These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Targeting the lysosome: fluorescent iron(III) chelators to selectively monitor endosomal/lysosomal labile iron pools.  

PubMed

Iron-sensitive fluorescent chemosensors in combination with digital fluorescence spectroscopy have led to the identification of a distinct subcellular compartmentation of intracellular redox-active "labile" iron. To investigate the distribution of labile iron, our research has been focused on the development of fluorescent iron sensors targeting the endosomal/lysosomal system. Following the recent introduction of a series of 3-hydroxypyridin-4-one (HPO) based fluorescent probes we present here two novel HPO sensors capable of accumulating and monitoring iron exclusively in endosomal/lysosomal compartments. Flow cytometric and confocal microscopy studies in murine macrophages revealed endosomal/lysosomal sequestration of the probes and high responsiveness toward alterations of vesicular labile iron concentrations. This allowed assessment of cellular iron status with high sensitivity in response to the clinically applied medications desferrioxamine, deferiprone, and deferasirox. The probes represent a powerful class of sensors for quantitative iron detection and clinical real-time monitoring of subcellular labile iron levels in health and disease. PMID:18624421

Fakih, Sarah; Podinovskaia, Maria; Kong, Xiaole; Collins, Helen L; Schaible, Ulrich E; Hider, Robert C

2008-08-14

2

Selective tracking of lysosomal cu(2+) ions using simultaneous target- and location-activated fluorescent nanoprobes.  

PubMed

Levels of lysosomal copper are tightly regulated in the human body. However, few methods for monitoring dynamic changes in copper pools are available, thus limiting the ability to diagnostically assess the influence of copper accumulation on health status. We herein report the development of a dual target and location-activated rhodamine-spiropyran probe, termed Rhod-SP, activated by the presence of lysosomal Cu(2+). Rhod-SP contains a proton recognition unit of spiropyran, which provides molecular switching capability, and a latent rhodamine fluorophore for signal transduction. Upon activation by lysosomal acidic pH, Rhod-SP binds with Cu(2+) by spiropyran-based proton activation, promoting, in turn, rhodamine ring opening, which shows a "switched on" fluorescence signal. However, to protect Rhod-SP from degradation and interference by the physiological environment, it is engineered on mesoporous silica nanoparticles (MSNs), and the surface of Rhod-SP@MSNs is further anchored with ?-cyclodextrin (?-CD) to enhance the solubility and bioavailability of Rhod-SP@MSN-CD. Next, to enhance cell specificity, a guiding unit of c(RGDyK) peptide conjugated adamantane (Ad-RGD) as prototypical system, is incorporated on the surface of Rhod-SP@MSN-CD to target integrin ?v?3 and ?v?5 overexpressed on cancer cells. Fluorescence imaging showed that both Rhod-SP@MSN-CD and Rhod-SP@MSN-CD-RGD were suitable for visualizing exogenous and endogenous Cu(2+) in lysosomes of living cells. This strategy addresses some common challenges of chemical probes in biosensing, such as spatial resolution in cell imaging, the solubility and stability in biological system, and the interference from intracellular species. The newly designed nanoprobe, which allows one to track, on a location-specific basis, and visualize lysosomal Cu(2+), offers a potentially rich opportunity to examine copper physiology in both healthy and diseased states. PMID:25435382

Li, Yinhui; Zhao, Yirong; Chan, Winghong; Wang, Yijun; You, Qihua; Liu, Changhui; Zheng, Jing; Li, Jishan; Yang, Sheng; Yang, Ronghua

2015-01-01

3

Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors  

PubMed Central

Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML. PMID:23202731

Sukhai, Mahadeo A.; Prabha, Swayam; Hurren, Rose; Rutledge, Angela C.; Lee, Anna Y.; Sriskanthadevan, Shrivani; Sun, Hong; Wang, Xiaoming; Skrtic, Marko; Seneviratne, Ayesh; Cusimano, Maria; Jhas, Bozhena; Gronda, Marcela; MacLean, Neil; Cho, Eunice E.; Spagnuolo, Paul A.; Sharmeen, Sumaiya; Gebbia, Marinella; Urbanus, Malene; Eppert, Kolja; Dissanayake, Dilan; Jonet, Alexia; Dassonville-Klimpt, Alexandra; Li, Xiaoming; Datti, Alessandro; Ohashi, Pamela S.; Wrana, Jeff; Rogers, Ian; Sonnet, Pascal; Ellis, William Y.; Corey, Seth J.; Eaves, Connie; Minden, Mark D.; Wang, Jean C.Y.; Dick, John E.; Nislow, Corey; Giaever, Guri; Schimmer, Aaron D.

2012-01-01

4

Intracellular drug distribution-based targeting: Exploiting lysosomes to enhance the selectivity of drugs towards cancer cells  

E-print Network

their systemic toxicity. We also evaluated whether IDB selectivity can be optimized according to relevant physicochemical parameters of drug candidates, specifically the ionization constant (pKa). These evaluations provide a rationale for the design...

Ndolo, Rosemary A.

2012-08-31

5

The lysosome: from waste bag to potential therapeutic target.  

PubMed

Lysosomes are ubiquitous membrane-bound intracellular organelles with an acidic interior. They are central for degradation and recycling of macromolecules delivered by endocytosis, phagocytosis, and autophagy. In contrast to the rather simplified view of lysosomes as waste bags, nowadays lysosomes are recognized as advanced organelles involved in many cellular processes and are considered crucial regulators of cell homeostasis. The function of lysosomes is critically dependent on soluble lysosomal hydrolases (e.g. cathepsins) as well as lysosomal membrane proteins (e.g. lysosome-associated membrane proteins). This review focuses on lysosomal involvement in digestion of intra- and extracellular material, plasma membrane repair, cholesterol homeostasis, and cell death. Regulation of lysosomal biogenesis and function via the transcription factor EB (TFEB) will also be discussed. In addition, lysosomal contribution to diseases, including lysosomal storage disorders, neurodegenerative disorders, cancer, and cardiovascular diseases, is presented. PMID:23918283

Appelqvist, Hanna; Wäster, Petra; Kågedal, Katarina; Öllinger, Karin

2013-08-01

6

Chaperone-mediated autophagy: Dice's 'wild' idea about lysosomal selectivity.  

PubMed

A little over 1 year ago, we lost a bright scientist and a dear colleague who, in his younger years, proposed the 'heretical' idea that lysosomes could selectively degrade cytosolic proteins. That scientist was J. Fred Dice, and his lifetime's discovery was the degradative pathway that we now know as chaperone-mediated autophagy. PMID:21750569

Cuervo, Ana Maria

2011-08-01

7

Vesicular disruption of lysosomal targeting organometallic polyarginine bioconjugates.  

PubMed

Compounds which are able to destabilize the lysosomal membrane have been proposed as interesting candidates for targeted anticancer drugs due to the pronounced lysosomal changes in cancer cells. For this purpose, metallocene derivatives of a cell penetrating polyarginine peptide M-(Arg)9(Phe)2Lys-NH2 (where M = ferrocene carboxylate or ruthenocene carboxylate) were designed and their biological activities were investigated in detail. The ferrocenoyl- and ruthenocenoyl polyarginine bioconjugates were synthesized via Fmoc solid-phase peptide synthesis (SPPS) protocols on a microwave-assisted synthesizer. After HPLC purification >98% purity was observed for all conjugates. Their interaction with supported biomimetic membranes was investigated on a quartz crystal microbalance (QCM) and revealed a very strong binding of the metallocene peptides and their metal-free congeners to an artificial eukaryotic membrane model (DMPC-cholesterol). To demonstrate their antiproliferative utility as cytotoxic compounds for a targeted anticancer drug, cell viability (by the crystal violet assay), apoptosis (flow cytometry, Ann V/PI staining), induction of reactive oxygen species (ROS, by flow cytometry with dihydroethidium staining), and changes in cancer cell metabolism, e.g. respiration and glycolysis, were studied. Our results reveal only a weak toxicity for the metal-free polyarginine peptide, which could be significantly enhanced (to ca. 50 ?M against HeLa cells in the best case) by coupling ferrocene or ruthenocene carboxylates to the N-terminus of the peptide. The investigation of the cellular uptake and intracellular localization by fluorescence microscopy revealed an enhanced vesicular disruption by the metallocene bioconjugate compared to the metal-free derivative which could be triggered by light and chemicals. Further studies of apoptosis, respiration, glycolysis and ROS formation reveal the superior characteristics of the metallocene compounds. While most cells remain viable even at 300 ?M of the metal free bioconjugate , most cells are dead or in late stages of apoptosis at 200 ?M of the ruthenocene derivative , and at 100 ?M of the most active ferrocene derivative , however, all show very little sign of necrosis. Also, the metal free compound does not induce ROS formation but both metallocene-polyarginine bioconjugates are clearly associated with enhanced intracellular ROS levels, with levels for the redox-active ferrocene derivative being two times higher than for the structurally very similar but redox-silent ruthenocene derivative. We propose that such metallocene-polyarginine peptides induce lysosomal membrane permeabilization and thereby could be developed towards targeted anticancer drugs. PMID:25608481

Gross, Annika; Alborzinia, Hamed; Piantavigna, Stefania; Martin, Lisandra L; Wölfl, Stefan; Metzler-Nolte, Nils

2015-02-11

8

Mannose 6-Phosphate-independent Targeting of Lysosomal Enzymes in I-CeU Disease B Lymphoblasts  

Microsoft Academic Search

B lymphocytes from patients with I-cell dis- ease (ICD) maintain normal cellular levels of lysosomal enzymes despite a deficiency of the enzyme UDP-N-acetylglucosamine: lysosomal enzyme N-acetylglucosamine-l-phosphotransferase. We find that an ICD B lymphoblastoid cell line targets about 45 % of the lysosomal protease cathepsin D to dense lysosomes. This targeting occurs in the absence of de- tectable mannose 6-phosphate residues

Jonathan N. Glickman; Stuart Kornfeld

1993-01-01

9

An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease  

PubMed Central

The ?-site amyloid precursor protein cleaving enzyme-1 (BACE1), an essential protease for the generation of amyloid-? (A?) peptide, is a major drug target for Alzheimer's disease (AD). However, there is a concern that inhibiting BACE1 could also affect several physiological functions. Here, we show that BACE1 is modified with bisecting N-acetylglucosamine (GlcNAc), a sugar modification highly expressed in brain, and demonstrate that AD patients have higher levels of bisecting GlcNAc on BACE1. Analysis of knockout mice lacking the biosynthetic enzyme for bisecting GlcNAc, GnT-III (Mgat3), revealed that cleavage of A?-precursor protein (APP) by BACE1 is reduced in these mice, resulting in a decrease in A? plaques and improved cognitive function. The lack of this modification directs BACE1 to late endosomes/lysosomes where it is less colocalized with APP, leading to accelerated lysosomal degradation. Notably, other BACE1 substrates, CHL1 and contactin-2, are normally cleaved in GnT-III-deficient mice, suggesting that the effect of bisecting GlcNAc on BACE1 is selective to APP. Considering that GnT-III-deficient mice remain healthy, GnT-III may be a novel and promising drug target for AD therapeutics. PMID:25592972

Kizuka, Yasuhiko; Kitazume, Shinobu; Fujinawa, Reiko; Saito, Takashi; Iwata, Nobuhisa; Saido, Takaomi C; Nakano, Miyako; Yamaguchi, Yoshiki; Hashimoto, Yasuhiro; Staufenbiel, Matthias; Hatsuta, Hiroyuki; Murayama, Shigeo; Manya, Hiroshi; Endo, Tamao; Taniguchi, Naoyuki

2015-01-01

10

An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease.  

PubMed

The ?-site amyloid precursor protein cleaving enzyme-1 (BACE1), an essential protease for the generation of amyloid-? (A?) peptide, is a major drug target for Alzheimer's disease (AD). However, there is a concern that inhibiting BACE1 could also affect several physiological functions. Here, we show that BACE1 is modified with bisecting N-acetylglucosamine (GlcNAc), a sugar modification highly expressed in brain, and demonstrate that AD patients have higher levels of bisecting GlcNAc on BACE1. Analysis of knockout mice lacking the biosynthetic enzyme for bisecting GlcNAc, GnT-III (Mgat3), revealed that cleavage of A?-precursor protein (APP) by BACE1 is reduced in these mice, resulting in a decrease in A? plaques and improved cognitive function. The lack of this modification directs BACE1 to late endosomes/lysosomes where it is less colocalized with APP, leading to accelerated lysosomal degradation. Notably, other BACE1 substrates, CHL1 and contactin-2, are normally cleaved in GnT-III-deficient mice, suggesting that the effect of bisecting GlcNAc on BACE1 is selective to APP. Considering that GnT-III-deficient mice remain healthy, GnT-III may be a novel and promising drug target for AD therapeutics. PMID:25592972

Kizuka, Yasuhiko; Kitazume, Shinobu; Fujinawa, Reiko; Saito, Takashi; Iwata, Nobuhisa; Saido, Takaomi C; Nakano, Miyako; Yamaguchi, Yoshiki; Hashimoto, Yasuhiro; Staufenbiel, Matthias; Hatsuta, Hiroyuki; Murayama, Shigeo; Manya, Hiroshi; Endo, Tamao; Taniguchi, Naoyuki

2015-01-01

11

Identification of a novel lysosomal trafficking peptide using phage display biopanning coupled with endocytic selection pressure.  

PubMed

Methods to select ligands that accumulate specifically in cancer cells and traffic through a defined endocytic pathway may facilitate rapid pairing of ligands with linkers suitable for drug conjugate therapies. We performed phage display biopanning on cancer cells that are treated with selective inhibitors of a given mechanism of endocytosis. Using chlorpromazine to inhibit clathrin-mediated endocytosis in H1299 nonsmall cell lung cancer cells, we identified two clones, ATEPRKQYATPRVFWTDAPG (15.1) and a novel peptide LQWRRDDNVHNFGVWARYRL (H1299.3). The peptides segregate by mechanism of endocytosis and subsequent location of subcellular accumulation. The H1299.3 peptide primarily utilizes clathrin-mediated endocytosis and colocalizes with Lamp1, a lysosomal marker. Conversely, the 15.1 peptide is clathrin-independent and localizes to a perinuclear region. Thus, this novel phage display scheme allows for selection of peptides that selectively internalize into cells via a known mechanism of endocytosis. These types of selections may allow for better matching of linker with targeting ligand by selecting ligands that internalize and traffic to known subcellular locations. PMID:25188559

Umlauf, Benjamin J; Mercedes, Julia S; Chung, Chin-Ying; Brown, Kathlynn C

2014-10-15

12

Impairment of Lysosomal Activity as a Therapeutic Modality Targeting Cancer Stem Cells of Embryonal Rhabdomyosarcoma Cell Line RD  

PubMed Central

Rhabdomyosarcoma is the most frequent soft tissue sarcoma in children and adolescents, with a high rate of relapse that dramatically affects the clinical outcome. Multiagent chemotherapy, in combination with surgery and/or radiation therapy, is the treatment of choice. However, the relapse rate is disappointingly high and identification of new therapeutic tools is urgently needed. Under this respect, the selective block of key features of cancer stem cells (CSC) appears particularly promising. In this study, we isolated rhabdomyosarcoma CSC with stem-like features (high expression of NANOG and OCT3/4, self-renewal ability, multipotency). Rhabdomyosarcoma CSC showed higher invasive ability and a reduced cytotoxicity to doxorubicin in comparison to native cells, through a mechanism unrelated to the classical multidrug resistance process. This was dependent on a high level of lysosome acidity mediated by a high expression of vacuolar ATPase (V-ATPase). Since it was not associated with other paediatric cancers, like Ewing’s sarcoma and neuroblastoma, V-ATPase higher expression in CSC was rhabdomyosarcoma specific. Inhibition of lysosomal acidification by the V-ATPase inhibitor omeprazole, or by specific siRNA silencing, significantly enhanced doxorubicin cytoxicity. Unexpectedly, lysosomal targeting also blocked cell growth and reduced the invasive potential of rhabdomyosarcoma CSC, even at very low doses of omeprazole (10 and 50 µM, respectively). Based on these observations, we propose lysosome acidity as a valuable target to enhance chemosensitivity of rhabdomyosarcoma CSC, and suggest the use of anti-V-ATPase agents in combination with standard regimens as a promising tool for the eradication of minimal residual disease or the prevention of metastatic disease. PMID:25329465

Salerno, Manuela; Avnet, Sofia; Bonuccelli, Gloria; Hosogi, Shigekuni; Granchi, Donatella; Baldini, Nicola

2014-01-01

13

Lysosome sorting of ?-glucocerebrosidase by LIMP-2 is targeted by the mannose 6-phosphate receptor  

PubMed Central

The integral membrane protein LIMP-2 has been a paradigm for mannose 6-phosphate receptor (MPR) independent lysosomal targeting, binding to ?-glucocerebrosidase (?-GCase) and directing it to the lysosome, before dissociating in the late-endosomal/lysosomal compartments. Here we report structural results illuminating how LIMP-2 binds and releases ?-GCase according to changes in pH, via a histidine trigger, and suggesting that LIMP-2 localizes the ceramide portion of the substrate adjacent to the ?-GCase catalytic site. Remarkably, we find that LIMP-2 bears P-Man9GlcNAc2 covalently attached to residue N325, and that it binds MPR, via mannose 6-phosphate, with a similar affinity to that observed between LIMP-2 and ?-GCase. The binding sites for ?-GCase and the MPR are functionally separate, so that a stable ternary complex can be formed. By fluorescence lifetime imaging microscopy, we also demonstrate that LIMP-2 interacts with MPR in living cells. These results revise the accepted view of LIMP-2–?-GCase lysosomal targeting. PMID:25027712

Zhao, Yuguang; Ren, Jingshan; Padilla-Parra, Sergi; Fry, Elizabeth E.; Stuart, David I.

2014-01-01

14

Novel lysosome targeted molecular transporter built on a guanidinium-poly-(propylene imine) hybrid dendron for efficient delivery of doxorubicin into cancer cells.  

PubMed

An efficient synthetic approach has been adopted to construct a new dendron-based octa-guanidine appended molecular transporter with a lysosomal targeted peptide-doxorubicin conjugate. The transporter alone (G8-PPI-FL) is found to be non-toxic, showed higher cellular uptake compared to Arg-8-mer and exhibited excellent selectivity towards lysosomes in cathepsin B expressing HeLa cells, while the Dox-conjugate showed significant cytotoxicity to cancer cells without affecting the non-cancerous cells. PMID:25564099

Nair, Jyothi B; Mohapatra, Saswat; Ghosh, Surajit; Maiti, Kaustabh K

2015-01-27

15

A lysosome-targeted drug delivery system based on sorbitol backbone towards efficient cancer therapy.  

PubMed

A straightforward synthetic approach was adopted for the construction of a lysosome-targeted drug delivery system (TDDS) using sorbitol scaffold (Sor) linked to octa-guanidine and tetrapeptide GLPG, a peptide substrate of lysosomal cysteine protease, cathepsin B. The main objective was to efficiently deliver the potential anticancer drug, doxorubicin to the target sites, thereby minimizing dose-limiting toxicity. Three TDDS vectors were synthesized viz., DDS1: Sor-GLPG-Fl, DDS2: Sor-Fl (control) and DDS3: Sor-GLPGC-SMCC-Dox. Dox release from DDS3 in the presence of cathepsin B was studied by kinetics measurement based on the fluorescent property of Dox. The cytotoxicity of DDS1 was assessed and found to be non-toxic. Cellular internalization and colocalization studies of all the 3 systems were carried out by flow cytometry and confocal microscopy utilizing cathepsin B-expressing HeLa cells. DDS1 and DDS3 revealed significant localization within the lysosomes, in contrast to DDS2 (control). The doxorubicin-conjugated carrier, DDS3, demonstrated significant cytotoxic effect when compared to free Dox by MTT assay and also by flow cytometric analysis. The targeted approach with DDS3 is expected to be promising, because it is indicated to be advantageous over free Dox, which possesses dose-limiting toxicity, posing risk of injury to normal tissues. PMID:25062087

Maniganda, Santhi; Sankar, Vandana; Nair, Jyothi B; Raghu, K G; Maiti, Kaustabh K

2014-09-14

16

Glycosylation-independent Lysosomal Targeting of Acid ?-Glucosidase Enhances Muscle Glycogen Clearance in Pompe Mice*  

PubMed Central

We have used a peptide-based targeting system to improve lysosomal delivery of acid ?-glucosidase (GAA), the enzyme deficient in patients with Pompe disease. Human GAA was fused to the glycosylation-independent lysosomal targeting (GILT) tag, which contains a portion of insulin-like growth factor II, to create an active, chimeric enzyme with high affinity for the cation-independent mannose 6-phosphate receptor. GILT-tagged GAA was taken up by L6 myoblasts about 25-fold more efficiently than was recombinant human GAA (rhGAA). Once delivered to the lysosome, the mature form of GILT-tagged GAA was indistinguishable from rhGAA and persisted with a half-life indistinguishable from rhGAA. GILT-tagged GAA was significantly more effective than rhGAA in clearing glycogen from numerous skeletal muscle tissues in the Pompe mouse model. The GILT-tagged GAA enzyme may provide an improved enzyme replacement therapy for Pompe disease patients. PMID:23188827

Maga, John A.; Zhou, Jianghong; Kambampati, Ravi; Peng, Susan; Wang, Xu; Bohnsack, Richard N.; Thomm, Angela; Golata, Sarah; Tom, Peggy; Dahms, Nancy M.; Byrne, Barry J.; LeBowitz, Jonathan H.

2013-01-01

17

Impairment of chaperone-mediated autophagy leads to selective lysosomal degradation defects in the lysosomal storage disease cystinosis.  

PubMed

Metabolite accumulation in lysosomal storage disorders (LSDs) results in impaired cell function and multi-systemic disease. Although substrate reduction and lysosomal overload-decreasing therapies can ameliorate disease progression, the significance of lysosomal overload-independent mechanisms in the development of cellular dysfunction is unknown for most LSDs. Here, we identify a mechanism of impaired chaperone-mediated autophagy (CMA) in cystinosis, a LSD caused by defects in the cystine transporter cystinosin (CTNS) and characterized by cystine lysosomal accumulation. We show that, different from other LSDs, autophagosome number is increased, but macroautophagic flux is not impaired in cystinosis while mTOR activity is not affected. Conversely, the expression and localization of the CMA receptor LAMP2A are abnormal in CTNS-deficient cells and degradation of the CMA substrate GAPDH is defective in Ctns(-/-) mice. Importantly, cysteamine treatment, despite decreasing lysosomal overload, did not correct defective CMA in Ctns(-/-) mice or LAMP2A mislocalization in cystinotic cells, which was rescued by CTNS expression instead, suggesting that cystinosin is important for CMA activity. In conclusion, CMA impairment contributes to cell malfunction in cystinosis, highlighting the need for treatments complementary to current therapies that are based on decreasing lysosomal overload. PMID:25586965

Napolitano, Gennaro; Johnson, Jennifer L; He, Jing; Rocca, Celine J; Monfregola, Jlenia; Pestonjamasp, Kersi; Cherqui, Stephanie; Catz, Sergio D

2015-01-01

18

Impairment of chaperone-mediated autophagy leads to selective lysosomal degradation defects in the lysosomal storage disease cystinosis  

PubMed Central

Metabolite accumulation in lysosomal storage disorders (LSDs) results in impaired cell function and multi-systemic disease. Although substrate reduction and lysosomal overload-decreasing therapies can ameliorate disease progression, the significance of lysosomal overload-independent mechanisms in the development of cellular dysfunction is unknown for most LSDs. Here, we identify a mechanism of impaired chaperone-mediated autophagy (CMA) in cystinosis, a LSD caused by defects in the cystine transporter cystinosin (CTNS) and characterized by cystine lysosomal accumulation. We show that, different from other LSDs, autophagosome number is increased, but macroautophagic flux is not impaired in cystinosis while mTOR activity is not affected. Conversely, the expression and localization of the CMA receptor LAMP2A are abnormal in CTNS-deficient cells and degradation of the CMA substrate GAPDH is defective in Ctns?/? mice. Importantly, cysteamine treatment, despite decreasing lysosomal overload, did not correct defective CMA in Ctns?/? mice or LAMP2A mislocalization in cystinotic cells, which was rescued by CTNS expression instead, suggesting that cystinosin is important for CMA activity. In conclusion, CMA impairment contributes to cell malfunction in cystinosis, highlighting the need for treatments complementary to current therapies that are based on decreasing lysosomal overload. PMID:25586965

Napolitano, Gennaro; Johnson, Jennifer L; He, Jing; Rocca, Celine J; Monfregola, Jlenia; Pestonjamasp, Kersi; Cherqui, Stephanie; Catz, Sergio D

2015-01-01

19

Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation.  

PubMed

NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, ?? and ?? T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1-6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family. PMID:24787765

Fielding, Ceri A; Aicheler, Rebecca; Stanton, Richard J; Wang, Eddie C Y; Han, Song; Seirafian, Sepehr; Davies, James; McSharry, Brian P; Weekes, Michael P; Antrobus, P Robin; Prod'homme, Virginie; Blanchet, Fabien P; Sugrue, Daniel; Cuff, Simone; Roberts, Dawn; Davison, Andrew J; Lehner, Paul J; Wilkinson, Gavin W G; Tomasec, Peter

2014-05-01

20

Two Novel Human Cytomegalovirus NK Cell Evasion Functions Target MICA for Lysosomal Degradation  

PubMed Central

NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, ?? and ?? T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family. PMID:24787765

Fielding, Ceri A.; Aicheler, Rebecca; Stanton, Richard J.; Wang, Eddie C. Y.; Han, Song; Seirafian, Sepehr; Davies, James; McSharry, Brian P.; Weekes, Michael P.; Antrobus, P. Robin; Prod'homme, Virginie; Blanchet, Fabien P.; Sugrue, Daniel; Cuff, Simone; Roberts, Dawn; Davison, Andrew J.; Lehner, Paul J.; Wilkinson, Gavin W. G.; Tomasec, Peter

2014-01-01

21

Leukotoxin (Leukothera®) targets active leukocyte function antigen-1 (LFA-1) protein and triggers a lysosomal mediated cell death pathway.  

