accomplished in 5min by microwave assistance using ethanol as extractant. Due to the medium polarity of triterpenic acids and dialcohols, different ethanol-water ratios were tested in order to select the optimum extractant composition for their solubilisation. Microwave assistance provided a significant shortening of the leaching time as compared to conventional procedures by maceration, which usually requires at least 5h. After extraction, determination was carried out by liquid chromatography-tandem mass spectrometry (LC-MS-MS) with a triple quadrupole (qQq) mass detector without any clean-up step prior to chromatographic analysis. Highly selective identification of triterpenes was confirmed by multiple reaction monitoring (MRM) using the most representative transitions from the precursor ion to the different product ions, while the most sensitive transitions were used for MS-MS quantitation. Total analysis performed in 25 min enables the characterization of a fraction with particular interest in the pharmacological area. PMID:19174200

  20. Immunoaffinity enrichment and liquid chromatography-selected reaction monitoring mass spectrometry for quantitation of carbonic anhydrase 12 in cultured renal carcinoma cells

    PubMed Central

    Rafalko, Agnes; Iliopoulos, Othon; Fusaro, Vincent A.; Hancock, William; Hincapie, Marina

    2010-01-01

    Liquid chromatography-selected reaction monitoring (LC-SRM) is a highly specific and sensitive mass spectrometry (MS) technique that is widely being applied to selectively qualify and validate candidate markers within complex biological samples. However, in order for LC-SRM methods to take on these attributes, target-specific optimization of sample processing is required, in order to reduce analyte complexity, prior to LC-SRM. In this study, we have developed a targeted platform consisting of protein immunoaffinity enrichment on magnetic beads and LC-SRM for measuring carbonic anhydrase 12 (CA12) protein in a renal cell carcinoma (RCC) cell line (PRC3), a candidate biomarker for RCC whose expression at the protein level has not been previously reported. Sample processing and LC-SRM assay were optimized for signature peptides selected as surrogate markers of CA12 protein. Using LC-SRM coupled with stable isotope dilution, we achieved limits of quantitation in the low fmol range sufficient for measuring clinically relevant biomarkers with good intra- and inter-assay accuracy and precision (≤17%). Our results show that using a quantitative immunoaffinity capture approach provides specific, accurate, and robust assays amenable to high-throughput verification of potential biomarkers. PMID:20936840

  1. Immunoaffinity enrichment and liquid chromatography-selected reaction monitoring mass spectrometry for quantitation of carbonic anhydrase 12 in cultured renal carcinoma cells.

    PubMed

    Rafalko, Agnes; Iliopoulos, Othon; Fusaro, Vincent A; Hancock, William; Hincapie, Marina

    2010-11-01

    Liquid chromatography-selected reaction monitoring (LC-SRM) is a highly specific and sensitive mass spectrometry (MS) technique that is widely being applied to selectively qualify and validate candidate markers within complex biological samples. However, in order for LC-SRM methods to take on these attributes, target-specific optimization of sample processing is required, in order to reduce analyte complexity, prior to LC-SRM. In this study, we have developed a targeted platform consisting of protein immunoaffinity enrichment on magnetic beads and LC-SRM for measuring carbonic anhydrase 12 (CA12) protein in a renal cell carcinoma (RCC) cell line (PRC3), a candidate biomarker for RCC whose expression at the protein level has not been previously reported. Sample processing and LC-SRM assay were optimized for signature peptides selected as surrogate markers of CA12 protein. Using LC-SRM coupled with stable isotope dilution, we achieved limits of quantitation in the low fmol range sufficient for measuring clinically relevant biomarkers with good intra- and interassay accuracy and precision (≤17%). Our results show that using a quantitative immunoaffinity capture approach provides specific, accurate, and robust assays amenable to high-throughput verification of potential biomarkers. PMID:20936840

  2. Multi-mycotoxin analysis of animal feed and animal-derived food using LC-MS/MS system with timed and highly selective reaction monitoring.

    PubMed

    Zhao, Zhiyong; Liu, Na; Yang, Lingchen; Deng, Yifeng; Wang, Jianhua; Song, Suquan; Lin, Shanhai; Wu, Aibo; Zhou, Zhenlei; Hou, Jiafa

    2015-09-01

    Mycotoxins have the potential to enter the human food chain through carry-over of contaminants from feed into animal-derived products. The objective of the study was to develop a reliable and sensitive method for the analysis of 30 mycotoxins in animal feed and animal-derived food (meat, edible animal tissues, and milk) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In the study, three extraction procedures, as well as various cleanup procedures, were evaluated to select the most suitable sample preparation procedure for different sample matrices. In addition, timed and highly selective reaction monitoring on LC-MS/MS was used to filter out isobaric matrix interferences. The performance characteristics (linearity, sensitivity, recovery, precision, and specificity) of the method were determined according to Commission Decision 2002/657/EC and 401/2006/EC. The established method was successfully applied to screening of mycotoxins in animal feed and animal-derived food. The results indicated that mycotoxin contamination in feed directly influenced the presence of mycotoxin in animal-derived food. Graphical abstract Multi-mycotoxin analysis of animal feed and animal-derived food using LC-MS/MS. PMID:26198112

  3. Dilute and shoot: analysis of drugs of abuse using selected reaction monitoring for quantification and full scan product ion spectra for identification.

    PubMed

    Fitzgerald, Robert L; Griffin, Terrance L; Yun, Yeo-Min; Godfrey, Richard A; West, Robert; Pesce, Amadeo J; Herold, David A

    2012-03-01

    Our objective was to develop a "dilute and shoot" liquid chromatography-tandem mass spectrometry confirmatory procedure that uses full scan product ion spectra to identify drugs that are present above cutoff values as determined by isotope dilution relative to a deuterium-labeled internal standard. Deuterium-labeled internal standards are added to urine which is then diluted prior to analysis. Full scan product ion spectra were obtained in the data-dependent mode using a linear ion trap (ABI 4000 Qtrap). Identification was based on a purity fit of greater than 70. Ninety-seven urine specimens were analyzed by the method described, and results were compared to values obtained from a reference laboratory using selected reaction monitoring (SRM). The ion trap provided about 30-fold increase in signal-to-noise ratio as compared with the same instrument operated in a traditional full scan product ion mode. The assays were linear to at least 10 times the cutoff. Selecting appropriate triggers for obtaining full scan product ion spectra minimized space charging for specimens that contained high concentrations of drugs. There was 100% concordance between the full scan identification and the SRM results for identification of amphetamine, methamphetamine, benzoylecgonine, morphine, codeine, hydrocodone, and hydromorphone. The ability to "dilute and shoot" reduces the turnaround time for results. The data acquired with SRM and full scan product ion spectra provide accurate quantification and a high degree of specificity. PMID:22337779

  4. Ultra-fast quantitation of saquinavir in human plasma by matrix-assisted laser desorption/ionization and selected reaction monitoring mode detection.

    PubMed

    Wagner, Michel; Varesio, Emmanuel; Hopfgartner, Gérard

    2008-09-01

    We present herein an ultra-fast quantitative assay for the quantitation of saquinavir in human plasma, without prior chromatographic separation, with matrix-assisted laser desorption/ionization using the selected reaction monitoring quantitation mode (MALDI-SRM/MS). The method was found to be linear from 5 to 10,000 ng/ml using pentadeuterated saquinavir (SQV-d5) as an internal standard, and from 5 to 1000 ng/ml using reserpine as internal standard (IS). Accuracy and precision were in the range of 101-108%, 3.9-11% with SQV-d5 and in the range 93-108%, 3.5-15% with reserpine. Plasma samples (250 microl) were extracted with a mixture of ethyl acetate/hexane. MALDI spotting of the extract was automated using electrodeposition and the dried droplet method using alpha-cyano-4-hydroxycinnamic acid (CHCA) as matrix. A 96 spots MALDI plate was prepared within 20 min in a fully unattended manner. Each sample was spotted four times and quantitation was based on the average of their analyte/IS area ratio. Samples were analyzed on a triple quadrupole linear ion trap (QqQ(LIT)) equipped with a high repetition laser source (1000 Hz). The analysis time of one sample was approximately 6 s, therefore 96 samples could be analyzed in less than 10 min. With liquid-liquid extraction sample preparation no significant matrix effects were observed. Moreover, the assay showed sufficient selectivity for samples to be analyzed at the lower limit of quantification (LLOQ) in the presence of other antiretroviral drugs, without prior chromatographic steps. In parallel, to assess the selectivity of the assay with real samples, a liquid chromatography (LC)-SRM/MS method was developed and a cross validation with clinical samples was successfully performed. PMID:18657486

  5. A Quantitative Proteomic Profile of the Nrf2-Mediated Antioxidant Response of Macrophages to Oxidized LDL Determined by Multiplexed Selected Reaction Monitoring

    PubMed Central

    Kinter, Caroline S.; Lundie, Jillian M.; Patel, Halee; Rindler, Paul M.; Szweda, Luke I.; Kinter, Michael

    2012-01-01

    The loading of macrophages with oxidized low density lipoprotein (LDL) is a key part of the initiation and progression of atherosclerosis. Oxidized LDL contains a wide ranging set of toxic species, yet the molecular events that allow macrophages to withstand loading with these toxic species are not completely characterized. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a master regulator of the cellular stress response. However, the specific parts of the Nrf2-dependent stress response are diverse, with both tissue- and treatment-dependent components. The goal of these experiments was to develop and use a quantitative proteomic approach to characterize the Nrf2-dependent response in macrophages to oxidized LDL. Cultured mouse macrophages, the J774 macrophage-like cell line, were treated with a combination of oxidized LDL, the Nrf2-stabilizing reagent tert- butylhydroquinone (tBHQ), and/or Nrf2 siRNA. Protein expression was determined using a quantitative proteomics assay based on selected reaction monitoring. The assay was multiplexed to monitor a set of 28 antioxidant and stress response proteins, 6 housekeeping proteins, and 1 non-endogenous standard protein. The results have two components. The first component is the validation of the multiplexed, quantitative proteomics assay. The assay is shown to be fundamentally quantitative, precise, and accurate. The second component is the characterization of the Nrf2-mediated stress response. Treatment with tBHQ and/or Nrf2 siRNA gave statistically significant changes in the expression of a subset of 11 proteins. Treatment with oxidized LDL gave statistically significant increases in the expression of 7 of those 11 proteins plus one additional protein. All of the oxLDL-mediated increases were attenuated by Nrf2 siRNA. These results reveal a specific, multifaceted response of the foam cells to the incoming toxic oxidized LDL. PMID:23166812

  6. Liquid Chromatography-Selected Reaction Monitoring (LC-SRM) Approach for the Separation and Quantitation of Sialylated N-Glycans Linkage Isomers

    PubMed Central

    2015-01-01

    The study of N-linked glycans is among the most challenging bioanalytical tasks because of their complexity and variety. The presence of glycoform families that differ only in branching and/or linkage position makes the identification and quantitation of individual glycans exceedingly difficult. Quantitation of these individual glycans is important because changes in the abundance of these isomers are often associated with significant biomedical events. For instance, previous studies have shown that the ratio of α2-3 to α2-6 linked sialic acid (SA) plays an important role in cancer biology. Consequently, quantitative methods to detect alterations in the ratios of glycans based on their SA linkages could serve as a diagnostic tool in oncology, yet traditional glycomic profiling cannot readily differentiate between these linkage isomers. Here, we present a liquid chromatography-selected reaction monitoring (LC-SRM) approach that we demonstrate is capable of quantitating the individual SA linkage isomers. The LC method is capable of separating sialylated N-glycan isomers differing in α2-3 and α2-6 linkages using a novel superficially porous particle (Fused-Core) Penta-HILIC (hydrophilic interaction liquid chromatography) column. SRM detection provides the relative quantitation of each SA linkage isomer, and minimizes interferences from coeluting glycans that are problematic for UV/Fluorescence based quantitation. With our approach, the relative quantitation of each SA linkage isomer is obtained from a straightforward liquid chromatography-mass spectrometry (LC-MS) experiment. PMID:25299151

  7. Liquid chromatography-selected reaction monitoring (LC-SRM) approach for the separation and quantitation of sialylated N-glycans linkage isomers.

    PubMed

    Tao, Shujuan; Huang, Yining; Boyes, Barry E; Orlando, Ron

    2014-11-01

    The study of N-linked glycans is among the most challenging bioanalytical tasks because of their complexity and variety. The presence of glycoform families that differ only in branching and/or linkage position makes the identification and quantitation of individual glycans exceedingly difficult. Quantitation of these individual glycans is important because changes in the abundance of these isomers are often associated with significant biomedical events. For instance, previous studies have shown that the ratio of α2-3 to α2-6 linked sialic acid (SA) plays an important role in cancer biology. Consequently, quantitative methods to detect alterations in the ratios of glycans based on their SA linkages could serve as a diagnostic tool in oncology, yet traditional glycomic profiling cannot readily differentiate between these linkage isomers. Here, we present a liquid chromatography-selected reaction monitoring (LC-SRM) approach that we demonstrate is capable of quantitating the individual SA linkage isomers. The LC method is capable of separating sialylated N-glycan isomers differing in α2-3 and α2-6 linkages using a novel superficially porous particle (Fused-Core) Penta-HILIC (hydrophilic interaction liquid chromatography) column. SRM detection provides the relative quantitation of each SA linkage isomer, and minimizes interferences from coeluting glycans that are problematic for UV/Fluorescence based quantitation. With our approach, the relative quantitation of each SA linkage isomer is obtained from a straightforward liquid chromatography-mass spectrometry (LC-MS) experiment. PMID:25299151

  8. Immunocapture-Selected Reaction Monitoring Screening Facilitates the Development of ELISA for the Measurement of Native TEX101 in Biological Fluids*

    PubMed Central

    Korbakis, Dimitrios; Brinc, Davor; Schiza, Christina; Soosaipillai, Antoninus; Jarvi, Keith; Drabovich, Andrei P.; Diamandis, Eleftherios P.

    2015-01-01

    Monoclonal antibodies that bind the native conformation of proteins are indispensable reagents for the development of immunoassays, production of therapeutic antibodies and delineating protein interaction networks by affinity purification-mass spectrometry. Antibodies generated against short peptides, protein fragments, or even full length recombinant proteins may not bind the native protein form in biological fluids, thus limiting their utility. Here, we report the application of immunocapture coupled with selected reaction monitoring measurements (immunocapture-SRM), in the rapid screening of hybridoma culture supernatants for monoclonal antibodies that bind the native protein conformation. We produced mouse monoclonal antibodies, which detect in human serum or seminal plasma the native form of the human testis-expressed sequence 101 (TEX101) protein—a recently proposed biomarker of male infertility. Pairing of two monoclonal antibodies against unique TEX101 epitopes led to the development of an ELISA for the measurement of TEX101 in seminal plasma (limit of detection: 20 pg/ml) and serum (limit of detection: 40 pg/ml). Measurements of matched seminal plasma samples, obtained from men pre- and post-vasectomy, confirmed the absolute diagnostic specificity and sensitivity of TEX101 for noninvasive identification of physical obstructions in the male reproductive tract. Measurement of male and female serum samples revealed undetectable levels of TEX101 in the systemic circulation of healthy individuals. Immunocapture-SRM screening may facilitate development of monoclonal antibodies and immunoassays against native forms of challenging protein targets. PMID:25813379

  9. Immunocapture-Selected Reaction Monitoring Screening Facilitates the Development of ELISA for the Measurement of Native TEX101 in Biological Fluids.

    PubMed

    Korbakis, Dimitrios; Brinc, Davor; Schiza, Christina; Soosaipillai, Antoninus; Jarvi, Keith; Drabovich, Andrei P; Diamandis, Eleftherios P

    2015-06-01

    Monoclonal antibodies that bind the native conformation of proteins are indispensable reagents for the development of immunoassays, production of therapeutic antibodies and delineating protein interaction networks by affinity purification-mass spectrometry. Antibodies generated against short peptides, protein fragments, or even full length recombinant proteins may not bind the native protein form in biological fluids, thus limiting their utility. Here, we report the application of immunocapture coupled with selected reaction monitoring measurements (immunocapture-SRM), in the rapid screening of hybridoma culture supernatants for monoclonal antibodies that bind the native protein conformation. We produced mouse monoclonal antibodies, which detect in human serum or seminal plasma the native form of the human testis-expressed sequence 101 (TEX101) protein-a recently proposed biomarker of male infertility. Pairing of two monoclonal antibodies against unique TEX101 epitopes led to the development of an ELISA for the measurement of TEX101 in seminal plasma (limit of detection: 20 pg/ml) and serum (limit of detection: 40 pg/ml). Measurements of matched seminal plasma samples, obtained from men pre- and post-vasectomy, confirmed the absolute diagnostic specificity and sensitivity of TEX101 for noninvasive identification of physical obstructions in the male reproductive tract. Measurement of male and female serum samples revealed undetectable levels of TEX101 in the systemic circulation of healthy individuals. Immunocapture-SRM screening may facilitate development of monoclonal antibodies and immunoassays against native forms of challenging protein targets. PMID:25813379

  10. Long-Gradient Separations Coupled with Selected Reaction Monitoring for Highly Sensitive, Large Scale Targeted Protein Quantification in a Single Analysis

    SciTech Connect

    Shi, Tujin; Fillmore, Thomas L.; Gao, Yuqian; Zhao, Rui; He, Jintang; Schepmoes, Athena A.; Nicora, Carrie D.; Wu, Chaochao; Chambers, Justin L.; Moore, Ronald J.; Kagan, Jacob; Srivastava, Sudhir; Liu, Alvin Y.; Rodland, Karin D.; Liu, Tao; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2013-10-01

    Long-gradient separations coupled to tandem MS were recently demonstrated to provide a deep proteome coverage for global proteomics; however, such long-gradient separations have not been explored for targeted proteomics. Herein, we investigate the potential performance of the long-gradient separations coupled with selected reaction monitoring (LG-SRM) for targeted protein quantification. Direct comparison of LG-SRM (5 h gradient) and conventional LC-SRM (45 min gradient) showed that the long-gradient separations significantly reduced background interference levels and provided an 8- to 100-fold improvement in LOQ for target proteins in human female serum. Based on at least one surrogate peptide per protein, an LOQ of 10 ng/mL was achieved for the two spiked proteins in non-depleted human serum. The LG-SRM detection of seven out of eight endogenous plasma proteins expressed at ng/mL or sub-ng/mL levels in clinical patient sera was also demonstrated. A correlation coefficient of >0.99 was observed for the results of LG-SRM and ELISA measurements for prostate-specific antigen (PSA) in selected patient sera. Further enhancement of LG-SRM sensitivity was achieved by applying front-end IgY14 immunoaffinity depletion. Besides improved sensitivity, LG-SRM offers at least 3 times higher multiplexing capacity than conventional LC-SRM due to ~3-fold increase in average peak widths for a 300-min gradient compared to a 45-min gradient. Therefore, LG-SRM holds great potential for bridging the gap between global and targeted proteomics due to its advantages in both sensitivity and multiplexing capacity.

  11. A selected reaction monitoring-based analysis of acute phase proteins in interstitial fluids from experimental equine wounds healing by secondary intention.

    PubMed

    Bundgaard, Louise; Bendixen, Emøke; Sørensen, Mette Aa; Harman, Victoria M; Beynon, Robert J; Petersen, Lars J; Jacobsen, Stine

    2016-05-01

    In horses, pathological healing with formation of exuberant granulation tissue (EGT) is a particular problem in limb wounds, whereas body wounds tend to heal without complications. Chronic inflammation has been proposed to be central to the pathogenesis of EGT. This study aimed to investigate levels of inflammatory acute phase proteins (APPs) in interstitial fluid from wounds in horses. A novel approach for absolute quantification of proteins, selected reaction monitoring (SRM)-based mass spectrometry in combination with a quantification concatamer (QconCAT), was used for the quantification of five established equine APPs (fibrinogen, serum amyloid A, ceruloplasmin, haptoglobin, and plasminogen) and three proposed equine APPs (prothrombin, α-2-macroglobulin, and α-1-antitrypsin). Wound interstitial fluid was recovered by large pore microdialysis from experimental body and limb wounds from five horses at days 1, 2, 7, and 14 after wounding and healing without (body) and with (limb) the formation of EGT. The QconCAT included proteotypic peptides representing each of the protein targets and was used to direct the design of a gene, which was expressed in Escherichia coli in a media supplemented with stable isotopes for metabolically labeling of standard peptides. Co-analysis of wound interstitial fluid samples with the stable isotope-labeled QconCAT tryptic peptides in known amounts enabled quantification of the APPs in absolute terms. The concentrations of fibrinogen, haptoglobin, ceruloplasmin, prothrombin, and α-1-antitrypsin in dialysate from limb wounds were significantly higher than in dialysate from body wounds. This is the first report of simultaneous analysis of a panel of APPs using the QconCAT-SRM technology. The microdialysis technique in combination with the QconCAT-SRM-based approach proved useful for quantification of the investigated proteins in the wound interstitial fluid, and the results indicated that there is a state of sustained inflammation in

  12. Quantification in MALDI-MS imaging: what can we learn from MALDI-selected reaction monitoring and what can we expect for imaging?

    PubMed

    Porta, Tiffany; Lesur, Antoine; Varesio, Emmanuel; Hopfgartner, Gérard

    2015-03-01

    Quantification by mass spectrometry imaging (Q-MSI) is one of the hottest topics of the current discussions among the experts of the MS imaging community. If MSI is established as a powerful qualitative tool in drug and biomarker discovery, its reliability for absolute and accurate quantification (QUAN) is still controversial. Indeed, Q-MSI has to deal with several fundamental aspects that are difficult to control, and to account for absolute quantification. The first objective of this manuscript is to review the state-of-the-art of Q-MSI and the current strategies developed for absolute quantification by direct surface sampling from tissue sections. This includes comments on the quest for the perfect matrix-matched standards and signal normalization approaches. Furthermore, this work investigates quantification at a pixel level to determine how many pixels must be considered for accurate quantification by ultraviolet matrix-assisted laser desorption/ionization (MALDI), the most widely used technique for MSI. Particularly, this study focuses on the MALDI-selected reaction monitoring (SRM) in rastering mode, previously demonstrated as a quantitative and robust approach for small analyte and peptide-targeted analyses. The importance of designing experiments of good quality and the use of a labeled compound for signal normalization is emphasized to minimize the signal variability. This is exemplified by measuring the signal for cocaine and a tryptic peptide (i.e., obtained after digestion of a monoclonal antibody) upon different experimental conditions, such as sample stage velocity, laser power and frequency, or distance between two raster lines. Our findings show that accurate quantification cannot be performed on a single pixel but requires averaging of at least 4-5 pixels. The present work demonstrates that MALDI-SRM/MSI is quantitative with precision better than 10-15 %, which meets the requirements of most guidelines (i.e., in bioanalysis or toxicology) for

  13. A critical assessment of the performance criteria in confirmatory analysis for veterinary drug residue analysis using mass spectrometric detection in selected reaction monitoring mode.

    PubMed

    Berendsen, Bjorn J A; Meijer, Thijs; Wegh, Robin; Mol, Hans G J; Smyth, Wesley G; Armstrong Hewitt, S; van Ginkel, Leen; Nielen, Michel W F

    2016-05-01

    Besides the identification point system to assure adequate set-up of instrumentation, European Commission Decision 2002/657/EC includes performance criteria regarding relative ion abundances in mass spectrometry and chromatographic retention time. In confirmatory analysis, the relative abundance of two product ions, acquired in selected reaction monitoring mode, the ion ratio should be within certain ranges for confirmation of the identity of a substance. The acceptable tolerance of the ion ratio varies with the relative abundance of the two product ions and for retention time, CD 2002/657/EC allows a tolerance of 5%. Because of rapid technical advances in analytical instruments and new approaches applied in the field of contaminant testing in food products (multi-compound and multi-class methods) a critical assessment of these criteria is justified. In this study a large number of representative, though challenging sample extracts were prepared, including muscle, urine, milk and liver, spiked with 100 registered and banned veterinary drugs at levels ranging from 0.5 to 100 µg/kg. These extracts were analysed using SRM mode using different chromatographic conditions and mass spectrometers from different vendors. In the initial study, robust data was collected using four different instrumental set-ups. Based on a unique and highly relevant data set, consisting of over 39 000 data points, the ion ratio and retention time criteria for applicability in confirmatory analysis were assessed. The outcomes were verified based on a collaborative trial including laboratories from all over the world. It was concluded that the ion ratio deviation is not related to the value of the ion ratio, but rather to the intensity of the lowest product ion. Therefore a fixed ion ratio deviation tolerance of 50% (relative) is proposed, which also is applicable for compounds present at sub-ppb levels or having poor ionisation efficiency. Furthermore, it was observed that retention time

  14. Quantification of activated NF-kappaB/RelA complexes using ssDNA aptamer affinity-stable isotope dilution-selected reaction monitoring-mass spectrometry.

    PubMed

    Zhao, Yingxin; Widen, Steven G; Jamaluddin, Mohammad; Tian, Bing; Wood, Thomas G; Edeh, Chukwudi B; Brasier, Allan R

    2011-06-01

    Nuclear Factor-κB (NF-κB) is a family of inducible transcription factors regulated by stimulus-induced protein interactions. In the cytoplasm, the NF-κB member RelA transactivator is inactivated by binding inhibitory IκBs, whereas in its activated state, the serine-phosphorylated protein binds the p300 histone acetyltransferase. Here we describe the isolation of a ssDNA aptamer (termed P028F4) that binds to the activated (IκBα-dissociated) form of RelA with a K(D) of 6.4 × 10(-10), and its application in an enrichment-mass spectrometric quantification assay. ssDNA P028F4 competes with cognate duplex high affinity NF-κB binding sites for RelA binding in vitro, binds activated RelA in eukaryotic nuclei and reduces TNFα-stimulated endogenous NF-κB dependent gene expression. Incorporation of P028F4 as an affinity isolation step enriches for serine 536 phosphorylated and p300 coactivator complexed RelA, simultaneously depleting IκBα·RelA complexes. A stable isotope dilution (SID)-selected reaction monitoring (SRM)- mass spectrometry (MS) assay for RelA was developed that produced a linear response over 1,000 fold dilution range of input protein and had a 200 amol lower limit of quantification. This multiplex SID-SRM-MS RelA assay was used to quantify activated endogenous RelA in cytokine-stimulated eukaryotic cells isolated by single-step P028F4 enrichment. The aptamer-SID-SRM-MS assay quantified the fraction of activated RelA in subcellular extracts, detecting the presence of a cytoplasmic RelA reservoir unresponsive to TNFα stimulation. We conclude that aptamer-SID-SRM-MS is a versatile tool for quantification of activated NF-κB/RelA and its associated complexes in response to pathway activation. PMID:21502374

  15. Selective simulation and selective sensor interpretation in monitoring

    NASA Technical Reports Server (NTRS)

    Doyle, Richard J.; Berleant, Daniel; Falcone, Loretta P.; Fayyad, Usama M.

    1989-01-01

    An approach to selective processing in monitoring is described. The approach is designed to provide informative feedback on whether a system is performing nominally in the current operating context without exceeding available resources for prediction and interpretation. At the center of the approach to selective sensor interpretation and simulation is a causal model of the system being monitored. The architecture of the monitoring system, called PREMON, is described as well as how causal models of physical systems are represented and simulated.

  16. Capillary Electrophoresis-Nanoelectrospray Ionization-Selected Reaction Monitoring Mass Spectrometry via a True Sheathless Metal-Coated Emitter Interface for Robust and High-Sensitivity Sample Quantification.

    PubMed

    Guo, Xuejiang; Fillmore, Thomas L; Gao, Yuqian; Tang, Keqi

    2016-04-19

    A new sheathless transient capillary isotachophoresis (CITP)/capillary zone electrophoresis (CZE)-MS interface, based on a commercially available capillary with an integrated metal-coated ESI emitter, was developed in this study aiming at overcoming the reproducibility and ruggedness problems suffered to a certain degree by almost all the available CE-MS interfaces, and pushing the CE-MS technology suitable for routine sample analysis with high sensitivity. The new CITP/CZE-MS interface allows the electric contact between ESI voltage power supply and the CE separation liquid by using a conductive liquid that comes in contact with the metal-coated surface of the ESI emitter, making it a true sheathless CE-MS interface. Stable electrospray was established by avoiding the formation of gas bubbles from electrochemical reaction inside the CE capillary. Crucial operating parameters, such as sample loading volume, flow rate, and separation voltage, were systematically evaluated for their effects on both CITP/CZE separation efficiency and MS detection sensitivity. Around one hundred CITP/CZE-MS analyses can be easily achieved by using the new sheathless CITP/CZE interface without a noticeable loss of metal coating on the ESI emitter surface, or degrading of the ESI emitter performance. The reproducibility in analyte migration time and quantitative performance of the new interface was experimentally evaluated to demonstrate a LOQ below 5 attomole. PMID:27028594

  17. Monitoring enzymatic reactions with in situ sensors

    NASA Astrophysics Data System (ADS)

    Young, Ian T.; Iordanov, V.; Kroon, Arthur; Dietrich, Heidi R. C.; Moerman, R.; van den Doel, L. R.; van Dedem, G. W. K.; Bossche, Andre; Gray, Bonnie L.; Sarro, Lina; Verbeek, Piet W.; van Vliet, Lucas J.

    2003-07-01

    In previous publications and presentations we have described our construction of a laboratory-on-a-chip based on nanoliter capacity wells etched in silicon. We have described methods for dispensing reagents as well as samples, for preventing evaporation, for embedding electronics in each well to measure fluid volume per well in real-time, and for monitoring the production or consumption of NADH in enzyme-catalyzed reactions such as those found in the glycolytic pathway of yeast. In this paper we describe the use of light sensors (photodiodes) in each well to measure both fluorescence (such as that evidenced in NADH) as well as bioluminescence (such as evidenced in ATP assays). We show that our detection limit for NADH fluorescence in 100 μM and for ATP/luciferase bioluminescence is 2.4 μM.

  18. High Field Optomagnetic (OM) Polarization-Phase Selective (PPS) Monitoring of Structures and Controlling Reaction Agents Mechanisms in Complex Molecular Systems

    NASA Astrophysics Data System (ADS)

    Rupnik, Kresimir

    2014-03-01

    Using OM techniques, including new high filed 25T Split-Florida magnet at NHMF Laboratory, we have recently observed unusual metal cluster structures and electron transfer patterns in complex molecular systems of biomedical and material science interest. We report here some of the new technological solutions and (many) challenges that face OM and (quantum) control research. Of particular interest is identification of fast (10-100s fs) highly correlated electrons spin and vibrational coupling interpreted using adaptive molecular-photonic interaction models. Our observations question interpretations of previously proposed electron spin structure models and mechanisms and\\ indicate possible new controlling mechanisms through highly selective coupled channels that combine different specific redox and photonic agents. A portion of this work from 2008 to 2013 was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, and 0654118 and the U.S. Department of Energy.

  19. Identification of known chemicals and their metabolites from Alpinia oxyphylla fruit extract in rat plasma using liquid chromatography/tandem mass spectrometry (LC-MS/MS) with selected reaction monitoring.

    PubMed

    Chen, Feng; Li, Hai-Long; Tan, Yin-Feng; Li, Yong-Hui; Lai, Wei-Yong; Guan, Wei-Wei; Zhang, Jun-Qing; Zhao, Yuan-Sheng; Qin, Zhen-Miao

    2014-08-01

    Alpinia oxyphylla (Yizhi) capsularfruits are commonly used in traditional medicine. Pharmacological studies have demonstrated that A. oxyphylla capsularfruits have some beneficial roles. Besides volatile oil, sesquiterpenes, diarylheptanoids and flavonoids are main bioactive constituents occurring in the Yizhi capsularfruits. The representative constituents include tectochrysin, izalpinin, chrysin, apigenin-4',7-dimethylether, kaempferide, yakuchinone A, yakuchinone B, oxyphyllacinol and nootkatone. Their content levels in the fruit and its pharmaceutical preparations have been reported by our group. The nine phytochemicals are also the major components present in the Yizhi alcoholic extracts, which have anti-diarrheal activities. However, the fates of these constituents in the body after oral or intravenous administration remain largely unknown. In the present study, we focus on these phytochemicals albeit other concomitant compounds. The chemicals and their metabolites in rat plasma were identified using liquid chromatography/tandem mass spectrometry with selected reaction monitoring mode after orally administered Yizhi extract to rats. Rat plasma samples were treated by methanol precipitation, acidic or enzymatic hydrolysis. This target analysis study revealed that: (1) low or trace plasma levels of parent chemicals were measured after p.o. administration of Yizhi extract, Suoquan capsules and pills to rats; (2) flavonoids and diarylheptanoids formed mainly monoglucuronide metabolites; however, diglucuronide metabolites for chrysin, izalpinin and kaempferide were also detected; (3) metabolic reduction of Yizhi diarylheptanoids occurred in rats. Yakuchinone B was reduced to yakuchinone A and then to oxyphyllacinol in a stepwise manner and subsequently glucuronidated by UDP-glucuronosyl transferase. Further research is needed to characterize the UDP-glucuronosyl transferase and reductase involved in the biotransformation of Yizhi chemicals. PMID:24879483

  20. A Generalized Selection Rule for Pericyclic Reactions.

    ERIC Educational Resources Information Center

    He, Fu-Cheng; Pfeiffer, Gary V.

    1984-01-01

    Describes a convenient procedure, the Odd-Even Rule, for predicting the allowedness of forbiddenness of ground-state, pericyclic reactions. The rule is applied to a number of specific reactions. In contrast to the Woodward-Hoffman approach, the application to each reaction is always the same. (JN)

  1. State- and bond-selected unimolecular reactions

    SciTech Connect

    Crim, F.F. )

    1990-09-21

    Unimolecular reactions are crucial chemical events that have been the focus of increasingly sophisticated investigation in the past decade. Unraveling their details is one fundamental goal of experimental and theoretical studies of chemical dynamics. New techniques are revealing the possibilities, and challenges, of eigenstate- and bond-specific unimolecular reactions. These experiments clearly demonstrate the intimate connection between intramolecular processes and unimolecular reaction dynamics and suggest means of exploiting molecular properties to study and control reactions at the level of individual quantum states. 55 refs., 3 figs.

  2. Diagnostic reasoning techniques for selective monitoring

    NASA Technical Reports Server (NTRS)

    Homem-De-mello, L. S.; Doyle, R. J.

    1991-01-01

    An architecture for using diagnostic reasoning techniques in selective monitoring is presented. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that changes are slow enough to allow the computation.

  3. COPD Exacerbation Biomarkers Validated Using Multiple Reaction Monitoring Mass Spectrometry

    PubMed Central

    Leung, Janice M.; Chen, Virginia; Hollander, Zsuzsanna; Dai, Darlene; Tebbutt, Scott J.; Aaron, Shawn D.; Vandemheen, Kathy L.; Rennard, Stephen I.; FitzGerald, J. Mark; Woodruff, Prescott G.; Lazarus, Stephen C.; Connett, John E.; Coxson, Harvey O.; Miller, Bruce; Borchers, Christoph; McManus, Bruce M.; Ng, Raymond T.; Sin, Don D.

    2016-01-01

    Background Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) result in considerable morbidity and mortality. However, there are no objective biomarkers to diagnose AECOPD. Methods We used multiple reaction monitoring mass spectrometry to quantify 129 distinct proteins in plasma samples from patients with COPD. This analytical approach was first performed in a biomarker cohort of patients hospitalized with AECOPD (Cohort A, n = 72). Proteins differentially expressed between AECOPD and convalescent states were chosen using a false discovery rate <0.01 and fold change >1.2. Protein selection and classifier building were performed using an elastic net logistic regression model. The performance of the biomarker panel was then tested in two independent AECOPD cohorts (Cohort B, n = 37, and Cohort C, n = 109) using leave-pair-out cross-validation methods. Results Five proteins were identified distinguishing AECOPD and convalescent states in Cohort A. Biomarker scores derived from this model were significantly higher during AECOPD than in the convalescent state in the discovery cohort (p<0.001). The receiver operating characteristic cross-validation area under the curve (CV-AUC) statistic was 0.73 in Cohort A, while in the replication cohorts the CV-AUC was 0.77 for Cohort B and 0.79 for Cohort C. Conclusions A panel of five biomarkers shows promise in distinguishing AECOPD from convalescence and may provide the basis for a clinical blood test to diagnose AECOPD. Further validation in larger cohorts is necessary for future clinical translation. PMID:27525416

  4. Monitoring reactions for the calibration of relativistic hadron beams

    NASA Astrophysics Data System (ADS)

    Ferrari, A.; La Torre, F. P.; Manessi, G. P.; Pozzi, F.; Silari, M.

    2014-11-01

    The well-known foil activation technique was used to calibrate an ionisation chamber employed for the on-line beam monitoring of a 120 GeV c-1 mixed proton/pion beam at CERN. Two monitoring reactions were employed: the standard 27Al(p,3pn)24Na and the alternative natCu(p,x)24Na. The parameters on which the technique critically depends and the adopted solutions are thoroughly analysed are the cross-section, the contribution of the competing reactions to the induced activity and the recoil nuclei effect. The experimental results are compared with FLUKA Monte Carlo simulations and with past results obtained with various calibration techniques. The comparison confirms that both reactions can be effectively employed. The natCu(p,x)24Na reaction shows advantages because its cross-section is known at very high energies with a low uncertainty and the production of 24Na is not affected by competing low energy neutron-induced reactions. The contribution of the competing reactions in the case of the 27Al(p,3pn)24Na reaction has been estimated to be 4.3%/100 mg cm-2, whereas the effect of recoil nuclei is negligible.

  5. CHEMICAL REACTIONS OF AQUATIC HUMIC MATERIALS WITH SELECTED OXIDANTS

    EPA Science Inventory

    A study was conducted to identify the specific organic reaction products of natural aquatic humic materials with selected oxidants (KMnO4, HOCl, Cl02, O3 and monochloramine). Reaction products were identified by GC/MS after solvent extraction and derivatization. The two most reac...

  6. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    PubMed

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. PMID:27590551

  7. Psychological Reactions Associated With Continuous Glucose Monitoring in Youth.

    PubMed

    Patton, Susana R; Clements, Mark A

    2016-05-01

    Glucose monitoring is prerequisite to all other diabetes self-care behaviors and helps patients to reduce their risk for diabetes-related complications due to elevated glycemia. Because of the amount of information available and the ability to deliver glucose results in real-time, continuous glucose monitoring (CGM) has the ability to improve on self-monitoring blood glucose. However, epidemiologic data demonstrate slow uptake of CGM by patients, especially among youth. Several new diabetes therapies rely on CGM for feedback on patients' glucose levels to optimize treatment (eg, the low-glucose suspend insulin pump) and there are new technologies currently in development that will also need this information to work (eg, the artificial pancreas). To help patients to realize the potential benefits of these new treatments, it is essential to explore patients' psychological and behavioral reactions to CGM and then target device enhancements and/or the development of behavioral therapies to minimize negative reactions and to improve patients' CGM adoption rates. Limited research is available examining the psychological and behavioral reactions of CGM use in youth exclusively, but there are more studies examining these reactions in mixed samples of youth, parents, and adults. The purpose of this review is to summarize the available literature examining psychological and behavioral reactions to CGM use in young people with diabetes and to highlight how the results of past and future studies can inform device updates and/or behavioral intervention development to minimize barriers. PMID:26969141

  8. Automatic, continuous online monitoring of polymerization reactions (ACOMP): Progress in characterization of polymers and polymerization reactions

    NASA Astrophysics Data System (ADS)

    Alb, Alina M.

    An original method is presented as an efficient technique for characterizing polymers, and understanding the kinetics of the polymerization reactions. The Automatic Continuous Online Monitoring of Polymerization Reactions (ACOMP) method developed at Tulane University involves following one or more characteristics of a polymerization reaction: monomer conversion, different molecular weight averages, intrinsic viscosity, etc. By performing an automatic withdrawal and dilution of the polymer solution to create a small stream which flows through a detector train, including light scattering, viscometer, refractive index, Ultraviolet/Visible detectors, a continuum of data points can be obtained, allowing powerful analysis methods to be developed. The goal of this work is to expand ACOMP to new polymerization reactions, such as free radical copolymerization, controlled radical polymerization, inverse emulsion polymerization, both to achieve a complete physical characterization of the polymers synthesized and a better understanding of the reaction mechanisms. For each of the reactions ACOMP brings significant innovations in the analysis of the kinetics. Other new methods, such as Automatic Continuous Mixing (ACM) and Simultaneous Multiple Sample Light Scattering (SMSLS) are also used, as well as traditional multi-detector Size Exclusion Chromatography (SEC). As an immediate consequence it is hoped that the information on reaction kinetics and mechanisms offer a better fundamental knowledge, control and ability to optimize reactions. At the industrial scale, online monitoring should allow a more efficient use of resources, energy, reactor and personnel time as well as a higher product quality.

  9. 21 CFR 812.43 - Selecting investigators and monitors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Selecting investigators and monitors. 812.43... investigators and monitors. (a) Selecting investigators. A sponsor shall select investigators qualified by... investigational devices only to qualified investigators participating in the investigation. (c)...

  10. State-to-state reaction dynamics: A selective review

    NASA Astrophysics Data System (ADS)

    Teslja, Alexey; Valentini, James J.

    2006-10-01

    A selective review of state-to-state reaction dynamics experiments is presented. The review focuses on three classes of reactions that exemplify the rich history and illustrate the current state of the art in such work. These three reactions are (1) the hydrogen exchange reaction, H +H2→H2+H and its isotopomers; (2) the H +RH→H2+R reactions, where RH is an alkane, beginning with H +CH4→H2+CH3 and extending to much larger alkanes; and (3) the Cl +RH→HCl+R reactions, principally Cl +CH4→HCl+CH3. We describe the experiments, discuss their results, present comparisons with theory, and introduce heuristic models.

  11. Select a continuous emissions monitoring system

    SciTech Connect

    Walker, K.

    1996-02-01

    The Environmental Protection Agency (EPA) is incorporating flexibility in the new regulations it is writing to implement the monitoring requirements of Title VII of the Clean Air Act Amendments of 1990. These requirements are commonly known as compliance assurance monitoring (CAM), which is the new name for enhanced monitoring. The new flexibility being written into the CAM regulations is likely to result in reduced costs for industry and additional headaches for the engineer or manager responsible for implementing CAM. Continuous emissions monitoring systems (CEMS) were once the only choice available for continuous compliance monitoring. The primary monitoring strategies expected to be allowed under the CAM rules include not only CEMS, but also predictive emissions monitoring systems, parametric monitoring, and operation and maintenance recordkeeping. These four methods are discussed and compared.

  12. Mass-spectrometric monitoring of the stress reaction during anesthesia

    NASA Astrophysics Data System (ADS)

    Elizarov, A. Yu.; Levshankov, A. I.; Faizov, I. I.; Shchegolev, A. V.

    2013-10-01

    Clinical testing data for a mass-spectrometric method of estimating the patient's stress reaction to an injury done during anesthesia are presented. The essence of the method is monitoring the respiratory coefficient, which is defined as ratio N of the expiratory mass concentration of CO2 to the inspiratory mass concentration of O2 at each breathing cycle. For on-line monitoring of N, an electron ionization mass spectrometer connected to the breathing circuit of an inhalational anesthesia machine is used. Estimates of the anesthesia adequacy obtained with this method are compared with those obtained with the method that analyzes induced acoustic encephalographic potentials. It is shown that the method suggested is more sensitive to the level of the patient's stress reaction during anesthesia than the induced potential method.

  13. System and process for pulsed multiple reaction monitoring

    DOEpatents

    Belov, Mikhail E

    2013-05-17

    A new pulsed multiple reaction monitoring process and system are disclosed that uses a pulsed ion injection mode for use in conjunction with triple-quadrupole instruments. The pulsed injection mode approach reduces background ion noise at the detector, increases amplitude of the ion signal, and includes a unity duty cycle that provides a significant sensitivity increase for reliable quantitation of proteins/peptides present at attomole levels in highly complex biological mixtures.

  14. Online monitoring of polymerization reactions in inverse emulsions.

    PubMed

    Alb, Alina M; Farinato, Ray; Calbick, Joe; Reed, Wayne F

    2006-01-17

    Automatic continuous online monitoring of polymerization reactions (ACOMP) was adapted to the monitoring of acrylamide polymerization in inverse emulsions. This is the first application of ACOMP to heterogeneous phase polymerization. The conversion and reduced viscosity were monitored by continuously inverting and diluting the emulsion phase using a small reactor sample stream and a breaker surfactant solution, followed by UV absorption and viscometric detection. This inversion into a stable portion of the polymer/surfactant phase diagram is accomplished in tens of seconds, yielding dilute solutions containing acrylamide (Aam), polyacrylamide (PA), oil droplets, and small quantities of surfactant, initiator and other debris, and low molecular weight compounds. After establishing the means of making ACOMP measurements, a first application of the method is made to resolving some of the kinetic issues involved in emulsion polymerization, including the evolution of molecular mass, and the simultaneous action of an "intrinsic" initiator and an added chemical initiator. PMID:16401138

  15. Spatially resolved chemical reaction monitoring using magnetic resonance imaging.

    PubMed

    Feindel, Kirk W

    2016-06-01

    Over the previous three decades, the use of MRI for studying dynamic physical and chemical processes of materials systems has grown significantly. This mini-review provides a brief introduction to relevant principles of MRI, including methods of spatial localization, factors contributing to image contrast, and chemical shift imaging. A few historical examples of (1) H MRI for reaction monitoring will be presented, followed by a review of recent research including (1) H MRI studies of gelation and biofilms, (1) H, (7) Li, and (11) B MRI studies of electrochemical systems, in vivo glucose metabolism monitored with (19) F MRI, and in situ temperature monitoring with (27) Al MRI. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25589470

  16. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry

    PubMed Central

    Rauniyar, Navin

    2015-01-01

    The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379

  17. Sensor selection for outdoor air quality monitoring

    NASA Astrophysics Data System (ADS)

    Dorsey, K. L.; Herr, John R.; Pisano, A. P.

    2014-06-01

    Gas chemical monitoring for next-generation robotics applications such as fire fighting, explosive gas detection, ubiquitous urban monitoring, and mine safety require high performance, reliable sensors. In this work, we discuss the performance requirements of fixed-location, mobile vehicle, and personal sensor nodes for outdoor air quality sensing. We characterize and compare the performance of a miniature commercial electrochemical and a metal oxide gas sensor and discuss their suitability for environmental monitoring applications. Metal oxide sensors are highly cross-sensitive to factors that affect chemical adsorption (e.g., air speed, pressure) and require careful enclosure design or compensation methods. In contrast, electrochemical sensors are less susceptible to environmental variations, have very low power consumption, and are well matched for mobile air quality monitoring.

  18. Activity and selectivity of molybdenum catalysts in coal liquefaction reactions

    SciTech Connect

    Curtis, C.W.; Pellegrino, J.L. )

    1988-06-01

    During coal liquefaction, coal fragments forming a liquid product with reduced heteroatom content. Coal can be considered to be a large network of polynuclear aromatic species connected by heteroatoms and alkyl bridging structures. Predominant heteroatoms contained in coal are sulfur, oxygen, and nitrogen. Predominant alkyl bridges are methylene and ethylene structures. The purpose of this work is to evaluate how effectively three different molybdenum catalysts promote reactions involving heteroatom removal and cleavage of alkyl bridge structures. The reactions studied include: hydrogenation (HYD), hydrodeoxygenation (HDO), hydrosulfurization (HDS), hydrodenitrogenation (HDN) and hydrocracking (HYC). Both model and coal liquefaction reactions were performed to test the activity and selectivity of three different molybdenum catalysts. The three catalysts used were molybdenum napththenate, molybdenum supported on gamma alumina (Mo/Al/sub 2/O/sub 3/) and precipitated, poorly crystalline molybdenum disulfide (MoS/sub 2/). The model compounds, chosen to mimic coal structure, on which the effectiveness of the catalysts for the model reactions was tested were: 1-methylnaphthalene, representing aromatic hydrocarbons, for hydrogenation; 1-naphthol, representing oxygen containing compounds, for deoxygenation; benzothiophene, representing sulfur containing compounds, for desulfurization; indole, representing nitrogen containing compounds, for denitrogenation; and bibenzyl, representing alkyl bridging structures, for hydrocracking. Catalytic reactions of combinations of reactants were performed to simulate a complex coal matrix. Thermal and catalytic coal liquefaction reactions were performed using Illinois No. 6 coal with anthracene as a solvent. The efficacy of the catalysts was determined by comparing the product and compound class fractions obtained from the liquefaction reactions.

  19. Activity and selectivity of molybdenum catalysts in coal liquefaction reactions

    SciTech Connect

    Curtis, C.W.; Pellegrino, J.L. )

    1988-01-01

    The purpose of this work is to evaluate how effectively three different molybdenum catalysts promote reactions involving heteroatom removal and cleavage of alkyl bridge hydrodeoxygenation (HDO), hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrocracking (HYC). Both model and coal liquefaction reactions were performed to test the activity and selectivity of three different molybdenum catalysts. The three catalysts used were molybdenum naphthenate, molybdenum supported on gamma alumina (Mo/Al{sub 2}O{sub 3}) and precipitated, poorly crystalline molybdenum disulfide (MoS{sub 2}). The model compounds, chosen to mimic coal structure, on which the effectiveness of the catalysts for the model reactions was tested were: 1-methylnaphthalene, representing aromatic hydrocarbons, for hydrogenation; 1-naphthol, representing oxygen containing compounds, for deoxygenation; benzothiophene, representing sulfur containing compounds, for desulfurization; indole, representing nitrogen containing compounds, for denitrogenation; and bibenzyl, representing alkyl bridging structures, for hydrocracking. Catalytic reactions of combinations of reactants were performed to simulate a complex coal matrix. Thermal and catalytic coal liquefaction reactions were performed using Illinois No. 6 coal with anthracene as a solvent. The efficacy of the catalysts was determined by comparing the product and compound class fractions obtained from the liquefaction reactions.

  20. Selective effects of physical exercise on choice reaction processes.

    PubMed

    Arcelin, R; Delignieres, D; Brisswalter, J

    1998-08-01

    The aim of the present study was to examine the effects of an exercise of moderate intensity (60% of maximal aerobic power) on specific information-processing mechanisms. 22 students completed 3 10-min. exercise bouts on a bicycle ergometer. Concomitantly, participants performed six manual-choice-reaction tasks manipulating task variables (Signal Intensity, Stimulus-Response Compatibility, and Time Uncertainty) on two levels. Reaction tests, randomly ordered, were administered at rest and during exercise. A significant underadditive interaction between Time Uncertainty and exercise was found for the highest quartiles of the distribution of reaction times. No other interaction effects were obtained for the other variables. These results reasonably support that moderate aerobic exercise showed selective rather than general influences on information processing. PMID:9760644

  1. Switchable selectivity in an NHC-catalysed dearomatizing annulation reaction

    NASA Astrophysics Data System (ADS)

    Guo, Chang; Fleige, Mirco; Janssen-Müller, Daniel; Daniliuc, Constantin G.; Glorius, Frank

    2015-10-01

    The development of general catalytic methods for the regio- and stereoselective construction of chiral N-heterocycles in a diversity-oriented fashion remains a formidable challenge in organic synthesis. N-heterocyclic carbene (NHC) catalysis has been shown to produce a variety of outcomes, but control of the reactivity has rarely been demonstrated. Here we report a switchable catalytic activation of enals with aromatic azomethine imines that provides high selectivity using NHC organocatalysts. The original selectivity corresponds to the acidity of the base used in the reaction. The catalytically generated chiral homoenolate or enol intermediate undergoes enantioselective annulation with electrophiles such as N-iminoquinolinium ylides, N-iminoisoquinolinium ylides and β-N-iminocarboline ylides. The good-to-high overall yields, high regioselectivities and excellent enantioselectivities observed are controlled by the catalyst and reaction conditions.

  2. Thermal selectivity of intermolecular versus intramolecular reactions on surfaces

    NASA Astrophysics Data System (ADS)

    Cirera, Borja; Giménez-Agulló, Nelson; Björk, Jonas; Martínez-Peña, Francisco; Martin-Jimenez, Alberto; Rodriguez-Fernandez, Jonathan; Pizarro, Ana M.; Otero, Roberto; Gallego, José M.; Ballester, Pablo; Galan-Mascaros, José R.; Ecija, David

    2016-03-01

    On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure.

  3. Thermal selectivity of intermolecular versus intramolecular reactions on surfaces

    PubMed Central

    Cirera, Borja; Giménez-Agulló, Nelson; Björk, Jonas; Martínez-Peña, Francisco; Martin-Jimenez, Alberto; Rodriguez-Fernandez, Jonathan; Pizarro, Ana M.; Otero, Roberto; Gallego, José M.; Ballester, Pablo; Galan-Mascaros, José R.; Ecija, David

    2016-01-01

    On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure. PMID:26964764

  4. Thermal selectivity of intermolecular versus intramolecular reactions on surfaces.

    PubMed

    Cirera, Borja; Giménez-Agulló, Nelson; Björk, Jonas; Martínez-Peña, Francisco; Martin-Jimenez, Alberto; Rodriguez-Fernandez, Jonathan; Pizarro, Ana M; Otero, Roberto; Gallego, José M; Ballester, Pablo; Galan-Mascaros, José R; Ecija, David

    2016-01-01

    On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure. PMID:26964764

  5. Controlling bimolecular reactions: Mode and bond selected reaction of water with hydrogen atoms

    SciTech Connect

    Sinha, A.; Hsiao, M.C.; Crim, F.F. )

    1991-04-01

    Vibrational overtone excitation prepares water molecules in the {vert bar}13{r angle}{sup {minus}}, {vert bar}04{r angle}{sup {minus}}, {vert bar}12{r angle}{sup {minus}}, {vert bar}02{r angle}{sup {minus}}{vert bar}2{r angle}, and {vert bar}03{r angle}{sup {minus}} local mode states for a study of the influence of reagent vibration on the endothermic bimolecular reaction H+H{sub 2}O{r arrow}OH+H{sub 2}. The reaction of water molecules excited to the {vert bar}04{r angle}{sup {minus}} vibrational state predominantly produces OH({ital v}=0) while reaction from the {vert bar}13{r angle}{sup {minus}} state forms mostly OH({ital v}=1). These results support a spectator model for reaction in which the vibrational excitation of the products directly reflects the nodal pattern of the vibrational wave function in the energized molecule. Relative rate measurements for the three vibrational states {vert bar}03{r angle}{sup {minus}}, {vert bar}02{r angle}{sup {minus}}{vert bar}2{r angle}, and {vert bar}12{r angle}{sup {minus}}, which have similar total energies but correspond to very different distributions of vibrational energy, demonstrate the control that initially selected vibrations exert on reaction rates. The local mode stretching state {vert bar}03{r angle}{sup {minus}} promotes the H+H{sub 2}O reaction much more efficiently than either the state having part of its energy in bending excitation ({vert bar}02{r angle}{sup {minus}}{vert bar}2{r angle}) or the stretching state with the excitation shared between the two O--H oscillators ({vert bar}12{r angle}{sup {minus}}). The localized character of the vibrational overtone excitation in water has permitted the first observation of a bond selected bimolecular reaction using this approach.

  6. Optimal Sensor Selection for Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael; Sowers, T. Shane; Aguilar, Robert B.

    2005-01-01

    Sensor data are the basis for performance and health assessment of most complex systems. Careful selection and implementation of sensors is critical to enable high fidelity system health assessment. A model-based procedure that systematically selects an optimal sensor suite for overall health assessment of a designated host system is described. This procedure, termed the Systematic Sensor Selection Strategy (S4), was developed at NASA John H. Glenn Research Center in order to enhance design phase planning and preparations for in-space propulsion health management systems (HMS). Information and capabilities required to utilize the S4 approach in support of design phase development of robust health diagnostics are outlined. A merit metric that quantifies diagnostic performance and overall risk reduction potential of individual sensor suites is introduced. The conceptual foundation for this merit metric is presented and the algorithmic organization of the S4 optimization process is described. Representative results from S4 analyses of a boost stage rocket engine previously under development as part of NASA's Next Generation Launch Technology (NGLT) program are presented.

  7. Applications of Multiple Reaction Monitoring to Clinical Glycomics

    PubMed Central

    Ruhaak, L. Renee; Lebrilla, Carlito B.

    2014-01-01

    Multiple reaction monitoring or MRM is widely acknowledged for its accuracy of quantitation. The applications have mostly been in the analysis of small molecules and proteins, but its utility is expanding. Protein glycosylation was recently identified as a new paradigm in biomarker discovery for health and disease. A number of recent studies have now identified differential glycosylation patterns associated with health and disease states, including aging, pregnancy, rheumatoid arthritis and different types of cancer. While the use of MRM in clinical glycomics is still in its infancy, it can likely play a role in the quantitation of protein glycosylation in the clinical setting. Here, we aim to review the current advances in the nascent application of MRM in the field of glycomics. PMID:25892741

  8. Deciphering Selectivity in Organic Reactions: A Multifaceted Problem.

    PubMed

    Balcells, David; Clot, Eric; Eisenstein, Odile; Nova, Ainara; Perrin, Lionel

    2016-05-17

    Computational chemistry has made a sustained contribution to the understanding of chemical reactions. In earlier times, half a century ago, the goal was to distinguish allowed from forbidden reactions (e.g., Woodward-Hoffmann rules), that is, reactions with low or high to very high activation barriers. A great achievement of computational chemistry was also to contribute to the determination of structures with the bonus of proposing a rationalization (e.g., anomeric effect, isolobal analogy, Gillespie valence shell pair electron repulsion rules and counter examples, Wade-Mingos rules for molecular clusters). With the development of new methods and the constant increase in computing power, computational chemists move to more challenging problems, close to the daily concerns of the experimental chemists, in determining the factors that make a reaction both efficient and selective: a key issue in organic synthesis. For this purpose, experimental chemists use advanced synthetic and analytical techniques to which computational chemists added other ways of determining reaction pathways. The transition states and intermediates contributing to the transformation of reactants into the desired and undesired products can now be determined, including their geometries, energies, charges, spin densities, spectroscopy properties, etc. Such studies remain challenging due to the large number of chemical species commonly present in the reactive media whose role may have to be determined. Calculating chemical systems as they are in the experiment is not always possible, bringing its own share of complexity through the large number of atoms and the associated large number of conformers to consider. Modeling the chemical species with smaller systems is an alternative that historically led to artifacts. Another important topic is the choice of the computational method. While DFT is widely used, the vast diversity of functionals available is both an opportunity and a challenge. Though

  9. Warmth and legitimacy beliefs contextualize adolescents' negative reactions to parental monitoring.

    PubMed

    LaFleur, Laura K; Zhao, Yinan; Zeringue, Megan M; Laird, Robert D

    2016-08-01

    This study sought to identify conditions under which parents' monitoring behaviors are most strongly linked to adolescents' negative reactions (i.e., feelings of being controlled and invaded). 242 adolescents (49.2% male; M age = 15.4 years) residing in the United States of America reported parental monitoring and warmth, and their own feelings of being controlled and invaded and beliefs in the legitimacy of parental authority. Analyses tested whether warmth and legitimacy beliefs moderate and/or suppress the link between parents' monitoring behaviors and adolescents' negative reactions. Monitoring was associated with more negative reactions, controlling for legitimacy beliefs and warmth. More monitoring was associated with more negative reactions only at weaker levels of legitimacy beliefs, and at lower levels of warmth. The link between monitoring and negative reactions is sensitive to the context within which monitoring occurs with the strongest negative reactions found in contexts characterized by low warmth and weak legitimacy beliefs. PMID:27310724

  10. Reaction monitoring using online vs tube NMR spectroscopy: seriously different results.

    PubMed

    Foley, David A; Dunn, Anna L; Zell, Mark T

    2016-06-01

    We report findings from the qualitative evaluation of nuclear magnetic resonance (NMR) reaction monitoring techniques of how each relates to the kinetic profile of a reaction process. The study highlights key reaction rate differences observed between the various NMR reaction monitoring methods investigated: online NMR, static NMR tubes, and periodic inversion of NMR tubes. The analysis of three reaction processes reveals that rates derived from NMR analysis are highly dependent on monitoring method. These findings indicate that users must be aware of the effect of their monitoring method upon the kinetic rate data derived from NMR analysis. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26248898

  11. Site-Selective Reactions with Peptide-Based Catalysts.

    PubMed

    Giuliano, Michael W; Miller, Scott J

    2016-01-01

    The problem of catalyst-controlled site-selectivity can potentially require a catalyst to overcome energetic barriers larger than those associated with enantioselective reactions. This challenge is a signature of substrates that present reactive sites that are not of equivalent reactivity. Herein we present a narrative of our laboratory's efforts to overcome this challenge using peptide-based catalysts. We highlight the interplay between understanding the inherent reactivity preferences of a given target molecule and the development of catalysts that can overcome intrinsic preferences embedded within a substrate. PMID:26307403

  12. Copper-catalysed selective hydroamination reactions of alkynes

    NASA Astrophysics Data System (ADS)

    Shi, Shi-Liang; Buchwald, Stephen L.

    2015-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a long-standing goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective and step-efficient synthesis of amines is still needed. Here, we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio- and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine and tolterodine.

  13. Copper-catalysed selective hydroamination reactions of alkynes.

    PubMed

    Shi, Shi-Liang; Buchwald, Stephen L

    2015-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a long-standing goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective and step-efficient synthesis of amines is still needed. Here, we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio- and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine and tolterodine. PMID:25515888

  14. Copper-catalyzed selective hydroamination reactions of alkynes

    PubMed Central

    Shi, Shi-Liang; Buchwald, Stephen L.

    2014-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a longstanding goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective, and step-efficient synthesis of amines is still needed. In this work we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines, and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio-, and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine, and tolterodine. PMID:25515888

  15. Still shimming or already measuring? - Quantitative reaction monitoring for small molecules on the sub minute timescale by NMR

    NASA Astrophysics Data System (ADS)

    Kind, J.; Thiele, C. M.