PubMed

Leukotoxin (LtxA) is a protein toxin that is secreted from the oral bacterium, Aggregatibacter actinomycetemcomitans. LtxA targets specifically the ?(2) integrin, leukocyte function antigen-1 (LFA-1) on white blood cells (WBCs) and causes cell death. LtxA preferentially targets activated WBCs and is being developed as a therapeutic agent for the treatment of WBC diseases such as hematologic malignancies and autoimmune/inflammatory diseases. However, the mechanism by which interaction between LtxA and LFA-1 results in cell death is not well understood. Furthermore, how LtxA preferentially recognizes activated WBCs is not known. We show here that LtxA interacts specifically with LFA-1 in the active (exposed) conformation. In THP-1 monocytes, LtxA caused rapid activation of caspases, but LtxA could overcome the inhibition of caspases and still intoxicate. In contrast, inhibiting the vesicular trafficking pathway or cathepsin D release from the lysosome resulted in significant inhibition of LtxA-mediated cytotoxicity, indicating a more potent, lysosomal mediated cell death pathway. LtxA caused rapid disruption of the lysosomal membrane and release of lysosomal contents into the cytosol. Binding of LtxA to LFA-1 resulted in the internalization of both LtxA and LFA-1, with LtxA localizing specifically to the lysosomal compartment. To our knowledge, LtxA represents the first bacterial toxin shown to localize to the lysosome where it induces rapid cell death. PMID:22467872

DiFranco, Kristina M; Gupta, Anukriti; Galusha, Lindsey E; Perez, Jarelys; Nguyen, To-Vy K; Fineza, Camille D; Kachlany, Scott C

2012-05-18

22

The AAA-ATPase VPS4 Regulates Extracellular Secretion and Lysosomal Targeting of ?-Synuclein  

PubMed Central

Many neurodegenerative diseases share a common pathological feature: the deposition of amyloid-like fibrils composed of misfolded proteins. Emerging evidence suggests that these proteins may spread from cell-to-cell and encourage the propagation of neurodegeneration in a prion-like manner. Here, we demonstrated that ?-synuclein (?SYN), a principal culprit for Lewy pathology in Parkinson's disease (PD), was present in endosomal compartments and detectably secreted into the extracellular milieu. Unlike prion protein, extracellular ?SYN was mainly recovered in the supernatant fraction rather than in exosome-containing pellets from the neuronal culture medium and cerebrospinal fluid. Surprisingly, impaired biogenesis of multivesicular body (MVB), an organelle from which exosomes are derived, by dominant-negative mutant vacuolar protein sorting 4 (VPS4) not only interfered with lysosomal targeting of ?SYN but facilitated ?SYN secretion. The hypersecretion of ?SYN in VPS4-defective cells was efficiently restored by the functional disruption of recycling endosome regulator Rab11a. Furthermore, both brainstem and cortical Lewy bodies in PD were found to be immunoreactive for VPS4. Thus, VPS4, a master regulator of MVB sorting, may serve as a determinant of lysosomal targeting or extracellular secretion of ?SYN and thereby contribute to the intercellular propagation of Lewy pathology in PD. PMID:22216284

Hasegawa, Takafumi; Konno, Masatoshi; Baba, Toru; Sugeno, Naoto; Kikuchi, Akio; Kobayashi, Michiko; Miura, Emiko; Tanaka, Nobuyuki; Tamai, Keiichi; Furukawa, Katsutoshi; Arai, Hiroyuki; Mori, Fumiaki; Wakabayashi, Koichi; Aoki, Masashi; Itoyama, Yasuto; Takeda, Atsushi

2011-01-01

23

The role of lysosomes in the selective concentration of mineral elements. A microanalytical study.  

PubMed

The role of the lysosome during the intracellular concentration of diverse mineral elements has been evidenced by the electron probe X-ray microanalysis (EPMA). This highly sensitive technique allows an in situ chemical analysis of any chemical element with an atomic number greater than 11, present in ultra-thin tissue sections. Therefore, it has been demonstrated by using this EPMA that 21 out of the 92 elements of the periodic table, once injected in a soluble form, were selectively concentrated within lysosomes of several types of mammalian cells. Amongst these 21 elements, 15 are concentrated and precipitated in an insoluble from in association with phosphorus whereas the other 6 are precipitated in association with sulphur. Amongst the 15 elements which precipitate with phosphorus in lysosomes, there are: 3 group IIIB elements of the periodic system, (aluminium, gallium and indium); the rare-earth elements (cerium, gadolinium, lanthanum, thulium and samarium); 2 group IVA elements (hafnium and zirconium), two actinides (uranium and thorium) and elements such as chromium and niobium. The 6 elements which precipitate with sulphur comprise the 3 group VIII elements of the classification (nickel, palladium, platinum) and the 3 group IB elements (copper, silver and gold). The mechanisms responsible for this selective concentration involve enzymatic processes and predominantly acid phosphatases for elements precipitating as phosphates and arylsulfatases for elements precipitating with sulphur. PMID:8793193

Berry, J P

1996-05-01

24

Efficacy of Gene Therapy for a Prototypical Lysosomal Storage Disease (GSD-II) Is Critically Dependent on Vector Dose, Transgene Promoter, and the Tissues Targeted for Vector Transduction  

Microsoft Academic Search

Lysosomal storage diseases are an intriguing target for gene therapy approaches, as transduction of a “depot” organ with a transgene encoding a lysosomal enzyme can be followed by secretion, systemic distribution, downstream uptake, and lysosomal targeting of the enzyme into non-transduced tissues. These benefits are of utmost importance when considering gene therapy approaches for glycogen storage disease type-II (GSD-II). GSD-II

Enyu Ding; Huimin Hu; Bradley L. Hodges; Felicia Migone; Delila Serra; Fang Xu; Yuan-Tsong Chen; Andrea Amalfitano

2002-01-01

25

Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy  

PubMed Central

In the hallmark neuritic dystrophy of Alzheimer’s disease (AD), autophagic vacuoles containing incompletely digested proteins selectively accumulate in focal axonal swellings, reflecting defects in both axonal transport and autophagy. Here, we investigated the possibility that impaired lysosomal proteolysis could be a basis for both defects leading to neuritic dystrophy. In living primary mouse cortical neurons expressing fluorescence-tagged markers, LC3-positive autophagosomes forming in axons rapidly acquired the endo-lysosomal markers, Rab7 and LAMP1, and underwent exclusive retrograde movement. Proteolytic clearance of these transported autophagic vacuoles was initiated upon fusion with bi-directionally moving lysosomes that increase in number at more proximal axon levels and in the perikaryon. Disrupting lysosomal proteolysis by either inhibiting cathepsins directly or by suppressing lysosomal acidification slowed the axonal transport of autolysosomes, late endosomes and lysosomes and caused their selective accumulation within dystrophic axonal swellings. Mitochondria and other organelles lacking cathepsins moved normally under these conditions, indicating that the general functioning of the axonal transport system was preserved. Dystrophic swellings induced by lysosomal proteolysis inhibition resembled in composition those in several mouse models of AD and also acquired other AD-like features, including immunopositivity for ubiquitin, APP, and neurofilament protein hyperphosphorylation. Restoration of lysosomal proteolysis reversed the affected movements of proteolytic Rab7 vesicles, which in turn, largely cleared autophagic substrates and reversed the axonal dystrophy. These studies identify the AD-associated defects in neuronal lysosomal proteolysis as a possible basis for the selective transport abnormalities and highly characteristic pattern of neuritic dystrophy associated with AD. PMID:21613495

Lee, Sooyeon; Sato, Yutaka; Nixon, Ralph A.

2012-01-01

26

Visualization of endogenous and exogenous hydrogen peroxide using a lysosome-targetable fluorescent probe.  

PubMed

Reactive oxygen species (ROS) play crucial roles in diverse physiological processes; therefore, the efficient detection of ROS is very crucial. In this study, we report a boronate-based hydrogen peroxide (H2O2) probe having naphthalimide fluorophore. This probe also contained a morpholine moiety as a directing group for lysosome. The recognition property indicated that the probe exhibited high selectivity towards H2O2 not only in the solution but also in the living cells. Furthermore, it was used to monitor the level of endogenous and exogenous H2O2. These results support that the probe can function as an efficient indicator to detect H2O2. PMID:25684681

Kim, Dabin; Kim, Gyoungmi; Nam, Sang-Jip; Yin, Jun; Yoon, Juyoung

2015-01-01

27

CDTI target selection criteria  

NASA Technical Reports Server (NTRS)

A Cockpit Display of Traffic Information (CDTI) is a cockpit instrument which provides information to the aircrew on the relative location of aircraft traffic in the vicinity of their aircraft (township). In addition, the CDTI may provide information to assist in navigation and in aircraft control. It is usually anticipated that the CDTI will be integrated with a horizontal situation indicator used for navigational purposes and/or with a weather radar display. In this study, several sets of aircraft traffic data are analyzed to determine statistics on the number of targets that will be displayed on a CDTI using various target selection criteria. Traffic data were obtained from an Atlanta Terminal Area Simulation and from radar tapes recorded at the Atlanta and Miami terminal areas. Results are given in the form of plots showing the average percentage of time (or probability) that an aircraft equipped with a CDTI would observe from 0 to 10 other aircraft on the display for range settings on the CDTI up to 30 n. mi. and using various target discrimination techniques.

Britt, C. L.; Davis, C. M.; Jackson, C. B.; Mcclellan, V. A.

1984-01-01

28

Chemical principles for a novel fluorescent probe with high cancer-targeting selectivity and sensitivity  

PubMed Central

Understanding of principles governing selective and sensitive cancer targeting is critical for development of chemicals in cancer diagnostics and treatments. We determined the underlying mechanisms of how a novel fluorescent small organic molecule, 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC), selectively labels cancer cells but not normal cells. We show that BMVC is retained in the lysosomes of normal cells. In cancer cells, BMVC escapes lysosomal retention and localizes to the mitochondrial or to the nucleus, where DNA-binding dramatically increases BMVC fluorescence intensity, allowing it to light up only cancer cells. Structure-function analyses of BMVC derivatives show that hydrogen-bonding capacity is a key determinant of lysosomal retention in normal cells, whereas lipophilicity directs these derivatives to the mitochondria or the nucleus in cancer cells. In addition, drug-resistant cancer cells preferentially retain BMVC in their lysosomes than drug-sensitive cancer cells, and BMVC can be released from drug-resistant lysosomes with lysosomotropic agents. Our results further our understanding of how properties of cellular organelles differ between normal and cancer cells, which can be exploited for diagnostic and/or therapeutic use. We also provide physiochemical design principles for selective targeting of small molecules to different organelles. Moreover, our results suggest that agents which can increase lysosomal membrane permeability may re-sensitize drug-resistant cancer cells to chemotherapeutic agents. PMID:23970166

Kang, Chi-Chih; Huang, Wei-Chun; Kouh, Chiung-Wen; Wang, Zi-Fu; Cho, Chih-Chien; Chang, Cheng-Chung; Wang, Chiung-Lin; Chang, Ta-Chau; Seemann, Joachim; Jun-shen Huang, Lily

2013-01-01

29

Chaperone-mediated autophagy targets hypoxia-inducible factor-1? (HIF-1?) for lysosomal degradation.  

PubMed

Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that mediates adaptive responses to hypoxia. We demonstrate that lysosomal degradation of the HIF-1? subunit by chaperone-mediated autophagy (CMA) is a major regulator of HIF-1 activity. Pharmacological inhibitors of lysosomal degradation, such as bafilomycin and chloroquine, increased HIF-1? levels and HIF-1 activity, whereas activators of chaperone-mediated autophagy, including 6-aminonicotinamide and nutrient starvation, decreased HIF-1? levels and HIF-1 activity. In contrast, macroautophagy inhibitors did not increase HIF-1 activity. Transcription factor EB, a master regulator of lysosomal biogenesis, also negatively regulated HIF-1 activity. HIF-1? interacts with HSC70 and LAMP2A, which are core components of the CMA machinery. Overexpression of HSC70 or LAMP2A decreased HIF-1? protein levels, whereas knockdown had the opposite effect. Finally, hypoxia increased the transcription of genes involved in CMA and lysosomal biogenesis in cancer cells. Thus, pharmacological and genetic approaches identify CMA as a major regulator of HIF-1 activity and identify interplay between autophagy and the response to hypoxia. PMID:23457305

Hubbi, Maimon E; Hu, Hongxia; Kshitiz; Ahmed, Ishrat; Levchenko, Andre; Semenza, Gregg L

2013-04-12

30

Lysosomal physiology.  

PubMed

Lysosomes are acidic compartments filled with more than 60 different types of hydrolases. They mediate the degradation of extracellular particles from endocytosis and of intracellular components from autophagy. The digested products are transported out of the lysosome via specific catabolite exporters or via vesicular membrane trafficking. Lysosomes also contain more than 50 membrane proteins and are equipped with the machinery to sense nutrient availability, which determines the distribution, number, size, and activity of lysosomes to control the specificity of cargo flux and timing (the initiation and termination) of degradation. Defects in degradation, export, or trafficking result in lysosomal dysfunction and lysosomal storage diseases (LSDs). Lysosomal channels and transporters mediate ion flux across perimeter membranes to regulate lysosomal ion homeostasis, membrane potential, catabolite export, membrane trafficking, and nutrient sensing. Dysregulation of lysosomal channels underlies the pathogenesis of many LSDs and possibly that of metabolic and common neurodegenerative diseases. PMID:25668017

Xu, Haoxing; Ren, Dejian

2015-02-10

31

Granulysin induces cathepsin B release from lysosomes of target tumor cells to attack mitochondria through processing of bid leading to Necroptosis.  

PubMed

Granulysin is a killer effector molecule localized in cytolytic granules of human NK and CTL cells. Granulysin exhibits broad antimicrobial activity and potent cytotoxic action against tumor cells. However, the molecular mechanism of granulysin-induced tumor lysis is poorly understood. In this study, we found that granulysin causes a novel cell death termed necroptosis. Granulysin can target lysosomes of target tumor cells and induce partial release of lysosomal contents into the cytosol. Relocalized lysosomal cathepsin B can process Bid to active tBid to cause cytochrome c and apoptosis-activating factor release from mitochondria. Cathepsin B silencing and Bid or Bax/Bak deficiency resists granulysin-induced cytochrome c and apoptosis-activating factor release and is less susceptible to cytolysis against target tumor cells. PMID:19454696

Zhang, Honglian; Zhong, Chao; Shi, Lei; Guo, Yuming; Fan, Zusen

2009-06-01

32

Assessment of a targeted resequencing assay as a support tool in the diagnosis of lysosomal storage disorders  

PubMed Central

Background With over 50 different disorders and a combined incidence of up to 1/3000 births, lysosomal storage diseases (LSDs) constitute a major public health problem and place an enormous burden on affected individuals and their families. Many factors make LSD diagnosis difficult, including phenotype and penetrance variability, shared signs and symptoms, and problems inherent to biochemical diagnosis. Developing a powerful diagnostic tool could mitigate the protracted diagnostic process for these families, lead to better outcomes for current and proposed therapies, and provide the basis for more appropriate genetic counseling. Methods We have designed a targeted resequencing assay for the simultaneous testing of 57 lysosomal genes, using in-solution capture as the enrichment method and two different sequencing platforms. A total of 84 patients with high to moderate-or low suspicion index for LSD were enrolled in different centers in Spain and Portugal, including 18 positive controls. Results We correctly diagnosed 18 positive blinded controls, provided genetic diagnosis to 25 potential LSD patients, and ended with 18 diagnostic odysseys. Conclusion We report the assessment of a next–generation-sequencing-based approach as an accessory tool in the diagnosis of LSDs, a group of disorders which have overlapping clinical profiles and genetic heterogeneity. We have also identified and quantified the strengths and limitations of next generation sequencing (NGS) technology applied to diagnosis. PMID:24767253

2014-01-01

33

Comet and Target Ghost: Techniques for Selecting Moving Targets  

E-print Network

Comet and Target Ghost: Techniques for Selecting Moving Targets Khalad Hasan1 , Tovi Grossman2 that assist in selecting moving targets. We present Comet, a technique that enhances tar- gets based of the target, while leaving the motion uninterrupted. We found a speed benefit for the Comet in a 1D selection

34

Lysosome-dependent p300/FOXP3 degradation and limits Treg cell functions and enhances targeted therapy against cancers  

PubMed Central

p300 is one of several acetyltransferases that regulate FOXP3 acetylation and functions. Our recent studies have defined a complex set of histone acetyltransferase interactions which can lead to enhanced or repressed changes in FOXP3 function. We have explored the use of a natural p300 inhibitor, Garcinol, as a tool to understand mechanisms by which p300 regulates FOXP3 acetylation. In the presence of Garcinol, p300 appears to become disassociated from the FOXP3 complex and undergoes lysosome-dependent degradation. As a consequence of p300's physical absence, FOXP3 becomes less acetylated and eventually degraded, a process that cannot be rescued by the proteasome inhibitor MG132. p300 plays a complex role in FOXP3 acetylation, as it could also acetylate a subset of four Lys residues that repressively regulate total FOXP3 acetylation. Garcinol acts as a degradation device to reduce the suppressive activity of regulatory T cells (Treg) and to enhance the in vivo anti-tumor activity of a targeted therapeutic anti-p185her2/neu (ERBB2) antibody in MMTV-neu transgenics implanted with neu transformed breast tumor cells. Our studies provide the rationale for molecules that disrupt p300 stability to limit Treg functions in targeted therapies for cancers. PMID:23644046

Du, Taofeng; Nagai, Yasuhiro; Xiao, Yan; Greene, Mark I.; Zhang, Hongtao

2014-01-01

35

Fusion to the Lysosome Targeting Signal of the Invariant Chain Alters the Processing and Enhances the Immunogenicity of HIV-1 Reverse Transcriptase  

PubMed Central

Intracellular processing of the antigen encoded by a DNA vaccine is one of the key steps in generating an immune response. Immunization with DNA constructs targeted to the endosomal-lysosomal compartments and to the MHC class II pathway can elicit a strong immune response. Herein, the weakly immunogenic reverse transcriptase of HIV-1 was fused to the minimal lysosomal targeting motif of the human MHC class II invariant chain. The motif fused to the N-terminus shifted the enzyme intracellular localization and accelerated its degradation. Degradation of the chimeric protein occurred predominantly in the lysosomal compartment. BALB/c mice immunized with the plasmid encoding the chimeric protein demonstrated an enhanced immune response, in the form of an increased antigen-specific production of Th1 cytokines, INF-? and IL-2, by mouse splenocytes. Moreover, the majority of the splenocytes secreted both cytokines; i.e., were polyfunctional. These findings suggest that retargeting of the antigen to the lysosomes enhances the immune response to DNA vaccine candidates with low intrinsic immunogenicity. PMID:24772328

Starodubova, E. S.; Isaguliants, M. G.; Kuzmenko, Y. V.; Latanova, A. A.; Krotova, O. A.; Karpov, V. L.

2014-01-01

36

Role of ubiquitylation and USP8-dependent deubiquitylation in the endocytosis and lysosomal targeting of plasma membrane KCa3.1  

PubMed Central

We recently demonstrated that plasma membrane KCa3.1 is rapidly endocytosed and targeted for lysosomal degradation via a Rab7- and ESCRT-dependent pathway. Herein, we assess the role of ubiquitylation in this process. Using a biotin ligase acceptor peptide (BLAP)-tagged KCa3.1, in combination with tandem ubiquitin binding entities (TUBEs), we demonstrate that KCa3.1 is polyubiquitylated following endocytosis. Hypertonic sucrose inhibited KCa3.1 endocytosis and resulted in a significant decrease in channel ubiquitylation. Inhibition of the ubiquitin-activating enzyme (E1) with UBEI-41 resulted in reduced KCa3.1 ubiquitylation and internalization. The general deubiquitylase (DUB) inhibitor, PR-619 attenuated KCa3.1 degradation, indicative of deubiquitylation being required for lysosomal delivery. Using the DUB Chip, a protein microarray containing 35 DUBs, we demonstrate a time-dependent association between KCa3.1 and USP8 following endocytosis, which was confirmed by coimmunoprecipitation. Further, overexpression of wild-type USP8 accelerates channel deubiquitylation, while either a catalytically inactive mutant USP8 or siRNA-mediated knockdown of USP8 enhanced accumulation of ubiquitylated KCa3.1, thereby inhibiting channel degradation. In summary, by combining BLAP-tagged KCa3.1 with TUBEs and DUB Chip methodologies, we demonstrate that polyubiquitylation mediates the targeting of membrane KCa3.1 to the lysosomes and also that USP8 regulates the rate of KCa3.1 degradation by deubiquitylating KCa3.1 prior to lysosomal delivery.—Balut, C. M., Loch, C. M., Devor, D. C. Role of ubiquitylation and USP8-dependent deubiquitylation in the endocytosis and lysosomal targeting of plasma membrane KCa3.1. PMID:21828287

Balut, Corina M.; Loch, Christian M.; Devor, Daniel C.

2011-01-01

37

Lysosomal elastase and cathepsin G in beige mice. Neutrophils of beige (Chediak-Higashi) mice selectively lack lysosomal elastase and cathepsin G  

PubMed Central

A profound decrease in activities of the two lysosomal serine proteinases, elastase, and cathepsin G, was found in neutrophils of four independent beige mutants. Elastase and cathepsin G activities were assayed with the specific synthetic substrates MeO-Suc-Ala-Ala-Pro- Val-MCA and Suc-Ala-Ala-Pro-Phe-pNA, respectively. The defect is intrinsic to cells of beige mice, since transplantation of bone marrow from normal to mutant mice restored normal proteinase activity, and normal mice transplanted with beige marrow produced neutrophils with a deficiency of proteinase activity. The loss of elastase and cathepsin G activity was confirmed by separation of [3H]diisopropylfluorophosphate- labeled proteins on denaturing gels, which also revealed that other serine proteinases are at normal levels in beige neutrophil extracts. The deficiency of lysosomal proteinase activity appears specific, in that four other common neutrophil lysosomal enzymes, plus the spectrum of major neutrophil proteins are not affected by the beige mutation. The deficiency of proteinase activity is likely not the primary genetic alteration of the beige mutation, since more than one proteinase is affected, and heterozygous F1 mice have normal rather than intermediate levels of both proteinases. The lowered proteinase activity may contribute to the high susceptibility of beige mice and Chediak-Higashi patients to infection. PMID:3512758

1986-01-01

38

Biotherapeutic target or sink: analysis of the macrophage mannose receptor tissue distribution in murine models of lysosomal storage diseases  

Microsoft Academic Search

Lysosomal storage diseases (LSDs) are metabolic disorders caused by enzyme deficiencies that lead to lysosomal accumulation\\u000a of undegraded substrates. Enzyme replacement therapies (ERT) have been developed as treatments for patients with Gaucher,\\u000a Niemann-Pick, Fabry, and Pompe diseases. Depending on the disease, the corresponding therapeutic enzyme is designed to be\\u000a internalized by diseased cells through receptor-mediated endocytosis via macrophage mannose receptors

Xin Sheen Zhang; William Brondyk; John T. Lydon; Beth L. Thurberg; Peter A. Piepenhagen

2011-01-01

39

TFEB regulates lysosomal proteostasis.  

PubMed

Loss-of-function diseases are often caused by destabilizing mutations that lead to protein misfolding and degradation. Modulating the innate protein homeostasis (proteostasis) capacity may lead to rescue of native folding of the mutated variants, thereby ameliorating the disease phenotype. In lysosomal storage disorders (LSDs), a number of highly prevalent alleles have missense mutations that do not impair the enzyme's catalytic activity but destabilize its native structure, resulting in the degradation of the misfolded protein. Enhancing the cellular folding capacity enables rescuing the native, biologically functional structure of these unstable mutated enzymes. However, proteostasis modulators specific for the lysosomal system are currently unknown. Here, we investigate the role of the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and function, in modulating lysosomal proteostasis in LSDs. We show that TFEB activation results in enhanced folding, trafficking and lysosomal activity of a severely destabilized glucocerebrosidase (GC) variant associated with the development of Gaucher disease (GD), the most common LSD. TFEB specifically induces the expression of GC and of key genes involved in folding and lysosomal trafficking, thereby enhancing both the pool of mutated enzyme and its processing through the secretory pathway. TFEB activation also rescues the activity of a ?-hexosaminidase mutant associated with the development of another LSD, Tay-Sachs disease, thus suggesting general applicability of TFEB-mediated proteostasis modulation to rescue destabilizing mutations in LSDs. In summary, our findings identify TFEB as a specific regulator of lysosomal proteostasis and suggest that TFEB may be used as a therapeutic target to rescue enzyme homeostasis in LSDs. PMID:23393155

Song, Wensi; Wang, Fan; Savini, Marzia; Ake, Ashley; di Ronza, Alberto; Sardiello, Marco; Segatori, Laura

2013-05-15

40

Lysosomal adaptation: how the lysosome responds to external cues.  

PubMed

Recent evidence indicates that the importance of the lysosome in cell metabolism and organism physiology goes far beyond the simple disposal of cellular garbage. This dynamic organelle is situated at the crossroad of the most important cellular pathways and is involved in sensing, signaling, and transcriptional mechanisms that respond to environmental cues, such as nutrients. Two main mediators of these lysosomal adaptation mechanisms are the mTORC1 kinase complex and the transcription factor EB (TFEB). These two factors are linked in a lysosome-to-nucleus signaling pathway that provides the lysosome with the ability to adapt to extracellular cues and control its own biogenesis. Modulation of lysosomal function by acting on TFEB has a profound impact on cellular clearance and energy metabolism and is a promising therapeutic target for a large variety of disease conditions. PMID:24799353

Settembre, Carmine; Ballabio, Andrea

2014-06-01

41

Role of ubiquitylation and USP8-dependent deubiquitylation in the endocytosis and lysosomal targeting of plasma membrane KCa3.1.  

PubMed

We recently demonstrated that plasma membrane KCa3.1 is rapidly endocytosed and targeted for lysosomal degradation via a Rab7- and ESCRT-dependent pathway. Herein, we assess the role of ubiquitylation in this process. Using a biotin ligase acceptor peptide (BLAP)-tagged KCa3.1, in combination with tandem ubiquitin binding entities (TUBEs), we demonstrate that KCa3.1 is polyubiquitylated following endocytosis. Hypertonic sucrose inhibited KCa3.1 endocytosis and resulted in a significant decrease in channel ubiquitylation. Inhibition of the ubiquitin-activating enzyme (E1) with UBEI-41 resulted in reduced KCa3.1 ubiquitylation and internalization. The general deubiquitylase (DUB) inhibitor, PR-619 attenuated KCa3.1 degradation, indicative of deubiquitylation being required for lysosomal delivery. Using the DUB Chip, a protein microarray containing 35 DUBs, we demonstrate a time-dependent association between KCa3.1 and USP8 following endocytosis, which was confirmed by coimmunoprecipitation. Further, overexpression of wild-type USP8 accelerates channel deubiquitylation, while either a catalytically inactive mutant USP8 or siRNA-mediated knockdown of USP8 enhanced accumulation of ubiquitylated KCa3.1, thereby inhibiting channel degradation. In summary, by combining BLAP-tagged KCa3.1 with TUBEs and DUB Chip methodologies, we demonstrate that polyubiquitylation mediates the targeting of membrane KCa3.1 to the lysosomes and also that USP8 regulates the rate of KCa3.1 degradation by deubiquitylating KCa3.1 prior to lysosomal delivery. PMID:21828287

Balut, Corina M; Loch, Christian M; Devor, Daniel C

2011-11-01

42

Selective autophagy of non-ubiquitylated targets in plants: looking for cognate receptor/adaptor proteins  

PubMed Central

Cellular homeostasis is essential for the physiology of eukaryotic cells. Eukaryotic cells, including plant cells, utilize two main pathways to adjust the level of cytoplasmic components, namely the proteasomal and the lysosomal/vacuolar pathways. Macroautophagy is a lysosomal/vacuolar pathway which, until recently, was thought to be non-specific and a bulk degradation process. However, selective autophagy which can be activated in the cell under various physiological conditions, involves the specific degradation of defined macromolecules or organelles by a conserved molecular mechanism. For this process to be efficient, the mechanisms underlying the recognition and selection of the cargo to be engulfed by the double membrane autophagosome are critical, and not yet well understood. Ubiquitin (poly-ubiquitin) conjugation to the target appears to be a conserved ligand mechanism in many types of selective autophagy, and defined receptors/adaptors recognizing and regulating the autophagosomal capture of the ubiquitylated target have been characterized. However, non-proteinaceous and non-ubiquitylated cargoes are also selectively degraded by this pathway. This ubiquitin-independent selective autophagic pathway also involves receptor and/or adaptor proteins linking the cargo to the autophagic machinery. Some of these receptor/adaptor proteins including accessory autophagy-related (Atg) and non-Atg proteins have been described in yeast and animal cells but not yet in plants. In this review we discuss the ubiquitin-independent cargo selection mechanisms in selective autophagy degradation of organelles and macromolecules and speculate on potential plant receptor/adaptor proteins. PMID:25009550

Veljanovski, Vasko; Batoko, Henri

2014-01-01

43

A cytotoxic type III secretion effector of Vibrio parahaemolyticus targets vacuolar H+-ATPase subunit c and ruptures host cell lysosomes.  

PubMed

Vibrio parahaemolyticus is one of the human pathogenic vibrios. During the infection of mammalian cells, this pathogen exhibits cytotoxicity that is dependent on its type III secretion system (T3SS1). VepA, an effector protein secreted via the T3SS1, plays a major role in the T3SS1-dependent cytotoxicity of V. parahaemolyticus. However, the mechanism by which VepA is involved in T3SS1-dependent cytotoxicity is unknown. Here, we found that protein transfection of VepA into HeLa cells resulted in cell death, indicating that VepA alone is cytotoxic. The ectopic expression of VepA in yeast Saccharomyces cerevisiae interferes with yeast growth, indicating that VepA is also toxic in yeast. A yeast genome-wide screen identified the yeast gene VMA3 as essential for the growth inhibition of yeast by VepA. Although VMA3 encodes subunit c of the vacuolar H(+)-ATPase (V-ATPase), the toxicity of VepA was independent of the function of V-ATPases. In HeLa cells, knockdown of V-ATPase subunit c decreased VepA-mediated cytotoxicity. We also demonstrated that VepA interacted with V-ATPase subunit c, whereas a carboxyl-terminally truncated mutant of VepA (VepA?C), which does not show toxicity, did not. During infection, lysosomal contents leaked into the cytosol, revealing that lysosomal membrane permeabilization occurred prior to cell lysis. In a cell-free system, VepA was sufficient to induce the release of cathepsin D from isolated lysosomes. Therefore, our data suggest that the bacterial effector VepA targets subunit c of V-ATPase and induces the rupture of host cell lysosomes and subsequent cell death. PMID:22829766

Matsuda, Shigeaki; Okada, Natsumi; Kodama, Toshio; Honda, Takeshi; Iida, Tetsuya

2012-01-01

44

Target Selection for the TESS Mission  

NASA Astrophysics Data System (ADS)

The goal of the TESS mission is to discover small, rocky planets transiting bright stars. To reach that goal, we have constructed a compiled catalog of stars from which to select TESS targets. The catalog contains all dwarf stars in the sky with spectral types F5 and later, and I < 12, along with selected sets of fainter M stars. Provisions are being made to augment the target list with stars that fall outside the nominal spectral type and magnitude limits, and to permit dynamic updating of the catalog to accommodate new survey data being released (e.g. GAIA). We will describe the overall target selection strategy, and the current catalogs that have been constructed, and how we intend to further expand and refine our target lists.

Pepper, Joshua; Stassun, Keivan; De Lee, Nathan M.; Paegert, Martin; Latham, David W.; Winn, Joshua N.; TESS Collaboration

2015-01-01

45

Inhibition of glycogen synthase kinase-3 ameliorates ?-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies.  

PubMed

Accumulation of ?-amyloid (A?) deposits is a primary pathological feature of Alzheimer disease that is correlated with neurotoxicity and cognitive decline. The role of glycogen synthase kinase-3 (GSK-3) in Alzheimer disease pathogenesis has been debated. To study the role of GSK-3 in A? pathology, we used 5XFAD mice co-expressing mutated amyloid precursor protein and presenilin-1 that develop massive cerebral A? loads. Both GSK-3 isozymes (?/?) were hyperactive in this model. Nasal treatment of 5XFAD mice with a novel substrate competitive GSK-3 inhibitor, L803-mts, reduced A? deposits and ameliorated cognitive deficits. Analyses of 5XFAD hemi-brain samples indicated that L803-mts restored the activity of mammalian target of rapamycin (mTOR) and inhibited autophagy. Lysosomal acidification was impaired in the 5XFAD brains as indicated by reduced cathepsin D activity and decreased N-glycoyslation of the vacuolar ATPase subunit V0a1, a modification required for lysosomal acidification. Treatment with L803-mts restored lysosomal acidification in 5XFAD brains. Studies in SH-SY5Y cells confirmed that GSK-3? and GSK-3? impair lysosomal acidification and that treatment with L803-mts enhanced the acidic lysosomal pool as demonstrated in LysoTracker Red-stained cells. Furthermore, L803-mts restored impaired lysosomal acidification caused by dysfunctional presenilin-1. We provide evidence that mTOR is a target activated by GSK-3 but inhibited by impaired lysosomal acidification and elevation in amyloid precursor protein/A? loads. Taken together, our data indicate that GSK-3 is a player in A? pathology. Inhibition of GSK-3 restores lysosomal acidification that in turn enables clearance of A? burdens and reactivation of mTOR. These changes facilitate amelioration in cognitive function. PMID:23155049

Avrahami, Limor; Farfara, Dorit; Shaham-Kol, Maya; Vassar, Robert; Frenkel, Dan; Eldar-Finkelman, Hagit

2013-01-11

46

Selective mineral elements concentration of the intestinal mucosa role of the lysosomes of duodenal enterocytes in the handling of mineral elements after intragastric administration.  

PubMed

Intragastric administration to rats of four soluble lanthanides cerium, lanthanum, europium, thulium and of three soluble elements of group IIIA aluminium, indium and gallium has been shown in previous studies. In this work two new rare earths gadolinium and terbium were studied using the same protocols and the same methods (transmission electron microscopy and ion microanalysis). among the previously studied elements, some of them were administered simultaneously on the one hand aluminium and indium, and on the other hand, lanthanum and cerium. These metals were looked for in intestinal mucosa, liver and kidney. The results showed: a) gadolinium and terbium were selectively concentrated in lysosomes of duodenal enterocytes, precipitated as non-soluble phosphate salts and eliminated with the cell's turn-over in less than 48 hr; b) Administered simultaneously, they precipitated in the same lysosome. c/ none of them was observed in the liver or kidney even with high dose. This study brings up to nine the number of elements forming a non-soluble phosphate salts, explaining their precipitation in lysosomes. None of them have a physiological role, two are toxic (aluminium and indium). This rapid intralysosomal concentration is an efficient mechanism which limits the diffusion of the foreign substances through the digestive barrier, then permits their elimination along with the cytoptose phenomenon in the intestinal lumen. PMID:16375818

Tekaya, L; Ayadi, A; Fehri, E; El Hili, A

2005-01-01

47

A parasitic helminth-derived peptide that targets the macrophage lysosome is a novel therapeutic option for autoimmune disease.  

PubMed

Parasitic worms (helminths) reside in their mammalian hosts for many years. This is attributable, in part, to their ability to skew the host's immune system away from pro-inflammatory responses and towards anti-inflammatory or regulatory responses. This immune modulatory ability ensures helminth longevity within the host, while simultaneously minimises tissue destruction for the host. The molecules that the parasite releases clearly exert potent immune-modulatory actions, which could be exploited clinically, for example in the prophylactic and therapeutic treatment of pro-inflammatory and autoimmune diseases. We have identified a novel family of immune-modulatory proteins, termed helminth defence molecules (HDMs), which are secreted by several medically important helminth parasites. These HDMs share biochemical and structural characteristics with mammalian cathelicidin-like host defence peptides (HDPs), which are significant components of the innate immune system. Like their mammalian counterparts, parasite HDMs block the activation of macrophages via toll like receptor (TLR) 4 signalling, however HDMs are significantly less cytotoxic than HDPs. HDMs can traverse the cell membrane of macrophages and enter the endolysosomal system where they reduce the acidification of lysosomal compartments by inhibiting vacuolar (v)-ATPase activity. In doing this, HDMs can modulate critical cellular functions, such as cytokine secretion and antigen processing/presentation. Here, we review the role of macrophages, specifically their lysosomal mediated activities, in the initiation and perpetuation of pro-inflammatory immune responses. We also discuss the potential of helminth defence molecules (HDMs) as therapeutics to counteract the pro-inflammatory responses underlying autoimmune disease. Given the current lack of effective, non-cytotoxic treatment options to limit the progression of autoimmune pathologies, HDMs open novel treatment avenues. PMID:25466586

Alvarado, Raquel; O'Brien, Bronwyn; Tanaka, Akane; Dalton, John P; Donnelly, Sheila

2015-02-01

48

Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs  

E-print Network

(IBCF; 358 µl, 2.75 mmol) was added slowly. To the stirring solution was added i-butylamine (273 µl, 2 was synthesized exactly as described for compound IV except tyramine was used instead of i-butylamine. N

Bogyo, Matthew

49

Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway.  

PubMed

Loss of muscle mass usually characterizes different pathologies (sepsis, cancer, trauma) and also occurs during normal aging. One reason for muscle wasting relates to a decrease in food intake. This study addressed the role of leucine as a regulator of protein breakdown in mouse C2C12 myotubes and aimed to determine which cellular responses regulate the process. Determination of the rate of protein breakdown indicated that leucine is one key regulator of this process in myotubes because starvation for this amino acid is responsible for 30-40% of the total increase generated by total amino acid starvation. Leucine restriction rapidly accelerates the rate of protein breakdown (+11 to 15% (p < 0.001) after 1 h of starvation) in a dose-dependent manner. By using various inhibitors, evidence is provided that acceleration of protein catabolism results mainly from an induction of autophagy, activation of lysosome-dependent proteolysis, without modification of mRNA levels encoding the lysosomal cathepsins B, L, or D. Those results suggest that autophagy is an essential cellular response for increasing protein breakdown in muscle following food deprivation. Induction of autophagy precedes a decrease in global protein synthesis (-20% to -30% (p < 0.001)) that occurs after 3 h of leucine starvation. Inhibition of the mammalian target of rapamycin (mTOR) activity does not abolish the effect of leucine starvation and the level of phosphorylated ribosomal S6 protein is not affected by leucine withdrawal. These latter data provide clear evidence that the mTOR signaling pathway is not involved in the mediation of leucine effects on both protein synthesis and degradation in C2C12 myotubes. PMID:10893413

Mordier, S; Deval, C; Béchet, D; Tassa, A; Ferrara, M

2000-09-22

50

Structural Implications for Selective Targeting of PARPs  

PubMed Central

Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that use NAD+ as a substrate to synthesize polymers of ADP-ribose (PAR) as post-translational modifications of proteins. PARPs have important cellular roles that include preserving genomic integrity, telomere maintenance, transcriptional regulation, and cell fate determination. The diverse biological roles of PARPs have made them attractive therapeutic targets, which have fueled the pursuit of small molecule PARP inhibitors. The design of PARP inhibitors has matured over the past several years resulting in several lead candidates in clinical trials. PARP inhibitors are mainly used in clinical trials to treat cancer, particularly as sensitizing agents in combination with traditional chemotherapy to reduce side effects. An exciting aspect of PARP inhibitors is that they are also used to selectivity kill tumors with deficiencies in DNA repair proteins (e.g., BRCA1/2) through an approach termed “synthetic lethality.” In the midst of the tremendous efforts that have brought PARP inhibitors to the forefront of modern chemotherapy, most clinically used PARP inhibitors bind to conserved regions that permits cross-selectivity with other PARPs containing homologous catalytic domains. Thus, the differences between therapeutic effects and adverse effects stemming from pan-PARP inhibition compared to selective inhibition are not well understood. In this review, we discuss current literature that has found ways to gain selectivity for one PARP over another. We furthermore provide insights into targeting other domains that make up PARPs, and how new classes of drugs that target these domains could provide a high degree of selectivity by affecting specific cellular functions. A clear understanding of the inhibition profiles of PARP inhibitors will not only enhance our understanding of the biology of individual PARPs, but may provide improved therapeutic options for patients. PMID:24392349

Steffen, Jamin D.; Brody, Jonathan R.; Armen, Roger S.; Pascal, John M.

2013-01-01

51

Target selection for the HRIBF Project  

SciTech Connect

Experiments are in progress at the Oak Ridge National Laboratory (ORNL) which are designed to select the most appropriate target materials for generating particular radioactive ion beams for the Holifield Radioactive Ion Beam Facility (HRIBF). The 25-MV tandem accelerator is used to implant stable complements of interesting radioactive elements into refractory targets mounted in a high-temperature FEBIAD ion source which is on-line at the UNISOR facility. These experiments permit selection of the target material most appropriate for the rapid release of the element of interest, as well as realistic estimates of the efficiency of the FEBIAD source. From diffusion release data information on the release times and diffusion coefficients can be derived. Diffusion coefficients for CI implanted into and diffused from CeS and Zr{sub 5}Si{sub 3} and As, Br, and Se implanted into and diffused from Zr{sub 5}Ge{sub 3} have been derived from the resulting intensity versus time profiles.

Dellwo, J. [Oak Ridge National Lab., TN (United States); Alton, G.D.; Batchelder, J.C. [Louisiana State Univ., Baton Rouge, LA (United States)

1994-12-31

52

MaNGA: Target selection and Optimization  

NASA Astrophysics Data System (ADS)

The 6-year SDSS-IV MaNGA survey will measure spatially resolved spectroscopy for 10,000 nearby galaxies using the Sloan 2.5m telescope and the BOSS spectrographs with a new fiber arrangement consisting of 17 individually deployable IFUs. We present the simultaneous design of the target selection and IFU size distribution to optimally meet our targeting requirements. The requirements for the main samples were to use simple cuts in redshift and magnitude to produce an approximately flat number density of targets as a function of stellar mass, ranging from 1x109 to 1x1011 M?, and radial coverage to either 1.5 (Primary sample) or 2.5 (Secondary sample) effective radii, while maximizing S/N and spatial resolution. In addition we constructed a 'Color-Enhanced' sample where we required 25% of the targets to have an approximately flat number density in the color and mass plane. We show how these requirements are met using simple absolute magnitude (and color) dependent redshift cuts applied to an extended version of the NASA Sloan Atlas (NSA), how this determines the distribution of IFU sizes and the resulting properties of the MaNGA sample.

Wake, David

2015-01-01

53

Nonresonant and Resonant Frequency-Selectable Induction-Heating Targets  

E-print Network

This paper examines a scheme for developing frequency-selectable induction-heating targets for stimulating temperature-sensitive polymer gels. The phrase “frequency selectable” implies that each target has a frequency at ...

Rodriguez, John I.

54

A color hierarchy for automatic target selection.  

PubMed

Visual processing of color starts at the cones in the retina and continues through ventral stream visual areas, called the parvocellular pathway. Motion processing also starts in the retina but continues through dorsal stream visual areas, called the magnocellular system. Color and motion processing are functionally and anatomically discrete. Previously, motion processing areas MT and MST have been shown to have no color selectivity to a moving stimulus; the neurons were colorblind whenever color was presented along with motion. This occurs when the stimuli are luminance-defined versus the background and is considered achromatic motion processing. Is motion processing independent of color processing? We find that motion processing is intrinsically modulated by color. Color modulated smooth pursuit eye movements produced upon saccading to an aperture containing a surface of coherently moving dots upon a black background. Furthermore, when two surfaces that differed in color were present, one surface was automatically selected based upon a color hierarchy. The strength of that selection depended upon the distance between the two colors in color space. A quantifiable color hierarchy for automatic target selection has wide-ranging implications from sports to advertising to human-computer interfaces. PMID:20195361

Tchernikov, Illia; Fallah, Mazyar

2010-01-01

55

Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion.  

PubMed

Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion. PMID:23337583

Zhou, Jing; Tan, Shi-Hao; Nicolas, Valérie; Bauvy, Chantal; Yang, Nai-Di; Zhang, Jianbin; Xue, Yuan; Codogno, Patrice; Shen, Han-Ming

2013-04-01

56

mTOR and lysosome regulation  

PubMed Central

Lysosomes are key cellular organelles that play a crucial role in catabolism by degrading extracellular and intracellular material. It is, therefore, very intriguing that mTORC1 (mechanistic target of rapamycin complex 1), a major promoter of anabolic processes, localizes in its active form to the surface of lysosomes. In recent years, many exciting observations have revealed a tightly regulated crosstalk between mTORC1 activity and lysosomal function. These findings highlight the complex regulatory network that modulates energy metabolism in cells. PMID:25184042

2014-01-01

57

Nonresonant and Resonant Frequency-Selectable Induction-Heating Targets  

Microsoft Academic Search

This paper examines a scheme for developing frequency-selectable induction-heating targets for stimulating temperature-sensitive polymer gels. The phrase “frequency selectable” implies that each target has a frequency at which it heats preferentially in the presence of other targets. Targets using both nonresonant and resonant designs are discussed. In the case of nonresonant targets, single-turn conductors whose critical dimensions are small compared

John I. Rodriguez; Steven B. Leeb

2010-01-01

58

Selecting a Targeting Method to Identify BPL Households in India  

ERIC Educational Resources Information Center

This paper proposes how to select a methodology to target multidimensionally poor households, and how to update that targeting exercise periodically. We present this methodology in the context of discussions regarding the selection of a targeting methodology in India. In 1992, 1997, and 2002 the Indian government identified households that are…

Alkire, Sabina; Seth, Suman

2013-01-01

59

Twelve different enzyme assays on dried-blood filter paper samples for detection of patients with selected inherited lysosomal storage diseases  

Microsoft Academic Search

BackgroundDiagnoses of inherited lysosomal storage diseases are based on specific enzymatic assays performed on plasma, leukocytes, fibroblasts, and lately, dried-blood filter paper samples. We evaluated feasibility of detecting of patients with several inherited lysosomal storage diseases using dried-blood filter paper samples for appropriate enzyme assays.

Gabriel Civallero; Kristiane Michelin; Jurema de Mari; Marli Viapiana; Maira Burin; Janice C. Coelho; Roberto Giugliani

2006-01-01

60

Lysosomes and autophagy in aquatic animals.  

PubMed

The lysosomal-autophagic system appears to be a common target for many environmental pollutants, as lysosomes accumulate many toxic metals and organic xenobiotics, which perturb normal function and damage the lysosomal membrane. In fact, autophagic reactions frequently involving reduced lysosomal membrane integrity or stability appear to be effective generic indicators of cellular well-being in eukaryotes: in social amoebae (slime mold), mollusks and fish, autophagy/membrane destabilization is correlated with many stress and toxicological responses and pathological reactions. Prognostic use of adverse lysosomal and autophagic reactions to environmental pollutants can be used for predicting cellular dysfunction and health in aquatic animals, such as shellfish and fish, which are extensively used as sensitive bioindicators in monitoring ecosystem health; and also represent a significant food resource for at least 20% of the global human population. Explanatory frameworks for prediction of pollutant impact on health have been derived encompassing a conceptual mechanistic model linking lysosomal damage and autophagic dysfunction with injury to cells and tissues. Methods are described for tracking in vivo autophagy of fluorescently labeled cytoplasmic proteins, measuring degradation of radiolabeled intracellular proteins and morphometric measurement of lysosomal/cytoplasmic volume ratio. Additional methods for the determination of lysosomal membrane stability in lower animals are also described, which can be applied to frozen tissue sections, protozoans and isolated cells in vivo. Experimental and simulated results have also indicated that nutritional deprivation (analogous in marine mussels to caloric restriction)-induced autophagy has a protective function against toxic effects mediated by reactive oxygen species (ROS). Finally, coupled measurement of lysosomal-autophagic reactions and simulation modelling is proposed as a practical toolbox for predicting toxic environmental risk. PMID:19185741

Moore, Michael N; Kohler, Angela; Lowe, David; Viarengo, Aldo

2008-01-01

61

Lysosomal storage diseases: from pathophysiology to therapy.  

PubMed

Lysosomal storage diseases are a group of rare, inborn, metabolic errors characterized by deficiencies in normal lysosomal function and by intralysosomal accumulation of undegraded substrates. The past 25 years have been characterized by remarkable progress in the treatment of these diseases and by the development of multiple therapeutic approaches. These approaches include strategies aimed at increasing the residual activity of a missing enzyme (enzyme replacement therapy, hematopoietic stem cell transplantation, pharmacological chaperone therapy and gene therapy) and approaches based on reducing the flux of substrates to lysosomes. As knowledge has improved about the pathophysiology of lysosomal storage diseases, novel targets for therapy have been identified, and innovative treatment approaches are being developed. PMID:25587658

Parenti, Giancarlo; Andria, Generoso; Ballabio, Andrea

2015-01-14

62

Methods for monitoring lysosomal morphology.  

PubMed

Lysosomes are abundant organelles best known for their crucial role in macromolecule turnover. Lysosome dysfunction features in several diseases exemplified by the lysosomal storage disorders and is often associated with marked changes in lysosome structure. Lysosomal morphology may therefore serve as a sensitive readout of endocytic well-being. Here we describe methods for monitoring lysosome morphology in fixed and live cells using fluorescent probes and electron microscopy. PMID:25665438

Kilpatrick, Bethan S; Eden, Emily R; Hockey, Leanne N; Futter, Clare E; Patel, Sandip

2015-01-01

63

Twelve different enzyme assays on dried-blood filter paper samples for detection of patients with selected inherited lysosomal storage diseases  

Microsoft Academic Search

Abstract Background: Diagnoses of inherited lysosomal storage diseases are based on specific enzymatic assays performed on plasma, leukocytes, fibroblasts, and lately, dried-blood filter paper samples. We evaluated feasibility of detecting of patients with several inherited lysosomal storage diseases using dried-blood filter paper samples for appropriate enzyme,assays. Methods: Fluorometric methods were used to evaluate the activities of arylsulfatase B, ?-N-acetylglucosaminidase, chitotriosidase,

Gabriel Civallero; Kristiane Michelin; Jurema De Mari; Marli Viapiana; Maira Burin; Janice C. Coelho; Roberto Giugliani

64

A phenotypic compound screening assay for lysosomal storage diseases.  

PubMed

The lysosome is a vital cellular organelle that primarily functions as a recycling center for breaking down unwanted macromolecules through a series of hydrolases. Functional deficiencies in lysosomal proteins due to genetic mutations have been found in more than 50 lysosomal storage diseases that exhibit characteristic lipid/macromolecule accumulation and enlarged lysosomes. Recently, the lysosome has emerged as a new therapeutic target for drug development for the treatment of lysosomal storage diseases. However, a suitable assay for compound screening against the diseased lysosomes is currently unavailable. We have developed a Lysotracker staining assay that measures the enlarged lysosomes in patient-derived cells using both fluorescence intensity readout and fluorescence microscopic measurement. This phenotypic assay has been tested in patient cells obtained from several lysosomal storage diseases and validated using a known compound, methyl-?-cyclodextrin, in primary fibroblast cells derived from Niemann Pick C disease patients. The results demonstrate that the Lysotracker assay can be used in compound screening for the identification of lead compounds that are capable of reducing enlarged lysosomes for drug development. PMID:23983233

Xu, Miao; Liu, Ke; Swaroop, Manju; Sun, Wei; Dehdashti, Seameen J; McKew, John C; Zheng, Wei

2014-01-01

65

Bayesian target selection after group pattern distortion  

NASA Astrophysics Data System (ADS)

The following problem is considered: a group of point targets is observed via an imperfect sensor and one of the measurements chosen. The measurements of each target position is corrupted by an independent error, although every object is detected. Two processes then act to move and distort the group: one is a bulk effect that acts equally on all members of the group while the other is independent for each target. The group is observed again by a (possibly different) imperfect sensor which may not detect every target. The problem is to construct the posterior distribution of the chosen target's position, given the two sets of measurements. Probability models of the sensors and of the pattern distortion processes are assumed to be available. A formal general solution has been obtained for this problem. For the special linear-Gaussian case this reduces to a closed form analytic expression. To facilitate implementation, a hypothesis pruning technique is given. A simulation example illustrating performance is provided.

Gordon, Neil J.; Salmond, David J.

1996-05-01

66

Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans.  

PubMed

Lysosomes are crucial cellular organelles for human health that function in digestion and recycling of extracellular and intracellular macromolecules. We describe a signaling role for lysosomes that affects aging. In the worm Caenorhabditis elegans, the lysosomal acid lipase LIPL-4 triggered nuclear translocalization of a lysosomal lipid chaperone LBP-8, which promoted longevity by activating the nuclear hormone receptors NHR-49 and NHR-80. We used high-throughput metabolomic analysis to identify several lipids in which abundance was increased in worms constitutively overexpressing LIPL-4. Among them, oleoylethanolamide directly bound to LBP-8 and NHR-80 proteins, activated transcription of target genes of NHR-49 and NHR-80, and promoted longevity in C. elegans. These findings reveal a lysosome-to-nucleus signaling pathway that promotes longevity and suggest a function of lysosomes as signaling organelles in metazoans. PMID:25554789

Folick, Andrew; Oakley, Holly D; Yu, Yong; Armstrong, Eric H; Kumari, Manju; Sanor, Lucas; Moore, David D; Ortlund, Eric A; Zechner, Rudolf; Wang, Meng C

2015-01-01

67

Lysosomal pathways to cell death and their therapeutic applications.  

PubMed

Lysosomes are the major cell digestive organelles that were discovered over 50 years ago. They contain a number of hydrolases that help them to degrade intracellular and extracellular material delivered. Among the hydrolases, the cathepsins, a group of proteases enclosed in the lysosomes, have a major role. About a decade ago, the cathepsins were found to participate in apoptosis. Following their release into the cytosol, they cleave Bid and degrade antiapoptotic Bcl-2 proteins, thereby triggering the mitochondrial pathway of apoptosis, with the lysosomal membrane permeabilization being the critical step in this pathway. Lysosomal dysfunction is linked with several diseases, including cancer and neurodegenerative disorders, thereby providing a potential for therapeutic applications. In this review lysosomes and lysosomal proteases involvement in apoptosis and their possible pharmaceutical targeting are discussed. PMID:22465226

?esen, Maruša Hafner; Pegan, Katarina; Spes, Aleš; Turk, Boris

2012-07-01

68

Sphingolipid lysosomal storage disorders.  