    2015-11-01

    In order to enable monitoring of rapidly occurring reactions Wagner et al. recently presented a simple scheme for 1D NMR experiments with continuous data acquisition, without inter-scan delays, using a spatially-selective and frequency-shifted excitation approach (Wagner et al., 2013). This scheme allows acquisition of proton spectra with temporal resolutions on the millisecond timescale. Such high temporal resolutions are desired in the case of reaction monitoring using stopped flow setups. In regular 1H NMR-spectra without spatial selection the line width increases for a given shim setting with changes in sample volume, susceptibility, convection and temperature or concentration gradients due to the disturbance of magnetic field homogeneity. Concerning reaction monitoring this is unfortunate as shimming prior to acquisition becomes necessary to obtain narrow signals after injection of a reactant into an NMR sample. Even automatic shim routines may last up to minutes. Thus fast reactions can hardly be monitored online without large hardware dead times in a single stopped flow experiment. This problem is reduced in the spatially-selective and frequency-shifted continuous NMR experiment as magnetic field inhomogeneties are less pronounced and negative effects on the obtained line shapes are reduced as pointed out by Bax and Freeman (1980) [2] and demonstrated by Wagner et al. (2013). Here we present the utilization of this technique for observation of reactions in small molecule systems in which chemical conversion and longitudinal relaxation occur on the same timescale. By means of the alkaline ethyl acetate hydrolysis, a stoichiometric reaction, we show advantages of spatially-selective excitation on both temporal resolution and line shapes in stopped flow experiments. Results are compared to data obtained by non-selective small angle excitation experiments.

  16. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst

    NASA Astrophysics Data System (ADS)

    Choi, Chang Hyuck; Kim, Minho; Kwon, Han Chang; Cho, Sung June; Yun, Seongho; Kim, Hee-Tak; Mayrhofer, Karl J. J.; Kim, Hyungjun; Choi, Minkee

    2016-03-01

    Maximum atom efficiency as well as distinct chemoselectivity is expected for electrocatalysis on atomically dispersed (or single site) metal centres, but its realization remains challenging so far, because carbon, as the most widely used electrocatalyst support, cannot effectively stabilize them. Here we report that a sulfur-doped zeolite-templated carbon, simultaneously exhibiting large sulfur content (17 wt% S), as well as a unique carbon structure (that is, highly curved three-dimensional networks of graphene nanoribbons), can stabilize a relatively high loading of platinum (5 wt%) in the form of highly dispersed species including site isolated atoms. In the oxygen reduction reaction, this catalyst does not follow a conventional four-electron pathway producing H2O, but selectively produces H2O2 even over extended times without significant degradation of the activity. Thus, this approach constitutes a potentially promising route for producing important fine chemical H2O2, and also offers opportunities for tuning the selectivity of other electrochemical reactions on various metal catalysts.

  17. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst

    PubMed Central

    Choi, Chang Hyuck; Kim, Minho; Kwon, Han Chang; Cho, Sung June; Yun, Seongho; Kim, Hee-Tak; Mayrhofer, Karl J. J.; Kim, Hyungjun; Choi, Minkee

    2016-01-01

    Maximum atom efficiency as well as distinct chemoselectivity is expected for electrocatalysis on atomically dispersed (or single site) metal centres, but its realization remains challenging so far, because carbon, as the most widely used electrocatalyst support, cannot effectively stabilize them. Here we report that a sulfur-doped zeolite-templated carbon, simultaneously exhibiting large sulfur content (17 wt% S), as well as a unique carbon structure (that is, highly curved three-dimensional networks of graphene nanoribbons), can stabilize a relatively high loading of platinum (5 wt%) in the form of highly dispersed species including site isolated atoms. In the oxygen reduction reaction, this catalyst does not follow a conventional four-electron pathway producing H2O, but selectively produces H2O2 even over extended times without significant degradation of the activity. Thus, this approach constitutes a potentially promising route for producing important fine chemical H2O2, and also offers opportunities for tuning the selectivity of other electrochemical reactions on various metal catalysts. PMID:26952517

  18. Hypersensitivity Reactions to Nonsteroidal Anti-inflammatory Drugs in Children and Adolescents: Selective Reactions.

    PubMed

    Blanca-López, N; Cornejo-García, J A; Pérez-Alzate, D; Pérez-Sánchez, N; Plaza-Serón, M C; Doña, I; Torres, M J; Canto, G; Kidon, M; Perkins, J R; Blanca, M

    2015-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are used throughout the world to treat pain and inflammation; however, they can trigger several types of drug hypersensitivity reactions (DHRs) in all age groups. Although most such reactions occur through activation of the leukotriene pathway without specific immunological recognition (cross-intolerance), a significant number of DHRs to NSAIDs are due to immunological mechanisms (selective reactions [SRs]). SRs are thought to be induced by specific IgE antibodies or by T cells. In this manuscript, we focus on SRs, which are of great concern in children and adolescents and comprise a heterogeneous set of clinical pictures ranging from mild entities such as urticaria/angioedema to potentially life-threatening conditions such as Stevens-Johnson syndrome/toxic epidermal necrolysis. Paracetamol and ibuprofen are the most frequent elicitors of IgE-mediated SRs, although pyrazolones have also been implicated. T cell-mediated reactions are infrequent in children but have been associated with ibuprofen, naproxen, and dipyrone. In this review, we analyze the available literature on SRs in children and adolescents, with emphasis on epidemiological data, mechanisms, and drugs involved, as well as on diagnostic procedures. PMID:26817135

  19. Large-Scale Targeted Proteomics Using Internal Standard Triggered-Parallel Reaction Monitoring (IS-PRM)*

    PubMed Central

    Gallien, Sebastien; Kim, Sang Yoon; Domon, Bruno

    2015-01-01

    Targeted high-resolution and accurate mass analyses performed on fast sequencing mass spectrometers have opened new avenues for quantitative proteomics. More specifically, parallel reaction monitoring (PRM) implemented on quadrupole-orbitrap instruments exhibits exquisite selectivity to discriminate interferences from analytes. Furthermore, the instrument trapping capability enhances the sensitivity of the measurements. The PRM technique, applied to the analysis of limited peptide sets (typically 50 peptides or less) in a complex matrix, resulted in an improved detection and quantification performance as compared with the reference method of selected reaction monitoring performed on triple quadrupole instruments. However, the implementation of PRM for the analysis of large peptide numbers requires the adjustment of mass spectrometry acquisition parameters, which affects dramatically the quality of the generated data, and thus the overall output of an experiment. A newly designed data acquisition scheme enabled the analysis of moderate-to-large peptide numbers while retaining a high performance level. This new method, called internal standard triggered-parallel reaction monitoring (IS-PRM), relies on added internal standards and the on-the-fly adjustment of acquisition parameters to drive in real-time measurement of endogenous peptides. The acquisition time management was designed to maximize the effective time devoted to measure the analytes in a time-scheduled targeted experiment. The data acquisition scheme alternates between two PRM modes: a fast low-resolution “watch mode” and a “quantitative mode” using optimized parameters ensuring data quality. The IS-PRM method exhibited a highly effective use of the instrument time. Applied to the analysis of large peptide sets (up to 600) in complex samples, the method showed an unprecedented combination of scale and analytical performance, with limits of quantification in the low amol range. The successful

  20. Spin-selective recombination reactions of radical pairs: Experimental test of validity of reaction operators

    SciTech Connect

    Maeda, Kiminori; Liddell, Paul; Gust, Devens; Hore, P. J.

    2013-12-21

    Spin-selective reactions of radical pairs are conventionally modelled using an approach that dates back to the 1970s [R. Haberkorn, Mol. Phys. 32, 1491 (1976)]. An alternative approach based on the theory of quantum measurements has recently been suggested [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. We present here the first experimental attempt to discriminate between the two models. Pulsed electron paramagnetic resonance spectroscopy has been used to investigate intramolecular electron transfer in the radical pair form of a carotenoid-porphyrin-fullerene molecular triad. The rate of spin-spin relaxation of the fullerene radical in the triad was found to be inconsistent with the quantum measurement description of the spin-selective kinetics, and in accord with the conventional model when combined with spin-dephasing caused by rotational modulation of the anisotropic g-tensor of the fullerene radical.

  1. Multichannel quench-flow microreactor chip for parallel reaction monitoring.

    PubMed

    Bula, Wojciech P; Verboom, Willem; Reinhoudt, David N; Gardeniers, Han J G E

    2007-12-01

    This paper describes a multichannel silicon-glass microreactor which has been utilized to investigate the kinetics of a Knoevenagel condensation reaction under different reaction conditions. The reaction is performed on the chip in four parallel channels under identical conditions but with different residence times. A special topology of the reaction coils overcomes the common problem arising from the difference in pressure drop of parallel channels having different length. The parallelization of reaction coils combined with chemical quenching at specific locations results in a considerable reduction in experimental effort and cost. The system was tested and showed good reproducibility in flow properties and reaction kinetic data generation. PMID:18030392

  2. 21 CFR 312.53 - Selecting investigators and monitors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... investigational purposes and will ensure that the requirements relating to obtaining informed consent (21 CFR part 50) and institutional review board review and approval (21 CFR part 56) are met; (e) Will report to... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Selecting investigators and monitors....

  3. Monitorizing nitinol alloy surface reactions for biofouling studies

    NASA Astrophysics Data System (ADS)

    Dinu, C. Z.; Dinca, V. C.; Soare, S.; Moldovan, A.; Smarandache, D.; Scarisoareanu, N.; Barbalat, A.; Birjega, R.; Dinescu, M.; DiStefano, V. Ferrari

    2007-07-01

    Growth and deposition of unwanted bacteria on implant metal alloys affect their use as biomedical samples. Monitoring any bacterial biofilm accumulation will provide early countermeasures. For a reliable antifouling strategy we prepared nitinol (NiTi) thin films on Ti-derived substrates by using a pulsed laser deposition (PLD) method. As the microstructure of Ti-alloy is dictated by the tensile strength, fatigue and the fracture toughness we tested the use of hydrogen as an alloying element. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigated the crystalline structure, chemical composition and respectively the surface morphology of the nitinol hydrogen and hydrogen-free samples. Moreover, the alloys were integrated and tested using a cellular metric and their responses were systematic evaluated and quantified. Our attractive approach is meant to select the suitable components for an effective and trustworthy anti-fouling strategy. A greater understanding of such processes should lead to novel and effective control methods that would improve in the future implant stability and capabilities.

  4. Early Identification of Acute Hemolytic Transfusion Reactions: Realistic Implications for Best Practice in Patient Monitoring.

    PubMed

    Menendez, Juliet Battard; Edwards, Barbara

    2016-01-01

    Acute hemolytic transfusion reactions can result in severe complications and death. Through early identification and prompt intervention, nurses can reduce the risks associated with these serious reactions. Realistic evidence-based patient monitoring protocols can help guide identification of acute hemolytic transfusion reactions and facilitate lifesaving interventions to avert critical patient situations. PMID:27323466

  5. Targeted Quantitative Analysis of Streptococcus pyogenes Virulence Factors by Multiple Reaction Monitoring*S⃞

    PubMed Central

    Lange, Vinzenz; Malmström, Johan A.; Didion, John; King, Nichole L.; Johansson, Björn P.; Schäfer, Juliane; Rameseder, Jonathan; Wong, Chee-Hong; Deutsch, Eric W.; Brusniak, Mi-Youn; Bühlmann, Peter; Björck, Lars; Domon, Bruno; Aebersold, Ruedi

    2008-01-01

    In many studies, particularly in the field of systems biology, it is essential that identical protein sets are precisely quantified in multiple samples such as those representing differentially perturbed cell states. The high degree of reproducibility required for such experiments has not been achieved by classical mass spectrometry-based proteomics methods. In this study we describe the implementation of a targeted quantitative approach by which predetermined protein sets are first identified and subsequently quantified at high sensitivity reliably in multiple samples. This approach consists of three steps. First, the proteome is extensively mapped out by multidimensional fractionation and tandem mass spectrometry, and the data generated are assembled in the PeptideAtlas database. Second, based on this proteome map, peptides uniquely identifying the proteins of interest, proteotypic peptides, are selected, and multiple reaction monitoring (MRM) transitions are established and validated by MS2 spectrum acquisition. This process of peptide selection, transition selection, and validation is supported by a suite of software tools, TIQAM (Targeted Identification for Quantitative Analysis by MRM), described in this study. Third, the selected target protein set is quantified in multiple samples by MRM. Applying this approach we were able to reliably quantify low abundance virulence factors from cultures of the human pathogen Streptococcus pyogenes exposed to increasing amounts of plasma. The resulting quantitative protein patterns enabled us to clearly define the subset of virulence proteins that is regulated upon plasma exposure. PMID:18408245

  6. Meat Authentication via Multiple Reaction Monitoring Mass Spectrometry of Myoglobin Peptides.

    PubMed

    Watson, Andrew D; Gunning, Yvonne; Rigby, Neil M; Philo, Mark; Kemsley, E Kate

    2015-10-20

    A rapid multiple reaction monitoring (MRM) mass spectrometric method for the detection and relative quantitation of the adulteration of meat with that of an undeclared species is presented. Our approach uses corresponding proteins from the different species under investigation and corresponding peptides from those proteins, or CPCP. Selected peptide markers can be used for species detection. The use of ratios of MRM transition peak areas for corresponding peptides is proposed for relative quantitation. The approach is introduced by use of myoglobin from four meats: beef, pork, horse and lamb. Focusing in the present work on species identification, by use of predictive tools, we determine peptide markers that allow the identification of all four meats and detection of one meat added to another at levels of 1% (w/w). Candidate corresponding peptide pairs to be used for the relative quantification of one meat added to another have been observed. Preliminary quantitation data presented here are encouraging. PMID:26366801

  7. Model Selection for Monitoring CO2 Plume during Sequestration

    SciTech Connect

    2014-12-31

    The model selection method developed as part of this project mainly includes four steps: (1) assessing the connectivity/dynamic characteristics of a large prior ensemble of models, (2) model clustering using multidimensional scaling coupled with k-mean clustering, (3) model selection using the Bayes' rule in the reduced model space, (4) model expansion using iterative resampling of the posterior models. The fourth step expresses one of the advantages of the method: it provides a built-in means of quantifying the uncertainty in predictions made with the selected models. In our application to plume monitoring, by expanding the posterior space of models, the final ensemble of representations of geological model can be used to assess the uncertainty in predicting the future displacement of the CO2 plume. The software implementation of this approach is attached here.

  8. Model Selection for Monitoring CO2 Plume during Sequestration

    Energy Science and Technology Software Center (ESTSC)

    2014-12-31

    The model selection method developed as part of this project mainly includes four steps: (1) assessing the connectivity/dynamic characteristics of a large prior ensemble of models, (2) model clustering using multidimensional scaling coupled with k-mean clustering, (3) model selection using the Bayes' rule in the reduced model space, (4) model expansion using iterative resampling of the posterior models. The fourth step expresses one of the advantages of the method: it provides a built-in means ofmore » quantifying the uncertainty in predictions made with the selected models. In our application to plume monitoring, by expanding the posterior space of models, the final ensemble of representations of geological model can be used to assess the uncertainty in predicting the future displacement of the CO2 plume. The software implementation of this approach is attached here.« less

  9. Monitoring biochemical reactions using Y-cut quartz thermal sensors.

    PubMed

    Ren, Kailiang; Kao, Ping; Pisani, Marcelo B; Tadigadapa, Srinivas

    2011-07-21

    In this paper, we present a micromachined Y-cut quartz resonator based thermal sensor array which is configured with a reaction chamber that is physically separated but located in close proximity to the resonator for sensitive calorimetric biosensing applications. The coupling of heat from the reaction chamber to the quartz resonator is achieved via radiation and conduction through ambient gas. The sensor was packaged onto a 300 μm thick stainless plate with an opening in the middle. The sensor array was aligned to the opening and mounted from the underside of the plate. A reaction chamber designed for performing (bio)chemical reactions was used in the measurements. This configuration of the sensor allows for a very robust sensing platform with no fouling of the sensor surface or degradation in its performance metrics. Impedance-based tracking of resonance frequency was used for chemical, enzymatic, and cellular activity measurements. The sensor described has an impedance sensitivity of 852 Ω °C(-1) or a frequency sensitivity of 7.32 kHz °C(-1) for the 91 MHz resonator used in this work. Results on exothermic reaction between hydrochloric acid and ammonium hydroxide, the hydrolysis reaction of urea by urease and the catalytic reaction of glucose with glucose dehydrogenase are reported. From the signal to noise ratio analysis of the glucose sensor, <10 μM glucose sensitivity could be obtained improving the detection limit by a factor of 250 in comparison to our previous work using thermopile sensors. Finally, calcium ionophore induced cellular activity was measured in pancreatic cancer cells using the sensor. PMID:21655628

  10. Rheological monitoring of phase separation induced by chemical reaction in thermoplastic-modified epoxy

    SciTech Connect

    Vinh-Tung, C.; Lachenal, G.; Chabert, B.

    1996-12-31

    The phase separation induced by chemical reaction in blends of tetraglycidyl-diaminodiphenylmethane epoxy resin with an aromatic diamine hardener and a thermoplastic was monitored. Rheological measurements and morphologies are described.

  11. Monitoring Of Landslide Hazard In Selected Areas Of Uzbekistan

    NASA Astrophysics Data System (ADS)

    Lazecky, Milan; Balaha, Pavel; Khasankhanova, Gulchekhra; Minchenko, Venscelas

    2013-12-01

    Republic of Uzbekistan is situated in the heart of Central Asia. Dangerous phenomena such as drought, flooding, mud flows, landslides and others, that are becoming frequent in conditions of climate changes, increase instability of an agricultural production, and threaten rural livelihoods. In connection with weather and climate natural disasters, these phenomena become reasons of declining food production, water contamination, and economical damages. Within the Project granted by NATO: Science for Peace and Security programme, modern advanced remote sensing technologies will be applied to perform large scale monitoring of (early) slope deformations, including Satellite SAR Interferometry (InSAR) techniques, Ground Laser Scanning for in-situ refinement of detected movements or Multibeam Echosounding for monitoring slope deformation advancement into water objects. First results involving InSAR processing of selected sites in Uzbekistan are presented within this contribution.

  12. Esterification Reaction Utilizing Sense of Smell and Eyesight for Conversion and Catalyst Recovery Monitoring

    ERIC Educational Resources Information Center

    Janssens, Nikki; Wee, Lik H.; Martens, Johan A.

    2014-01-01

    The esterification reaction of salicylic acid with ethanol is performed in presence of dissolved 12-tungstophosphoric Brønsted-Lowry acid catalyst, a Keggin-type polyoxometalate (POM). The monitoring of the reaction with smell and the recovery of the catalyst with sight is presented. Formation of the sweet-scented ester is apparent from the smell.…

  13. How to select a continuous emission monitoring system

    SciTech Connect

    Radigan, M.J. )

    1994-02-01

    Selecting a continuous emission monitoring system (CEMS) involves more than picking an analyzer. Successful CEMS interface sampling and data-management systems to produce accurate, reliable reports required by regulatory agencies. Following objective guidelines removes some of the misery from CEMS shopping. However, prospective CEMS buyers should do their homework and develop well-thought-out, detailed specification for the processes' sampling criteria. Fine tuning the analyzer/data management system can eliminate maintenance costs and keep the facility operating within its permit restrictions.

  14. Strategy Developed for Selecting Optimal Sensors for Monitoring Engine Health

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Sensor indications during rocket engine operation are the primary means of assessing engine performance and health. Effective selection and location of sensors in the operating engine environment enables accurate real-time condition monitoring and rapid engine controller response to mitigate critical fault conditions. These capabilities are crucial to ensure crew safety and mission success. Effective sensor selection also facilitates postflight condition assessment, which contributes to efficient engine maintenance and reduced operating costs. Under the Next Generation Launch Technology program, the NASA Glenn Research Center, in partnership with Rocketdyne Propulsion and Power, has developed a model-based procedure for systematically selecting an optimal sensor suite for assessing rocket engine system health. This optimization process is termed the systematic sensor selection strategy. Engine health management (EHM) systems generally employ multiple diagnostic procedures including data validation, anomaly detection, fault-isolation, and information fusion. The effectiveness of each diagnostic component is affected by the quality, availability, and compatibility of sensor data. Therefore systematic sensor selection is an enabling technology for EHM. Information in three categories is required by the systematic sensor selection strategy. The first category consists of targeted engine fault information; including the description and estimated risk-reduction factor for each identified fault. Risk-reduction factors are used to define and rank the potential merit of timely fault diagnoses. The second category is composed of candidate sensor information; including type, location, and estimated variance in normal operation. The final category includes the definition of fault scenarios characteristic of each targeted engine fault. These scenarios are defined in terms of engine model hardware parameters. Values of these parameters define engine simulations that generate

  15. Microporous polyurethane material for size selective heterogeneous catalysis of the Knoevenagel reaction.

    PubMed

    Dey, Sandeep Kumar; de Sousa Amadeu, Nader; Janiak, Christoph

    2016-06-14

    The first polyurethane material which is microporous (BET surface area of 312 m(2) g(-1)) is prepared by solvothermal synthesis and acts as highly efficient and recyclable heterogeneous catalyst in the Knoevenagel condensation showing size selectivity, and in the Henry reaction showing substrate selectivity under mild reaction conditions. PMID:27240738

  16. Multiplexed parallel reaction monitoring targeting histone modifications on the QExactive mass spectrometer.

    PubMed

    Tang, Hui; Fang, Huasheng; Yin, Eric; Brasier, Allan R; Sowers, Lawrence C; Zhang, Kangling

    2014-06-01

    Histone acetylation and methylation play an important role in the regulation of gene expression. Irregular patterns of histone global acetylation and methylation have frequently been seen in various diseases. Quantitative analysis of these patterns is of high value for the evaluation of disease development and of outcomes from therapeutic treatment. Targeting histone acetylation and methylation by selected reaction monitoring (SRM) is one of the current quantitative methods. Here, we reported the use of the multiplexed parallel reaction monitoring (PRM) method on the QExactive mass spectrometer to target previously known lysine acetylation and methylation sites of histone H3 and H4 for the purpose of establishing precursor-product pairs for SRM. 55 modified peptides among which 29 were H3 K27/K36 modified peptides were detected from 24 targeted precursor ions included in the inclusion list. The identification was carried out directly from the trypsin digests of core histones that were separated without derivatization on a homemade capillary column packed with Waters YMC ODS-AQ reversed phase materials. Besides documenting the higher-energy c-trap dissociation (HCD) MS(2) spectra of previously known histone H3/H4 acetylated and methylated tryptic peptides, we identified novel H3 K18 methylation, H3 K27 monomethyl/acetyl duel modifications, H2B K23 acetylation, and H4 K20 acetylation in mammalian histones. The information gained from these experiments sets the foundation for quantification of histone modifications by targeted mass spectrometry methods directly from core histone samples. PMID:24823915

  17. The use of performance parameters in monitoring the safety of dams experiencing alkali-aggregate reaction

    SciTech Connect

    Veesaert, C.J.; LaBoon, J.H.

    1995-12-31

    As the Bureau of Reclamation (Reclamation) moves away from design and construction of new water resource projects toward optimizing the management of existing water resource projects, monitoring the condition of high risk structures such as dams becomes very important. To address this need, Reclamation has developed a logical approach of monitoring the safety of a dam over time. This approach analyzes visual and instrumentation performance parameters unique to each dam, Performance parameters specify the expected performance (behavior) of both embankment and concrete dams, including those concrete dams effected by alkali-aggregate reaction. This paper presents an overview of the concept of performance parameters in monitoring the safety of dams, which have experienced alkali-aggregate reaction. Three case studies are presented to illustrate the use of performance parameters in monitoring a dam`s behavior over time, relative to the effects of alkali-aggregate reaction.

  18. Thermodynamically driven, syn-selective vinylogous aldol reaction of tetronamides.

    PubMed

    Karak, Milandip; Barbosa, Luiz C A; Acosta, Jaime A M; Sarotti, Ariel M; Boukouvalas, John

    2016-06-01

    A stereoselective vinylogous aldol reaction of N-monosubstituted tetronamides with aldehydes is described. The procedure is simple and scalable, works well with both aromatic and aliphatic aldehydes, and affords mainly the corresponding syn-aldol adducts. In many cases, the latter are obtained essentially free of their anti-isomers (dr > 99 : 1) in high yields (70-90%). Experimental and computational studies suggest that the observed diastereoselectivity arises through anti-syn isomer interconversion, enabled by an iterative retro-aldol/aldol reaction. PMID:27163151

  19. Intrinsic selectivity in some prebiotic reactions of urazole with sugars

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Colloton, Patricia A.

    2004-02-01

    Urazole (1,2,4-triazolidine-3,5-dione) (1), 4-methylurazole (12), and its carbon analog, 4,4-dimethylpyrazolidine-3,5-dione (18), react with 2-deoxy-D-ribose (2-deoxy-D-erythro-pentose; 6) in an aqueous solution at room temperature in a regioselective manner (a single substitution on a hydrazidic nitrogen, no reaction on the imide nitrogen) to give a mixture of four nucleosides. These are α and β pyranosides (p) and α and β furanosides (f). The α p forms in a stereoselective manner. A crystalline precipitate is formed in each of the above reactions, which is an exclusive enantiospecific product, 1R, 2R α p. 1 with 2-deoxy-L-ribose (10) gives a precipitate with the exclusive 1S, 2S α p stereochemistry. With 2-deoxy-D-glucose (2-deoxy-D-arabino-hexose; 7) the reaction with 1 is stereospecific, since only one isomer, β p, forms in the solution. Causes of enhanced reactivity of 1 with sugars were also studied. It was found that cyclic hydrazide analogs of 1, such as 12 and 18, are reactive, but open-chain analogs, 1,2,-diacetylhydrazine (21) and 1,2-dicarbethoxyhydrazine (22), are not. Although this reactivity assessment was done qualitatively and under restrictive reaction conditions, it still may be valuable for understanding α -effect of hydrazide nucleophiles. The prebiotic significance of our results is discussed.

  20. Excitation functions for production of 46Sc by deuteron and proton beams in natTi: A basis for additional monitor reactions

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Ditrói, F.; Amjed, N.

    2014-11-01

    An objective of a new Coordinated Research Program launched recently by IAEA is to strengthen and broaden the cross section database for monitoring of charged particle beams given in IAEA-TECDOC-1211. One of the suggestions is to complement the widely used natTi(d,x)48V monitor reaction by the natTi(d,x)46Sc reaction having a maximum in a somewhat higher energy. After compilation of the data sets for this reaction available in literature and unpublished data from our earlier experiments, a selection of 20 sets is proposed for statistical fitting and extraction of recommended values. A similar analysis is presented for the natTi(p,x)46Sc reaction where 16 datasets are finally selected.

  1. Language Control in Bilinguals: Monitoring and Response Selection.

    PubMed

    Branzi, Francesca M; Della Rosa, Pasquale A; Canini, Matteo; Costa, Albert; Abutalebi, Jubin

    2016-06-01

    Language control refers to the cognitive mechanism that allows bilinguals to correctly speak in one language avoiding interference from the nontarget language. Bilinguals achieve this feat by engaging brain areas closely related to cognitive control. However, 2 questions still await resolution: whether this network is differently engaged when controlling nonlinguistic representations, and whether this network is differently engaged when control is exerted upon a restricted set of lexical representations that were previously used (i.e., local control) as opposed to control of the entire language system (i.e., global control). In the present event-related functional magnetic resonance imaging study, we investigated these 2 questions by employing linguistic and nonlinguistic blocked switching tasks in the same bilingual participants. We first report that the left prefrontal cortex is driven similarly for control of linguistic and nonlinguistic representations, suggesting its domain-general role in the implementation of response selection. Second, we propose that language control in bilinguals is hierarchically organized with the dorsal anterior cingulate cortex/presupplementary motor area acting as the supervisory attentional system, recruited for increased monitoring demands such as local control in the second language. On the other hand, prefrontal, inferior parietal areas and the caudate would act as the response selection system, tailored for language selection for both local and global control. PMID:25838037

  2. Polyhedral Interpolation for Optimal Reaction Control System Jet Selection

    NASA Technical Reports Server (NTRS)

    Gefert, Leon P.; Wright, Theodore

    2014-01-01

    An efficient algorithm is described for interpolating optimal values for spacecraft Reaction Control System jet firing duty cycles. The algorithm uses the symmetrical geometry of the optimal solution to reduce the number of calculations and data storage requirements to a level that enables implementation on the small real time flight control systems used in spacecraft. The process minimizes acceleration direction errors, maximizes control authority, and minimizes fuel consumption.

  3. Energy disposal in the vibrational-state- and bond-selected reaction of water with hydrogen atoms

    SciTech Connect

    Hsiao, M.C.; Sinha, A.; Crim, F.F. )

    1991-10-17

    The importance of the reaction of water and hydrogen atoms to atmospheric and combustion processes has motivated both theoretical and experimental studies of its dynamics. The measured OH product state distribution from the reaction of vibrationally excited water with thermal hydrogen atoms supports an intuitive picture of selective disposal in this reaction. Excitation of the third overtone of the O-H stretch (4v{sub OH}) in either water or HOD provides enough energy to initiate the reaction, and laser-induced fluorescence (LIF) monitors the state populations of the reaction product OH or OD. The internal energy of the detected product is small compared to the roughly 9,000 cm{sup {minus}1} of available energy. The average rotational and vibrational energies of OH produced from reaction of H{sub 2}O(4v{sub OH}) are 320 {plus minus} 10 and 100 {plus minus} 30 cm{sup {minus}1}. The reaction of HOD(4v{sub OH}) produces OD with average rotational and vibrational energies of 190 {plus minus} 10 and 440 {plus minus} 90 cm{sup {minus}1}. Analysis of Doppler profiles in the LIF excitation spectra shows that the energy in relative translation of the products is no more than 5,000 cm{sup {minus}1}, leaving the substantial balance of available energy in the H{sub 2} product, most likely as vibrational excitation.

  4. Bond-selected chemistry: Vibrational state control of photodissociation and bimolecular reaction

    SciTech Connect

    Crim, F.F.

    1996-08-01

    Controlling chemical reactions with light rests on the idea of exciting a vibration that becomes the reaction coordinate in subsequent chemistry. Vibrational excitation techniques such as infrared or stimulated Raman excitation of fundamental vibrations or vibrational overtone excitation of higher levels permit the preferential cleavage of a bond in a photodissociation or bimolecular reaction. The key to bond-selected chemistry is the initial preparation of a suitable vibrational state followed, in the case of bond-selected photodissociation, by electronic excitation or, in the case of bond-selected bimolecular reaction, by collision with a reactive atom. Such experiments demonstrate bond-selected chemistry, permit detailed comparison to theory, and reveal general principles of vibrational state control of chemical reactions. 76 refs., 8 figs.

  5. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.

    PubMed

    Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will

    2013-01-01

    One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism. PMID:24025780

  6. Controlling Catalytic Selectivity via Adsorbate Orientation on the Surface: From Furfural Deoxygenation to Reactions of Epoxides.

    PubMed

    Pang, Simon H; Medlin, J Will

    2015-04-16

    Specificity to desired reaction products is the key challenge in designing solid catalysts for reactions involving addition or removal of oxygen to/from organic reactants. This challenge is especially acute for reactions involving multifunctional compounds such as biomass-derived aromatic molecules (e.g., furfural) and functional epoxides (e.g., 1-epoxy-3-butene). Recent surface-level studies have shown that there is a relationship between adsorbate surface orientation and reaction selectivity in the hydrogenation pathways of aromatic oxygenates and the ring-opening or ring-closing pathways of epoxides. Control of the orientation of reaction intermediates on catalytic surfaces by modifying the surface or near-surface environment has been shown to be a promising method of affecting catalytic selectivity for reactions of multifunctional molecules. In this Perspective, we review recent model studies aimed at understanding the surface chemistry for these reactions and studies that utilize this insight to rationally design supported catalysts. PMID:26263134

  7. Real-time reaction monitoring by ultrafast 2D NMR on a benchtop spectrometer.

    PubMed

    Gouilleux, Boris; Charrier, Benoît; Danieli, Ernesto; Dumez, Jean-Nicolas; Akoka, Serge; Felpin, François-Xavier; Rodriguez-Zubiri, Mireia; Giraudeau, Patrick

    2015-12-01

    Reaction monitoring is widely used to follow chemical processes in a broad range of application fields. Recently, the development of robust benchtop NMR spectrometers has brought NMR under the fume hood, making it possible to monitor chemical reactions in a safe and accessible environment. However, these low-field NMR approaches suffer from limited resolution leading to strong peak overlaps, which can limit their application range. Here, we propose an approach capable of recording ultrafast 2D NMR spectra on a compact spectrometer and of following in real time reactions in the synthetic chemistry laboratory. This approach--whose potential is shown here on a Heck-Matsuda reaction--is highly versatile; the duration of the measurement can be optimized to follow reactions whose time scale ranges from between a few tens of seconds to a few hours. It makes it possible to monitor complex reactions in non-deuterated solvents, and to confirm in real time the molecular structure of the compounds involved in the reaction while giving access to relevant kinetic parameters. PMID:26501887

  8. Investigating the mechanism of the selective hydrogenation reaction of cinnamaldehyde catalyzed by Ptn clusters.

    PubMed

    Li, Laicai; Wang, Wei; Wang, Xiaolan; Zhang, Lin

    2016-08-01

    Cinnamaldehyde (CAL) belongs to the group of aromatic α,β-unsaturated aldehydes; the selective hydrogenation of CAL plays an important role in the fine chemical and pharmaceutical industries. Using Ptn clusters as catalytic models, we studied the selective hydrogenation reaction mechanism for CAL catalyzed by Ptn (n = 6, 10, 14, 18) clusters by means of B3LYP in density functional theory at the 6-31+ G(d) level (the LanL2DZ extra basis set was used for the Pt atom). The rationality of the transition state was proved by vibration frequency analysis and intrinsic reaction coordinate computation. Moreover, atoms in molecules theory and nature bond orbital theory were applied to discuss the interaction among orbitals and the bonding characteristics. The results indicate that three kinds of products, namely 3-phenylpropyl aldehyde, 3-phenyl allyl alcohol and cinnamyl alcohol, are produced in the selective hydrogenation reaction catalyzed by Ptn clusters; each pathway possesses two reaction channels. Ptn clusters are more likely to catalyze the activation and hydrogenation of the C = O bond in CAL molecules, eventually producing cinnamic alcohol, which proves that Ptn clusters have a strong reaction selectivity to catalyze CAL. The reaction selectivity of the catalyzer cluster is closely related to the size of the Ptn cluster, with Pt14 clusters having the greatest reaction selectivity. Graphical Abstract The reaction mechanism for the selective hydrogenation reaction ofcinnamaldehyde catalyzed by Ptn clusters was studied by densityfunctional theory. The reactionselectivity of cluster catalyzer was concluded to be closely related to the size of Ptn clusters, with Pt14 clusters having the greatest reaction selectivity. PMID:27444877

  9. Monitoring method for surface contamination caused by selected antineoplastic agents.

    PubMed

    Larson, R R; Khazaeli, M B; Dillon, H Kenneth

    2002-02-01

    A method of evaluating surface contamination caused by selected antineoplastic agents was studied. The antineoplastic agents tested were cyclophosphamide, ifosfamide, doxorubicin hydrochloride, fluorouracil, and paclitaxel. Each agent was reconstituted and prepared as a stock solution. A 0.1-mL portion of each solution was spread evenly over a 600-cm2 area of a stainless steel surface, a resin countertop surface, and a vinyl flooring surface. After drying, the surfaces were wiped with each of two types of commercially available wiping materials (What-man no. 42 filters and Kimberly-Clark Kimwipes). A blend of methanol, acetonitrile, and buffered water was used both as the wetting agent for wiping the surfaces and as a desorbing solution. The desorbate was analyzed for drug concentration by reverse-phase high-performance liquid chromatography (HPLC). Mean +/- S.D. percent total recovery ranged from 72.4% +/- 17.6% to 95.3% +/- 2.9% for the vinyl surface wiped with filters, 91.5% +/- 5.4% to 104.7% +/- 0.8% for the resin surface wiped with filters, 73.9% +/- 2.3% to 95.3% +/- 1.7% for the stainless steel surface wiped with filters, and 18.2% +/- 1.4% to 372.8% +/- 8.0% for the stainless steel surface wiped with Kimwipes. Results were best for ifosfamide and cyclophosphamide. Kimwipes were deemed ineffective for this monitoring method because an ingredient interfered with the quantitative analytical tests. A wipe-sampling, desorption, and HPLC method for monitoring surface contamination by selected antineoplastic agents was sufficiently accurate and sensitive to evaluate surfaces typically found in both the pharmacy and drug administration areas of oncology treatment facilities. PMID:11862639

  10. Use of electrophysiological monitoring in selective rhizotomy treating glossopharyngeal neuralgia.

    PubMed

    Zhang, Wenhao; Chen, Minjie; Zhang, Weijie; Chai, Ying

    2014-07-01

    The aim of this study was to evaluate the effects of electrophysiological monitoring on selective rhizotomy of the glossopharyngeal nerve (SRGN) in treatment of glossopharyngeal neuralgia (GPN). From December, 2009 to May, 2012, SRGN was carried out on 8 patients with GPN, through a suboccipital sigmoid sinus posterior approach. The electrodes were placed on the cricothyroid muscle (vagus nerve). Two groups of amplitudes (A1 and A2) were recorded. A1 was recorded when the mixed nerve root was stimulated, and A2 when the part of the vagus nerve was stimulated. The glossopharyngeal nerve was sectioned and the vagus nerve was preserved. If A1/A2 < 50%, the mixed nerve root should be sectioned, otherwise the mixed nerve root should be retained. As the representation of vagus nerve, the averages of A1 and A2 were 22 and 36 μV respectively. The 8 patients were followed up for 9-39 months. Seven patients (87.5%) obtained complete pain relief (excellent) without complications such as hoarseness, dysphagia, and cough. One case (12.5%) obtained moderate relief (good), and was under control with carbamazepine at a dosage of 600 mg/d. Cough was occurred in this patient, but relieved in two months. Electrophysiological monitoring in SRGN can improve the efficiency of pain relief and reduce the incidence of complications. PMID:24095216

  11. The Psychophysiological Reactions of Film Viewers While Viewing Selected Cinemagraphic Elements.

    ERIC Educational Resources Information Center

    Smeltzer, Dennis K.

    This study focused on the psychophysiological reactions of viewers seeing such selected cinemagraphic elements as varying camera distances, tracking shots, panning shots, and zooming shots. Subjects (N=29), randomly selected from introductory speech courses, viewed five films that varied in the presence or absence of the selected filmic elements.…

  12. Analysis of selected allergic reactions among psoriatic patients

    PubMed Central

    Filipowska-Grońska, Agata; Kalemba, Michał; Krajewska, Anna; Grzanka, Alicja; Bożek, Andrzej; Jarząb, Jerzy

    2016-01-01

    Introduction Psoriasis is a chronic and recurrent inflammatory skin disease. The aetiology is still unknown in spite of numerous scientific researches. There is very little evidence which does not provide enough knowledge about allergic reactions in psoriatic patients. Based on the fact that the epidermal barrier damage allows different allergen types to penetrate into deep layers of epidermis and skin, we can assume that it may lead to immunological reactions. Aim To investigate the allergic reaction indicators and hypersensitivity assessment about contact, inhalant and food allergens. The results were analysed with regard to clinical disease indicators and progression stage of dermal lesions. Material and methods Eighty patients with psoriasis were examined. The concentration of total IgE antibodies and allergen specific IgE antibodies (asIgE) were analysed. Standard epidermal tests and atopy patch tests were performed. All the patients were estimated for their dermatological condition based on the PASI scale. The control group consisted of 50 patients without psoriasis and allergic history. Results Significantly higher concentration of total E immunoglobulin has been stated in the patients with psoriasis. Higher concentrations of specific allergic IgE antibodies were more often observed in the examined group but the most frequently observed values were present in 1–3 class. The most common airborne allergens were birch, artemisia, timothy and rye pollens. There have not been any significant statistical differences in the case of positive epidermal test results. Conclusions There is slightly expressed hypersensitivity in psoriatic patients. This hypersensitivity degree correlates with the intensification of symptoms. PMID:26985174

  13. Monitoring biodiesel reactions of soybean oil and sunflower oil using ultrasonic parameters

    NASA Astrophysics Data System (ADS)

    Figueiredo, M. K. K.; Silva, C. E. R.; Alvarenga, A. V.; Costa-Félix, R. P. B.

    2015-01-01

    Biodiesel is an innovation that attempts to substitute diesel oil with biomass. The aim of this paper is to show the development of a real-time method to monitor transesterification reactions by using low-power ultrasound and pulse/echo techniques. The results showed that it is possible to identify different events during the transesterification process by using the proposed parameters, showing that the proposed method is a feasible way to monitor the reactions of biodiesel during its fabrication, in real time, and with relatively low- cost equipment.

  14. Interfacial electronic effects control the reaction selectivity of platinum catalysts.

    PubMed

    Chen, Guangxu; Xu, Chaofa; Huang, Xiaoqing; Ye, Jinyu; Gu, Lin; Li, Gang; Tang, Zichao; Wu, Binghui; Yang, Huayan; Zhao, Zipeng; Zhou, Zhiyou; Fu, Gang; Zheng, Nanfeng

    2016-05-01

    Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics. Mechanistic studies reveal that the electron donation from ethylenediamine makes the surface of platinum nanowires highly electron rich. During catalysis, such an interfacial electronic effect makes the catalytic surface favour the adsorption of electron-deficient reactants over electron-rich substrates (that is, N-hydroxylanilines), thus preventing full hydrogenation. More importantly, this interfacial electronic effect, achieved through simple organic modifications, may now be used for the optimization of commercial platinum catalysts. PMID:26808458

  15. Interfacial electronic effects control the reaction selectivity of platinum catalysts

    NASA Astrophysics Data System (ADS)

    Chen, Guangxu; Xu, Chaofa; Huang, Xiaoqing; Ye, Jinyu; Gu, Lin; Li, Gang; Tang, Zichao; Wu, Binghui; Yang, Huayan; Zhao, Zipeng; Zhou, Zhiyou; Fu, Gang; Zheng, Nanfeng

    2016-05-01

    Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics. Mechanistic studies reveal that the electron donation from ethylenediamine makes the surface of platinum nanowires highly electron rich. During catalysis, such an interfacial electronic effect makes the catalytic surface favour the adsorption of electron-deficient reactants over electron-rich substrates (that is, N-hydroxylanilines), thus preventing full hydrogenation. More importantly, this interfacial electronic effect, achieved through simple organic modifications, may now be used for the optimization of commercial platinum catalysts.

  16. Entropic factors provide unusual reactivity and selectivity in epoxide-opening reactions promoted by water

    PubMed Central

    Byers, Jeffery A.; Jamison, Timothy F.

    2013-01-01

    Despite the myriad of selective enzymatic reactions that occur in water, chemists have rarely capitalized on the unique properties of this medium to govern selectivity in reactions. Here we report detailed mechanistic investigations of a water-promoted reaction that displays high selectivity for what is generally a disfavored product. A combination of structural and kinetic data indicates not only that synergy between substrate and water suppresses undesired pathways but also that water promotes the desired pathway by stabilizing charge in the transition state, facilitating proton transfer, doubly activating the substrate for reaction, and perhaps most remarkably, reorganizing the substrate into a reactive conformation that leads to the observed product. This approach serves as an outline for a general strategy of exploiting solvent-solute interactions to achieve unusual reactivity in chemical reactions. These findings may also have implications in the biosynthesis of the ladder polyether natural products, such as the brevetoxins and ciguatoxins. PMID:24046369

  17. Entropic factors provide unusual reactivity and selectivity in epoxide-opening reactions promoted by water.

    PubMed

    Byers, Jeffery A; Jamison, Timothy F

    2013-10-15

    Despite the myriad of selective enzymatic reactions that occur in water, chemists have rarely capitalized on the unique properties of this medium to govern selectivity in reactions. Here we report detailed mechanistic investigations of a water-promoted reaction that displays high selectivity for what is generally a disfavored product. A combination of structural and kinetic data indicates not only that synergy between substrate and water suppresses undesired pathways but also that water promotes the desired pathway by stabilizing charge in the transition state, facilitating proton transfer, doubly activating the substrate for reaction, and perhaps most remarkably, reorganizing the substrate into a reactive conformation that leads to the observed product. This approach serves as an outline for a general strategy of exploiting solvent-solute interactions to achieve unusual reactivity in chemical reactions. These findings may also have implications in the biosynthesis of the ladder polyether natural products, such as the brevetoxins and ciguatoxins. PMID:24046369

  18. Mode specificity in bond selective reactions F + HOD → HF + OD and DF + OH

    SciTech Connect

    Song, Hongwei; Guo, Hua

    2015-05-07

    The influence of vibrational excitations in the partially deuterated water (HOD) reactant on its bond selective reactions with F is investigated using a full-dimensional quantum wave packet method on an accurate global potential energy surface. Despite the decidedly early barrier of the F + H{sub 2}O reaction, reactant vibrational excitation in each local stretching mode of HOD is found to significantly enhance the reaction which breaks the excited bond. In the mean time, excitation of the HOD bending mode also enhances the reaction, but with much lower efficacy and weaker bond selectivity. Except for low collision energies, all vibrational modes are more effective in promoting the bond selective reactions than the translational energy. These results are compared with the predictions of the recently proposed sudden vector projection model.

  19. Chiral polymerization in open systems from chiral-selective reaction rates.

    PubMed

    Gleiser, Marcelo; Nelson, Bradley J; Walker, Sara Imari

    2012-08-01

    We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. We are thus investigating how rare a set of chiral-selective reaction rates needs to be in order to generate a reasonable amount of chiral bias. We quantify our results adopting a statistical approach: varying both the mean value and the rms dispersion of the relevant reaction rates, we show that moderate to high levels of chiral excess can be achieved with fairly small chiral bias, below 10%. Considering the various unknowns related to prebiotic chemical networks in early Earth and the dependence of reaction rates to environmental properties such as temperature and pressure variations, we argue that homochirality could have been achieved from moderate amounts of chiral selectivity in the reaction rates. PMID:22610131

  20. Photocycloaddition reaction of atropisomeric maleimides: mechanism and selectivity.

    PubMed

    Chang, Xue-Ping; Zheng, Yiying; Cui, Ganglong; Fang, Wei-Hai; Thiel, Walter

    2016-09-21

    We report a density functional study on the mechanism of the [2+2] photocyclization of atropisomeric maleimides. Experimentally, the reaction is known to proceed through the triplet state. We have located all relevant S0 and T1 minima and transition states, as well as the T1/S0 crossing points, and mapped eight stepwise photocyclization pathways for four different conformers in the T1 state that lead to distinct regioisomers. In the preferred four pathways (one for each conformer) the initially formed C-C bond involves the terminal carbon atom of the alkene moiety. This regioselectivity originates from electrostatic preferences (arising from the charge distribution in the polarized C[double bond, length as m-dash]C double bonds) and from the different thermodynamic stability of the resulting triplet diradical intermediates (caused by electron donation effects that stabilize the radical centers). The formation of the second C-C bond is blocked in the T1 state by prohibitively high barriers and thus occurs after intersystem crossing to the ground state. Furthermore, we rationalize substitution effects on enantioselectivity and diastereoselectivity and identify their origin. PMID:27545206

  1. MRMaid, the web-based tool for designing multiple reaction monitoring (MRM) transitions.

    PubMed

    Mead, Jennifer A; Bianco, Luca; Ottone, Vanessa; Barton, Chris; Kay, Richard G; Lilley, Kathryn S; Bond, Nicholas J; Bessant, Conrad

    2009-04-01

    Multiple reaction monitoring (MRM) of peptides uses tandem mass spectrometry to quantify selected proteins of interest, such as those previously identified in differential studies. Using this technique, the specificity of precursor to product transitions is harnessed for quantitative analysis of multiple proteins in a single sample. The design of transitions is critical for the success of MRM experiments, but predicting signal intensity of peptides and fragmentation patterns ab initio is challenging given existing methods. The tool presented here, MRMaid (pronounced "mermaid") offers a novel alternative for rapid design of MRM transitions for the proteomics researcher. The program uses a combination of knowledge of the properties of optimal MRM transitions taken from expert practitioners and literature with MS/MS evidence derived from interrogation of a database of peptide identifications and their associated mass spectra. The tool also predicts retention time using a published model, allowing ordering of transition candidates. By exploiting available knowledge and resources to generate the most reliable transitions, this approach negates the need for theoretical prediction of fragmentation and the need to undertake prior "discovery" MS studies. MRMaid is a modular tool built around the Genome Annotating Proteomic Pipeline framework, providing a web-based solution with both descriptive and graphical visualizations of transitions. Predicted transition candidates are ranked based on a novel transition scoring system, and users may filter the results by selecting optional stringency criteria, such as omitting frequently modified residues, constraining the length of peptides, or omitting missed cleavages. Comparison with published transitions showed that MRMaid successfully predicted the peptide and product ion pairs in the majority of cases with appropriate retention time estimates. As the data content of the Genome Annotating Proteomic Pipeline repository increases

  2. Deuteration of pentacene in benzoic acid: Monitoring the reaction kinetics via low-temperature optical spectroscopy

    SciTech Connect

    Corval, A.; Casalegno, R.; Astilean, S.; Trommsdorff, H.P.

    1992-06-25

    In the deuteration of pentacene in benzoic acid, this reaction is monitored via low-temperature optical spectroscopy to observe the proton-deuterium rate of exchange between the solvent and solute molecules. Of the 14 pentacene protons, 6 have an exchange rate 2 orders of magnitude greater than the remaining 8. 20 refs., 3 figs.

  3. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    ERIC Educational Resources Information Center

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  4. RAPID MONITORING BY QUANTITATIVE POLYMERASE CHAIN REACTION FOR PATHOGENIC ASPERGILLUS DURING CARPET REMOVAL FROM A HOSPITAL

    EPA Science Inventory

    Monitoring for pathogenic Aspergillus species using a rapid, highly sensitive, quantitative polumerase chain reaction technique during carpet removal in a burn unit provided data which allowed the patients to be safely returned to the re-floored area sooner than if only conventio...

  5. Monitoring of water quality of selected wells in Brno district

    NASA Astrophysics Data System (ADS)

    Marková, Jana; Harbuľáková, Vlasta Ondrejka

    2016-06-01

    The article deals with two wells in the country of Brno-district (Brčálka well and Well Olšová). The aim of work was monitoring of elementary parameters of water at regular monthly intervals to measure: water temperature, pH values, solubility oxygen and spring yield. According to the client's requirements (Lesy města Brno) laboratory analyzes of selected parameters were done twice a year and their results were compared with Ministry of Health Decree no. 252/2004 Coll.. These parameters: nitrate, chemical oxygen demand (COD), calcium and magnesium and its values are presented in graphs, for ammonium ions and nitrite in the table. Graphical interpretation of spring yields dependence on the monthly total rainfall and dependence of water temperature on ambient temperature was utilized. The most important features of wells include a water source, a landmark in the landscape, aesthetic element or resting and relaxing place. Maintaining wells is important in terms of future generations.

  6. Weighted next reaction method and parameter selection for efficient simulation of rare events in biochemical reaction systems

    PubMed Central

    2011-01-01

    The weighted stochastic simulation algorithm (wSSA) recently developed by Kuwahara and Mura and the refined wSSA proposed by Gillespie et al. based on the importance sampling technique open the door for efficient estimation of the probability of rare events in biochemical reaction systems. In this paper, we first apply the importance sampling technique to the next reaction method (NRM) of the stochastic simulation algorithm and develop a weighted NRM (wNRM). We then develop a systematic method for selecting the values of importance sampling parameters, which can be applied to both the wSSA and the wNRM. Numerical results demonstrate that our parameter selection method can substantially improve the performance of the wSSA and the wNRM in terms of simulation efficiency and accuracy. PMID:21910924

  7. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling

    NASA Astrophysics Data System (ADS)

    García, Andrés; Wang, Jing; Windus, Theresa L.; Sadow, Aaron D.; Evans, James W.

    2016-05-01

    Statistical mechanical modeling is developed to describe a catalytic conversion reaction A →Bc or Bt with concentration-dependent selectivity of the products, Bc or Bt, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Furthermore, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A .

  8. Lewis Acid Catalyzed Selective Reactions of Donor-Acceptor Cyclopropanes with 2-Naphthols.

    PubMed

    Kaicharla, Trinadh; Roy, Tony; Thangaraj, Manikandan; Gonnade, Rajesh G; Biju, Akkattu T

    2016-08-16

    Lewis acid-catalyzed reactions of 2-substituted cyclopropane 1,1-dicarboxylates with 2-naphthols is reported. The reaction exhibits tunable selectivity depending on the nature of Lewis acid employed and proceed as a dearomatization/rearomatization sequence. With Bi(OTf)3 as the Lewis acid, a highly selective dehydrative [3+2] cyclopentannulation takes place leading to the formation of naphthalene-fused cyclopentanes. Interestingly, engaging Sc(OTf)3 as the Lewis acid, a Friedel-Crafts-type addition of 2-naphthols to cyclopropanes takes place, thus affording functionalized 2-naphthols. Both reactions furnished the target products in high regioselectivity and moderate to high yields. PMID:27391792

  9. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling

    DOE PAGESBeta

    Garcia, Andres; Wang, Jing; Windus, Theresa L.; Sadow, Aaron D.; Evans, James W.

    2016-05-20

    Statistical mechanical modeling is developed to describe a catalytic conversion reaction A → Bc or Bt with concentration-dependent selectivity of the products, Bc or Bt, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Hence, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A.

  10. Quantitative high-resolution on-line NMR spectroscopy in reaction and process monitoring.

    PubMed

    Maiwald, Michael; Fischer, Holger H; Kim, Young-Kyu; Albert, Klaus; Hasse, Hans

    2004-02-01

    On-line nuclear magnetic resonance spectroscopy (on-line NMR) is a powerful technique for reaction and process monitoring. Different set-ups for direct coupling of reaction and separation equipment with on-line NMR spectroscopy are described. NMR spectroscopy can be used to obtain both qualitative and quantitative information from complex reacting multicomponent mixtures for equilibrium or reaction kinetic studies. Commercial NMR probes can be used at pressures up to 35 MPa and temperatures up to 400 K. Applications are presented for studies of equilibria and kinetics of complex formaldehyde-containing mixtures as well as homogeneously and heterogeneously catalyzed esterification kinetics. Direct coupling of a thin-film evaporator is described as an example for the benefits of on-line NMR spectroscopy in process monitoring. PMID:14729025

  11. Real-time monitoring of single-molecule reactions in aqueous solution

    SciTech Connect

    Hong, Xiao; Xu, N.; Yeung, E.S. |

    1997-12-31

    Direct measurement of dynamics of single molecules, e.g., rhodamine 6G (R-6G) and single R-6G tagged with single biological molecules in aqueous solution, was achieved by using thin-layer laser-induced total internal reflection fluorescence microscopy (TLTIRFM). Single-molecule reactions can be directly and simultaneously monitored with spatial resolution down to 0.2 {mu}m and temporal resolution down to 0.2 ms. Dynamics of single-molecule reactions, for example, single dye molecules reacting with a proton and single proteins adsorbing on an active surface, are investigated and evident by monitoring their reaction environment, e.g., temperature and pH. Novel approaches and applications of these studies will be prospected in this presentation.

  12. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    SciTech Connect

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  13. Method and reaction pathway for selectively oxidizing organic compounds

    DOEpatents

    Camaioni, Donald M.; Lilga, Michael A.

    1998-01-01

    A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.

  14. Thermostatted micro-reactor NMR probe head for monitoring fast reactions

    NASA Astrophysics Data System (ADS)

    Brächer, A.; Hoch, S.; Albert, K.; Kost, H. J.; Werner, B.; von Harbou, E.; Hasse, H.

    2014-05-01

    A novel nuclear magnetic resonance (NMR) probe head for monitoring fast chemical reactions is described. It combines micro-reaction technology with capillary flow NMR spectroscopy. Two reactants are fed separately into the probe head where they are effectively mixed in a micro-mixer. The mixed reactants then pass through a capillary NMR flow cell that is equipped with a solenoidal radiofrequency coil where the NMR signal is acquired. The whole flow path of the reactants is thermostatted using the liquid FC-43 (perfluorotributylamine) so that exothermic and endothermic reactions can be studied under almost isothermal conditions. The set-up enables kinetic investigation of reactions with time constants of only a few seconds. Non-reactive mixing experiments carried out with the new probe head demonstrate that it facilitates the acquisition of constant highly resolved NMR signals suitable for quantification of different species in technical mixtures. Reaction kinetic measurements on a test system are presented that prove the applicability of the novel NMR probe head for monitoring fast reactions.

  15. Thermostatted micro-reactor NMR probe head for monitoring fast reactions.

    PubMed

    Brächer, A; Hoch, S; Albert, K; Kost, H J; Werner, B; von Harbou, E; Hasse, H

    2014-05-01

    A novel nuclear magnetic resonance (NMR) probe head for monitoring fast chemical reactions is described. It combines micro-reaction technology with capillary flow NMR spectroscopy. Two reactants are fed separately into the probe head where they are effectively mixed in a micro-mixer. The mixed reactants then pass through a capillary NMR flow cell that is equipped with a solenoidal radiofrequency coil where the NMR signal is acquired. The whole flow path of the reactants is thermostatted using the liquid FC-43 (perfluorotributylamine) so that exothermic and endothermic reactions can be studied under almost isothermal conditions. The set-up enables kinetic investigation of reactions with time constants of only a few seconds. Non-reactive mixing experiments carried out with the new probe head demonstrate that it facilitates the acquisition of constant highly resolved NMR signals suitable for quantification of different species in technical mixtures. Reaction kinetic measurements on a test system are presented that prove the applicability of the novel NMR probe head for monitoring fast reactions. PMID:24650728

  16. Monitors.

    ERIC Educational Resources Information Center

    Powell, David

    1984-01-01

    Provides guidelines for selecting a monitor to suit specific applications, explains the process by which graphics images are produced on a CRT monitor, and describes four types of flat-panel displays being used in the newest lap-sized portable computers. A comparison chart provides prices and specifications for over 80 monitors. (MBR)

  17. Cavitands as Reaction Vessels and Blocking Groups for Selective Reactions in Water.

    PubMed

    Masseroni, Daniele; Mosca, Simone; Mower, Matthew P; Blackmond, Donna G; Rebek, Julius

    2016-07-11

    The majority of reactions currently performed in the chemical industry take place in organic solvents, compounds that are generally derived from petrochemicals. To promote chemical processes in water, we examined the use of synthetic, deep water-soluble cavitands in the Staudinger reduction of long-chain aliphatic diazides (C8 , C10 , and C12 ). The diazide substrates are taken up by the cavitand in D2 O in folded, dynamic conformations. The reduction of one azide group to an amine gives a complex in which the substrate is fixed in an unsymmetrical conformation, with the amine terminal exposed and the azide terminal deep and inaccessible within the cavitand. Accordingly, the reduction of the second azide group is inhibited, even with excess phosphine, and good yields of the monofunctionalized products are obtained. In contrast, the reduction of the free diazides in bulk solution yields diamine products. PMID:27254667

  18. Investigations of natTi(d,x)48V nuclear reactions for beam monitoring purposes

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Haba, Hiromitsu; Kanaya, Jumpei; Otuka, Naohiko; Kassim, Hasan Abu; Amin, Yusoff Mohd

    2013-05-01

    We investigated the natTi(d,x)48V reaction cross-sections by using a stacked-foil activation technique in combination with HPGe γ-ray spectrometry at the AVF cyclotron facility of the RIKEN RI Beam Factory, Wako, Japan. An overall good agreement is found between the measured data and the literature ones, whereas partial agreement is obtained with the theoretical data extracted from the TENDL-2011 library provided by the TALYS model calculations. Measured cross-sections of natTi(d,x)48V reactions find significance in monitoring of deuteron beam parameters from threshold to 50 MeV. Furthermore, IAEA recommended cross-sections of natTi(d,x)48V reaction has been verified here, and found a very good agreement. Additionally, measured cross-sections of the natTi(d,x)48V reactions find significance in various practical applications including nuclear medicine.

  19. FutureGen 2.0 Monitoring Program: An Overview of the Monitoring Approach and Technologies Selected for Implementation

    SciTech Connect

    Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; Bjornstad, Bruce N.; Mackley, Rob D.; Kelly, Mark E.; Sullivan, Charlotte; Williams, Mark D.; Amonette, James E.; Downs, Janelle L.; Fritz, Brad G.; Szecsody, Jim E.; Bonneville, Alain; Gilmore, Tyler J.

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoring strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.

  20. Implications of sterically constrained n-butane oxidation reactions on the reaction mechanism and selectivity to 1-butanol

    NASA Astrophysics Data System (ADS)

    Dix, Sean T.; Gómez-Gualdrón, Diego A.; Getman, Rachel B.

    2016-11-01

    Density functional theory (DFT) is used to analyze the reaction network in n-butane oxidation to 1-butanol over a Ag/Pd alloy catalyst under steric constraints, and the implications on the ability to produce 1-butanol selectively using MOF-encapsulated catalysts are discussed. MOFs are porous crystalline solids comprised of metal nodes linked by organic molecules. Recently, they have been successfully grown around metal nanoparticle catalysts. The resulting porous networks have been shown to promote regioselective chemistry, i.e., hydrogenation of trans-1,3-hexadiene to 3-hexene, presumably by forcing the linear alkene to stand "upright" on the catalyst surface and allowing only the terminal C-H bonds to be activated. In this work, we extend this concept to alkane oxidation. Our goal is to determine if a MOF-encapsulated catalyst could be used to selectively produce 1-butanol. Reaction energies and activation barriers are presented for more than 40 reactions in the pathway for n-butane oxidation. We find that C-H bond activation proceeds through an oxygen-assisted pathway and that butanal and 1-butanol are some of the possible products.

  1. Chemical profiling of cerebrospinal fluid by multiple reaction monitoring mass spectrometry.

    PubMed

    Ferreira, Christina R; Yannell, Karen E; Mollenhauer, Brit; Espy, Ryan D; Cordeiro, Fernanda B; Ouyang, Z; Cooks, R G

    2016-09-21

    We report an accelerated biomarker discovery workflow and results of sample screening by mass spectrometry based on multiple reaction monitoring (MRM). This methodology shows promising initial results for the currently unsolved challenge of Parkinson's disease (PD) laboratory diagnosis by biomarker screening. Small molecules present in cerebrospinal fluid (CSF) at low parts per million levels are monitored using specific transitions connecting ion pairs. A set of such transitions constitutes a multidimensional chemical profile used to distinguish and characterize different CSF samples using multivariate statistical methods. PMID:27517482

  2. Pulsed Multiple Reaction Monitoring Approach to Enhancing Sensitivity of a Tandem Quadrupole Mass Spectrometer

    PubMed Central

    Belov, Mikhail E.; Prasad, Satendra; Prior, David C.; Danielson, William F.; Weitz, Karl; Ibrahim, Yehia M.; Smith, Richard D.

    2011-01-01

    Liquid chromatography (LC)–triple quadrupole mass spectrometers operating in a multiple reaction monitoring (MRM) mode are increasingly used for quantitative analysis of low-abundance analytes in highly complex biochemical matrixes. After development and selection of optimum MRM transitions, sensitivity and data quality limitations are largely related to mass spectral peak interferences from sample or matrix constituents and statistical limitations at low number of ions reaching the detector. Herein, we report on a new approach to enhancing MRM sensitivity by converting the continuous stream of ions from the ion source into a pulsed ion beam through the use of an ion funnel trap (IFT). Evaluation of the pulsed MRM approach was performed with a tryptic digest of Shewanella oneidensis strain MR-1 spiked with several model peptides. The sensitivity improvement observed with the IFT coupled in to the triple quadrupole instrument is based on several unique features. First, ion accumulation radio frequency (rf) ion trap facilitates improved droplet desolvation, which is manifested in the reduced background ion noise at the detector. Second, signal amplitude for a given transition is enhanced because of an order-of-magnitude increase in the ion charge density compared to a continuous mode of operation. Third, signal detection at the full duty cycle is obtained, as the trap use eliminates dead times between transitions, which are inevitable with continuous ion streams. In comparison with the conventional approach, the pulsed MRM signals showed 5-fold enhanced peak amplitude and 2–3-fold reduced chemical background, resulting in an improvement in the limit of detection (LOD) by a factor of ~4–8. PMID:21344863

  3. Harnessing the Versatility of Continuous-Flow Processes: Selective and Efficient Reactions.

    PubMed

    Mándity, István M; Ötvös, Sándor B; Szőlősi, György; Fülöp, Ferenc

    2016-06-01

    There is a great need for effective transformations and a broad range of novel chemical entities. Continuous-flow (CF) approaches are of considerable current interest: highly efficient and selective reactions can be performed in CF reactors. The reaction setup of CF reactors offers a wide variety of possible points where versatility can be introduced. This article presents a number of selective and highly efficient gas-liquid-solid and liquid-solid reactions involving a range of reagents and immobilized catalysts. Enantioselective transformations through catalytic hydrogenation and organocatalytic reactions are included, and isotopically labelled compounds and pharmaceutically relevant 1,2,3-triazoles are synthesized in CF reactors. Importantly, the catalyst bed can be changed to a solid-phase peptide synthesis resin, with which peptide synthesis can be performed with the utilization of only 1.5 equivalents of the amino acid. PMID:26997251

  4. FutureGen 2.0 Monitoring Program: An Overview of the Monitoring Approach and Technologies Selected for Implementation

    DOE PAGESBeta

    Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; Bjornstad, Bruce N.; Mackley, Rob D.; Kelly, Mark E.; Sullivan, Charlotte; Williams, Mark D.; Amonette, James E.; Downs, Janelle L.; et al

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoringmore » strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.« less

  5. Metamorphosis of palladium and its relation to selectivity in the Rosenmund reaction

    SciTech Connect

    Maier, W.F.; Chettle, S.J.; Rai, R.S.; Thomas, G.

    1986-05-14

    Drastic changes in morphology and particle sizes of the Pd particles were detected during the classical catalyst pretreatment. These changes are connected to the increase in selectivity as well as to the problems encountered in the Rosenmund reaction. A major action of the poison in Rosenmund reactions was found to be the acceleration of the initial reconstruction of the surface of fresh catalysts to prevent overreduction. The instability of the Pd under reaction conditions appears to be responsible for typical problems encountered with the Rosenmund reaction such as irreproducibility and catalyst deactivation during the reaction. With the use of Pd single crystals stepped and kinked surfaces were found to be active for hydrogenolysis of acid chlorides to aldehydes. Transmission electron microscopy and diffraction have been employed to characterize the change in dispersion and structure of Pd particles on carbon supports after various pretreatments.

  6. Selective and Serial Suzuki-Miyaura Reactions of Polychlorinated Aromatics with Alkyl Pinacol Boronic Esters.

    PubMed

    Laulhé, Sébastien; Blackburn, J Miles; Roizen, Jennifer L

    2016-09-01

    Among cross-coupling reactions, the Suzuki-Miyaura transformation stands out because of its practical advantages, including the commercial availability and low toxicity of the required reagents, mild reaction conditions, and functional group compatibility. Nevertheless, few conditions can be used to cross-couple alkyl boronic acids or esters with aryl halides, especially 2-pyridyl halides. Herein, we describe two novel Suzuki-Miyaura protocols that enable selective conversion of polychlorinated aromatics, with a focus on reactions to convert 2,6-dichloropyridines to 2-chloro-6-alkylpyridines or 2-aryl-6-alkylpyridines. PMID:27537216

  7. Vibrational Control of Bimolecular Reactions with Methane by Mode, Bond, and Stereo Selectivity.

    PubMed

    Liu, Kopin

    2016-05-27

    Vibrational motions of a polyatomic molecule are multifold and can be as simple as stretches or bends or as complex as concerted motions of many atoms. Different modes of excitation often possess different capacities in driving a bimolecular chemical reaction, with distinct dynamic outcomes. Reactions with vibrationally excited methane and its isotopologs serve as a benchmark for advancing our fundamental understanding of polyatomic reaction dynamics. Here, some recent progress in this area is briefly reviewed. Particular emphasis is placed on the key concepts developed from those studies. The interconnections among mode and bond selectivity, Polanyi's rules, and newly introduced vibrational-induced steric phenomena are highlighted. PMID:26980310

  8. Selective Functionalization of Antimycin A Through an N-Transacylation Reaction.

    PubMed

    Chevalier, Arnaud; Zhang, Yanmin; Khdour, Omar M; Hecht, Sidney M

    2016-05-20

    Acylation of 3-(N-formylamino)salicylic acids resulted in transacylation with loss of the formyl moiety. The reaction proceeds through a bis-N-acylated intermediate, which undergoes facile deformylation. This transacylation reaction has been employed for the site-specific functionalization of the mitochondrial poison antimycin A, affording several novel derivatives. The selective cytotoxicity of some of these derivatives toward cultured A549 human lung epithelial adenocarcinoma cells, in comparison with WI-38 normal human lung fibroblasts, illustrates one application of this transacylation reaction. PMID:27168333

  9. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    PubMed Central

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-01-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology–fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01–0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics. PMID:27352840

  10. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions.

    PubMed

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-01-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics. PMID:27352840

  11. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology–fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01–0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  12. Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling.

    PubMed

    Kennedy, Jacob J; Yan, Ping; Zhao, Lei; Ivey, Richard G; Voytovich, Uliana J; Moore, Heather D; Lin, Chenwei; Pogosova-Agadjanyan, Era L; Stirewalt, Derek L; Reding, Kerryn W; Whiteaker, Jeffrey R; Paulovich, Amanda G

    2016-02-01

    A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks. PMID:26621847

  13. Branched Arylalkenes from Cinnamates: Selectivity Inversion in Heck Reactions by Carboxylates as Deciduous Directing Groups.

    PubMed

    Tang, Jie; Hackenberger, Dagmar; Goossen, Lukas J

    2016-09-01

    A decarboxylative Mizoroki-Heck coupling of aryl halides with cinnamic acids has been developed in which the carboxylate group directs the arylation into its β-position before being tracelessly removed through protodecarboxylation. In the presence of a copper/palladium catalyst, both electron-rich and electron-deficient aryl bromides and chlorides bearing numerous functionalities were successfully coupled with broadly available cinnamates, with selective formation of 1,1-disubstituted alkenes. This reaction concept, in which the carboxylate acts as a deciduous directing group, ideally complements traditional 1,2-selective Heck reactions of styrenes. PMID:27485163

  14. The selection reaction of homogeneous catalyst in soy-epoxide hydroxylation

    NASA Astrophysics Data System (ADS)

    Elvistia Firdaus, Flora

    2014-04-01

    Hydroxylation reaction of soy-epoxide has resulted soy-polyol; a prepolymeric material for polyurethane. The conversion and selectivity of soy-epoxide butanol based to hydroxylation was found higher than soy-ethylene glycol (EG) based. These reactions were performed by sulfur acid which commonly known as homogeneous catalyst. Conversion and selectivity of homogeneous catalyst compared to bentonite; a heteregeneous catalyst was lower as in fact the mixtures were more viscous. The catalysis were significantly effected to cell morphology. Foams were conducted by heterogeneous catalyst resulted an irregular form of windows while homogeneous catalyst are more ordered.

  15. To Track or Not to Track: User Reactions to Concepts in Longitudinal Health Monitoring

    PubMed Central

    Intille, Stephen S; Morris, Margaret E

    2006-01-01

    Background Advances in ubiquitous computing, smart homes, and sensor technologies enable novel, longitudinal health monitoring applications in the home. Many home monitoring technologies have been proposed to detect health crises, support aging-in-place, and improve medical care. Health professionals and potential end users in the lay public, however, sometimes question whether home health monitoring is justified given the cost and potential invasion of privacy. Objective The aim of the study was to elicit specific feedback from health professionals and laypeople about how they might use longitudinal health monitoring data for proactive health and well-being. Methods Interviews were conducted with 8 health professionals and 26 laypeople. Participants were asked to evaluate mock data visualization displays that could be generated by novel home monitoring systems. The mock displays were used to elicit reactions to longitudinal monitoring in the home setting as well as what behaviors, events, and physiological indicators people were interested in tracking. Results Based on the qualitative data provided by the interviews, lists of benefits of and concerns about health tracking from the perspectives of the practitioners and laypeople were compiled. Variables of particular interest to the interviewees, as well as their specific ideas for applications of collected data, were documented. Conclusions Based upon these interviews, we recommend that ubiquitous “monitoring” systems may be more readily adopted if they are developed as tools for personalized, longitudinal self-investigation that help end users learn about the conditions and variables that impact their social, cognitive, and physical health. PMID:17236264

  16. [Methods Used for Monitoring Cure Reactions in Real-time in an Autoclave

    NASA Technical Reports Server (NTRS)

    Cooper, John B.; Wise, Kent L.; Jensen, Brian J. (Technical Monitor)

    2000-01-01

    The goal of the research was to investigate methods for monitoring cure reactions in real-time in an autoclave. This is of particular importance to NASA Langley Research Center because polyimides were proposed for use in the High Speed Civil Transport (HSCT) program. Understanding the cure chemistry behind the polyimides would allow for intelligent processing of the composites made from their use. This work has led to two publications in peer-reviewed journals and a patent. The journal articles are listed as Appendix A which is on the instrument design of the research and Appendix B which is on the cure chemistry. Also, a patent has been awarded for the instrumental design developed under this grant which is given as Appendix C. There has been a significant amount of research directed at developing methods for monitoring cure reactions in real-time within the autoclave. The various research efforts can be categorized as methods providing either direct chemical bonding information or methods that provide indirect chemical bonding information. Methods falling into the latter category are fluorescence, dielectric loss, ultrasonic and similar type methods. Correlation of such measurements with the underlying chemistry is often quite difficult since these techniques do not allow monitoring of the curing chemistry which is ultimately responsible for material properties. Direct methods such as vibrational spectroscopy, however, can often be easily correlated with the underlying chemistry of a reaction. Such methods include Raman spectroscopy, mid-IR absorbance, and near-IR absorbance. With the recent advances in fiber-optics, these spectroscopic techniques can be applied to remote on-line monitoring.

  17. Site selection criteria for the optical atmospheric visibility monitoring telescopes

    NASA Technical Reports Server (NTRS)

    Cowles, K.

    1989-01-01

    A description of each of the criteria used to decide where to locate the Atmospheric Visibility Monitoring (AVM) telescope systems is given, along with a weighting factor for each of them. These criteria include low probability of clouds, fog, smog, haze, low scattering, low turbulence, availability of security and maintenance, and suitability of a site for a potential optical reception station. They will be used to determine which three of several sites under consideration will be used for monitoring visibility through the atmosphere as it applies to an optical ground-based receiving network as may be used in NASA space missions in decades to come.

  18. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E.

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  19. Powerful fluoroalkoxy molybdenum(V) reagent for selective oxidative arene coupling reaction.

    PubMed

    Schubert, Moritz; Leppin, Jana; Wehming, Kathrin; Schollmeyer, Dieter; Heinze, Katja; Waldvogel, Siegfried R

    2014-02-24

    We introduce the novel fluoroalkoxy molybdenum(V) reagent 1 which has superior reactivity and selectivity in comparison to MoCl5 or the MoCl5 /TiCl4 reagent mixture in the oxidative coupling reactions of aryls. Common side reactions, such as chlorination and/or oligomer formation, are drastically diminished creating a powerful and useful reagent for oxidative coupling. Theoretical treatment of the reagent interaction with 1,2-dimethoxybenzene-type substrates indicates an inner-sphere electron transfer followed by a radical cationic reaction pathway for the oxidative-coupling process. EPR spectroscopic and electrochemical studies, X-ray analyses, computational investigations, and the experimental scope provide a highly consistent picture. The substitution of chlorido ligands by hexafluoroisopropoxido moieties seems to boost both the reactivity and selectivity of the metal center which might be applied to other reagents as well. PMID:24478061

  20. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma.

    PubMed

    Addona, Terri A; Abbatiello, Susan E; Schilling, Birgit; Skates, Steven J; Mani, D R; Bunk, David M; Spiegelman, Clifford H; Zimmerman, Lisa J; Ham, Amy-Joan L; Keshishian, Hasmik; Hall, Steven C; Allen, Simon; Blackman, Ronald K; Borchers, Christoph H; Buck, Charles; Cardasis, Helene L; Cusack, Michael P; Dodder, Nathan G; Gibson, Bradford W; Held, Jason M; Hiltke, Tara; Jackson, Angela; Johansen, Eric B; Kinsinger, Christopher R; Li, Jing; Mesri, Mehdi; Neubert, Thomas A; Niles, Richard K; Pulsipher, Trenton C; Ransohoff, David; Rodriguez, Henry; Rudnick, Paul A; Smith, Derek; Tabb, David L; Tegeler, Tony J; Variyath, Asokan M; Vega-Montoto, Lorenzo J; Wahlander, Asa; Waldemarson, Sofia; Wang, Mu; Whiteaker, Jeffrey R; Zhao, Lei; Anderson, N Leigh; Fisher, Susan J; Liebler, Daniel C; Paulovich, Amanda G; Regnier, Fred E; Tempst, Paul; Carr, Steven A

    2009-07-01

    Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low mug/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma. PMID:19561596

  1. Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles

    SciTech Connect

    Bartling, Stephan Meiwes-Broer, Karl-Heinz; Barke, Ingo; Pohl, Marga-Martina

    2015-09-21

    Apart from large surface areas, low activation energies are essential for efficient reactions, particularly in heterogeneous catalysis. Here, we show that not only the size of nanoparticles but also their detailed morphology can crucially affect reaction kinetics, as demonstrated for mass-selected, soft-landed, and oxidized cobalt clusters in a 6 nm to 18 nm size range. The method of reflection high-energy electron diffraction is extended to the quantitative determination of particle activation energies which is applied for repeated oxidation and reduction cycles at the same particles. We find unexpectedly small activation barriers for the reduction reaction of the largest particles studied, despite generally increasing barriers for growing sizes. We attribute these observations to the interplay of reaction-specific material transport with a size-dependent inner particle morphology.

  2. Monitoring Enzymatic Reactions in Real Time Using Venturi Easy Ambient Sonic-Spray Ionization Mass Spectrometry

    PubMed Central

    2016-01-01

    We developed a technique to monitor spatially confined surface reactions with mass spectrometry under ambient conditions, without the need for voltage or organic solvents. Fused-silica capillaries immersed in an aqueous solution, positioned in close proximity to each other and the functionalized surface, created a laminar flow junction with a resulting reaction volume of ∼5 pL. The setup was operated with a syringe pump, delivering reagents to the surface through a fused-silica capillary. The other fused-silica capillary was connected to a Venturi easy ambient sonic-spray ionization source, sampling the resulting analytes at a slightly higher flow rate compared to the feeding capillary. The combined effects of the inflow and outflow maintains a chemical microenvironment, where the rate of advective transport overcomes diffusion. We show proof-of-concept where acetylcholinesterase was immobilized on an organosiloxane polymer through electrostatic interactions. The hydrolysis of acetylcholine by acetylcholinesterase into choline was monitored in real-time for a range of acetylcholine concentrations, fused-silica capillary geometries, and operating flow rates. Higher reaction rates and conversion yields were observed with increasing acetylcholine concentrations, as would be expected. PMID:27249533

  3. Monitoring Enzymatic Reactions in Real Time Using Venturi Easy Ambient Sonic-Spray Ionization Mass Spectrometry.

    PubMed

    Jansson, Erik T; Dulay, Maria T; Zare, Richard N

    2016-06-21

    We developed a technique to monitor spatially confined surface reactions with mass spectrometry under ambient conditions, without the need for voltage or organic solvents. Fused-silica capillaries immersed in an aqueous solution, positioned in close proximity to each other and the functionalized surface, created a laminar flow junction with a resulting reaction volume of ∼5 pL. The setup was operated with a syringe pump, delivering reagents to the surface through a fused-silica capillary. The other fused-silica capillary was connected to a Venturi easy ambient sonic-spray ionization source, sampling the resulting analytes at a slightly higher flow rate compared to the feeding capillary. The combined effects of the inflow and outflow maintains a chemical microenvironment, where the rate of advective transport overcomes diffusion. We show proof-of-concept where acetylcholinesterase was immobilized on an organosiloxane polymer through electrostatic interactions. The hydrolysis of acetylcholine by acetylcholinesterase into choline was monitored in real-time for a range of acetylcholine concentrations, fused-silica capillary geometries, and operating flow rates. Higher reaction rates and conversion yields were observed with increasing acetylcholine concentrations, as would be expected. PMID:27249533

  4. Analysis of the reactivity and selectivity of fullerene dimerization reactions at the atomic level

    NASA Astrophysics Data System (ADS)

    Koshino, Masanori; Niimi, Yoshiko; Nakamura, Eiichi; Kataura, Hiromichi; Okazaki, Toshiya; Suenaga, Kazutomo; Iijima, Sumio

    2010-02-01

    High-resolution transmission electron microscopy has proved useful for its ability to provide time-resolved images of small molecules and their movements. One of the next challenges in this area is to visualize chemical reactions by monitoring time-dependent changes in the atomic positions of reacting molecules. Such images may provide information that is not available with other experimental methods. Here we report a study on bimolecular reactions of fullerene and metallofullerene molecules inside carbon nanotubes as a function of electron dose. Images of how the fullerenes move during the dimerization process reveal the specific orientations in which two molecules interact, as well as how bond reorganization occurs after their initial contact. Studies on the concentration, specimen temperature, effect of catalyst and accelerating voltage indicate that the reactions can be imaged under a variety of conditions.

  5. Reactions of Propylene Oxide on Supported Silver Catalysts: Insights into Pathways Limiting Epoxidation Selectivity

    SciTech Connect

    Kulkarni, Apoorva; Bedolla-Pantoja, Marco; Singh, Suyash; Lobo, Raul F.; Mavrikakis, Manos; Barteau, Mark A.

    2012-02-04

    The reactions of propylene oxide (PO) on silver catalysts were studied to understand the network of parallel and sequential reactions that may limit the selectivity of propylene epoxidation by these catalysts. The products of the anaerobic reaction of PO on Ag/a-Al2O3 were propanal, acetone and allyl alcohol for PO conversions below 2–3%. As the conversion of PO was increased either by increasing the temperature or the contact time, acrolein was formed at the expense of propanal, indicating that acrolein is a secondary reaction product in PO decomposition. With addition of oxygen to the feedstream the conversion of PO increased moderately. In contrast to the experiments in absence of oxygen, CO2 was a significant product while the selectivity to propanal decreased as soon as oxygen was introduced in the system. Allyl alcohol disappeared completely from the product stream in the presence of oxygen, reacting to form acrolein and CO2. The product distribution may be explained by a network of reactions involving two types of oxametallacycles formed by ring opening of PO: one with the oxygen bonded to C1 (OMC1, linear) and the other with oxygen bonded to C2 (OMC2, branched). OMC1 reacts to form PO, propanal, and allyl alcohol.

  6. [Enlightenment of adverse reaction monitoring on safety evaluation of traditional Chinese medicines].

    PubMed

    Song, Hai-bo; Du, Xiao-xi; Ren, Jing-tian; Yang, Le; Guo, Xiao-xin; Pang, Yu

    2015-04-01

    The adverse reaction monitoring is important in warning the risks of traditional Chinese medicines at an early stage, finding potential quality problems and ensuring the safe clinical medication. In the study, efforts were made to investigate the risk signal mining techniques in line with the characteristics of traditional Chinese medicines, particularly the complexity in component, processing, compatibility, preparation and clinical medication, find early risk signals of traditional Chinese medicines and establish a traditional Chinese medicine safety evaluation system based on adverse reaction risk signals, in order to improve the target studies on traditional Chinese medicine safety, effective and timely control risks and solve the existing frequent safety issue in traditional Chinese medicines. PMID:26281610

  7. Model-based sensor location selection for helicopter gearbox monitoring

    NASA Technical Reports Server (NTRS)

    Jammu, Vinay B.; Wang, Keming; Danai, Kourosh; Lewicki, David G.

    1996-01-01

    A new methodology is introduced to quantify the significance of accelerometer locations for fault diagnosis of helicopter gearboxes. The basis for this methodology is an influence model which represents the effect of various component faults on accelerometer readings. Based on this model, a set of selection indices are defined to characterize the diagnosability of each component, the coverage of each accelerometer, and the relative redundancy between the accelerometers. The effectiveness of these indices is evaluated experimentally by measurement-fault data obtained from an OH-58A main rotor gearbox. These data are used to obtain a ranking of individual accelerometers according to their significance in diagnosis. Comparison between the experimentally obtained rankings and those obtained from the selection indices indicates that the proposed methodology offers a systematic means for accelerometer location selection.

  8. Issues in the Optimal Selection of a Cranial Nerve Monitoring System

    PubMed Central

    Selesnick, Samuel H.; Goldsmith, Daniel F.

    1993-01-01

    Intraoperative nerve monitoring (IONM) is a safe technique that is of clear clinical value in the preservation of cranial nerves in skull base surgery and is rapidly becoming the standard of care. Available nerve monitoring systems vary widely in capabilities and costs. A well-informed surgeon may best decide on monitoring needs based on surgical case selection, experience, operating room space, availability of monitoring personnel, and cost. Key system characteristics that should be reviewed in the decision-making process include the monitoring technique (electromyography, pressure transducer, direct nerve monitoring, brainstem auditory evoked potential) and the stimulus technique (stimulating parameters, probe selection). In the past, IONM has been primarily employed in posterior fossa and temporal bone surgery, but the value of IONM is being recognized in more skull base and head and neck surgeries. Suggested IONM strategies for specific surgeries are presented. PMID:17170916

  9. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring

    NASA Astrophysics Data System (ADS)

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-12-01

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in

  10. Simultaneous (19)F-(1)H medium resolution NMR spectroscopy for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-10-18

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02mm) was used as a flow cell in combination with a 5mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a (1)H Larmor frequency of 43.32MHz and 40.68MHz for (19)F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating (19)F and (1)H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02mm was characterised regarding the limit of detection (LOQ ((1)H)=0.335molL(-1) and LOQ ((19)F)=0.130molL(-1) for trifluoroethanol

  11. Determination of busulfan in plasma by GC-MS with selected-ion monitoring.

    PubMed

    Ehrsson, H; Hassan, M

    1983-10-01

    A GC-MS technique with selected-ion monitoring is described for the determination of busulfan in plasma. Busulfan is extracted from plasma with methylene chloride and converted to 1,4-diiodobutane. Analysis by GC-MS with selected-ion monitoring (m/z 183) gave a relative standard deviation of +/- 4.3% (n = 5) at the 10-ng/ml level. PMID:6644573

  12. PROCESS OF SELECTING INDICATORS FOR MONITORING CONDITIONS OF RANGELAND HEALTH

    EPA Science Inventory

    This paper reports on a process for selecting a suite of indicators that, in combination, can be useful in assessing the ecological conditions of rangelands. onceptual models that depict the structural and functional properties of ecological processes were used to show the linkag...

  13. Blood-component therapy: selection, administration and monitoring.

    PubMed

    Chiaramonte, Deirdre

    2004-05-01

    Transfusion of blood products is a frequent necessity in small animal practice. Transfusion medicine has become more sophisticated with increased access to blood components, knowledge of blood types, and cross-matching requirements. Although potentially life saving, this procedure does carry some risk. In addition to selecting the appropriate blood product, several steps need to be completed to prepare the product for administration and the patient for receiving a transfusion. PMID:15179925

  14. SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    SciTech Connect

    Unknown

    2000-12-01

    A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. During Year I, we have successfully fabricated SiC macro porous membranes via extrusion of commercially available SiC powder, which were then deposited with thin, micro-porous (6 to 40{angstrom} in pore size) films via sol-gel technique as intermediate layers. Finally, an SiC hydrogen selective thin film was deposited on this substrate via our CVD/I technique. The composite membrane thus prepared demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers. Building upon the positive progress made in the Year I preliminary study, we will conduct an optimization study in Year II to develop an optimized H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment.

  15. Selective Heterogeneous C-H Activation/Halogenation Reactions Catalyzed by Pd@MOF Nanocomposites.

    PubMed

    Pascanu, Vlad; Carson, Fabian; Solano, Marta Vico; Su, Jie; Zou, Xiaodong; Johansson, Magnus J; Martín-Matute, Belén

    2016-03-01

    A directed heterogeneous C-H activation/halogenation reaction catalyzed by readily synthesized Pd@MOF nanocatalysts was developed. The heterogeneous Pd catalysts used were a novel and environmentally benign Fe-based metal-organic framework (MOF) (Pd@MIL-88B-NH2 (Fe)) and the previously developed Pd@MIL-101-NH2 (Cr). Very high conversions and selectivities were achieved under very mild reaction conditions and in short reaction times. A wide variety of directing groups, halogen sources, and substitution patterns were well tolerated, and valuable polyhalogenated compounds were synthesized in a controlled manner. The synthesis of the Pd-functionalized Fe-based MOF and the recyclability of the two catalysts are also presented. PMID:26481867

  16. Use of Nanostructure-Initiator Mass Spectrometry to Deduce Selectivity of Reaction in Glycoside Hydrolases

    PubMed Central

    Deng, Kai; Takasuka, Taichi E.; Bianchetti, Christopher M.; Bergeman, Lai F.; Adams, Paul D.; Northen, Trent R.; Fox, Brian G.

    2015-01-01

    Chemically synthesized nanostructure-initiator mass spectrometry (NIMS) probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases, and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements. PMID:26579511

  17. Use of Nanostructure-Initiator Mass Spectrometry to Deduce Selectivity of Reaction in Glycoside Hydrolases.

    PubMed

    Deng, Kai; Takasuka, Taichi E; Bianchetti, Christopher M; Bergeman, Lai F; Adams, Paul D; Northen, Trent R; Fox, Brian G

    2015-01-01

    Chemically synthesized nanostructure-initiator mass spectrometry (NIMS) probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases, and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements. PMID:26579511

  18. A study of ethanol reactions on O2-treated Au/TiO2. Effect of support and metal loading on reaction selectivity

    NASA Astrophysics Data System (ADS)

    Nadeem, M. A.; Waterhouse, G. I. N.; Idriss, H.

    2016-08-01

    The reactions of ethanol have been studied on bare and Au supported TiO2 polymorphs (anatase and rutile) in order to understand the effect of Au loading and prior O2 treatment on the reaction selectivity and conversion using temperature programmed desorption (TPD). Although O2 treatment has negligible effect on the reaction selectivity of ethanol on TiO2 alone it considerably affects the reaction on Au/TiO2. Au/TiO2 had three main effects on the reaction when compared to TiO2 alone. First, it switches the reaction selectivity of the dehydration (to ethylene) in favor of dehydrogenation (to acetaldehyde) on both polymorphs. Second, it decreases the desorption temperature of the main reaction products. Third, it increases secondary reaction products (mainly C4 (crotonaldehyde, butene, furan) reaching ca. 78% of the overall carbon selectivity for the 8 wt.% Au/TiO2 anatase. These effects are more pronounced on the anatase phase when compared to that on the rutile phase. Reasons for these are discussed.

  19. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    SciTech Connect

    Grunes, Jeffrey Benjamin

    2004-05-15

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al{sub 2}O{sub 3}) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum nanoparticles. The

  20. Fabrication of Ultrafine Soft-Matter Arrays by Selective Contact Thermochemical Reaction

    PubMed Central

    Cai, X.; Wang, Yue; Wang, Xiaowei; Ji, Junhui; Hong, Jian; Pan, Feng; Chen, Jitao; Xue, Mianqi

    2013-01-01

    Patterning of functional soft matters at different length scales is important for diverse research fields including cell biology, tissue engineering and medicinal science and the development of optics and electronics. Here we have further improved a simple but very efficient method, selective contact thermochemical reaction (SCTR), for patterning soft matters over large area with a sub-100 nm resolution. By selecting contact between different precursors through a topographically patterned PDMS stamp and subsequently any heating way for thermalchemical reaction, thermal-related soft matters can be patterned to form controllable micro or nano structures, even three-dimensional structures. The fine tunability and controllability of as-prepared micro and nano structures demonstrate this versatile approach a far wide range of uses than the merely academic.

  1. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    PubMed

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-01

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. PMID:26710326

  2. Multiple apolipoprotein kinetics measured in human HDL by high-resolution/accurate mass parallel reaction monitoring.

    PubMed

    Singh, Sasha A; Andraski, Allison B; Pieper, Brett; Goh, Wilson; Mendivil, Carlos O; Sacks, Frank M; Aikawa, Masanori

    2016-04-01

    Endogenous labeling with stable isotopes is used to study the metabolism of proteins in vivo. However, traditional detection methods such as GC/MS cannot measure tracer enrichment in multiple proteins simultaneously, and multiple reaction monitoring MS cannot measure precisely the low tracer enrichment in slowly turning-over proteins as in HDL. We exploited the versatility of the high-resolution/accurate mass (HR/AM) quadrupole Orbitrap for proteomic analysis of five HDL sizes. We identified 58 proteins in HDL that were shared among three humans and that were organized into five subproteomes according to HDL size. For seven of these proteins, apoA-I, apoA-II, apoA-IV, apoC-III, apoD, apoE, and apoM, we performed parallel reaction monitoring (PRM) to measure trideuterated leucine tracer enrichment between 0.03 to 1.0% in vivo, as required to study their metabolism. The results were suitable for multicompartmental modeling in all except apoD. These apolipoproteins in each HDL size mainly originated directly from the source compartment, presumably the liver and intestine. Flux of apolipoproteins from smaller to larger HDL or the reverse contributed only slightly to apolipoprotein metabolism. These novel findings on HDL apolipoprotein metabolism demonstrate the analytical breadth and scope of the HR/AM-PRM technology to perform metabolic research. PMID:26862155

  3. Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples

    SciTech Connect

    Agarwal, Vivek; Cai, Guowei; Gribok, Andrei V.; Mahadevan, Sankaran

    2015-09-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presented in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.

  4. Long-Term Multiwaveband Monitoring of Selected Blazars (core Program)

    NASA Astrophysics Data System (ADS)

    The investigators request RXTE time to continue their long-term monitoring of the blazars 3C 279, PKS 1510-089, BL Lac, and 3C 273 2-3 times per week at radio, mm, IR, optical, X-ray, and, with the advent of GLAST, gamma-ray wavelengths. These, plus an added 5th object, CTA102, include blazars bright enough to detect strongly with RXTE and GLAST as well as to measure polarization on 7 mm VLBA images and at optical bands. By matching polarized features on VLBA images with variable polarization at optical bands and by associating X-ray and gamma-ray flares with similar events at these longer wavelengths, the investigators will locate where in the jet the emission occurs at all these wavebands. The relative timing of flares as a function of wavelength will overconstrain emission models.

  5. Unconventional application of the Mitsunobu reaction: Selective flavonolignan dehydration yielding hydnocarpins

    PubMed Central

    Huang, Guozheng; Schramm, Simon; Heilmann, Jörg; Biedermann, David; Křen, Vladimír

    2016-01-01

    Summary Various Mitsunobu conditions were investigated for a series of flavonolignans (silybin A, silybin B, isosilybin A, and silychristin A) to achieve either selective esterification in position C-23 or dehydration in a one-pot reaction yielding the biologically important enantiomers of hydnocarpin D, hydnocarpin and isohydnocarpin, respectively. This represents the only one-pot semi-synthetic method to access these flavonolignans in high yields. PMID:27340458

  6. Unconventional application of the Mitsunobu reaction: Selective flavonolignan dehydration yielding hydnocarpins.

    PubMed

    Huang, Guozheng; Schramm, Simon; Heilmann, Jörg; Biedermann, David; Křen, Vladimír; Decker, Michael

    2016-01-01

    Various Mitsunobu conditions were investigated for a series of flavonolignans (silybin A, silybin B, isosilybin A, and silychristin A) to achieve either selective esterification in position C-23 or dehydration in a one-pot reaction yielding the biologically important enantiomers of hydnocarpin D, hydnocarpin and isohydnocarpin, respectively. This represents the only one-pot semi-synthetic method to access these flavonolignans in high yields. PMID:27340458

  7. The Pressure Dependency of Stabilized Criegee Intermediate Yields of Selected Ozone-Alkene Reactions

    NASA Astrophysics Data System (ADS)

    Hakala, J. P.; Donahue, N. M.

    2014-12-01

    Stabilized Criegee Intermediates (SCI) play an important role as an oxidizing species in atmospheric reactions. The ozonolysis of alkenes in the atmosphere, i.e. the mechanism by which the SCIs are produced, is a major pathway to the formation of Secondary Organic Aerosols (SOA) in the atmosphere. Just how much SCIs contribute to the SOA formation is not well known and fundamental research in the kinetics of SCI formation need to be performed to shed light on this mystery. The alkene ozonolysis is highly exothermic reaction, so a third body is needed for stabilizing the SCI, thus making the SCI yield pressure dependent. We studied the production of SCIs at different pressures by studying their ability to oxidize sulfur dioxide in a pressure controlled flow reactor. We used a mixture of ultra-high purity nitrogen, oxygen, and a selective scavenger for hydroxyl radical (OH) as a carrier gas, and injected a mixture of nitrogen, sulfur dioxide and selected alkene to the center of the flow for ozonolysis to take place. With the OH radical scavenged, the SCI yield of the reaction was measured by measuring the amount of sulfuric acid formed in the reaction between SCI and sulfur dioxide with a Chemical Ionization Mass Spectrometer (CIMS). This work was supported by NASA/ROSES grant NNX12AE54G to CMU and Academy of Finland Center of Excellence project 1118615.

  8. Quantification of neurosteroids during pregnancy using selective ion monitoring mass spectrometry.

    PubMed

    Pennell, Kurt D; Woodin, Mark A; Pennell, Page B

    2015-03-01

    Analytical techniques used to quantify neurosteroids in biological samples are often compromised by non-specificity and limited dynamic range which can result in erroneous results. A relatively rapid and inexpensive gas chromatography-mass spectrometry (GC-MS) was developed to simultaneously measure nine neurosteroids, including allopregnanolone, estradiol, and progesterone, as well as 25-hydroxy-vitamin D3 in plasma samples collected from adult women subjects during and after pregnancy. Sample preparation involved solid-phase extraction and derivatization, followed by automated injection on a GC equipped with a mass selective detector (MSD) operated in single ion monitoring (SIM) mode to yield a run time of less than 11min. Method detection limits for all neurosteroids ranged from 30 to 200pg/mL (parts per trillion), with coefficients of variation that ranged from 3% to 5% based on intra-assay comparisons run in triplicate. Although concentrations of estradiol measured by chemiluminescent immunoassay (CIA) were consistent with values determined by GC-MS values, CIA yielded considerable higher values of progesterone, suggesting antibody cross reactions resulting from low specificity. Mean neurosteroid levels and representative time-course data demonstrate the ability of the method to quantify changes in multiple neurosteroids during pregnancy, including rapid declines in neurosteroid levels associated with delivery. This simplified GC-MS method holds particular promise for research and clinical laboratories that require simultaneous quantification of multiple neurosteroids, but lack the resources and expertise to support advanced liquid chromatography-tandem mass spectrometry facilities. PMID:25541057

  9. Quantification of Neurosteroids During Pregnancy Using Selective Ion Monitoring Mass Spectrometry

    PubMed Central

    Pennell, Kurt D.; Woodin, Mark A.; Pennell, Page B.

    2014-01-01

    Analytical techniques used to quantify neurosteroids in biological samples are often compromised by non-specificity and limited dynamic range which can result in erroneous results. A relatively rapid and inexpensive gas chromatography-mass spectrometry (GC-MS) was developed to simultaneously measure nine neurosteroids, including allopregnanolone, estradiol, and progesterone, as well as 25-hydroxy-vitamin D3 in plasma samples collected from adult women subjects during and after pregnancy. Sample preparation involved solid-phase extraction and derivatization, followed by automated injection on a GC equipped with a mass selective detector (MSD) operated in single ion monitoring (SIM) mode to yield a run time of less than 11 minutes. Method detection limits for all neurosteroids ranged from 30 to 200 pg/mL (parts per trillion), with coefficients of variation that ranged from 3 to 5% based on intra-assay comparisons run in triplicate. Although concentrations of estradiol measured by chemiluminescent immunoassay (CIA) were consistent with values determined by GC-MS values, CIA yielded considerable higher values of progesterone, suggesting antibody cross reactions resulting from low specificity. Mean neurosteroid levels and representative time-course data demonstrate the ability of the method to quantify changes in multiple neurosteroids during pregnancy, including rapid declines in neurosteroid levels associated with delivery. This simplified GC-MS method holds particular promise for research and clinical laboratories that require simultaneous quantification of multiple neurosteroids, but lack the resources and expertise to support advanced liquid chromatography-tandem mass spectrometry facilities. PMID:25541057

  10. Quantitative Profiling of Long-Chain Bases by Mass Tagging and Parallel Reaction Monitoring

    PubMed Central

    Ejsing, Christer S.; Bilgin, Mesut; Fabregat, Andreu

    2015-01-01

    Long-chain bases (LCBs) are both intermediates in sphingolipid metabolism and potent signaling molecules that control cellular processes. To understand how regulation of sphingolipid metabolism and levels of individual LCB species impinge upon physiological and pathophysiological processes requires sensitive and specific assays for monitoring these molecules. Here we describe a shotgun lipidomics method for quantitative profiling of LCB molecules. The method employs a “mass-tag” strategy where LCBs are chemically derivatized with deuterated methyliodide (CD3I) to produce trimethylated derivatives having a positively charged quaternary amine group. This chemical derivatization minimizes unwanted in-source fragmentation of LCB analytes and prompts a characteristic trimethylaminium fragment ion that enables sensitive and quantitative profiling of LCB molecules by parallel reaction monitoring on a hybrid quadrupole time-of-flight mass spectrometer. Notably, the strategy provides, for the first time, a routine for monitoring endogenous 3-ketosphinganine molecules and distinguishing them from more abundant isomeric sphingosine molecules. To demonstrate the efficacy of the methodology we report an in-depth characterization of the LCB composition of yeast mutants with defective sphingolipid metabolism and the absolute levels of LCBs in mammalian cells. The strategy is generic, applicable to other types of mass spectrometers and can readily be applied as an additional routine in workflows for global lipidome quantification and for functional studies of sphingolipid metabolism. PMID:26660097

  11. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety

    PubMed Central

    Ekor, Martins

    2014-01-01

    The use of herbal medicinal products and supplements has increased tremendously over the past three decades with not less than 80% of people worldwide relying on them for some part of primary healthcare. Although therapies involving these agents have shown promising potential with the efficacy of a good number of herbal products clearly established, many of them remain untested and their use are either poorly monitored or not even monitored at all. The consequence of this is an inadequate knowledge of their mode of action, potential adverse reactions, contraindications, and interactions with existing orthodox pharmaceuticals and functional foods to promote both safe and rational use of these agents. Since safety continues to be a major issue with the use of herbal remedies, it becomes imperative, therefore, that relevant regulatory authorities put in place appropriate measures to protect public health by ensuring that all herbal medicines are safe and of suitable quality. This review discusses toxicity-related issues and major safety concerns arising from the use of herbal medicinal products and also highlights some important challenges associated with effective monitoring of their safety. PMID:24454289

  12. Monitoring chemical reactions by low-field benchtop NMR at 45 MHz: pros and cons.

    PubMed

    Silva Elipe, Maria Victoria; Milburn, Robert R

    2016-06-01

    Monitoring chemical reactions is the key to controlling chemical processes where NMR can provide support. High-field NMR gives detailed structural information on chemical compounds and reactions; however, it is expensive and complex to operate. Conversely, low-field NMR instruments are simple and relatively inexpensive alternatives. While low-field NMR does not provide the detailed information as the high-field instruments as a result of their smaller chemical shift dispersion and the complex secondary coupling, it remains of practical value as a process analytical technology (PAT) tool and is complimentary to other established methods, such as ReactIR and Raman spectroscopy. We have tested a picoSpin-45 (currently under ThermoFisher Scientific) benchtop NMR instrument to monitor three types of reactions by 1D (1) H NMR: a Fischer esterification, a Suzuki cross-coupling, and the formation of an oxime. The Fischer esterification is a relatively simple reaction run at high concentration and served as proof of concept. The Suzuki coupling is an example of a more complex, commonly used reaction involving overlapping signals. Finally, the oxime formation involved a reaction in two phases that cannot be monitored by other PAT tools. Here, we discuss the pros and cons of monitoring these reactions at a low-field of 45 MHz by 1D (1) H NMR. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25616193

  13. Rangeland assessment and monitoring methods guide - an interactive tool for selecting methods for assessment and monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common concern expressed by land managers and biologists is that they do not know enough about the strengths and weaknesses of different field and remote-sensing methods for rangeland assessment and monitoring. The Methods Guide is a web-based tool and resource that provides researchers and manage...

  14. CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) for Near-Perfect Selective Transformation

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Greenberg, Daniel T.; Takahashi, Jack R.; Thompson, Kirsten A.; Maheshwari, Akshay J.; Kent, Ryan E.; McCutcheon, Griffin; Shih, Joseph D.; Calvet, Charles; Devlin, Tyler D.; Ju, Tina; Kunin, Daniel; Lieberman, Erica; Nguyen, Thai; Tran, Forrest; Xiang, Daniel; Fujishima, Kosuke

    2015-01-01

    The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation.

  15. Adverse drug reaction monitoring: support for pharmacovigilance at a tertiary care hospital in Northern Brazil

    PubMed Central

    2013-01-01

    Background Adverse drug reactions (ADRs) are recognised as a common cause of hospital admissions, and they constitute a significant economic burden for hospitals. Hospital-based ADR monitoring and reporting programmes aim to identify and quantify the risks associated with the use of drugs provided in a hospital setting. This information may be useful for identifying and minimising preventable ADRs and may enhance the ability of prescribers to manage ADRs more effectively. The main objectives of this study were to evaluate ADRs that occurred during inpatient stays at the Hospital Geral de Palmas (HGP) in Tocantins, Brazil, and to facilitate the development of a pharmacovigilance service. Methods A prospective study was conducted at HGP over a period of 8 months, from January 2009 to August 2009. This observational, cross-sectional, descriptive study was based on an analysis of medical records. Several parameters were utilised in the data evaluation, including patient demographics, drug and reaction characteristics, and reaction outcomes. The reaction severity and predisposing factors were also assessed. Results The overall incidence of ADRs in the patient population was 3.1%, and gender was not found to be a risk factor. The highest ADR rate (75.8%) was found in the adult age group 15 to 50 years, and the lowest ADR rate was found in children aged 3 to 13 years (7.4%). Because of the high frequency of ADRs in orthopaedic (25%), general medicine (22%), and oncology (16%) patients, improved control of the drugs used in these specialties is required. Additionally, the nurse team (52.7%) registered the most ADRs in medical records, most likely due to the job responsibilities of nurses. As expected, the most noticeable ADRs occurred in skin tissues, with such ADRs are more obvious to medical staff, with rashes being the most common reactions. Metamizole, tramadol, and vancomycin were responsible for 21, 11.6, and 8.4% of ADRs, respectively. The majority of ADRs had

  16. Cyanobacterial phycobilisomes: selective dissociation monitored by fluorescence and circular dichroism

    SciTech Connect

    Rigbi, M.; Rosinski, J.; Siegelman, H.W.; Sutherland, J.C.

    1980-04-01

    Phycobilisomes are supramolecular assemblies of phycobiliproteins responsible for photosynthetic light collection in red algae and cyanobacteria. They can be selectively dissociated by reduction of temperature and buffer concentration. Phycobilisomes isolated from Fremyella diplosiphon transfer energy collected by C-phycoerythrin and C-phycocyanin to allophycocyanin. The energy transfer to allophycocyanin is nearly abolished at 2/sup 0/C, as indicated by a blue shift in fluorescence emission, and is accompanied by a decrease in the circular dichroism in the region of allophycocyanin absorbance. Further dissociation of the phycobilisomes can be attained by reduction of buffer concentration and holding at 2/sup 0/C. Energy transfer to C-phycocyanin is nearly abolished, and decreases occur in the circular dichroism in the region of C-phycocyanin and C-phycoerythrin absorbance. Complete dissociation of the phycobilisomes at low buffer concentration and 2/sup 0/C requires extended time. Energy transfer to C-phycocyanin is further reduced and the circular dichroism maximum of C-phycoerythrin at 575 nm is lost. Circular dichroism provides information on the hexamer-monomer transitions of the phycobiliproteins, whereas fluorescence is indicative of hexamer-hexamer interactions. We consider that hydrophobic interactions are fundamental to the maintenance of the structure and function of phycobilisomes.

  17. SIC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    SciTech Connect

    Paul K.T. Liu

    2003-12-01

    A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. SiC macro-porous membranes have been successfully fabricated via extrusion of commercially available SiC powder. Also, an SiC hydrogen selective thin film was prepared via our CVD/I technique. This composite membrane demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers and sol-gel techniques. Building upon the positive progress made in the membrane development study, we conducted an optimization study to develop an H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment. In addition, mathematical simulation has been performed to compare the performance of the membrane reactor (MR) vs conventional packed bed reactor for WGS reaction. Our result demonstrates that >99.999% conversion can be accomplished via WGS-MR using the hydrogen selective membrane developed by us. Further, water/CO ratio can be reduced, and >97% hydrogen recovery and <200 ppm CO can be accomplished according to the mathematical simulation. Thus, we believe that the operating economics of WGS can be improved significantly based upon the proposed MR concept. In parallel, gas separations and hydrothermal and long-term-storage stability of the

  18. The proton transfer reaction mass spectrometer and its use in medical science: applications to drug assays and the monitoring of bacteria

    NASA Astrophysics Data System (ADS)

    Critchley, A.; Elliott, T. S.; Harrison, G.; Mayhew, C. A.; Thompson, J. M.; Worthington, T.

    2004-12-01

    Proton transfer reaction mass spectrometry (PTR-MS) enables monitoring of trace gases in air with high sensitivity without major gases interfering. In this paper, we present the potential use of a proton transfer reaction mass spectrometer for two medical applications; the monitoring of drugs and bacterial infection. The first study illustrates a feasibility trial to monitor the intravenous anaesthetic agent 2,6-di-isopropyl phenol (propofol), and two of its metabolites, on the breath of patients in real-time during surgery. Propofol is a commonly used intravenous anaesthetic. However, there is no method of instantaneously monitoring the plasma concentration of the agent during surgery, and therefore determining whether or not the plasma level is of such a value to ensure that the patient is correctly anaesthetized. That propofol and its metabolites were monitored in real-time using the PTR-MS suggests possibilities for routine intravenous anaesthesia monitoring analogous to that for volatile anaesthetic agents. In addition to the above work we also investigated proton transfer to another anaesthetic, sevoflurane. Comparisons between PTR-MS and selected ion flow tube (SIFT) investigations are presented. The second study presented in this paper investigated the volatile organic compounds emitted by microbial cell cultures. The objective was to show that different microbial cultures could be readily distinguished from the resulting mass spectra recorded using the PTR-MS. The initial results are encouraging, which taken together with the real-time analysis and high sensitivity of the PTR-MS, means that proton transfer reaction mass spectrometry has the potential to characterise bacterial infection rapidly.

  19. Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes.

    PubMed

    Jin, Xiaohui; Peldszus, Sigrid; Huck, Peter M

    2012-12-01

    Second-order reaction rate constants of micropollutants with ozone (k(O3)) and hydroxyl radicals (k(OH)) are essential for evaluating their removal efficiencies from water during ozonation and advanced oxidation processes. Kinetic data are unavailable for many of the emerging micropollutants. Twenty-four micropollutants with very diverse structures and applications including endocrine disrupting compounds, pharmaceuticals, and personal care products were selected, and their k(O3) and k(OH) values were determined using bench-scale reactors (at pH 7 and T = 20 °C). Reactions with molecular ozone are highly selective as indicated by their k(O3) values ranging from 10(-2)-10(7) M(-1) s(-1). The general trend of ozone reactivity can be explained by micropollutant structures in conjunction with the electrophilic nature of ozone reactions. All of the studied compounds are highly reactive with hydroxyl radicals as shown by their high k(OH) values (10(8)-10(10) M(-1) s(-1)) even though they are structurally very diverse. For compounds with a low reactivity toward ozone, hydroxyl radical based treatment such as O(3)/H(2)O(2) or UV/H(2)O(2) is a viable alternative. This study contributed to filling the data gap pertaining kinetic data of organic micropollutants while confirming results reported in the literature where available. PMID:23079129

  20. Detection, monitoring and modelling of alkali-aggregate reaction in Kouga Dam (South Africa)

    SciTech Connect

    Elges, H.; Lecocq, P.; Oosthuizen, C.; Geertsema, A.

    1995-12-31

    Kouga Dam (formerly Paul Sauer Dam) is a double curvature arch dam completed in 1969. The aggregates and the cement used for the construction have subsequently been proven to be alkali reactive. The results of the monitoring programme and the alkali-aggregate reaction (AAR) tests as well as the methodology developed to standardise the logging of cores for these investigations are presented. A brief description of the Finite Element Model used to approximate the AAR process in order to determine positions for in-situ stress measurements is also given. The aim with these tests is to refine the model for prediction of the long-term behaviour of the dam and to make an assessment of the possibility of raising the dam.

  1. Development of a microspectrophotometer system for monitoring the redox reactions of respiratory pigments

    NASA Astrophysics Data System (ADS)

    Kavanagh, Karen Y.; Walsh, James E.; Murphy, J.; Harmey, M.; Farrell, M. A.; Hardimann, O.; Perryman, R.

    1997-05-01

    The continuing demand for non-invasive tools for use in clinical diagnosis has created the need for flexible and innovative optical systems which satisfy current requirements. We report the development of a microspectrophotometer system for use on mitochondrial respiratory pigments. This novel optical fiber set-up uses visible spectrophotometry to monitor the reduction of mitochondrial electron carriers. Preliminary data is presented for the reduction of cytochrome-c by two methods. In the first, cytochrome-c was reduced in isolation using sodium dithionite. The second was an in-vivo simulation of the reduction of cytochrome-c using the mitochondrial extract from rat liver. The key features of the system are; front end adaptability, high sensitivity and fast scanning capabilities which are essential for the rapid biological reactions which are observed.

  2. The parallel reaction monitoring method contributes to a highly sensitive polyubiquitin chain quantification

    SciTech Connect

    Tsuchiya, Hikaru; Tanaka, Keiji Saeki, Yasushi

    2013-06-28

    Highlights: •The parallel reaction monitoring method was applied to ubiquitin quantification. •The ubiquitin PRM method is highly sensitive even in biological samples. •Using the method, we revealed that Ufd4 assembles the K29-linked ubiquitin chain. -- Abstract: Ubiquitylation is an essential posttranslational protein modification that is implicated in a diverse array of cellular functions. Although cells contain eight structurally distinct types of polyubiquitin chains, detailed function of several chain types including K29-linked chains has remained largely unclear. Current mass spectrometry (MS)-based quantification methods are highly inefficient for low abundant atypical chains, such as K29- and M1-linked chains, in complex mixtures that typically contain highly abundant proteins. In this study, we applied parallel reaction monitoring (PRM), a quantitative, high-resolution MS method, to quantify ubiquitin chains. The ubiquitin PRM method allows us to quantify 100 attomole amounts of all possible ubiquitin chains in cell extracts. Furthermore, we quantified ubiquitylation levels of ubiquitin-proline-β-galactosidase (Ub-P-βgal), a historically known model substrate of the ubiquitin fusion degradation (UFD) pathway. In wild-type cells, Ub-P-βgal is modified with ubiquitin chains consisting of 21% K29- and 78% K48-linked chains. In contrast, K29-linked chains are not detected in UFD4 knockout cells, suggesting that Ufd4 assembles the K29-linked ubiquitin chain(s) on Ub-P-βgal in vivo. Thus, the ubiquitin PRM is a novel, useful, quantitative method for analyzing the highly complicated ubiquitin system.

  3. Absolute state-selected total cross sections for the O(+)(4S) + CO2 reactions

    NASA Astrophysics Data System (ADS)

    Flesch, G. D.; Ng, C. Y.

    1991-12-01

    Results are presented on measurements of absolute state-selected total cross sections for O2(+), CO2(+), CO(+), and C(+) produced in the reaction between O(+)(4S) and CO2, which were conducted in the center-of-mass collision energy (Ecm) range of 0.2-150 eV. It was found that, with increasing collisional energy, the cross section of O2(+) dropped off rapidly and became essentially zero at Ecm above 3 eV. The dependence of O2(+) cross section on the Ecm is consistent with a collision complex mechanism for the reaction between O(+)(4S) and CO2 yielding CO2(+) + O. The values for O2(+) obtained in this experiment were significantly higher than those reported by Rutherford and Vroom (1976).

  4. Indicators for Monitoring Water, Sanitation, and Hygiene: A Systematic Review of Indicator Selection Methods.

    PubMed

    Schwemlein, Stefanie; Cronk, Ryan; Bartram, Jamie

    2016-03-01

    Monitoring water, sanitation, and hygiene (WaSH) is important to track progress, improve accountability, and demonstrate impacts of efforts to improve conditions and services, especially in low- and middle-income countries. Indicator selection methods enable robust monitoring of WaSH projects and conditions. However, selection methods are not always used and there are no commonly-used methods for selecting WaSH indicators. To address this gap, we conducted a systematic review of indicator selection methods used in WaSH-related fields. We present a summary of indicator selection methods for environment, international development, and water. We identified six methodological stages for selecting indicators for WaSH: define the purpose and scope; select a conceptual framework; search for candidate indicators; determine selection criteria; score indicators against criteria; and select a final suite of indicators. This summary of indicator selection methods provides a foundation for the critical assessment of existing methods. It can be used to inform future efforts to construct indicator sets in WaSH and related fields. PMID:26999180

  5. Indicators for Monitoring Water, Sanitation, and Hygiene: A Systematic Review of Indicator Selection Methods

    PubMed Central

    Schwemlein, Stefanie; Cronk, Ryan; Bartram, Jamie

    2016-01-01

    Monitoring water, sanitation, and hygiene (WaSH) is important to track progress, improve accountability, and demonstrate impacts of efforts to improve conditions and services, especially in low- and middle-income countries. Indicator selection methods enable robust monitoring of WaSH projects and conditions. However, selection methods are not always used and there are no commonly-used methods for selecting WaSH indicators. To address this gap, we conducted a systematic review of indicator selection methods used in WaSH-related fields. We present a summary of indicator selection methods for environment, international development, and water. We identified six methodological stages for selecting indicators for WaSH: define the purpose and scope; select a conceptual framework; search for candidate indicators; determine selection criteria; score indicators against criteria; and select a final suite of indicators. This summary of indicator selection methods provides a foundation for the critical assessment of existing methods. It can be used to inform future efforts to construct indicator sets in WaSH and related fields. PMID:26999180

  6. Derivatization Strategy for the Comprehensive Characterization of Endogenous Fatty Aldehydes Using HPLC-Multiple Reaction Monitoring.

    PubMed

    Tie, Cai; Hu, Ting; Jia, Zhi-Xin; Zhang, Jin-Lan

    2016-08-01

    Fatty aldehydes are crucial substances that mediate a wide range of vital physiological functions, particularly lipid peroxidation. Fatty aldehydes such as acrolein and 4-hydroxynonenal (4-HNE) are considered potential biomarkers of myocardial ischemia and dementia, but analytical techniques for fatty aldehydes are lacking. In the present study, a comprehensive characterization strategy with high sensitivity and facility for fatty aldehydes based on derivatization and high-performance liquid chromatography-multiple reaction monitoring (HPLC-MRM) was developed. The fatty aldehydes of a biosample were derivatized using 2,4-bis(diethylamino)-6-hydrazino-1,3,5-triazine under mild and efficient reaction conditions at 37 °C for 15 min. The limit of detection (LOD) of the fatty aldehydes varied from 0.1 to 1 pg/mL, depending on the structures of these molecules. General MRM parameters were forged for the analysis of endogenous fatty aldehydes. "Heavy" derivatization reagents with 20 deuterium atoms were synthesized for both the discovery and comprehensive characterization of fatty aldehydes. More than 80 fatty aldehydes were detected in the biosamples. The new strategy was successfully implemented in global fatty aldehyde profiling of plasma and brain tissue of the bilateral common carotid artery (2VO) dementia rat model. Dozens of fatty aldehydes were significantly changed between the control and model groups. These findings further highlight the importance of endogenous fatty aldehydes. PMID:27397858

  7. Monitoring transcranial direct current stimulation induced changes in cortical excitability during the serial reaction time task.

    PubMed

    Ambrus, Géza Gergely; Chaieb, Leila; Stilling, Roman; Rothkegel, Holger; Antal, Andrea; Paulus, Walter

    2016-03-11

    The measurement of the motor evoked potential (MEP) amplitudes using single pulse transcranial magnetic stimulation (TMS) is a common method to observe changes in motor cortical excitability. The level of cortical excitability has been shown to change during motor learning. Conversely, motor learning can be improved by using anodal transcranial direct current stimulation (tDCS). In the present study, we aimed to monitor cortical excitability changes during an implicit motor learning paradigm, a version of the serial reaction time task (SRTT). Responses from the first dorsal interosseous (FDI) and forearm flexor (FLEX) muscles were recorded before, during and after the performance of the SRTT. Online measurements were combined with anodal, cathodal or sham tDCS for the duration of the SRTT. Negative correlations between the amplitude of online FDI MEPs and SRTT reaction times (RTs) were observed across the learning blocks in the cathodal condition (higher average MEP amplitudes associated with lower RTs) but no significant differences in the anodal and sham conditions. tDCS did not have an impact on SRTT performance, as would be predicted based on previous studies. The offline before-after SRTT MEP amplitudes showed an increase after anodal and a tendency to decrease after cathodal stimulation, but these changes were not significant. The combination of different interventions during tDCS might result in reduced efficacy of the stimulation that in future studies need further attention. PMID:26826607

  8. Determination of Free Fatty Acids and Triglycerides by Gas Chromatography Using Selective Esterification Reactions

    SciTech Connect

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-11-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography–flame ionization detection, gas chromatography–mass spectrometry, and liquid chromatography–mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  9. Design of an Optical system for the In Situ Process Monitoring of Selective Laser Melting (SLM)

    NASA Astrophysics Data System (ADS)

    Lott, Philipp; Schleifenbaum, Henrich; Meiners, Wilhelm; Wissenbach, Konrad; Hinke, Christian; Bültmann, Jan

    Selective Laser Melting (SLM) is an Additive Manufacturing technology that enables the production of complex shaped individual parts with series identical mechanical properties. Areas of improvement are up to now quality and reproducibility of parts made by SLM due to different kinds of errors. Therefore the integration of a monitoring and control module into a SLM-machine is aspired. The design of such an optical system capable of monitoring high scanning velocities and melt pool dynamics is introduced as a first step.