PubMed

Lysosomal storage diseases are inborn errors of metabolism, the hallmark of which is the accumulation, or storage, of macromolecules in the late endocytic system. They are monogenic disorders that occur at a collective frequency of 1 in 5,000 live births and are caused by inherited defects in genes that mainly encode lysosomal proteins, most commonly lysosomal enzymes. A subgroup of these diseases involves the lysosomal storage of glycosphingolipids. Through our understanding of the genetics, biochemistry and, more recently, cellular aspects of sphingolipid storage disorders, we have gained insights into fundamental aspects of cell biology that would otherwise have remained opaque. In addition, study of these disorders has led to significant progress in the development of therapies, several of which are now in routine clinical use. Emerging mechanistic links with more common diseases suggest we need to rethink our current concept of disease boundaries. PMID:24899306

Platt, Frances M

2014-06-01

69

The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. Black-Right-Pointing-Pointer We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. Black-Right-Pointing-Pointer The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. Black-Right-Pointing-Pointer Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. Black-Right-Pointing-Pointer The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome-lysosome fusion, which is required for processing of various macromolecules.

Takahashi, Yusuke; Nada, Shigeyuki; Mori, Shunsuke; Soma-Nagae, Taeko; Oneyama, Chitose [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)] [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Masato, E-mail: okadam@biken.osaka-u.ac.jp [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)] [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

2012-01-27

70

Labeling lysosomes and tracking lysosome-dependent apoptosis with a cell-permeable activity-based probe.  

PubMed

In this study, we describe a new strategy for labeling and tracking lysosomes with a cell-permeable fluorescent activity-based probe (CpFABP) that is covalently bound to select lysosomal proteins. Colocalization studies that utilized LysoTracker probes as standard lysosomal markers demonstrated that our novel probe is effective in specifically labeling lysosomes in various kinds of live cells. Furthermore, our studies revealed that this probe has the ability to label fixed cells, permeabilized cells, and NH4Cl-treated cells, unlike LysoTracker probes, which show ineffective labeling under the same conditions. Remarkably, when applied to monitor the process of lysosome-dependent apoptosis, our probe not only displayed the expected release of lysosomal cathepsins from lysosomes into the cytosol but also revealed additional information about the location of the cathepsins during apoptosis, which is undetectable by other chemical lysosome markers. These results suggest a wide array of promising applications for our probe and provide useful guidelines for its use as a lysosome marker in lysosome-related studies. PMID:22646725

Fan, Fengkai; Nie, Si; Yang, Dongmei; Luo, Meijie; Shi, Hua; Zhang, Yu-Hui

2012-06-20

71

Late Steps in Secretory Lysosome Exocytosis in Cytotoxic Lymphocytes  

PubMed Central

Natural Killer cells are a subset of cytotoxic lymphocytes that are important in host defense against infections and transformed cells. They exert this function through recognition of target cells by cell surface receptors, which triggers a signaling program that results in a re-orientation of the microtubule organizing center and secretory lysosomes toward the target cell. Upon movement of secretory lysosomes to the plasma membrane and subsequent fusion, toxic proteins are released by secretory lysosomes in the immunological synapse which then enter and kill the target cell. In this minireview we highlight recent progress in our knowledge of late steps in this specialized secretion pathway and address important open questions. PMID:24302923

van der Sluijs, Peter; Zibouche, Mallik; van Kerkhof, Peter

2013-01-01

72

Endocytosis provides a major alternative pathway for lysosomal biogenesis in kidney proximal tubular cells  

PubMed Central

Recruitment of acid hydrolases to lysosomes generally occurs by intracellular sorting based on recognition of a common mannose 6-phosphate signal in the transGolgi network and selective transport to late endosomes/lysosomes. Here we provide evidence for an alternative, efficient secretion-recapture pathway mediated by megalin and exemplified by cathepsin B in kidney proximal convoluted tubules (PCT). We found that in mouse kidneys with defective megalin expression [megalin knockout (KO)] or apical PCT trafficking (ClC-5 KO), the (pro)cathepsin B mRNA level was essentially preserved, but the protein content was greatly decreased and the enzyme was excreted in the urine as mannose 6-phosphate-devoid species. In polarized PCT-derived cells, purified cathepsin B was avidly and selectively taken up at the apical membrane, and uptake was abolished by the megalin competitor, receptor-associated protein. Direct interaction of cathepsin B with megalin was demonstrated by surface plasmon resonance. Procathepsin B was detected in normal mouse serum. Purified cathepsin B injected into mice was efficiently taken up by kidneys (?10% of injection) and targeted to lysosomes where it remained active, as shown by autoradiography and subcellular fractionation. A single cathepsin B injection into cathepsin B KO mice could reconstitute full lysosomal enzyme activity in the kidneys. These findings demonstrate a pathway whereby circulating lysosomal enzymes are continuously filtered in glomeruli, reabsorbed by megalin-mediated endocytosis, and transferred into lysosomes to exert their function, providing a major source of enzymes to PCT. These results also extend the significance of megalin in PCT and have several physiopathological and clinical implications. PMID:17369355

Nielsen, Rikke; Courtoy, Pierre J.; Jacobsen, Christian; Dom, Geneviève; Lima, Wânia Rezende; Jadot, Michel; Willnow, Thomas E.; Devuyst, Olivier; Christensen, Erik I.

2007-01-01

73

High affinity ligands from in vitro selection: complex targets.  

PubMed

Human red blood cell membranes were used as a model system to determine if the systematic evolution of ligands by exponential enrichment (SELEX) methodology, an in vitro protocol for isolating high-affinity oligonucleotides that bind specifically to virtually any single protein, could be used with a complex mixture of potential targets. Ligands to multiple targets were generated simultaneously during the selection process, and the binding affinities of these ligands for their targets are comparable to those found in similar experiments against pure targets. A secondary selection scheme, deconvolution-SELEX, facilitates rapid isolation of the ligands to targets of special interest within the mixture. SELEX provides high-affinity compounds for multiple targets in a mixture and might allow a means for dissecting complex biological systems. PMID:9501188

Morris, K N; Jensen, K B; Julin, C M; Weil, M; Gold, L

1998-03-17

74

Sexual selection targets cetacean pelvic bones.  

PubMed

Male genitalia evolve rapidly, probably as a result of sexual selection. Whether this pattern extends to the internal infrastructure that influences genital movements remains unknown. Cetaceans (whales and dolphins) offer a unique opportunity to test this hypothesis: since evolving from land-dwelling ancestors, they lost external hind limbs and evolved a highly reduced pelvis that seems to serve no other function except to anchor muscles that maneuver the penis. Here, we create a novel morphometric pipeline to analyze the size and shape evolution of pelvic bones from 130 individuals (29 species) in the context of inferred mating system. We present two main findings: (1) males from species with relatively intense sexual selection (inferred by relative testes size) tend to evolve larger penises and pelvic bones compared to their body length, and (2) pelvic bone shape has diverged more in species pairs that have diverged in inferred mating system. Neither pattern was observed in the anterior-most pair of vertebral ribs, which served as a negative control. This study provides evidence that sexual selection can affect internal anatomy that controls male genitalia. These important functions may explain why cetacean pelvic bones have not been lost through evolutionary time. PMID:25186496

Dines, James P; Otárola-Castillo, Erik; Ralph, Peter; Alas, Jesse; Daley, Timothy; Smith, Andrew D; Dean, Matthew D

2014-11-01

75

Gene Therapy for Lysosomal Storage Diseases  

Microsoft Academic Search

Lysosomal storage diseases (LSDs) comprise a diverse group of monogenetic disorders with complex clinical phenotypes that include both systemic and central nervous system pathologies. In recent years, the identification or development of mouse models recapitulating the clinical course of the LSDs has been instrumental in evaluating therapeutic strategies. Here, we review the various gene replacement strategies for target organs affected

Mark S. Sands; Beverly L. Davidson

2006-01-01

76

Target selection and current status of structural genomics for the  

E-print Network

33 Target selection and current status of structural genomics for the completed microbial genomes 3.2 Structural status of completed microbial genomes in the PDB................ 3.3 Metabolic pathways as targets for structural genomics.......................... 3.3.1 Glycolytic pathway

Babu, M. Madan

77

Quasar Target Selection Fiber E ciency Heidi Newberg Brian Yanny  

E-print Network

Quasar Target Selection Fiber E ciency Heidi Newberg Brian Yanny February 7, 1997 Abstract We-redshift quasars. With this plan, we expect 54% of the targets to be QSOs. The North Galactic Cap is divided will nd about 17,000 additional quasars in the southern strips, and maybe a few more at very high redshift

Varela, Carlos

78

Kinetic evidence that newly-synthesized endogenous lysosome-associated membrane protein-1 (LAMP-1) first transits early endosomes before it is delivered to lysosomes.  

PubMed

After de novo synthesis of lysosome-associated membrane proteins (LAMPs), they are sorted in the trans-Golgi network (TGN) for delivery to lysosomes. Opposing views prevail on whether LAMPs are targeted to lysosomes directly, or indirectly via prelysosomal stages of the endocytic pathway, in particular early endosomes. Conflicting evidence is based on kinetic measurements with too limited quantitative data for sufficient temporal and organellar resolution. Using cells of the mouse macrophage cell line, P338D(1), this study presents detailed kinetic data that describe the extent of, and time course for, the appearance of newly-synthesized LAMP-1 in organelles of the endocytic pathway, which had been loaded selectively with horse-radish peroxidase (HRP) by appropriate periods of endocytosis. After a 5-min pulse of metabolic labelling, LAMP-1 was trapped in the respective organelles by HRP-catalyzed crosslinking with membrane-permeable diaminobenzidine (DAB). These kinetic observations provide sufficient quantitative evidence that in P338D(1) cells the bulk of newly-synthesized endogenous LAMP-1 first appeared in early endosomes, before it was delivered to late endosomes and lysosomes about 25 min later. PMID:21457058

Ebrahim, Roshan; Thilo, Lutz

2011-05-01

79

General lysosomal hydrolysis can process prorenin accurately.  

PubMed

Renin, an aspartyl protease that catalyzes the rate-limiting step of the renin-angiotensin system, is first synthesized as an inactive precursor, prorenin. Prorenin is activated by the proteolytic removal of an amino terminal prosegment in the dense granules of the juxtaglomerular (JG) cells of the kidney by one or more proteases whose identity is uncertain but commonly referred to as the prorenin-processing enzyme (PPE). Because several extrarenal tissues secrete only prorenin, we tested the hypothesis that the unique ability of JG cells to produce active renin might be explained by the existence of a PPE whose expression is restricted to JG cells. We found that inducing renin production by the mouse kidney by up to 20-fold was not associated with the concomitant induction of candidate PPEs. Because the renin-containing granules of JG cells also contain several lysosomal hydrolases, we engineered mouse Ren1 prorenin to be targeted to the classical vesicular lysosomes of cultured HEK-293 cells, where it was accurately processed and stored. Furthermore, we found that HEK cell lysosomes hydrolyzed any artificial extensions placed on the protein and that active renin was extraordinarily resistant to proteolytic degradation. Altogether, our results demonstrate that accurate processing of prorenin is not restricted to JG cells but can occur in classical vesicular lysosomes of heterologous cells. The implication is that renin production may not require a specific PPE but rather can be achieved by general hydrolysis in the lysosome-like granules of JG cells. PMID:24965790

Xa, Lucie K; Lacombe, Marie-Josée; Mercure, Chantal; Lazure, Claude; Reudelhuber, Timothy L

2014-09-01

80

A SIMPLE LIKELIHOOD METHOD FOR QUASAR TARGET SELECTION  

SciTech Connect

We present a new method for quasar target selection using photometric fluxes and a Bayesian probabilistic approach. For our purposes, we target quasars using Sloan Digital Sky Survey (SDSS) photometry to a magnitude limit of g = 22. The efficiency and completeness of this technique are measured using the Baryon Oscillation Spectroscopic Survey (BOSS) data taken in 2010. This technique was used for the uniformly selected (CORE) sample of targets in BOSS year-one spectroscopy to be realized in the ninth SDSS data release. When targeting at a density of 40 objects deg{sup -2} (the BOSS quasar targeting density), the efficiency of this technique in recovering z > 2.2 quasars is 40%. The completeness compared to all quasars identified in BOSS data is 65%. This paper also describes possible extensions and improvements for this technique.

Kirkpatrick, Jessica A. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Schlegel, David J.; Ross, Nicholas P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 92420 (United States); Myers, Adam D. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Hennawi, Joseph F. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Sheldon, Erin S. [Brookhaven National Laboratory, Physics Department, Mail Stop 510A, Upton, NY 11973-5000 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Weaver, Benjamin A., E-mail: kirkpatrick@berkeley.edu [Center for Cosmology and Particle Physics, New York University, NY 10003 (United States)

2011-12-20

81

Lysosomal storage diseases  

Microsoft Academic Search

Opinion statement  \\u000a \\u000a \\u000a \\u000a \\u000a – \\u000a \\u000a •Lysosomal storage disorders (LSDs), over 40 different diseases, are now considered treatable disorders. Only a few short\\u000a years ago, Lysosomal storage disorders were seen as interesting neurodegenerative disorders without any potential for treatment.\\u000a Effective treatment strategies such as bone marrow transplantation (BMT), enzyme replacement therapy (ERT), and glycolipid\\u000a synthesis inhibition have been developed in the last 20

Edward M. Kaye

2001-01-01

82

Selecting asteroids for a targeted spectroscopic survey  

NASA Astrophysics Data System (ADS)

Context. Asteroid spectroscopy reflects surface mineralogy. There are a few thousand asteroids whose surfaces have been observed spectrally. Determining their surface properties is important for many practical and scientific applications, such as developing impact deflection strategies or studying the history and evolution of the solar system and planet formation. Aims: The aim of this study is to develop a preselection method that can be used to search for asteroids of any taxonomic complex. The method could then be utilized in multiple applications, such as searching for the missing V-types or looking for primitive asteroids. Methods: We used the Bayes Naive Classifier combined with observations obtained in the course of the Sloan Digital Sky Survey and the Wide-field Infrared Survey Explorer surveys, as well as a database of asteroid phase curves for asteroids with a known taxonomic type. With this new classification method, we selected a number of possible V-type candidates. Some of the candidates were then spectrally observed at the Nordic Optical Telescope and South African Large Telescope. Results: We developed and tested the new preselection method. We found three asteroids in the mid-to-outer main belt that probably have differentiated types. Near-infrared observations are still required to confirm this discovery. As in other studies we found that V-type candidates cluster around the Vesta family and are rare in the mid-to-outer main belt. Conclusions: The new method shows that even largely explored large databases when combined could still be exploited further in, for example, solving the missing dunite problem. Tables 6 and A.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A29

Oszkiewicz, D. A.; Kwiatkowski, T.; Tomov, T.; Birlan, M.; Geier, S.; Penttilä, A.; Poli?ska, M.

2014-12-01

83

Lysosomal proteolysis in skeletal muscle.  

PubMed

Lysosomal proteases are abundantly expressed in fetal muscles, but poorly represented in the adult skeletal muscles. The lysosomal proteolytic system is nonetheless stimulated in adult muscles in a variety of pathological conditions. Furthermore, recent investigations describe autophagosomes in muscle fibers in vitro and in vivo, and report myopathies with excessive autophagy. This review presents our current knowledge about the lysosomal proteolytic system and summarizes the evidences pertaining to the role of lysosomes and autophagosomes in muscle physiology and pathology. PMID:16125113

Bechet, Daniel; Tassa, Amina; Taillandier, Daniel; Combaret, Lydie; Attaix, Didier

2005-10-01

84

Disruption of the Coxsackievirus and Adenovirus Receptor-Homodimeric Interaction Triggers Lipid Microdomain- and Dynamin-dependent Endocytosis and Lysosomal Targeting*  

PubMed Central

The coxsackievirus and adenovirus receptor (CAR) serves as a docking factor for some adenovirus (AdV) types and group B coxsackieviruses. Its role in AdV internalization is unclear as studies suggest that its intracellular domain is dispensable for some AdV infection. We previously showed that in motor neurons, AdV induced CAR internalization and co-transport in axons, suggesting that CAR was linked to endocytic and long-range transport machineries. Here, we characterized the mechanisms of CAR endocytosis in neurons and neuronal cells. We found that CAR internalization was lipid microdomain-, actin-, and dynamin-dependent, and subsequently followed by CAR degradation in lysosomes. Moreover, ligands that disrupted the homodimeric CAR interactions in its D1 domains triggered an internalization cascade involving sequences in its intracellular tail. PMID:24273169

Salinas, Sara; Zussy, Charleine; Loustalot, Fabien; Henaff, Daniel; Menendez, Guillermo; Morton, Penny E.; Parsons, Maddy; Schiavo, Giampietro; Kremer, Eric J.

2014-01-01

85

Autophagic/lysosomal dysfunction in Alzheimer’s disease  

PubMed Central

Autophagy serves as the sole catabolic mechanism for degrading organelles and protein aggregates. Increasing evidence implicates autophagic dysfunction in Alzheimer’s disease (AD) and other neurodegenerative diseases associated with protein misprocessing and accumulation. Under physiologic conditions, the autophagic/lysosomal system efficiently recycles organelles and substrate proteins. However, reduced autophagy function leads to the accumulation of proteins and autophagic and lysosomal vesicles. These vesicles contain toxic lysosomal hydrolases as well as the proper cellular machinery to generate amyloid-beta, the major component of AD plaques. Here, we provide an overview of current research focused on the relevance of autophagic/lysosomal dysfunction in AD pathogenesis as well as potential therapeutic targets aimed at restoring autophagic/lysosomal pathway function. PMID:24171818

2013-01-01

86

Target Selection for Saccadic Eye Movements: Direction-Selective Visual Responses in the Superior Colliculus  

E-print Network

Target Selection for Saccadic Eye Movements: Direction-Selective Visual Responses in the Superior for saccadic eye movements: direction-selective visual responses in the superior colliculus. J Neurophysiol 86 discriminated between opposed directions of visual motion and indicated its judgment by making a saccadic eye

Newsome, William

87

Target Selection for the LBTI Exozodi Key Science Program  

NASA Astrophysics Data System (ADS)

The Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) on the Large Binocular Telescope Interferometer will survey nearby stars for faint emission arising from ~300 K dust (exozodiacal dust), and aims to determine the exozodiacal dust luminosity function. HOSTS results will enable planning for future space telescopes aimed at direct spectroscopy of habitable zone terrestrial planets, as well as greater understanding of the evolution of exozodiacal disks and planetary systems. We lay out here the considerations that lead to the final HOSTS target list. Our target selection strategy maximizes the ability of the survey to constrain the exozodi luminosity function by selecting a combination of stars selected for suitability as targets of future missions and as sensitive exozodi probes. With a survey of approximately 50 stars, we show that HOSTS can enable an understanding of the statistical distribution of warm dust around various types of stars and is robust to the effects of varying levels of survey sensitivity induced by weather conditions.

Weinberger, Alycia J.; Bryden, Geoff; Kennedy, Grant M.; Roberge, Aki; Defrère, Denis; Hinz, Philip M.; Millan-Gabet, Rafael; Rieke, George; Bailey, Vanessa P.; Danchi, William C.; Haniff, Chris; Mennesson, Bertrand; Serabyn, Eugene; Skemer, Andrew J.; Stapelfeldt, Karl R.; Wyatt, Mark C.

2015-02-01

88

Target Selection for the LBTI Exozodi Key Science Program  

E-print Network

The Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) on the Large Binocular Telescope Interferometer will survey nearby stars for faint emission arising from ~300 K dust (exozodiacal dust), and aims to determine the exozodiacal dust luminosity function. HOSTS results will enable planning for future space telescopes aimed at direct spectroscopy of habitable zone terrestrial planets, as well as greater understanding of the evolution of exozodiacal disks and planetary systems. We lay out here the considerations that lead to the final HOSTS target list. Our target selection strategy maximizes the ability of the survey to constrain the exozodi luminosity function by selecting a combination of stars selected for suitability as targets of future missions and as sensitive exozodi probes. With a survey of approximately 50 stars, we show that HOSTS can enable an understanding of the statistical distribution of warm dust around various types of stars and is robust to the effects of varying levels ...

Weinberger, Alycia J; Kennedy, Grant M; Roberge, Aki; Defrère, Denis; Hinz, Philip M; Millan-Gabet, Rafael; Rieke, George; Bailey, Vanessa P; Danchi, William C; Haniff, Chris; Mennesson, Bertrand; Serabyn, Eugene; Skemer, Andrew J; Stapelfeldt, Karl R; Wyatt, Mark C

2015-01-01

89

Lysosomal Storage Disease: Revealing Lysosomal Function and Physiology  

NSDL National Science Digital Library

The discovery over five decades ago of the lysosome, as a degradative organelle and its dysfunction in lysosomal storage disorder patients, was both insightful and simple in concept. Here, we review some of the history and pathophysiology of lysosomal storage disorders to show how they have impacted on our knowledge of lysosomal biology. Although a significant amount of information has been accrued on the molecular genetics and biochemistry of lysosomal storage disorders, we still do not fully understand the mechanistic link between the storage material and disease pathogenesis. However, the accumulation of undegraded substrate(s) can disrupt other lysosomal degradation processes, vesicular traffic, and lysosomal biogenesis to evoke the diverse pathophysiology that is evident in this complex set of disorders.

Emma J. Parkinson-Lawrence (South Australian Pathology Services)

2010-04-01

90

Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation.  

PubMed

Autophagy allows cells to adapt to changes in their environment by coordinating the degradation and recycling of cellular components and organelles to maintain homeostasis. Lysosomes are organelles critical for terminating autophagy via their fusion with mature autophagosomes to generate autolysosomes that degrade autophagic materials; therefore, maintenance of the lysosomal population is essential for autophagy-dependent cellular clearance. Here, we have demonstrated that the two most common autosomal recessive hereditary spastic paraplegia gene products, the SPG15 protein spastizin and the SPG11 protein spatacsin, are pivotal for autophagic lysosome reformation (ALR), a pathway that generates new lysosomes. Lysosomal targeting of spastizin required an intact FYVE domain, which binds phosphatidylinositol 3-phosphate. Loss of spastizin or spatacsin resulted in depletion of free lysosomes, which are competent to fuse with autophagosomes, and an accumulation of autolysosomes, reflecting a failure in ALR. Moreover, spastizin and spatacsin were essential components for the initiation of lysosomal tubulation. Together, these results link dysfunction of the autophagy/lysosomal biogenesis machinery to neurodegeneration. PMID:25365221

Chang, Jaerak; Lee, Seongju; Blackstone, Craig

2014-12-01

91

A selection system for identifying accessible sites in target RNAs.  

PubMed Central

Although ribozymes offer tremendous potential for posttranscriptionally controlling expression of targeted genes, their utility is often limited by the accessibility of the targeted regions within the RNA transcripts. Here we describe a method that identifies RNA regions that are accessible to oligonucleotides. Based on this selection protocol, we show that construction of hammerhead ribozymes targeted to the identified regions results in catalytic activities that are consistently and substantially greater than those of ribozymes designed on the basis of computer modeling. Identification of accessible sites should also be widely applicable to design of antisense oligonucleotides and DNAzymes. PMID:11345439

Pan, W H; Devlin, H F; Kelley, C; Isom, H C; Clawson, G A

2001-01-01

92

A targeted multi-enzyme mechanism for selective microtubule  

E-print Network

1 A targeted multi-enzyme mechanism for selective microtubule polyglutamylation Juliette van Dijk: posttranslational modification, tubulin, motility, polyglutamylase, TTLL Running Title: The multi-enzyme mechanism of polyglutamylation Summary Polyglutamylases are enzymes that form polyglutamate side chains of variable lengths

Paris-Sud XI, Université de

93

Lysosomal Storage Diseases  

Microsoft Academic Search

\\u000a The lysosomal storage diseases (LSD) are a heterogeneous group of disorders, characterized by the progressive accumulation\\u000a of various substrates in multiple cell types, as a consequence of defects in the degradation of by-products of cellular turnover.\\u000a Several subtypes are associated with neurodegenerative features, which present as a major therapeutic challenge. Although\\u000a the causal gene defects and corresponding enzyme, cofactor, or

Gregory M. Pastores

94

The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis.  

PubMed

Lysosomes are the major cellular site for clearance of defective organelles and digestion of internalized material. Demand on lysosomal capacity can vary greatly, and lysosomal function must be adjusted to maintain cellular homeostasis. Here, we identified an interaction between the lysosome-localized mechanistic target of rapamycin complex 1 (mTORC1) and the transcription factor TFEB (transcription factor EB), which promotes lysosome biogenesis. When lysosomal activity was adequate, mTOR-dependent phosphorylation of TFEB on Ser(211) triggered the binding of 14-3-3 proteins to TFEB, resulting in retention of the transcription factor in the cytoplasm. Inhibition of lysosomal function reduced the mTOR-dependent phosphorylation of TFEB, resulting in diminished interactions between TFEB and 14-3-3 proteins and the translocation of TFEB into the nucleus, where it could stimulate genes involved in lysosomal biogenesis. These results identify TFEB as a target of mTOR and suggest a mechanism for matching the transcriptional regulation of genes encoding proteins of autophagosomes and lysosomes to cellular need. The closely related transcription factors MITF (microphthalmia transcription factor) and TFE3 (transcription factor E3) also localized to lysosomes and accumulated in the nucleus when lysosome function was inhibited, thus broadening the range of physiological contexts under which this regulatory mechanism may prove important. PMID:22692423

Roczniak-Ferguson, Agnes; Petit, Constance S; Froehlich, Florian; Qian, Sharon; Ky, Jennifer; Angarola, Brittany; Walther, Tobias C; Ferguson, Shawn M

2012-06-12

95

Lysosomal Storage Disease: Revealing Lysosomal Function and Physiology - Figure 3  

NSDL National Science Digital Library

This figure shows the morphology of storage compartments commonly observed lysosomal storage disorders: (A) floccular-granular storage, (B) lipid whorls, (C) zebra bodies, and (D) autophagic vacuoles.

Emma J. Parkinson-Lawrence (South Australian Pathology Services); Tetyana Shandala (South Australian Pathology Services); Mark Prodoehl (South Australian Pathology Services); Revecca Plew (South Australian Pathology Services); Glenn N. Borlace (South Australian Pathology Services); Doug A. Brooks (South Australian Pathology Services)

2010-04-01

96

Acoustic gaze adjustments during active target selection in echolocating porpoises.  

PubMed

Visually dominant animals use gaze adjustments to organize perceptual inputs for cognitive processing. Thereby they manage the massive sensory load from complex and noisy scenes. Echolocation, as an active sensory system, may provide more opportunities to control such information flow by adjusting the properties of the sound source. However, most studies of toothed whale echolocation have involved stationed animals in static auditory scenes for which dynamic information control is unnecessary. To mimic conditions in the wild, we designed an experiment with captive, free-swimming harbor porpoises tasked with discriminating between two hydrophone-equipped targets and closing in on the selected target; this allowed us to gain insight into how porpoises adjust their acoustic gaze in a multi-target dynamic scene. By means of synchronized cameras, an acoustic tag and on-target hydrophone recordings we demonstrate that porpoises employ both beam direction control and range-dependent changes in output levels and pulse intervals to accommodate their changing spatial relationship with objects of immediate interest. We further show that, when switching attention to another target, porpoises can set their depth of gaze accurately for the new target location. In combination, these observations imply that porpoises exert precise vocal-motor control that is tied to spatial perception akin to visual accommodation. Finally, we demonstrate that at short target ranges porpoises narrow their depth of gaze dramatically by adjusting their output so as to focus on a single target. This suggests that echolocating porpoises switch from a deliberative mode of sensorimotor operation to a reactive mode when they are close to a target. PMID:23175527

Wisniewska, Danuta Maria; Johnson, Mark; Beedholm, Kristian; Wahlberg, Magnus; Madsen, Peter Teglberg

2012-12-15

97

Histone target selection within chromatin: an exemplary case of teamwork  

PubMed Central

Histone modifiers like acetyltransferases, methyltransferases, and demethylases are critical regulators of most DNA-based nuclear processes, de facto controlling cell cycle progression and cell fate. These enzymes perform very precise post-translational modifications on specific histone residues, which in turn are recognized by different effector modules/proteins. We now have a better understanding of how these enzymes exhibit such specificity. As they often reside in multisubunit complexes, they use associated factors to target their substrates within chromatin structure and select specific histone mark-bearing nucleosomes. In this review, we cover the current understanding of how histone modifiers select their histone targets. We also explain how different experimental approaches can lead to conflicting results about the histone specificity and function of these enzymes. PMID:24831698

Lalonde, Marie-Eve; Cheng, Xue; Côté, Jacques

2014-01-01

98

Nanostructured materials for selective recognition and targeted drug delivery  

NASA Astrophysics Data System (ADS)

Selective recognition requires the introduction of a molecular memory into a polymer matrix in order to make it capable of rebinding an analyte with a very high specificity. In addition, targeted drug delivery requires drug-loaded vesicles which preferentially localize to the sites of injury and avoid uptake into uninvolved tissues. The rapid evolution of nanotechnology is aiming to fulfill the goal of selective recognition and optimal drug delivery through the development of molecularly imprinted polymeric (MIP) nanoparticles, tailor-made for a diverse range of analytes (e.g., pharmaceuticals, pesticides, amino acids, etc.) and of nanostructured targeted drug carriers (e.g., liposomes and micelles) with increased circulation lifetimes. In the present study, PLGA microparticles containing multilamellar vesicles (MLVs), and MIP nanoparticles were synthesized to be employed as drug carriers and synthetic receptors respectively.

Kotrotsiou, O.; Kotti, K.; Dini, E.; Kammona, O.; Kiparissides, C.

2005-01-01

99

Histone target selection within chromatin: an exemplary case of teamwork.  

PubMed

Histone modifiers like acetyltransferases, methyltransferases, and demethylases are critical regulators of most DNA-based nuclear processes, de facto controlling cell cycle progression and cell fate. These enzymes perform very precise post-translational modifications on specific histone residues, which in turn are recognized by different effector modules/proteins. We now have a better understanding of how these enzymes exhibit such specificity. As they often reside in multisubunit complexes, they use associated factors to target their substrates within chromatin structure and select specific histone mark-bearing nucleosomes. In this review, we cover the current understanding of how histone modifiers select their histone targets. We also explain how different experimental approaches can lead to conflicting results about the histone specificity and function of these enzymes. PMID:24831698

Lalonde, Marie-Eve; Cheng, Xue; Côté, Jacques

2014-05-15

100

A Deterministic Approach to Active Debris Removal Target Selection  

NASA Astrophysics Data System (ADS)

Many decisions, with widespread economic, political and legal consequences, are being considered based on space debris simulations that show that Active Debris Removal (ADR) may be necessary as the concerns about the sustainability of spaceflight are increasing. The debris environment predictions are based on low-accuracy ephemerides and propagators. This raises doubts about the accuracy of those prognoses themselves but also the potential ADR target-lists that are produced. Target selection is considered highly important as removal of many objects will increase the overall mission cost. Selecting the most-likely candidates as soon as possible would be desirable as it would enable accurate mission design and allow thorough evaluation of in-orbit validations, which are likely to occur in the near-future, before any large investments are made and implementations realized. One of the primary factors that should be used in ADR target selection is the accumulated collision probability of every object. A conjunction detection algorithm, based on the smart sieve method, has been developed. Another algorithm is then applied to the found conjunctions to compute the maximum and true probabilities of collisions taking place. The entire framework has been verified against the Conjunction Analysis Tools in AGIs Systems Toolkit and relative probability error smaller than 1.5% has been achieved in the final maximum collision probability. Two target-lists are produced based on the ranking of the objects according to the probability they will take part in any collision over the simulated time window. These probabilities are computed using the maximum probability approach, that is time-invariant, and estimates of the true collision probability that were computed with covariance information. The top-priority targets are compared, and the impacts of the data accuracy and its decay are highlighted. General conclusions regarding the importance of Space Surveillance and Tracking for the purpose of ADR are also drawn and a deterministic method for ADR target selection, which could reduce the number of ADR missions to be performed, is proposed.

Lidtke, A.; Lewis, H.; Armellin, R.

2014-09-01

101

The SAMI Galaxy Survey: instrument specification and target selection  

NASA Astrophysics Data System (ADS)

The SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope in a 3-yr survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12 and 14.5 h, and cover a total of 144 deg2 (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2-degree Field Galaxy Redshift Survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) and photometry in regions covered by the SDSS and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes rpet < 19.4, stellar masses 107-1012 M?, and environments from isolated field galaxies through groups to clusters of ˜1015 M?.

Bryant, J. J.; Owers, M. S.; Robotham, A. S. G.; Croom, S. M.; Driver, S. P.; Drinkwater, M. J.; Lorente, N. P. F.; Cortese, L.; Scott, N.; Colless, M.; Schaefer, A.; Taylor, E. N.; Konstantopoulos, I. S.; Allen, J. T.; Baldry, I.; Barnes, L.; Bauer, A. E.; Bland-Hawthorn, J.; Bloom, J. V.; Brooks, A. M.; Brough, S.; Cecil, G.; Couch, W.; Croton, D.; Davies, R.; Ellis, S.; Fogarty, L. M. R.; Foster, C.; Glazebrook, K.; Goodwin, M.; Green, A.; Gunawardhana, M. L.; Hampton, E.; Ho, I.-T.; Hopkins, A. M.; Kewley, L.; Lawrence, J. S.; Leon-Saval, S. G.; Leslie, S.; McElroy, R.; Lewis, G.; Liske, J.; López-Sánchez, Á. R.; Mahajan, S.; Medling, A. M.; Metcalfe, N.; Meyer, M.; Mould, J.; Obreschkow, D.; O'Toole, S.; Pracy, M.; Richards, S. N.; Shanks, T.; Sharp, R.; Sweet, S. M.; Thomas, A. D.; Tonini, C.; Walcher, C. J.

2015-03-01

102

PDT: loss of autophagic cytoprotection after lysosomal photodamage  

NASA Astrophysics Data System (ADS)

Photodynamic therapy is known to evoke both autophagy and apoptosis. Apoptosis is an irreversible death pathway while autophagy can serve a cytoprotective function. In this study, we examined two photosensitizing agents that target lysosomes, although they differ in the reactive oxygen species (ROS) formed during irradiation. With both agents, the 'shoulder' on the PDT dose-response curve was substantially attenuated, consistent with loss of a cytoprotective pathway. In contrast, this 'shoulder' is commonly observed when PDT targets mitochondria or the ER. We propose that lysosomal targets may offer the possibility of promoting PDT efficacy by eliminating a potentially protective pathway.

Kessel, David; Price, Michael

2012-02-01

103

Target Inhibition Networks: Predicting Selective Combinations of Druggable Targets to Block Cancer Survival Pathways  

PubMed Central

A recent trend in drug development is to identify drug combinations or multi-target agents that effectively modify multiple nodes of disease-associated networks. Such polypharmacological effects may reduce the risk of emerging drug resistance by means of attacking the disease networks through synergistic and synthetic lethal interactions. However, due to the exponentially increasing number of potential drug and target combinations, systematic approaches are needed for prioritizing the most potent multi-target alternatives on a global network level. We took a functional systems pharmacology approach toward the identification of selective target combinations for specific cancer cells by combining large-scale screening data on drug treatment efficacies and drug-target binding affinities. Our model-based prediction approach, named TIMMA, takes advantage of the polypharmacological effects of drugs and infers combinatorial drug efficacies through system-level target inhibition networks. Case studies in MCF-7 and MDA-MB-231 breast cancer and BxPC-3 pancreatic cancer cells demonstrated how the target inhibition modeling allows systematic exploration of functional interactions between drugs and their targets to maximally inhibit multiple survival pathways in a given cancer type. The TIMMA prediction results were experimentally validated by means of systematic siRNA-mediated silencing of the selected targets and their pairwise combinations, showing increased ability to identify not only such druggable kinase targets that are essential for cancer survival either individually or in combination, but also synergistic interactions indicative of non-additive drug efficacies. These system-level analyses were enabled by a novel model construction method utilizing maximization and minimization rules, as well as a model selection algorithm based on sequential forward floating search. Compared with an existing computational solution, TIMMA showed both enhanced prediction accuracies in cross validation as well as significant reduction in computation times. Such cost-effective computational-experimental design strategies have the potential to greatly speed-up the drug testing efforts by prioritizing those interventions and interactions warranting further study in individual cancer cases. PMID:24068907

Tang, Jing; Karhinen, Leena; Xu, Tao; Szwajda, Agnieszka; Yadav, Bhagwan; Wennerberg, Krister; Aittokallio, Tero

2013-01-01

104

Context-dependent sequential effects of target selection for action  

PubMed Central

Humans exhibit variation in behavior from moment to moment even when performing a simple, repetitive task. Errors are typically followed by cautious responses, minimizing subsequent distractor interference. However, less is known about how variation in the execution of an ultimately correct response affects subsequent behavior. We asked participants to reach toward a uniquely colored target presented among distractors and created two categories to describe participants' responses in correct trials based on analyses of movement trajectories; partial errors referred to trials in which observers initially selected a nontarget for action before redirecting the movement and accurately pointing to the target, and direct movements referred to trials in which the target was directly selected for action. We found that latency to initiate a hand movement was shorter in trials following partial errors compared to trials following direct movements. Furthermore, when the target and distractor colors were repeated, movement time and reach movement curvature toward distractors were greater following partial errors compared to direct movements. Finally, when the colors were repeated, partial errors were more frequent than direct movements following partial-error trials, and direct movements were more frequent following direct-movement trials. The dependence of these latter effects on repeated-task context indicates the involvement of higher-level cognitive mechanisms in an integrated attention-action system in which execution of a partial-error or direct-movement response affects memory representations that bias performance in subsequent trials. Altogether, these results demonstrate that whether a nontarget is selected for action or not has a measurable impact on subsequent behavior. PMID:23847303

Moher, Jeff; Song, Joo-Hyun

2012-01-01

105

X-linked Angelman-like syndrome caused by Slc9a6 knockout in mice exhibits evidence of endosomal-lysosomal dysfunction.  

PubMed

Mutations in solute carrier family 9 isoform 6 on chromosome Xq26.3 encoding sodium-hydrogen exchanger 6, a protein mainly expressed in early and recycling endosomes are known to cause a complex and slowly progressive degenerative human neurological disease. Three resulting phenotypes have so far been reported: an X-linked Angelman syndrome-like condition, Christianson syndrome and corticobasal degeneration with tau deposition, with each characterized by severe intellectual disability, epilepsy, autistic behaviour and ataxia. Hypothesizing that a sodium-hydrogen exchanger 6 deficiency would most likely disrupt the endosomal-lysosomal system of neurons, we examined Slc9a6 knockout mice with tissue staining and related techniques commonly used to study lysosomal storage disorders. As a result, we found that sodium-hydrogen exchanger 6 depletion leads to abnormal accumulation of GM2 ganglioside and unesterified cholesterol within late endosomes and lysosomes of neurons in selective brain regions, most notably the basolateral nuclei of the amygdala, the CA3 and CA4 regions and dentate gyrus of the hippocampus and some areas of cerebral cortex. In these select neuronal populations, histochemical staining for ?-hexosaminidase activity, a lysosomal enzyme involved in the degradation of GM2 ganglioside, was undetectable. Neuroaxonal dystrophy similar to that observed in lysosomal disease was observed in the cerebellum and was accompanied by a marked and progressive loss of Purkinje cells, particularly in those lacking the expression of Zebrin II. On behavioural testing, Slc9a6 knockout mice displayed a discrete clinical phenotype attributable to motor hyperactivity and cerebellar dysfunction. Importantly, these findings show that sodium-hydrogen exchanger 6 loss of function in the Slc9a6-targeted mouse model leads to compromise of endosomal-lysosomal function similar to lysosomal disease and to conspicuous neuronal abnormalities in specific brain regions, which in concert could provide a unified explanation for the cellular and clinical phenotypes in humans with SLC9A6 mutations. PMID:21964919

Strømme, Petter; Dobrenis, Kostantin; Sillitoe, Roy V; Gulinello, Maria; Ali, Nafeeza F; Davidson, Cristin; Micsenyi, Matthew C; Stephney, Gloria; Ellevog, Linda; Klungland, Arne; Walkley, Steven U

2011-11-01

106

X-linked Angelman-like syndrome caused by Slc9a6 knockout in mice exhibits evidence of endosomal–lysosomal dysfunction  

PubMed Central

Mutations in solute carrier family 9 isoform 6 on chromosome Xq26.3 encoding sodium–hydrogen exchanger 6, a protein mainly expressed in early and recycling endosomes are known to cause a complex and slowly progressive degenerative human neurological disease. Three resulting phenotypes have so far been reported: an X-linked Angelman syndrome-like condition, Christianson syndrome and corticobasal degeneration with tau deposition, with each characterized by severe intellectual disability, epilepsy, autistic behaviour and ataxia. Hypothesizing that a sodium–hydrogen exchanger 6 deficiency would most likely disrupt the endosomal–lysosomal system of neurons, we examined Slc9a6 knockout mice with tissue staining and related techniques commonly used to study lysosomal storage disorders. As a result, we found that sodium–hydrogen exchanger 6 depletion leads to abnormal accumulation of GM2 ganglioside and unesterified cholesterol within late endosomes and lysosomes of neurons in selective brain regions, most notably the basolateral nuclei of the amygdala, the CA3 and CA4 regions and dentate gyrus of the hippocampus and some areas of cerebral cortex. In these select neuronal populations, histochemical staining for ?-hexosaminidase activity, a lysosomal enzyme involved in the degradation of GM2 ganglioside, was undetectable. Neuroaxonal dystrophy similar to that observed in lysosomal disease was observed in the cerebellum and was accompanied by a marked and progressive loss of Purkinje cells, particularly in those lacking the expression of Zebrin II. On behavioural testing, Slc9a6 knockout mice displayed a discrete clinical phenotype attributable to motor hyperactivity and cerebellar dysfunction. Importantly, these findings show that sodium–hydrogen exchanger 6 loss of function in the Slc9a6-targeted mouse model leads to compromise of endosomal–lysosomal function similar to lysosomal disease and to conspicuous neuronal abnormalities in specific brain regions, which in concert could provide a unified explanation for the cellular and clinical phenotypes in humans with SLC9A6 mutations. PMID:21964919

Strømme, Petter; Dobrenis, Kostantin; Sillitoe, Roy V.; Gulinello, Maria; Ali, Nafeeza F.; Davidson, Cristin; Micsenyi, Matthew C.; Stephney, Gloria; Ellevog, Linda; Klungland, Arne

2011-01-01

107

Dynamic interactions between visual working memory and saccade target selection.  

PubMed

Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628

Schneegans, Sebastian; Spencer, John P; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

2014-01-01

108

Dynamic interactions between visual working memory and saccade target selection  

PubMed Central

Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628

Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

2014-01-01

109

Analysis of Mucolipidosis II/III GNPTAB Missense Mutations Identifies Domains of UDP-GlcNAc:lysosomal Enzyme GlcNAc-1-phosphotransferase Involved in Catalytic Function and Lysosomal Enzyme Recognition.  

PubMed

UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase tags newly synthesized lysosomal enzymes with mannose 6-phosphate recognition markers, which are required for their targeting to the endolysosomal system. GNPTAB encodes the ? and ? subunits of GlcNAc-1-phosphotransferase, and mutations in this gene cause the lysosomal storage disorders mucolipidosis II and III ??. Prior investigation of missense mutations in GNPTAB uncovered amino acids in the N-terminal region and within the DMAP domain involved in Golgi retention of GlcNAc-1-phosphotransferase and its ability to specifically recognize lysosomal hydrolases, respectively. Here, we undertook a comprehensive analysis of the remaining missense mutations in GNPTAB reported in mucolipidosis II and III ?? patients using cell- and zebrafish-based approaches. We show that the Stealth domain harbors the catalytic site, as some mutations in these regions greatly impaired the activity of the enzyme without affecting its Golgi localization and proteolytic processing. We also demonstrate a role for the Notch repeat 1 in lysosomal hydrolase recognition, as missense mutations in conserved cysteine residues in this domain do not affect the catalytic activity but impair mannose phosphorylation of certain lysosomal hydrolases. Rescue experiments using mRNA bearing Notch repeat 1 mutations in GNPTAB-deficient zebrafish revealed selective effects on hydrolase recognition that differ from the DMAP mutation. Finally, the mutant R587P, located in the spacer between Notch 2 and DMAP, was partially rescued by overexpression of the ? subunit, suggesting a role for this region in ? subunit binding. These studies provide new insight into the functions of the different domains of the ? and ? subunits. PMID:25505245

Qian, Yi; van Meel, Eline; Flanagan-Steet, Heather; Yox, Alex; Steet, Richard; Kornfeld, Stuart

2015-01-30

110

THINK OUTSIDE THE COLOR BOX: PROBABILISTIC TARGET SELECTION AND THE SDSS-XDQSOQUASAR TARGETING CATALOG  

SciTech Connect

We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 {approx}< z {approx}< 3) where the stellar contamination is significant. We build models of the distributions of stars and quasars in flux space down to the flux limit by applying the extreme-deconvolution method to estimate the underlying density. We convolve this density with the flux uncertainties when evaluating the probability that an object is a quasar. This approach results in a targeting algorithm that is more principled, more efficient, and faster than other similar methods. We apply the algorithm to derive low-redshift (z < 2.2), medium-redshift (2.2 {le} z {le} 3.5), and high-redshift (z > 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg{sup 2} of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available.

BOVY, J.; Sheldon, E.; Hennawi, J.F.; Hogg, D.W.; Myers, A.D.; et al.

2011-03-10

111

SELECTION, PRIORITIZATION, AND CHARACTERISTICS OF KEPLER TARGET STARS  

SciTech Connect

The Kepler Mission began its 3.5 year photometric monitoring campaign in 2009 May on a select group of approximately 150,000 stars. The stars were chosen from the {approx} half million in the field of view that are brighter than 16th magnitude. The selection criteria are quantitative metrics designed to optimize the scientific yield of the mission with regard to the detection of Earth-size planets in the habitable zone. This yields more than 90,000 G-type stars on or close to the main sequence, >20, 000 of which are brighter than 14th magnitude. At the temperature extremes, the sample includes approximately 3000 M-type dwarfs and a small sample of O- and B-type MS stars (<200). The small numbers of giants are included in the sample: {approx}5000 stars with surface gravities log(g) < 3.5. We present a brief summary of the selection process and the stellar populations it yields in terms of surface gravity, effective temperature, and apparent magnitude. In addition to the primary, statistically derived target set, several ancillary target lists were manually generated to enhance the science of the mission, examples being: known eclipsing binaries, open cluster members, and high proper motion stars.

Batalha, Natalie M. [Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192 (United States); Borucki, William J.; Koch, David G.; Bryson, Stephen T.; Haas, Michael R. [NASA Ames Research Center, Moffett Field, CA (United States); Brown, Timothy M. [Las Cumbres Observatory Global Observatory Telescope Network, Goleta, CA 93117 (United States); Caldwell, Douglas A. [SETI Institute, Mountain View, CA 94043 (United States); Hall, Jennifer R. [Orbital Sciences Corporation/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Gilliland, Ronald L. [STScI, Baltimore, MD 21218 (United States); Latham, David W.; Meibom, Soren [Harvard-Smithsonian, CfA, Cambridge, MA 02138 (United States); Monet, David G. [U.S. Naval Observatory, Flagstaff, AZ 86001 (United States)], E-mail: Natalie.Batalha@sjsu.edu

2010-04-20

112

Target coverage and selectivity in field steering brain stimulation.  

PubMed

Deep Brain Stimulation (DBS) is an established treatment in Parkinson's Disease. The target area is defined based on the state and brain anatomy of the patient. The stimulation delivered via state-of-the-art DBS leads that are currently in clinical use is difficult to individualize to the patient particularities. Furthermore, the electric field generated by such a lead has a limited selectivity, resulting in stimulation of areas adjacent to the target and thus causing undesirable side effects. The goal of this study is, using actual clinical data, to compare in silico the stimulation performance of a symmetrical generic lead to a more versatile and adaptable one allowing, in particular, for asymmetric stimulation. The fraction of the volume of activated tissue in the target area and the fraction of the stimulation field that spreads beyond it are computed for a clinical data set of patients in order to quantify the lead performance. The obtained results suggest that using more versatile DBS leads might reduce the stimulation area beyond the target and thus lessen side effects for the same achieved therapeutical effect. PMID:25570011

Cubo, Ruben; Astrom, Mattias; Medvedev, Alexander

2014-08-01

113

Target Search and Selection for the DI/EPOXI Spacecraft  

NASA Technical Reports Server (NTRS)

Upon completion of the Hartley 2 flyby in November 2010, the Deep Impact (DI) spacecraft resided in a solar orbit without possibility for gravity assist with any large body. Conservative estimates of remaining fuel were enough to provide only an 18 m/s impulse on the spacecraft. We present our method and results of our systematic scan of potential small body encounters for DI, and our criteria to narrow the selection to the asteroid 2002 GT as the target flyby body. The mission profile has two deterministic maneuvers to achieve the encounter, the first of which executed on November 25, 2011.

Grebow, Daniel J.; Bhaskaran, Shyam; Chesley, Steven R.

2012-01-01

114

Positive–negative-selection-mediated gene targeting in rice  

PubMed Central

Gene targeting (GT) refers to the designed modification of genomic sequence(s) through homologous recombination (HR). GT is a powerful tool both for the study of gene function and for molecular breeding. However, in transformation of higher plants, non-homologous end joining (NHEJ) occurs overwhelmingly in somatic cells, masking HR-mediated GT. Positive–negative selection (PNS) is an approach for finding HR-mediated GT events because it can eliminate NHEJ effectively by expression of a negative-selection marker gene. In rice—a major crop worldwide—reproducible PNS-mediated GT of endogenous genes has now been successfully achieved. The procedure is based on strong PNS using diphtheria toxin A-fragment as a negative marker, and has succeeded in the directed modification of several endogenous rice genes in various ways. In addition to gene knock-outs and knock-ins, a nucleotide substitution in a target gene was also achieved recently. This review presents a summary of the development of the rice PNS system, highlighting its advantages. Different types of gene modification and gene editing aimed at developing new plant breeding technology based on PNS are discussed. PMID:25601872

Shimatani, Zenpei; Nishizawa-Yokoi, Ayako; Endo, Masaki; Toki, Seiichi; Terada, Rie

2015-01-01

115

Lysosomal Storage Disease: Revealing Lysosomal Function and Physiology - Figure 2  

NSDL National Science Digital Library

This figure is a timeline of discoveries in lysosomal storage disorders and their impact on cell biology, including endocytic processes and the subsequent development of enzyme replacement therapy (ERT).

Emma J. Parkinson-Lawrence (South Australian Pathology Services); Tetyana Shandala (South Australian Pathology Services); Mark Prodoehl (South Australian Pathology Services); Revecca Plew (South Australian Pathology Services); Glenn N. Borlace (South Australian Pathology Services); Doug A. Brooks (South Australian Pathology Services)

2010-04-01

116

Lysosomes and autophagy in cell death control  

Microsoft Academic Search

Lysosomal hydrolases participate in the digestion of endocytosed and autophagocytosed material inside the lysosomal\\/autolysosomal compartment in acute cell death when released into the cytosol and in cancer progression following their release into the extracellular space. Lysosomal alterations are common in cancer cells. The increased expression and altered trafficking of lysosomal enzymes participates in tissue invasion, angiogenesis and sensitization to the

Guido Kroemer; Marja Jäättelä

2005-01-01

117

Signals from the lysosome: a control centre for cellular clearance and energy metabolism.  

PubMed

For a long time, lysosomes were considered merely to be cellular 'incinerators' involved in the degradation and recycling of cellular waste. However, now there is compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signalling and energy metabolism. Furthermore, the essential role of lysosomes in autophagic pathways puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master regulator, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy has revealed how the lysosome adapts to environmental cues, such as starvation, and targeting TFEB may provide a novel therapeutic strategy for modulating lysosomal function in human disease. PMID:23609508

Settembre, Carmine; Fraldi, Alessandro; Medina, Diego L; Ballabio, Andrea

2013-05-01

118

Ultraviolet induced lysosome activity in corneal epithelium.  

PubMed

A 5,000 W Xe-Hg high pressure lamp and a double monochromator were used to produce a 3.3 nm half-bandpass ultraviolet radiation at 295 nm. Pigmented rabbit eyes were irradiated with radiant exposures from 140 Jm-2 to 10,000 Jm-2 and evaluated by slit-lamp biomicroscopy, light and electron microscopy. Corneal threshold (Hc) was 200 Jm-2 and lens threshold (HL) was 7,500 Jm-2. The most repeatable and reliable corneal response to these levels of UV was the development of corneal epithelial granules. Histological changes included a loss of superficial epithelial cells and selective UV induced autolysis of the wing cells. It is suggested that the biomicroscopically observed granules are the clinical manifestation of the secondary lysosomes revealed by light and electron microscopy. It is proposed that UV breaks down the primary lysosome membranes to release hydrolytic enzymes which in turn form the secondary lysosomes during autolysis. Extreme levels of radiant exposure at 295 nm result in indiscriminate destruction of all layers of the corneal epithelium, but the posterior cornea was spared. PMID:6906163

Cullen, A P

1980-01-01

119

Ubiquitin-dependent lysosomal membrane protein sorting and degradation.  

PubMed

As an essential organelle in the cell, the lysosome is responsible for digestion and recycling of intracellular components, storage of nutrients, and pH homeostasis. The lysosome is enclosed by a special membrane to maintain its integrity, and nutrients are transported across the membrane by numerous transporters. Despite their importance in maintaining nutrient homeostasis and regulating signaling pathways, little is known about how lysosomal membrane protein lifetimes are regulated. We identified a yeast vacuolar amino acid transporter, Ypq1, that is selectively sorted and degraded in the vacuolar lumen following lysine withdrawal. This selective degradation process requires a vacuole anchored ubiquitin ligase (VAcUL-1) complex composed of Rsp5 and Ssh4. We propose that after ubiquitination, Ypq1 is selectively sorted into an intermediate compartment. The ESCRT machinery is then recruited to sort the ubiquitinated Ypq1 into intraluminal vesicles (ILVs). Finally, the compartment fuses with the vacuole and delivers ILVs into the lumen for degradation. PMID:25620559

Li, Ming; Rong, Yueguang; Chuang, Ya-Shan; Peng, Dan; Emr, Scott D

2015-02-01

120

Therapy of Lysosomal Storage Diseases  

Microsoft Academic Search

Lysosomes are membrane-surrounded organelles which are present in all nucleated mammalian cells. They function to degrade\\u000a both intra- and extracellular macromolecules to low molecular components that are transported to the cytoplasm for reutilization\\u000a in the biosynthetic pathways of the cell. Up to now more than 50 different lysosomal hydrolases catalyzing the degradation\\u000a of proteins, lipids, nucleic acids and carbohydrates have

Ulrich Matzner

121

Sphingolipids and lysosomal pathologies.  