  10. Tuning the selectivity of Gd3N cluster endohedral metallofullerene reactions with Lewis acids.

    PubMed

    Stevenson, Steven; Rottinger, Khristina A; Fahim, Muska; Field, Jessica S; Martin, Benjamin R; Arvola, Kristine D

    2014-12-15

    We demonstrate the manipulation of the Lewis acid strength to selectively fractionate different types of Gd3N metallofullerenes that are present in complex mixtures. Carbon disulfide is used for all Lewis acid studies. CaCl2 exhibits the lowest reactivity but the highest selectivity by precipitating only those gadolinium metallofullerenes with the lowest first oxidation potentials. ZnCl2 selectively complexes Gd3N@C88 during the first 4 h of reaction. Reaction with ZnCl2 for an additional 7 days permits a selective precipitation of Gd3N@C84 as the dominant endohedral isolated. A third fraction is the filtrate, which possesses Gd3N@C86 and Gd3N@C80 as the two dominant metallofullerenes. The order of increasing reactivity and decreasing selectivity (left to right) is as follows: CaCl2 < ZnCl2 < NiCl2 < MgCl2 < MnCl2 < CuCl2 < WCl4 ≪ WCl6 < ZrCl4 < AlCl3 < FeCl3. As a group, CaCl2, ZnCl2, and NiCl2 are the weakest Lewis acids and have the highest selectivity because of their very low precipitation onsets, which are below +0.19 V (i.e., endohedrals with first oxidation potentials below +0.19 V are precipitated). For CaCl2, the precipitation threshold is estimated at a remarkably low value of +0.06 V. Because most endohedrals possess first oxidation potentials significantly higher than +0.06 V, CaCl2 is especially useful in its ability to precipitate only a select group of gadolinium metallofullerenes. The Lewis acids of intermediate reactivity (i.e., precipitation onsets estimated between +0.19 and +0.4 V) are MgCl2, MnCl2, CuCl2, and WCl4. The strongest Lewis acids (WCl6, ZrCl4, AlCl3, and FeCl3) are the least selective and tend to precipitate the entire family of gadolinium metallofullerenes. Tuning the Lewis acid for a specific type of endohedral should be useful in a nonchromatographic purification method. The ability to control which metallofullerenes are permitted to precipitate and which endohedrals would remain in solution is a key outcome of this work. PMID

  11. Advanced online monitoring of cell culture off-gas using proton transfer reaction mass spectrometry.

    PubMed

    Schmidberger, Timo; Gutmann, Rene; Bayer, Karl; Kronthaler, Jennifer; Huber, Robert

    2014-01-01

    Mass spectrometry has been frequently applied to monitor the O₂ and CO₂ content in the off-gas of animal cell culture fermentations. In contrast to classical mass spectrometry the proton transfer reaction mass spectrometry (PTR-MS) provides additional information of volatile organic compounds by application of a soft ionization technology. Hence, the spectra show less fragments and can more accurately assigned to particular compounds. In order to discriminate between compounds of non-metabolic and metabolic origin cell free experiments and fed-batch cultivations with a recombinant CHO cell line were conducted. As a result, in total eight volatiles showing high relevance to individual cultivation or cultivation conditions could be identified. Among the detected compounds methanethiol, with a mass-to-charge ratio of 49, qualifies as a key candidate in process monitoring due to its strong connectivity to lactate formation. Moreover, the versatile and complex data sets acquired by PTR MS provide a valuable resource for statistical modeling to predict non direct measurable parameters. Hence, partial least square regression was applied to the complete spectra of volatiles measured and important cell culture parameters such as viable cell density estimated (R²  = 0.86). As a whole, the results of this study clearly show that PTR-MS provides a powerful tool to improve bioprocess-monitoring for mammalian cell culture. Thus, specific volatiles emitted by cells and measured online by the PTR-MS and complex variables gained through statistical modeling will contribute to a deeper process understanding in the future and open promising perspectives to bioprocess control. PMID:24376199

  12. Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology.

    PubMed

    Santoro, Stefano; Kalek, Marcin; Huang, Genping; Himo, Fahmi

    2016-05-17

    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modern density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce β-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in

  13. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions

    NASA Astrophysics Data System (ADS)

    Lennon, David; Warringham, Robbie; Guidi, Tatiana; Parker, Stewart F.

    2013-12-01

    The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al2O3 catalyst. Inelastic neutron scattering studies show that the C-H stretching mode ranges from 2850 to 3063 cm-1, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al2O3 catalysts during methane reforming.

  14. Do candidate reactions relate to job performance or affect criterion-related validity? A multistudy investigation of relations among reactions, selection test scores, and job performance.

    PubMed

    McCarthy, Julie M; Van Iddekinge, Chad H; Lievens, Filip; Kung, Mei-Chuan; Sinar, Evan F; Campion, Michael A

    2013-09-01

    Considerable evidence suggests that how candidates react to selection procedures can affect their test performance and their attitudes toward the hiring organization (e.g., recommending the firm to others). However, very few studies of candidate reactions have examined one of the outcomes organizations care most about: job performance. We attempt to address this gap by developing and testing a conceptual framework that delineates whether and how candidate reactions might influence job performance. We accomplish this objective using data from 4 studies (total N = 6,480), 6 selection procedures (personality tests, job knowledge tests, cognitive ability tests, work samples, situational judgment tests, and a selection inventory), 5 key candidate reactions (anxiety, motivation, belief in tests, self-efficacy, and procedural justice), 2 contexts (industry and education), 3 continents (North America, South America, and Europe), 2 study designs (predictive and concurrent), and 4 occupational areas (medical, sales, customer service, and technological). Consistent with previous research, candidate reactions were related to test scores, and test scores were related to job performance. Further, there was some evidence that reactions affected performance indirectly through their influence on test scores. Finally, in no cases did candidate reactions affect the prediction of job performance by increasing or decreasing the criterion-related validity of test scores. Implications of these findings and avenues for future research are discussed. PMID:23937298

  15. Survivability and Abiotic Reactions of Selected Amino Acids in Different Hydrothermal System Simulators

    NASA Astrophysics Data System (ADS)

    Chandru, Kuhan; Imai, Eiichi; Kaneko, Takeo; Obayashi, Yumiko; Kobayashi, Kensei

    2013-04-01

    We tested the stability and reaction of several amino acids using hydrothermal system simulators: an autoclave and two kinds of flow reactors at 200-250 °C. This study generally showed that there is a variation in the individual amino acids survivability in the simulators. This is mainly attributed to the following factors; heat time, cold quenching exposure, metal ions and also silica. We observed that, in a rapid heating flow reactor, high aggregation and/or condensation of amino acids could occur even during a heat exposure of 2 min. We also monitored their stability in a reflow-type of simulator for 120 min at 20 min intervals. The non-hydrolyzed and hydrolyzed samples for this system showed a similar degradation only in the absence of metal ions.

  16. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    DOEpatents

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  17. Automatic identification approach for high-performance liquid chromatography-multiple reaction monitoring fatty acid global profiling.

    PubMed

    Tie, Cai; Hu, Ting; Jia, Zhi-Xin; Zhang, Jin-Lan

    2015-08-18

    Fatty acids (FAs) are a group of lipid molecules that are essential to organisms. As potential biomarkers for different diseases, FAs have attracted increasing attention from both biological researchers and the pharmaceutical industry. A sensitive and accurate method for globally profiling and identifying FAs is required for biomarker discovery. The high selectivity and sensitivity of high-performance liquid chromatography-multiple reaction monitoring (HPLC-MRM) gives it great potential to fulfill the need to identify FAs from complicated matrices. This paper developed a new approach for global FA profiling and identification for HPLC-MRM FA data mining. Mathematical models for identifying FAs were simulated using the isotope-induced retention time (RT) shift (IRS) and peak area ratios between parallel isotope peaks for a series of FA standards. The FA structures were predicated using another model based on the RT and molecular weight. Fully automated FA identification software was coded using the Qt platform based on these mathematical models. Different samples were used to verify the software. A high identification efficiency (greater than 75%) was observed when 96 FA species were identified in plasma. This FAs identification strategy promises to accelerate FA research and applications. PMID:26189701

  18. Mode- and bond-selected reactions of vibrationally excited methane and monodeuterated methane with chlorine atoms

    NASA Astrophysics Data System (ADS)

    Yoon, Sangwoon

    Direct infrared absorption prepares CH4 in two nearly isoenergetic vibrationally excited states, the symmetric stretch-bend combination (nu 1 + nu4) and the antisymmetric stretch-bend combination (nu3 + nu4), for a study of the effect of stretching vibrations of CH4 on the reaction, CH4 + Cl( 2P3/2) → CH3 + HCl. Comparison of intensities in the action spectra with those in the simulated absorption spectra shows that vibrational excitation of methane to the nu1 + nu4 state promotes the reaction more efficiently than excitation to the nu3 + nu4 state by a factor of 1.9 +/- 0.5. The reduced symmetry of CH3D allows us to explore the relative reactivity of the fundamental symmetric and the antisymmetric C-H stretches. We excite three vibrational eigenstates of CH3D near 3000 cm -1 that contain different amounts of symmetric C-H stretch (nu 1), antisymmetric C-H stretch (nu4), and two quanta of bend (2nu5). Analyzing the action spectra with the simulation and the composition of the eigenstates reveals that the nu1 vibration is 6 +/- 1 times more reactive than the nu4 vibration. Ab initio calculations of the vibrational eigenfunctions along the reaction coordinate show that as the Cl atom approaches, the nu1 vibration of CH3D is transformed into localized vibrational excitation in the C-H bond pointing toward the Cl atom, promoting the reaction, and the nu 4 vibrational energy flows into the distal C-H bonds that remain unaffected during the reaction, consistent with our experimental results. Selective vibrational excitation permits control of the outcome of a reaction with two competing channels. Vibrational excitation of the first overtone of C-D stretch (2nu2) of CH3D at ˜4300 cm-1 exclusively increases the probability of breaking the C-D bond, yielding CH3 but no CH2D. By contrast, excitation of the nu1 vibration, the nu4 vibration, or the combination vibration of C-H stretch and CH3 umbrella bend (nu4 + nu3) preferentially promotes the H-atom abstraction to

  19. STATISTICAL INFERENCE PROCEDURES FOR PROBABILITY SELECTION FUNCTIONS IN LONG-TERM MONITORING PROGRAMS

    EPA Science Inventory

    This report develops the theory and illustrates the use of selection functions to describe changes over time in the distributions of environmentally important variables at sites sampled as part of environmental monitoring programs. he first part of the report provides a review of...

  20. In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction.

    PubMed

    Halasz, Ivan; Kimber, Simon A J; Beldon, Patrick J; Belenguer, Ana M; Adams, Frank; Honkimäki, Veijo; Nightingale, Richard C; Dinnebier, Robert E; Friščić, Tomislav

    2013-09-01

    We describe the only currently available protocol for in situ, real-time monitoring of mechanochemical reactions and intermediates by X-ray powder diffraction. Although mechanochemical reactions (inducing transformations by mechanical forces such as grinding and milling) are normally performed in commercially available milling assemblies, such equipment does not permit direct reaction monitoring. We now describe the design and in-house modification of milling equipment that allows the reaction jars of the operating mill to be placed in the path of a high-energy (∼90 keV) synchrotron X-ray beam while the reaction is taking place. Resulting data are analyzed using conventional software, such as TOPAS. Reaction intermediates and products are identified using the Cambridge Structural Database or Inorganic Crystal Structure Database. Reactions are analyzed by fitting the time-resolved diffractograms using structureless Pawley refinement for crystalline phases that are not fully structurally characterized (such as porous frameworks with disordered guests), or the Rietveld method for solids with fully determined crystal structures (metal oxides, coordination polymers). PMID:23949378

  1. On-line monitoring of chemical reactions by using bench-top nuclear magnetic resonance spectroscopy.

    PubMed

    Danieli, E; Perlo, J; Duchateau, A L L; Verzijl, G K M; Litvinov, V M; Blümich, B; Casanova, F

    2014-10-01

    Real-time nuclear magnetic resonance (NMR) spectroscopy measurements carried out with a bench-top system installed next to the reactor inside the fume hood of the chemistry laboratory are presented. To test the system for on-line monitoring, a transfer hydrogenation reaction was studied by continuously pumping the reaction mixture from the reactor to the magnet and back in a closed loop. In addition to improving the time resolution provided by standard sampling methods, the use of such a flow setup eliminates the need for sample preparation. Owing to the progress in terms of field homogeneity and sensitivity now available with compact NMR spectrometers, small molecules dissolved at concentrations on the order of 1 mmol L(-1) can be characterized in single-scan measurements with 1 Hz resolution. Owing to the reduced field strength of compact low-field systems compared to that of conventional high-field magnets, the overlap in the spectrum of different NMR signals is a typical situation. The data processing required to obtain concentrations in the presence of signal overlap are discussed in detail, methods such as plain integration and line-fitting approaches are compared, and the accuracy of each method is determined. The kinetic rates measured for different catalytic concentrations show good agreement with those obtained with gas chromatography as a reference analytical method. Finally, as the measurements are performed under continuous flow conditions, the experimental setup and the flow parameters are optimized to maximize time resolution and signal-to-noise ratio. PMID:25111845

  2. Multiplexed Quantitation of Endogenous Proteins in Dried Blood Spots by Multiple Reaction Monitoring - Mass Spectrometry

    PubMed Central

    Chambers, Andrew G.; Percy, Andrew J.; Yang, Juncong; Camenzind, Alexander G.; Borchers, Christoph H.

    2013-01-01

    Dried blood spot (DBS) sampling, coupled with multiple reaction monitoring mass spectrometry (MRM-MS), is a well-established approach for quantifying a wide range of small molecule biomarkers and drugs. This sampling procedure is simpler and less-invasive than those required for traditional plasma or serum samples enabling collection by minimally trained personnel. Many analytes are stable in the DBS format without refrigeration, which reduces the cost and logistical challenges of sample collection in remote locations. These advantages make DBS sample collection desirable for advancing personalized medicine through population-wide biomarker screening. Here we expand this technology by demonstrating the first multiplexed method for the quantitation of endogenous proteins in DBS samples. A panel of 60 abundant proteins in human blood was targeted by monitoring proteotypic tryptic peptides and their stable isotope-labeled analogs by MRM. Linear calibration curves were obtained for 40 of the 65 peptide targets demonstrating multiple proteins can be quantitatively extracted from DBS collection cards. The method was also highly reproducible with a coefficient of variation of <15% for all 40 peptides. Overall, this assay quantified 37 proteins spanning a range of more than four orders of magnitude in concentration within a single 25 min LC/MRM-MS analysis. The protein abundances of the 33 proteins quantified in matching DBS and whole blood samples showed an excellent correlation, with a slope of 0.96 and an R2 value of 0.97. Furthermore, the measured concentrations for 80% of the proteins were stable for at least 10 days when stored at −20 °C, 4 °C and 37 °C. This work represents an important first step in evaluating the integration of DBS sampling with highly-multiplexed MRM for quantitation of endogenous proteins. PMID:23221968

  3. Estimating youth locomotion ground reaction forces using an accelerometer-based activity monitor.

    PubMed

    Neugebauer, Jennifer M; Hawkins, David A; Beckett, Laurel

    2012-01-01

    To address a variety of questions pertaining to the interactions between physical activity, musculoskeletal loading and musculoskeletal health/injury/adaptation, simple methods are needed to quantify, outside a laboratory setting, the forces acting on the human body during daily activities. The purpose of this study was to develop a statistically based model to estimate peak vertical ground reaction force (pVGRF) during youth gait. 20 girls (10.9 ± 0.9 years) and 15 boys (12.5 ± 0.6 years) wore a Biotrainer AM over their right hip. Six walking and six running trials were completed after a standard warm-up. Average AM intensity (g) and pVGRF (N) during stance were determined. Repeated measures mixed effects regression models to estimate pVGRF from Biotrainer activity monitor acceleration in youth (girls 10-12, boys 12-14 years) while walking and running were developed. Log transformed pVGRF had a statistically significant relationship with activity monitor acceleration, centered mass, sex (girl), type of locomotion (run), and locomotion type-acceleration interaction controlling for subject as a random effect. A generalized regression model without subject specific random effects was also developed. The average absolute differences between the actual and predicted pVGRF were 5.2% (1.6% standard deviation) and 9% (4.2% standard deviation) using the mixed and generalized models, respectively. The results of this study support the use of estimating pVGRF from hip acceleration using a mixed model regression equation. PMID:23133564

  4. Control of laser induced reactions in solids using selected photon energies and pulse pairs

    NASA Astrophysics Data System (ADS)

    Hess, Wayne; Joly, Alan; Beck, Kenneth; Gerrity, Daniel; Dickinson, J. Thomas; Sushko, Peter; Shluger, Alexander

    2002-03-01

    Laser control of reaction dynamics is an intensely studied area of chemical physics. Sophisticated quantum and optimal control schemes have been developed to overcome difficulties associated with rapid energy redistribution from laser-prepared initial states. Experiment and theory have demonstrated how specific product pathways can be selected by irradiation with one or more laser beams. Although most laser control research has focused on small gas-phase molecules, product and quantum state control of laser desorption from solids is possible using delayed pulse pairs, selected pulse duration or by judicious choice of laser wavelength. Theory indicates that it is possible to excite the surface of ionic crystals, over the bulk, using tunable laser sources.[1] We recently demonstrated control of ion emission from MgO surfaces[2] using femtosecond pulse pairs and nearly exclusive emission of hyperthermal Br (2P3/2) from laser excited KBr.[3] Here, we explore the mechanism of laser desorption in experiments using delayed pulse pairs and tunable single pulses. The first laser pulse induces formation of transient species and the second pulse then excites the intermediate state to induce desorption of selected species or quantum states. Selective desorption raises the intriguing prospect of selective surface modification. The principles described here should be extendable to other alkali halides and metal oxides. References: [1] A.L. Shluger, P.V. Sushko, and L.N. Kantorovich, Phys. Rev. B. 59, (1999) 2417. [2] K.M. Beck, A.G. Joly, and W.P. Hess, Sur. Sci. 451, 166 (2000). [3] W. P. Hess, A. G. Joly, K. M. Beck, D. P. Gerrity, P. V. Sushko, and A. L. Shluger, J. Chem. Phys. 115, 9463 (2001).

  5. MONITORING POTENTIAL DRUG INTERACTIONS AND REACTIONS VIA NETWORK ANALYSIS OF INSTAGRAM USER TIMELINES

    PubMed Central

    CORREIA, RION BRATTIG; LI, LANG; ROCHA, LUIS M.

    2015-01-01

    Much recent research aims to identify evidence for Drug-Drug Interactions (DDI) and Adverse Drug reactions (ADR) from the biomedical scientific literature. In addition to this “Bibliome”, the universe of social media provides a very promising source of large-scale data that can help identify DDI and ADR in ways that have not been hitherto possible. Given the large number of users, analysis of social media data may be useful to identify under-reported, population-level pathology associated with DDI, thus further contributing to improvements in population health. Moreover, tapping into this data allows us to infer drug interactions with natural products—including cannabis—which constitute an array of DDI very poorly explored by biomedical research thus far. Our goal is to determine the potential of Instagram for public health monitoring and surveillance for DDI, ADR, and behavioral pathology at large. Most social media analysis focuses on Twitter and Facebook, but Instagram is an increasingly important platform, especially among teens, with unrestricted access of public posts, high availability of posts with geolocation coordinates, and images to supplement textual analysis. Using drug, symptom, and natural product dictionaries for identification of the various types of DDI and ADR evidence, we have collected close to 7000 user timelines spanning from October 2010 to June 2015. We report on 1) the development of a monitoring tool to easily observe user-level timelines associated with drug and symptom terms of interest, and 2) population-level behavior via the analysis of co-occurrence networks computed from user timelines at three different scales: monthly, weekly, and daily occurrences. Analysis of these networks further reveals 3) drug and symptom direct and indirect associations with greater support in user timelines, as well as 4) clusters of symptoms and drugs revealed by the collective behavior of the observed population. This demonstrates that

  6. MONITORING POTENTIAL DRUG INTERACTIONS AND REACTIONS VIA NETWORK ANALYSIS OF INSTAGRAM USER TIMELINES.

    PubMed

    Correia, Rion Brattig; Li, Lang; Rocha, Luis M

    2016-01-01

    Much recent research aims to identify evidence for Drug-Drug Interactions (DDI) and Adverse Drug reactions (ADR) from the biomedical scientific literature. In addition to this "Bibliome", the universe of social media provides a very promising source of large-scale data that can help identify DDI and ADR in ways that have not been hitherto possible. Given the large number of users, analysis of social media data may be useful to identify under-reported, population-level pathology associated with DDI, thus further contributing to improvements in population health. Moreover, tapping into this data allows us to infer drug interactions with natural products-including cannabis-which constitute an array of DDI very poorly explored by biomedical research thus far. Our goal is to determine the potential of Instagram for public health monitoring and surveillance for DDI, ADR, and behavioral pathology at large. Most social media analysis focuses on Twitter and Facebook, but Instagram is an increasingly important platform, especially among teens, with unrestricted access of public posts, high availability of posts with geolocation coordinates, and images to supplement textual analysis. Using drug, symptom, and natural product dictionaries for identification of the various types of DDI and ADR evidence, we have collected close to 7000 user timelines spanning from October 2010 to June 2015.We report on 1) the development of a monitoring tool to easily observe user-level timelines associated with drug and symptom terms of interest, and 2) population-level behavior via the analysis of co-occurrence networks computed from user timelines at three different scales: monthly, weekly, and daily occurrences. Analysis of these networks further reveals 3) drug and symptom direct and indirect associations with greater support in user timelines, as well as 4) clusters of symptoms and drugs revealed by the collective behavior of the observed population. This demonstrates that Instagram

  7. Model selection and change detection for a time-varying mean in process monitoring

    NASA Astrophysics Data System (ADS)

    Burr, Tom; Hamada, Michael S.; Ticknor, Larry; Weaver, Brian

    2014-07-01

    Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation is an old topic; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of alarm threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual=data-prediction. This paper briefly reviews alarm threshold estimation, introduces model selection options, and considers several assumptions regarding the data-generating mechanism for PM residuals. Four PM examples from nuclear safeguards are included. One example involves frequent by-batch material balance closures where a dissolution vessel has time-varying efficiency, leading to time-varying material holdup. Another example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals. Our main focus is model selection to select a defensible model for normal behavior with a time-varying mean in a PM residual stream. We use approximate Bayesian computation to perform the model selection and parameter estimation for normal behavior. We then describe a simple lag-one-differencing option similar to that used to monitor non-stationary times series to monitor for off-normal behavior.

  8. Medium-Ring Effects on the Endo/Exo Selectivity of the Organocatalytic Intramolecular Diels-Alder Reaction.

    PubMed

    Hooper, Joel F; James, Natalie C; Bozkurt, Esra; Aviyente, Viktorya; White, Jonathan M; Holland, Mareike C; Gilmour, Ryan; Holmes, Andrew B; Houk, K N

    2015-12-18

    The intramolecular Diels-Alder reaction has been used as a powerful method to access the tricyclic core of the eunicellin natural products from a number of 9-membered-ring precursors. The endo/exo selectivity of this reaction can be controlled through a remarkable organocatalytic approach, employing MacMillan's imidazolidinone catalysts, although the mechanistic origin of this selectivity remains unclear. We present a combined experimental and density functional theory investigation, providing insight into the effects of medium-ring constraints on the organocatalyzed intramolecular Diels-Alder reaction to form the isobenzofuran core of the eunicellins. PMID:26560246

  9. Site selectivity in the reaction of Si(111)-(7 times 7) with Si sub 2 H sub 6

    SciTech Connect

    Avouris, Ph.; Bozso, F. )

    1990-03-22

    We find that the reaction of disilane with the Si(111)-(7{times}7) surface shows strong site selectivity. The reaction involves the fission of the Si-Si bond of Si{sub 2}H{sub 6} even at low temperatures and occurs preferentially at rest-atom sites of the 7{times}7 surface. The reaction of the products of the thermal dissociation of the surface-bound SiH{sub x} groups with surface dangling-bond sites is also site selective. We propose mechanisms to explain the above observations.

  10. Structure sensitive selectivity of the NO-CO reaction over rhodium single crystal catalysts

    SciTech Connect

    Peden, C.H.F.; Belton, D.N.; Schmieg, S.J.

    1995-05-01

    The control of automotive emissions of nitrogen oxides (NO{sub x}) in passenger cars is accomplished by a heavy reliance on after-treatment of the engine exhaust using catalytic converters that contain a mixture of platinum (Pt), rhodium (Rh), and sometimes palladium (Pd). In this paper we examine the effect of surface structure on the NO-CO activity and selectivity by comparing the reactivity of Rh(110) and Rh(111) single crystal catalysts. Selectivity for the two possible nitrogen containing products from NO reduction, N{sub 2}O and N{sub 2}, is particularly interesting. Here we report that the selectivity of the NO-CO reaction is quite sensitive to the structure of the Rh catalyst metal surface. (A more complete description of these studies will be published elsewhere.) The more open Rh(110) surface tends to make significantly less N{sub 2}O than Rh(111) under virtually all conditions that we probed with these experiments. Furthermore, under the conditions used in this study, the NO-CO activity over Rh(110), as measured by the rate of NO loss, is somewhat faster than over Rh(111) with a lower apparent activation energy (Ea), 27.6 vs. 35.4 kcal/mol. We attribute these results to the greater tendency of the more open (110) surface to dissociate NO. Notably, more facile NO dissociation on Rh(110) would lead to greater steady-state concentrations of adsorbed N-atoms; thus, the (110) surface favors N-atom recombination over the surface reaction between adsorbed NO and N-atoms to make N{sub 2}O. In support of this, post-reaction surface analysis shows only NO on the Rh(111) surface while the Rh(110) surface contains predominantly N-atoms and much lower concentrations of adsorbed NO. NO dissociation on Rh(110) is more favorable than on Rh(111), in part, because it is less-severely poisoned by high surface concentrations of NO. In addition, the more-open (110) surface may be intrinsically more active for the elementary process of dissociating adsorbed NO.

  11. Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins Using a Triple Quadrupole Mass Spectrometer.

    PubMed

    Wang, Evelyn H; Combe, Peter C; Schug, Kevin A

    2016-05-01

    Methods that can efficiently and effectively quantify proteins are needed to support increasing demand in many bioanalytical fields. Triple quadrupole mass spectrometry (QQQ-MS) is sensitive and specific, and it is routinely used to quantify small molecules. However, low resolution fragmentation-dependent MS detection can pose inherent difficulties for intact proteins. In this research, we investigated variables that affect protein and fragment ion signals to enable protein quantitation using QQQ-MS. Collision induced dissociation gas pressure and collision energy were found to be the most crucial variables for optimization. Multiple reaction monitoring (MRM) transitions for seven standard proteins, including lysozyme, ubiquitin, cytochrome c from both equine and bovine, lactalbumin, myoglobin, and prostate-specific antigen (PSA) were determined. Assuming the eventual goal of applying such methodology is to analyze protein in biological fluids, a liquid chromatography method was developed. Calibration curves of six standard proteins (excluding PSA) were obtained to show the feasibility of intact protein quantification using QQQ-MS. Linearity (2-3 orders), limits of detection (0.5-50 μg/mL), accuracy (<5% error), and precision (1%-12% CV) were determined for each model protein. Sensitivities for different proteins varied considerably. Biological fluids, including human urine, equine plasma, and bovine plasma were used to demonstrate the specificity of the approach. The purpose of this model study was to identify, study, and demonstrate the advantages and challenges for QQQ-MS-based intact protein quantitation, a largely underutilized approach to date.Graphical Abstract. PMID:26956437

  12. Fast liquid chromatography separation and multiple-reaction monitoring mass spectrometric detection of neurotransmitters.

    PubMed

    Hammad, Loubna A; Neely, Matthew; Bridge, Bob; Mechref, Yehia

    2009-07-01

    We describe here the fast LC-MS/MS separation of a mixture of neurotransmitters consisting of dopamine, epinephrine, norepinephrine, 3,4-dihydroxybenzylamine (DHBA), salsolinol, serotonin, and gamma-aminobutyric acid (GABA). The new UltiMate 3000 Rapid Separation system (RSLC) was successfully coupled to the 4000 QTRAP mass spectrometer operating in multiple-reaction monitoring (MRM) mode. The separation was attained using a 100 mm length, 2.2 microm particle size Acclaim column at a flow rate of 0.5 mL/min. The column back pressure was 350 bar, while the total run time including column re-equilibration was 5.2 min. The peak resolution was minimally affected by the fast separation. The RSLC-MRM separation was found to have a precision range based on peak area for 50 replicate runs of 2-5% CV for all analytes, and the reproducibility of the retention time for all analytes was found to range from 0-2% CV. The described method represents an almost seven times shorter analysis time of neurotransmitters using LC/MRM which is very useful in screening large quantities of biological samples for various neurotransmitters. PMID:19569096

  13. Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins Using a Triple Quadrupole Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Evelyn H.; Combe, Peter C.; Schug, Kevin A.

    2016-03-01

    Methods that can efficiently and effectively quantify proteins are needed to support increasing demand in many bioanalytical fields. Triple quadrupole mass spectrometry (QQQ-MS) is sensitive and specific, and it is routinely used to quantify small molecules. However, low resolution fragmentation-dependent MS detection can pose inherent difficulties for intact proteins. In this research, we investigated variables that affect protein and fragment ion signals to enable protein quantitation using QQQ-MS. Collision induced dissociation gas pressure and collision energy were found to be the most crucial variables for optimization. Multiple reaction monitoring (MRM) transitions for seven standard proteins, including lysozyme, ubiquitin, cytochrome c from both equine and bovine, lactalbumin, myoglobin, and prostate-specific antigen (PSA) were determined. Assuming the eventual goal of applying such methodology is to analyze protein in biological fluids, a liquid chromatography method was developed. Calibration curves of six standard proteins (excluding PSA) were obtained to show the feasibility of intact protein quantification using QQQ-MS. Linearity (2-3 orders), limits of detection (0.5-50 μg/mL), accuracy (<5% error), and precision (1%-12% CV) were determined for each model protein. Sensitivities for different proteins varied considerably. Biological fluids, including human urine, equine plasma, and bovine plasma were used to demonstrate the specificity of the approach. The purpose of this model study was to identify, study, and demonstrate the advantages and challenges for QQQ-MS-based intact protein quantitation, a largely underutilized approach to date.

  14. Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins Using a Triple Quadrupole Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Evelyn H.; Combe, Peter C.; Schug, Kevin A.

    2016-05-01

    Methods that can efficiently and effectively quantify proteins are needed to support increasing demand in many bioanalytical fields. Triple quadrupole mass spectrometry (QQQ-MS) is sensitive and specific, and it is routinely used to quantify small molecules. However, low resolution fragmentation-dependent MS detection can pose inherent difficulties for intact proteins. In this research, we investigated variables that affect protein and fragment ion signals to enable protein quantitation using QQQ-MS. Collision induced dissociation gas pressure and collision energy were found to be the most crucial variables for optimization. Multiple reaction monitoring (MRM) transitions for seven standard proteins, including lysozyme, ubiquitin, cytochrome c from both equine and bovine, lactalbumin, myoglobin, and prostate-specific antigen (PSA) were determined. Assuming the eventual goal of applying such methodology is to analyze protein in biological fluids, a liquid chromatography method was developed. Calibration curves of six standard proteins (excluding PSA) were obtained to show the feasibility of intact protein quantification using QQQ-MS. Linearity (2-3 orders), limits of detection (0.5-50 μg/mL), accuracy (<5% error), and precision (1%-12% CV) were determined for each model protein. Sensitivities for different proteins varied considerably. Biological fluids, including human urine, equine plasma, and bovine plasma were used to demonstrate the specificity of the approach. The purpose of this model study was to identify, study, and demonstrate the advantages and challenges for QQQ-MS-based intact protein quantitation, a largely underutilized approach to date.

  15. Multiple-reaction monitoring liquid chromatography mass spectrometry for monosaccharide compositional analysis of glycoproteins.

    PubMed

    Hammad, Loubna A; Saleh, Marwa M; Novotny, Milos V; Mechref, Yehia

    2009-06-01

    A simple, sensitive, and rapid quantitative LC-MS/MS assay was designed for the simultaneous quantification of free and glycoprotein bound monosaccharides using a multiple reaction monitoring (MRM) approach. This study represents the first example of using LC-MS/MS methods to simultaneously quantify all common glycoprotein monosaccharides, including neutral and acidic monosaccharides. Sialic acids and reduced forms of neutral monosaccharides are efficiently separated using a porous graphitized carbon column. Neutral monosaccharide molecules are detected as their alditol acetate anion adducts [M + CH(3)CO(2)](-) using electrospray ionization in negative ion MRM mode, while sialic acids are detected as deprotonated ions [M - H](-). The new method exhibits very high sensitivity to carbohydrates with limits of detection as low as 1 pg for glucose, galactose, and mannose, and below 10 pg for other monosaccharides. The linearity of the described approach spans over three orders of magnitudes (pg to ng). The method effectively quantified monosaccharides originating from as little as 1 microg of fetuin, ribonuclease B, peroxidase, and alpha(1)-acid glycoprotein human (AGP) with results consistent with literature values and with independent CE-LIF measurements. The method is robust, rapid, and highly sensitive. It does not require derivatization or postcolumn addition of reagents. PMID:19318280

  16. Quantification of histone modifications by parallel-reaction monitoring: a method validation.

    PubMed

    Sowers, James L; Mirfattah, Barsam; Xu, Pei; Tang, Hui; Park, In Young; Walker, Cheryl; Wu, Ping; Laezza, Fernanda; Sowers, Lawrence C; Zhang, Kangling

    2015-10-01

    Abnormal epigenetic reprogramming is one of the major causes leading to irregular gene expression and regulatory pathway perturbations, in the cells, resulting in unhealthy cell development or diseases. Accurate measurements of these changes of epigenetic modifications, especially the complex histone modifications, are very important, and the methods for these measurements are not trivial. By following our previous introduction of PRM to targeting histone modifications (Tang, H.; Fang, H.; Yin, E.; Brasier, A. R.; Sowers, L. C.; Zhang, K. Multiplexed parallel reaction monitoring targeting histone modifications on the QExactive mass spectrometer. Anal. Chem. 2014, 86 (11), 5526-34), herein we validated this method by varying the protein/trypsin ratios via serial dilutions. Our data demonstrated that PRM with SILAC histones as the internal standards allowed reproducible measurements of histone H3/H4 acetylation and methylation in the samples whose histone contents differ at least one-order of magnitude. The method was further validated by histones isolated from histone H3 K36 trimethyltransferase SETD2 knockout mouse embryonic fibroblasts (MEF) cells. Furthermore, histone acetylation and methylation in human neural stem cells (hNSC) treated with ascorbic acid phosphate (AAP) were measured by this method, revealing that H3 K36 trimethylation was significantly down-regulated by 6 days of treatment with vitamin C. PMID:26356480

  17. Monitoring benzene formation from benzoate in model systems by proton transfer reaction-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Aprea, Eugenio; Biasioli, Franco; Carlin, Silvia; Märk, Tilmann D.; Gasperi, Flavia

    2008-08-01

    The presence of benzene in food and in particular in soft drinks has been reported in several studies and should be considered in fundamental investigations about formation of this carcinogen compound as well as in quality control. Proton transfer reaction-mass spectrometry (PTR-MS) has been used here for rapid, direct quantification of benzene and to monitor its formation in model systems related to the use of benzoate, a common preservative, in presence of ascorbic acid: a widespread situation that yields benzene in, e.g., soft drinks and fruit juices. Firstly, we demonstrate here that PTR-MS allows a rapid determination of benzene that is in quantitative agreement with independent solid phase micro-extraction/gas chromatography (SPME/GC) analysis. Secondly, as a case study, the effect of different sugars (sucrose, fructose and glucose) on benzene formation is investigated indicating that they inhibit its formation and that this effect is enhanced for reducing sugars. The sugar-induced inhibition of benzene formation depends on several parameters (type and concentration of sugar, temperature, time) but can be more than 80% in situations that can be expected in the storage of commercial soft drinks. This is consistent with the reported observations of higher benzene concentrations in sugar-free soft drinks.

  18. Selective vibronic excitation of singlet oxygen--furan reactions in cryogenic matrices

    SciTech Connect

    Frei, H.; Pimentel, G.C.

    1983-10-01

    The reactions of 2,5-dimethylfuran (DMF), 2-methylfuran (MF), and furan with molecular oxygen to form endoperoxides have been induced in Ar and O/sub 2/ matrices at 12 K with selective vibronic excitation of O/sub 2/ using near infrared light. Reaction was induced through excitation of the /sup 1/..delta../sub g/(v' = 0, v' = 1) and /sup 1/..sigma../sub g//sup +/(v' = 0, v' = 1) O/sub 2/ states near 8000 and 13 100 cm/sup -1/, respectively, as well as by the (/sup 1/..delta../sub g/, /sup 1/..delta../sub g/) simultaneous transitions of (O/sub 2/)/sub 2/ at 15 900 and 17 300 cm/sup -1/. The /sup 1/..delta../sub g/ reverse arrow /sup 3/..sigma../sub g//sup -/ vibronic progression in solid O/sub 2/ was recorded by FTIR spectroscopy, whereas members of the /sup 1/..sigma../sub g//sup +/ reverse arrow /sup 3/..sigma../sub g//sup -/ and (/sup 1/..delta../sub g/, /sup 1/..delta../sub g/) reverse arrow (/sup 3/..sigma../sub g//sup -/, /sup 3/..sigma../sub g//sup -/) progressions in Ar matrices were located by ''reaction excitation'' spectroscopy. The DMF+O/sub 2/ reaction is a single photon process, apparently with unit quantum yield, for all vibronic levels excited. For MF+O/sub 2/(/sup 1/..delta../sub g/, v' = 0) and furan +O/sub 2/(/sup 1/..delta../sub g/, v' = 0), quantum yields were high, approx.0.6 and 0.4, respectively, but the reservoirs of reactive pairs were 10--20 times smaller than for DMF+O/sub 2/. The furan+O/sub 2/ reaction rate showed an /sup 18/O/sub 2/ isotope effect 0.78 +- 0.15, which can be interpreted in terms of quantum mechanical tunneling on the lowest singlet hypersurface.

  19. Using NMR, SIP, and MS measurements for monitoring subsurface biogeochemical reactions at the Rifle IFRC site

    NASA Astrophysics Data System (ADS)

    Rosier, C. L.; Keating, K.; Williams, K. H.; Robbins, M.; Ntarlagiannis, D.; Grunewald, E.; Walsh, D. O.

    2013-12-01

    The Rifle Integrated Field Research Challenge (IFRC) site is located on a former uranium ore-processing facility in Rifle, Colorado (USA). Although removal of tailings and contaminated surface materials was completed in 1996, residual uranium contamination of groundwater and subsurface sediments remains. Since 2002, research at the site has primarily focused on quantifying uranium mobility associated with stimulated and natural biogeochemical processes. Uranium mobility at the Rifle IFRC site is typically quantified through direct sampling of groundwater; however, direct sampling does not provide information about the solid phase material outside of the borehole and continuous measurements are not always possible due to multiple constraints. Geophysical methods have been suggested as a minimally invasive alternative approach for long term monitoring of biogeochemical reactions associated with uranium remediation. In this study, nuclear magnetic resonance (NMR), spectral induced polarization (SIP), and magnetic susceptibility (MS) are considered as potential geophysical methods for monitoring the biogeochemical reactions occurring at the Rifle IFRC site. Additionally, a pilot field study using an NMR borehole-logging tool was carried out at the Rifle IFRC site. These methods are sensitive to changes in the chemical and physical subsurface properties that occur as a result of bioremediation efforts; specifically, changes in the redox state and chemical form of iron, production of iron sulfide minerals, production of the magnetic mineral magnetite, and associated changes in the pore geometry. Laboratory experiments consisted of monitoring changes in the NMR, SIP and MS response of an acetate-amended columns packed with sediments from the Rifle IFRC site over the course of two months. The MS values remained relatively stable throughout the course of the experiment suggesting negligible production of magnetic phases (e.g. magnetite, pyrrhotite) as a result of enhanced

  20. Community air monitoring for pesticides. Part 1: selecting pesticides and a community.

    PubMed

    Segawa, Randy; Levine, Johanna; Neal, Rosemary; Brattesani, Madeline

    2014-03-01

    The CA Department of Pesticide Regulation (CDPR) developed methods to select pesticides and a community to fulfill criteria for an ambient air monitoring study it conducted as part of the CA Environmental Protection Agency's Environmental Justice Action Plan. Using a scoring system, CDPR evaluated 100 pesticides based on statewide-reported pesticide use, volatility, and priority in CDPR's risk assessment process (indicators of exposure and toxicity) to produce a list of pesticides to consider as candidates for monitoring. The CDPR also evaluated and scored 83 communities based on demographics and health factors, availability of cumulative impacts data, and reported pesticide use to create a list of community candidates. The scores provide relative rankings to distinguish more highly impacted communities from less impacted ones and to identify which pesticides might contribute most to potential adverse health effects. These methods use criteria that can be quantified, validated, and verified in order to provide a transparent and fair selection process. Based on public comments and highest scores, CDPR recommended 40 pesticides (including some of their degradation products) and one community for its yearlong monitoring study. The CDPR then further refined its list of pesticides by soliciting input from local and technical advisory groups. The CDPR plans to use these methods to select pesticides and communities in future monitoring activities. PMID:24362496

  1. Direct Synthesis of Highly Substituted Pyrroles and Dihydropyrroles Using Linear Selective Hydroacylation Reactions.

    PubMed

    Majhail, Manjeet K; Ylioja, Paul M; Willis, Michael C

    2016-06-01

    Rhodium(I) catalysts incorporating small bite-angle diphosphine ligands, such as (Cy2 P)2 NMe or bis(diphenylphosphino)methane (dppm), are effective at catalysing the union of aldehydes and propargylic amines to deliver the linear hydroacylation adducts in good yields and with high selectivities. In situ treatment of the hydroacylation adducts with p-TSA triggers a dehydrative cyclisation to provide the corresponding pyrroles. The use of allylic amines, in place of the propargylic substrates, delivers functionalised dihydropyrroles. The hydroacylation reactions can also be combined in a cascade process with a Rh(I) -catalysed Suzuki-type coupling employing aryl boronic acids, providing a three-component assembly of highly substituted pyrroles. PMID:27106284

  2. Templated synthesis of peptide nucleic acids via sequence-selective base-filling reactions.

    PubMed

    Heemstra, Jennifer M; Liu, David R

    2009-08-19

    The templated synthesis of nucleic acids has previously been achieved through the backbone ligation of preformed nucleotide monomers or oligomers. In contrast, here we demonstrate templated nucleic acid synthesis using a base-filling approach in which individual bases are added to abasic sites of a peptide nucleic acid (PNA). Because nucleobase substrates in this approach are not self-reactive, a base-filling approach may reduce the formation of nontemplated reaction products. Using either reductive amination or amine acylation chemistries, we observed efficient and selective addition of each of the four nucleobases to an abasic site in the middle of the PNA strand. We also describe the addition of single nucleobases to the end of a PNA strand through base filling, as well as the tandem addition of two bases to the middle of the PNA strand. These findings represent an experimental foundation for nonenzymatic information transfer through base filling. PMID:19722647

  3. Templated Synthesis of Peptide Nucleic Acids via Sequence-Selective Base-Filling Reactions

    PubMed Central

    2009-01-01

    The templated synthesis of nucleic acids has previously been achieved through the backbone ligation of preformed nucleotide monomers or oligomers. In contrast, here we demonstrate templated nucleic acid synthesis using a base-filling approach in which individual bases are added to abasic sites of a peptide nucleic acid (PNA). Because nucleobase substrates in this approach are not self-reactive, a base-filling approach may reduce the formation of nontemplated reaction products. Using either reductive amination or amine acylation chemistries, we observed efficient and selective addition of each of the four nucleobases to an abasic site in the middle of the PNA strand. We also describe the addition of single nucleobases to the end of a PNA strand through base filling, as well as the tandem addition of two bases to the middle of the PNA strand. These findings represent an experimental foundation for nonenzymatic information transfer through base filling. PMID:19722647

  4. Synergistic Effects in Bimetallic Palladium-Copper Catalysts Improve Selectivity in Oxygenate Coupling Reactions.

    PubMed

    Goulas, Konstantinos A; Sreekumar, Sanil; Song, Yuying; Kharidehal, Purnima; Gunbas, Gorkem; Dietrich, Paul J; Johnson, Gregory R; Wang, Y C; Grippo, Adam M; Grabow, Lars C; Gokhale, Amit A; Toste, F Dean

    2016-06-01

    Condensation reactions such as Guerbet and aldol are important since they allow for C-C bond formation and give higher molecular weight oxygenates. An initial study identified Pd-supported on hydrotalcite as an active catalyst for the transformation, although this catalyst showed extensive undesirable decarbonylation. A catalyst containing Pd and Cu in a 3:1 ratio dramatically decreased decarbonylation, while preserving the high catalytic rates seen with Pd-based catalysts. A combination of XRD, EXAFS, TEM, and CO chemisorption and TPD revealed the formation of CuPd bimetallic nanoparticles with a Cu-enriched surface. Finally, density functional theory studies suggest that the surface segregation of Cu atoms in the bimetallic alloy catalyst produces Cu sites with increased reactivity, while the Pd sites responsible for unselective decarbonylation pathways are selectively poisoned by CO. PMID:27195582

  5. Selective redox degradation of chlorinated aliphatic compounds by Fenton reaction in pyrite suspension.

    PubMed

    Che, Hyeongsu; Lee, Woojin

    2011-02-01

    Selective redox degradation of chlorinated aliphatics by Fenton reaction in pyrite suspension was investigated in a closed system. Carbon tetrachloride (CT) was used as a representative target of perchlorinated alkanes and trichloroethylene (TCE) was used as one of highly chlorinated alkenes. Degradation of CT in Fenton reaction was significantly enhanced by pyrite used as an iron source instead of soluble Fe. Pyrite Fenton showed 93% of CT removal in 140 min, while Fenton reaction with soluble Fe(II) showed 52% and that with Fe(III) 15%. Addition of 2-propanol to the pyrite Fenton system significantly inhibited degradation of TCE (99% to 44% of TCE removal), while degradation of CT was slightly improved by the 2-propanol addition (80-91% of CT removal). The result suggests that, unlike oxidative degradation of TCE by hydroxyl radical in pyrite Fenton system, an oxidation by the hydroxyl radical is not a main degradation mechanism for the degradation of CT in pyrite Fenton system but a reductive dechlorination by superoxide can rather be the one for the CT degradation. The degradation kinetics of CT in the pyrite Fenton system was decelerated (0.13-0.03 min(-1)), as initial suspension pH decreased from 3 to 2. The formation of superoxide during the CT degradation in the pyrite Fenton system was observed by electron spin resonance spectroscopy. The formation at initial pH 3 was greater than that at initial pH 2, which supported that superoxide was a main reductant for degradation of CT in the pyrite Fenton system. PMID:21186044

  6. Optically active P5-deltacyclenes: selective oxidation, ligand properties, and a diastereoselective rearrangement reaction.

    PubMed

    Keller, I C; Bauer, W; Heinemann, F W; Höhn, C; Rohwer, L; Zenneck, U

    2016-04-25

    Cage-chiral tetra-tert-butyl-P5-deltacyclene is accessible as a pair of highly enriched enantiomers and . The only secondary phosphorus atom P1 of the cage can be selectively oxidized by reaction with t-BuOOH. The P1-oxo species and , allow the direct determination of their ee values. Oxidation occurs with the complete retention of the optical activity of the compounds. The chiroptical properties of and are strongly dominated by their cage chirality, the oxygen atom does not contribute significantly. Elemental sulfur and selenium oxidize P5 with high preference to yield P5-thio- and P5-seleno-P5-deltacyclenes and of the intact cages again. Longer reaction time and more than stoichiometric amounts of selenium, leads to tri-seleno-P5-tetracycloundecane , a partially opened oxidized rearrangement product. The ligand properties of racemic were determined. Diphosphetane phosphorus atom P2 of is the active donor center to bind a Cr(CO)5 fragment, but a tautomerization of takes place if [(benzene)RuCl2]2 is added. A hydrogen atom migrates from P1 to the oxygen atom to form a phosphinous acid ligand. The lone pair of P1 is regenerated and acts as the active ligand function of the cage in this case. As for , the base n-BuLi induces an efficient cage rearrangement reaction of , where P1 and the neighboring carbon atom C4 containing its t-Bu substituent change places. C4 moves to its new position without breaking the bond with P5, this way forming the novel P1-oxo-P5-norsnoutene cage in a highly diastereoselective process. PMID:27055252

  7. Synthesis of heterogeneous catalysts with well shaped platinum particles to control reaction selectivity

    PubMed Central

    Lee, Ilkeun; Morales, Ricardo; Albiter, Manuel A.; Zaera, Francisco

    2008-01-01

    Colloidal and sol-gel procedures have been used to prepare heterogeneous catalysts consisting of platinum metal particles with narrow size distributions and well defined shapes dispersed on high-surface-area silica supports. The overall procedure was developed in three stages. First, tetrahedral and cubic colloidal metal particles were prepared in solution by using a procedure derived from that reported by El-Sayed and coworkers [Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924–1926]. This method allowed size and shape to be controlled independently. Next, the colloidal particles were dispersed onto high-surface-area solids. Three approaches were attempted: (i) in situ reduction of the colloidal mixture in the presence of the support, (ii) in situ sol-gel synthesis of the support in the presence of the colloidal particles, and (iii) direct impregnation of the particles onto the support. Finally, the resulting catalysts were activated and tested for the promotion of carbon–carbon double-bond cis-trans isomerization reactions in olefins. Our results indicate that the selectivity of the reaction may be controlled by using supported catalysts with appropriate metal particle shapes. PMID:18832170

  8. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    SciTech Connect

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  9. Survey of {sup 17}O excited states selectively populated by five-particle transfer reactions

    SciTech Connect

    Crisp, A. M.; Roeder, B. T.; Momotyuk, O. A.; Kemper, K. W.; Weintraub, W.; Wiedeking, M.; Keeley, N.

    2008-04-15

    The highly selective reactions {sup 12}C({sup 7}Li,d){sup 17}O and {sup 12}C({sup 6}Li,p){sup 17}O have been used to populate high-lying excited states in {sup 17}O up to 16 MeV in excitation. Several of the states are newly observed, and the existence of others in a previous study of {sup 12}C({sup 6}Li,p){sup 17}O is confirmed. The observed spectra show a clear gap of about 3 MeV, indicating an energy gap between 3p-2h and 5p-4h states in {sup 17}O. Differential cross section angular distributions have been extracted from the data for both reactions and they have been compared with finite-range DWBA calculations by assuming a ''{sup 5}He'' cluster transfer. Possible spins and parities are reported for states at 11.82 MeV (7/2{sup +}), 12.00 MeV (9/2{sup +}),12.22 MeV (7/2{sup -}), and 12.42 MeV (9/2{sup +})

  10. Using maximum entropy modeling for optimal selection of sampling sites for monitoring networks

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Kumar, Sunil; Barnett, David T.; Evangelista, Paul H.

    2011-01-01

    Environmental monitoring programs must efficiently describe state shifts. We propose using maximum entropy modeling to select dissimilar sampling sites to capture environmental variability at low cost, and demonstrate a specific application: sample site selection for the Central Plains domain (453,490 km2) of the National Ecological Observatory Network (NEON). We relied on four environmental factors: mean annual temperature and precipitation, elevation, and vegetation type. A “sample site” was defined as a 20 km × 20 km area (equal to NEON’s airborne observation platform [AOP] footprint), within which each 1 km2 cell was evaluated for each environmental factor. After each model run, the most environmentally dissimilar site was selected from all potential sample sites. The iterative selection of eight sites captured approximately 80% of the environmental envelope of the domain, an improvement over stratified random sampling and simple random designs for sample site selection. This approach can be widely used for cost-efficient selection of survey and monitoring sites.

  11. Importance of immunopharmacogenomics in cancer treatment: Patient selection and monitoring for immune checkpoint antibodies.

    PubMed

    Choudhury, Noura; Nakamura, Yusuke

    2016-02-01

    In the last 5 years, immune checkpoint antibodies have become established as anticancer agents for various types of cancer. These antibody drugs, namely cytotoxic T-lymphocyte-associated antigen, programmed death-1, and programmed death ligand-1 antibodies, have revealed relatively high response rates, the ability to induce durable responses, and clinical efficacy in malignancies not previously thought to be susceptible to immune-based strategies. However, because of its unique mechanisms of activating the host immune system against cancer as well as expensive cost, immune checkpoint blockade faces novel challenges in selecting appropriate patient populations, monitoring clinical responses, and predicting immune adverse events. The development of objective criteria for selecting patient populations that are likely to have benefit from these therapies has been vigorously investigated but still remains unclear. In this review, we describe immune checkpoint inhibition-specific challenges with patient selection and monitoring, and focus on approaches to remedy these challenges. We also discuss applications of the emerging field of immunopharmacogenomics for guiding selection and monitoring for anti-immune checkpoint treatment. PMID:26678880

  12. Color perception influences microhabitat selection of refugia and affects monitoring success for a cryptic anuran species.

    PubMed

    Cohen, Bradley S; MacKenzie, Michelle L; Maerz, John C; Farrell, Christopher B; Castleberry, Steven B

    2016-10-01

    Perceptual-biases are important for understanding an animal's natural history, identifying potential ecological traps, and for developing effective means to monitor individuals and populations. Despite research demonstrating anurans having a positive phototactic response towards blue colors, we do not yet understand if color cues are used functionally beyond sexual selection. The aim of our study was to determine if color cues are used in selecting microhabitat, and if anuran's blue-positive phototactic response could increase selection of artificial PVC refugia used to monitor cryptic camouflaging anuran species. We captured 32 Cope's Gray Treefrogs and placed them in mesh enclosures with three PVC tubes painted blue, brown, and white. Concurrently, we placed blue, brown, or unpainted white PVC tubes in stratified arrays around a treefrog breeding pond, and counted the number of occasions treefrogs occupied different colored PVC tubes. In the confined choice experiment, treefrogs selected blue tubes (48.3%) significantly more often than brown (28.5%) or white (23.2%) tubes. Our field experiment mirrored these findings (52.0% of capture events in blue, 29.0% in brown, and 19.0% in unpainted white tubes). Our results suggest color influences Cope's Gray Treefrog microhabitat selection, and they utilize color vision when choosing refugia. We demonstrate simple, small changes based on perceptual-biases can induce behaviors that may in turn have large impacts on sampling techniques used in monitoring and inventorying. Incorporating non-traditional physiological measures into animal inventorying and monitoring programs can be used in the future to improve conservation efforts. PMID:27235736

  13. Selectivity of Candida antarctica B lipase toward fatty acid and (Iso)propanol substrates in esterification reactions in organic media.

    PubMed

    Arsan, J; Parkin, K L

    2000-08-01

    Fatty acid (FA) selectivity of immobilized Candida antarctica B lipase was assessed as influenced by various cosubstrate systems for ester synthesis. Reaction mixtures contained a homologous series of even-chain n-acyl donor (C(4)(-)(16)) substrates (FA or their methyl esters, FAME) and a single alcohol cosubstrate (propanol, 2-propanol, or their acetate derivatives) in hexane. Multiple FA optima were often observed, with preferences for C(6) (or C(4)) followed by C(14) and sometimes C(10). The degree of selectivity among acyl donors was modest (up to 1.28-2.60, based on ratios of selectivity constants) and was dependent on the choice of cosubstrate system. Acyl group selectivity ranged up to 1.31-1.36 for [FA + alcohol], 1. 48-2.60 for [FAME + alcohol], 1.30-1.72 for [FA + alcohol acetate], and 1.28-1.88 [FAME + alcohol acetate] reaction systems. General shifts in selectivity were observed between short-chain (C(4)(-)(8)) and long-chain (C(10)(-)(16)) FA as groups with propanol cosubstrate, whereas shifts in reaction selectivity were observed toward specific FA(s) for 2-propanol cosubstrate. Selectivity among a series of alcohol cosubstrates ranged up to 13-fold in esterification reactions with C(6) FA. PMID:10956180

  14. Determination of 112 halogenated pesticides using gas chromatography/mass spectrometry with selected ion monitoring.

    PubMed

    Mercer, Gregory E

    2005-01-01

    A procedure for the analysis of 112 halogenated pesticides that do not contain phosphorus has been developed. The procedure uses gas chromatography with a mass selective detector (GC-MSD), electron impact ionization, and selected-ion monitoring. This GC-MSD procedure provided lower limits of quantitation and provided increased confirmational data compared to the traditional element-selective GC procedures that are commonly used for the detection of this class of pesticides. These analytical improvements were demonstrated by the 25 pesticides that were detected at < or =50 ng/g levels in a variety of fruit and vegetable matrixes using this procedure that were missed by the traditional element selective GC procedures. Validation of the procedure was performed using 20 representative target pesticides with an acetone extraction and a solid-phase extraction cleanup. These target pesticides were used to demonstrate repeatability and linearity of the chromatographic response and recovery from fruit and vegetable matrixes. PMID:16385996

  15. Quantitation of Permethylated N-Glycans through Multiple-Reaction Monitoring (MRM) LC-MS/MS

    PubMed Central

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L.; Mechref, Yehia

    2015-01-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan structures was determined to be 30% while it was found to be 35% for either fucosylated or sialylated structures The optimum CE for mannose and complex type N-glycan structures was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan structures in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these structures was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitudes. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan structures enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples. PMID:25698222

  16. Quantitation of Permethylated N-Glycans through Multiple-Reaction Monitoring (MRM) LC-MS/MS

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L.; Mechref, Yehia

    2015-04-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple-reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan was determined to be 30%, whereas it was found to be 35% for either fucosylated or sialylated N-glycans. The optimum CE for mannose and complex type N-glycan was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan compositions in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these glycans was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitude. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples.

  17. Homochiral Selectivity in RNA Synthesis: Montmorillonite-catalyzed Quaternary Reactions of D, L-Purine with D, L- Pyrimidine Nucleotides

    NASA Astrophysics Data System (ADS)

    Joshi, Prakash C.; Aldersley, Michael F.; Ferris, James P.

    2011-06-01

    Selective adsorption of D, L-ImpA with D, L-ImpU on the platelets of montmorillonite demonstrates an important reaction pathway for the origin of homochirality in RNA synthesis. Our earlier studies have shown that the individual reactions of D, L-ImpA or D, L-ImpU on montmorillonite catalyst produced oligomers which were only partially inhibited by the incorporation of both D- and L-enantiomers. Homochirality in these reactions was largely due to the formation of cyclic dimers that cannot elongate. We investigated the quaternary reactions of D, L-ImpA with D, L-ImpU on montmorillonite. The chain length of these oligomers increased from 9-mer to 11-mer as observed by HPLC, with a concominant increase in the yield of linear dimers and higher oligomers in the reactions involving D, L-ImpA with D, L-ImpU as compared to the similar reactions carried out with D-enantiomers only. The formation of cyclic dimers of U was completely inhibited in the quaternary reactions. The yield of cyclic dimers of A was reduced from 60% to 10% within the dimer fraction. 12 linear dimers and 3 cyclic dimers were isolated and characterized from the quaternary reaction. The homochirality and regioselectivity of dimers were 64.1% and 71.7%, respectively. Their sequence selectivity was shown by the formation of purine-pyrimidine (54-59%) linkages, followed by purine-purine (29-32%) linkages and pyrimidine-pyrimidine (9-13%) linkages. Of the 16 trimers detected, 10 were homochiral with an overall homochirality of 73-76%. In view of the greater homochirality, sequence- and regio- selectivity, the quaternary reactions on montmorillonite demonstrate an unexpectedly favorable route for the prebiotic synthesis of homochiral RNA compared with the separate reactions of enantiomeric activated mononucleotides.

  18. Selection of adduct-forming chemicals for human-monitoring studies

    SciTech Connect

    Not Available

    1991-07-01

    The U.S. EPA, through its Environmental Monitoring Systems Laboratory-Las Vegas (EMSL-LV) and its Health Effects Research Laboratory-Research Triangle Park (HERL-RTP) has been exploring the feasibility of using biological markers to monitor exposure to environmental chemicals. The participants began by compiling a list of chemicals of known or suspected health hazards and for which the potential for human exposure exists. The chemicals on the master list were then systematically evaluated for: (1) the potential for adduct-formation in vivo, (2) the availability of supportive adduct research data, (3) the identifiability of exposed population(s), and (4) the level of genetic activity. After considering all the relevant data, the participants selected and prioritized for further study a small group of chemicals considered to have the greatest potential for use in pilot, adduct-based, biological monitoring studies in human populations.

  19. Ultrasonic online monitoring of additive manufacturing processes based on selective laser melting

    NASA Astrophysics Data System (ADS)

    Rieder, Hans; Dillhöfer, Alexander; Spies, Martin; Bamberg, Joachim; Hess, Thomas

    2015-03-01

    Additive manufacturing processes have become commercially available and are particularly interesting for the production of free-formed parts. Selective laser melting allows to manufacture components by localized melting of successive layers of metal powder. In order to be able to describe and to understand the complex dynamics of selective laser melting processes more accurately, online measurements using ultrasound have been performed for the first time. In this contribution, we report on the integration of the measurement technique into the manufacturing facility and on a variety of promising monitoring results.

  20. Prognostic Health Monitoring System: Component Selection Based on Risk Criteria and Economic Benefit Assessment

    SciTech Connect

    Binh T. Pham; Vivek Agarwal; Nancy J Lybeck; Magdy S Tawfik

    2012-05-01

    Prognostic health monitoring (PHM) is a proactive approach to monitor the ability of structures, systems, and components (SSCs) to withstand structural, thermal, and chemical loadings over the SSCs planned service lifespans. The current efforts to extend the operational license lifetime of the aging fleet of U.S. nuclear power plants from 40 to 60 years and beyond can benefit from a systematic application of PHM technology. Implementing a PHM system would strengthen the safety of nuclear power plants, reduce plant outage time, and reduce operation and maintenance costs. However, a nuclear power plant has thousands of SSCs, so implementing a PHM system that covers all SSCs requires careful planning and prioritization. This paper therefore focuses on a component selection that is based on the analysis of a component's failure probability, risk, and cost. Ultimately, the decision on component selection depend on the overall economical benefits arising from safety and operational considerations associated with implementing the PHM system.

  1. The measurement of acetanilide in plasma by spectrophotometric and selected ion monitoring methods.

    PubMed

    Baty, J D; Playfer, J; Evans, D A; Lamb, J

    1977-08-01

    Plasma samples from volunteers who had received an oral dose of acetanilide have been analysed by gas chromatography mass spectrometry and ultraviolet absorption techniques. The gas chromatography mass spectrometry method involved extraction of the plasma and analysis of the acetanilide using selected ion monitoring with a deuterated internal standard. In the ultraviolet method the plasma was hydrolysed with acid to convert the acetanilide to aniline, and this compound was diazotized and coupled with N-1-naphthylethylene-diamine. The absorbance of the resulting complex was read at 550 nm. Acetanilide levels in plasma determined by the selected ion monitoring method were significantly lower than those measured by spectrophotometry. Pharmacokinetic data calculated from the results obtained using these two assays are very different and illustrate the need for an accurate and specific method of analysis. The major metabolites of acetanilide are shown not to interfere with these assays and the results suggest the possible presence of a new metabolite of acetanilide. PMID:912025

  2. Monitoring Time-Dependent Formation of Oligomers and Brown Carbon in Reactions of Glycolaldehyde, Methylglyoxal, and Amines

    NASA Astrophysics Data System (ADS)

    Espelien, B.; Galloway, M. M.; De Haan, D. O.

    2012-12-01

    Authors: Brenna Espelien, Melissa Galloway, and David De Haan The brown carbon components of atmospheric aerosol exhibit strong UV absorbance with a featureless 'tail' that extends into the visible range. Recent work has shown that brown carbon (or HULIS) is formed at least in part by aqueous-phase chemical reactions in the atmosphere. Reactions between aldehydes (such as glycolaldehyde and methylglyoxal) and amines create brown products that have similar light-absorbing spectra as HULIS extracted from atmospheric aerosol. However, the structures of these products have not been well-characterized. Bulk-phase reactions were monitored using LCMS and UV-Vis spectroscopy over a period of 2-3 weeks to see what products formed, whether oligomerization is occurring, and how this correlates with the development of absorbance peaks in the visible range. UV-Vis data shows that these reactions generally take several days to reach maximum absorbance in the visible range. For the glycolaldehyde/glycine reaction, the appearance of a strong absorber at about 400 nm correlated with the appearance of high-mass products at m/z 227, 363, 393, and 431. Additional reactions between aldehydes and amines that quickly produce brown products are being studied. We suggest that imine oligomers are major products of these reactions.

  3. Simulating future uncertainty to guide the selection of survey designs for long-term monitoring

    USGS Publications Warehouse

    Garman, Steven L.; Schweiger, E. William; Manier, Daniel J.

    2012-01-01

    A goal of environmental monitoring is to provide sound information on the status and trends of natural resources (Messer et al. 1991, Theobald et al. 2007, Fancy et al. 2009). When monitoring observations are acquired by measuring a subset of the population of interest, probability sampling as part of a well-constructed survey design provides the most reliable and legally defensible approach to achieve this goal (Cochran 1977, Olsen et al. 1999, Schreuder et al. 2004; see Chapters 2, 5, 6, 7). Previous works have described the fundamentals of sample surveys (e.g. Hansen et al. 1953, Kish 1965). Interest in survey designs and monitoring over the past 15 years has led to extensive evaluations and new developments of sample selection methods (Stevens and Olsen 2004), of strategies for allocating sample units in space and time (Urquhart et al. 1993, Overton and Stehman 1996, Urquhart and Kincaid 1999), and of estimation (Lesser and Overton 1994, Overton and Stehman 1995) and variance properties (Larsen et al. 1995, Stevens and Olsen 2003) of survey designs. Carefully planned, “scientific” (Chapter 5) survey designs have become a standard in contemporary monitoring of natural resources. Based on our experience with the long-term monitoring program of the US National Park Service (NPS; Fancy et al. 2009; Chapters 16, 22), operational survey designs tend to be selected using the following procedures. For a monitoring indicator (i.e. variable or response), a minimum detectable trend requirement is specified, based on the minimum level of change that would result in meaningful change (e.g. degradation). A probability of detecting this trend (statistical power) and an acceptable level of uncertainty (Type I error; see Chapter 2) within a specified time frame (e.g. 10 years) are specified to ensure timely detection. Explicit statements of the minimum detectable trend, the time frame for detecting the minimum trend, power, and acceptable probability of Type I error (

  4. Monitoring metal ion flux in reactions of metallothionein and drug-modified metallothionein by electrospray mass spectrometry.

    PubMed Central

    Zaia, J.; Fabris, D.; Wei, D.; Karpel, R. L.; Fenselau, C.

    1998-01-01

    The capabilities of electrospray ionization mass spectrometry are demonstrated for monitoring the flux of metal ions out of and into the metalloprotein rabbit liver metallothionein and, in one example, chlorambucil-alkylated metallothionein. Metal ion transfers may be followed as the reactions proceed in situ to provide kinetic information. More uniquely to this technique, metal ion stoichiometries may be determined for reaction intermediates and products. Partners used in these studies include EDTA, carbonic anhydrase, a zinc-bound hexamer of insulin, and the core domain of bacteriophage T4 gene 32 protein, a binding protein for single-stranded DNA. PMID:9828006

  5. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    SciTech Connect

    Schalla, Ronald; Webber, William D.; Smith, Ronald M.

    2001-11-05

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurgea) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  6. Curcumin analogues as selective fluorescence imaging probes for brown adipose tissue and monitoring browning.

    PubMed

    Zhang, Xueli; Tian, Yanli; Zhang, Hongbin; Kavishwar, Amol; Lynes, Matthew; Brownell, Anna-Liisa; Sun, Hongbin; Tseng, Yu-Hua; Moore, Anna; Ran, Chongzhao

    2015-01-01

    Manipulation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) can be promising new approaches to counter metabolic disorder diseases in humans. Imaging probes that could consistently monitor BAT mass and browning of WAT are highly desirable. In the course of our imaging probe screening, we found that BAT could be imaged with curcumin analogues in mice. However, the poor BAT selectivity over WAT and short emissions of the lead probes promoted further lead optimization. Limited uptake mechanism studies suggested that CD36/FAT (fatty acid transporter) probably contributed to the facilitated uptake of the probes. By increasing the stereo-hindrance of the lead compound, we designed CRANAD-29 to extend the emission and increase the facilitated uptake, thus increasing its BAT selectivity. Our data demonstrated that CRANAD-29 had significantly improved selectivity for BAT over WAT, and could be used for imaging BAT mass change in a streptozotocin-induced diabetic mouse model, as well as for monitoring BAT activation under cold exposure. In addition, CRANAD-29 could be used for monitoring the browning of subcutaneous WAT (sWAT) induced by β3-adrenoceptor agonist CL-316, 243. PMID:26269357

  7. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    SciTech Connect

    Schalla, Ronald; Webber, William D; Smith, Ronald M

    2001-11-05

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurges) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  8. Curcumin analogues as selective fluorescence imaging probes for brown adipose tissue and monitoring browning

    PubMed Central

    Zhang, Xueli; Tian, Yanli; Zhang, Hongbin; Kavishwar, Amol; Lynes, Matthew; Brownell, Anna-Liisa; Sun, Hongbin; Tseng, Yu-Hua; Moore, Anna; Ran, Chongzhao

    2015-01-01

    Manipulation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) can be promising new approaches to counter metabolic disorder diseases in humans. Imaging probes that could consistently monitor BAT mass and browning of WAT are highly desirable. In the course of our imaging probe screening, we found that BAT could be imaged with curcumin analogues in mice. However, the poor BAT selectivity over WAT and short emissions of the lead probes promoted further lead optimization. Limited uptake mechanism studies suggested that CD36/FAT (fatty acid transporter) probably contributed to the facilitated uptake of the probes. By increasing the stereo-hindrance of the lead compound, we designed CRANAD-29 to extend the emission and increase the facilitated uptake, thus increasing its BAT selectivity. Our data demonstrated that CRANAD-29 had significantly improved selectivity for BAT over WAT, and could be used for imaging BAT mass change in a streptozotocin-induced diabetic mouse model, as well as for monitoring BAT activation under cold exposure. In addition, CRANAD-29 could be used for monitoring the browning of subcutaneous WAT (sWAT) induced by β3-adrenoceptor agonist CL-316, 243. PMID:26269357

  9. Age-related slowing of response selection and production in a visual choice reaction time task.

    PubMed

    Woods, David L; Wyma, John M; Yund, E William; Herron, Timothy J; Reed, Bruce

    2015-01-01

    Aging is associated with delayed processing in choice reaction time (CRT) tasks, but the processing stages most impacted by aging have not been clearly identified. Here, we analyzed CRT latencies in a computerized serial visual feature-conjunction task. Participants responded to a target letter (probability 40%) by pressing one mouse button, and responded to distractor letters differing either in color, shape, or both features from the target (probabilities 20% each) by pressing the other mouse button. Stimuli were presented randomly to the left and right visual fields and stimulus onset asynchronies (SOAs) were adaptively reduced following correct responses using a staircase procedure. In Experiment 1, we tested 1466 participants who ranged in age from 18 to 65 years. CRT latencies increased significantly with age (r = 0.47, 2.80 ms/year). Central processing time (CPT), isolated by subtracting simple reaction times (SRT) (obtained in a companion experiment performed on the same day) from CRT latencies, accounted for more than 80% of age-related CRT slowing, with most of the remaining increase in latency due to slowed motor responses. Participants were faster and more accurate when the stimulus location was spatially compatible with the mouse button used for responding, and this effect increased slightly with age. Participants took longer to respond to distractors with target color or shape than to distractors with no target features. However, the additional time needed to discriminate the more target-like distractors did not increase with age. In Experiment 2, we replicated the findings of Experiment 1 in a second population of 178 participants (ages 18-82 years). CRT latencies did not differ significantly in the two experiments, and similar effects of age, distractor similarity, and stimulus-response spatial compatibility were found. The results suggest that the age-related slowing in visual CRT latencies is largely due to delays in response selection and

  10. SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    SciTech Connect

    Paul K.T. Liu

    2001-10-16

    This technical report summarizes our activities conducted in Yr II. In Yr I we successfully demonstrated the feasibility of preparing the hydrogen selective SiC membrane with a chemical vapor deposition (CVD) technique. In addition, a SiC macroporous membrane was fabricated as a substrate candidate for the proposed SiC membrane. In Yr II we have focused on the development of a microporous SiC membrane as an intermediate layer between the substrate and the final membrane layer prepared from CVD. Powders and supported thin silicon carbide films (membranes) were prepared by a sol-gel technique using silica sol precursors as the source of silicon, and phenolic resin as the source of carbon. The powders and films were prepared by the carbothermal reduction reaction between the silica and the carbon source. The XRD analysis indicates that the powders and films consist of SiC, while the surface area measurement indicates that they contain micropores. SEM and AFM studies of the same films also validate this observation. The powders and membranes were also stable under different corrosive and harsh environments. The effects of these different treatments on the internal surface area, pore size distribution, and transport properties, were studied for both the powders and the membranes using the aforementioned techniques and XPS. Finally the SiC membrane materials are shown to have satisfactory hydrothermal stability for the proposed application. In Yr III, we will focus on the demonstration of the potential benefit using the SiC membrane developed from Yr I and II for the water-gas-shift (WGS) reaction.

  11. Age-related slowing of response selection and production in a visual choice reaction time task

    PubMed Central

    Woods, David L.; Wyma, John M.; Yund, E. William; Herron, Timothy J.; Reed, Bruce

    2015-01-01

    Aging is associated with delayed processing in choice reaction time (CRT) tasks, but the processing stages most impacted by aging have not been clearly identified. Here, we analyzed CRT latencies in a computerized serial visual feature-conjunction task. Participants responded to a target letter (probability 40%) by pressing one mouse button, and responded to distractor letters differing either in color, shape, or both features from the target (probabilities 20% each) by pressing the other mouse button. Stimuli were presented randomly to the left and right visual fields and stimulus onset asynchronies (SOAs) were adaptively reduced following correct responses using a staircase procedure. In Experiment 1, we tested 1466 participants who ranged in age from 18 to 65 years. CRT latencies increased significantly with age (r = 0.47, 2.80 ms/year). Central processing time (CPT), isolated by subtracting simple reaction times (SRT) (obtained in a companion experiment performed on the same day) from CRT latencies, accounted for more than 80% of age-related CRT slowing, with most of the remaining increase in latency due to slowed motor responses. Participants were faster and more accurate when the stimulus location was spatially compatible with the mouse button used for responding, and this effect increased slightly with age. Participants took longer to respond to distractors with target color or shape than to distractors with no target features. However, the additional time needed to discriminate the more target-like distractors did not increase with age. In Experiment 2, we replicated the findings of Experiment 1 in a second population of 178 participants (ages 18–82 years). CRT latencies did not differ significantly in the two experiments, and similar effects of age, distractor similarity, and stimulus-response spatial compatibility were found. The results suggest that the age-related slowing in visual CRT latencies is largely due to delays in response selection and

  12. Highly selective monitoring of metals by using ion-imprinted polymers.

    PubMed

    Hande, Pankaj E; Samui, Asit B; Kulkarni, Prashant S

    2015-05-01

    Ion imprinting technology is one of the most promising tools in separation and purification sciences because of its high selectivity, good stability, simplicity and low cost. It has been mainly used for selective removal, preconcentration, sensing and few miscellaneous fields. In this review article, recent methodologies in the synthesis of IIPs have been discussed. For several applications, different parameters of IIP including complexing and leaching agent, pH, relative selectivity coefficient, detection limit and adsorption capacity have been evaluated and an attempt has been made to generalize. Biomedical applications mostly include selective removal of toxic metals from human blood plasma and urine samples. Wastewater treatment involves selective removal of highly toxic metal ions like Hg(II), Pb(II), Cd(II), As(V), etc. Preconcentration covers recovery of economically important metal ions such as gold, silver, platinum and palladium. It also includes selective preconcentration of lanthanides and actinides. In sensing, various IIP-based sensors have been fabricated for detection of toxic metal ions. This review article includes almost all metal ions based on the ion-imprinted polymer. At the end, the future outlook section presents the discussion on the advancement, corresponding merits and the need of continued research in few specific areas. Graphical Abstract IIPs for the selective monitoring of metals. PMID:25663338

  13. Aluminosilicates as controlled molecular environments for selective photochemical and catalytic reactions

    SciTech Connect

    Carrado, K.A.

    1986-01-01

    This dissertation concerns research that involves photochemical, catalytic and spectroscopic studies of clays, pillared clays and zeolites. Incorporation of uranyl ions into hectorite, montmorillonite, bentonite and vermiculite clays was monitored by XRD and luminescence methods. Excitation and emission characteristics were studied in order to understand the behavior of uranyl ions in clays after various thermal treatments. Luminescence lifetime measurements elucidated the number of uranyl sites. Uranyl-exchanged clays were found to absorb light at lower energies (445-455nm) than analogous uranyl-exchanged zeolites (425nm). Each uranyl-exchanged clay was tested as a catalyst for the photoassisted oxidation of isopropyl alcohol. Energy transfer (ET) between uranyl and Eu(III) ions in different zeolite framework systems was examined. The efficiency of ET (eta/sub t/) was found to be affected by the type of framework present. Pillared bentonites were examined in the hydrocracking of decane. A catalytically and spectroscopically active dopant ion, Cr(III), was introduced into the clays in both pillared and unpillared forms depending upon synthetic conditions. EPR and DRS were employed to monitor the environment of Cr(III) for determination of its location - whether in the micropore structure or associated with alumina pillars. Catalytic behavior based upon this variability of location was examined. Incorporation of Cr(III) ions into an alumina pillar was found to increase the stability and activity with respect to an alumina PILC catalyst. The results of these studies suggest that selective, efficient catalysts can be designed around inorganic ions in aluminosilicate supports.

  14. Selective Analysis of Sulfur-Containing Species in a Heavy Crude Oil by Deuterium Labeling Reactions and Ultrahigh Resolution Mass Spectrometry

    PubMed Central

    Wang, Xuxiao; Schrader, Wolfgang

    2015-01-01

    A heavy crude oil has been treated with deuterated alkylating reagents (CD3I and C2D5I) and directly analyzed without any prior fractionation and chromatographic separation by high-field Orbitrap Fourier Transform Mass Spectrometry (FTMS) and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) using electrospray ionization (ESI). The reaction of a polycyclic aromatic sulfur heterocycles (PASHs) dibenzothiophene (DBT), in the presence of silver tetrafluoroborate (AgBF4) with ethyl iodide (C2H5I) in anhydrous dichloroethane (DCE) was optimized as a sample reaction to study heavy crude oil mixtures, and the reaction yield was monitored and determined by proton nuclear magnetic resonance spectroscopy (1H-NMR). The obtained conditions were then applied to a mixture of standard aromatic CH-, N-, O- and S-containing compounds and then a heavy crude oil, and only sulfur-containing compounds were selectively alkylated. The deuterium labeled alkylating reagents, iodomethane-d3 (CD3I) and iodoethane-d5 (C2D5I), were employed to the alkylation of heavy crude oil to selectively differentiate the tagged sulfur species from the original crude oil. PMID:26694374

  15. Investigation of the d(γ,n)p reaction for gamma beam monitoring at ELI-NP

    NASA Astrophysics Data System (ADS)

    Matei, C.; Mueller, J. M.; Sikora, M. H.; Suliman, G.; Ur, C. A.; Weller, H. R.

    2016-05-01

    The Extreme Light Infrastructure - Nuclear Physics facility will deliver brilliant gamma beams with high spectral density and a high degree of polarization starting in 2018 in Bucharest-Magurele, Romania. Several monitoring instruments are proposed for measuring the spectral, temporal, and spatial characteristics of the gamma beam. The d(γ,n)p reaction has been investigated for its use in determining the gamma beam parameters in a series of measurements carried out at the High Intensity Gamma Source, Durham, U.S.A.. Measurements of the emitted neutrons have been performed using liquid scintillator and 6Li-glass neutron detectors at several incident gamma energies between 2.5 to 20 MeV . The experimental results presented in this paper have shown that an instrument based on the d(γ,n)p reaction can be used to monitor the intensity and polarization of the gamma beam to be produced at ELI-NP.

  16. Development of ESI-MS-based continuous enzymatic assay for real-time monitoring of enzymatic reactions of acetylcholinesterase.

    PubMed

    Fu, Qiang; Tang, Jun; Cui, Meng; Zheng, Zhong; Liu, Zhiqiang; Liu, Shuying

    2015-05-15

    The continuous enzymatic assay based on ESI-MS was developed to real-time monitoring of enzymatic reactions of acetylcholinesterase (AChE). The changes of product concentrations were continuously measured. Calibration curves were established for quantitative calculation. By this method, the Michaelis constant (Km) of acetylcholinesterase was determined to be 70.60±0.93μM and Huperzine A as an effective inhibitor of acetylcholinesterase displayed a mixed inhibition with competitive and noncompetitive inhibition behaviors. The half maximal inhibitory concentration (IC50) and inhibition constant (Ki) value of Huperzine A were also calculated as 48.51±1.16nM and 26.73±0.27nM, respectively. This method provides the rapid and accurate ways to monitor enzyme reactions. PMID:25875590

  17. Computational explorations of mechanisms and ligand-directed selectivities of copper-catalyzed Ullmann-type reactions.

    PubMed

    Jones, Gavin O; Liu, Peng; Houk, K N; Buchwald, Stephen L

    2010-05-01

    Computational investigations of ligand-directed selectivities in Ullmann-type coupling reactions of methanol and methylamine with iodobenzene by beta-diketone- and 1,10-phenanthroline-ligated Cu(I) complexes are reported. Density functional theory calculations using several functionals were performed on both the nucleophile formation and aryl halide activation steps of these reactions. The origin of ligand-directed selectivities in N- versus O-arylation reactions as described in a previous publication (J. Am. Chem. Soc. 2007, 129, 3490-3491) were studied and explained. The selectivities observed experimentally are derived not from initial Cu(I)(nucleophile) complex formation but from the subsequent steps involving aryl halide activation. The arylation may occur via single-electron transfer (SET) or iodine atom transfer (IAT), depending on the electron-donating abilities of the ligand and nucleophile. Mechanisms involving either oxidative addition/reductive elimination or sigma-bond metathesis are disfavored. SET mechanisms are favored in reactions promoted by the beta-diketone ligand; N-arylation is predicted to be favored in these cases, in agreement with experimental results. The phenanthroline ligand promotes O-arylation reactions via IAT mechanisms in preference to N-arylation reactions, which occur via SET mechanisms; this result is also in agreement with experimental results. PMID:20387898

  18. Noise Monitoring and Mapping for Some Pre-selected Locations of New Delhi, India

    NASA Astrophysics Data System (ADS)

    Akhtar, Nasim; Ahmad, Kafeel; Alam, Pervez

    2016-06-01

    Road traffic is one of the major sources of noise pollution in urban areas. Noise measurements and sound observation surveys, alone or in relationship, can be helpful in understanding the complex problem of noise pollution in urban areas. The main aim of this paper is monitoring and mapping for some pre-selected locations of New Delhi, India. The Leq, noise climate, and noise pollution levels were calculated, this was further represented in the form of cartographic maps for easy understanding. Result of noise monitoring shows that the values of Leq at Ashram ranges from 67.4 dB (A) to 82.3 dB (A) which is maximum of all pre-selected locations. It was found that the noise levels at all pre-selected location has been very high and above the permissible limits. Noise map shows that Ashram is the most affected area, most of the pre-selected locations are severally affected and the areas are in constant exposure of noise up to 80 dB vertically as well as horizontally.

  19. A selection rule for the directions of electronic fluxes during unimolecular pericyclic reactions in the electronic ground state

    NASA Astrophysics Data System (ADS)

    Manz, Jörn; Yamamoto, Kentaro

    2012-05-01

    Unimolecular pericyclic reactions in a non-degenerate electronic ground state proceed under the constraint of zero electronic angular momentum. This restriction engenders a selection rule on the directions of electronic fluxes. Accordingly, clockwise or counter-clockwise fluxes are 'forbidden', whereas pincer-like fluxes (which consist of concerted clockwise and counter-clockwise fluxes) are 'allowed'. The selection rule is illustrated for three reactions: the degenerate Cope rearrangement of hexadiene, hydrogen transfer in malonaldehyde, and double proton transfer in the formic acid dimer.

  20. Lewis acid catalysis of photochemical reactions. 5. Selective isomerization of conjugated butenoic and dienoic esters

    SciTech Connect

    Lewis, F.D.; Howard, D.K.; Barancyk, S.V.; Oxman, J.D.

    1986-05-28

    The effects of Lewis and Broensted acids upon the photoisomerization reactions of several conjugated butenoic and dienoic esters have been investigated. Lewis acids inhibit the photochemical deconjugation of ..cap alpha..,..beta..- to ..beta..,..gamma..-unsaturated butenoic esters and shift the photoequilibrium between E and Z isomers toward the Z isomer. As such, irradiation of E ..cap alpha..,..beta..-unsaturated esters in the presence of EtAlCl/sub 2/ provides a convenient method for the preparation of the thermodynamically less stable Z isomer. Irradiation of methyl (E,E)-2,4-hexadienoate and methyl (E,E)-5-phenyl-2,4-pentadienoate in the absence of added catalysts results in nonselective E,Z isomerization to give mixtures of all four stereoisomers in roughly comparable yields. In the presence of the Broensted acid trifluoroacetic acid, quantitative conversion of methyl 2,4-hexadienoates to methyl 3,4-hexadienoate is observed. The acid serves as a catalyst for the thermal 1,3-hydrogen shift of an allenic enol ester formed via a photochemical 1,5-hydrogen shift of the conjugated esters. Irradiation of the ground-state complexes of the conjugated esters with the Lewis acids EtAlCl/sub 2/ or BF/sub 3/ results in selective E,Z isomerization about the ..cap alpha..,..beta..-double bond in methyl 2,4-hexadienoate and the ..gamma..,delta-double bond in methyl 5-phenyl-24-pentadienoate. The mechanistic bases for the observed effects of Lewis acids are selective excitation of the more strongly absorbing E complex and more efficient isomerization of the excited E vs. Z complex.

  1. Large-scale control site selection for population monitoring: an example assessing Sage-grouse trends

    USGS Publications Warehouse

    Fedy, Bradley C.; O'Donnell, Michael; Bowen, Zachary H.

    2015-01-01

    Human impacts on wildlife populations are widespread and prolific and understanding wildlife responses to human impacts is a fundamental component of wildlife management. The first step to understanding wildlife responses is the documentation of changes in wildlife population parameters, such as population size. Meaningful assessment of population changes in potentially impacted sites requires the establishment of monitoring at similar, nonimpacted, control sites. However, it is often difficult to identify appropriate control sites in wildlife populations. We demonstrated use of Geographic Information System (GIS) data across large spatial scales to select biologically relevant control sites for population monitoring. Greater sage-grouse (Centrocercus urophasianus; hearafter, sage-grouse) are negatively affected by energy development, and monitoring of sage-grouse population within energy development areas is necessary to detect population-level responses. Weused population data (1995–2012) from an energy development area in Wyoming, USA, the Atlantic Rim Project Area (ARPA), and GIS data to identify control sites that were not impacted by energy development for population monitoring. Control sites were surrounded by similar habitat and were within similar climate areas to the ARPA. We developed nonlinear trend models for both the ARPA and control sites and compared long-term trends from the 2 areas. We found little difference between the ARPA and control sites trends over time. This research demonstrated an approach for control site selection across large landscapes and can be used as a template for similar impact-monitoring studies. It is important to note that identification of changes in population parameters between control and treatment sites is only the first step in understanding the mechanisms that underlie those changes. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  2. Resonance Raman spectroscopy as an in situ probe for monitoring catalytic events in a Ru-porphyrin mediated amination reaction.

    PubMed

    Zardi, Paolo; Gallo, Emma; Solan, Gregory A; Hudson, Andrew J

    2016-05-10

    Resonance Raman microspectroscopy has been widely used to study the structure and dynamics of porphyrins and metal complexes containing the porphyrin ligand. Here, we have demonstrated that the same technique can be adapted to examine the mechanism of a homogeneously-catalysed reaction mediated by a transition-metal-porphyrin complex. Previously it has been challenging to study this type of reaction using in situ spectroscopic monitoring due to the low stability of the reaction intermediates and elevated-temperature conditions. We have made a straightforward modification to the sample stage on a microscope for time-lapsed Raman microspectroscopy from reaction mixtures in these media. The allylic amination of unsaturated hydrocarbons by aryl azides, which can be catalysed by a ruthenium-porphyrin complex, has been used as an illustrative example of the methodology. The mechanism of this particular reaction has been studied previously using density-functional theory and kinetic approaches. The Raman measurements support the mechanism proposed in the earlier publications by providing the first experimental verification of a precursor reaction complex between the aryl azide and the ruthenium metal ion, and evidence for the formation of a mono-imido intermediate complex under conditions of high concentration of the reactant olefin. PMID:27070335

  3. Sensitive and Selective Determination of Orotic Acid in Biological Specimens Using a Novel Fluorogenic Reaction.

    PubMed

    Yin, Sheng; Dragusha, Shpend; Ejupi, Valon; Shibata, Takayuki; Kabashima, Tsutomu; Kai, Masaaki

    2015-07-01

    Orotic acid is an intermediate in the synthesis pathway of uridine-5'-monophosphate, and increases in body fluids of patients suffering from hereditary disorders such as orotic aciduria and hyperammonemia. In this study, we developed a spectrofluorometric method with or without high-performance liquid chromatography for the selective and sensitive quantification of orotic acid in human biological specimens, using 4-trifluoromethylbenzamidoxime (4-TFMBAO) as a fluorogenic reagent. This reagent provided intensive fluorescence for only orotic acid amongst 62 compounds including structurally related bio-substances such as nucleic acid bases, nucleosides, nucleotides, amino acids, vitamins, bilirubin, uric acid, urea, creatine, creatinine and sugars. Under optimized reaction conditions, orotic acid was reacted with 4-TFMBAO, K3[Fe(CN)6] and K2CO3 in an aqueous solution. The fluorescence produced from the orotic acid derivative was measured at an excitation of 340 nm and an emission of 460 nm. A concentration of 1.2 μM orotic acid per 1.0 mM creatinine in normal urine and 0.64 nmol orotic acid per 5.0 × 10(5) HeLa cells were determined by this method. The present method permitted the facile quantification of orotic acid in healthy human urine and cultured HeLa cells by spectrofluorometry and/or high-performance liquid chromatography. PMID:26026930

  4. Effects of solar radiation on manganese oxide reactions with selected organic compounds

    SciTech Connect

    Bertino, D.J.; Zepp, R.G. )

    1991-07-01

    The effects of sunlight on aqueous redox reactions between manganese oxides (MnO{sub x}) and selected organic substances are reported. No sunlight-induced rate enhancement was observed for the MnO{sub x} oxidation of substituted phenols, anisole, o-dichlorobenzene, or p-chloroaniline. On the other hand, solar radiation did accelerate the reduction of manganese oxides by dissolved organic matter (DOM) from aquatic environments. The photoreduction of MnO{sub x} by DOM was little affected by molecular oxygen in air-saturated water (250 {mu}M), but was inhibited by 2,6-dichloroindophenol (0.5-6 {mu}M), and excellent electron acceptor. MnO{sub x} reduction also was photosensitized by anthraquinone-2-sulfonate. These results indicate that the photoreduction probably involves electron transfer from excited states of sorbed DOM to the oxide surface. Wavelength studies indicated that ultraviolet-B radiation (280-320 nm) plays an important role in this photoreduction.

  5. Sensitive and selective electrochemical detection of artemisinin based on its reaction with p-aminophenylboronic acid.

    PubMed

    Wang, Chao; Zholudov, Yuriy T; Nsabimana, Anaclet; Xu, Guobao; Li, Jianping

    2016-09-21

    The electrochemical detection of artemisinin generally requires high oxidation potential or the use of complex electrode modification. We find that artemisinin can react with p-aminophenylboronic acid to produce easily electrochemically detectable aminophenol for the first time. By making use of the new reaction, we report an alternative method to detect artemisinin through the determination of p-aminophenol. The calibration curve for the determination of artemisinin is linear in the range of 2 μmol L(-1) to 200 μmol L(-1) with the detection limit of 0.8 μmol L(-1), which is more sensitive than other reported electrochemical methods. The relative standard deviation is 4.83% for the determination of 10 μM artemisinin. Because the oxidation potential of p-aminophenol is around 0 V, the present method is high selective. When 40 μM, 90 μM and 140 μM of artemisinin were spiked to compound naphthoquine phosphate tablet samples, the recoveries are 107.6%, 105.4% and 101.7%, respectively. This detection strategy is attractive for the detection of artemisinin and its derivatives. The finding that artemisinin can react with aromatic boronic acid has the potential to be exploited for the development of other sensors, such as fluorescence artemisinin sensors. PMID:27590543

  6. Extreme monolayer-selectivity of hydrogen-plasma reactions with graphene.

    PubMed

    Diankov, Georgi; Neumann, Michael; Goldhaber-Gordon, David

    2013-02-26

    We study the effect of remote hydrogen plasma on graphene deposited on SiO₂. We observe strong monolayer selectivity for reactions with plasma species, characterized by isotropic hole formation in the basal plane of monolayers and etching from the sheet edges. The areal density of etch pits on monolayers is 2 orders of magnitude higher than on bilayers or thicker sheets. For bilayer or thicker sheets, the etch pit morphology is also quite different: hexagonal etch pits of uniform size, indicating that etching is highly anisotropic and proceeds from pre-existing defects rather than nucleating continuously as on monolayers. The etch rate displays a pronounced dependence on sample temperature for monolayer and multilayer graphene alike: very slow at room temperature, peaking at 400 °C and suppressed entirely at 700 °C. Applying the same hydrogen plasma treatment to graphene deposited on the much smoother substrate mica leads to very similar phenomenology as on the rougher SiO₂, suggesting that a factor other than substrate roughness controls the reactivity of monolayer graphene with hydrogen plasma species. PMID:23327591

  7. Stability Study and Kinetic Monitoring of Cefquinome Sulfate Using Cyclodextrin-Based Ion-Selective Electrode: Application to Biological Samples.

    PubMed

    Yehia, Ali M; Arafa, Reham M; Abbas, Samah S; Amer, Sawsan M

    2016-01-01

    Two novel cefquinome sulfate (CFQ)-selective electrodes were performed with dibutyl sebacate as a plasticizer using a polymeric matrix of polyvinyl chloride. Sensor 1 was prepared using sodium tetraphenylborate as a cation exchanger without incorporation of ionophore, whereas 2-hydroxy propyl β-cyclodextrin was used as ionophore in sensor 2. A stable, reliable, and linear response was obtained in concentration ranges 3.2 × 10(-5) to 1 × 10(-2) mol/L and 1 × 10(-5) to 1 × 10(-2) mol/L for sensors 1 and 2, respectively. Both sensors could be sufficiently applied for quantitative determination of CFQ in the presence of degradation products either in bulk powder or in pharmaceutical formulations. Sensor 2 provided better selectivity and sensitivity, wider linearity range, and higher performance. Therefore it was used successfully for accurate determination of CFQ in biological fluids such as spiked plasma and milk samples. Furthermore, an online kinetic study was applied to the CFQ alkaline degradation process to estimate the reaction rate and half-life with feasible real-time monitoring. The developed sensors were found to be fast, accurate, sensitive, and precise compared with the manufacturer's reversed-phase chromatographic method. PMID:26822094

  8. Are phonological influences on lexical (mis)selection the result of a monitoring bias?

    PubMed Central

    Ratinckx, Elie; Ferreira, Victor S.; Hartsuiker, Robert J.

    2009-01-01

    A monitoring bias account is often used to explain speech error patterns that seem to be the result of an interactive language production system, like phonological influences on lexical selection errors. A biased monitor is suggested to detect and covertly correct certain errors more often than others. For instance, this account predicts that errors which are phonologically similar to intended words are harder to detect than ones that are phonologically dissimilar. To test this, we tried to elicit phonological errors under the same conditions that show other kinds of lexical selection errors. In five experiments, we presented participants with high cloze probability sentence fragments followed by a picture that was either semantically related, a homophone of a semantically related word, or phonologically related to the (implicit) last word of the sentence. All experiments elicited semantic completions or homophones of semantic completions, but none elicited phonological completions. This finding is hard to reconcile with a monitoring bias account and is better explained with an interactive production system. Additionally, this finding constrains the amount of bottom-up information flow in interactive models. PMID:18942035

  9. CO2-water-mineral reactions during CO2 leakage into glauconitic sands: geochemical and isotopic monitoring of batch experiments

    NASA Astrophysics Data System (ADS)

    Humez, P.; Lions, J.; Lagneau, V.; Negrel, Ph.

    2012-04-01

    The assessment of environmental impacts of carbon dioxide geological storage requires the investigation of the potential CO2 leakages into fresh groundwater reserves. The Albian aquifer of the Paris Basin was chosen as a case of study because i) the Paris Basin contains deep saline Jurassic and Triassic aquifers identified as targets by the French national program of CO2 geological storage and ii) the Albian aquifer is a deep freshwater resource of strategic national importance, above the Jurassic and Triassic formations. An experimental and a geochemical modelling approach were carried out in order to better understand the rock-water-CO2 interactions with two main objectives: to assess the evolution of the chemistry of the formation water and of the mineralogy of the solid phase during the interaction and to design a monitoring program for freshwater resources. The main focus is to select and develop suitable indirect indicators of the presence of CO2 in the aquifer. We present here the experimental results, which combines both major and trace elements and isotopic tools, some of them new in the CCS field. Batch reactors with a liquid/solid ratio of 10 made of appropriate materials (PTFE, stainless steel) were equipped with simultaneous controls on several parameters (pH measurement, gas phase composition, pressure, tightness…) after CO2 injection (PCO2= 2 bar; room temperature). Ten reactors were run simultaneously, over pre-determined durations of CO2-water-rock interaction (1, 7, 15 and 30 days). During the batch experiment, we observed major changes in several chemical parameters due to the CO2 injection. A sharp drop in pH from 6.6 to 4.9 was noticeable, immediately after the injection, due to CO2 dissolution in the water phase. Alkalinity varies from 1.3 mmol.L-1 in the initial water to 2.0 mmol.L-1 at the end of the 1-month experiment. Four types of ion behaviors are observed: (1) calcium, silicon and magnesium concentrations increase during the 1-month

  10. Mitigating the effects of preferentially selected monitoring sites for environmental policy and health risk analysis.

    PubMed

    Shaddick, Gavin; Zidek, James V; Liu, Yi

    2016-08-01

    The potential effects of air pollution are a major concern both in terms of the environment and in relation to human health. In order to support both environmental and health policy there is a need for accurate estimates of the exposures that populations might experience. The information for this typically comes from environmental monitoring networks but often the locations of monitoring sites are preferentially located in order to detect high levels of pollution. Using the information from such networks has the potential to seriously affect the estimates of pollution that are obtained and that might be used in health risk analyses. In this context, we explore the topic of preferential sampling within a long-standing network in the UK that monitored black smoke due to concerns about its effect on public health, the extent of which came to prominence during the famous London fog of 1952. Abatement measures led to a decline in the levels of black smoke and a subsequent reduction in the number of monitoring locations that were thought necessary to provide the information required for policy support. There is evidence of selection bias during this process with sites being kept in the most polluted areas. We assess the potential for this to affect the estimates of risk associated air pollution and show how using Bayesian spatio-temporal exposure models may be used to attempt to mitigate the effects of preferential sampling in this case. PMID:27494959

  11. Sensor Selection to Support Practical Use of Health-Monitoring Smart Environments.

    PubMed

    Cook, Diane J; Holder, Lawrence B

    2011-07-01

    The data mining and pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track activities that people normally perform as part of their daily routines. One question that frequently arises, however, is how many smart home sensors are needed and where should they be placed in order to accurately recognize activities? We employ data mining techniques to look at the problem of sensor selection for activity recognition in smart homes. We analyze the results based on six data sets collected in five distinct smart home environments. PMID:21760755

  12. The use of selected interventions in monitoring primary health care implementation in rural Nigeria.

    PubMed

    Egwu, I N

    1992-03-01

    Nigeria's Primary Health Care (PHC)-based health system development aims to strengthen PHC in the local government areas (LGA) through technical planning and implementation that emphasize maternal and child health services. Convenient variables, including expanded programme on immunization (EPI), antenatal care (ANC) utilization and attended births, were selected as interventions to monitor the progress of implementation of PHC activities during 1985-90 in Odukpani LGA. Analysis of available data at the LGA showed that immunization coverage for most EPI antigens increased; ANC services showed increased utilization; health worker-attended births increased as traditional birth deliveries declined during the period. Some of the increases were modest but are considered important. The study offers a pilot approach to monitoring implementation of PHC activities in Odukpani LGA. The implications of the findings for similar studies are discussed. PMID:1589661

  13. Development of a quantitative basis for selection of spectral features in a vegetation monitoring system

    NASA Technical Reports Server (NTRS)

    Phinney, D. E.; Smith, J. H.; Trichel, M. C.

    1984-01-01

    The development of an objective methodology for evaluation of alternative Landsat data preprocessing options, spectral transform features for monitoring vegetation, and feature summarization algorithms is presented. Based on estimates of spectral separability between a target class and its confusion classes, analysis of variance techniques are used to evaluate potential design options for large scale vegetation monitoring systems. Case studies are presented for early season and through the season spring small grains separation and for barley/other spring small grains separation. It is concluded that a basis for efficient, objective selection among alternative feature extraction approaches has been established for the large scale vegetation mapping/inventory problem. Although the approach has been demonstrated for the unitemporal class separability case, extensions to the multitemporal case are under development.

  14. Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media.

    PubMed

    Ghaffari, Seyed Alireza; Caron, William-O; Loubier, Mathilde; Normandeau, Charles-O; Viens, Jeff; Lamhamedi, Mohammed S; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3- in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications. PMID:26197322

  15. Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media

    PubMed Central

    Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Normandeau, Charles-O.; Viens, Jeff; Lamhamedi, Mohammed S.; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3− in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications. PMID:26197322

  16. Anomalous Reactivity and Selectivity in the Intermolecular Diels-Alder Reactions of Multisubstituted Acyclic Dienes with Geometrical Isomers of Enals.

    PubMed

    Zhou, Jia-Hui; Cai, Sai-Hu; Xu, Yun-He; Loh, Teck-Peng

    2016-05-20

    A Lewis-acid catalyzed intermolecular Diels-Alder reaction between multisubstituted acyclic dienes and the E and Z isomers of α,β-enals was studied. It was found that the diene reacted selectively with the Z-isomer of the α,β-enal. PMID:27132468

  17. Regiospecific Epoxidation of Carvone: A Discovery-Oriented Experiment for Understanding the Selectivity and Mechanism of Epoxidation Reactions

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.; Lai, Y. M.; Siu, Yuk-Hong

    2006-01-01

    This article describes a discovery-oriented experiment for demonstrating the selectivity of two epoxidation reactions. Peroxy acids and alkaline H[subscript 2]O[subscript 2] are two commonly used reagents for alkene epoxidation. The former react preferentially with electron-rich alkenes while the latter works better with alpha,beta-unsaturated…

  18. Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines.

    PubMed

    Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu

    2016-01-01

    In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved. PMID:27136561

  19. Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines

    PubMed Central

    Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu

    2016-01-01

    In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved. PMID:27136561

  20. State-selective reaction dynamics of atomic oxygen with molecular hydrogen, methanethiol, and ethanethiol

    NASA Astrophysics Data System (ADS)

    Han, Jiande

    2000-11-01

    Reaction dynamics have been studied for the following four systems: (1)The rotational state distribution of the nascent NO fragment generated from the photodissociation of (i- C3H7) 3SiONO near 226 nm (S2 absorption band) has been obtained via 1+1 resonance-enhanced multiphoton ionization (REMPI) spectroscopy and with a time-of-flight mass spectrometer (TOFMS). The absence of vibrational excitation and relative cold rotational distribution suggest a direct dissociation mechanism upon photolysis of the parent molecule. (2)The reaction dynamics of O(3P) and H2(v = 1). The quantum state specific reactant H2(v = 1) was prepared effectively via Stimulated Raman Pumping (SRP). The internal quantum state distribution of the product OH (X 2Π1/2,3/2) was interrogated by laser-induced fluorescence (LIF) spectroscopy. The one-quantum vibrational excitation of hydrogen not only dramatically increases the reaction rate, but also may have slightly changed the reaction mechanism from the known ground-state hydrogen reaction. (3)Experimental and ab initio studies of the reaction dynamics of O(3P) + CH3SH. Experiments utilized LIF detection of OH, CH3S, SO, and also HSO. Theoretically, ab initio energy evaluations using Gaussian 94 software and G2MP2 theory, and ab initio molecular dynamics were carried out for the reaction. The combination of the experimental and theoretical works has resulted in great insight into the reaction mechanism. (4)Experimental study of the reaction dynamics of O(3P) + C2H 5SH by the similar experimental measurements to the reaction O( 3P) + CH3SH. The reaction O(3P) + C 2H5SD further eliminated the ambiguity in confirming the each other in suggesting the proper reaction mechanisms for the two reaction systems.

  1. Key role of temperature monitoring in interpretation of microwave effect on transesterification and esterification reactions for biodiesel production.

    PubMed

    Mazubert, Alex; Taylor, Cameron; Aubin, Joelle; Poux, Martine

    2014-06-01

    Microwave effects have been quantified, comparing activation energies and pre-exponential factors to those obtained in a conventionally-heated reactor for biodiesel production from waste cooking oils via transesterification and esterification reactions. Several publications report an enhancement of biodiesel production using microwaves, however recent reviews highlight poor temperature measurements in microwave reactors give misleading reaction performances. Operating conditions have therefore been carefully chosen to investigate non-thermal microwave effects alone. Temperature is monitored by an optical fiber sensor, which is more accurate than infrared sensors. For the transesterification reaction, the activation energy is 37.1kJ/mol (20.1-54.2kJ/mol) in the microwave-heated reactor compared with 31.6kJ/mol (14.6-48.7kJ/mol) in the conventionally-heated reactor. For the esterification reaction, the activation energy is 45.4kJ/mol (31.8-58.9kJ/mol) for the microwave-heated reactor compared with 56.1kJ/mol (55.7-56.4kJ/mol) for conventionally-heated reactor. The results confirm the absence of non-thermal microwave effects for homogenous-catalyzed reactions. PMID:24717320

  2. Raman spectroscopy as a tool for monitoring mesoscale continuous-flow organic synthesis: Equipment interface and assessment in four medicinally-relevant reactions

    PubMed Central

    Hamlin, Trevor A

    2013-01-01

    Summary An apparatus is reported for real-time Raman monitoring of reactions performed using continuous-flow processing. Its capability is assessed by studying four reactions, all involving formation of products bearing α,β-unsaturated carbonyl moieties; synthesis of 3-acetylcoumarin, Knoevenagel and Claisen–Schmidt condensations, and a Biginelli reaction. In each case it is possible to monitor the reactions and also in one case, by means of a calibration curve, determine product conversion from Raman spectral data as corroborated by data obtained using NMR spectroscopy. PMID:24062851

  3. Patient selection for ambulatory cardiac monitoring in the Indian healthcare environment

    PubMed Central

    Shrivastav, Maneesh; Shrivastav, Rajendra; Makkar, Jitendra; Biffi, Mauro

    2013-01-01

    Cardiovascular disease (CVD) in India comprises the bulk of non-communicable diseases, resulting in 2 million deaths per year. The incidence of CVD in India is estimated to be up to four times higher than in other countries. Though the quantification of the prevalence of rhythm disorders in India is not available, it can be inferred to be proportionately high. Identification and treatment of arrhythmia is limited by several socioeconomic factors including low health insurance penetration, limited reimbursement and high out-of-pocket expenditures. Thus, there exists a need in India to (1) select an appropriate tool that is both high yielding and cost effective and (2) employ a suitable patient selection method. This paper focuses on these two aspects for cardiac arrhythmia diagnosis using ambulatory monitoring technology, while keeping in mind the dynamics of the Indian healthcare setting. PMID:27326100

  4. Determination of molecular weight and other characteristics of co- and terpolymers using automatic continuous online monitoring of polymerization reactions (ACOMP)

    NASA Astrophysics Data System (ADS)

    Enohnyaket, Pascal E. A.

    The Automatic Continuous Online Monitoring of Polymerization reactions (ACOMP), is a technique developed by the Reed Research Group at Tulane University. By simultaneously monitoring and combining signals from a continuously dilute reactor stream, detectors such as a multi-angle light scattering detector, near infra-red spectrometer, viscometer, differential refractive index, and a full wavelength UV/Visible detector were used in a model-independent fashion to follow the weight-average molecular weight, intrinsic viscosity, the concentrations of each comonomer, and hence the evolution of the average instantaneous and cumulative compositions along the chains as comonomers are consumed. The goal of this dissertation is to make the ACOMP system more useful in very complex polymerization situations by improving it with additional detectors and formalisms (such as a new expression for computing the molecular weight a copolymer of nth degree) and to exploit its robustness in situations where traditional routes fail or are of limited value. By providing a continuum of data, ACOMP allows polymer scientists to better understand and control new reaction schemes. At the pilot plant, it can be used to optimize reaction conditions. Because the ACOMP system is relatively cheap, user friendly, can be environmentally friendly, less bulky and very efficient, it is my desire to use ACOMP to solve some of the problems in the petroleum, plastic and drug manufacturing industries in Cameroon (and Africa).

  5. Comparative fatty acid selectivity of lipases in esterification reactions with glycerol and diol analogues in organic media.

    PubMed

    Lee, C H; Parkin, K L

    2000-01-01

    Reaction selectivity of Pseudomonas cepacia, Rhizomucor miehei, and Candida antarctica B lipases was assessed in multicompetitive esterification reaction mixtures containing an homologous series of n-chain even carbon number fatty acid (FA; C4-C18) substrates and a single alcohol cosubstrate (glycerol, 1,2-propanediol (1,2-PD), or 1, 3-propanediol (1,3-PD)) in tert-butyl methyl ether at water activity of 0.69 or 0.90 and a reaction temperature of 35 degrees C. For P. cepacia lipase, the ordinal patterns of FA selectivities observed were, with glycerol, C8 > C10, C6, C16 > other FA; with 1,2-PD and 1, 3-PD, C16 > C8 > C14 > other FA. For R. miehei lipase, the ordinal patterns of FA selectivities observed were, with glycerol, C8 > C12 > C10, C14 > other FA; with 1,2-PD and 1,3-PD, C8 > C12 > other FA. For C. antarctica B lipase, the ordinal patterns of FA selectivities observed were, with glycerol, C8 > C10, C6, C12 > other FA; with 1, 2-PD, C8 > C10, C6 > other FA; and with 1,3-PD, C8 > C10 > C6 > other FA. The differences in selectivity among FA ranged up to 16-fold, depending upon the lipase and alcohol cosubstrate used. These findings represent intrinsic and substrate-modulated features of FA selectivities that are of particular relevance to the use of lipases for acylglycerol synthesis reactions. PMID:10835238

  6. [Selective N-heterylazimine inhibition of reactions catalyzed by rat liver glutathione transferase].

    PubMed

    Stulovskiĭ, A V; Voznyĭ, I V; Rozengart, E V; Suvorov, A A; Khovanskikh, A E

    1992-01-01

    Three reactions (nucleophile substitution, thiolysis and N-deoxygenation) catalyzed by rat liver glutathione transferase have been studied using several N-heterylazimine inhibitors. The inhibitors are sharply different in their effectiveness in the transferase reactions. Their efficiency depends on their structure. The mechanism which underlies the found regularities is suggested. PMID:1413125

  7. Towards in-situ process monitoring in selective laser sintering using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Guan, Guangying; Lu, Zeng H.; Hirsch, Matthias; Goodridge, Ruth; Childs, David T. D.; Matcher, Stephen J.; Clare, Adam T.; Groom, Kristian M.

    2016-04-01

    Selective laser sintering (SLS) enables fast, flexible and cost-efficient production of parts directly from 3D CAD data. However, compared with more established machine tools, there is a marked lack of process monitoring and feedback control of key process variables to optimize production parameters in-situ. We apply optical coherence tomography (OCT) to evaluate components produced by SLS and suggest a route for its application in in-situ process monitoring within the SLS tool for real-time monitoring of the SLS process for assurance, or even dynamic correction of defects during the build. OCT is shown to be a viable technique for evaluation of both surface and sub-surface features built into a part either by design or from poor sintering or non-homogeneous powder spreading. We demonstrate detection and quantification of surface defects on a ~30 μm scale in a Polyamide (PA2200) part, resolving `built-in' fine features within a 200 to 400μm depth below the surface.

  8. Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates

    PubMed Central

    Spring, Bryan Q.; Abu-Yousif, Adnan O.; Palanisami, Akilan; Rizvi, Imran; Zheng, Xiang; Mai, Zhiming; Anbil, Sriram; Sears, R. Bryan; Mensah, Lawrence B.; Goldschmidt, Ruth; Erdem, S. Sibel; Oliva, Esther; Hasan, Tayyaba

    2014-01-01

    Drug-resistant micrometastases that escape standard therapies often go undetected until the emergence of lethal recurrent disease. Here, we show that it is possible to treat microscopic tumors selectively using an activatable immunoconjugate. The immunoconjugate is composed of self-quenching, near-infrared chromophores loaded onto a cancer cell-targeting antibody. Chromophore phototoxicity and fluorescence are activated by lysosomal proteolysis, and light, after cancer cell internalization, enabling tumor-confined photocytotoxicity and resolution of individual micrometastases. This unique approach not only introduces a therapeutic strategy to help destroy residual drug-resistant cells but also provides a sensitive imaging method to monitor micrometastatic disease in common sites of recurrence. Using fluorescence microendoscopy to monitor immunoconjugate activation and micrometastatic disease, we demonstrate these concepts of “tumor-targeted, activatable photoimmunotherapy” in a mouse model of peritoneal carcinomatosis. By introducing targeted activation to enhance tumor selectively in complex anatomical sites, this study offers prospects for catching early recurrent micrometastases and for treating occult disease. PMID:24572574

  9. Spoilage of foods monitored by native fluorescence spectroscopy with selective excitation wavelength

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Wang, Wubao; Alfano, Robert R.

    2015-03-01

    The modern food processing and storage environments require the real-time monitoring and rapid microbiological testing. Optical spectroscopy with selective excitation wavelengths can be the basis of a novel, rapid, reagent less, noncontact and non-destructive technique for monitoring the food spoilage. The native fluorescence spectra of muscle foods stored at 2-4°C (in refrigerator) and 20-24°C (in room temperature) were measured as a function of time with a selective excitation wavelength of 340nm. The contributions of the principal molecular components to the native fluorescence spectra of meat were measured spectra of each fluorophore: collagen, reduced nicotinamide adenine dinucleotide (NADH), and flavin. The responsible components were extracted using a method namely Multivariate Curve Resolution with Alternating Least-Squares (MCR-ALS). The native fluorescence combined with MCR-ALS can be used directly on the surface of meat to produce biochemically interpretable "fingerprints", which reflects the microbial spoilage of foods involved with the metabolic processes. The results show that with time elapse, the emission from NADH in meat stored at 24°C increases much faster than that at 4°C. This is because multiplying of microorganisms and catabolism are accompanied by the generation of NADH. This study presents changes of relative content of NADH may be used as criterion for detection of spoilage degree of meat using native fluorescence spectroscopy.

  10. Monitoring and mapping selected riparian habitat along the lower Snake River

    SciTech Connect

    Downs, J. L; Tiller, B. L; Witter, M.; Mazaika, R.

    1996-01-01

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  11. Monitoring growth in finishers by weighing selected groups of pigs - A dynamic approach.

    PubMed

    Stygar, A H; Kristensen, A R

    2016-03-01

    Application of BW monitoring methods for the whole batch of pigs is not common in commercial herds. Instead, farm managers may regularly weigh a chosen subset of pigs (observed group) and use the obtained information for monitoring, forecasting, and decision support. The objective of this study was to construct a model for growth monitoring and forecasting in pig fattening herds and use the developed model framework to quantify the value of information on BW. The dynamic process of pig growing was described by means of a dynamic linear model (DLM) with Kalman filtering. For this study, data from 9 fattening cycles with the total registration for 9,800 pigs were used. The variance components were estimated by fitting a mixed-effects linear model on selected BW measurements. The obtained model was evaluated on its performance in forecasting the number of pigs ready to deliver from the whole batch and from a particular pen given the level of information on a reference data set consisting of 2 batches (Batch 3 [B1] and Batch 4 [B2]). Scenarios with a different frequency of observations (only 1 selected week, every second week, or weekly) on individual and aggregated levels for an observed group comprising 1 pen (36 pigs, which constitute 7.5% of pigs in a batch) or 2 pens (15.5% of pigs) were analyzed. Moreover, results with only initial herd information and insertion BW at the batch, pen, and pig level were presented. The model can be used for growth monitoring of the batch and for prediction of the number of pigs ready for slaughter in a given week (i.e., with a BW exceeding a threshold, which, in this study, is set to 105 kg). With an increased level of information, both accuracy (measured by the mean absolute deviation [MAD] of actual number of pigs above 105 kg from predicted number) and precision (measured by CV) of the model continue to improve. When monitoring all pigs at insertion and the observed groups every week (15.5% of pigs) compared with predictions

  12. Monitoring enzyme-catalyzed reactions in micromachined nanoliter wells using a conventional microscope-based microarray reader

    NASA Astrophysics Data System (ADS)

    van den Doel, L. Richard; Moerman, R.; van Dedem, G. W. K.; Young, Ian T.; van Vliet, Lucas J.

    2002-06-01

    Yeast-Saccharomyces cerevisiae - it widely used as a model system for other higher eukaryotes, including man. One of the basic fermentation processes in yeast is the glycolytic pathway, which is the conversion of glucose to ethanol and carbon dioxide. This pathway consists of 12 enzyme-catalyzed reactions. With the approach of microarray technology we want to explore the metabolic regulation of this pathway in yeast. This paper will focus on the design of a conventional microscope based microarray reader, which is used to monitor these enzymatic reactions in microarrays. These microarrays are fabricated in silicon and have sizes of 300 by 300 micrometers 2. The depth varies from 20 to 50 micrometers . Enzyme activity levels can be derived by monitoring the production or consumption rate of NAD(P)H, which is excited at 360nm and emits around 450nm. This fluorophore is involved in all 12 reactions of the pathway. The microarray reader is equipped with a back-illuminated CCD camera in order to obtain a high quantum efficiency for the lower wavelengths. The dynamic range of our microarray reader varies form 5(mu) Molar to 1mMolar NAD(P)H. With this microarray reader enzyme activity levels down to 0.01 unit per milliliter can be monitored. The acquisition time per well is 0.1s. The total scan cycle time for a 5 X 5 microarray is less than half a minute. The number of cycles for a proper estimation of the enzyme activity is inversely proportional to the enzyme activity: long measurement times are needed to determine low enzyme activity levels.

  13. Quantitative Profiling of Protein Tyrosine Kinases in Human Cancer Cell Lines by Multiplexed Parallel Reaction Monitoring Assays.

    PubMed

    Kim, Hye-Jung; Lin, De; Lee, Hyoung-Joo; Li, Ming; Liebler, Daniel C

    2016-02-01

    Protein tyrosine kinases (PTKs) play key roles in cellular signal transduction, cell cycle regulation, cell division, and cell differentiation. Dysregulation of PTK-activated pathways, often by receptor overexpression, gene amplification, or genetic mutation, is a causal factor underlying numerous cancers. In this study, we have developed a parallel reaction monitoring-based assay for quantitative profiling of 83 PTKs. The assay detects 308 proteotypic peptides from 54 receptor tyrosine kinases and 29 nonreceptor tyrosine kinases in a single run. Quantitative comparisons were based on the labeled reference peptide method. We implemented the assay in four cell models: 1) a comparison of proliferating versus epidermal growth factor-stimulated A431 cells, 2) a comparison of SW480Null (mutant APC) and SW480APC (APC restored) colon tumor cell lines, and 3) a comparison of 10 colorectal cancer cell lines with different genomic abnormalities, and 4) lung cancer cell lines with either susceptibility (11-18) or acquired resistance (11-18R) to the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib. We observed distinct PTK expression changes that were induced by stimuli, genomic features or drug resistance, which were consistent with previous reports. However, most of the measured expression differences were novel observations. For example, acquired resistance to erlotinib in the 11-18 cell model was associated not only with previously reported up-regulation of MET, but also with up-regulation of FLK2 and down-regulation of LYN and PTK7. Immunoblot analyses and shotgun proteomics data were highly consistent with parallel reaction monitoring data. Multiplexed parallel reaction monitoring assays provide a targeted, systems-level profiling approach to evaluate cancer-related proteotypes and adaptations. Data are available through Proteome eXchange Accession PXD002706. PMID:26631510

  14. Highly selective and sensitive fluorescence chemosensor for the detection of palladium species based on Tsuji-Trost reaction

    NASA Astrophysics Data System (ADS)

    Xu, Zhong-Yong; Li, Jing; Guan, Su; Zhang, Lei; Dong, Chang-Zhi

    2015-09-01

    A new chemosensor 7-nitro-2,1,3-benzoxadiazole-4-allyl-N-(thiophen-2-ylmethyl)carbamate (NBDTC) was synthesized and utilized for palladium detection based on the Tsuji-Trost reaction. NBDTC displayed specific and ratiometric fluorescent responses toward palladium species. The chemosensor showed more than 50-fold enhancement in fluorescence intensity with the presence of PEG400 and palladium because NBDTC can be transformed to NBDT under palladium-catalyzing Tsuji-Trost reaction. NBDTC displayed high selectivity and sensitivity for palladium species with the detection limit of 1.13 × 10-9 M.

  15. Using magnetic levitation to distinguish atomic-level differences in chemical composition of polymers, and to monitor chemical reactions on solid supports.

    PubMed

    Mirica, Katherine A; Phillips, Scott T; Shevkoplyas, Sergey S; Whitesides, George M

    2008-12-31

    This communication describes a density-based method that uses magnetic levitation for monitoring solid-supported reactions and for distinguishing differences in chemical composition of polymers. The method is simple, rapid, and inexpensive and is similar to thin-layer chromatography (TLC; for solution-phase chemistry) in its potential for monitoring reactions in solid-phase chemistry. The technique involves levitating a sample of beads (taken from a reaction mixture) in a cuvette containing a paramagnetic solution (e.g., GdCl(3) dissolved in H(2)O) positioned between two NdFeB magnets. The vertical position at which the beads levitate corresponds to the density of the beads and correlates with the progress of a chemical reaction on a solid support. The method is particularly useful for monitoring the kinetics of reactions occurring on polymer beads. PMID:19063630

  16. Core-shell self-assembly triggered via a thiol-disulfide exchange reaction for reduced glutathione detection and single cells monitoring.

    PubMed

    Zhang, Zhen; Jiao, Yuting; Wang, Yuanyuan; Zhang, Shusheng

    2016-01-01

    A novel core-shell DNA self-assembly catalyzed by thiol-disulfide exchange reactions was proposed, which could realize GSH-initiated hybridization chain reaction (HCR) for signal amplification and molecules gathering. Significantly, these self-assembled products via electrostatic interaction could accumulate into prominent and clustered fluorescence-bright spots in single cancer cells for reduced glutathione monitoring, which will effectively drive cell monitoring into a new era. PMID:27412605

  17. Core-shell self-assembly triggered via a thiol-disulfide exchange reaction for reduced glutathione detection and single cells monitoring

    PubMed Central

    Zhang, Zhen; Jiao, Yuting; Wang, Yuanyuan; Zhang, Shusheng

    2016-01-01

    A novel core-shell DNA self-assembly catalyzed by thiol-disulfide exchange reactions was proposed, which could realize GSH-initiated hybridization chain reaction (HCR) for signal amplification and molecules gathering. Significantly, these self-assembled products via electrostatic interaction could accumulate into prominent and clustered fluorescence-bright spots in single cancer cells for reduced glutathione monitoring, which will effectively drive cell monitoring into a new era. PMID:27412605

  18. Real-time monitoring of the progress of polymerization reactions directly on surfaces at open atmosphere by ambient mass spectrometry.

    PubMed

    Nørgaard, Asger W; Vaz, Boniek G; Lauritsen, Frants R; Eberlin, Marcos N

    2010-12-15

    The progress of an on-surface polymerization process involving alkyl and perfluoroalkyl silanes and siloxanes was monitored in real-time via easy ambient sonic spray ionization mass spectrometry (EASI-MS). When sprayed on surfaces, the organosilicon compounds present in commercially available nanofilm products (NFPs) react by condensation to form a polymeric coating. A NFP for coating of floor materials (NFP-1) and a second NFP for coating tiles and ceramics (NFP-2) were applied to glass, filter paper or cotton surfaces and the progress of the polymerization was monitored by slowly scanning the surface. Via EASI(+)-MS monitoring, significant changes in the composition of hydrolysates and condensates of 1H,1H,2H,2H-perfluorooctyl triisopropoxysilane (NFP-1) and hexadecyl triethoxysilane (NFP-2) were observed over time. The abundances of the hydrolyzed species decreased compared with those of the non-hydrolysed species for both NFP-1 and NFP-2 and the heavier oligomers became relatively more abundant over a period of 15-20 min. A similar tendency favouring the heavier oligomers was observed via EASI(-)-MS. This work illustrates the potential of ambient mass spectrometry for the direct monitoring of polymerization reactions on surfaces. PMID:21072800

  19. Passive, Direct-Read Monitoring System for Selective Detection and Quantification of Hydrogen Chloride

    NASA Technical Reports Server (NTRS)

    Chapman, K. B.; Mihaylov, G. M.; Kirollos, K. S.