PubMed

Endocytosed (glyco)sphingolipids are degraded, together with other membrane lipids in a stepwise fashion by endolysosomal enzymes with the help of small lipid binding proteins, the sphingolipid activator proteins (SAPs), at the surface of intraluminal lysosomal vesicles. Inherited defects in a sphingolipid-degrading enzyme or SAP cause the accumulation of the corresponding lipid substrates, including cytotoxic lysosphingolipids, such as galactosylsphingosine and glucosylsphingosine, and lead to a sphingolipidosis. Analysis of patients with prosaposin deficiency revealed the accumulation of intra-endolysosmal vesicles and membrane structures (IM). Feeding of prosaposin reverses the storage, suggesting inner membrane structures as platforms of sphingolipid degradation. Water soluble enzymes can hardly attack sphingolipids embedded in the membrane of inner endolysosomal vesicles. The degradation of sphingolipids with few sugar residues therefore requires the help of the SAPs, and is strongly stimulated by anionic membrane lipids. IMs are rich in anionic bis(monoacylglycero)phosphate (BMP). This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology. PMID:24184515

Schulze, Heike; Sandhoff, Konrad

2014-05-01

122

The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris.  

PubMed

The discovery of a gene network regulating lysosomal biogenesis and its transcriptional regulator transcription factor EB (TFEB) revealed that cells monitor lysosomal function and respond to degradation requirements and environmental cues. We report the identification of transcription factor E3 (TFE3) as another regulator of lysosomal homeostasis that induced expression of genes encoding proteins involved in autophagy and lysosomal biogenesis in ARPE-19 cells in response to starvation and lysosomal stress. We found that in nutrient-replete cells, TFE3 was recruited to lysosomes through interaction with active Rag guanosine triphosphatases (GTPases) and exhibited mammalian (or mechanistic) target of rapamycin complex 1 (mTORC1)-dependent phosphorylation. Phosphorylated TFE3 was retained in the cytosol through its interaction with the cytosolic chaperone 14-3-3. After starvation, TFE3 rapidly translocated to the nucleus and bound to the CLEAR elements present in the promoter region of many lysosomal genes, thereby inducing lysosomal biogenesis. Depletion of endogenous TFE3 entirely abolished the response of ARPE-19 cells to starvation, suggesting that TFE3 plays a critical role in nutrient sensing and regulation of energy metabolism. Furthermore, overexpression of TFE3 triggered lysosomal exocytosis and resulted in efficient cellular clearance in a cellular model of a lysosomal storage disorder, Pompe disease, thus identifying TFE3 as a potential therapeutic target for the treatment of lysosomal disorders. PMID:24448649

Martina, José A; Diab, Heba I; Lishu, Li; Jeong-A, Lim; Patange, Simona; Raben, Nina; Puertollano, Rosa

2014-01-21

123

Selective targeting of TGF-? activation to treat fibroinflammatory airway disease.  

PubMed

Airway remodeling, caused by inflammation and fibrosis, is a major component of chronic obstructive pulmonary disease (COPD) and currently has no effective treatment. Transforming growth factor-? (TGF-?) has been widely implicated in the pathogenesis of airway remodeling in COPD. TGF-? is expressed in a latent form that requires activation. The integrin ?v?8 (encoded by the itgb8 gene) is a receptor for latent TGF-? and is essential for its activation. Expression of integrin ?v?8 is increased in airway fibroblasts in COPD and thus is an attractive therapeutic target for the treatment of airway remodeling in COPD. We demonstrate that an engineered optimized antibody to human ?v?8 (B5) inhibited TGF-? activation in transgenic mice expressing only human and not mouse ITGB8. The B5 engineered antibody blocked fibroinflammatory responses induced by tobacco smoke, cytokines, and allergens by inhibiting TGF-? activation. To clarify the mechanism of action of B5, we used hydrodynamic, mutational, and electron microscopic methods to demonstrate that ?v?8 predominantly adopts a constitutively active, extended-closed headpiece conformation. Epitope mapping and functional characterization of B5 revealed an allosteric mechanism of action due to locking-in of a low-affinity ?v?8 conformation. Collectively, these data demonstrate a new model for integrin function and present a strategy to selectively target the TGF-? pathway to treat fibroinflammatory airway diseases. PMID:24944194

Minagawa, Shunsuke; Lou, Jianlong; Seed, Robert I; Cormier, Anthony; Wu, Shenping; Cheng, Yifan; Murray, Lynne; Tsui, Ping; Connor, Jane; Herbst, Ronald; Govaerts, Cedric; Barker, Tyren; Cambier, Stephanie; Yanagisawa, Haruhiko; Goodsell, Amanda; Hashimoto, Mitsuo; Brand, Oliver J; Cheng, Ran; Ma, Royce; McKnelly, Kate J; Wen, Weihua; Hill, Arthur; Jablons, David; Wolters, Paul; Kitamura, Hideya; Araya, Jun; Barczak, Andrea J; Erle, David J; Reichardt, Louis F; Marks, James D; Baron, Jody L; Nishimura, Stephen L

2014-06-18

124

Targeting the actin cytoskeleton: selective antitumor action via trapping PKC?.  

PubMed

Targeting the actin cytoskeleton (CSK) of cancer cells offers a valuable strategy in cancer therapy. There are a number of natural compounds that interfere with the actin CSK, but the mode of their cytotoxic action and, moreover, their tumor-specific mechanisms are quite elusive. We used the myxobacterial compound Chondramide as a tool to first elucidate the mechanisms of cytotoxicity of actin targeting in breast cancer cells (MCF7, MDA-MB-231). Chondramide inhibits cellular actin filament dynamics shown by a fluorescence-based analysis (fluorescence recovery after photobleaching (FRAP)) and leads to apoptosis characterized by phosphatidylserine exposure, release of cytochrome C from mitochondria and finally activation of caspases. Chondramide enhances the occurrence of mitochondrial permeability transition (MPT) by affecting known MPT modulators: Hexokinase II bound to the voltage-dependent anion channel (VDAC) translocated from the outer mitochondrial membrane to the cytosol and the proapoptotic protein Bad were recruited to the mitochondria. Importantly, protein kinase C-? (PKC?), a prosurvival kinase possessing an actin-binding site and known to regulate the hexokinase/VDAC interaction as well as Bad phosphorylation was identified as the link between actin CSK and apoptosis induction. PKC?, which was found overexpressed in breast cancer cells, accumulated in actin bundles induced by Chondramide and lost its activity. Our second goal was to characterize the potential tumor-specific action of actin-binding agents. As the nontumor breast epithelial cell line MCF-10A in fact shows resistance to Chondramide-induced apoptosis and notably express low level of PKC?, we suggest that trapping PKC? via Chondramide-induced actin hyperpolymerization displays tumor cell specificity. Our work provides a link between targeting the ubiquitously occurring actin CSK and selective inhibition of pro-tumorigenic PKC?, thus setting the stage for actin-stabilizing agents as innovative cancer drugs. This is moreover supported by the in vivo efficacy of Chondramide triggered by abrogation of PKC? signaling shown in a xenograft breast cancer model. PMID:25165884

Foerster, F; Braig, S; Moser, C; Kubisch, R; Busse, J; Wagner, E; Schmoeckel, E; Mayr, D; Schmitt, S; Huettel, S; Zischka, H; Mueller, R; Vollmar, A M

2014-01-01

125

Deciphering the Code for Retroviral Integration Target Site Selection  

PubMed Central

Upon cell invasion, retroviruses generate a DNA copy of their RNA genome and integrate retroviral cDNA within host chromosomal DNA. Integration occurs throughout the host cell genome, but target site selection is not random. Each subgroup of retrovirus is distinguished from the others by attraction to particular features on chromosomes. Despite extensive efforts to identify host factors that interact with retrovirion components or chromosome features predictive of integration, little is known about how integration sites are selected. We attempted to identify markers predictive of retroviral integration by exploiting Precision-Recall methods for extracting information from highly skewed datasets to derive robust and discriminating measures of association. ChIPSeq datasets for more than 60 factors were compared with 14 retroviral integration datasets. When compared with MLV, PERV or XMRV integration sites, strong association was observed with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. By combining peaks from ChIPSeq datasets, a supermarker was identified that localized within 2 kB of 75% of MLV proviruses and detected differences in integration preferences among different cell types. The supermarker predicted the likelihood of integration within specific chromosomal regions in a cell-type specific manner, yielding probabilities for integration into proto-oncogene LMO2 identical to experimentally determined values. The supermarker thus identifies chromosomal features highly favored for retroviral integration, provides clues to the mechanism by which retrovirus integration sites are selected, and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses. PMID:21124862

Santoni, Federico Andrea; Hartley, Oliver; Luban, Jeremy

2010-01-01

126

Reporter assay for endo/lysosomal escape of toxin-based therapeutics.  

PubMed

Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters-horseradish peroxidase (HRP), Alexa Fluor 488 (Alexa) and ricin A-chain (RTA)-were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates-saporin-HRP, (Alexa)saporin and saporin-KQ-RTA-were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release) or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape) was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of (Alexa)saporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10-1000 nM. PMID:24859158

Gilabert-Oriol, Roger; Thakur, Mayank; von Mallinckrodt, Benedicta; Bhargava, Cheenu; Wiesner, Burkhard; Eichhorst, Jenny; Melzig, Matthias F; Fuchs, Hendrik; Weng, Alexander

2014-05-01

127

Reporter Assay for Endo/Lysosomal Escape of Toxin-Based Therapeutics  

PubMed Central

Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters—horseradish peroxidase (HRP), Alexa Fluor 488 (Alexa) and ricin A-chain (RTA)—were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates—saporin-HRP, Alexasaporin and saporin-KQ-RTA—were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release) or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape) was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of Alexasaporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10–1000 nM. PMID:24859158

Gilabert-Oriol, Roger; Thakur, Mayank; von Mallinckrodt, Benedicta; Bhargava, Cheenu; Wiesner, Burkhard; Eichhorst, Jenny; Melzig, Matthias F.; Fuchs, Hendrik; Weng, Alexander

2014-01-01

128

DNA Aptamers Selectively Target Leishmania infantum H2A Protein  

PubMed Central

Parasites of the genus Leishmania produce leishmaniasis which affects millions people around the world. Understanding the molecular characteristics of the parasite can increase the knowledge about the mechanisms underlying disease development and progression. Thus, the study of the molecular features of histones has been considered of particular interest because Leishmania does not condense the chromatin during mitosis and, consequently, a different role for these proteins in the biology of the parasite can be expected. Furthermore, the sequence divergences in the amino and in the carboxy-terminal domains of the kinetoplastid core histones convert them in potential diagnostic and/or therapeutics targets. Aptamers are oligonucleotide ligands that are selected in vitro by their affinity and specificity for the target as a consequence of the particular tertiary structure that they are able to acquire depending on their sequence. Development of high-affinity molecules with the ability to recognize specifically Leishmania histones is essential for the progress of this kind of study. Two aptamers which specifically recognize Leishmania infantum H2A histone were cloned from a previously obtained ssDNA enriched population. These aptamers were sequenced and subjected to an in silico analysis. ELONA, slot blot and Western blot were performed to establish aptamer affinity and specificity for LiH2A histone and ELONA assays using peptides corresponding to overlapped sequences of LiH2A were made mapping the aptamers:LiH2A interaction. As “proofs of concept”, aptamers were used to determine the number of parasites in an ELONA platform and to purify LiH2A from complex mixtures. The aptamers showed different secondary structures among them; however, both of them were able to recognize the same peptides located in a side of the protein. In addition, we demonstrate that these aptamers are useful for LiH2A identification and also may be of potential application as diagnostic system and as a laboratory tool with purification purpose. PMID:24205340

Martín, M. Elena; García-Hernández, Marta; García-Recio, Eva M.; Gómez-Chacón, Gerónimo F.; Sánchez-López, Marta; González, Víctor M.

2013-01-01

129

Single antenna target detection using broadband frequency selection time reversal method  

Microsoft Academic Search

In this paper, we present a broadband single antenna target detection scheme using frequency selection time reversal method to further improve the target detection in a cluttered environment. By re-transmitting time-reversed difference signal between reflections from the environment with and without the target, constructive interferences between the target and the background scatterers are utilized to enhance the return signal from

Yi Jiang; Jian-Gang Zhu; Daniel D. Stancil; Jose Moura; Ahmet G. Cepni; Benjamin Henty; Yuan-Wei Jin

2006-01-01

130

Neuronal lysosomal enzyme replacement using fragment C of tetanus toxin.  

PubMed Central

Development of a strategy for efficient delivery of exogenous enzyme to neuronal lysosomes is essential to achieve enzyme replacement in neurodegenerative lysosomal storage diseases. We tested whether effective lysosomal targeting of the human enzyme beta-N-acetylhexosaminidase A (Hex A; beta-N-acetyl-D-hexosaminide N-acetylhexosaminohydrolase, EC 3.2.1.52) can be obtained by coupling it via disulfide linkage to the atoxic fragment C of tetanus toxin (TTC) that is bound avidly by neuronal membrane. TTC-Hex A conjugation resulted in neuronal surface binding and enhanced endocytosis of enzyme as observed in immunofluorescence studies with rat brain cultures. In immunoelectrophoretic quantitative uptake studies, rat neuronal cell cultures contained 16- and 40-fold greater amounts of enzyme after incubation with TTC-Hex A than with nonderivatized Hex A. In cerebral cortex cell cultures from a feline model of human GM2 gangliosidosis (Tay-Sachs and Sandhoff diseases), binding and uptake patterns of the enzymes were similar to those in the rat brain cell cultures. After exposure to extracellular concentrations of enzyme attainable in vivo, lysosomal storage of immunodetectable GM2 ganglioside was virtually eliminated in neurons exposed to TTC-Hex A, whereas a minimal effect was observed with Hex A. These findings demonstrate the usefulness of TTC adducts for effective neuronal lysosomal enzyme replacement. Images PMID:1532255

Dobrenis, K; Joseph, A; Rattazzi, M C

1992-01-01

131

Lysosomal membrane permeabilization in cell death: Concepts and challenges.  

PubMed

Late endocytic compartments include late endosomes, lysosomes and hybrid organelles. In the acidic lumen, cargo material derived from endocytosed and phagocytosed extracellular material and autophagy-derived intracellular material is degraded. In the event of lysosomal membrane permeabilization (LMP), the function of endo/lysosomal compartment is affected and the luminal contents are released into the cytosol to various extents. LMP can be a result of osmotic lysis or direct membranolytic activity of the compounds that accumulate in the lumen of endo/lysosomes. In addition to several synthetic compounds, such as dipeptide methyl esters and lysosomotropic detergents, endogenous agents that can cause LMP include ROS and lipid metabolites such as sphingosine and phosphatidic acid. Depending on the cell type and the dose, LMP can initiate the lysosomal apoptotic pathway, pyroptosis or necrosis. LMP can also amplify cell death signaling that was initiated outside the endocytic compartment, and hamper cell recovery via autophagy. However, mechanisms that connect LMP with cell death signaling are poorly understood, with the exception of the proteolytic activation of Bid by aspartic cathepsin D and cysteine cathepsins. Determination of LMP in a cell model system is methodologically challenging. Even more difficult is to prove that LMP is the primary event leading to cell death. Nevertheless, LMP may prove to be a valuable approach in therapy, either as a trigger of cell death or as a mechanism of therapeutic drug release in the case of delivery systems that target the endocytic pathway. PMID:24984038

Repnik, Urška; Hafner ?esen, Maruša; Turk, Boris

2014-11-01

132

Lysosome-mediated processing of chromatin in senescence  

PubMed Central

Cellular senescence is a stable proliferation arrest, a potent tumor suppressor mechanism, and a likely contributor to tissue aging. Cellular senescence involves extensive cellular remodeling, including of chromatin structure. Autophagy and lysosomes are important for recycling of cellular constituents and cell remodeling. Here we show that an autophagy/lysosomal pathway processes chromatin in senescent cells. In senescent cells, lamin A/C–negative, but strongly ?-H2AX–positive and H3K27me3-positive, cytoplasmic chromatin fragments (CCFs) budded off nuclei, and this was associated with lamin B1 down-regulation and the loss of nuclear envelope integrity. In the cytoplasm, CCFs were targeted by the autophagy machinery. Senescent cells exhibited markers of lysosomal-mediated proteolytic processing of histones and were progressively depleted of total histone content in a lysosome-dependent manner. In vivo, depletion of histones correlated with nevus maturation, an established histopathologic parameter associated with proliferation arrest and clinical benignancy. We conclude that senescent cells process their chromatin via an autophagy/lysosomal pathway and that this might contribute to stability of senescence and tumor suppression. PMID:23816621

Ivanov, Andre; Pawlikowski, Jeff; Manoharan, Indrani; van Tuyn, John; Nelson, David M.; Rai, Taranjit Singh; Shah, Parisha P.; Hewitt, Graeme; Korolchuk, Viktor I.; Passos, Joao F.; Wu, Hong; Berger, Shelley L.

2013-01-01

133

M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis  

PubMed Central

Antiangiogenic therapy for the treatment of cancer and other neovascular diseases is desired to be selective for pathological angiogenesis and lymphangiogenesis. Macrophage colony-stimulating factor (M-CSF), a cytokine required for the differentiation of monocyte lineage cells, promotes the formation of high-density vessel networks in tumors and therefore possesses therapeutic potential as an M-CSF inhibitor. However, the physiological role of M-CSF in vascular and lymphatic development, as well as the precise mechanisms underlying the antiangiogenic effects of M-CSF inhibition, remains unclear. Moreover, therapeutic potential of M-CSF inhibition in other neovascular diseases has not yet been evaluated. We used osteopetrotic (op/op) mice to demonstrate that M-CSF deficiency reduces the abundance of LYVE-1+ and LYVE1? macrophages, resulting in defects in vascular and lymphatic development. In ischemic retinopathy, M-CSF was required for pathological neovascularization but was not required for the recovery of normal vasculature. In mouse osteosarcoma, M-CSF inhibition effectively suppressed tumor angiogenesis and lymphangiogenesis, and it disorganized extracellular matrices. In contrast to VEGF blockade, interruption of M-CSF inhibition did not promote rapid vascular regrowth. Continuous M-CSF inhibition did not affect healthy vascular and lymphatic systems outside tumors. These results suggest that M-CSF–targeted therapy is an ideal strategy for treating ocular neovascular diseases and cancer. PMID:19398755

Takubo, Keiyo; Shimizu, Takatsune; Ohno, Hiroaki; Kishi, Kazuo; Shibuya, Masabumi; Saya, Hideyuki; Suda, Toshio

2009-01-01

134

Selection of Nanobodies that Target Human Neonatal Fc Receptor  

PubMed Central

FcRn is a key player in several immunological and non-immunological processes, as it mediates maternal-fetal transfer of IgG, regulates the serum persistence of IgG and albumin, and transports both ligands between different cellular compartments. In addition, FcRn enhances antigen presentation. Thus, there is an intense interest in studies of how FcRn binds and transports its cargo within and across several types of cells, and FcRn detection reagents are in high demand. Here we report on phage display-selected Nanobodies that target human FcRn. The Nanobodies were obtained from a variable-domain repertoire library isolated from a llama immunized with recombinant human FcRn. One candidate, Nb218-H4, was shown to bind FcRn with high affinity at both acidic and neutral pH, without competing ligand binding and interfering with FcRn functions, such as transcytosis of IgG. Thus, Nb218-H4 can be used as a detection probe and as a tracker for visualization of FcRn-mediated cellular transport. PMID:23346375

Andersen, Jan Terje; Gonzalez-Pajuelo, Maria; Foss, Stian; Landsverk, Ole J. B.; Pinto, Débora; Szyroki, Alexander; de Haard, Hans J.; Saunders, Michael; Vanlandschoot, Peter; Sandlie, Inger

2013-01-01

135

Signaling from lysosomes to mitochondria sensitizes cancer cells to photodynamic treatment  

NASA Astrophysics Data System (ADS)

Previously, we showed that photosensitizers that localize to lysosomes are more effective in killing cancer cells than ones directed to mitochondria after photodynamic treatment (PDT). The photosensitizer, phthalocyanine 4 (Pc 4), localizes primarily to mitochondrial membranes in cancer cells, resulting in mitochondria-mediated cell death. However, analogues of Pc 4 (e.g., Pc 181) that primarily target lysosomes still produce mitochondria-mediated cell death, although the time course is slower compared to Pc 4-PDT. In A431 epidermoid carcinoma cells, these new analogues preferentially localized in lysosomes were highly efficient in inducing apoptotic cell death. To assess further how lysosomes contribute to PDT, we monitored cell killing of A431 cells after Pc 4-PDT in the presence and absence of bafilomycin, an inhibitor of the acidic vacuolar proton pump that collapses the pH gradient of the lysosomal/endosomal compartment. Bafilomycin by itself was not toxic but greatly enhanced Pc 4-PDT-induced mitochondrial depolarization and cell killing. Both depolarization and cell killing were substantially prevented by iron chelators. The fact that Pc 4-PDT plus bafilomycin treatment did not induce lysosomal membrane damage prior to mitochondrial depolarization suggests that bafilomycin instead induced release of redox active iron from lysosomes into the cytosol that further translocated into mitochondria, where iron-mediated free radical formation occurred. In conclusion, agents that disturb lysosomal function could potentially be used as adjuvants with mitochondrion-targeted photosensitizers to enhance phototoxicity.

Hung, Hsin-I.; Quiogue, Geraldine; Lemasters, John J.; Nieminen, Anna-Liisa

2011-02-01

136

Cathepsin Inhibition-Induced Lysosomal Dysfunction Enhances Pancreatic Beta-Cell Apoptosis in High Glucose  

PubMed Central

Autophagy is a lysosomal degradative pathway that plays an important role in maintaining cellular homeostasis. We previously showed that the inhibition of autophagy causes pancreatic ?-cell apoptosis, suggesting that autophagy is a protective mechanism for the survival of pancreatic ?-cells. The current study demonstrates that treatment with inhibitors and knockdown of the lysosomal cysteine proteases such as cathepsins B and L impair autophagy, enhancing the caspase-dependent apoptosis of INS-1 cells and islets upon exposure to high concentration of glucose. Interestingly, treatment with cathepsin B and L inhibitors prevented the proteolytic processing of cathepsins B, D and L, as evidenced by gradual accumulation of the respective pro-forms. Of note, inhibition of aspartic cathepsins had no effect on autophagy and cell viability, suggesting the selective role of cathepsins B and L in the regulation of ?-cell autophagy and apoptosis. Lysosomal localization of accumulated pro-cathepsins in the presence of cathepsin B and L inhibitors was verified via immunocytochemistry and lysosomal fractionation. Lysotracker staining indicated that cathepsin B and L inhibitors led to the formation of severely enlarged lysosomes in a time-dependent manner. The abnormal accumulation of pro-cathepsins following treatment with inhibitors of cathepsins B and L suppressed normal lysosomal degradation and the processing of lysosomal enzymes, leading to lysosomal dysfunction. Collectively, our findings suggest that cathepsin defects following the inhibition of cathepsin B and L result in lysosomal dysfunction and consequent cell death in pancreatic ?-cells. PMID:25625842

Jung, Minjeong; Lee, Jaemeun; Seo, Hye-Young; Lim, Ji Sun; Kim, Eun-Kyoung

2015-01-01

137

Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic Beta-cell apoptosis in high glucose.  

PubMed

Autophagy is a lysosomal degradative pathway that plays an important role in maintaining cellular homeostasis. We previously showed that the inhibition of autophagy causes pancreatic ?-cell apoptosis, suggesting that autophagy is a protective mechanism for the survival of pancreatic ?-cells. The current study demonstrates that treatment with inhibitors and knockdown of the lysosomal cysteine proteases such as cathepsins B and L impair autophagy, enhancing the caspase-dependent apoptosis of INS-1 cells and islets upon exposure to high concentration of glucose. Interestingly, treatment with cathepsin B and L inhibitors prevented the proteolytic processing of cathepsins B, D and L, as evidenced by gradual accumulation of the respective pro-forms. Of note, inhibition of aspartic cathepsins had no effect on autophagy and cell viability, suggesting the selective role of cathepsins B and L in the regulation of ?-cell autophagy and apoptosis. Lysosomal localization of accumulated pro-cathepsins in the presence of cathepsin B and L inhibitors was verified via immunocytochemistry and lysosomal fractionation. Lysotracker staining indicated that cathepsin B and L inhibitors led to the formation of severely enlarged lysosomes in a time-dependent manner. The abnormal accumulation of pro-cathepsins following treatment with inhibitors of cathepsins B and L suppressed normal lysosomal degradation and the processing of lysosomal enzymes, leading to lysosomal dysfunction. Collectively, our findings suggest that cathepsin defects following the inhibition of cathepsin B and L result in lysosomal dysfunction and consequent cell death in pancreatic ?-cells. PMID:25625842

Jung, Minjeong; Lee, Jaemeun; Seo, Hye-Young; Lim, Ji Sun; Kim, Eun-Kyoung

2015-01-01

138

A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR  

E-print Network

conditions, which include lysosomal storage diseases (LSDs), neurode- generative diseases, injuriesEMBO open A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via m, Department of Pediatrics, Federico II University, Naples, Italy The lysosome plays a key role in cellular

Sabatini, David M.

139

Optimizing spectroscopic and photometric galaxy surveys: efficient target selection and survey strategy  

NASA Astrophysics Data System (ADS)

The next generation of spectroscopic surveys will have a wealth of photometric data available for use in target selection. Selecting the best targets is likely to be one of the most important hurdles in making these spectroscopic campaigns as successful as possible. Our ability to measure dark energy depends strongly on the types of targets that we are able to select with a given photometric data set. We show in this paper that we will be able to successfully select the targets needed for the next generation of spectroscopic surveys. We also investigate the details of this selection, including optimization of instrument design and survey strategy in order to measure dark energy. We use colour-colour selection as well as neural networks to select the best possible emission-line galaxies and luminous red galaxies for a cosmological survey. Using the Fisher matrix formalism, we forecast the efficiency of each target selection scenarios. We show how the dark energy figures of merit change in each target selection regime as a function of target type, survey time, survey density and other survey parameters. We outline the optimal target selection scenarios and survey strategy choices which will be available to the next generation of spectroscopic surveys.

Jouvel, S.; Abdalla, F. B.; Kirk, D.; Lahav, O.; Lin, H.; Annis, J.; Kron, R.; Frieman, J. A.

2014-03-01

140

Target product selection - where can Molecular Pharming make the difference?  