    2000-01-01

    Monitoring the exposure of an employee to hydrogen chloride or hydrochloric acid in the presence of other acids has been a challenge to the industrial hygiene community. The capability of a device to differentiate the levels of acid vapors would allow for more accurate determinations of exposure and therefore improved occupational health. In this work, a selective direct-read colorimetric badge system was validated for Short Term Exposure Limit (STEL) monitoring of hydrogen chloride. The passive colorimetric badge system consists of a direct reading badge and a color scale. The badge has a coated indicator layer with a diffusive resistance in the shape of an exclamation mark. An exclamation mark will appear if hydrogen chloride is present in the atmosphere at concentrations at or above 2.0 ppm. By using the color scale, the intensity of the color formed on the badge can be further quantified up to 25 ppm. The system was validated according to a protocol based on the NIOSH Protocol for the Evaluation of Passive Monitors. The badge was exposed to relative humidities ranging from 11% to 92%, temperatures ranging from 7 C to 400 C and air velocities ranging from 5 cm/sec to 170 cm/sec. All experiments were conducted in a laboratory vapor generation system. Hydrofluoric acid, nitric acid, sulfuric acid, chlorine, hydrogen sulfide and organic acids showed no effect on the performance of the hydrogen chloride monitoring system. The passive badge and color scale system exceeded the accuracy requirements as defined by NIOSH. At ambient conditions, the mean coefficient of variation was 10.86 and the mean bias was 1.3%. This data was presented previously at the American Industrial Hygiene Conference and Exposition in Toronto, Canada in June 1999.

  20. Asthma and Rhinitis Induced by Selective Immediate Reactions to Paracetamol and Non-steroidal Anti-inflammatory Drugs in Aspirin Tolerant Subjects.

    PubMed

    Pérez-Alzate, Diana; Blanca-López, Natalia; Doña, Inmaculada; Agúndez, José A; García-Martín, Elena; Cornejo-García, José A; Perkins, James R; Blanca, Miguel; Canto, Gabriela

    2016-01-01

    In subjects with non-steroidal anti-inflammatory drugs (NSAIDs)- exacerbated respiratory disease (NERD) symptoms are triggered by acetyl salicylic acid (ASA) and other strong COX-1 inhibitors, and in some cases by weak COX-1 or by selective COX-2 inhibitors. The mechanism involved is related to prostaglandin pathway inhibition and leukotriene release. Subjects who react to a single NSAID and tolerate others are considered selective responders, and often present urticaria and/or angioedema and anaphylaxis (SNIUAA). An immunological mechanism is implicated in these reactions. However, anecdotal evidence suggests that selective responders who present respiratory airway symptoms may also exist. Our objective was to determine if subjects might develop selective responses to NSAIDs/paracetamol that manifest as upper/lower airways respiratory symptoms. For this purpose, we studied patients reporting asthma and/or rhinitis induced by paracetamol or a single NSAID that tolerated ASA. An allergological evaluation plus controlled challenge with ASA was carried out. If ASA tolerance was found, we proceeded with an oral challenge with the culprit drug. The appearance of symptoms was monitored by a clinical questionnaire and by measuring FEV1 and/or nasal airways volume changes pre and post challenge. From a total of 21 initial cases, we confirmed the appearance of nasal and/or bronchial manifestations in ten, characterized by a significant decrease in FEV1% and/or a decrease in nasal volume cavity after drug administration. All cases tolerated ASA. This shows that ASA tolerant subjects with asthma and/or rhinitis induced by paracetamol or a single NSAID without skin/systemic manifestations exist. Whether these patients represent a new clinical phenotype to be included within the current classification of hypersensitivity reactions to NSAIDs requires further investigation. PMID:27489545

  1. Asthma and Rhinitis Induced by Selective Immediate Reactions to Paracetamol and Non-steroidal Anti-inflammatory Drugs in Aspirin Tolerant Subjects

    PubMed Central

    Pérez-Alzate, Diana; Blanca-López, Natalia; Doña, Inmaculada; Agúndez, José A.; García-Martín, Elena; Cornejo-García, José A.; Perkins, James R.; Blanca, Miguel; Canto, Gabriela

    2016-01-01

    In subjects with non-steroidal anti-inflammatory drugs (NSAIDs)- exacerbated respiratory disease (NERD) symptoms are triggered by acetyl salicylic acid (ASA) and other strong COX-1 inhibitors, and in some cases by weak COX-1 or by selective COX-2 inhibitors. The mechanism involved is related to prostaglandin pathway inhibition and leukotriene release. Subjects who react to a single NSAID and tolerate others are considered selective responders, and often present urticaria and/or angioedema and anaphylaxis (SNIUAA). An immunological mechanism is implicated in these reactions. However, anecdotal evidence suggests that selective responders who present respiratory airway symptoms may also exist. Our objective was to determine if subjects might develop selective responses to NSAIDs/paracetamol that manifest as upper/lower airways respiratory symptoms. For this purpose, we studied patients reporting asthma and/or rhinitis induced by paracetamol or a single NSAID that tolerated ASA. An allergological evaluation plus controlled challenge with ASA was carried out. If ASA tolerance was found, we proceeded with an oral challenge with the culprit drug. The appearance of symptoms was monitored by a clinical questionnaire and by measuring FEV1 and/or nasal airways volume changes pre and post challenge. From a total of 21 initial cases, we confirmed the appearance of nasal and/or bronchial manifestations in ten, characterized by a significant decrease in FEV1% and/or a decrease in nasal volume cavity after drug administration. All cases tolerated ASA. This shows that ASA tolerant subjects with asthma and/or rhinitis induced by paracetamol or a single NSAID without skin/systemic manifestations exist. Whether these patients represent a new clinical phenotype to be included within the current classification of hypersensitivity reactions to NSAIDs requires further investigation. PMID:27489545

  2. Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations.

    PubMed

    Peretz-Soroka, Hagit; Pevzner, Alexander; Davidi, Guy; Naddaka, Vladimir; Kwiat, Moria; Huppert, Dan; Patolsky, Fernando

    2015-07-01

    Significant research efforts have been dedicated to the integration of biological species with electronic elements to yield smart bioelectronic devices. The integration of DNA, proteins, and whole living cells and tissues with electronic devices has been developed into numerous intriguing applications. In particular, the quantitative detection of biological species and monitoring of biological processes are both critical to numerous areas of medical and life sciences. Nevertheless, most current approaches merely focus on the "monitoring" of chemical processes taking place on the sensing surfaces, and little efforts have been invested in the conception of sensitive devices that can simultaneously "control" and "monitor" chemical and biological reactions by the application of on-surface reversible stimuli. Here, we demonstrate the light-controlled fine modulation of surface pH by the use of photoactive molecularly modified nanomaterials. Through the use of nanowire-based FET devices, we showed the capability of modulating the on-surface pH, by intensity-controlled light stimulus. This allowed us simultaneously and locally to control and monitor pH-sensitive biological reactions on the nanodevices surfaces, such as the local activation and inhibition of proteolytic enzymatic processes, as well as dissociation of antigen-antibody binding interactions. The demonstrated capability of locally modulating the on-surface effective pH, by a light stimuli, may be further applied in the local control of on-surface DNA hybridization/dehybridization processes, activation or inhibition of living cells processes, local switching of cellular function, local photoactivation of neuronal networks with single cell resolution and so forth. PMID:26086686

  3. Benzoin Condensation: Monitoring a Chemical Reaction by High-Pressure Liquid Chromatography

    ERIC Educational Resources Information Center

    Bhattacharya, Apurba; Purohit, Vikram C.; Bellar, Nicholas R.

    2004-01-01

    High-pressure liquid chromatography (HPLC) is the preferred method of separating a variety of materials in complex mixtures such as pharmaceuticals, polymers, soils, food products and biological fluids and is also considered to be a powerful analytical tool in both academia and industry. The use of HPLC analysis as a means of monitoring and…

  4. Electrophilic activation of hydrogen peroxide: selective oxidation reactions in perfluorinated alcohol solvents.

    PubMed

    Neimann, K; Neumann, R

    2000-09-01

    [reaction; see text] The catalytic electrophilic activation of hydrogen peroxide with transition metal compounds toward reaction with nucleophiles is a matter of very significant research and practical interest. We have now found that use of perfluorinated alcoholic solvents such as 1,1, 1,3,3,3-hexafluoro-2-propanol in the absence of catalysts allowed electrophilic activation of hydrogen peroxide toward epoxidation of alkenes and the Baeyer-Villiger oxidation of ketones. PMID:10964384

  5. Substituent Effects on the Photodeprotection Reactions of Selected Ketoprofen Derivatives in Phosphate Buffered Aqueous Solutions

    PubMed Central

    Liu, Mingyue; Li, Ming-De; Huang, Jinqing; Li, Tianlu; Liu, Han; Li, Xuechen; Phillips, David Lee

    2016-01-01

    Photodeprotection is an important reaction that has been attracting broad interest for use in a variety of applications. Recent advances in ultrafast and vibrational time-resolved spectroscopies can facilitate obtaining data to help unravel the reaction mechanisms involving in the photochemical reactions of interest. The kinetics and reaction mechanisms for the photodeprotection reactions of ketoprofen derivatives containing three different substituents (ibuprofen, Br and I) were investigated by femtosecond transient absorption (fs-TA) and nanosecond time-resolved resonance Raman (ns-TR3) spectroscopy methods in phosphate buffered solutions (PBS). Fs-TA allows us to detect the decay kinetics of the triplet species as the key precursor for formation of a carbanion species for three different substituents attached to ketoprofen. To characterize the structural and electronic properties of the corresponding carbanion and triplet intermediates, TR3 spectroscopic experiments were conducted. The transient spectroscopy work reveals that the different substituents affect the photodecarboxylation reaction to produce carbon dioxide which in turn influences the generation of the carbanion species which determines the rate of the photorelease of the functional groups attached on the ketoprofen parent molecule. The fingerprint TR3 spectroscopy results suggest that ketoprofen derivatives may be deactivated to produce a triplet carbanion when increasing the atom mass of the halogen atoms. PMID:26899243

  6. Substituent Effects on the Photodeprotection Reactions of Selected Ketoprofen Derivatives in Phosphate Buffered Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Liu, Mingyue; Li, Ming-De; Huang, Jinqing; Li, Tianlu; Liu, Han; Li, Xuechen; Phillips, David Lee

    2016-02-01

    Photodeprotection is an important reaction that has been attracting broad interest for use in a variety of applications. Recent advances in ultrafast and vibrational time-resolved spectroscopies can facilitate obtaining data to help unravel the reaction mechanisms involving in the photochemical reactions of interest. The kinetics and reaction mechanisms for the photodeprotection reactions of ketoprofen derivatives containing three different substituents (ibuprofen, Br and I) were investigated by femtosecond transient absorption (fs-TA) and nanosecond time-resolved resonance Raman (ns-TR3) spectroscopy methods in phosphate buffered solutions (PBS). Fs-TA allows us to detect the decay kinetics of the triplet species as the key precursor for formation of a carbanion species for three different substituents attached to ketoprofen. To characterize the structural and electronic properties of the corresponding carbanion and triplet intermediates, TR3 spectroscopic experiments were conducted. The transient spectroscopy work reveals that the different substituents affect the photodecarboxylation reaction to produce carbon dioxide which in turn influences the generation of the carbanion species which determines the rate of the photorelease of the functional groups attached on the ketoprofen parent molecule. The fingerprint TR3 spectroscopy results suggest that ketoprofen derivatives may be deactivated to produce a triplet carbanion when increasing the atom mass of the halogen atoms.

  7. Substituent Effects on the Photodeprotection Reactions of Selected Ketoprofen Derivatives in Phosphate Buffered Aqueous Solutions.

    PubMed

    Liu, Mingyue; Li, Ming-De; Huang, Jinqing; Li, Tianlu; Liu, Han; Li, Xuechen; Phillips, David Lee

    2016-01-01

    Photodeprotection is an important reaction that has been attracting broad interest for use in a variety of applications. Recent advances in ultrafast and vibrational time-resolved spectroscopies can facilitate obtaining data to help unravel the reaction mechanisms involving in the photochemical reactions of interest. The kinetics and reaction mechanisms for the photodeprotection reactions of ketoprofen derivatives containing three different substituents (ibuprofen, Br and I) were investigated by femtosecond transient absorption (fs-TA) and nanosecond time-resolved resonance Raman (ns-TR(3)) spectroscopy methods in phosphate buffered solutions (PBS). Fs-TA allows us to detect the decay kinetics of the triplet species as the key precursor for formation of a carbanion species for three different substituents attached to ketoprofen. To characterize the structural and electronic properties of the corresponding carbanion and triplet intermediates, TR(3) spectroscopic experiments were conducted. The transient spectroscopy work reveals that the different substituents affect the photodecarboxylation reaction to produce carbon dioxide which in turn influences the generation of the carbanion species which determines the rate of the photorelease of the functional groups attached on the ketoprofen parent molecule. The fingerprint TR(3) spectroscopy results suggest that ketoprofen derivatives may be deactivated to produce a triplet carbanion when increasing the atom mass of the halogen atoms. PMID:26899243

  8. Factors Controlling the Reactivity and Selectivity of the Diels-Alder Reactions Involving 1,2-Azaborines.

    PubMed

    García-Rodeja, Yago; Fernández, Israel

    2016-08-01

    The factors controlling the reactivity and endo/exo selectivity of the Diels-Alder reactions involving 1,2-azaborines have been computationally explored within the density functional theory framework. It is found that the AlCl3-catalyzed [4 + 2]-cycloaddition reaction between these dienes and N-methylmaleimide proceeds concertedly and leads almost exclusively to the corresponding endo cycloadduct, which is in good agreement with previous experimental observations. In addition, the effect of the substituent directly attached to the boron atom of the 1,2-azaborine on the process is also analyzed in detail. To this end, the combination of the activation strain model of reactivity and the energy decomposition analysis methods has been applied to gain a quantitative understanding into the origins of the endo selectivity of the process as well as the influence of the boron and nitrogen substituent on the barrier heights of the transformations. PMID:27383907

  9. Influence of the support on the activity and selectivity of high dispersion Fe catalysts in the Fischer-Tropsch reaction

    SciTech Connect

    Cagnoli, M.V.; Marchetti, S.G.; Gallegos, N.G.; Alvarez, A.M.; Mercader, R.C.; Yeramian, A.A. Facultad de Ciencias Exactas, La Plata )

    1990-05-01

    In order to study the influence of the support on high dispersion catalysts used for the CO hydrogenation reaction, two catalysts, Fe/SiO{sub 2} and Fe/Al{sub 2}O{sub 3}, were prepared by the dry impregnation method. Selective chemisorption of CO, volumetric oxidation, and Moessbauer spectroscopy were used to determine the Fe species present as well as the metallic crystal size, the degree of dispersion, and the reduction percentage. The presence of small Fe{sup 0} crystallites with high dispersion was determined in both catalysts. Reaction rates were measured in a differential reactor and significant differences, about one order of magnitude less for the Al{sub 2}O{sub 3} than for the SiO{sub 2} supported catalysts, were found in the methane turnover frequencies. They are attributed to the interaction between the metal and the supports. The selectivity differences is also discussed in connection with distinct surface properties.

  10. Final Project Report for Grant DE-FG03-00ER54581 Selective Control of Chemical Reactions With Plasmas

    SciTech Connect

    Anthony Muscat

    2004-01-28

    OAK-B135 This research work focused on control of the reactive species inside a plasma through measurement and manipulation of the electron energy distribution function (EEDF) and on understanding the surface reaction mechanisms on the substrate exposed to a combination of ion and atom beam sources to simulate a real plasma. A GEC chamber (Gaseous Electronic Conference Reference Cell)8 with a mass spectrometer and a Langmuir probe (LP) system were used for this research. It was found that H2 and N2 additives to an Ar plasma could effectively change the EEDF and the average electron temperature (Te). This finding provides the possibility to selectively control reaction rates in the plasma to control etching selectivity on a surface. This concept was demonstrated in Ar/N2/H2 and Ar/CH4 /H2 systems.

  11. Selectivity of Rhizomucor miehei lipase as affected by choice of cosubstrate system in ester modification reactions in organic media.

    PubMed

    Arsan, J; Parkin, K L

    2000-07-20

    Fatty acid (FA) selectivity of immobilized Rhizomucor miehei lipase was determined for various cosubstrate systems for ester modification involving competing n-acyl-donor substrates of even-chain length (C4-C16; FA or their methyl esters, FAME) and either n-propanol or propyl acetate in hexane. Acyl-chain-length optima were observed for C8 and C14/16 in all cases. Upon changing between cosubstrate systems of [FA + propanol] to [FAME + propanol] to [FAME + propyl acetate], there was a general shift in selectivity toward shorter-chain-length FA (C4-C8). The greatest degree of reaction selectivity (based on ratios of selectivity constants) among the FA substrates was 3.1 for the [FA + propanol], 2.5 for the [FAME + propanol], and 1.4 for the [FAME + propyl acetate] cosubstrate systems. For esterification reactions between C6 FA and reactive members of a series of aliphatic and aromatic alcohols, the greatest degree of selectivity observed was 3.6. PMID:10861401

  12. Method development aspects for the quantitation of pharmaceutical compounds in human plasma with a matrix-assisted laser desorption/ionization source in the multiple reaction monitoring mode.

    PubMed

    Kovarik, Peter; Grivet, Chantal; Bourgogne, Emmanuel; Hopfgartner, Gérard

    2007-01-01

    The present work investigates various method development aspects for the quantitative analysis of pharmaceutical compounds in human plasma using matrix-assisted laser desorption/ionization and multiple reaction monitoring (MALDI-MRM). Talinolol was selected as a model analyte. Liquid-liquid extraction (LLE) and protein precipitation were evaluated regarding sensitivity and throughput for the MALDI-MRM technique and its applicability without and with chromatographic separation. Compared to classical electrospray liquid chromatography/mass spectrometry (LC/ESI-MS) method development, with MALDI-MRM the tuning of the analyte in single MS mode is more challenging due to interfering matrix background ions. An approach is proposed using background subtraction. With LLE and using a 200 microL human plasma aliquot acceptable precision and accuracy could be obtained in the range of 1 to 1000 ng/mL without any LC separation. Approximately 3 s were required for one analysis. A full calibration curve and its quality control samples (20 samples) can be analyzed within 1 min. Combining LC with the MALDI analysis allowed improving the linearity down to 50 pg/mL, while reducing the throughput potential only by two-fold. Matrix effects are still a significant issue with MALDI but can be monitored in a similar way to that used for LC/ESI-MS analysis. PMID:17295425

  13. The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction

    SciTech Connect

    Welsch, Ralph Manthe, Uwe

    2014-11-07

    Full-dimensional calculations of initial state-selected reaction probabilities on an accurate ab initio potential energy surface (PES) have been communicated recently [R. Welsch and U. Manthe, J. Chem. Phys. 141, 051102 (2014)]. These calculations use the quantum transition state concept, the multi-layer multi-configurational time-dependent Hartree approach, and graphics processing units to speed up the potential evaluation. Here further results of these calculations and an extended analysis are presented. State-selected reaction probabilities are given for many initial ro-vibrational states. The role of the vibrational states of the activated complex is analyzed in detail. It is found that rotationally cold methane mainly reacts via the ground state of the activated complex while rotationally excited methane mostly reacts via H–H–CH{sub 3}-bending excited states of the activated complex. Analyzing the different contributions to the reactivity of the vibrationally states of methane, a complex pattern is found. Comparison with initial state-selected reaction probabilities computed on the semi-empirical Jordan-Gilbert PES reveals the dependence of the results on the specific PES.

  14. Using Fuzzy Linguistics to Select Optimum Maintenance and Condition Monitoring Strategies

    NASA Astrophysics Data System (ADS)

    Mechefske, Chris K.; Wang, Zheng

    2003-03-01

    Continued pressure on companies to reduce costs and improve customer satisfaction has resulted in increasingly detailed examinations of maintenance practices and strategies. The justification of any given maintenance strategy or practice within an organisation must consider multiple criteria. It should also be based on the overall objectives of the organisation, many of which are 'intangible' or 'non-monetary'. A fuzzy linguistic approach to achieve the inclusion of somewhat subjective assessments of maintenance strategies and practices in an objective manner is outlined in this paper. This approach is also demonstrated with two examples. Implementation of this approach will assist decision makers in the evaluation and selection of maintenance strategies and particular condition-monitoring techniques.

  15. Using Fuzzy Linguistics to Select Optimum Maintenance and Condition Monitoring Strategies

    NASA Astrophysics Data System (ADS)

    Mechefske, Chris K.; Wang, Zheng

    2001-11-01

    Continued pressure on companies to reduce costs and improve customer satisfaction has resulted in increasingly detailed examinations of maintenance practices and strategies. The justification of any given maintenance strategy or practice within an organisation must consider multiple criteria. It should also be based on the overall objectives of the organisation, many of which are 'intangible' or 'non-monetary'. A fuzzy linguistic approach to achieve the inclusion of somewhat subjective assessments of maintenance strategies and practices in an objective manner is outlined in this paper. This approach is also demonstrated with two examples. Implementation of this approach will assist decision makers in the evaluation and selection of maintenance strategies and particular condition-monitoring techniques.

  16. Arc-Welding Spectroscopic Monitoring based on Feature Selection and Neural Networks

    PubMed Central

    Garcia-Allende, P. Beatriz; Mirapeix, Jesus; Conde, Olga M.; Cobo, Adolfo; Lopez-Higuera, Jose M.

    2008-01-01

    A new spectral processing technique designed for application in the on-line detection and classification of arc-welding defects is presented in this paper. A non-invasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed in two consecutive stages. A compression algorithm is first applied to the data, allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, which will be demonstrated to provide an efficient weld defect detection and classification. The results obtained with the proposed technique are compared to a similar processing scheme presented in previous works, giving rise to an improvement in the performance of the monitoring system.

  17. Untargeted fatty acid profiles based on the selected ion monitoring mode.

    PubMed

    Zhang, Liangxiao; Li, Peiwu; Sun, Xiaoman; Hu, Wei; Wang, Xiupin; Zhang, Qi; Ding, Xiaoxia

    2014-08-11

    Fatty acids are potential biomarkers of some diseases and also key markers and quality parameters of different dietary fats and related products. Thus, untargeted fatty acid profiles are important in the study of dietary fat quality and fat-related diseases, as well as in other fields such as bioenergy. In addition, accurate identification of unknown components is a technological breakthrough for the selected ion monitoring (SIM) mode for untargeted profiles. In this study, we developed untargeted fatty acid profiles based on SIM. We also investigated mass spectral characteristics and equivalent chain lengths (ECL) to eliminate the influence of non-FAMEs for identifying fatty acids in samples. As an application example, fatty acid profiles were used to classify three edible vegetable oils. The results indicated that SIM-based untargeted fatty acid profiles could yield accurate qualitative and quantitative results for more fatty acids and benefit related studies of metabolite profiles. PMID:25066717

  18. Overview of selected surrogate technologies for high-temporal resolution suspended-sediment monitoring

    USGS Publications Warehouse

    Gray, John R.; Gartner, Jeffrey W.

    2010-01-01

    Traditional methods for characterizing selected properties of suspended sediments in rivers are being augmented and in some cases replaced by cost-effective surrogate instruments and methods that produce a temporally dense time series of quantifiably accurate data for use primarily in sediment-flux computations. Turbidity is the most common such surrogate technology, and the first to be sanctioned by the U.S. Geological Survey for use in producing data used in concert with water-discharge data to compute sediment concentrations and fluxes for storage in the National Water Information System. Other technologies, including laser-diffraction, digital photo-optic, acoustic-attenuation and backscatter, and pressure-difference techniques are being evaluated for producing reliable sediment concentration and, in some cases, particle-size distribution data. Each technology addresses a niche for sediment monitoring. Their performances range from compelling to disappointing. Some of these technologies have the potential to revolutionize fluvial-sediment data collection, analysis, and availability.

  19. Overview of selected surrogate technologies for continuous suspended-sediment monitoring

    USGS Publications Warehouse

    Gray, J.R.; Gartner, J.W.

    2006-01-01

    Surrogate technologies for inferring selected characteristics of suspended sediments in surface waters are being tested by the U.S. Geological Survey and several partners with the ultimate goal of augmenting or replacing traditional monitoring methods. Optical properties of water such as turbidity and optical backscatter are the most commonly used surrogates for suspended-sediment concentration, but use of other techniques such as those based on acoustic backscatter, laser diffraction, digital photo-optic, and pressure-difference principles is increasing for concentration and, in some cases, particle-size distribution and flux determinations. The potential benefits of these technologies include acquisition of automated, continuous, quantifiably accurate data obtained with increased safety and at less expense. When suspended-sediment surrogate data meet consensus accuracy criteria and appropriate sediment-record computation techniques are applied, these technologies have the potential to revolutionize the way fluvial-sediment data are collected, analyzed, and disseminated.

  20. Quantitative EEG Brain Mapping In Psychotropic Drug Development, Drug Treatment Selection, and Monitoring.

    PubMed

    Itil, Turan M.; Itil, Kurt Z.

    1995-05-01

    Quantification of standard electroencephalogram (EEG) by digital computers [computer-analyzed EEG (CEEG)] has transformed the subjective analog EEG into an objective scientific method. Until a few years ago, CEEG was only used to assist in the development of psychotropic drugs by means of the quantitative pharmaco EEG. Thanks to the computer revolution and the accompanying reductions in cost of quantification, CEEG can now also be applied in psychiatric practice. CEEG can assist the physician in confirming clinical diagnoses, selecting psychotropic drugs for treatment, and drug treatment monitoring. Advancements in communications technology allow physicians and researchers to reduce the costs of acquiring a high-technology CEEG brain mapping system by utilizing the more economical telephonic services. PMID:11850678

  1. Ruthenium oxide ion selective thin-film electrodes for engine oil acidity monitoring

    NASA Astrophysics Data System (ADS)

    Maurya, D. K.; Sardarinejad, A.; Alameh, K.

    2015-06-01

    We demonstrate the concept of a low-cost, rugged, miniaturized ion selective electrode (ISE) comprising a thin film RuO2 on platinum sensing electrode deposited using RF magnetron sputtered in conjunction with an integrated Ag/AgCl and Ag reference electrodes for engine oil acidity monitoring. Model oil samples are produced by adding nitric acid into fresh fully synthetic engine oil and used for sensor evaluation. Experimental results show a linear potential-versus-acid-concentration response for nitric acid concentration between 0 (fresh oil) to 400 ppm, which demonstrate the accuracy of the RuO2 sensor in real-time operation, making it attractive for use in cars and industrial engines.

  2. Coupling of a scanning flow cell with online electrochemical mass spectrometry for screening of reaction selectivity

    NASA Astrophysics Data System (ADS)

    Grote, Jan-Philipp; Zeradjanin, Aleksandar R.; Cherevko, Serhiy; Mayrhofer, Karl J. J.

    2014-10-01

    In this work the online coupling of a miniaturized electrochemical scanning flow cell (SFC) to a mass spectrometer is introduced. The system is designed for the determination of reaction products in dependence of the applied potential and/or current regime as well as fast and automated change of the sample. The reaction products evaporate through a hydrophobic PTFE membrane into a small vacuum probe, which is positioned only 50-100 μm away from the electrode surface. The probe is implemented into the SFC and directly connected to the mass spectrometer. This unique configuration enables fast parameter screening for complex electrochemical reactions, including investigation of operation conditions, composition of electrolyte, and material composition. The technical developments of the system are validated by initial measurements of hydrogen evolution during water electrolysis and electrochemical reduction of CO2 to various products, showcasing the high potential for systematic combinatorial screening by this approach.

  3. New Mechanistic Insights on the Selectivity of Transition-Metal-Catalyzed Organic Reactions: The Role of Computational Chemistry.

    PubMed

    Zhang, Xinhao; Chung, Lung Wa; Wu, Yun-Dong

    2016-06-21

    With new advances in theoretical methods and increased computational power, applications of computational chemistry are becoming practical and routine in many fields of chemistry. In organic chemistry, computational chemistry plays an indispensable role in elucidating reaction mechanisms and the origins of various selectivities, such as chemo-, regio-, and stereoselectivities. Consequently, mechanistic understanding improves synthesis and assists in the rational design of new catalysts. In this Account, we present some of our recent works to illustrate how computational chemistry provides new mechanistic insights for improvement of the selectivities of several organic reactions. These examples include not only explanations for the existing experimental observations, but also predictions which were subsequently verified experimentally. This Account consists of three sections discuss three different kinds of selectivities. The first section discusses the regio- and stereoselectivities of hydrosilylations of alkynes, mainly catalyzed by [Cp*Ru(MeCN)3](+) or [CpRu(MeCN)3](+). Calculations suggest a new mechanism that involves a key ruthenacyclopropene intermediate. This mechanism not only explains the unusual Markovnikov regio-selectivity and anti-addition stereoselectivity observed by Trost and co-workers, but also motivated further experimental investigations. New intriguing experimental observations and further theoretical studies led to an extension of the reaction mechanism. The second section includes three cases of meta-selective C-H activation of aryl compounds. In the case of Cu-catalyzed selective meta-C-H activation of aniline, a new mechanism that involves a Cu(III)-Ar-mediated Heck-like transition state, in which the Ar group acts as an electrophile, was proposed. This mechanism predicted a higher reactivity for more electron-deficient Ar groups, which was supported by experiments. For two template-mediated, meta-selective C-H bond activations catalyzed by

  4. Practical procedures for selected biomarkers in mussels, Mytilus galloprovincialis--implications for marine pollution monitoring.

    PubMed

    Vidal-Liñán, Leticia; Bellas, Juan

    2013-09-01

    Biomarkers are required to assess the biological effects of pollutants on marine organisms in order to monitor ecosystem status, but their use is often limited by their strong variability due to environmental and/or intrinsic biological factors. Accordingly, the main aim of this work was to set up practical procedures for a battery of widely used biomarkers in mussels (Mytilus galloprovincialis). Antioxidant enzymes (catalase [CAT] and glutathione peroxidase [GPx]), a phase II detoxification enzyme (glutathione S-transferase [GST]) and a neurotransmitter catabolism enzyme (acetylcholinesterase [AChE]), were considered. Several relevant aspects were studied in order to obtain a more realistic interpretation of biomarker responses, including the calculation of the minimum sample size required to estimate the population mean with a fixed error margin, the selection of the specific organ or tissue where the enzymatic activity is higher for each biomarker, and the influence of tidal height and temperature on the basal enzymatic activity. GST and CAT activities needed a minimum sample size of 12, whereas for GPx and AChE activities a minimum sample size of 14 was required. The gills were the organ with higher GST, GPx and AChE enzymatic activities, whereas the digestive gland showed the highest CAT activity. Also, the low inter-tidal was the recommended tide level whilst no significant effect of temperature was observed on GST, GPx and CAT, and no clear pattern could be identified for AChE. The implications for environmental monitoring are discussed. PMID:23712116

  5. Data from selected U.S. Geological Survey National Stream Water Quality Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Alexander, Richard B.; Slack, James R.; Ludtke, Amy S.; Fitzgerald, Kathleen K.; Schertz, Terry L.

    1998-09-01

    A nationally consistent and well-documented collection of water quality and quantity data compiled during the past 30 years for streams and rivers in the United States is now available on CD-ROM and accessible over the World Wide Web. The data include measurements from two U.S. Geological Survey (USGS) national networks for 122 physical, chemical, and biological properties of water collected at 680 monitoring stations from 1962 to 1995, quality assurance information that describes the sample collection agencies, laboratories, analytical methods, and estimates of laboratory measurement error (bias and variance), and information on selected cultural and natural characteristics of the station watersheds. The data are easily accessed via user-supplied software including Web browser, spreadsheet, and word processor, or may be queried and printed according to user-specified criteria using the supplied retrieval software on CD-ROM. The water quality data serve a variety of scientific uses including research and educational applications related to trend detection, flux estimation, investigations of the effects of the natural environment and cultural sources on water quality, and the development of statistical methods for designing efficient monitoring networks and interpreting water resources data.

  6. The results of selective cytogenetic monitoring of Chernobyl accident victims in the Ukraine

    SciTech Connect

    Pilinskaya, M.A.

    1996-07-01

    Selective cytogenetic monitoring of the highest priority groups of Chernobyl disaster victims has been carried out since 1987. In 1992-1993, 125 liquidators (irradiated mainly in 1986) and 42 persons recovering from acute radiation sickness of the second and third degrees of severity were examined. Cytogenetic effects (an elevated level of unstable as well as stable markers of radiation exposure) were found in all groups, which showed a positive correlation with the initial degree of irradiation severity even 6-7 y after the accident. Comparative scoring of conventional staining vs. G-banding in 10 liquidators showed the identical rate of unstable aberrations. At the same time, the yield of stable aberrations for G-banded slides exceeded the frequency for conventional staining. In order to study possible mutagenic activity of chronic low levels of irradiation, the cytogenetic monitoring of some critical groups of the population (especially children and occupational groups-tractor drivers and foresters) living in areas of the Ukraine contaminated by radionuclides was carried out. In all the examined groups, a significant increase in the frequency of aberrant metaphases, chromosome aberrations (both unstable and stable), an chromatid aberrations was observed. Data gathered from groups of children reflect the intensity of mutagenic impact on the studied populations and demonstrate a positive correlation with the duration of exposure. Results of cytogenetic examination of adults confirmed the importance of considering the contribution of occupational radiation exposure to genetic effects of Chernobyl accident factors on the population of contaminated areas. 17 refs., 3 tabs.

  7. Approach towards sensor placement, selection and fusion for real-time condition monitoring of precision machines

    NASA Astrophysics Data System (ADS)

    Er, Poi Voon; Teo, Chek Sing; Tan, Kok Kiong

    2016-02-01

    Moving mechanical parts in a machine will inevitably generate vibration profiles reflecting its operating conditions. Vibration profile analysis is a useful tool for real-time condition monitoring to avoid loss of performance and unwanted machine downtime. In this paper, we propose and validate an approach for sensor placement, selection and fusion for continuous machine condition monitoring. The main idea is to use a minimal series of sensors mounted at key locations of a machine to measure and infer the actual vibration spectrum at a critical point where it is not suitable to mount a sensor. The locations for sensors' mountings which are subsequently used for vibration inference are identified based on sensitivity calibration at these locations moderated with normalized Fisher Information (NFI) associated with the measurement quality of the sensor at that location. Each of the identified sensor placement location is associated with one or more sensitive frequencies for which it ranks top in terms of the moderated sensitivities calibrated. A set of Radial Basis Function (RBF), each of them associated with a range of sensitive frequencies, is used to infer the vibration at the critical point for that frequency. The overall vibration spectrum of the critical point is then fused from these components. A comprehensive set of experimental results for validation of the proposed approach is provided in the paper.

  8. Suitable features selection for monitoring thermal condition of electrical equipment using infrared thermography

    NASA Astrophysics Data System (ADS)

    Huda, A. S. N.; Taib, S.

    2013-11-01

    Monitoring the thermal condition of electrical equipment is necessary for maintaining the reliability of electrical system. The degradation of electrical equipment can cause excessive overheating, which can lead to the eventual failure of the equipment. Additionally, failure of equipment requires a lot of maintenance cost, manpower and can also be catastrophic- causing injuries or even deaths. Therefore, the recognition processof equipment conditions as normal and defective is an essential step towards maintaining reliability and stability of the system. The study introduces infrared thermography based condition monitoring of electrical equipment. Manual analysis of thermal image for detecting defects and classifying the status of equipment take a lot of time, efforts and can also lead to incorrect diagnosis results. An intelligent system that can separate the equipment automatically could help to overcome these problems. This paper discusses an intelligent classification system for the conditions of equipment using neural networks. Three sets of features namely first order histogram based statistical, grey level co-occurrence matrix and component based intensity features are extracted by image analysis, which are used as input data for the neural networks. The multilayered perceptron networks are trained using four different training algorithms namely Resilient back propagation, Bayesian Regulazation, Levenberg-Marquardt and Scale conjugate gradient. The experimental results show that the component based intensity features perform better compared to other two sets of features. Finally, after selecting the best features, multilayered perceptron network trained using Levenberg-Marquardt algorithm achieved the best results to classify the conditions of electrical equipment.

  9. Use of a coastal biogeochemical model to select environmental monitoring sites

    NASA Astrophysics Data System (ADS)

    Wild-Allen, Karen; Thompson, Peter A.; Volkman, John K.; Parslow, John

    2011-10-01

    A method for the spatial selection of sites for a coastal environmental monitoring system is described. The study was completed in southeastern Tasmania, Australia, but the method can be applied in all regions with validated biogeochemical models. A 3-dimensional coupled hydrodynamic, sediment and biogeochemical model with high spatial and temporal resolution was validated against observations collected throughout 2002 and found to capture the essential features of the biogeochemical dynamics of the system. The model was used to predict the possible quantitative environmental impact of a projected increase in fish farming activity in the region. Integrated impacts of fish farm waste on labile nitrogen, phosphorus, chlorophyll and dissolved oxygen concentrations in the water column were spatially ranked to identify the most likely places to detect environmental change due to fish farming activities. Priority sites were found to be grouped in the Huon Estuary and northern part of the D'Entrecasteaux Channel consistent with the residual northward current in the region. The final monitoring program synthesized model and field understanding to ensure adequate spatial and temporal sampling of the region.

  10. Non-invasive cell type selective in vivo monitoring of insulin resistance dynamics

    PubMed Central

    Paschen, Meike; Moede, Tilo; Leibiger, Barbara; Jacob, Stefan; Bryzgalova, Galyna; Leibiger, Ingo B.; Berggren, Per-Olof

    2016-01-01

    Insulin resistance contributes to the development of cardio-vascular disease and diabetes. An important but unresolved task is to study the dynamics of insulin resistance in selective cell types of insulin target tissues in vivo. Here we present a novel technique to monitor insulin resistance dynamics non-invasively and longitudinally in vivo in a cell type-specific manner, exemplified by the pancreatic β-cell situated within the micro-organ the islet of Langerhans. We utilize the anterior chamber of the eye (ACE) as a transplantation site and the cornea as a natural body-window to study the development and reversibility of insulin resistance. Engrafted islets in the ACE that express a FoxO1-GFP-based biosensor in their β-cells, report on insulin resistance measured by fluorescence microscopy at single-cell resolution in the living mouse. This technique allows monitoring of cell type specific insulin sensitivity/resistance in real-time in the context of whole body insulin resistance during progression and intervention of disease. PMID:26899548

  11. An analysis of selected aspects of irregularities oval monitoring using GNSS observations

    NASA Astrophysics Data System (ADS)

    Sieradzki, R.

    2015-07-01

    The increasing number of permanent GNSS (Global Navigation Satellite System) receivers allows for more extensive ionospheric studies, involving the monitoring of the irregularities oval at high northern latitudes. Due to the high dynamics of the circumpolar ionosphere, the investigations aimed at a comprehensive view of oval should be carried out with as short a time resolution as possible. The shortening of this time interval leads to irregular coverage of the ionosphere by GNSS observations and has to be preceded by the preliminary analysis of selected aspects. Two of them are presented in this paper. The first one is the dependence of measured total electron content (TEC) fluctuations on the elevation angle of satellite observations. The results related to this point show its strong influence, clearly visible at low and high elevation angles. Furthermore, the additional impact of geomagnetic azimuth has been detected at lower elevation angles. The second analysed aspect is the comparative analysis of TEC fluctuation level changes observed in universal time and magnetic local time domains. Generally the study has confirmed the occurrence of oval variations, which can be monitored using subdaily maps of TEC fluctuations. The higher dynamics of ionospheric conditions have been observed in universal time domain, especially during the disturbed time. It indicates that the interpolation of TEC fluctuations values for regions without real data is more appropriate in magnetic local time domain.

  12. Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards.

    PubMed

    Percy, Andrew J; Yang, Juncong; Chambers, Andrew G; Borchers, Christoph H

    2016-01-01

    Absolute quantitative strategies are emerging as a powerful and preferable means of deriving concentrations in biological samples for systems biology applications. Method development is driven by the need to establish new-and validate current-protein biomarkers of high-to-low abundance for clinical utility. In this chapter, we describe a methodology involving two-dimensional (2D) reversed-phase liquid chromatography (RPLC), operated under alkaline and acidic pH conditions, combined with multiple reaction monitoring (MRM)-mass spectrometry (MS) (also called selected reaction monitoring (SRM)-MS) and a complex mixture of stable isotope-labeled standard (SIS) peptides, to quantify a broad and diverse panel of 253 proteins in human blood plasma. The quantitation range spans 8 orders of magnitude-from 15 mg/mL (for vitamin D-binding protein) to 450 pg/mL (for protein S100-B)-and includes 31 low-abundance proteins (defined as being <10 ng/mL) of potential disease relevance. The method is designed to assess candidates at the discovery and/or verification phases of the biomarker pipeline and can be adapted to examine smaller or alternate panels of proteins for higher sample throughput. Also detailed here is the application of our recently developed software tool-Qualis-SIS-for protein quantitation (via regression analysis of standard curves) and quality assessment of the resulting data. Overall, this chapter provides the blueprint for the replication of this quantitative proteomic method by proteomic scientists of all skill levels. PMID:26867735

  13. Crossed McMurry Coupling Reactions for Porphycenic Macrocycles: Non-Statistical Selectivity and Rationalisation

    PubMed Central

    Cowie, Thomas Y; Kennedy, Lorna; Żurek, Justyna M; Paterson, Martin J; Bebbington, Magnus W P

    2015-01-01

    Crossed McMurry reactions of bifuran- or bithiophenedicarbaldehydes with bipyrroledicarbaldehydes have been studied for the first time. Only those porphycenic macrocycles derived from homocoupled McMurry products were formed. The results are explained by using both density functional theory and electron propagator computations to model the electron affinity of the dialdehyde starting materials. It was predicted that bifuran\\bithiophene cross-coupling would indeed occur, and this was demonstrated by the first synthesis of a novel dioxa,dithio hetero-porphycenoid annulene. This approach will allow the prior identification of viable substrates for related crossed McMurry reactions. PMID:26213484

  14. Online Monitoring Oxidative Products and Metabolites of Nicotine by Free Radicals Generation with Fenton Reaction in Tandem Mass Spectrometry

    PubMed Central

    Liang, Shih-Shin; Shiue, Yow-Ling; Kuo, Chao-Jen; Liao, Wei-Ting; Tsai, Eing-Mei

    2013-01-01

    In general, over 70% absorbed nicotine is metabolized to cotinine and trans-3′-hydroxycotinine by cytochrome oxidase P450, and nicotine is also a major addictive and the psychoactive component in cigarettes. As a xenobiotic metabolism, hydrophobic compounds are usually converted into more hydrophilic products through enzyme systems such as cytochrome oxidase P450, sulfotransferases, and UDP-glucuronosyltransferases to deliver drug metabolites out of the cell during the drug metabolic process. In this study, an electrodeless electrochemical oxidation (EEO) reaction via Fenton reaction by producing free radical to react with nicotine to immediately monitor the oxidative products and metabolic derivatives of nicotine by tandem mass spectrometer (MS) is done. Fenton reaction generates free radicals via ferrous ion (Fe2+) and hydrogen peroxide (H2O2) to oxidize DNA and to degrade proteins in cells. In the EEO method, the oxidative products of nicotine including cotinine, cotinine-N-oxide, trans-3′-hydroxycotinine, nornicotine, norcotinine, 4-oxo-4-(3-pyridyl)-butanoic acid, 4-hydroxy-4-(3-pyridyl)-butanoic acid, and nicotine-N′-oxide were detected by tandem mass spectrometer to simulate the changes of nicotine and its derivatives in a time-dependent manner. PMID:23983622

  15. Monitoring Wnt Protein Acylation Using an In Vitro Cyclo-Addition Reaction

    PubMed Central

    Tuladhar, Rubina; Yarravarapu, Nageswari; Lum, Lawrence

    2016-01-01

    We describe here a technique for visualizing the lipidation status of Wnt proteins using azide-alkyne cycloaddition chemistry (click chemistry) and SDS-PAGE. This protocol incorporates in vivo labeling of a Wnt-IgG Fc fusion protein using an alkynylated palmitate probe but departs from a traditional approach by incorporating a secondary cycloaddition reaction performed on single-step purified Wnt protein immobilized on protein A resin. This approach mitigates experimental noise by decreasing the contribution of labeling from other palmitoylated proteins and by providing a robust method for normalizing labeling efficiency based on protein abundance. PMID:27590147

  16. Monitoring Wnt Protein Acylation Using an In Vitro Cyclo-Addition Reaction.

    PubMed

    Tuladhar, Rubina; Yarravarapu, Nageswari; Lum, Lawrence

    2016-01-01

    We describe here a technique for visualizing the lipidation status of Wnt proteins using azide-alkyne cycloaddition chemistry (click chemistry) and SDS-PAGE. This protocol incorporates in vivo labeling of a Wnt-IgG Fc fusion protein using an alkynylated palmitate probe but departs from a traditional approach by incorporating a secondary cycloaddition reaction performed on single-step purified Wnt protein immobilized on protein A resin. This approach mitigates experimental noise by decreasing the contribution of labeling from other palmitoylated proteins and by providing a robust method for normalizing labeling efficiency based on protein abundance. PMID:27590147

  17. Monitoring the wild black bear's reaction to human and environmental stressors

    PubMed Central

    2011-01-01

    Background Bears are among the most physiologically remarkable mammals. They spend half their life in an active state and the other half in a state of dormancy without food or water, and without urinating, defecating, or physical activity, yet can rouse and defend themselves when disturbed. Although important data have been obtained in both captive and wild bears, long-term physiological monitoring of bears has not been possible until the recent advancement of implantable devices. Results Insertable cardiac monitors that were developed for use in human heart patients (Reveal® XT, Medtronic, Inc) were implanted in 15 hibernating bears. Data were recovered from 8, including 2 that were legally shot by hunters. Devices recorded low heart rates (pauses of over 14 seconds) and low respiration rates (1.5 breaths/min) during hibernation, dramatic respiratory sinus arrhythmias in the fall and winter months, and elevated heart rates in summer (up to 214 beats/min (bpm)) and during interactions with hunters (exceeding 250 bpm). The devices documented the first and last day of denning, a period of quiescence in two parturient females after birthing, and extraordinary variation in the amount of activity/day, ranging from 0 (winter) to 1084 minutes (summer). Data showed a transition toward greater nocturnal activity in the fall, preceding hibernation. The data-loggers also provided evidence of the physiological and behavioral responses of bears to our den visits to retrieve the data. Conclusions Annual variations in heart rate and activity have been documented for the first time in wild black bears. This technique has broad applications to wildlife management and physiological research, enabling the impact of environmental stressors from humans, changing seasons, climate change, social interactions and predation to be directly monitored over multiple years. PMID:21849079

  18. Reactions of State-Selected Atomic Oxygen Ions O(+)((4)S, (2)D, (2)P) with Methane.

    PubMed

    Cunha de Miranda, Barbara; Romanzin, Claire; Chefdeville, Simon; Vuitton, Véronique; Žabka, Jan; Polášek, Miroslav; Alcaraz, Christian

    2015-06-11

    An experimental study has been carried out on the reactions of state selected O(+)((4)S, (2)D, (2)P) ions with methane with the aims of characterizing the effects of both the parent ion internal energy and collision energy on the reaction dynamics and determining the fate of oxygen species in complex media, in particular the Titan ionosphere. Absolute cross sections and product velocity distributions have been determined for the reactions of (16)O(+) or (18)O(+) ions with CH4 or CD4 from thermal to 5 eV collision energies by using the guided ion beam (GIB) technique. Dissociative photoionization of O2 with vacuum ultraviolet (VUV) synchrotron radiation delivered by the DESIRS beamline at the SOLEIL storage ring and the threshold photoion photoelectron coincidence (TPEPICO) technique are used for the preparation of purely state-selected O(+)((4)S, (2)D, (2)P) ions. A complete inversion of the product branching ratio between CH4(+) and CH3(+) ions in favor of the latter is observed for excitation of O(+) ions from the (4)S ground state to either the (2)D or the (2)P metastable state. CH4(+) and CH3(+) ions, which are by far the major products for the reaction of ground state and excited states, are strongly backward scattered in the center of mass frame relative to O(+) parent ions. For the reaction of O(+)((4)S), CH3(+) production also rises with increasing collision energy but with much less efficiency than with O(+) excitation. We found that a mechanism of dissociative charge transfer, mediated by an initial charge transfer step, can account very well for all the observations, indicating that CH3(+) production is associated with the formation of H and O atoms (CH3(+) + H + O) rather than with OH formation by an hydride transfer process (CH3(+) + OH). Therefore, as the CH4(+) production by charge transfer is also associated with O atoms, the fate of oxygen species in these reactions is essentially the O production, except for the reaction of O(+)((4)S), which also

  19. In-Situ Cure Monitoring of the Immidization Reaction of PMR-15

    NASA Technical Reports Server (NTRS)

    Cossins, Sheryl; Kellar, Jon J.; Winter, Robb M.

    1997-01-01

    Glass fiber reinforced polymer composites are becoming widely used in industry. With this increase in production, an in-situ method of quality control for the curing of the polymer is desirable. This would allow for the production of high-quality parts having more uniform properties.' Recently, in-situ fiber optic monitoring of polymer curing has primarily focused on epoxy resins and has been performed by Raman or fluorescence methods. In addition, some infrared (IR) investigations have been performed using transmission or ATR cells. An alternate IR approach involves using optical fibers as a sensor by utilizing evanescent wave spectroscopy.

  20. KINETICS AND PRODUCTS OF THE REACTIONS OF SELECTED DIOLS WITH THE OH RADICAL. (R825252)

    EPA Science Inventory

    Using a relative rate method, rate constants have been measured at 296 ? 2 K for the gas-phase reactions of OH radicals with 1,2-butanediol, 2,3-butanediol, 1,3-butanediol, and 2-methyl-2,4-pentanediol, with rate constants (in units of 10-12 cm3 molecule

  1. State-to-state mode selectivity in the HD + OH reaction: Perspectives from two product channels.

    PubMed

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2016-06-01

    The state-to-state quantum dynamics (Jtot = 0) of the HD + OH(υ2 = 0, 1) reaction is studied using a reactant coordinate based method, which allows the analysis of both the H + DOH and D + HOH channels with a single propagation. The stretching vibration of the newly formed bond, namely, the OD bond in DOH and one OH bond in HOH, is excited, thanks to its strong coupling with the reaction coordinate at the transition state. On the other hand, the vibrational energy deposited into the OH reactant (υ2 = 1) is sequestered during the reaction in the spectator OH mode. The combined effect leads to the excitation of both the OD and OH stretching modes in the DOH product, and the dominance of the (002) normal-mode state population in the HOH product, which in the local-mode picture corresponds to the excitation of both OH bonds with one quantum each. The energy flow in this prototypical tetratomic reaction can be understood in terms of the sudden vector projection model. PMID:27276953

  2. Conflicts during Response Selection Affect Response Programming: Reactions toward the Source of Stimulation

    ERIC Educational Resources Information Center

    Buetti, Simona; Kerzel, Dirk

    2009-01-01

    In the Simon effect, participants make a left or right keypress in response to a nonspatial attribute (e.g., color) that is presented on the left or right. Reaction times (RTs) increase when the response activated by the irrelevant stimulus location and the response retrieved by instruction are in conflict. The authors measured RTs and movement…

  3. Selectivity in the Addition Reactions of Organometallic Reagents to Aziridine-2-carboxaldehydes: The Effects of Protecting Groups and Substitution Patterns

    PubMed Central

    Kulshrestha, Aman; Schomaker, Jennifer M.; Holmes, Daniel; Staples, Richard J.; Jackson, James E.; Borhan, Babak

    2014-01-01

    Good to excellent stereo-selectivity has been found in the addition reactions of Grignard and organo-zinc reagents to N-protected aziridine-2-carboxaldehydes. Specifically, high syn selectivity was obtained with benzyl-protected cis, tert-butyloxycar-bonyl-protected trans, and tosyl-pro-tected 2,3-disubstituted aziridine-2-car-boxaldehydes. Furthermore, rate and selectivity effects of ring substituents, temperature, solvent, and Lewis acid and base modifiers were studied. The diastereomeric preference of addition is dominated by the substrate aziri-dines’ substitution pattern and especially the electronic character and conformational preferences of the nitrogen protecting groups. To help rationalize the observed stereochemical outcomes, conformational and electronic structural analyses of a series of model systems representing the various substitution patterns have been explored by density functional calculations at the B3LYP/6–31G* level of theory with the SM8 solvation model to account for solvent effects. PMID:21928447

  4. New High-Performance Liquid Chromatography Coupled Mass Spectrometry Method for the Detection of Lobster and Shrimp Allergens in Food Samples via Multiple Reaction Monitoring and Multiple Reaction Monitoring Cubed.

    PubMed

    Korte, Robin; Monneuse, Jean-Marc; Gemrot, Elodie; Metton, Isabelle; Humpf, Hans-Ulrich; Brockmeyer, Jens

    2016-08-10

    Crustacean shellfish allergy ranks among the most frequent and severe food allergies for adults, demanding rugged and sensitive analytical routine methods. The objective of this study was therefore to develop a mass spectrometric approach for the detection of contamination with shrimp and lobster, two economically important types of crustaceans, in complex food matrices. Following a biomarker approach, we identified proteotypic peptides and developed a multiple reaction monitoring (MRM) method allowing for the identification and differentiation of shrimp and lobster in the food matrix at concentrations down to 0.1%. To further enhance sensitivity, we employed the MRM-cubed (MRM(3)) mode, which allowed us to detect crustaceans down to concentrations of 25 μg/g (crustacean/food, 0.0025%). We hereby present the first mass spectrometric method for the detection of shrimp and lobster in food matrices. PMID:27391354

  5. Sexism and beautyism effects in selection as a function of self-monitoring level of decision maker.

    PubMed

    Jawahar, I M; Mattsson, Jonny

    2005-05-01

    The authors, in two experiments, investigated the influence of the sex and attractiveness of applicants for male and female sex-typed jobs on selection decisions made by low and high self-monitors. In both experiments, attractiveness and the congruence between applicants' sex and the sex type of the job influenced selection decisions. In addition, high self-monitors were more influenced by attractiveness and sex of the applicant when hiring for sex-typed jobs than low self-monitors, but this difference in hiring pattern was not evident when the job was gender neutral. Results indicate that job applicants may encounter different employment opportunities as a function of their sex, their physical attractiveness, the sex type of the job, and the self-monitoring level of the decision maker. Implications of results are discussed and suggestions for future research are offered. PMID:15910150

  6. Feature selection by merging sequential bidirectional search into relevance vector machine in condition monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Kui; Dong, Yu; Ball, Andrew

    2015-11-01

    For more accurate fault detection and diagnosis, there is an increasing trend to use a large number of sensors and to collect data at high frequency. This inevitably produces large-scale data and causes difficulties in fault classification. Actually, the classification methods are simply intractable when applied to high-dimensional condition monitoring data. In order to solve the problem, engineers have to resort to complicated feature extraction methods to reduce the dimensionality of data. However, the features transformed by the methods cannot be understood by the engineers due to a loss of the original engineering meaning. In this paper, other forms of dimensionality reduction technique(feature selection methods) are employed to identify machinery condition, based only on frequency spectrum data. Feature selection methods are usually divided into three main types: filter, wrapper and embedded methods. Most studies are mainly focused on the first two types, whilst the development and application of the embedded feature selection methods are very limited. This paper attempts to explore a novel embedded method. The method is formed by merging a sequential bidirectional search algorithm into scale parameters tuning within a kernel function in the relevance vector machine. To demonstrate the potential for applying the method to machinery fault diagnosis, the method is implemented to rolling bearing experimental data. The results obtained by using the method are consistent with the theoretical interpretation, proving that this algorithm has important engineering significance in revealing the correlation between the faults and relevant frequency features. The proposed method is a theoretical extension of relevance vector machine, and provides an effective solution to detect the fault-related frequency components with high efficiency.

  7. Impedance-based structural health monitoring using neural networks for autonomous frequency range selection

    NASA Astrophysics Data System (ADS)

    Min, Jiyoung; Park, Seunghee; Yun, Chung-Bang

    2010-12-01

    The impedance-based structural health monitoring (SHM) method has come to the forefront in the SHM community due to its practical potential for real applications. In the impedance-based SHM method, the selection of optimal frequency ranges plays an important role in improving the sensitivity of damage detection, since an improper frequency range can lead to erroneous damage detection results and provide false positive damage alarms. To tackle this issue, this paper proposes an innovative technique for autonomous selection of damage-sensitive frequency ranges using artificial neural networks (ANNs). First, the impedance signals are obtained in a wide frequency band, and the signals are split into multiple sub-ranges of this wide band. Then, the predefined damage index is evaluated for each sub-range by comparing impedance signals between the intact and the concurrent cases. Here, the cross correlation coefficients (CCs) are used as the predefined damage index. The ANN is constructed and trained using all CC values at multiple frequency ranges as multi-inputs and the real damage severity as the single output for various preselected damage scenarios, so that subsequent damage estimations may be carried out by selecting the governing frequency ranges autonomously. The performance of the proposed approach has been examined via a series of experimental studies to detect loose bolts and cracks induced on real steel bridge and building structures. It is found that the proposed approach autonomously determines the damage-sensitive frequency ranges and can be used for effective evaluation of damage severity in a wide variety of damage cases in real structures.

  8. Search for reaction conditions and catalyst for selective prebiotic formation of Aldopentoses from Glycolaldehyde and Formaldehyde

    NASA Astrophysics Data System (ADS)

    Delidovich, Irina; Taran, Oxana; Parmon, Valentin; Gromov, Nikolay

    2012-07-01

    Formation of organic compounds from simple precursors appears to have been one of the first steps from geochemistry towards modern biochemistry. The Earth lagoons, hydrothermal springs, cosmic dust, meteorites, protoplanetary disk, etc. has been considered as the possible ``reactors'' in which the prebiotic synthesis could have taken place. The finding of reactions and reaction conditions which allow to produce the high yields of the biologically relevant substances from simple compounds could help us to verify different hypothesis of plausible prebotic conditions. In this work we have studied the formation of vitally important sugars, namely aldopentoses (ribose, xylose, lyxose and arabinose), from glycolaldehyde and formaldehyde over catalysts. Aldopentoses nowadays play the important roles as the components of polysaccharides, glycosides, nucleic acids and ATP. Glycolaldehyde is the simplest monosaccharide, which was found in the interstellar space [1], where it could be generated as a result of several processes, for instance, condensation of formaldehyde under UV-radiation [2]. In this work the peculiarities of interaction between glycolaldehyde and formaldehyde in the presence of soluble (phosphate and borate buffers) and solid (minerals apatite and montmorillonites) catalysts were studied. The dependences of composition of the reaction products on the catalyst nature, molar ratio of substrates, pH value of reaction mixture were revealed. The yields of aldopentoses amount to ca. 60-65% in the presence of borate catalyst under optimized reaction conditions. Borate acts not only as a catalyst, but also as the stabilizer of active intermediates and aldopentoses from side reactions [3]. Borates are present in some mineral and clays (serpentine, montmorillonite etc.) and in water of Cityhot springs (Geyser valley, placeKamchatka) in rather high concentrations. Therefore catalysis by borates could be considered as plausible prebotic condition. Acknowledgements. We

  9. Reaction monitoring using mid-infrared laser-based vibrational circular dichroism.

    PubMed

    Rüther, Anja; Pfeifer, Marcel; Lórenz-Fonfría, Víctor A; Lüdeke, Steffen

    2014-09-01

    Changes in vibrational circular dichroism (VCD) were recorded on-line during a chemical reaction. The chiral complex nickel-(-)-sparteine chloride was hydrolyzed to free (-)-sparteine base in a biphasic system of sodium hydroxide solution and chloroform (CHCl(3)). Infrared (IR) and VCD spectra were iteratively recorded after pumping a sample from the CHCl(3) phase through a lab-built VCD spectrometer equipped with a tunable mid-IR quantum cascade laser light source, which allows for VCD measurements even in the presence of strongly absorbing backgrounds. Time-dependent VCD spectra were analyzed by singular value decomposition and global exponential fitting. Spectral features corresponding to the complex and free (-)-sparteine could be clearly identified in the fitted amplitude spectrum, which was associated with an exponential decay with an apparent time constant of 127 min (t(½) = 88 min). PMID:24623312

  10. Video and thermal imaging system for monitoring interiors of high temperature reaction vessels

    DOEpatents

    Saveliev, Alexei V.; Zelepouga, Serguei A.; Rue, David M.

    2012-01-10

    A system and method for real-time monitoring of the interior of a combustor or gasifier wherein light emitted by the interior surface of a refractory wall of the combustor or gasifier is collected using an imaging fiber optic bundle having a light receiving end and a light output end. Color information in the light is captured with primary color (RGB) filters or complimentary color (GMCY) filters placed over individual pixels of color sensors disposed within a digital color camera in a BAYER mosaic layout, producing RGB signal outputs or GMCY signal outputs. The signal outputs are processed using intensity ratios of the primary color filters or the complimentary color filters, producing video images and/or thermal images of the interior of the combustor or gasifier.

  11. Selective Control over Fragmentation Reactions in Polyatomic Molecules Using Impulsive Laser Alignment

    NASA Astrophysics Data System (ADS)

    Xie, Xinhua; Doblhoff-Dier, Katharina; Xu, Huailiang; Roither, Stefan; Schöffler, Markus S.; Kartashov, Daniil; Erattupuzha, Sonia; Rathje, Tim; Paulus, Gerhard G.; Yamanouchi, Kaoru; Baltuška, Andrius; Gräfe, Stefanie; Kitzler, Markus

    2014-04-01

    We investigate the possibility of using molecular alignment for controlling the relative probability of individual reaction pathways in polyatomic molecules initiated by electronic processes on the few-femtosecond time scale. Using acetylene as an example, it is shown that aligning the molecular axis with respect to the polarization direction of the ionizing laser pulse does not only allow us to enhance or suppress the overall fragmentation yield of a certain fragmentation channel but, more importantly, to determine the relative probability of individual reaction pathways starting from the same parent molecular ion. We show that the achieved control over dissociation or isomerization pathways along specific nuclear degrees of freedom is based on a controlled population of associated excited dissociative electronic states in the molecular ion due to relatively enhanced ionization contributions from inner valence orbitals.

  12. Graphene-Catalyzed Direct Friedel-Crafts Alkylation Reactions: Mechanism, Selectivity, and Synthetic Utility.

    PubMed

    Hu, Feng; Patel, Mehulkumar; Luo, Feixiang; Flach, Carol; Mendelsohn, Richard; Garfunkel, Eric; He, Huixin; Szostak, Michal

    2015-11-18

    Transition-metal-catalyzed alkylation reactions of arenes have become a central transformation in organic synthesis. Herein, we report the first general strategy for alkylation of arenes with styrenes and alcohols catalyzed by carbon-based materials, exploiting the unique property of graphenes to produce valuable diarylalkane products in high yields and excellent regioselectivity. The protocol is characterized by a wide substrate scope and excellent functional group tolerance. Notably, this process constitutes the first general application of graphenes to promote direct C-C bond formation utilizing polar functional groups anchored on the GO surface, thus opening the door for an array of functional group alkylations using benign and readily available graphene materials. Mechanistic studies suggest that the reaction proceeds via a tandem catalysis mechanism in which both of the coupling partners are activated by interaction with the GO surface. PMID:26496423

  13. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-01

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn2+ linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn2+ linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real

  14. Selecting spatio-temporal patterns by substrate injection in a reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-07-01

    We have explored the growth of patterns in chlorine dioxide-iodine-malonic acid reaction-diffusion system when the injection rate of the activator and inhibitor is varied over a range. The transition from spot to stripe and their mixture and finally the target wave which appears at the Hopf bifurcation boundary are observed. Our numerical simulations have been corroborated by theoretical analysis of amplitude equation for targets.

  15. Uncatalyzed reaction of selected unsaturated compounds with D{sub 2}

    SciTech Connect

    Rajagopal, V.K.; Guthrie, R.D.; Shi, B.; Davis, B.H.

    1994-12-31

    In our previous study of the reaction of 1,2-diphenylethane (bibenzyl), DPE, and other compounds with D{sub 2} at temperatures to 450{degrees}C and pressures of 2000 psi in isolation from metal surfaces, we were able to provide strong evidence for a mechanistic scheme wherein radicals formed by the homolysis of weak bonds, react with D{sub 2} to give D atoms. These participate in short radical-chain processes responsible for hydrocracking and exchange of H for D at unsubstituted aromatic positions. In contrast to the simple thermolysis of DPE wherein stilbene (PhCH=CHPh), STH, is formed as a major product, the reaction of DPE with D{sub 2} produces relatively small amounts of this compound. Moreover, the mole % of STB among the products decreases as conversion increases, indicating that initially produced STB is consumed. It, therefore, seemed important to examine the reaction of STB with D{sub 2}. This study has subsequently been extended to other unsaturated compounds and the results are reported below.

  16. A combined experimental and computational study of the catalytic dehydration of glycerol on microporous zeolites: an investigation of the reaction mechanism and acrolein selectivity.

    PubMed

    Lin, Xufeng; Lv, Yanhong; Qu, Yuanyuan; Zhang, Guodong; Xi, Yanyan; Phillips, David L; Liu, Chenguang

    2013-12-14

    The catalytic activity and the acrolein selectivity for liquid phase glycerol dehydration on β zeolites (HNa-β-k) were found to be dependent on the reaction temperature as well as on the amount of acid sites on the zeolites. An increase in the reaction temperature favors the acrolein selectivity. The acrolein selectivity increases with the Na(+)/H(+) ratio and the glycerol conversion decreases with it so that a maximum acrolein yield is obtained when a certain amount of acidic sites are replaced by non-active Na(+) sites. The computational results indicate that 3-hydoxylpropanal (HPA) is an important intermediate that determines the final product selectivity. The relative rates of the different reaction pathways for HAP can be affected by the amount of water molecules involved in its homogeneous reaction. Based on the reaction mechanism proposed, it was hypothesized that smaller pores reduce activity but increase selectivity to acrolein, and results of the H-MFI zeolite were consistent with this hypothesis. Our work provides important insight into the overall landscape of the reaction mechanism and can be used to help design reaction systems that have good acrolein selectivity for the liquid phase glycerol dehydration reactions. PMID:24158544

  17. Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions.

    PubMed

    Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian; Bica, Katharina

    2016-05-21

    A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions. PMID:27121134

  18. Non-invasive monitoring and quantitative analysis of patch test reactions by reflectance spectrophotometry, laser Doppler flowmetry and transepidermal water loss

    NASA Astrophysics Data System (ADS)

    Eikje, Natalja Skrebova; Arase, Seiji

    2008-02-01

    Reflectance spectrophotometry (RS), laser Doppler flowmetry (LDF) and transepidermal water loss (TEWL) techniques were simultaneously used to non-invasively monitor skin colour (SC), skin blood flow (SBF) and barrier function damage (BFD) in routinely patch-tested Japanese patients in dermatology clinic. The analytical quality, reliability and reproducibility of each technique were compared and analyzed in correlated to visual scoring patch test (PT) reactions as negative (-), doubtful (+?), weak (+) and strong (++/+++) at 48- and 72-hour monitoring. An attempt was made to quantify predominant in the clinic "+?"- and "+'"-PT-reactions. The relationship between 48 h and 72 h measurements in different reaction groups was poor for TEWL, LDF showed a tendency to decrease at 72 h, but good for RS. A correlation between visual scorings and instrumental mean values was poor for TEWL, good for LDF and excellent for RS. So, measurements by RS were the most statistically significant to non-invasively monitor and quantify doubtful, weak and strong PT reactions, accordingly providing continuous data grading of reaction intensity suitable in the clinic. Moreover, monitoring of SC changes was the most reliable parameter for the quantitative distinguishing of doubtful and weak reactions in pigmented skin.

  19. Temperature control of a microspectrophotometer system for monitoring the redox reactions of respiratory pigments in small volumes

    NASA Astrophysics Data System (ADS)

    Kavanagh, Karen Y.; Walsh, James E.; Murphy, J.; Harmey, M.; Farrell, M. A.; Hardimann, O.; Perryman, R.

    1998-05-01

    We report the development of a microspectrophotometer system for use on micro samples of mitochondrial respiratory pigments. A novel optical fiber set-up uses visible spectrophotometry to monitor the reduction of mitochondrial electron carriers. Data is presented for the reduction of cytochrome-c and for the effect of temperature on the levels of complex II/III activity from the mitochondria of rat liver. This in-vivo simulation of the reduction of cytochrome-c can be observed using a fiber optic probe which requires less than twenty (mu) l of sample for analysis. The key features of the system are: front end adaptability, high sensitivity and fast multispectral acquisition which are essential for the biological reactions which are observed.

  20. Reaction-Driven Self-Assembled Micellar Nanoprobes for Ratiometric Fluorescence Detection of CS2 with High Selectivity and Sensitivity.

    PubMed

    Lu, Wei; Xiao, Peng; Liu, Zhenzhong; Gu, Jincui; Zhang, Jiawei; Huang, Youju; Huang, Qing; Chen, Tao

    2016-08-10

    The detection of highly toxic CS2, which is known as a notorious occupational hazard in various industrial processes, is important from both environmental and public safety perspectives. We describe here a robust type of chemical-reaction-based supramolecular fluorescent nanoprobes for ratiometric determination of CS2 with high selectivity and sensitivity in water medium. The micellar nanoprobes self-assemble from amphiphilic pyrene-modified hyperbranched polyethylenimine (Py-HPEI) polymers with intense pyrene excimer emission. Selective sensing is based on a CS2-specific reaction with hydrophilic amino groups to produce hydrophobic dithiocarbamate moieties, which can strongly quench the pyrene excimer emission via a known photoinduced electron transfer (PET) mechanism. Therefore, the developed micellar nanoprobes are free of the H2S interference problem often encountered in the widely used colorimetric assays and proved to show high selectivity over many potentially competing chemical species. Importantly, the developed approach is capable of CS2 sensing even in complex tap and river water samples. In addition, in view of the modular design principle of these powerful micellar nanoprobes, the sensing strategy used here is expected to be applicable to the development of various sensory systems for other environmentally important guest species. PMID:27419849

  1. Performance of transport and selective media for swine Bordetella bronchiseptica recovery and it comparison to polymerase chain reaction detection

    PubMed Central

    Coutinho, Tania Alen; Bernardi, Mari Lourdes; de Itapema Cardoso, Marisa Ribeiro; Borowski, Sandra Maria; Moreno, Andrea Micke; de Barcellos, David Emilio Santos Neves

    2009-01-01

    Three comparative assays were performed seeking to improve the sensitivity of the diagnosis of Bordetella bronchiseptica infection analyzing swine nasal swabs. An initial assay compared the recovery of B. bronchiseptica from swabs simultaneously inoculated with B. bronchiseptica and some interfering bacteria, immersed into three transport formulations (Amies with charcoal, trypticase soy broth and phosphate buffer according to Soerensen supplemented with 5% of bovine fetal serum) and submitted to different temperatures (10°C and 27°C) and periods of incubation (24, 72 and 120 hours). A subsequent assay compared three selective media (MacConkey agar, modified selective medium G20G and a ceftiofur medium) for their recovery capabilities from clinical specimens. One last assay compared the polymerase chain reaction to the three selective media. In the first assay, the recovery of B. bronchiseptica from transport systems was better at 27°C and the three formulations had good performances at this temperature, but the collection of qualitative and quantitative analysis indicated the advantage of Amies medium for nasal swabs transportation. The second assay indicated that MacConkey agar and modified G20G had similar results and were superior to the ceftiofur medium. In the final assay, polymerase chain reaction presented superior capability of B. bronchiseptica detection to culture procedures. PMID:24031390

  2. In situ monitoring of brain tissue reaction of chronically implanted electrodes with an optical coherence tomography fiber system

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Hassler, Christina; Stieglitz, Thomas; Seifert, Andreas; Hofmann, Ulrich G.

    2014-03-01

    Neural microelectrodes are well established tools for delivering therapeutic electrical pulses, and recording neural electrophysiological signals. However, long term implanted neural probes often become functionally impaired by tissue encapsulation. At present, analyzing this immune reaction is only feasible with post-mortem histology; currently no means for specific in vivo monitoring exist and most applicable imaging modalities provide no sufficient resolution for a cellular measurement in deep brain regions. Optical coherence tomography (OCT) is a well developed imaging modality, providing cellular resolution and up to 1.2 mm imaging depth in brain tissue. Further more, a fiber based spectral domain OCT was shown to be capable of minimally invasive brain intervention. In the present study, we propose to use a fiber based spectral domain OCT to monitor the the progression of the tissue's immune response and scar encapsulation of microprobes in a rat animal model. We developed an integrated OCT fiber catheter consisting of an implantable ferrule based fiber cannula and a fiber patch cable. The fiber cannula was 18.5 mm long, including a 10.5 mm ceramic ferrule and a 8.0 mm long, 125 μm single mode fiber. A mating sleeve was used to fix and connect the fiber cannula to the OCT fiber cable. Light attenuation between the OCT fiber cable and the fiber cannula through the mating sleeve was measured and minimized. The fiber cannula was implanted in rat brain together with a microelectrode in sight used as a foreign body to induce the brain tissue immune reaction. Preliminary data showed a significant enhancement of the OCT backscattering signal during the brain tissue scarring process, while the OCT signal of the flexible microelectrode was getting weaker consequentially.

  3. Monitoring equilibrium reaction dynamics of a nearly barrierless molecular rotor using ultrafast vibrational echoes

    NASA Astrophysics Data System (ADS)

    Nilsen, Ian A.; Osborne, Derek G.; White, Aaron M.; Anna, Jessica M.; Kubarych, Kevin J.

    2014-10-01

    Using rapidly acquired spectral diffusion, a recently developed variation of heterodyne detected infrared photon echo spectroscopy, we observe ˜3 ps solvent independent spectral diffusion of benzene chromium tricarbonyl (C6H6Cr(CO)3, BCT) in a series of nonpolar linear alkane solvents. The spectral dynamics is attributed to low-barrier internal torsional motion. This tripod complex has two stable minima corresponding to staggered and eclipsed conformations, which differ in energy by roughly half of kBT. The solvent independence is due to the relative size of the rotor compared with the solvent molecules, which create a solvent cage in which torsional motion occurs largely free from solvent damping. Since the one-dimensional transition state is computed to be only 0.03 kBT above the higher energy eclipsed conformation, this model system offers an unusual, nearly barrierless reaction, which nevertheless is characterized by torsional coordinate dependent vibrational frequencies. Hence, by studying the spectral diffusion of the tripod carbonyls, it is possible to gain insight into the fundamental dynamics of internal rotational motion, and we find some evidence for the importance of non-diffusive ballistic motion even in the room-temperature liquid environment. Using several different approaches to describe equilibrium kinetics, as well as the influence of reactive dynamics on spectroscopic observables, we provide evidence that the low-barrier torsional motion of BCT provides an excellent test case for detailed studies of the links between chemical exchange and linear and nonlinear vibrational spectroscopy.

  4. Monitoring equilibrium reaction dynamics of a nearly barrierless molecular rotor using ultrafast vibrational echoes.

    PubMed

    Nilsen, Ian A; Osborne, Derek G; White, Aaron M; Anna, Jessica M; Kubarych, Kevin J

    2014-10-01

    Using rapidly acquired spectral diffusion, a recently developed variation of heterodyne detected infrared photon echo spectroscopy, we observe ∼3 ps solvent independent spectral diffusion of benzene chromium tricarbonyl (C6H6Cr(CO)3, BCT) in a series of nonpolar linear alkane solvents. The spectral dynamics is attributed to low-barrier internal torsional motion. This tripod complex has two stable minima corresponding to staggered and eclipsed conformations, which differ in energy by roughly half of kBT. The solvent independence is due to the relative size of the rotor compared with the solvent molecules, which create a solvent cage in which torsional motion occurs largely free from solvent damping. Since the one-dimensional transition state is computed to be only 0.03 kBT above the higher energy eclipsed conformation, this model system offers an unusual, nearly barrierless reaction, which nevertheless is characterized by torsional coordinate dependent vibrational frequencies. Hence, by studying the spectral diffusion of the tripod carbonyls, it is possible to gain insight into the fundamental dynamics of internal rotational motion, and we find some evidence for the importance of non-diffusive ballistic motion even in the room-temperature liquid environment. Using several different approaches to describe equilibrium kinetics, as well as the influence of reactive dynamics on spectroscopic observables, we provide evidence that the low-barrier torsional motion of BCT provides an excellent test case for detailed studies of the links between chemical exchange and linear and nonlinear vibrational spectroscopy. PMID:25296812

  5. Computational intelligence-based polymerase chain reaction primer selection based on a novel teaching-learning-based optimisation.

    PubMed

    Cheng, Yu-Huei

    2014-12-01

    Specific primers play an important role in polymerase chain reaction (PCR) experiments, and therefore it is essential to find specific primers of outstanding quality. Unfortunately, many PCR constraints must be simultaneously inspected which makes specific primer selection difficult and time-consuming. This paper introduces a novel computational intelligence-based method, Teaching-Learning-Based Optimisation, to select the specific and feasible primers. The specified PCR product lengths of 150-300 bp and 500-800 bp with three melting temperature formulae of Wallace's formula, Bolton and McCarthy's formula and SantaLucia's formula were performed. The authors calculate optimal frequency to estimate the quality of primer selection based on a total of 500 runs for 50 random nucleotide sequences of 'Homo species' retrieved from the National Center for Biotechnology Information. The method was then fairly compared with the genetic algorithm (GA) and memetic algorithm (MA) for primer selection in the literature. The results show that the method easily found suitable primers corresponding with the setting primer constraints and had preferable performance than the GA and the MA. Furthermore, the method was also compared with the common method Primer3 according to their method type, primers presentation, parameters setting, speed and memory usage. In conclusion, it is an interesting primer selection method and a valuable tool for automatic high-throughput analysis. In the future, the usage of the primers in the wet lab needs to be validated carefully to increase the reliability of the method. PMID:25429503

  6. Reactions of bovine serum amine oxidase with NN-diethyldithiocarbamate. Selective removal of one copper ion.

    PubMed Central

    Morpurgo, L; Agostinelli, E; Befani, O; Mondovì, B

    1987-01-01

    NN-Diethyldithiocarbamate (DDC) was able to bind, at 1.0 mM concentration, only about 50% the Cu(II) ions of bovine plasma amine oxidase. Under reducing conditions, this Cu(II) was removed with inactivation of the enzyme. Up to 90% activity could be recovered by treatment with excess Cu(II). The organic cofactor, sensitive to carbonyl reagents, was reduced in the half-Cu-depleted protein and no longer bound phenylhydrazine. The fully reacted protein, in the presence of 10 mM-DDC, lost 50% Cu(II) upon storage at -20 degrees C, but in this case the residual Cu(II) was in the DDC-bound form and the cofactor was in the oxidized state, as it could still bind phenylhydrazine. In the presence of DDC, the rate of reaction with phenylhydrazine was always low, even at 50% DDC saturation, and all derivatives showed identical modifications of the optical and e.p.r. spectra with respect to the phenylhydrazone of the native protein. It is concluded that the two Cu(II) ions are not equivalent, that removal of a single Cu(II) is sufficient to inhibit the re-oxidation of the organic cofactor, and that both Cu(II) ions are in some way involved in the reaction with phenylhydrazine. After reaction with DDC, the optical and e.p.r. spectra of 63Cu(II)-amine oxidase and of 63Cu(II)-carbonic anhydrase [Morpurgo, Desideri, Rigo, Viglino & Rotilio (1983) Biochim. Biophys. Acta 746, 168-175] are very similar and show distorted equatorial co-ordination to Cu(II) of two sulphur atoms and two magnetically equivalent nitrogen atoms. PMID:2829844

  7. Effects of selected softball bat loading strategies on impact reaction impulse.

    PubMed

    Noble, L; Eck, J

    1986-02-01

    Interior loading strategies to modify the location and size of the effective hitting area of aluminum softball bats were identified. The effects of these strategies on theoretically derived and empirically determined relevant mechanical parameters were compared. Loading strategies consisted of adding 315 g to the interior of three similar (790 g) aluminum softball bats: at the center of mass of the original bat (bat C); at the ends of the bat and distributed so that the center of mass was unchanged, (bat A); and at the ends of the bat and distributed so that the moment of inertia about the swing axis (I1) was the same as that of bat C (bat B). The following parameters were derived theoretically by considering the bat as a physical pendulum and empirically by observing the impact reaction impulse on the axis of suspension: moment of inertia about the suspension axis (I0); moment of inertia about the swing axis; distance from the suspension axis to the center of percussion; and the slope of the impact reaction impulse (P1) relative to the impact impulse (P) as a function of impact location. These values for each bat were compared. Both empirical and theoretically derived data indicated that: the center of percussion of bat B was farther away from the axis than bats A and C; the moment of inertia about the swing axis of bat A was much greater than that of bats B and C; and the slope of the impact reaction regression line as a function of impact location for bat B was significantly less than that of the other bats. Thus, the effective hitting area of bat B was moved toward the barrel end of the bat and enlarged without a substantial increase in the moment of inertia about the swing axis. PMID:3959864

  8. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    SciTech Connect

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.

    2004-11-27

    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  9. Electrochemical study of quinone redox cycling: A novel application of DNA-based biosensors for monitoring biochemical reactions.

    PubMed

    Ensafi, Ali A; Jamei, Hamid Reza; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2016-10-01

    This paper presents the results of an experimental investigation of voltammetric and impedimetric DNA-based biosensors for monitoring biological and chemical redox cycling reactions involving free radical intermediates. The concept is based on associating the amounts of radicals generated with the electrochemical signals produced, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes and poly-diallydimethlammonium chloride decorated with double stranded fish sperm DNA was prepared to detect DNA damage induced by the radicals generated from a redox cycling quinone (i.e., menadione (MD; 2-methyl-1,4-naphthoquinone)). Menadione was employed as a model compound to study the redox cycling of quinones. A direct relationship was found between free radical production and DNA damage. The relationship between MD-induced DNA damage and free radical generation was investigated in an attempt to identify the possible mechanism(s) involved in the action of MD. Results showed that DPV and EIS were appropriate, simple and inexpensive techniques for the quantitative and qualitative comparisons of different reducing reagents. These techniques may be recommended for monitoring DNA damages and investigating the mechanisms involved in the production of redox cycling compounds. PMID:27179196

  10. Evaluation of Multi-tRNA Synthetase Complex by Multiple Reaction Monitoring Mass Spectrometry Coupled with Size Exclusion Chromatography

    PubMed Central

    Kim, Jun Seok; Lee, Cheolju

    2015-01-01

    Eight aminoacyl-tRNA synthetases (M, K, Q, D, R, I, EP and LARS) and three auxiliary proteins (AIMP1, 2 and 3) are known to form a multi-tRNA synthetase complex (MSC) in mammalian cells. We combined size exclusion chromatography (SEC) with reversed-phase liquid chromatography multiple reaction monitoring mass spectrometry (RPLC-MRM-MS) to characterize MSC components and free ARS proteins in human embryonic kidney (HEK 293T) cells. Crude cell extract and affinity-purified proteins were fractionated by SEC in non-denaturing state and ARSs were monitored in each fraction by MRM-MS. The eleven MSC components appeared mostly in earlier SEC fractions demonstrating their participation in complex formation. TARSL2 and AIMP2-DX2, despite their low abundance, were co-purified with KARS and detected in the SEC fractions, where MSC appeared. Moreover, other large complex-forming ARS proteins, such as VARS and FARS, were detected in earlier fractions. The MRM-MS results were further confirmed by western blot analysis. Our study demonstrates usefulness of combined SEC-MRM analysis for the characterization of protein complexes and in understanding the behavior of minor isoforms or variant proteins. PMID:26544075

  11. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-06-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used.

  12. Validation of a polymerase chain reaction assay for monitoring the therapeutic efficacy of diminazene aceturate in trypanosome-infected sheep.

    PubMed

    Bengaly, Z; Kasbari, M; Desquesnes, M; Sidibé, I

    2001-03-20

    The diagnostic performance of a polymerase chain reaction assay (PCR) for monitoring the effectiveness of aceturate diminazene treatment was compared with those of an antibody-detection ELISA test and the buffy-coat technique using sheep experimentally infected with either savannah-type or forest-type Trypanosoma congolense or T. vivax. Within the period of infection, the PCR using specific savannah-type T. congolense primers showed a significant higher diagnostic sensitivity (p<0.05) than the buffy-coat technique. Both techniques gave closed results for detecting forest-type T. congolense or T. vivax infections. Following trypanocidal treatment, the PCR showed that specific product disappeared definitively 1 or 2 days later in animals in which a decrease of the antibody level and a significant improvement of the red packed cell volume were observed. The occurrence of relapse infection was detected by the PCR in one animal infected by T. vivax on day 19 post-treatment and confirmed by the persistence and increasing antibody level whereas the buffy-coat technique detected parasites 42 days later. Then, the PCR signals remained positive on several occasions while parasitaemia was detected only two times.The application of PCR combined with the antibody detection appeared to provide a useful tool as compared to the buffy-coat technique for monitoring the effectiveness of trypanocidal treatment. PMID:11230917

  13. Pharmacovigilance program to monitor adverse reactions of recombinant streptokinase in acute myocardial infarction

    PubMed Central

    Betancourt, Blas Y; Marrero-Miragaya, María A; Jiménez-López, Giset; Valenzuela-Silva, Carmen; García-Iglesias, Elizeth; Hernández-Bernal, Francisco; Debesa-García, Francisco; González-López, Tania; Alvarez-Falcón, Leovaldo; López-Saura, Pedro A

    2005-01-01

    Background Streptokinase (SK) is an effective fibrinolytic agent for the treatment of acute myocardial infarction (AMI). The objective of the present study was to assess the adverse drug reactions (ADRs) associated with intravenous recombinant SK in patients with AMI in routine clinical practice. Methods A national, prospective and spontaneous reporting-based pharmacovigilance program was conducted in Cuba. Patient demographics, suspected ADR description, elements to define causality, and outcomes were documented and analyzed. Results A total of 1496 suspected ADRs identified in 792 patients out of the 1660 (47.7 %) prescriptions reported in the program, were received from July 1995 to July 2002. Most of the patients (71.3%) were male, 67.2% were white and mean age was 61.6 ± 13.0 years. The mean time interval between the onset of symptoms and the start of the SK infusion was 4.9 ± 3.7 h. The most frequently reported ADRs were hypotension, arrhythmias, chills, tremors, vomiting, nauseas, allergy, bleeding and fever. ADR severity was 38% mild, 38% moderate, 10% severe, and 4% very severe. Only 3 patients with hemorrhagic stroke were reported. Seventy-two patients died in-hospital mainly because of cardiac causes associated with the patient's underlying clinical condition. Mortality was 3 times more likely in patients suffering arrhythmias than in those without this event (odds ratio 3.1, 95% CI: 1.8 to 5.1). Most of the reported ADRs were classified as possibly or probably associated with the study medication. Conclusion Recombinant SK was associated with a similar post-marketing safety profile to those suggested in previous clinical trials. PMID:16262910

  14. Monitoring equilibrium reaction dynamics of a nearly barrierless molecular rotor using ultrafast vibrational echoes

    SciTech Connect

    Nilsen, Ian A.; Osborne, Derek G.; White, Aaron M.; Anna, Jessica M.; Kubarych, Kevin J.

    2014-10-07

    Using rapidly acquired spectral diffusion, a recently developed variation of heterodyne detected infrared photon echo spectroscopy, we observe ∼3 ps solvent independent spectral diffusion of benzene chromium tricarbonyl (C{sub 6}H{sub 6}Cr(CO){sub 3}, BCT) in a series of nonpolar linear alkane solvents. The spectral dynamics is attributed to low-barrier internal torsional motion. This tripod complex has two stable minima corresponding to staggered and eclipsed conformations, which differ in energy by roughly half of k{sub B}T. The solvent independence is due to the relative size of the rotor compared with the solvent molecules, which create a solvent cage in which torsional motion occurs largely free from solvent damping. Since the one-dimensional transition state is computed to be only 0.03 k{sub B}T above the higher energy eclipsed conformation, this model system offers an unusual, nearly barrierless reaction, which nevertheless is characterized by torsional coordinate dependent vibrational frequencies. Hence, by studying the spectral diffusion of the tripod carbonyls, it is possible to gain insight into the fundamental dynamics of internal rotational motion, and we find some evidence for the importance of non-diffusive ballistic motion even in the room-temperature liquid environment. Using several different approaches to describe equilibrium kinetics, as well as the influence of reactive dynamics on spectroscopic observables, we provide evidence that the low-barrier torsional motion of BCT provides an excellent test case for detailed studies of the links between chemical exchange and linear and nonlinear vibrational spectroscopy.

  15. Step Towards Modeling the Atmosphere of Titan: State-Selected Reactions of O+ with Methane

    NASA Astrophysics Data System (ADS)

    Hrušák, J.; Paidarová, I.

    2016-04-01

    Methane conversion and in particular the formation of the C-O bond is one of fundamental entries to organic chemistry and it appears to be essential for understanding parts of atmospheric chemistry of Titan, but, in broader terms it might be also relevant for Earth-like exoplanets. Theoretical study of the reactions of methane with atomic oxygen ion in its excited electronic states requires treating simultaneously at least 19 electronic states. Development of a computational strategy that would allow chemically reasonable and computationally feasible treatment of the CH4 (X)/O+ (2D, 2P) system is by far not trivial and it requires careful examination of all the complex features of the corresponding 19 potential energy surfaces. Before entering the discussion of the rich (photo) chemistry, inspection of the long range behavior of the system with focus on electric dipole transition moments is required. Our calculations show nonzero probability for the reactants to decay before entering the multiple avoided crossings region of the [CH4 + O → products]+ reaction. For the CH4/O+ (2P) system non-zero transition moment probabilities occur over the entire range of considered C-O distances (up to 15 Å), while for the CH4/O+ (2D) system these probabilities are lower by one order of magnitude and were found only at C-O distances smaller than 6 Å.

  16. Lower theta inter-trial phase coherence during performance monitoring is related to higher reaction time variability: a lifespan study.

    PubMed

    Papenberg, Goran; Hämmerer, Dorothea; Müller, Viktor; Lindenberger, Ulman; Li, Shu-Chen

    2013-12-01

    Trial-to-trial reaction time (RT) variability is consistently higher in children and older adults than in younger adults. Converging evidence also indicates that higher RT variability is (a) associated with lower behavioral performance on complex cognitive tasks, (b) distinguishes patients with neurological deficits from healthy individuals, and also (c) predicts longitudinal cognitive decline in older adults. However, so far the processes underlying increased RT variability are poorly understood. Previous evidence suggests that control signals in the medial frontal cortex (MFC) are reflected in theta band activity and may implicate the coordination of distinct brain areas during performance monitoring. We hypothesized that greater trial-to-trial variability in theta power during performance monitoring may be associated with greater behavioral variability in response latencies. We analyzed event-related theta oscillations assessed during a cued-Go/NoGo task in a lifespan sample covering the age range from middle childhood to old age. Our results show that theta inter-trial coherence during NoGo trials increases from childhood to early adulthood, and decreases from early adulthood to old age. Moreover, in all age groups, individuals with higher variability in medial frontal stimulus-locked theta oscillations showed higher trial-to-trial RT variability behaviorally. Importantly, this effect was strongest at high performance monitoring demands and independent of motor response execution as well as theta power. Taken together, our findings reveal that lower theta inter-trial coherence is related to greater behavioral variability within and across age groups. These results hint at the possibility that more variable MFC control may be associated with greater performance fluctuations. PMID:23876249

  17. Reaction monitoring in LPOS by 19F NMR. Study of soluble polymer supports with fluorine in spacer or linker components of supports.

    PubMed

    Lakshmipathi, Pandarinathan; Crévisy, Christophe; Grée, Rene

    2002-01-01

    Various soluble polystyrene supports with fluorinated spacer or linker were prepared and studied by (19)F NMR for their use in LPOS reaction monitoring. Among three types of systems studied, the perfluoro Wang linker was found to be most efficient for this purpose. Substrates could be easily anchored to and cleaved from this new support-bound linker. The anchoring of the linker and the substrates on the polymer led to significant changes in the fluorine resonances. Therefore, the progress of these reactions could be both monitored and quantified. On the other hand, the chemical transformations on the anchored substrates led only to moderate changes in the fluorine resonances. Nevertheless, the reaction progress could also be monitored in this case. After cleavage of products, the polymer supports were recovered without loss in loading. Membrane separation technology was used to purify some polymer-bound products as well as to obtain the polymer-free cleaved product. PMID:12425606

  18. Determination of testosterone in plasma from men by gas chromatography/mass spectrometry, with high-resolution selected-ion monitoring and metastable peak monitoring

    SciTech Connect

    Finlay, E.M.; Gaskell, S.J.

    1981-07-01

    Highly specific methods are described for determining testosterone in plasma or serum from men. Extract fractions obtained by selective isolation procedures are converted to tert-butyldimethylsilyl (TBDMS) oximes/TBDMS ethers or methyl oximes/TBDMS ethers and analyzed by gas chromatography/mass spectrometry in the high-resolution selected-ion monitoring or metastable peak-monitoring modes. (2H3)Testosterone and unlabeled 17-epitestosterone are used as the respective internal standards. When we applied the two procedures to analysis of samples of pooled plasma and serum used for external quality assessment of routine assays, the results agreed well. Interlaboratory values for mean concentrations obtained by routine immunoassays (y) consistently exceeded values obtained by our technique (x), although the values closely correlated (r . 0.997; y . 1.008x + 0.564 nmol/L).

  19. Design of Selective Gas Sensors Using Additive-Loaded In2O3 Hollow Spheres Prepared by Combinatorial Hydrothermal Reactions

    PubMed Central

    Kim, Sun-Jung; Hwang, In-Sung; Kang, Yun Chan; Lee, Jong-Heun

    2011-01-01

    A combinatorial hydrothermal reaction has been used to prepare pure and additive (Sb, Cu, Nb, Pd, and Ni)-loaded In2O3 hollow spheres for gas sensor applications. The operation of Pd- and Cu-loaded In2O3 sensors at 371 °C leads to selective H2S detection. Selective detection of CO and NH3 was achieved by the Ni-In2O3 sensor at sensing temperatures of 371 and 440 °C, respectively. The gas responses of six different sensors to NH3, H2S, H2, CO and CH4 produced unique gas sensing patterns that can be used for the artificial recognition of these gases. PMID:22346661

  20. A simple ligation-based method to increase the information density in sequencing reactions used to deconvolute nucleic acid selections

    PubMed Central

    Childs-Disney, Jessica L.; Disney, Matthew D.

    2008-01-01

    Herein, a method is described to increase the information density of sequencing experiments used to deconvolute nucleic acid selections. The method is facile and should be applicable to any selection experiment. A critical feature of this method is the use of biotinylated primers to amplify and encode a BamHI restriction site on both ends of a PCR product. After amplification, the PCR reaction is captured onto streptavidin resin, washed, and digested directly on the resin. Resin-based digestion affords clean product that is devoid of partially digested products and unincorporated PCR primers. The product's complementary ends are annealed and ligated together with T4 DNA ligase. Analysis of ligation products shows formation of concatemers of different length and little detectable monomer. Sequencing results produced data that routinely contained three to four copies of the library. This method allows for more efficient formulation of structure-activity relationships since multiple active sequences are identified from a single clone. PMID:18065718

  1. Selectivity to olefins of Fe/SiO{sub 2}-MgO catalysts in the Fischer-Tropsch reaction

    SciTech Connect

    Gallegos, N.G.; Alvarez, A.M.; Cagnoli, M.V.; Bengoa, J.F.

    1996-06-01

    SiO{sub 2} covered with MgO has been used as support of iron catalysts in the Fischer-Tropsch reaction. Catalysts of 5% (w/w) iron concentration and 2, 4, and 8% (w/w) of MgO on SiO{sub 2} were prepared. Selective chemisorption of CO, volumetric oxidation, and Moessbauer spectroscopy were used to characterize the type of iron species and the metallic crystal sizes. MgO covers the SiO{sub 2} surface and modifies the metallic crystal size. The activity to total hydrocarbons increases with the amount of MgO added. An optimal concentration of about 4% (w/w) was found to have the highest selectivity to olefins. 45 refs., 13 figs., 3 tabs.

  2. Shape selection in Landsat time series: a tool for monitoring forest dynamics.

    PubMed

    Moisen, Gretchen G; Meyer, Mary C; Schroeder, Todd A; Liao, Xiyue; Schleeweis, Karen G; Freeman, Elizabeth A; Toney, Chris

    2016-10-01

    We present a new methodology for fitting nonparametric shape-restricted regression splines to time series of Landsat imagery for the purpose of modeling, mapping, and monitoring annual forest disturbance dynamics over nearly three decades. For each pixel and spectral band or index of choice in temporal Landsat data, our method delivers a smoothed rendition of the trajectory constrained to behave in an ecologically sensible manner, reflecting one of seven possible 'shapes'. It also provides parameters summarizing the patterns of each change including year of onset, duration, magnitude, and pre- and postchange rates of growth or recovery. Through a case study featuring fire, harvest, and bark beetle outbreak, we illustrate how resultant fitted values and parameters can be fed into empirical models to map disturbance causal agent and tree canopy cover changes coincident with disturbance events through time. We provide our code in the r package ShapeSelectForest on the Comprehensive R Archival Network and describe our computational approaches for running the method over large geographic areas. We also discuss how this methodology is currently being used for forest disturbance and attribute mapping across the conterminous United States. PMID:27185612

  3. Site Selective Doping of Ultrathin Metal Dichalcogenides by Laser-Assisted Reaction.

    PubMed

    Kim, Eunpa; Ko, Changhyun; Kim, Kyunghoon; Chen, Yabin; Suh, Joonki; Ryu, Sang-Gil; Wu, Kedi; Meng, Xiuqing; Suslu, Aslihan; Tongay, Sefaattin; Wu, Junqiao; Grigoropoulos, Costas P

    2016-01-13

    Laser-assisted phosphorus doping is demonstrated on ultrathin transition-metal dichalcogenides (TMDCs) including n-type MoS2 and p-type WSe2 . Temporal and spatial control of the doping is achieved by varying the laser irradiation power and time, demonstrating wide tunability and high site selectivity with high stability. The laser-assisted doping method may enable a new avenue for functionalizing TMDCs for customized nanodevice applications. PMID:26567761

  4. Method and Apparatus for Monitoring of Daily Activity in Terms of Ground Reaction Forces

    NASA Technical Reports Server (NTRS)

    Whalen, Robert T. (Inventor); Breit, Gregory A. (Inventor)

    2001-01-01

    A device to record and analyze habitual daily activity in terms of the history of gait-related musculoskeletal loading is disclosed. The device consists of a pressure-sensing insole placed into the shoe or embedded in a shoe sole, which detects contact of the foot with the ground. The sensor is coupled to a portable battery-powered digital data logger clipped to the shoe or worn around the ankle or waist. During the course of normal daily activity, the system maintains a record of time-of-occurrence of all non-spurious foot-down and lift-off events. Off line, these data are filtered and converted to a history of foot-ground contact times, from which measures of cumulative musculoskeletal loading, average walking- and running-specific gait speed, total time spent walking and running, total number of walking steps and running steps, and total gait-related energy expenditure are estimated from empirical regressions of various gait parameters to the contact time reciprocal. Data are available as cumulative values or as daily averages by menu selection. The data provided by this device are useful for assessment of musculoskeletal and cardiovascular health and risk factors associated with habitual patterns of daily activity.

  5. Competing reactions of selected atmospheric gases on Fe3O4 nanoparticles surfaces.

    PubMed

    Eltouny, N; Ariya, Parisa A

    2014-11-14

    Heterogeneous reactions on atmospheric aerosol surfaces are increasingly considered important in understanding aerosol-cloud nucleation and climate change. To understand potential reactions in polluted atmospheres, the co-adsorption of NO2 and toluene to magnetite (Fe3O4i.e. FeO·Fe2O3) nanoparticles at ambient conditions was investigated for the first time. The surface area, size distribution, and morphology of Fe3O4 nanoparticles were characterized by BET method and high-resolution transmission electron microscopy. Adsorption isotherms, collected by gas chromatography with flame ionization detection, showed that the presence of NO2 decreased the adsorption of toluene. The analyses of the surface chemical composition of Fe3O4 by X-ray photoelectron spectroscopy (XPS) reveal that, upon the addition of NO2, the surface is oxidized and a contribution at 532.5 ± 0.4 eV in the O1s spectrum appears, showing that NO2 likely competes with toluene by dissociating on Fe(2+) sites and forming NO3(-). Different competing effects were observed for oxidized Fe3O4; oxidation occurred when exposed solely to NO2, whereas, the mixture of toluene and NO2 resulted in a reduction of the surface i.e. increased Fe(2+)/Fe(3+). Analyses by time of flight secondary ion mass spectrometry further suggest toluene reacts with Fe(3+) sites forming oxygenated organics. Our results indicate that on reduced magnetite, NO2 is more reactive and competes with toluene; in contrast, on oxidized Fe3O4, toluene is more reactive. Because magnetite can assume a range of oxidation ratios in the environment, different competing interactions between pollutants like NO2 and toluene could influence atmospheric processes, namely, the formation of Fe(2+) and the formation of atmospheric oxidants. PMID:25247461

  6. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules.

    SciTech Connect

    Genorio, B.; Strmcnik, D.; Subbaraman, R.; Tripkovic, D.; Karapetrov, G.; Stamenkovic, V. R.; Pejovnik, S.; Markovic, N. M.; Univ. Ljubljana; National Inst. of Chemistry

    2010-12-01

    The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The methods used to improve catalytic activity are diverse, ranging from the alloying and de-alloying of platinum to the synthesis of platinum core-shell catalysts. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V. Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement.

  7. Selection of Atmospheric Environmental Monitoring Sites based on Geographic Parameters Extraction of GIS and Fuzzy Matter-Element Analysis

    PubMed Central

    Wu, Jianfa; Peng, Dahao; Ma, Jianhao; Zhao, Li; Sun, Ce; Ling, Huanzhang

    2015-01-01

    To effectively monitor the atmospheric quality of small-scale areas, it is necessary to optimize the locations of the monitoring sites. This study combined geographic parameters extraction by GIS with fuzzy matter-element analysis. Geographic coordinates were extracted by GIS and transformed into rectangular coordinates. These coordinates were input into the Gaussian plume model to calculate the pollutant concentration at each site. Fuzzy matter-element analysis, which is used to solve incompatible problems, was used to select the locations of sites. The matter element matrices were established according to the concentration parameters. The comprehensive correlation functions KA (xj) and KB (xj), which reflect the degree of correlation among monitoring indices, were solved for each site, and a scatter diagram of the sites was drawn to determine the final positions of the sites based on the functions. The sites could be classified and ultimately selected by the scatter diagram. An actual case was tested, and the results showed that 5 positions can be used for monitoring, and the locations conformed to the technical standard. In the results of this paper, the hierarchical clustering method was used to improve the methods. The sites were classified into 5 types, and 7 locations were selected. Five of the 7 locations were completely identical to the sites determined by fuzzy matter-element analysis. The selections according to these two methods are similar, and these methods can be used in combination. In contrast to traditional methods, this study monitors the isolated point pollutant source within a small range, which can reduce the cost of monitoring. PMID:25923911

  8. Reduced graphene oxide: firm support for catalytically active palladium nanoparticles and game changer in selective hydrogenation reactions

    NASA Astrophysics Data System (ADS)

    Cano, Manuela; Benito, Ana M.; Urriolabeitia, Esteban P.; Arenal, Raul; Maser, Wolfgang K.

    2013-10-01

    Simultaneous decomposition and reduction of a Pd2+ complex in the presence of graphene oxide (GO) lead to the formation of Pd0-nanoparticles (Pd-NPs) with average sizes of 4 nm firmly anchored on reduced graphene oxide (RGO) sheets. The Pd-NP/RGO hybrids exhibited remarkable catalytic activity and selectivity in mild hydrogenation reactions where the acidic properties of RGO play an active role and may act as an important game-changer.Simultaneous decomposition and reduction of a Pd2+ complex in the presence of graphene oxide (GO) lead to the formation of Pd0-nanoparticles (Pd-NPs) with average sizes of 4 nm firmly anchored on reduced graphene oxide (RGO) sheets. The Pd-NP/RGO hybrids exhibited remarkable catalytic activity and selectivity in mild hydrogenation reactions where the acidic properties of RGO play an active role and may act as an important game-changer. Electronic supplementary information (ESI) available: Synthesis and results. See DOI: 10.1039/c3nr02822d

  9. Selective Radical-Radical Cross-Couplings: Design of a Formal β-Mannich Reaction.

    PubMed

    Jeffrey, Jenna L; Petronijević, Filip R; MacMillan, David W C

    2015-07-01

    A direct β-coupling of cyclic ketones with imines has been accomplished via the synergistic combination of photoredox catalysis and organocatalysis. Transient β-enaminyl radicals derived from ketones via enamine and oxidative photoredox catalysis readily combine with persistent α-amino radicals in a highly selective hetero radical-radical coupling. This novel pathway to γ-aminoketones is predicated upon the use of DABCO as both a base and an electron transfer agent. This protocol also formally allows for the direct synthesis of β-Mannich products via a chemoselective three-component coupling of aryl aldehydes, amines, and ketones. PMID:26075347

  10. Sensitive and Selective Plasmon Ruler Nanosensors for Monitoring the Apoptotic Drug Response in Leukemia

    PubMed Central

    2015-01-01

    Caspases are proteases involved in cell death, where caspase-3 is the chief executioner that produces an irreversible cutting event in downstream protein substrates and whose activity is desired in the management of cancer. To determine such activity in clinically relevant samples with high signal-to-noise, plasmon rulers are ideal because they are sensitively affected by their interparticle separation without ambiguity from photobleaching or blinking effects. A plasmon ruler is a noble metal nanoparticle pair, tethered in close proximity to one another via a biomolecule, that acts through dipole–dipole interactions and results in the light scattering to increase exponentially. In contrast, a sharp decrease in intensity is observed when the pair is confronted by a large interparticle distance. To align the mechanism of protease activity with building a sensor that can report a binary signal in the presence or absence of caspase-3, we present a caspase-3 selective plasmon ruler (C3SPR) composed of a pair of Zn0.4Fe2.6O4@SiO2@Au core–shell nanoparticles connected by a caspase-3 cleavage sequence. The dielectric core (Zn0.4Fe2.6O4@SiO2)-shell (Au) geometry provided a brighter scattering intensity versus solid Au nanoparticles, and the magnetic core additionally acted as a purification handle during the plasmon ruler assembly. By monitoring the decrease in light scattering intensity per plasmon ruler, we detected caspase-3 activity at single molecule resolution across a broad dynamic range. This was observed to be as low as 100 fM of recombinant material or 10 ng of total protein from cellular lysate. By thorough analyses of single molecule trajectories, we show caspase-3 activation in a drug-treated chronic myeloid leukemia (K562) cancer system as early as 4 and 8 h with greater sensitivity (2- and 4-fold, respectively) than conventional reagents. This study provides future implications for monitoring caspase-3 as a biomarker and efficacy of drugs. PMID:25166742

  11. Sensitive and selective plasmon ruler nanosensors for monitoring the apoptotic drug response in leukemia.

    PubMed

    Tajon, Cheryl A; Seo, Daeha; Asmussen, Jennifer; Shah, Neil; Jun, Young-wook; Craik, Charles S

    2014-09-23

    Caspases are proteases involved in cell death, where caspase-3 is the chief executioner that produces an irreversible cutting event in downstream protein substrates and whose activity is desired in the management of cancer. To determine such activity in clinically relevant samples with high signal-to-noise, plasmon rulers are ideal because they are sensitively affected by their interparticle separation without ambiguity from photobleaching or blinking effects. A plasmon ruler is a noble metal nanoparticle pair, tethered in close proximity to one another via a biomolecule, that acts through dipole-dipole interactions and results in the light scattering to increase exponentially. In contrast, a sharp decrease in intensity is observed when the pair is confronted by a large interparticle distance. To align the mechanism of protease activity with building a sensor that can report a binary signal in the presence or absence of caspase-3, we present a caspase-3 selective plasmon ruler (C3SPR) composed of a pair of Zn0.4Fe2.6O4@SiO2@Au core-shell nanoparticles connected by a caspase-3 cleavage sequence. The dielectric core (Zn0.4Fe2.6O4@SiO2)-shell (Au) geometry provided a brighter scattering intensity versus solid Au nanoparticles, and the magnetic core additionally acted as a purification handle during the plasmon ruler assembly. By monitoring the decrease in light scattering intensity per plasmon ruler, we detected caspase-3 activity at single molecule resolution across a broad dynamic range. This was observed to be as low as 100 fM of recombinant material or 10 ng of total protein from cellular lysate. By thorough analyses of single molecule trajectories, we show caspase-3 activation in a drug-treated chronic myeloid leukemia (K562) cancer system as early as 4 and 8 h with greater sensitivity (2- and 4-fold, respectively) than conventional reagents. This study provides future implications for monitoring caspase-3 as a biomarker and efficacy of drugs. PMID:25166742

  12. Reaction of selected soybean cultivars to Rhizoctonia root rot and other damping-off disease agents.

    PubMed

    Amer, M A

    2005-01-01

    Eight soybean cultivars; Giza 21. Giza 22, Giza 35, Giza 82, Giza 83, Crawford, Holladay and Toamo were evaluated to Rhizoctonia root rot using agar plate and potted plant techniques. Data cleared that, in agar plate assay all soybean cultivars were moderately susceptible (MS), although the differences between them were significant (P=0.05). Generally, in potted assay, the reactions were resistant (R) or moderately resistant (MR) to root rots. Also, the differences between cultivars were significant (P=0.05). These cultivars were inoculated under greenhouse conditions with Fusarium solani, Macrophomina phaseolina, Rhizoctonia solani and Sclerotium rolfsii Generally, G21 had the least pre-emergence damping-off followed by Giza 35, Crawford and Giza 83 with averages of 19.0, 20.0, 20.5 and 21.5%, respectively. In case of post-emergence, Giza 35 had the least values, followed by Giza 21, Crawford and Giza 82 with averages 3.95, 4.10, 4.10 and 4.25%, respectively. Under naturally infested soil in the field conditions the reactions of the same cultivars to damping-off were evaluated in two successive seasons. In 2002 season, G35 had the least pre-emergence damping-off % followed by Giza 21 and Giza 22 with averages of 22.61, 24.33 and 29.33%, respectively. Also, G35 had the least post-emergence damping-off % followed by Toamo and Giza 21 with averages of 9.40, 10.33 and 10.41%, respectively. In 2003 season, the same trend was appeared with light grade where Giza 35 had the least pre-emergence damping of % followed by Giza 22 and Giza 21 with averages of 30.67, 31.00 and 36.67%, respectively and Giza 35 was the most resistant cultivar against post-emergence damping-off, followed by Giza 21 and Giza 22 with averages of 10.91, 11.32 and 11.80%, respectively. Generally, Giza 21 significantly surpassed the other cultivars in plant height, number of pods per plant and 100-seed weight. Moreover, also it had second grade with the other traits. PMID:16637203

  13. Enhancement of selective decomposition. Adsorption and reaction of methanethiol on carbon-covered W(001)

    SciTech Connect

    Mullins, D.R.; Lyman, P.F.

    1995-04-13

    Selective decomposition of methanethiol (CH{sub 3}SH) on carbon-covered W(001) to produce methane is enhanced by 75% compared to the clean surface. The maximum enhancement requires only 0.25 monolayers (ML) of preadsorbed C. On a surface percovered with 0.8 ML of C, the methane desorbs in peaks at 460 and 550 K compared to 360 K on the clean surface, suggesting a greater stability in the C-S and C-H bonds. Increased intramolecular bond stability is confirmed by the temperature dependence of the S 2p and C 1s soft X-ray photoemission. Methyl thiolate, CH{sub 3}S, forms upon adsorption at 100 K. Chemisorbed methanethiol, which is not stable on the clean surface, is also observed between 100 and 300 K. The chemisorbed thiol decomposes to form additional thiolate. The thiolate reacts along three competing pathways. It undergoes rehydrogenation and desorbs as methanethiol, it selectively decomposes to form desorbed methane and adsorbed S, or it totally decomposes to form S, C, and desorbed H{sub 2}. 23 refs., 11 figs., 1 tab.

  14. Palladium-Catalyzed 6-Endo Selective Alkyl-Heck Reactions: Access to 5-Phenyl-1,2,3,6-tetrahydropyridine Derivatives.

    PubMed

    Dong, Xu; Han, Ying; Yan, Fachao; Liu, Qing; Wang, Ping; Chen, Kexun; Li, Yueyun; Zhao, Zengdian; Dong, Yunhui; Liu, Hui

    2016-08-01

    A new type of palladium-catalyzed 6-endo-selective alkyl-Heck reaction of unactivated alkyl iodides has been described. This strategy provides efficient access to a variety of 5-phenyl-1,2,3,6-tetrahydropyridine derivatives, which are important structural motifs for bioactive molecules. This process displays a broad substrate scope with excellent 6-endo selectivity. Mechanistic investigations reveal that this alkyl-Heck reaction performs via a hybrid palladium-radical process. PMID:27409716

  15. Organocatalytic and enantioselective Michael reaction between α-nitroesters and nitroalkenes. Syn/anti-selectivity control using catalysts with the same absolute backbone chirality.

    PubMed

    Martínez, Jose I; Uria, Uxue; Muñiz, Maria; Reyes, Efraím; Carrillo, Luisa; Vicario, Jose L

    2015-01-01

    The asymmetric and catalytic Michael reaction between α-nitroesters and nitroalkenes has been studied in the presence of two bifunctional catalysts both containing the same absolute chirality at the carbon backbone. The reaction performed in similar conditions allows us to control the syn or anti selectivity of the Michael adduct obtaining good yields and high enantiocontrol in all cases. PMID:26734103

  16. Organocatalytic and enantioselective Michael reaction between α-nitroesters and nitroalkenes. Syn/anti-selectivity control using catalysts with the same absolute backbone chirality

    PubMed Central

    Martínez, Jose I; Uria, Uxue; Muñiz, Maria; Reyes, Efraím

    2015-01-01

    Summary The asymmetric and catalytic Michael reaction between α-nitroesters and nitroalkenes has been studied in the presence of two bifunctional catalysts both containing the same absolute chirality at the carbon backbone. The reaction performed in similar conditions allows us to control the syn or anti selectivity of the Michael adduct obtaining good yields and high enantiocontrol in all cases. PMID:26734103

  17. Selective Cu4Pd alloy nanoparticles anchoring on amine functionalized graphite nanosheets and their use as reusable catalysts for a C-C coupling reaction with the sacrificial role of Cu for Pd-regeneration.

    PubMed

    Chakravarty, Amrita; De, Goutam

    2016-08-01

    A facile method for the synthesis of phase selective alloy nanoparticles (NPs), Cu4Pd and their in situ anchoring on the surface of amine functionalized graphite nanosheets (AFGNS) by solvothermal process has been demonstrated. It has been seen that upon adding CuCl2·H2O and PdCl2 into the reaction medium containing AFGNS, the -NH2 group initially helps to immobilize Cu(2+) ions from CuCl2·H2O. During the solvothermal reaction in presence of N,N-dimethylformamide (DMF; solvent cum reducing agent) Pd(2+) gets reduced first due to its higher reduction potential. These Pd NPs in turn help in the reduction of Cu(2+) to Cu in an epitaxial manner. Finally at high temperature and long reaction time Cu and Pd combine to form the Cu4Pd alloy NPs along with a small fraction of Cu NPs. The conditions to obtain Cu4Pd NPs have been optimized through controlled reactions. The as prepared Cu4Pd@AFGNS composite has been successfully used for Suzuki-Miyuara C-C coupling reaction with sufficiently high yield and reusability of up to five cycles. The progress of the reaction was monitored using a fluorimeter. Interestingly, it has been observed that the small fraction of the Cu NPs present in the system played a sacrificial role in regenerating metallic Pd NPs in the first and second reaction cycles, followed by Cu from the Cu4Pd alloy itself from the third cycle onwards which played the sacrificial role to regenerate Pd(0). A probable reaction mechanism of the catalytic reaction with Cu4Pd@AFGNS has been suggested. PMID:27435633

  18. Selectivity of competitive-consecutive reactions depending on the turbulent mixing conditions in a co-axial jet mixer

    NASA Astrophysics Data System (ADS)

    Chorny, A.; Kornev, N.; Hassel, E.

    2010-12-01

    This paper considers the numerical results on the interaction between a turbulent co-axial jet and a co-flow of incompressible fluid (Schmidt number Sc≈1000) when competitive-consecutive reactions occur in a co-axial jet mixer. Firstly, RANS modeling was performed to predict flow phenomena. Two different mixing regimes were analyzed with and without a recirculation zone near a mixer wall. To describe the problem mathematically, the two-parameter turbulence k-ɛ model and various models for the computation of the averaged mixture fraction \\skew3\\bar f and its variance σ2 were used and verified by comparing them with the experimental and large eddy simulation (LES) data. The results revealed that the decay of \\skew5\\bar f and σ2 obtained by the developed RANS mixing model with the low-Reynolds-number effects (mechanical-to-scalar time ratio and turbulent Schmidt number in the transfer equation for σ2 as a function of Ret) was similar to the one found by LES and experiment. Second, the behavior of the competitive-consecutive reactions (A+B→P, B+R→S) in the co-axial mixer was considered. To calculate averaged chemical reaction rates, the transfer equations for concentrations adopted two approaches: a model with no regard to concentration fluctuations and the Li-Toor model with the Gaussian PDF of the mixture fraction. The yield of a desired product R was found to depend strongly on the mixing regime. The regime without recirculation zone appeared to be preferable as the reaction selectivity was smaller within the whole range of Reynolds number and initial reactant concentration ratio. This means that the amount of an undesired by-product S to be formed is minimal.

  19. Reactions of selected 1-olefins and ethanol added during the Fischer-Tropsch synthesis: Topical report

    SciTech Connect

    Hanlon, R.T.; Satterfield, C.N.

    1987-10-30

    The effects of addition during synthesis of C/sub 2/, C/sub 4/, C/sub 6/, C/sub 10/ or C/sub 20/, normal 1-olefins, was studied in a continuous well-stirred liquid phase reactor. Studies were at 248/sup 0/C and 0.78 to 1.48 MPa, using a reduced fused magnetite catalyst containing potassium. Incorporation of these olefins into growing chains could be detected, but was relatively minor. Instead the olefin was hydrogenated to the corresponding paraffin or isomerized to the 2-olefin. Excluding ethylene, which is unusually reactive, the reactivity of the olefins increased with molecular weight. Disappearance of all added species was much less at low synthesis conversions than at high, attributed to competitive adsorption with CO. The reactions of added ethanol were also studied. Ethanol or ethylene decreased the hydrogenation capabilities of the catalyst as reflected in decreased formation of CH/sub 4/ and increased olefin/paraffin ratio of the products. Neither addition affected the chain growth probability, ..cap alpha... 21 refs., 11 figs., 5 tabs.

  20. Theoretical description of spin-selective reactions of radical pairs diffusing in spherical 2D and 3D microreactors

    NASA Astrophysics Data System (ADS)

    Ivanov, Konstantin L.; Sadovsky, Vladimir M.; Lukzen, Nikita N.

    2015-08-01

    In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting

  1. Theoretical description of spin-selective reactions of radical pairs diffusing in spherical 2D and 3D microreactors.

    PubMed

    Ivanov, Konstantin L; Sadovsky, Vladimir M; Lukzen, Nikita N

    2015-08-28

    In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting

  2. Theoretical description of spin-selective reactions of radical pairs diffusing in spherical 2D and 3D microreactors

    SciTech Connect

    Ivanov, Konstantin L. Lukzen, Nikita N.; Sadovsky, Vladimir M.

    2015-08-28

    In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical “microreactor,” i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the “pole” of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting

  3. Metal- and reagent-free highly selective anodic cross-coupling reaction of phenols.

    PubMed

    Elsler, Bernd; Schollmeyer, Dieter; Dyballa, Katrin Marie; Franke, Robert; Waldvogel, Siegfried R

    2014-05-12

    The direct oxidative cross-coupling of phenols is a very challenging transformation, as homo-coupling is usually strongly preferred. Electrochemical methods circumvent the use of oxidizing reagents or metal catalysts and are therefore highly attractive. Employing electrolytes with a high capacity for hydrogen bonding, such as methanol with formic acid or 1,1,1,3,3,3-hexafluoro-2-propanol, a direct electrolysis in an undivided cell provides mixed 2,2'-biphenols with high selectivity. This mild method tolerates a variety of moieties, for example, tert-butyl groups, which are not compatible with other strong electrophilic media but vital for later catalytic applications of the formed products. PMID:24644088

  4. Wetlands monitoring - hydrological conditions and water quality in selected transects of Biebrza National Park.

    NASA Astrophysics Data System (ADS)

    Stelmaszczyk, Mateusz; Okruszko, Tomasz

    2010-05-01

    . Studied locations were covered mainly by Magnocaricion vegetation (e.g. Caricetum gracilis and Caricetum elatae), Molinio-Arrhenatheretea vegetation (Molinietum caeruleae), and Scheuchzerio-Caricetea nigrae vegetation (e.g. Caricetum lasiocarpae). In presented work authors show results of water quality measurements and monitoring of hydrological conditions, characterized by changes of groundwater table, period and size of inundation. During six years long monitoring period (2004 - 2009 hydrological years) there were observed high diversification of groundwater and surface water levels among locations. They fluctuate in some places from very low groundwater levels, observed in late summer and in early autumn (over 1 m beneath the ground), to levels reaching surface of the ground or laying nearly below it, occurring in winter and spring. There are also places where quite high inundations in winter and spring are observed. Collected chemical and hydrological data were statistically analyzed using STATISTICA 8 software with a use of one of the multivariate analysis - Principal Component Analysis (PCA) method. Owing to the usage of PCA analysis it was possible to define most important parameters characterizing habitats were occurs selected vegetation. The impact of hydrological conditions (presented as a main factor) on forming particular wetland plant communities can be discussed. Authors determine that some other factors (e.g. management) can be more responsible for occurrence of particular plant communities and their sustaining in good status in specific locations.

  5. Selection of the most informative near infrared spectroscopy wavebands for continuous glucose monitoring in human serum.