PubMed

Four major developments have taken place in the world of Molecular Pharming recently. In the USA, the DARPA initiative challenged plant biotechnology companies to develop strategies for the large-scale manufacture of influenza vaccines, resulting in a successful Phase I clinical trial; in Europe the Pharma-Planta academic consortium gained regulatory approval for a plant-derived monoclonal antibody and completed a first-in-human phase I clinical trial; the Dutch pharmaceutical company Synthon acquired the assets of Biolex Therapeutics, an established Molecular Pharming company with several clinical candidates produced in their proprietary LEX system based on aquatic plants; and finally, the Israeli biotechnology company Protalix Biotherapeutics won FDA approval for the commercial release of a recombinant form of the enzyme glucocerebrosidase produced in carrot cells, the first plant biotechnology-derived biopharmaceutical in the world approved for the market. Commercial momentum is gathering pace with additional candidates now undergoing or awaiting approval for phase III clinical trials. Filling the product pipeline is vital to establish commercial sustainability, and the selection of appropriate target products for Molecular Pharming will be a critical factor. An interesting feature of the four stories outlined above is that they span the use of very different platform technologies addressing different types of molecules which aim to satisfy distinct market demands. In each case, Molecular Pharming was an economically and technically suitable approach, but this decisionmaking process is not necessarily straightforward. Although the various technologies available to Molecular Pharming are broad ranging and flexible, competing technologies are better established, so there needs to be a compelling reason to move into plants. It is most unlikely that plant biotechnology will be the answer for the whole biologics field. In this article, we discuss the current plant biotechnology approaches that appear to hold the greatest promise and in doing so attempt to define the product areas that are most likely to benefit from different Molecular Pharming technologies. PMID:23394563

Paul, Mathew J; Teh, Audrey Y H; Twyman, Richard M; Ma, Julian K-C

2013-01-01

141

Lysosomal exocytosis and lipid storage disorders.  

PubMed

Lysosomes are acidic compartments in mammalian cells that are primarily responsible for the breakdown of endocytic and autophagic substrates such as membranes, proteins, and lipids into their basic building blocks. Lysosomal storage diseases (LSDs) are a group of metabolic disorders caused by genetic mutations in lysosomal hydrolases required for catabolic degradation, mutations in lysosomal membrane proteins important for catabolite export or membrane trafficking, or mutations in nonlysosomal proteins indirectly affecting these lysosomal functions. A hallmark feature of LSDs is the primary and secondary excessive accumulation of undigested lipids in the lysosome, which causes lysosomal dysfunction and cell death, and subsequently pathological symptoms in various tissues and organs. There are more than 60 types of LSDs, but an effective therapeutic strategy is still lacking for most of them. Several recent in vitro and in vivo studies suggest that induction of lysosomal exocytosis could effectively reduce the accumulation of the storage materials. Meanwhile, the molecular machinery and regulatory mechanisms for lysosomal exocytosis are beginning to be revealed. In this paper, we first discuss these recent developments with the focus on the functional interactions between lipid storage and lysosomal exocytosis. We then discuss whether lysosomal exocytosis can be manipulated to correct lysosomal and cellular dysfunction caused by excessive lipid storage, providing a potentially general therapeutic approach for LSDs. PMID:24668941

Samie, Mohammad Ali; Xu, Haoxing

2014-03-25

142

Identification and Validation of Mannose 6Phosphate Glycoproteins in Human Plasma Reveal a Wide Range of Lysosomal and Non-lysosomal Proteins  

Microsoft Academic Search

Acid hydrolase activities are normally confined within the cell to the lysosome, a membrane-delimited cytoplasmic organelle primarily responsible for the degradation of macromolecules. However, lysosomal proteins are also present in human plasma, and a proportion of these retain mannose 6-phosphate (Man-6-P), a modification on N- linked glycans that is recognized by Man-6-P receptors (MPRs) that normally direct the targeting of

David E. Sleat; Yanhong Wang; Istvan Sohar; Henry Lackland; Yan Li; Hong Li; Haiyan Zheng; Peter Lobel

2006-01-01

143

Rescue of compromised lysosomes enhances degradation of photoreceptor outer segments and reduce lipofuscin-like autofluorescence  

PubMed Central

Healthful cell maintenance requires the efficient degradative processing and removal of waste material. Retinal pigmented epithelial (RPE) cells have the onerous task of degrading both internal cellular debris generated through autophagy as well as phagocytosed photoreceptor outer segments. We propose that the inadequate processing material with the resulting accumulation of cellular waste contributes to the downstream pathologies characterized as age-related macular degeneration (AMD). The lysosomal enzymes responsible for clearance function optimally over a narrow range of acidic pH values; elevation of lysosomal pH by compounds like chloroquine or A2E can impair degradative enzyme activity and lead to a lipofuscin-like autofluorescence. Restoring acidity to the lysosomes of RPE cells can enhance activity of multiple degradative enzymes and is therefore a logical target in early AMD. We have identified several approaches to reacidify lysosomes of compromised RPE cells; stimulation of beta-adrenergic, A2A adenosine and D5 dopamine receptors each lowers lysosomal pH and improves degradation of photoreceptor outer segments. Activation of the CFTR chloride channel also reacidifies lysosomes and increases degradation. These approaches also restore the lysosomal pH of RPE cells from aged ABCA4?/? mice with chronically high levels of A2E, suggesting that functional signaling pathways to reacidify lysosomes are retained in aged cells like those in patients with AMD. Acidic nanoparticles transported to RPE lysosomes also lower pH and improve degradation of outer segments. In summary, the ability of diverse approaches to lower lysosomal pH and enhance outer segment degradation support the proposal that lysosomal acidification can prevent the accumulation of lipofuscin-like material in RPE cells. PMID:24664687

Guha, Sonia; Liu, Ji; Baltazar, Gabe; Laties, Alan M.; Mitchell, Claire H.

2014-01-01

144

Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells.  

PubMed

Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets. PMID:23071517

Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth; Petersen, Nikolaj H T; Nylandsted, Jesper; Jäättelä, Marja

2012-01-01

145

Identification of Cytoskeleton-Associated Proteins Essential for Lysosomal Stability and Survival of Human Cancer Cells  

PubMed Central

Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets. PMID:23071517

Corcelle-Termeau, Elisabeth; Petersen, Nikolaj H. T.; Nylandsted, Jesper; Jäättelä, Marja

2012-01-01

146

Potential Pitfalls and Solutions for Use of Fluorescent Fusion Proteins to Study the Lysosome  

PubMed Central

Use of fusion protein tags to investigate lysosomal proteins can be complicated by the acidic, protease-rich environment of the lysosome. Potential artifacts include degradation or release of the tag and acid quenching of fluorescence. Tagging can also affect protein folding, glycosylation and/or trafficking. To specifically investigate the use of fluorescent tags to reveal lysosomal localization, we tested mCherry derivatives as C-terminal tags for Niemann-Pick disease type C protein 2 (NPC2), a luminal lysosomal protein. Full-length mCherry was released from the NPC2 chimera while deletion of the 11 N-terminal residues of mCherry generated a cleavage-resistant (cr) fluorescent variant. Insertion of proline linkers between NPC2 and crmCherry had little effect while Gly-Ser linkers promoted cleavage. The NPC2-crmCherry fusion was targeted to the lysosome and restored function in NPC2-deficient cells. Fusion of crmCherry to known and candidate lysosomal proteins revealed that the linkers had different effects on lysosomal localization. Direct fusion of crmCherry impaired mannose 6-phosphorylation and lysosomal targeting of the lysosomal protease tripeptidyl peptidase I (TPP1), while insertion of linkers corrected the defects. Molecular modeling suggested structural bases for the effects of different linkers on NPC2 and TPP1 fusion proteins. While mCherry fusion proteins can be useful tools for studying the lysosome and related organelles, our findings underscore the potential artifacts associated with such applications. PMID:24586430

Huang, Ling; Pike, Douglas; Sleat, David E.; Nanda, Vikas; Lobel, Peter

2014-01-01

147

Reprogramming of lysosomal gene expression by interleukin-4 and Stat6  

PubMed Central

Background Lysosomes play important roles in multiple aspects of physiology, but the problem of how the transcription of lysosomal genes is coordinated remains incompletely understood. The goal of this study was to illuminate the physiological contexts in which lysosomal genes are coordinately regulated and to identify transcription factors involved in this control. Results As transcription factors and their target genes are often co-regulated, we performed meta-analyses of array-based expression data to identify regulators whose mRNA profiles are highly correlated with those of a core set of lysosomal genes. Among the ~50 transcription factors that rank highest by this measure, 65% are involved in differentiation or development, and 22% have been implicated in interferon signaling. The most strongly correlated candidate was Stat6, a factor commonly activated by interleukin-4 (IL-4) or IL-13. Publicly available chromatin immunoprecipitation (ChIP) data from alternatively activated mouse macrophages show that lysosomal genes are overrepresented among Stat6-bound targets. Quantification of RNA from wild-type and Stat6-deficient cells indicates that Stat6 promotes the expression of over 100 lysosomal genes, including hydrolases, subunits of the vacuolar H+ ATPase and trafficking factors. While IL-4 inhibits and activates different sets of lysosomal genes, Stat6 mediates only the activating effects of IL-4, by promoting increased expression and by neutralizing undefined inhibitory signals induced by IL-4. Conclusions The current data establish Stat6 as a broadly acting regulator of lysosomal gene expression in mouse macrophages. Other regulators whose expression correlates with lysosomal genes suggest that lysosome function is frequently re-programmed during differentiation, development and interferon signaling. PMID:24314139

2013-01-01

148

Potential pitfalls and solutions for use of fluorescent fusion proteins to study the lysosome.  

PubMed

Use of fusion protein tags to investigate lysosomal proteins can be complicated by the acidic, protease-rich environment of the lysosome. Potential artifacts include degradation or release of the tag and acid quenching of fluorescence. Tagging can also affect protein folding, glycosylation and/or trafficking. To specifically investigate the use of fluorescent tags to reveal lysosomal localization, we tested mCherry derivatives as C-terminal tags for Niemann-Pick disease type C protein 2 (NPC2), a luminal lysosomal protein. Full-length mCherry was released from the NPC2 chimera while deletion of the 11 N-terminal residues of mCherry generated a cleavage-resistant (cr) fluorescent variant. Insertion of proline linkers between NPC2 and crmCherry had little effect while Gly-Ser linkers promoted cleavage. The NPC2-crmCherry fusion was targeted to the lysosome and restored function in NPC2-deficient cells. Fusion of crmCherry to known and candidate lysosomal proteins revealed that the linkers had different effects on lysosomal localization. Direct fusion of crmCherry impaired mannose 6-phosphorylation and lysosomal targeting of the lysosomal protease tripeptidyl peptidase I (TPP1), while insertion of linkers corrected the defects. Molecular modeling suggested structural bases for the effects of different linkers on NPC2 and TPP1 fusion proteins. While mCherry fusion proteins can be useful tools for studying the lysosome and related organelles, our findings underscore the potential artifacts associated with such applications. PMID:24586430

Huang, Ling; Pike, Douglas; Sleat, David E; Nanda, Vikas; Lobel, Peter

2014-01-01

149

Impairment of homeostasis in lysosomal storage disorders.  

PubMed

Lysosomal storage disorders (LSDs) are inherited metabolic diseases caused by deficiencies in lysosomal proteins, which result in accumulation of undegraded metabolites and disruption of lysosomal proteostasis. Despite significant progress in the molecular genetics and biochemistry underlying the cellular pathogenesis of LSDs, the mechanisms that link accumulation of storage material to development and progression of these diseases are still unclear. At the crossroad of degradative pathways, lysosomes play a fundamental role in the maintenance of cellular homeostasis. Through a series of examples, this review illustrates how defects in lysosomal biogenesis and function impact a number of cellular pathways that are involved in the pathogenic cascade. PMID:25044960

Segatori, Laura

2014-07-01

150

Classification of Subcellular Location by Comparative Proteomic Analysis of Native and Density-shifted Lysosomes*  

PubMed Central

One approach to the functional characterization of the lysosome lies in the use of proteomic methods to identify proteins in subcellular fractions enriched for this organelle. However, distinguishing between true lysosomal residents and proteins from other cofractionating organelles is challenging. To this end, we implemented a quantitative mass spectrometry approach based on the selective decrease in the buoyant density of liver lysosomes that occurs when animals are treated with Triton-WR1339. Liver lysosome-enriched preparations from control and treated rats were fractionated by isopycnic sucrose density gradient centrifugation. Tryptic peptides derived from gradient fractions were reacted with isobaric tag for relative and absolute quantitation eight-plex labeling reagents and analyzed by two-dimensional liquid chromatography matrix-assisted laser desorption ionization time-of-flight MS. Reporter ion intensities were used to generate relative protein distribution profiles across both types of gradients. A distribution index was calculated for each identified protein and used to determine a probability of lysosomal residence by quadratic discriminant analysis. This analysis suggests that several proteins assigned to the lysosome in other proteomics studies are not true lysosomal residents. Conversely, results support lysosomal residency for other proteins that are either not or only tentatively assigned to this location. The density shift for two proteins, Cu/Zn superoxide dismutase and ATP-binding cassette subfamily B (MDR/TAP) member 6, was corroborated by quantitative Western blotting. Additional balance sheet analyses on differential centrifugation fractions revealed that Cu/Zn superoxide dismutase is predominantly cytosolic with a secondary lysosomal localization whereas ATP-binding cassette subfamily B (MDR/TAP) member 6 is predominantly lysosomal. These results establish a quantitative mass spectrometric/subcellular fractionation approach for identification of lysosomal proteins and underscore the necessity of balance sheet analysis for localization studies. PMID:21252268

Della Valle, Maria Cecilia; Sleat, David E.; Zheng, Haiyan; Moore, Dirk F.; Jadot, Michel; Lobel, Peter

2011-01-01

151

PLEKHM1 Regulates Autophagosome-Lysosome Fusion through HOPS Complex and LC3/GABARAP Proteins.  

PubMed

The lysosome is the final destination for degradation of endocytic cargo, plasma membrane constituents, and intracellular components sequestered by macroautophagy. Fusion of endosomes and autophagosomes with the lysosome depends on the GTPase Rab7 and the homotypic fusion and protein sorting (HOPS) complex, but adaptor proteins that link endocytic and autophagy pathways with lysosomes are poorly characterized. Herein, we show that Pleckstrin homology domain containing protein family member 1 (PLEKHM1) directly interacts with HOPS complex and contains a LC3-interacting region (LIR) that mediates its binding to autophagosomal membranes. Depletion of PLEKHM1 blocks lysosomal degradation of endocytic (EGFR) cargo and enhances presentation of MHC class I molecules. Moreover, genetic loss of PLEKHM1 impedes autophagy flux upon mTOR inhibition and PLEKHM1 regulates clearance of protein aggregates in an autophagy- and LIR-dependent manner. PLEKHM1 is thus a multivalent endocytic adaptor involved in the lysosome fusion events controlling selective and nonselective autophagy pathways. PMID:25498145

McEwan, David G; Popovic, Doris; Gubas, Andrea; Terawaki, Seigo; Suzuki, Hironori; Stadel, Daniela; Coxon, Fraser P; Miranda de Stegmann, Diana; Bhogaraju, Sagar; Maddi, Karthik; Kirchof, Anja; Gatti, Evelina; Helfrich, Miep H; Wakatsuki, Soichi; Behrends, Christian; Pierre, Philippe; Dikic, Ivan

2015-01-01

152

Measuring relative lysosomal volume for monitoring lysosomal storage diseases.  

PubMed

Biomarkers are important tools in medicine, which can be used for monitoring disease progression and response to therapy. One of the main problems in rare lysosomal storage diseases is that there are over 70 different diseases, all with different biochemical storage profiles. Developing biochemical biomarkers therefore requires an individual assay per disease/subgroup of diseases. An alternative approach is to develop an assay that is independent of the specific macromolecules stored. This chapter discusses an assay that may serve as a universal biomarker for these diseases and measures the expansion of the late endosomal/lysosomal system. We have developed an assay that takes advantage of a commercially available late endosomal/lysosomal probe, LysoTracker, which becomes trapped in the acidic compartment of cells and emits a fluorescent signal that can be detected using flow cytometry. In this chapter, we detail the methodology behind this assay and discuss the factors that need to be considered when establishing this assay in clinical and research settings. PMID:25665453

Te Vruchte, Danielle; Wallom, Kerri L; Platt, Frances M

2015-01-01

153

Specific lysosomal transport of small neutral amino acids  

SciTech Connect

Studies of amino acid exodus from lysosomes have allowed us previously to describe transport systems specific for cystine and another for cationic amino acids in fibroblast lysosomes. They are now able to study amino acid uptake into highly purified fibroblast lysosomes obtained by separating crude granular fraction on gradients formed by centrifugation in 35% isoosmotic Percoll solutions. Analog inhibition and saturation studies indicate that L-(/sup 14/C)proline (50 ..mu..M) uptake by fibroblast lysosomes at 37/sup 0/C in 50 mM citrate/tris pH 7.0 buffer containing 0.25 M sucrose is mediated by two transport systems, one largely specific for L-proline and the other for which transport is shared with small neutral amino acids such as alanine, serine and threonine. At 7 mM, L-proline inhibits L-(/sup 14/C)proline uptake almost completely, whereas ala, ser, val, thr, gly, N-methylalanine and sarcosine inhibit proline uptake by 50-65%. The system shared by alanine, serine and threonine is further characterized by these amino acids strongly inhibiting the uptakes of each other. Lysosomal proline transport is selective for the L-isomer of the amino acid, and is scarcely inhibited by 7 mM arg, glu, asp, leu, phe, his, met, (methylamino) isobutyrate, betaine or N,N-dimethylglycine. Cis or trans-4-hydroxy-L-proline inhibit proline uptake only slightly. In sharp contrast to the fibroblast plasma membrane in which Na/sup +/ is required for most proline and alanine transport, lysosomal uptake of these amino acids occurs independently of Na/sup +/.

Pisoni, R.L.; Flickinger, K.S.; Thoene, J.G.; Christensen, H.N.

1986-05-01

154

Rhodamine-based fluorescent probe for direct bio-imaging of lysosomal pH changes.  

PubMed

Intracellular pH plays a pivotal role in various biological processes. In eukaryotic cells, lysosomes contain numerous enzymes and proteins exhibiting a variety of activities and functions at acidic pH (4.5-5.5), and abnormal variation in the lysosomal pH causes defects in lysosomal function. Thus, it is important to investigate lysosomal pH in living cells to understand its physiological and pathological processes. In this work, we designed a one-step synthesized rhodamine derivative (RM) with morpholine as a lysosomes tracker, to detect lysosomal pH changes with high sensitivity, high selectivity, high photostability and low cytotoxicity. The probe RM shows a 140-fold fluorescence enhancement over a pH range from 7.4 to 4.5 with a pKa value of 5.23. Importantly, RM can detect the chloroquine-induced lysosomal pH increase and monitor the dexamethasone-induced lysosomal pH changes during apoptosis in live cells. All these features demonstrate its value of practical application in biological systems. PMID:25159421

Shi, Xue-Lin; Mao, Guo-Jiang; Zhang, Xiao-Bing; Liu, Hong-Wen; Gong, Yi-Jun; Wu, Yong-Xiang; Zhou, Li-Yi; Zhang, Jing; Tan, Weihong

2014-12-01

155

Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets  

Microsoft Academic Search

Microbial production strains are currently improved using a combination of random and targeted approaches. In the case of a targeted approach, potential bottlenecks, feed-back inhibition, and side-routes are removed, and other processes of interest are targeted by overexpressing or knocking-out the gene(s) of interest. To date, the selection of these targets has been based at its best on expert knowledge,

Mariët J. van der Werf; Renger H. Jellema; Thomas Hankemeier

2005-01-01

156

Genes Associated with SLE Are Targets of Recent Positive Selection  

PubMed Central

The reasons for the ethnic disparities in the prevalence of systemic lupus erythematosus (SLE) and the relative high frequency of SLE risk alleles in the population are not fully understood. Population genetic factors such as natural selection alter allele frequencies over generations and may help explain the persistence of such common risk variants in the population and the differential risk of SLE. In order to better understand the genetic basis of SLE that might be due to natural selection, a total of 74 genomic regions with compelling evidence for association with SLE were tested for evidence of recent positive selection in the HapMap and HGDP populations, using population differentiation, allele frequency, and haplotype-based tests. Consistent signs of positive selection across different studies and statistical methods were observed at several SLE-associated loci, including PTPN22, TNFSF4, TET3-DGUOK, TNIP1, UHRF1BP1, BLK, and ITGAM genes. This study is the first to evaluate and report that several SLE-associated regions show signs of positive natural selection. These results provide corroborating evidence in support of recent positive selection as one mechanism underlying the elevated population frequency of SLE risk loci and supports future research that integrates signals of natural selection to help identify functional SLE risk alleles. PMID:24587899

Ramos, Paula S.; Shaftman, Stephanie R.; Ward, Ralph C.; Langefeld, Carl D.

2014-01-01

157

Analysis of post-lysosomal compartments.  

PubMed

Lysosomes are acidic intracellular compartments and are regarded as degradative and the end point, of the endocytic pathway. Here we provide evidence for the generation of acid hydrolase poor and non-acidic post-lysosomal compartments in NRK cells that have accumulated non-digestible macromolecules, Texas red-dextran (TR-Dex), within lysosomes. When TR-Dex was fed to the cells for 6h, most of the internalized TR-Dex colocalized with a lysosomal enzyme, cathepsin D. With an increase in the chase period, however, the internalized TR-Dex gradually accumulated in cathepsin D-negative vesicles. These vesicles were positive for a lysosomal membrane protein, LGP85, and their formation was inhibited by treatment of the cells with U18666A, which impairs membrane transport out of late endosomal/lysosomal compartments, thereby suggesting that the vesicles are derived from lysosomes. Interestingly, these compartments are non-acidic as judged for the DAMP staining. The results, therefore, suggest that the excess accumulation of non-digestible macromolecules within lysosomes induces the formation of acid hydrolase poor and non-acidic post-lysosomal compartments. The fact that treatment of the cells with lysosomotropic amines or a microtubule-depolymerization agent resulted in extensive colocalization of TR-Dex with cathepsin D further indicates that the formation of the post-lysosomal compartments depends on the lysosomal acidification and microtubule organization. Furthermore, these results suggest bi-directional membrane transport between lysosomes and the post-lysosomal compartments, which implies that the latter are not resting compartments. PMID:14733906

Hirota, Yuko; Masuyama, Naoko; Kuronita, Toshio; Fujita, Hideaki; Himeno, Masaru; Tanaka, Yoshitaka

2004-02-01

158

Impaired lysosomal cobalamin transport in Alzheimer's disease.  

PubMed

Cobalamin (vitamin B12) is required for erythrocyte formation and DNA synthesis and it plays a crucial role in maintaining neurological function. As a coenzyme for methionine synthase and methylmalonyl-CoA mutase, cobalamin utilization depends on its efficient transit through the intracellular lysosomal compartment and subsequent delivery to the cytosol and mitochondria. Lysosomal function deteriorates in Alzheimer's disease (AD). Lysosomal acidification is defective in AD and lysosomal proteolysis is disrupted by AD-related presenilin 1 mutation. In this study, we propose that AD related lysosomal dysfunction may impair lysosomal cobalamin transport. The experiments use in vitro and in vivo models of AD to define how lysosomal dysfunction directly affects cobalamin utilization. SH-SY5Y-A?PP mutant cells were treated with a proteasome inhibitor to induce lysosomal amyloid-? accumulation. We metabolically labeled these cells with [57Co] cobalamin and isolated purified lysosomes, mitochondria, and cytosol fractions. The results indicated that proteasome inhibition was associated with lysosomal amyloid-? accumulation and a doubling of lysosomal [57Co] cobalamin levels. We also used A?PPxPS1 transgenic AD mice that were intraperitoneally injected with [57Co] cobalamin. The amount of [57Co] cobalamin in the major organs of these mice was measured and the subcellular [57Co] cobalamin distribution in the brain was assessed. The results demonstrated that lysosomal [57Co] cobalamin level was significantly increased by 56% in the A?PPxPS1 AD mouse brains as compared to wild type control mice. Together these data provide evidence that lysosomal cobalamin may be impaired in AD in association with amyloid-? accumulation. PMID:25125476

Zhao, Hua; Li, Hongyun; Ruberu, Kalani; Garner, Brett

2015-01-01

159

Genome-wide polymorphisms show unexpected targets of natural selection  

PubMed Central

Natural selection can act on all the expressed genes of an individual, leaving signatures of genetic differentiation or diversity at many loci across the genome. New power to assay these genome-wide effects of selection comes from associating multi-locus patterns of polymorphism with gene expression and function. Here, we performed one of the first genome-wide surveys in a marine species, comparing purple sea urchins, Strongylocentrotus purpuratus, from two distant locations along the species' wide latitudinal range. We examined 9112 polymorphic loci from upstream non-coding and coding regions of genes for signatures of selection with respect to gene function and tissue- and ontogenetic gene expression. We found that genetic differentiation (FST) varied significantly across functional gene classes. The strongest enrichment occurred in the upstream regions of E3 ligase genes, enzymes known to regulate protein abundance during development and environmental stress. We found enrichment for high heterozygosity in genes directly involved in immune response, particularly NALP genes, which mediate pro-inflammatory signals during bacterial infection. We also found higher heterozygosity in immune genes in the southern population, where disease incidence and pathogen diversity are greater. Similar to the major histocompatibility complex in mammals, balancing selection may enhance genetic diversity in the innate immune system genes of this invertebrate. Overall, our results show that how genome-wide polymorphism data coupled with growing databases on gene function and expression can combine to detect otherwise hidden signals of selection in natural populations. PMID:21993504

Pespeni, Melissa H.; Garfield, David A.; Manier, Mollie K.; Palumbi, Stephen R.

2012-01-01

160

Immune system irregularities in lysosomal storage disorders  

Microsoft Academic Search

Lysosomal storage disorders (LSDs) are genetically inherited diseases characterized by the accumulation of disease-specific\\u000a biological materials such as proteolipids or metabolic intermediates within the lysosome. The lysosomal compartment’s central\\u000a importance to normal cellular function can be appreciated by examining the various pathologies that arise in LSDs. These disorders\\u000a are invariably fatal, and many display profound neurological impairment that begins in

Julian A. Castaneda; Ming J. Lim; Jonathan D. Cooper; David A. Pearce

2008-01-01

161

Molecular heterogeneity in lysosomal storage diseases  

Microsoft Academic Search

The availability of specific antibodies and cDNA probes for lysosomal hydrolases has revealed unexpected heterogeneity among\\u000a the human inherited lysosomal storage diseases. Using ?-fucosidase andN-acetyl-?-D-hexosaminidase deficiency variants as examples, it has been determined that a lysosomal hydrolase deficiency can result from\\u000a DNA deletion mutations, failure to synthesize mRNA because of defective splicing, posttranslational defects in assembly, and\\u000a synthesis of a

Glyn Dawson; Karl Johnson; Norah R. McCabe; Larry W. Hancock

1988-01-01

162

Subversion of a lysosomal pathway regulating neutrophil apoptosis by a major bacterial toxin, pyocyanin.  