    PubMed

    Goodarzi, Mohammad; Saeys, Wouter

    2016-01-01

    By controlling the blood glucose levels of diabetics permanent diabetes-related problems such as blindness and loss of limbs can be delayed or even avoided. Therefore, many researchers have aimed at the development of a non-invasive sensor to monitor the blood glucose level continuously. As non-invasive measurements through the skin, the ear lobe or the gums have proven to be either unreliable or impractical, attention has recently shifted to minimally invasive sensors which measure the glucose content in serum or interstitial fluid. Thanks to the development of on-chip spectrometers minimally invasive, implantable devices are coming within reach. However, this technology does not allow to acquire a large number of wavelengths over a broad range. Therefore, the most informative combination of a limited number of variables should be selected. In this study, Interval PLS (iPLS), Variable Importance in Projection (VIP), Uninformative Variable Elimination (UVE), Bootstrap-PLS coefficients, Moving window, CorXyPLS, Interval Random Frog-PLS and combinations of these methods were used in order to address the question whether the short wave band (800-1500 nm), first overtone band (1500-1800 nm), the combination band (2050-2300 nm) or a combination of them is the most informative region for glucose measurements and which wavebands should be measured within these wavelength ranges. The three different data sets employed focus on the determination of (1) glucose in aqueous solutions over the 1-30 mM range in presence of urea and sodium D-lactate, (2) glucose in aqueous solutions over the 2-16 mM range in presence of icodextrin and urea and (3) glucose in human serum samples. The best results for the first, second and third data sets were obtained by selecting 40, 130 and 20 variables resulting in a PLS model with an RMSEP of 0.56, 0.59 and 1.5mM, respectively. It was found that the first overtone band is most informative for aqueous solutions, while for glucose measurement of

  6. Scalable graphene synthesised by plasma-assisted selective reaction on silicon carbide for device applications

    NASA Astrophysics Data System (ADS)

    Tsai, Hsu-Sheng; Lai, Chih-Chung; Medina, Henry; Lin, Shih-Ming; Shih, Yu-Chuan; Chen, Yu-Ze; Liang, Jenq-Horng; Chueh, Yu-Lun

    2014-10-01

    Graphene, a two-dimensional material with honeycomb arrays of carbon atoms, has shown outstanding physical properties that make it a promising candidate material for a variety of electronic applications. To date, several issues related to the material synthesis and device fabrication need to be overcome. Despite the fact that large-area graphene films synthesised by chemical vapour deposition (CVD) can be grown with relatively few defects, the required transfer process creates wrinkles and polymer residues that greatly reduce its performance in device applications. Graphene synthesised on silicon carbide (SiC) has shown outstanding mobility and has been successfully used to develop ultra-high frequency transistors; however, this fabrication method is limited due to the use of costly ultra-high vacuum (UHV) equipment that can reach temperatures over 1500 °C. Here, we show a simple and novel approach to synthesise graphene on SiC substrates that greatly reduces the temperature and vacuum requirements and allows the use of equipment commonly used in the semiconductor processing industry. In this work, we used plasma treatment followed by annealing in order to obtain large-scale graphene films from bulk SiC. After exposure to N2 plasma, the annealing process promotes the reaction of nitrogen ions with Si and the simultaneous condensation of C on the surface of SiC. Eventually, a uniform, large-scale, n-type graphene film with remarkable transport behaviour on the SiC wafer is achieved. Furthermore, graphene field effect transistors (FETs) with high carrier mobilities on SiC were also demonstrated in this study.Graphene, a two-dimensional material with honeycomb arrays of carbon atoms, has shown outstanding physical properties that make it a promising candidate material for a variety of electronic applications. To date, several issues related to the material synthesis and device fabrication need to be overcome. Despite the fact that large-area graphene films

  7. Automated data evaluation and modelling of simultaneous (19) F-(1) H medium-resolution NMR spectra for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Paul, Andrea; Engel, Dirk; Guthausen, Gisela; Kraume, Matthias; Maiwald, Michael

    2016-06-01

    Medium-resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and process monitoring. In contrast to high-resolution online NMR (HR-NMR), MR-NMR can be operated under rough environmental conditions. A continuous re-circulating stream of reaction mixture from the reaction vessel to the NMR spectrometer enables a non-invasive, volume integrating online analysis of reactants and products. Here, we investigate the esterification of 2,2,2-trifluoroethanol with acetic acid to 2,2,2-trifluoroethyl acetate both by (1) H HR-NMR (500 MHz) and (1) H and (19) F MR-NMR (43 MHz) as a model system. The parallel online measurement is realised by splitting the flow, which allows the adjustment of quantitative and independent flow rates, both in the HR-NMR probe as well as in the MR-NMR probe, in addition to a fast bypass line back to the reactor. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra are treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprise (i) direct integration, (ii) automated line fitting, (iii) indirect hard modelling (IHM) and (iv) partial least squares regression (PLS-R). To assess the potential of these evaluation strategies for MR-NMR, prediction results are compared with the line fitting data derived from the quantitative HR-NMR spectroscopy. Although, superior results are obtained from both IHM and PLS-R for (1) H MR-NMR, especially the latter demands for elaborate data pretreatment, whereas IHM models needed no previous alignment. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25854892

  8. Profile of rheumatology patients willing to report adverse drug reactions: bias from selective reporting

    PubMed Central

    Protić, Dragana; Vujasinović-Stupar, Nada; Bukumirić, Zoran; Pavlov-Dolijanović, Slavica; Baltić, Snežana; Mutavdžin, Slavica; Marković-Denić, Ljiljana; Zdravković, Marija; Todorović, Zoran

    2016-01-01

    Background Adverse drug reactions (ADRs) have a significant impact on human health and health care costs. The aims of our study were to determine the profile of rheumatology patients willing to report ADRs and to identify bias in such a reporting system. Methods Semi-intensive ADRs reporting system was used in our study. Patients willing to participate (N=261) completed the questionnaire designed for the purpose of the study at the hospital admission. They were subsequently classified into two groups according to their ability to identify whether they had experienced ADRs during the previous month. Group 1 included 214 out of 261 patients who were able to identify ADRs, and group 2 consisted of 43 out of 261 patients who were not able to identify ADRs in their recent medical history. Results Group 1 patients were more significantly aware of their diagnosis than the patients from group 2. Marginal significance was found between rheumatology patients with and without neurological comorbidities regarding their awareness of ADRs. The majority of patients reported ADRs of cytotoxic drugs. The most reported ADRs were moderate gastrointestinal discomforts. Conclusion We may draw a profile of rheumatological patients willing to report ADRs: 1) The majority of them suffer from systemic inflammatory diseases and are slightly more prone to neurological comorbidities. 2) They are predominantly aware of their diagnosis but less able to identify the drugs that may cause their ADRs. 3) They tend to report mainly moderate gastrointestinal ADRs; that is, other cohorts of patients and other types of ADRs remain mainly undetected in such a reporting, which could represent a bias. Counseling and education of patients as well as developing a network for online communication might improve patients’ reporting of potential ADRs. PMID:26893547

  9. Scalable graphene synthesised by plasma-assisted selective reaction on silicon carbide for device applications.

    PubMed

    Tsai, Hsu-Sheng; Lai, Chih-Chung; Medina, Henry; Lin, Shih-Ming; Shih, Yu-Chuan; Chen, Yu-Ze; Liang, Jenq-Horng; Chueh, Yu-Lun

    2014-11-21

    Graphene, a two-dimensional material with honeycomb arrays of carbon atoms, has shown outstanding physical properties that make it a promising candidate material for a variety of electronic applications. To date, several issues related to the material synthesis and device fabrication need to be overcome. Despite the fact that large-area graphene films synthesised by chemical vapour deposition (CVD) can be grown with relatively few defects, the required transfer process creates wrinkles and polymer residues that greatly reduce its performance in device applications. Graphene synthesised on silicon carbide (SiC) has shown outstanding mobility and has been successfully used to develop ultra-high frequency transistors; however, this fabrication method is limited due to the use of costly ultra-high vacuum (UHV) equipment that can reach temperatures over 1500 °C. Here, we show a simple and novel approach to synthesise graphene on SiC substrates that greatly reduces the temperature and vacuum requirements and allows the use of equipment commonly used in the semiconductor processing industry. In this work, we used plasma treatment followed by annealing in order to obtain large-scale graphene films from bulk SiC. After exposure to N2 plasma, the annealing process promotes the reaction of nitrogen ions with Si and the simultaneous condensation of C on the surface of SiC. Eventually, a uniform, large-scale, n-type graphene film with remarkable transport behaviour on the SiC wafer is achieved. Furthermore, graphene field effect transistors (FETs) with high carrier mobilities on SiC were also demonstrated in this study. PMID:25307846

  10. Monitoring of adverse drug reactions in psychiatry outpatient department of a Secondary Care Hospital of Ras Al Khaimah, UAE

    PubMed Central

    Sridhar, Sathvik Belagodu; Al-Thamer, Sura Saad Faris; Jabbar, Riadh

    2016-01-01

    Background: Adverse drug reactions (ADRs) are a significant cause of morbidity and mortality, resulting in increased healthcare cost. Association of psychotropic medications with ADRs is common. Pharmacovigilance can play a vital role in alerting the healthcare providers from the possible ADRs and thus protecting the patients receiving psychotropic medications. Aim: To monitor and report the incidence and nature of ADRs in psychiatry outpatient department (OPD). Materials and Methods: A prospective observational study was carried out in the psychiatry OPD. All the patients attending psychiatry outpatient and satisfying the inclusion criteria were monitored for ADRs. The causality, severity and preventability assessment of documented ADRs was done. Chi-square test was done to identify the association between ADRs and sociodemographic, disease and treatment-related variables. Paired Student's t-test was carried out to compare the significance difference in the weight of the patients who reported weight gain to psychotropic medications. Results: The incidence rate of ADR was found to be 10.2%. A total of 112 ADRs were documented. Weight gain 18 (16.07%) followed by somnolence 8 (7.14%) was the most commonly reported ADR. Atypical antipsychotics 37 (33.0%) were the most common class of psychotropic drugs implicated in ADRs. Escitalopram 16 (14.28%) followed by quetiapine 14 (12.5%) were associated with a maximum number of ADRs. No significant association (P > 0.05) documented between demographic and treatment-related variables with number of ADRs. Conclusion: Study revealed a moderate incidence of ADRs in patients attending the psychiatry OPD. Majority of the ADRs reported during the study were mild in nature and not preventable type. PMID:27330260

  11. A Generic Multiple Reaction Monitoring Based Approach for Plant Flavonoids Profiling Using a Triple Quadrupole Linear Ion Trap Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yan, Zhixiang; Lin, Ge; Ye, Yang; Wang, Yitao; Yan, Ru

    2014-06-01

    Flavonoids are one of the largest classes of plant secondary metabolites serving a variety of functions in plants and associating with a number of health benefits for humans. Typically, they are co-identified with many other secondary metabolites using untargeted metabolomics. The limited data quality of untargeted workflow calls for a shift from the breadth-first to the depth-first screening strategy when a specific biosynthetic pathway is focused on. Here we introduce a generic multiple reaction monitoring (MRM)-based approach for flavonoids profiling in plants using a hybrid triple quadrupole linear ion trap (QTrap) mass spectrometer. The approach includes four steps: (1) preliminary profiling of major aglycones by multiple ion monitoring triggered enhanced product ion scan (MIM-EPI); (2) glycones profiling by precursor ion triggered EPI scan (PI-EPI) of major aglycones; (3) comprehensive aglycones profiling by combining MIM-EPI and neutral loss triggered EPI scan (NL-EPI) of major glycone; (4) in-depth flavonoids profiling by MRM-EPI with elaborated MRM transitions. Particularly, incorporation of the NH3 loss and sugar elimination proved to be very informative and confirmative for flavonoids screening. This approach was applied for profiling flavonoids in Astragali radix ( Huangqi), a famous herb widely used for medicinal and nutritional purposes in China. In total, 421 flavonoids were tentatively characterized, among which less than 40 have been previously reported in this medicinal plant. This MRM-based approach provides versatility and sensitivity that required for flavonoids profiling in plants and serves as a useful tool for plant metabolomics.

  12. Cavitating ultrasound hydrogenation of water-soluble olefins employing inert dopants: Studies of activity, selectivity and reaction mechanisms

    SciTech Connect

    Disselkamp, Robert S.; Chajkowski, Sarah M.; Boyles, Kelly R.; Hart, Todd R.; Peden, Charles HF

    2006-12-07

    Here we discuss results obtained as part of a three-year investigation at Pacific Northwest National Laboratory of ultrasound processing to effect selectivity and activity in the hydrogenation of water-soluble olefins on transition metal catalysts. We have shown previously that of the two regimes for ultrasound processing, high-power cavitating and high-power non-cavitating, only the former can effect product selectivity dramatically (> 1000%) whereas the selectivity of the latter was comparable with those obtained in stirred/silent control experiments [R.S. Disselkamp, Y.-H. Chin, C.H.F. Peden, J. Catal., 227, 552 (2005)]. As a means of ensuring the benefits of cavitating ultrasound processing, we introduced the concept of employing inert dopants into the reacting solution. These inert dopants do not partake in solution chemistry but enable a more facile transition from high-power non-cavitating to cavitating conditions during sonication treatment. With cavitation processing conditions ensured, we discuss here results of isotopic H/D substitution for a variety of substrates and illustrate how such isotope dependent chemistries during substrate hydrogenation elucidate detailed mechanistic information about these reaction systems.

  13. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions.

    PubMed

    Boucher, Matthew B; Zugic, Branko; Cladaras, George; Kammert, James; Marcinkowski, Matthew D; Lawton, Timothy J; Sykes, E Charles H; Flytzani-Stephanopoulos, Maria

    2013-08-01

    We report a novel synthesis of nanoparticle Pd-Cu catalysts, containing only trace amounts of Pd, for selective hydrogenation reactions. Pd-Cu nanoparticles were designed based on model single atom alloy (SAA) surfaces, in which individual, isolated Pd atoms act as sites for hydrogen uptake, dissociation, and spillover onto the surrounding Cu surface. Pd-Cu nanoparticles were prepared by addition of trace amounts of Pd (0.18 atomic (at)%) to Cu nanoparticles supported on Al2O3 by galvanic replacement (GR). The catalytic performance of the resulting materials for the partial hydrogenation of phenylacetylene was investigated at ambient temperature in a batch reactor under a head pressure of hydrogen (6.9 bar). The bimetallic Pd-Cu nanoparticles have over an order of magnitude higher activity for phenylacetylene hydrogenation when compared to their monometallic Cu counterpart, while maintaining a high selectivity to styrene over many hours at high conversion. Greater than 94% selectivity to styrene is observed at all times, which is a marked improvement when compared to monometallic Pd catalysts with the same Pd loading, at the same total conversion. X-ray photoelectron spectroscopy and UV-visible spectroscopy measurements confirm the complete uptake and alloying of Pd with Cu by GR. Scanning tunneling microscopy and thermal desorption spectroscopy of model SAA surfaces confirmed the feasibility of hydrogen spillover onto an otherwise inert Cu surface. These model studies addressed a wide range of Pd concentrations related to the bimetallic nanoparticles. PMID:23793350

  14. Fast monitoring of species-specific peptide biomarkers using high-intensity-focused-ultrasound-assisted tryptic digestion and selected MS/MS ion monitoring.

    PubMed

    Carrera, Mónica; Cañas, Benito; López-Ferrer, Daniel; Piñeiro, Carmen; Vázquez, Jesús; Gallardo, José M

    2011-07-15

    A new strategy for the fast monitoring of peptide biomarkers is described. It is based on the use of accelerated in-solution trypsin digestions under an ultrasonic field provided by high-intensity focused ultrasound (HIFU) and the monitoring of several peptides by selected MS/MS ion monitoring in a linear ion trap mass spectrometer. The performance of the method was established for the unequivocal identification of all commercial fish species belonging to the Merlucciidae family. Using a particular combination of only 11 peptides, resulting from the HIFU-assisted tryptic digestion of the thermostable proteins parvalbumins, the workflow allowed the unequivocal identification of these closely related fish species in any seafood product, including processed and precooked products, in less than 2 h. The present strategy constitutes the fastest method for peptide biomarker monitoring. Its application for food quality control provides to the authorities an effective and rapid method of food authentication and traceability to guarantee the quality and safety to the consumers. PMID:21627098

  15. Organic functionalization of the germanium(100)- 2 x 1 semiconductor interface: Reaction chemistry, selective attachment strategies, and molecular layer deposition

    NASA Astrophysics Data System (ADS)

    Filler, Michael Aaron

    The explosive advancement in microelectronics technology and overall trend toward molecular devices, coupled with the tailorability inherent in organic molecules, have sparked interest in combined inorganic/organic systems. As a result, the attachment of organic molecules to the (100)-2x1 reconstructed, group IV semiconductor surfaces of silicon and germanium has received considerable attention in recent years. The well characterized surface structure and range of attachment configurations possible for the direct, covalent organic functionalization of semiconductor surfaces may uniquely enable the construction of the organic/semiconductor interface with molecular level precision and control. To develop a fundamental understanding of the chemical principles that govern reactions of carbonyl-containing compounds on these surfaces, carboxylic acids, acyl halides, tertiary amides, and formaldehyde were experimentally and theoretically investigated on Ge(100)-2x1 under ultrahigh vacuum conditions. We found that initial dative bond formation is a common motif observed for these compounds and subsequent surface reaction often leads to products which are analogous to those reported on clean transition metal surfaces. The observation of charge transfer, bidentate surface structures, as well as a catalytic coupling reaction suggests that the semi-metallic character of, and moderate strength bonds formed with, germanium substantially influence the reactivity of this surface. The controlled deposition of nanoscale organic films with precisely tailored properties and useful functionalities will likely be required for molecular devices, and layer-by-layer reaction of multifunctional molecules appears to be a promising synthetic strategy with which to achieve these layers. An essential prerequisite to this type of deposition is the selective attachment of multifunctional compounds at the semiconductor interface, with retention of at least one reactive moiety. Our studies of

  16. Optimized protocol for quantitative multiple reaction monitoring-based proteomic analysis of formalin-fixed, paraffin embedded tissues

    PubMed Central

    Kennedy, Jacob J.; Whiteaker, Jeffrey R.; Schoenherr, Regine M.; Yan, Ping; Allison, Kimberly; Shipley, Melissa; Lerch, Melissa; Hoofnagle, Andrew N.; Baird, Geoffrey Stuart; Paulovich, Amanda G.

    2016-01-01

    Despite a clinical, economic, and regulatory imperative to develop companion diagnostics, precious few new biomarkers have been successfully translated into clinical use, due in part to inadequate protein assay technologies to support large-scale testing of hundreds of candidate biomarkers in formalin-fixed paraffin embedded (FFPE) tissues. While the feasibility of using targeted, multiple reaction monitoring-mass spectrometry (MRM-MS) for quantitative analyses of FFPE tissues has been demonstrated, protocols have not been systematically optimized for robust quantification across a large number of analytes, nor has the performance of peptide immuno-MRM been evaluated. To address this gap, we used a test battery approach coupled to MRM-MS with the addition of stable isotope labeled standard peptides (targeting 512 analytes) to quantitatively evaluate the performance of three extraction protocols in combination with three trypsin digestion protocols (i.e. 9 processes). A process based on RapiGest buffer extraction and urea-based digestion was identified to enable similar quantitation results from FFPE and frozen tissues. Using the optimized protocols for MRM-based analysis of FFPE tissues, median precision was 11.4% (across 249 analytes). There was excellent correlation between measurements made on matched FFPE and frozen tissues, both for direct MRM analysis (R2 = 0.94) and immuno-MRM (R2 = 0.89). The optimized process enables highly reproducible, multiplex, standardizable, quantitative MRM in archival tissue specimens. PMID:27462933

  17. Optimized Protocol for Quantitative Multiple Reaction Monitoring-Based Proteomic Analysis of Formalin-Fixed, Paraffin-Embedded Tissues.

    PubMed

    Kennedy, Jacob J; Whiteaker, Jeffrey R; Schoenherr, Regine M; Yan, Ping; Allison, Kimberly; Shipley, Melissa; Lerch, Melissa; Hoofnagle, Andrew N; Baird, Geoffrey Stuart; Paulovich, Amanda G

    2016-08-01

    Despite a clinical, economic, and regulatory imperative to develop companion diagnostics, precious few new biomarkers have been successfully translated into clinical use, due in part to inadequate protein assay technologies to support large-scale testing of hundreds of candidate biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues. Although the feasibility of using targeted, multiple reaction monitoring mass spectrometry (MRM-MS) for quantitative analyses of FFPE tissues has been demonstrated, protocols have not been systematically optimized for robust quantification across a large number of analytes, nor has the performance of peptide immuno-MRM been evaluated. To address this gap, we used a test battery approach coupled to MRM-MS with the addition of stable isotope-labeled standard peptides (targeting 512 analytes) to quantitatively evaluate the performance of three extraction protocols in combination with three trypsin digestion protocols (i.e., nine processes). A process based on RapiGest buffer extraction and urea-based digestion was identified to enable similar quantitation results from FFPE and frozen tissues. Using the optimized protocols for MRM-based analysis of FFPE tissues, median precision was 11.4% (across 249 analytes). There was excellent correlation between measurements made on matched FFPE and frozen tissues, both for direct MRM analysis (R(2) = 0.94) and immuno-MRM (R(2) = 0.89). The optimized process enables highly reproducible, multiplex, standardizable, quantitative MRM in archival tissue specimens. PMID:27462933

  18. Quantification of monosaccharides through multiple-reaction monitoring liquid chromatography/mass spectrometry using an aminopropyl column.

    PubMed

    Hammad, Loubna A; Derryberry, Dakota Z; Jmeian, Yazen R; Mechref, Yehia

    2010-06-15

    A simple, sensitive, and reproducible quantitative liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was designed for the simultaneous quantification of monosaccharides derived from glycoprotein and blood serum using a multiple-reaction monitoring (MRM) approach. Sialic acids and neutral monosaccharides were efficiently separated using an amino-bonded silica phase column. Neutral monosaccharide molecules were detected as their aldol acetate anion adducts [M + CH(3)CO(2)](-) using electrospray ionization in negative ion MRM mode, while sialic acids were detected as deprotonated ions [M-H](-). The new method did not require a reduction step, and exhibited very high sensitivity to carbohydrates with limits of detection of 1 pg for the sugars studied. The linearity of the described approach spanned over three orders of magnitude (pg to ng). The method was validated for monosaccharides originating from N-linked glycans attached to glycoproteins and glycoproteins found in human blood serum. The method effectively quantified monosaccharides originating from as little as 1 microg of glycoprotein and 5 microL of blood serum. The method was robust, reproducible, and highly sensitive. It did not require reduction, derivatization or postcolumn addition of reagents. PMID:20486252

  19. Real-Time Optical Monitoring of Flow Kinetics and Gas Phase Reactions Under High-Pressure OMCVD Conditions

    NASA Technical Reports Server (NTRS)

    Dietz, N.; McCall, S.; Bachmann, K. J.

    2001-01-01

    This contribution addresses the real-time optical characterization of gas flow and gas phase reactions as they play a crucial role for chemical vapor phase depositions utilizing elevated and high pressure chemical vapor deposition (HPCVD) conditions. The objectives of these experiments are to validate on the basis of results on real-time optical diagnostics process models simulation codes, and provide input parameter sets needed for analysis and control of chemical vapor deposition at elevated pressures. Access to microgravity is required to retain high pressure conditions of laminar flow, which is essential for successful acquisition and interpretation of the optical data. In this contribution, we describe the design and construction of the HPCVD system, which include access ports for various optical methods of real-time process monitoring and to analyze the initial stages of heteroepitaxy and steady-state growth in the different pressure ranges. To analyze the onset of turbulence, provisions are made for implementation of experimental methods for in-situ characterization of the nature of flow. This knowledge will be the basis for the design definition of experiments under microgravity, where gas flow conditions, gas phase and surface chemistry, might be analyzed by remote controlled real-time diagnostics tools, developed in this research project.

  20. Quantitation of low molecular weight sugars by chemical derivatization-liquid chromatography/multiple reaction monitoring/mass spectrometry.

    PubMed

    Han, Jun; Lin, Karen; Sequria, Carita; Yang, Juncong; Borchers, Christoph H

    2016-07-01

    A new method for the separation and quantitation of 13 mono- and disaccharides has been developed by chemical derivatization/ultra-HPLC/negative-ion ESI-multiple-reaction monitoring MS. 3-Nitrophenylhydrazine (at 50°C for 60 min) was shown to be able to quantitatively derivatize low-molecular weight (LMW) reducing sugars. The nonreducing sugar, sucrose, was not derivatized. A pentafluorophenyl-bonded phase column was used for the chromatographic separation of the derivatized sugars. This method exhibits femtomole-level sensitivity, high precision (CVs of ≤ 4.6%) and high accuracy for the quantitation of LMW sugars in wine. Excellent linearity (R(2) ≥ 0.9993) and linear ranges of ∼500-fold for disaccharides and ∼1000-4000-fold for monosaccharides were achieved. With internal calibration ((13) C-labeled internal standards), recoveries were between 93.6% ± 1.6% (xylose) and 104.8% ± 5.2% (glucose). With external calibration, recoveries ranged from 82.5% ± 0.8% (ribulose) to 105.2% ± 2.1% (xylulose). Quantitation of sugars in two red wines and two white wines was performed using this method; quantitation of the central carbon metabolism-related carboxylic acids and tartaric acid was carried out using a previously established derivatization procedure with 3-nitrophenylhydrazine as well. The results showed that these two classes of compounds-both of which have important organoleptic properties-had different compositions in red and white wines. PMID:27120558

  1. Discriminative detection of low-abundance point mutations using a PCR/ligase detection reaction/capillary gel electrophoresis method and fluorescence dual-channel monitoring.

    PubMed

    Hamada, Mariko; Shimase, Koji; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2014-04-01

    We applied a facile LIF dual-channel monitoring system recently developed and reported by our group to the polymerase chain reaction/ligase detection reaction/CGE method for detecting low-abundance point mutations present in a wild-type sequence-dominated population. Mutation discrimination limits and signaling fidelity of the analytical system were evaluated using three mutant variations in codon 12 of the K-ras oncogene that have high diagnostic value for colorectal cancer. We demonstrated the high sensitivity of the present method by detecting rare mutations present among an excess of wild-type alleles (one mutation among ~100 normal sequences). This method also simultaneously interrogated the allelic compositions of the test samples with high specificity through spectral discrimination of the dye-tagged ligase detection reaction products using the dual-channel monitoring system. PMID:24510795

  2. Highly Sensitive and Selective Determination of Tertiary Butylhydroquinone in Edible Oils by Competitive Reaction Induced "On-Off-On" Fluorescent Switch.

    PubMed

    Yue, Xiaoyue; Zhu, Wenxin; Ma, Shuyue; Yu, Shaoxuan; Zhang, Yuhuan; Wang, Jing; Wang, Yanru; Zhang, Daohong; Wang, Jianlong

    2016-01-27

    As one of most common synthetic phenolic antioxidants, tertiary butylhydroquinone (TBHQ) has received increasing attention due to the potential risk for liver damage and carcinogenesis. Herein, a simple and rapid fluorescent switchable methodology was developed for highly selective and sensitive determination of TBHQ by utilizing the competitive interaction between the photoinduced electron transfer (PET) effect of carbon dots (CDs)/Fe(III) ions and the complexation reaction of TBHQ/Fe(III) ions. This novel fluorescent switchable sensing platform allows determining TBHQ in a wider range from 0.5 to 80 μg mL(-1) with a low detection limit of 0.01 μg mL(-1). Furthermore, high specificity and good accuracy with recoveries ranging from 94.29 to 105.82% in spiked edible oil samples are obtained with the present method, confirming its applicability for the trace detection of TBHQ in a complex food matrix. Thus, the present method provides a novel and effective fluorescent approach for rapid and specific screening of TBHQ in common products, which is beneficial for monitoring and reducing the risk of TBHQ overuse during food storage. PMID:26746696

  3. Surface spectators and their role in relationships between activity and selectivity of the oxygen reduction reaction in acid environments.

    SciTech Connect

    Ciapina, Eduardo G.; Lopes, Pietro P.; Subbaraman, Ram; Ticianelli, Edson A.; Stamenkovic, Vojislav; Strmcnik, Dusan; Markovic, Nenad M.

    2015-11-01

    We use the rotating ring disk (RRDE) method to study activity-selectivity relationships for the oxygen reduction reaction (ORR) on Pt(111) modified by various surface coverages of adsorbed CNad (ΘCNad). The results demonstrate that small variations in ΘCNad have dramatic effect on the ORR activity and peroxide production, resulting in “volcano-like” dependence with an optimal surface coverage of ΘCNad = 0.3 ML. These relationships can be simply explained by balancing electronic and ensemble effects of co-adsorbed CNad and adsorbed spectator species from the supporting electrolytes, without the need for intermediate adsorption energy arguments. Although this study has focused on the Pt(111)-CNad/H2SO4 interface, the results and insight gained here are invaluable for controlling another dimension in the properties of electrochemical interfaces.

  4. Influence of Particle Size on Reaction Selectivity in Cyclohexene Hydrogenation and Dehydrogenation over Silica-Supported Monodisperse Pt Particles

    SciTech Connect

    Rioux, R. M.; Hsu, B. B.; Grass, M. E.; Song, H.; Somorjai, Gabor A.

    2008-07-11

    The role of particle size during the hydrogenation/dehydrogenation of cyclohexene (10 Torr C{sub 6}H{sub 10}, 200-600 Torr H{sub 2}, and 273-650 K) was studied over a series of monodisperse Pt/SBA-15 catalysts. The conversion of cyclohexene in the presence of excess H{sub 2} (H{sub 2}:C{sub 6}H{sub 10} ratio = 20-60) is characterized by three regimes: hydrogenation of cyclohexene to cyclohexane at low temperature (< 423 K), an intermediate temperature range in which both hydrogenation and dehydrogenation occur; and a high temperature regime in which the dehydrogenation of cyclohexene dominates (> 573 K). The rate of both reactions demonstrated maxima with temperature, regardless of Pt particle size. For the hydrogenation of cyclohexene, a non-Arrhenius temperature dependence (apparent negative activation energy) was observed. Hydrogenation is structure insensitive at low temperatures, and apparently structure sensitive in the non-Arrhenius regime; the origin of the particle-size dependent reactivity with temperature is attributed to a change in the coverage of reactive hydrogen. Small particles were more active for dehydrogenation and had lower apparent activation energies than large particles. The selectivity can be controlled by changing the particle size, which is attributed to the structure sensitivity of both reactions in the temperature regime where hydrogenation and dehydrogenation are catalyzed simultaneously.

  5. State-selected ion-molecule reactions: N 2+(X, v″), N 2+(A, v') + Ar → N 2 + Ar +

    NASA Astrophysics Data System (ADS)

    Govers, Thomas R.; Guyon, Paul Marie; Baer, Thomas; Cole, Keith; Fröhlich, Horst; Lavollée, Michel

    1984-07-01

    The total, absolute cross sections for charge transfer between N 2+(X, A, v) and Ar have been measured at 8, 14 and 20 eV center of mass translational energy. The internal energy of the N 2+ ions was selected by threshold photoelectron-photoion coincidence using pulsed synchrotron radiation from the ACO storage ring. The vibrational levels investigated were v″ = 0-4 for the X state, and v' = 0-6 for the A state. The data for the A state were corrected for the fraction of ions which fluoresced to the X state prior to reaction with Ar. The N 2+(X, v″ = 0) state was found to be much less reactive (by a factor ≥ 10) than the other X-state levels, at all three translational energies. The levels N 2+(A, v' ⩾ 3) were found to react with cross-sections which depend strongly on the relative translational energy. The data are interpreted in terms of the interaction between vibronic curves as discussed by Bauer, Fisher and Gilmore. This model accounts well for the low reactivity of the N 2+(X, 0) level. It is proposed that the variation in the cross section of the N 2+(A, v' ⩾ 3) + Ar reactions is a result of competition with a radiationless transition which converts N 2+(A, v') ions into N 2+(X, v″) ions.

  6. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    PubMed Central

    Pai Kotebagilu, Namratha; Reddy Palvai, Vanitha; Urooj, Asna

    2015-01-01

    Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol) of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%), methanol extract of Andrographis paniculata (72.15%), and methanol extract of Canthium parviflorum (49.55%) in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r = 0.816) and low-density lipoprotein (r = 0.948) and Costus speciosus in brain (r = 0.977, polyphenols, and r = 0.949, flavonoids) correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates. PMID:26933511

  7. Selective Blockade of Herpesvirus Entry Mediator–B and T Lymphocyte Attenuator Pathway Ameliorates Acute Graft-versus-Host Reaction

    PubMed Central

    del Rio, Maria-Luisa; Jones, Nick D.; Buhler, Leo; Norris, Paula; Shintani, Yasushi; Ware, Carl F.; Rodriguez-Barbosa, Jose-Ignacio

    2013-01-01

    The cosignaling network mediated by the herpesvirus entry mediator (HVEM; TNFRSF14) functions as a dual directional system that involves proinflammatory ligand, lymphotoxin that exhibits inducible expression and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes (LIGHT; TNFSF14), and the inhibitory Ig family member B and T lymphocyte attenuator (BTLA). To dissect the differential contributions of HVEM/BTLA and HVEM/LIGHT interactions, topographically-specific, competitive, and nonblocking anti-HVEM Abs that inhibit BTLA binding, but not LIGHT, were developed. We demonstrate that a BTLA-specific competitor attenuated the course of acute graft-versus-host reaction in a murine F1 transfer semiallogeneic model. Selective HVEM/BTLA blockade did not inhibit donor T cell infiltration into graft-versus-host reaction target organs, but decreased the functional activity of the alloreactive T cells. These results highlight the critical role of HVEM/BTLA pathway in the control of the allogeneic immune response and identify a new therapeutic target for transplantation and autoimmune diseases. PMID:22490863

  8. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates.

    PubMed

    Pai Kotebagilu, Namratha; Reddy Palvai, Vanitha; Urooj, Asna

    2015-01-01

    Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol) of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%), methanol extract of Andrographis paniculata (72.15%), and methanol extract of Canthium parviflorum (49.55%) in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r = 0.816) and low-density lipoprotein (r = 0.948) and Costus speciosus in brain (r = 0.977, polyphenols, and r = 0.949, flavonoids) correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates. PMID:26933511

  9. Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  10. An assay to monitor the activity of DNA transposition complexes yields a general quality control measure for transpositional recombination reactions

    PubMed Central

    Pulkkinen, Elsi; Haapa-Paananen, Saija; Savilahti, Harri

    2014-01-01

    Transposon-based technologies have many applications in molecular biology and can be used for gene delivery into prokaryotic and eukaryotic cells. Common transpositional activity measurement assays suitable for many types of transposons would be beneficial, as diverse transposon systems could be compared for their performance attributes. Therefore, we developed a general-purpose assay to enable and standardize the activity measurement for DNA transposition complexes (transpososomes), using phage Mu transposition as a test platform. This assay quantifies transpositional recombination efficiency and is based on an in vitro transposition reaction with a target plasmid carrying a lethal ccdB gene. If transposition targets ccdB, this gene becomes inactivated, enabling plasmid-receiving Escherichia coli cells to survive and to be scored as colonies on selection plates. The assay was validated with 3 mini-Mu transposons varying in size and differing in their marker gene constitution. Tests with different amounts of transposon DNA provided a linear response and yielded a 10-fold operational range for the assay. The colony formation capacity was linearly correlated with the competence status of the E.coli cells, enabling normalization of experimental data obtained with different batches of recipient cells. The developed assay can now be used to directly compare transpososome activities with all types of mini-Mu transposons, regardless of their aimed use. Furthermore, the assay should be directly applicable to other transposition-based systems with a functional in vitro reaction, and it provides a dependable quality control measure that previously has been lacking but is highly important for the evaluation of current and emerging transposon-based applications. PMID:26442171

  11. Bioimpedance in monitoring of effects of selective serotonin reuptake inhibitor treatment

    PubMed Central

    Alexeev, Vasiliy Grigorievich; Kuznecova, Ludmila Vasilievna

    2011-01-01

    Background Bioimpedance has been shown to be a safe technique when used in a number of biomedical applications. In this study, we used the Electro Interstitial Scan (EIS) to perform bioimpedance measurements to follow up the efficacy of selective serotonin reuptake inhibitor (SSRI) treatment in subjects diagnosed to have major depressive disorder. Methods We recruited 59 subjects (38 women, 21 men) aged 17–76 (mean 47) years diagnosed with major depressive disorder by psychiatric assessment at the Botkin Hospital according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). Baseline Clinical Global Impression scores and EIS (electrical conductivity and dispersion α parameter) measurements were done before starting SSRI therapy. Treatment follow-up was undertaken using EIS bioimpedance measurements and by treatment response based on the Hamilton Depression Scale and Clinical Global Impression, every 15 days for 60 days. At day 45, we classified the patients into two groups, ie, Group 1, including treatment responders, and Group 2, including nonresponders. At day 60, patients were classified into two further groups, ie, Group 3, comprising treatment responders, and Group 4, comprising nonresponders. Results Comparing Group 1 and Group 2, electrical conductivity measurement of the pathway between the two forehead electrodes had a specificity of 72% and a sensitivity of 85.3% (P < 0.0001), with a cutoff >4.32. Comparing Group 3 and Group 4, electrical conductivity measurements in the same pathway had a specificity of 47.6% and a sensitivity of 76.3% (P < 0.16), with a cutoff >5.92. Comparing Group 1 and Group 2, the electrical dispersion α parameter of the pathway between the two disposable forehead electrodes had a specificity of 80% and a sensitivity of 85.2% (P < 0.0001) with a cutoff >0.678. Comparing Group 3 and Group 4, the electrical dispersion α parameter of the same pathway had a specificity of 100%, a sensitivity of 89

  12. Time versus concentration plots of select parameters from the groundwater monitoring program, July 1984--June 1987

    SciTech Connect

    1987-12-31

    This Report is a presentation of time versus concentration plots for results of the groundwater monitoring program conducted by the Health Protection Department. This purpose of this report is to provide a tool for interpretation of the groundwater at the sites monitored. It should be used in conjunction with the U.S. Department of Energy Savannah River Plant Environmental Report for 1984 (DPSPU-86-30-1), the U.S. Department of Energy Savannah River Plant Environmental Report for 1986 (DPSPU-86-30-1), and the quarterly reports of the groundwater monitoring program for the first two quarters of 1987 (HPR-87-158 and HPR-87-286)

  13. GPR monitoring of rock mass stability in selected post-mining region in Poland

    NASA Astrophysics Data System (ADS)

    Golebiowski, T.

    2012-04-01

    Mining activity conducted over a period of many years may cause significant changes in the geological medium and in effect leads to strong degradation of the surface in mining and post-mining regions. One of the most dangerous effects of mining activity is appearance of sinkholes on the ground surface. These phenomena are related to the changes of initial stress-strain state of the rock mass as a result of mining works and the creation of fractures which migrate from excavations to the ground surface. The paper presents the results of selected GPR surveys carried out in the area of the coal mine "Siersza" in two sites, i.e. in the town of Siersza and in the village of Mloszowa (Upper Silesia, South Poland). The aim of the GPR research was 3D visualisation of fractured zones distribution generated by the mining activity and an attempt to make prediction where sinkholes would appear. In order to realize this aim the measurements were conducted in 4D mode (i.e. time-space analysis), which allowed to observe the fractured zones migration towards the ground surface. In order to obtain 4D information (x-y-z-t) GPR surveys were conducted for several years, along the same parallel profiles, separated by a constant distance equals 2.5m. The terrain measurements were carried out with RAMAC and PROEX GPR systems using 250, 200, 100 and 50 MHz antennae. Because of the limited length of this paper, only selected results from the 200-250 MHz antennae are presented. The results were presented in the form of the distribution of GPR signals energies calculated from Hilbert transform, applying the technique of energy inversion. In the site of Siersza, on the basis of 4D GPR visualisation, regions threatened with the formation of sinkholes were distinguished. A few years after the research, 2 cavities appeared in this site which proved that the interpretation was correct. Another fractured zone in this site was confirmed by a borehole. In the site of Mloszowa the GPR measurements

  14. MONITORING STUDY OF URINARY METABOLITES AND SELECTED SYMPTOMATOLOGY AMONG FLORIDA CITRUS WORKERS

    EPA Science Inventory

    A cross-sectional monitoring study was made of citrus fieldworkers employed during an entire citrus growing season in Florida. A survey questionnaire was administered to 1811 fieldworkers employed as applicators, mixers, loaders, tractor drivers, general combination workers, and ...

  15. Microwave-specific acceleration of a Friedel-Crafts reaction: evidence for selective heating in homogeneous solution.

    PubMed

    Rosana, Michael R; Hunt, Jacob; Ferrari, Anthony; Southworth, Taylor A; Tao, Yuchuan; Stiegman, Albert E; Dudley, Gregory B

    2014-08-15

    Thermally promoted Friedel-Crafts benzylation of arene solvents has been examined under both conventional convective heating with an oil bath and heating using microwave (MW) energy. Bulk solution temperatures-as measured by internal and external temperature probes and as defined by solvent reflux-were comparable in both sets of experiments. MW-specific rate enhancements were documented under certain conditions and not others. The observed rate enhancements at a given temperature are proposed to arise from selective MW heating of polar solutes, perturbing thermal equilibrium between the solute and bulk solution. Central to MW-specific thermal phenomena is the difference between heat and temperature. Temperature is a measure of the ensemble average kinetic molecular energy of all solution components, but temperature does not provide information about solute-specific energy differences that may arise as a consequence of selective MW heating. Enhanced chemical reactivity of the MW-absorbing solute can be described as a MW-specific "extra-temperature thermal effect", because the measurable solution temperature only captures a portion of the solute kinetic molecular energy. Experimental factors that favor MW-specific rate enhancements are discussed with an eye toward future development of MW-actuated organic reactions, in which the observed thermal reactivity exceeds what is predicted from temperature-based Arrhenius calculations. PMID:25050855

  16. Photoemission and reaction study of mass-selected Pt clusters on TiO2(110) surface

    NASA Astrophysics Data System (ADS)

    Isomura, Noritake; Watanabe, Yoshihide

    2008-03-01

    Metal cluster has been speculated to have strong size dependence in catalytic activity. The clusters on surfaces would give further specificity because of the interaction between the clusters and the surface. Catalytic properties of mass-selected metal clusters on well-defined oxide surfaces have been investigated using the new ultra high vacuum cluster deposition apparatus. In this study, we have examined catalytic and electronic properties of platinum clusters used as a composition of automotive exhaust catalysts, and used titanium dioxide as the support. Pt cluster ions were produced by a DC magnetron-sputter cluster ion source [1] with an ion funnel [2], mass-selected by a quadrupole mass filter, and then deposited on TiO2(110) single crystal surfaces. The catalytic oxidation of CO on Ptn/TiO2 (n<10) was investigated using the high-pressure reaction cell with quartz linings, which was connected to the external recirculation loop with a stainless steel bellows pump. The catalytic activity was suggested to be dependent on the size (n) of Ptn clusters. It was expected to be due to the electronic properties of the clusters. The size specificity will be discussed with the results of photoemission spectroscopy. [1] H. Haberland et al., J. Vac. Sci. Technol. A 10, 3266 (1992). [2] S.A. Shaffer el al., Rapid Commun. Mass Spectrom. 11, 1813 (1997).

  17. A model for selecting bioindicators to monitor radionuclide concentrations using Amchitka Island in the Aleutians as a case study.

    PubMed

    Burger, Joanna

    2007-11-01

    World War II and the Cold War have left the Unites States, and other Nations, with massive cleanup and remediation tasks for radioactive and other legacy hazardous wastes. While some sites can be cleaned up to acceptable residential risk levels, others will continue to hold hazardous wastes, which must be contained and monitored to protect human health and the environment. While media (soil, sediment, groundwater) monitoring is the usual norm at many radiological waste sites, for some situations (both biological and societal), biomonitoring may provide the necessary information to assure greater peace of mind for local and regional residents, and to protect ecologically valuable buffer lands or waters. In most cases, indicators are selected using scientific expertise and a literature review, but not all selected indicators will seem relevant to stakeholders. In this paper, I provide a model for the inclusion of stakeholders in the development of bioindicators for assessing radionuclide levels of biota in the marine environment around Amchitka Island, in the Aleutian Chain of Alaska. Amchitka was the site of three underground nuclear tests from 1965 to 1971. The process was stakeholder-initiated, stakeholder-driven, and included stakeholders during each phase. Phases included conceptualization, initial selection of biota and radionuclides, refinement of biota and radionuclide target lists, collection of biota, selection of biota and radionuclides for analysis, and selection of biota, tissues, and radionuclides for bioindicators. The process produced site-specific information on biota availability and on radionuclide levels that led to selection of site-appropriate bioindicators. I suggest that the lengthy, iterative, stakeholder-driven process described in this paper results in selection of bioindicators that are accepted by biologists, public health personnel, public-policy makers, resource agencies, regulatory agencies, subsistence hunters/fishers, and a wide

  18. A model for selecting bioindicators to monitor radionuclide concentrations using Amchitka Island in the Aleutians as a case study

    SciTech Connect

    Burger, Joanna

    2007-11-15

    World War II and the Cold War have left the Unites States, and other Nations, with massive cleanup and remediation tasks for radioactive and other legacy hazardous wastes. While some sites can be cleaned up to acceptable residential risk levels, others will continue to hold hazardous wastes, which must be contained and monitored to protect human health and the environment. While media (soil, sediment, groundwater) monitoring is the usual norm at many radiological waste sites, for some situations (both biological and societal), biomonitoring may provide the necessary information to assure greater peace of mind for local and regional residents, and to protect ecologically valuable buffer lands or waters. In most cases, indicators are selected using scientific expertise and a literature review, but not all selected indicators will seem relevant to stakeholders. In this paper, I provide a model for the inclusion of stakeholders in the development of bioindicators for assessing radionuclide levels of biota in the marine environment around Amchitka Island, in the Aleutian Chain of Alaska. Amchitka was the site of three underground nuclear tests from 1965 to 1971. The process was stakeholder-initiated, stakeholder-driven, and included stakeholders during each phase. Phases included conceptualization, initial selection of biota and radionuclides, refinement of biota and radionuclide target lists, collection of biota, selection of biota and radionuclides for analysis, and selection of biota, tissues, and radionuclides for bioindicators. The process produced site-specific information on biota availability and on radionuclide levels that led to selection of site-appropriate bioindicators. I suggest that the lengthy, iterative, stakeholder-driven process described in this paper results in selection of bioindicators that are accepted by biologists, public health personnel, public-policy makers, resource agencies, regulatory agencies, subsistence hunters/fishers, and a wide

  19. Influence of Pichia pastoris cellular material on polymerase chain reaction performance as a synthetic biology standard for genome monitoring.

    PubMed

    Templar, Alexander; Woodhouse, Stefan; Keshavarz-Moore, Eli; Nesbeth, Darren N

    2016-08-01

    Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard. PMID:27211507

  20. Multiple reaction monitoring mass spectrometry for the discovery and quantification of O-GlcNAc-modified proteins.

    PubMed

    Maury, Julien Jean Pierre; Ng, Daniel; Bi, Xuezhi; Bardor, Muriel; Choo, Andre Boon-Hwa

    2014-01-01

    O-linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification regulating proteins involved in a variety of cellular processes and diseases. Unfortunately, O-GlcNAc remains challenging to detect and quantify by shotgun mass spectrometry (MS) where it is time-consuming and tedious. Here, we investigate the potential of Multiple Reaction Monitoring Mass Spectrometry (MRM-MS), a targeted MS method, to detect and quantify native O-GlcNAc modified peptides without extensive labeling and enrichment. We report the ability of MRM-MS to detect a standard O-GlcNAcylated peptide and show that the method is robust to quantify the amount of O-GlcNAcylated peptide with a method detection limit of 3 fmol. In addition, when diluted by 100-fold in a trypsin-digested whole cell lysate, the O-GlcNAcylated peptide remains detectable. Next, we apply this strategy to study glycogen synthase kinase-3 beta (GSK-3β), a kinase able to compete with O-GlcNAc transferase and modify identical site on proteins. We demonstrate that GSK-3β is itself modified by O-GlcNAc in human embryonic stem cells (hESC). Indeed, by only using gel electrophoresis to grossly enrich GSK-3β from whole cell lysate, we discover by MRM-MS a novel O-GlcNAcylated GSK-3β peptide, bearing 3 potential O-GlcNAcylation sites. We confirm our finding by quantifying the increase of O-GlcNAcylation, following hESC treatment with an O-GlcNAc hydrolase inhibitor. This novel O-GlcNAcylation could potentially be involved in an autoinhibition mechanism. To the best of our knowledge, this is the first report utilizing MRM-MS to detect native O-GlcNAc modified peptides. This could potentially facilitate rapid discovery and quantification of new O-GlcNAcylated peptides/proteins. PMID:24144119

  1. Four challenges in selecting and implementing methods to monitor and evaluate participatory processes: Example from the Rwenzori region, Uganda.

    PubMed

    Hassenforder, Emeline; Ducrot, Raphaëlle; Ferrand, Nils; Barreteau, Olivier; Anne Daniell, Katherine; Pittock, Jamie

    2016-09-15

    Participatory approaches are now increasingly recognized and used as an essential element of policies and programs, especially in regards to natural resource management (NRM). Most practitioners, decision-makers and researchers having adopted participatory approaches also acknowledge the need to monitor and evaluate such approaches in order to audit their effectiveness, support decision-making or improve learning. Many manuals and frameworks exist on how to carry out monitoring and evaluation (M&E) for participatory processes. However, few provide guidelines on the selection and implementation of M&E methods, an aspect which is also often obscure in published studies, at the expense of the transparency, reliability and validity of the study. In this paper, we argue that the selection and implementation of M&E methods are particularly strategic when monitoring and evaluating a participatory process. We demonstrate that evaluators of participatory processes have to tackle a quadruple challenge when selecting and implementing methods: using mixed-methods, both qualitative and quantitative; assessing the participatory process, its outcomes, and its context; taking into account both the theory and participants' views; and being both rigorous and adaptive. The M&E of a participatory planning process in the Rwenzori Region, Uganda, is used as an example to show how these challenges unfold on the ground and how they can be tackled. Based on this example, we conclude by providing tools and strategies that can be used by evaluators to ensure that they make utile, feasible, coherent, transparent and adaptive methodological choices when monitoring and evaluating participatory processes for NRM. PMID:27288554

  2. Experimental cross-sections of deuteron-induced reaction on 89Y up to 20 MeV; comparison of natTi(d,x)48V and 27Al(d,x)24Na monitor reactions

    NASA Astrophysics Data System (ADS)

    Lebeda, Ondřej; Štursa, Jan; Ráliš, Jan

    2015-10-01

    We measured cross-sections of the deuteron-induced reactions on 89Y in the energy range of 3.9-19.5 MeV. Excitation functions for formation of 88Zr, 89mZr, 89Zr, 88Y, 90mY and 87mSr were determined and compared with previously published data and prediction of the TALYS code. Thick target yields for production of 88Zr, 89Zrcum, 88Y, 90mY and 87mSr were calculated from the measured cross-sections. Achievable activity versus radionuclidic purity of medically relevant 89Zr is discussed and compared with the production via the 89Y(p,n) reaction. Parallel use of titanium and aluminium beam monitors revealed systematic difference between the recommended cross-sections of both monitoring reactions and provided new cross-section data for formation of 24Na, 27Mg, 43Sc, 44mSc, 44Sc, 46Sc, 47Sc and 48Sc. The cross-sections for the natTi(d,x)46Sc reactions agree very well with recently proposed recommended values.

  3. Growth monitoring still has a place in selected populations of children.

    PubMed

    Hussain, M; John, C M; Mohamed, K; Zbaeda, M; Ng, S M; Chanderasekaran, S; Didi, M; Blair, J C

    2011-01-01

    In 1998, a multiprofessional group developed a consensus on growth monitoring in the UK. While routine serial measurements were not recommended in healthy children, it is clear that there is a subset of children at increased risk of growth-modifying disease who may benefit from growth monitoring. This subset includes children with genetic disorders at increased risk of thyroid dysfunction. Symptoms and signs of thyroid dysfunction are non-specific in the early stages of disease and are easily mistaken for features of an underlying genetic disorder. In this article, we report the case of a 2.8-year-old girl with 18q deletion syndrome who was profoundly weak, hypotonic and poorly responsive at diagnosis of Grave's disease. She was tall and her bone age was 2 years advanced, indicating long-standing disease. Growth monitoring of this patient should have enabled earlier diagnosis and avoided a serious and potentially fatal episode. PMID:22700067

  4. Reaction of Five Non-cereal Grasses to Five Races and Two Host Selective Toxins of Pyrenophora tritici-repentis.

    PubMed

    Ali, Shaukat; Langham, M A C

    2015-09-01

    Alternative hosts increase the difficulty of disease management in crops because these alternate hosts provide additional sources of primary inoculum or refuges for diversity in the pathogen gene pool. Agropyron cristatum (crested wheatgrass), Bromus inermis (smooth bromegrass), Pascopyrum smithii (western wheatgrass), Stipa viridula (green needlegrass), and Thinopyrum intermedium (intermediate wheatgrass), commonly identified in range, prairie, verge, and soil reclamation habitats, serve as additional hosts for Pyrenophora tritici-repentis, the cause of tan spot in wheat (Triticum aestivum L.). A. cristatum (five lines), B. inermis (seven lines), P. smithii (four lines), S. viridula (two lines), and T. intermedium (six lines) were tested for their reactions to 30 representative P. tritici-repentis isolates from races 1-5. Plants were grown until the two-three-leaf stage in a greenhouse, inoculated individually with the 30 isolates, held at high humidity for 24 h, and rated after 7 days. All lines developed lesion types 1-2 (resistant) based on a 1-5 rating scale. Also, leaves from an additional plant set were infiltrated with two host selective toxins, Ptr ToxA as a pure preparation and Ptr ToxB as a dilute crude culture filtrate. All lines were insensitive to the toxins. Results indicate that these grass hosts have a limited or nonsignificant role in tan spot epidemiology on wheat in the northern Great Plains. Additionally, the resistant reactions demonstrated by the grass species in this research indicate the presence of resistance genes that can be valuable to wheat breeding programs for improving wheat resistance to P. tritici-repentis. PMID:26361472

  5. Quantification of emerging micropollutants in an amphipod crustacean by nanoliquid chromatography coupled to mass spectrometry using multiple reaction monitoring cubed mode.

    PubMed

    Sordet, Martin; Berlioz-Barbier, Alexandra; Buleté, Audrey; Garric, Jeanne; Vulliet, Emmanuelle

    2016-07-22

    An innovative analytical method has been developed to quantify the bioaccumulation in an amphipod crustacean (Gammarus fossarum) of three micropollutants regarded as anthropic-pollution markers: carbamazepine, oxazepam, and testosterone. A liquid-liquid extraction assisted by salts, known as QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) was miniaturised and optimised, so it could be adapted to the low mass samples (approximatively 5mg dry weight). For this same reason and in order to obtain good sensitivity, ultra-trace analyses were carried out by means of nanoliquid chromatography. A preconcentration system by on-column trapping was optimised to increase the injection volume. In order to improve both sensitivity and selectivity, the multiple reaction monitoring cubed mode analyses (MRM(3)) were carried out, validated and compared to the classic MRM. To the best of our knowledge, this is the first time that MRM(3) is coupled to nanoliquid chromatography for the analysis and detection of organic micropollutants <300Da. The optimised extraction method exhibited recoveries superior to 80%. The limits of quantification of the target compounds were 0.3, 0.7 and 4.7ng/g (wet weight) for oxazepam, carbamazepine and testosterone, respectively and the limits of detection were 0.1, 0.3 and 2.2ng/g (wet weight), respectively. The intra- and inter-day precisions were inferior to 7.7% and 10.9%, respectively, for the three levels of concentration tested. The analytical strategy developed allowed to obtain limits of quantification lower than 1ng/g (wet weight) and to establish the kinetic bioconcentration of contaminants within G. fossarum. PMID:27324621

  6. A Synthesis of the Tricyclic Core Structure of FR901483 Featuring an Ugi Four-Component Coupling and a Remarkably Selective Elimination Reaction1

    PubMed Central

    Seike, Hirofumi

    2011-01-01

    Three key reactions, an efficient Ugi four-component coupling, a regiospecific, base-mediated elimination reaction, and an intramolecular nitrone/alkene [3+2] cycloaddition, were used to achieve an effective synthesis of the tricyclic molecular framework of the immunosuppressant FR901483. The outcome of a control experiment supports the idea that an internal deprotonation by an alkoxide ion is the origin of the site selectivity observed in the base-induced elimination of hydroxy mesylate 17. PMID:22114366

  7. Utilisation of gold nanoparticles on amine-functionalised UiO-66 (NH2-UiO-66) nanocrystals for selective tandem catalytic reactions.

    PubMed

    Hinde, Christopher S; Webb, William R; Chew, Benny K J; Tan, Hui Ru; Zhang, Wen-Hua; Hor, T S Andy; Raja, Robert

    2016-05-01

    Colloidal deposition of gold nanoparticles (Au NPs) onto NH2-UiO-66 nanocrystals has been demonstrated with the resulting hybrid catalyst proving robust and versatile for one-pot, heterogeneous conversions involving the selective oxidation of primary alcohols in tandem with Knoevenagel condensation reactions. Within these systems, structure-property correlations have been established to confirm that the active sites for the oxidation and condensation reactions are intrinsically correlated with the Au NPs and pendant amine groups respectively. PMID:27104291

  8. High resolution aerial monitoring of aquatic and riparian habitat in selected reaches of Wyoming's Powder River

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coalbed Methane (CBM) development produces saline and sodic discharge water at 5-15 gallons/minute/well. Current permits allow 51,000 wells in the Powder River Basin by 2010, giving a potential discharge of 1.1 billion gallons/day. To monitor the effect of the increasing CBM outflow on the aquatic a...

  9. Goal Selection and Program Monitoring Using Batch and Microcomputer Procedures: A Summary of the Presentation.

    ERIC Educational Resources Information Center

    Brown, David A.

    The paper reviews the use of the microcomputer in special education program monitoring and contrasts its use with batch mainframe time-sharing computer systems. The mainframe system used by Custer State Hospital, the site of a residential training program for severely and profoundly handicapped persons, is described. The hospital's batch system is…

  10. Viewpoint: adapting to new international tuberculosis treatment standards with medication monitors and DOT given selectively.

    PubMed

    Moulding, Thomas S

    2007-11-01

    New international standards no longer require directly observed therapy for all tuberculosis (TB) patients, but state that practitioners must be capable of assessing adherence and addressing poor adherence. Mass-produced electronic medication monitors, which record removal of medication from a container, could help overcome the problem of assessing treatment adherence accurately even in poor countries. Both health facilities and community workers could dispense drugs for self-administered treatment in medication monitors and retrieve the adherence record with inexpensive built-in displays. These devices could keep the adherence record from the beginning of therapy for managing patients who move. Pharmacists using medication monitors could provide surveillance of self-administered treatment prescribed by private physicians with less adherent patients referred to the health departments. Less adherent patients could be managed with focused counselling, directly observed therapy when necessary, and extensions in treatment duration. Removal of the directly observed therapy burden would encourage patients to seek free high-quality supervised pubic care and help expand effective TB treatment services. If resources saved by giving less directly observed therapy were focused on poorly adherent patients, medication monitor-based programmes could create less acquired drug resistance than overwhelmed treatment programmes that attempt but fail to give uninterrupted directly observed therapy to all patients. PMID:17949402

  11. THE HYDROVINYLATION AND RELATED REACTIONS: NEW PROTOCOLS AND CONTROL ELEMENTS IN SEARCH OF GREATER SYNTHETIC EFFICIENCY AND SELECTIVITY. (R826120)

    EPA Science Inventory

    New reaction conditions and stereochemical control elements for heterodimerization between ethylene (or propylene) and functionalized vinyl arenes are highlighted (see equation). For example, an enantioselective version of the hydrovinylation reaction uses [{(allyl)NiBr}...

  12. Monitoring the irradiation field of 12C and 16O SOBP beams using positron emitters produced through projectile fragmentation reactions

    NASA Astrophysics Data System (ADS)

    Inaniwa, Taku; Kohno, Toshiyuki; Tomitani, Takehiro; Sato, Shinji

    2008-02-01

    In order to effectively utilize the prominent properties of heavy ions in radiotherapy, it is important to evaluate both the position of the field irradiated with incident ions and the absorbed dose distribution in a patient's body. One of the methods for this purpose is the utilization of the positron emitters produced through the projectile fragmentation reactions of stable heavy ions with target nuclei. In heavy-ion therapy, spread-out Bragg peak (SOBP) beams are used to achieve uniform biological dose distributions in the whole tumor volume. Therefore, in this study, we designed SOBP beams of 30 and 50 mm water-equivalent length (mmWEL) in width for 12C and 16O, and carried out irradiation experiments using them. Water, polyethylene and polymethyl methacrylate were selected as targets to simulate a human body. Pairs of annihilation gamma rays were detected by means of a limited-angle positron camera for 500 s, and annihilation gamma-ray distributions were obtained. The maximum likelihood estimation (MLE) method was applied to the detected distributions for evaluating the positions of the distal and proximal edges of the SOBP in a target. The differences between the positions evaluated with the MLE method and those derived from the measured dose distributions were less than 1.7 mm and 2.5 mm for the distal and the proximal edge, respectively, in all irradiation conditions. When the positions of both edges are determined with the MLE method, the most probable shape of the dose distribution in a target can be estimated simultaneously. The close agreement between the estimated and the measured distributions implied that the shape of the dose distribution in an irradiated target could be evaluated from the detected annihilation gamma-ray distribution.

  13. Attitude of nurses and pharmacists on adverse drug reactions reporting in selected hospitals in Sokoto, Northwest Nigeria

    PubMed Central

    Umar, Muhammad Tukur; Bello, Shaibu Oricha; Chika, Aminu; Oche, Oche Mansur

    2016-01-01

    Objective: Objective of this study was to assess the attitude of nurses and pharmacists towards adverse drug reactions (ADRs) reporting. Methods: The questionnaire was designed based on extended “Inman seven deadly sins.” Two hundred and seventy-two respondents were selected by stratified sampling technique. The questionnaires were delivered to the respondents at their places of practice. The data generated were analyzed by Sigma XL Software Inc. Findings: There was no statistically significant relationship between demographic profiles and reporting attitude except for qualification. On extended “Inman seven deadly sins” awareness of reporting protocol and nearby center for ADRs reporting were low 27.3 and 7.5%, respectively. However, respondents’ score on components of attitude of ADRs reporting is generally encouraging. On comparative basis, no statistical significance exists between pharmacists and nurses. Conclusion: The study showed that attitude of respondents towards ADRs reporting is good. However, there is a need for targeted health education intervention among these cadres of health-care professionals, especially on aspects of awareness of reporting protocol and reporting center. PMID:27512716

  14. Selective population of states in fission fragments from the [sup 32]S+[sup 24]Mg reaction

    SciTech Connect

    Sanders, S.J.; Hasan, A.; Prosser, F.W. ); Back, B.B.; Betts, R.R.; Carpenter, M.P.; Henderson, D.J.; Janssens, R.V.F.; Khoo, T.L.; Moore, E.F.; Wilt, P.R.; Wolfs, F.L.H.; Wuosmaa, A.H. ); Beard, K.B. ); Benet, P. )

    1994-02-01

    The symmetric and near-symmetric mass fission yields from the [sup 32]S+[sup 24]Mg reaction have been studied in a particle-particle-[gamma] coincidence measurement. Evidence is presented for a selective population of states in [sup 28]Si fragments arising from the symmetric fission of the [sup 56]Ni compound nucleus. A statistical-model calculation of the expected strength to specific mutual excitations of the fission fragments is presented and compared to the experimental results. This calculation is found to describe the structures observed at high excitation energy in the fission [ital Q]-value spectra quite well. Analysis of the [gamma]-ray spectra indicates, however, that a specific set of states in [sup 28]Si, corresponding to a highly deformed prolate band, is populated more strongly than expected based on a purely spin-weighted, statistical decay of the compound nucleus. It is suggested that the population pattern of states in the fission fragments may reflect nuclear structure effects at the point of scission.

  15. Excitation and electron transfer from selectively excited primary donor chlorophyll (P700) in a photosystem I reaction center

    SciTech Connect

    Kumazaki, Shigeichi; Yoshihara, Keitaro; Ikegami, Isamu

    1997