PubMed

Neutrophils undergo rapid constitutive apoptosis that is accelerated following bacterial ingestion as part of effective immunity, but is also accelerated by bacterial exotoxins as a mechanism of immune evasion. The paradigm of pathogen-driven neutrophil apoptosis is exemplified by the Pseudomonas aeruginosa toxic metabolite, pyocyanin. We previously showed pyocyanin dramatically accelerates neutrophil apoptosis both in vitro and in vivo, impairs host defenses, and favors bacterial persistence. In this study, we investigated the mechanisms of pyocyanin-induced neutrophil apoptosis. Pyocyanin induced early lysosomal dysfunction, shown by altered lysosomal pH, within 15 min of exposure. Lysosomal disruption was followed by mitochondrial membrane permeabilization, caspase activation, and destabilization of Mcl-1. Pharmacological inhibitors of a lysosomal protease, cathepsin D (CTSD), abrogated pyocyanin-induced apoptosis, and translocation of CTSD to the cytosol followed pyocyanin treatment and lysosomal disruption. A stable analog of cAMP (dibutyryl cAMP) impeded the translocation of CTSD and prevented the destabilization of Mcl-1 by pyocyanin. Thus, pyocyanin activated a coordinated series of events dependent upon lysosomal dysfunction and protease release, the first description of a bacterial toxin using a lysosomal cell death pathway. This may be a pathological pathway of cell death to which neutrophils are particularly susceptible, and could be therapeutically targeted to limit neutrophil death and preserve host responses. PMID:18292577

Prince, Lynne R; Bianchi, Stephen M; Vaughan, Kathryn M; Bewley, Martin A; Marriott, Helen M; Walmsley, Sarah R; Taylor, Graham W; Buttle, David J; Sabroe, Ian; Dockrell, David H; Whyte, Moira K B

2008-03-01

163

Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization.  

PubMed

Crotamine, one of the main toxic components of Crotalus durissus terrificus venom, is a small non-enzymatic basic polypeptide, which causes hind limb paralysis and necrosis of muscle cells. It is well-known that several toxins penetrate into the cytosol through endocytosis, although in many cases the mechanism by which this occurs has not been fully investigated. Recently, using low concentrations of crotamine, we demonstrated the uptake of this toxin into actively proliferative cells via endocytosis, an event that ensues crotamine binding to cell membrane heparan sulfate proteoglycans. Thus, crotamine can be regarded as a cell-penetrating peptide that, additionally, has been shown to be able of delivering some biologically active molecules into various cells. Herein, we investigate one of the mechanisms by which crotamine exerts its cytotoxic effects by following its uptake into highly proliferative cells, as CHO-K1 cells. Crotamine accumulation in the acidic endosomal/lysosomal vesicles was observed within 5 in after treatment of these cells with a cytotoxic concentration of this toxin, a value determined here by classical MTT assay. This accumulation caused disruption of lysosomal vesicles accompanied by the leakage of these vesicles contents into the cytosol. This lysosomal lysis also promoted the release of cysteine cathepsin and an increase of caspase activity in the cytoplasm. This chain of events seems to trigger a cell death process. Overall, our data suggest that lysosomes are the primary targets for crotamine cytotoxicity, a proposal corroborated by the correlation between both the kinetics and concentration-dependence of crotamine accumulation in lysosome compartments and the cytotoxic effects of this protein in CHO-K1 cells. Although crotamine is usually regarded as a myotoxin, we observed that intraperitoneal injection of fluorescently labeled crotamine in living mice led to significant and rapid accumulation of this toxin in the cell cytoplasm of several tissues, suggesting that crotamine cytotoxicity might not be restricted to muscle cells. PMID:18662711

Hayashi, Mirian A F; Nascimento, Fábio D; Kerkis, Alexandre; Oliveira, Vitor; Oliveira, Eduardo B; Pereira, Alexandre; Rádis-Baptista, Gandhi; Nader, Helena B; Yamane, Tetsuo; Kerkis, Irina; Tersariol, Ivarne L S

2008-09-01

164

Initial basalt target site selection evaluation for the Mars penetrator drop test  

NASA Technical Reports Server (NTRS)

Potential basalt target sites for an air drop penetrator test were described and the criteria involved in site selection were discussed. A summary of the background field geology and recommendations for optimum sites are also presented.

Bunch, T. E.; Quaide, W. L.; Polkowski, G.

1976-01-01

165

Reach target selection in humans using ambiguous decision cues containing variable amounts of conflicting sensory evidence supporting each target choice.  

PubMed

Human subjects chose between two color-coded reach targets using multicolored checkerboard-like decision cues (DCs) that presented variable amounts of conflicting sensory evidence supporting both target choices. Different DCs contained different numbers of small squares of the two target colors. The most ambiguous DCs contained nearly equal numbers of squares of both target colors. The subjects reached as soon as they selected a target after the appearance of the DC ("choose-and-go" task). The choice behavior of the subjects showed many similarities to prior studies using other stimulus properties (e.g., visual motion coherence, brightness), including progressively longer response times and higher target-choice error rates for more ambiguous DCs. However, certain trends in their choice behavior could not be fully captured by simple drift-diffusion models. Allowing the subjects to view the DCs for a period of time before presenting the targets ("match-to-sample" task) resulted in much shorter response times overall, but also revealed a reluctance of subjects to commit to a decision about the predominant color of the more ambiguous DCs during the initial extended observation period. Model processing and simulation analyses suggest that the subjects might adjust the dynamics of their decision-making process on a trial-to-trial basis in response to the variable level of ambiguous and conflicting evidence in different DCs between trials. PMID:25210160

Coallier, Emilie; Kalaska, John F

2014-12-01

166

Disulfiram-induced cytotoxicity and endo-lysosomal sequestration of zinc in breast cancer cells  

PubMed Central

Disulfiram, a clinically used alcohol-deterrent has gained prominence as a potential anti-cancer agent due to its impact on copper-dependent processes. Few studies have investigated zinc effects on disulfiram action, despite it having high affinity for this metal. Here we studied the cytotoxic effects of disulfiram in breast cancer cells, and its relationship with both intra and extracellular zinc. MCF-7 and BT474 cancer cell lines gave a striking time-dependent biphasic cytotoxic response between 0.01 and 10 ?M disulfiram. Co-incubation of disulfiram with low-level zinc removed this effect, suggesting that availability of extracellular zinc significantly influences disulfiram efficacy. Live-cell confocal microscopy using fluorescent endocytic probes and the zinc dye Fluozin-3 revealed that disulfiram selectively and rapidly increased zinc levels in endo-lysosomes. Disulfiram also caused spatial disorganization of late endosomes and lysosomes, suggesting they are novel targets for this drug. This relationship between disulfiram toxicity and ionophore activity was consolidated via synthesis of a new disulfiram analog and overall we demonstrate a novel mechanism of disulfiram-cytotoxicity with significant clinical implications for future use as a cancer therapeutic. PMID:25557293

Wiggins, Helen L.; Wymant, Jennifer M.; Solfa, Francesca; Hiscox, Stephen E.; Taylor, Kathryn M.; Westwell, Andrew D.; Jones, Arwyn T.

2015-01-01

167

Auditory Stream Segregation Improves Infants' Selective Attention to Target Tones Amid Distracters  

ERIC Educational Resources Information Center

This study examined the role of auditory stream segregation in the selective attention to target tones in infancy. Using a task adapted from Bregman and Rudnicky's 1975 study and implemented in a conditioned head-turn procedure, infant and adult listeners had to discriminate the temporal order of 2,200 and 2,400 Hz target tones presented alone,…

Smith, Nicholas A.; Trainor, Laurel J.

2011-01-01

168

Salience-Based Selection: Attentional Capture by Distractors Less Salient Than the Target  

PubMed Central

Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience. PMID:23382820

Goschy, Harriet; Müller, Hermann Joseph

2013-01-01

169

Therapeutics, Targets, and Chemical Biology Small-Molecule Anticancer Compounds Selectively Target  

E-print Network

the Hemopexin Domain of Matrix Metalloproteinase-9 Antoine Dufour1,2 , Nicole S. Sampson2 , Jian Li1 , Cem Kuscu1,6 , and Jian Cao1 Abstract Lack of target specificity by existing matrix metalloproteinase (MMP the role of matrix metalloproteinases (MMP) in early aspects of cancer dissemination (1­3). The demonstra

Rizzo, Robert C.

170

Cancer Cell-Selective In Vivo Near Infrared Photoimmunotherapy Targeting Specific Membrane Molecules  

PubMed Central

Three major modes of cancer therapies, surgery, radiation and chemotherapy, have been the mainstay of modern oncologic therapy. To minimize side effects, molecular targeted cancer therapies including armed antibody therapy have been developed with limited success. In this study, we developed a new type of molecular targeted cancer therapy, photoimmunotherapy (PIT), employing a target-specific photosensitizer based on a near infrared (NIR) phthalocyanine dye, IR700, conjugated to monoclonal antibodies (MAb) targeting epidermal growth factor receptors (EGFR). Cell death was induced immediately only upon irradiating, MAb-IR700 bound, target cells with NIR light. In vivo tumor shrinkage after irradiation with NIR light was observed only in target EGFR-expressing cells. The MAb-IR700 conjugates were most effective when bound to the cell membrane, producing no phototoxicity when not bound, suggesting a different mechanism for PIT compared with conventional photodynamic therapies. Target selective PIT enables treatment of cancer based on MAb binding on the cell membrane. PMID:22057348

Mitsunaga, Makoto; Ogawa, Mikako; Kosaka, Nobuyuki; Rosenblum, Lauren T.; Choyke, Peter L; Kobayashi, Hisataka

2011-01-01

171

Concept for On-Board Safe Landing Target Selection and Landing for the Mars 2020 Mission  

NASA Astrophysics Data System (ADS)

We present a concept for a potential enhancement to Mars 2020 to enable landing on hazardous landing sites. It adds to MSL-EDL the capability to select and divert to a safe site through on-board terrain relative localization and target selection.

Brugarolas, P.; Chen, A.; Johnson, A.; Casoliva, J.; Singh, G.; Stehura, A.; Way, D.; Dutta, S.

2014-06-01

172

Selective cavitand-mediated endocytosis of targeted imaging agents into live cells.  

PubMed

A water-soluble synthetic receptor molecule is capable of selective, controlled endocytosis of a specifically tagged target molecule in different types of living human cells. The presence of suitable choline-derived binding handles is essential for the molecular recognition and transport process, allowing selective guest transport and imaging of cancer cells. PMID:23621383

Ghang, Yoo-Jin; Schramm, Michael P; Zhang, Fan; Acey, Roger A; David, Clement N; Wilson, Emma H; Wang, Yinsheng; Cheng, Quan; Hooley, Richard J

2013-05-15

173

Increasing intracellular bioavailable copper selectively targets prostate cancer cells.  

PubMed

The therapeutic efficacy of two bis(thiosemicarbazonato) copper complexes, glyoxalbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(gtsm)] and diacetylbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(atsm)], for the treatment of prostate cancer was assessed in cell culture and animal models. Distinctively, copper dissociates intracellularly from Cu(II)(gtsm) but is retained by Cu(II)(atsm). We further demonstrated that intracellular H2gtsm [reduced Cu(II)(gtsm)] continues to redistribute copper into a bioavailable (exchangeable) pool. Both Cu(II)(gtsm) and Cu(II)(atsm) selectively kill transformed (hyperplastic and carcinoma) prostate cell lines but, importantly, do not affect the viability of primary prostate epithelial cells. Increasing extracellular copper concentrations enhanced the therapeutic capacity of both Cu(II)(gtsm) and Cu(II)(atsm), and their ligands (H2gtsm and H2atsm) were toxic only toward cancerous prostate cells when combined with copper. Treatment of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model with Cu(II)(gtsm) (2.5 mg/kg) significantly reduced prostate cancer burden (?70%) and severity (grade), while treatment with Cu(II)(atsm) (30 mg/kg) was ineffective at the given dose. However, Cu(II)(gtsm) caused mild kidney toxicity in the mice, associated primarily with interstitial nephritis and luminal distention. Mechanistically, we demonstrated that Cu(II)(gtsm) inhibits proteasomal chymotrypsin-like activity, a feature further established as being common to copper-ionophores that increase intracellular bioavailable copper. We have demonstrated that increasing intracellular bioavailable copper can selectively kill cancerous prostate cells in vitro and in vivo and have revealed the potential for bis(thiosemicarbazone) copper complexes to be developed as therapeutics for prostate cancer. PMID:23656859

Cater, Michael A; Pearson, Helen B; Wolyniec, Kamil; Klaver, Paul; Bilandzic, Maree; Paterson, Brett M; Bush, Ashley I; Humbert, Patrick O; La Fontaine, Sharon; Donnelly, Paul S; Haupt, Ygal

2013-07-19

174

Lysosomal cysteine proteases: more than scavengers  

Microsoft Academic Search

Lysosomal cysteine proteases were believed to be mainly involved in intracellular protein degradation. Under special conditions they have been found outside lysosomes resulting in pathological conditions. With the discovery of a series of new cathepsins with restricted tissue distributions, it has become evident that these enzymes must be involved in a range of specific cellular tasks much broader than as

Boris Turk; Dušan Turk; Vito Turk

2000-01-01

175

Engineering of Targeted Nanoparticles for Cancer Therapy Using Internalizing Aptamers Isolated by Cell-Uptake Selection  

PubMed Central

One of the major challenges in the development of targeted nanoparticles (NPs) for cancer therapy is to discover targeting ligands that allow for differential binding and uptake by the target cancer cells. Using prostate cancer (PCa) as a model disease, we developed a cell-uptake selection strategy to isolate PCa-specific internalizing 2'-Omethyl RNA aptamers (Apts) for NP incorporation. Twelve cycles of selection and counter-selection were done to obtain a panel of internalizing Apts, which can distinguish PCa cells from non-prostate and normal prostate cells. After Apt characterization, size minimization, and conjugation of the Apts with fluorescently-labeled polymeric NPs, the NP-Apt bioconjugates exhibit PCa specificity and enhancement in cellular uptake when compared to non-targeted NPs lacking the internalizing Apts. Furthermore, when docetaxel, a chemotherapeutic agent used for the treatment of PCa, was encapsulated within the NP-Apt, a significant improvement in cytotoxicity was achieved in targeted PCa cells. Rather than isolating high-affinity Apts as reported in previous selection processes, our selection strategy was designed to enrich cancer-cell specific internalizing Apts. A similar cell-uptake selection strategy may be used to develop specific internalizing ligands for a myriad of other diseases and can potentially facilitate delivering various molecules, including drugs and siRNAs, into cells. PMID:22214176

Xiao, Zeyu; Levy-Nissenbaum, Etgar; Alexis, Frank; Lupták, Andrej; Teply, Benjamin A.; Chan, Juliana M.; Shi, Jinjun; Digga, Elise; Cheng, Judy; Langer, Robert; Farokhzad, Omid C.

2012-01-01

176

Lysosomotropic Properties of Weakly Basic Anticancer Agents Promote Cancer Cell Selectivity In Vitro  

PubMed Central

Drug distribution in cells is a fundamentally important, yet often overlooked, variable in drug efficacy. Many weakly basic anticancer agents accumulate extensively in the acidic lysosomes of normal cells through ion trapping. Lysosomal trapping reduces the activity of anticancer drugs, since anticancer drug targets are often localized in the cell cytosol or nucleus. Some cancer cells have defective acidification of lysosomes, which causes a redistribution of trapped drugs from the lysosomes to the cytosol. We have previously established that such differences in drug localization between normal and cancer cells can contribute to the apparent selectivity of weakly basic drugs to cancer cells in vitro. In this work, we tested whether this intracellular distribution-based drug selectivity could be optimized based on the acid dissociation constant (pKa) of the drug, which is one of the determinants of lysosomal sequestration capacity. We synthesized seven weakly basic structural analogs of the Hsp90 inhibitor geldanamycin (GDA) with pKa values ranging from 5 to 12. The selectivity of each analog was expressed by taking ratios of anti-proliferative IC50 values of the inhibitors in normal fibroblasts to the IC50 values in human leukemic HL-60 cells. Similar selectivity assessments were performed in a pair of cancer cell lines that differed in lysosomal pH as a result of siRNA-mediated alteration of vacuolar proton ATPase subunit expression. Optimal selectivity was observed for analogs with pKa values near 8. Similar trends were observed with commercial anticancer agents with varying weakly basic pKa values. These evaluations advance our understanding of how weakly basic properties can be optimized to achieve maximum anticancer drug selectivity towards cancer cells with defective lysosomal acidification in vitro. Additional in vivo studies are needed to examine the utility of this approach for enhancing selectivity. PMID:23145164

Ndolo, Rosemary A.; Luan, Yepeng; Duan, Shaofeng; Forrest, M. Laird; Krise, Jeffrey P.

2012-01-01

177

Monitoring Autophagy in Lysosomal Storage Disorders  

PubMed Central

Lysosomes are the final destination of the autophagic pathway. It is in the acidic milieu of the lysosomes that autophagic cargo is metabolized and recycled. One would expect that diseases with primary lysosomal defects would be among the first systems in which autophagy would be studied. In reality, this is not the case. Lysosomal storage diseases, a group of more than 60 diverse inherited disorders, have only recently become a focus of autophagic research. Studies of these clinically severe conditions promise not only to clarify pathogenic mechanisms, but also to expand our knowledge of autophagy itself. In this chapter, we will describe the lysosomal storage diseases in which autophagy has been explored, and present the approaches used to evaluate this essential cellular pathway. PMID:19216919

Raben, Nina; Shea, Lauren; Hill, Victoria; Plotz, Paul

2009-01-01

178

[Lysosomal membrane permeabilization as apoptogenic factor].  

PubMed

Lysosomal membrane labilizing agents (incl. proapoptotic proteins of Bcl-2 family, LAPF, p53), estimation of lysosomal membrane permeabilization in living cells, the new data on differential permeabilization of lysosomal membranes, membrane stabilizing factors (incl. Hsp70), relations between lysosomal membrane damage, and initiation of apoptosis were considered. Signal effect of lysosomal membrane permeabilization is caused preferentially by release of cathepsin B and D in cytosol. Subsequent numerous pathways of apoptogenic signalization include proteolytic attack/activation on signal cytosolic proteins, mitochondria, procaspases, cell nuclei. The mainstream of the cell damage is connected with activation pf proapoptotic Bid and Bax, leading to permeabilization of the outer mitochondrial membrane, release of cytochrome c into cytosol and activation of caspase cascade. Translocation of the lysosoma enzymes in cytosol is capable to induce both the caspase-dependent and caspase-independent paths of apoptosis. PMID:21675210

Pupyshev, A B

2011-01-01

179

Podocytes Degrade Endocytosed Albumin Primarily in Lysosomes  

PubMed Central

Albuminuria is a strong, independent predictor of chronic kidney disease progression. We hypothesize that podocyte processing of albumin via the lysosome may be an important determinant of podocyte injury and loss. A human urine derived podocyte-like epithelial cell (HUPEC) line was used for in vitro experiments. Albumin uptake was quantified by Western blot after loading HUPECs with fluorescein-labeled (FITC) albumin. Co-localization of albumin with lysosomes was determined by confocal microscopy. Albumin degradation was measured by quantifying FITC-albumin abundance in HUPEC lysates by Western blot. Degradation experiments were repeated using HUPECs treated with chloroquine, a lysosome inhibitor, or MG-132, a proteasome inhibitor. Lysosome activity was measured by fluorescence recovery after photo bleaching (FRAP). Cytokine production was measured by ELISA. Cell death was determined by trypan blue staining. In vivo, staining with lysosome-associated membrane protein-1 (LAMP-1) was performed on tissue from a Denys-Drash trangenic mouse model of nephrotic syndrome. HUPECs endocytosed albumin, which co-localized with lysosomes. Choloroquine, but not MG-132, inhibited albumin degradation, indicating that degradation occurs in lysosomes. Cathepsin B activity, measured by FRAP, significantly decreased in HUPECs exposed to albumin (12.5% of activity in controls) and chloroquine (12.8%), and declined further with exposure to albumin plus chloroquine (8.2%, p<0.05). Cytokine production and cell death were significantly increased in HUPECs exposed to albumin and chloroquine alone, and these effects were potentiated by exposure to albumin plus chloroquine. Compared to wild-type mice, glomerular staining of LAMP-1 was significantly increased in Denys-Drash mice and appeared to be most prominent in podocytes. These data suggest lysosomes are involved in the processing of endocytosed albumin in podocytes, and lysosomal dysfunction may contribute to podocyte injury and glomerulosclerosis in albuminuric diseases. Modifiers of lysosomal activity may have therapeutic potential in slowing the progression of glomerulosclerosis by enhancing the ability of podocytes to process and degrade albumin. PMID:24924335

Carson, John M.; Okamura, Kayo; Wakashin, Hidefumi; McFann, Kim; Dobrinskikh, Evgenia; Kopp, Jeffrey B.; Blaine, Judith

2014-01-01

180

Organelle pathology in primary and secondary haemochromatosis with special reference to lysosomal changes.  

PubMed

The organelle pathology of liver biopsy specimens from patients with either primary or secondary haemochromatosis was investigated by analytical subcellular fractionation in combination with enzymic microanalysis. The most striking changes were found in the lysosomes. Increased total activities but decreased latent activities of enzymes selectively localized to the high density population of lysosomes was demonstrated in the iron overloaded biopsies. Depletion of the iron, where possible, by venesection was accompanied by a return to normal of these changes. The other subcellular organelles, plasma membrane, endoplasmic reticulum, biliary canaliculi, mitochondria, peroxisomes and the low density population of lysosomes appear to be relatively unaffected. The minor changes demonstrated are similar to those seen in other forms of chronic liver disease. It is suggested that iron mediated lysosomal disruption is implicated in the pathogenesis of the tissue damage in haemochromatosis. PMID:708644

Seymour, C A; Peters, T J

1978-10-01

181

The inactivation of the sortilin gene leads to a partial disruption of prosaposin trafficking to the lysosomes  

SciTech Connect

Lysosomes are intracellular organelles which contain enzymes and activator proteins involved in the digestion and recycling of a variety of cellular and extracellular substances. We have identified a novel sorting receptor, sortilin, which is involved in the lysosomal trafficking of the sphingolipid activator proteins, prosaposin and GM{sub 2}AP, and the soluble hydrolases cathepsin D, cathepsin H, and acid sphingomyelinase. Sortilin belongs to a growing family of receptors with homology to the yeast Vps10 protein, which acts as a lysosomal sorting receptor for carboxypeptidase Y. In this study we examined the effects of the sortilin gene inactivation in mice. The inactivation of this gene did not yield any noticeable lysosomal pathology. To determine the existence of an alternative receptor complementing the sorting function of sortilin, we quantified the concentration of prosaposin in the lysosomes of the nonciliated epithelial cells lining the efferent ducts. These cells were chosen because they express sortilin and have a large number of lysosomes containing prosaposin. In addition, the nonciliated cells are known to endocytose luminal prosaposin that is synthesized and secreted by Sertoli cells into the seminiferous luminal fluids. Consequently, the nonciliated cells are capable of targeting both exogenous and endogenous prosaposin to the lysosomes. Using electron microscope immunogold labeling and quantitative analysis, our results demonstrate that inactivation of the sortilin gene produces a significant decrease of prosaposin in the lysosomes. When luminal prosaposin was excluded from the efferent ducts, the level of prosaposin in lysosomes was even lower in the mutant mice. Nonetheless, a significant amount of prosaposin continues to reach the lysosomal compartment. These results strongly suggest the existence of an alternative receptor that complements the function of sortilin and explains the lack of lysosomal storage disorders in the sortilin-deficient mice.

Zeng, Jibin; Racicott, Jesse [Department of Anatomy and Cell Biology, McGill University, Montreal (Canada)] [Department of Anatomy and Cell Biology, McGill University, Montreal (Canada); Morales, Carlos R., E-mail: carlos.morales@mcgill.ca [Department of Anatomy and Cell Biology, McGill University, Montreal (Canada)

2009-11-01

182

Optimal Intermittence in Search Strategies under Speed-Selective Target Detection  

NASA Astrophysics Data System (ADS)

Random search theory has been previously explored for both continuous and intermittent scanning modes with full target detection capacity. Here we present a new class of random search problems in which a single searcher performs flights of random velocities, the detection probability when it passes over a target location being conditioned to the searcher speed. As a result, target detection involves an N-passage process for which the mean search time is here analytically obtained through a renewal approximation. We apply the idea of speed-selective detection to random animal foraging since a fast movement is known to significantly degrade perception abilities in many animals. We show that speed-selective detection naturally introduces an optimal level of behavioral intermittence in order to solve the compromise between fast relocations and target detection capability.

Campos, Daniel; Méndez, Vicenç; Bartumeus, Frederic

2012-01-01

183

Optimal intermittence in search strategies under speed-selective target detection.  

PubMed

Random search theory has been previously explored for both continuous and intermittent scanning modes with full target detection capacity. Here we present a new class of random search problems in which a single searcher performs flights of random velocities, the detection probability when it passes over a target location being conditioned to the searcher speed. As a result, target detection involves an N-passage process for which the mean search time is here analytically obtained through a renewal approximation. We apply the idea of speed-selective detection to random animal foraging since a fast movement is known to significantly degrade perception abilities in many animals. We show that speed-selective detection naturally introduces an optimal level of behavioral intermittence in order to solve the compromise between fast relocations and target detection capability. PMID:22324712

Campos, Daniel; Méndez, Vicenç; Bartumeus, Frederic

2012-01-13

184

Wilson Disease Protein ATP7B Utilizes Lysosomal Exocytosis to Maintain Copper Homeostasis  

PubMed Central

Summary Copper is an essential yet toxic metal and its overload causes Wilson disease, a disorder due to mutations in copper transporter ATP7B. To remove excess copper into the bile, ATP7B traffics toward canalicular area of hepatocytes. However, the trafficking mechanisms of ATP7B remain elusive. Here, we show that, in response to elevated copper, ATP7B moves from the Golgi to lysosomes and imports metal into their lumen. ATP7B enables lysosomes to undergo exocytosis through the interaction with p62 subunit of dynactin that allows lysosome translocation toward the canalicular pole of hepatocytes. Activation of lysosomal exocytosis stimulates copper clearance from the hepatocytes and rescues the most frequent Wilson-disease-causing ATP7B mutant to the appropriate functional site. Our findings indicate that lysosomes serve as an important intermediate in ATP7B trafficking, whereas lysosomal exocytosis operates as an integral process in copper excretion and hence can be targeted for therapeutic approaches to combat Wilson disease. PMID:24909901

Polishchuk, Elena V.; Concilli, Mafalda; Iacobacci, Simona; Chesi, Giancarlo; Pastore, Nunzia; Piccolo, Pasquale; Paladino, Simona; Baldantoni, Daniela; van IJzendoorn, Sven C.D.; Chan, Jefferson; Chang, Christopher J.; Amoresano, Angela; Pane, Francesca; Pucci, Piero; Tarallo, Antonietta; Parenti, Giancarlo; Brunetti-Pierri, Nicola; Settembre, Carmine; Ballabio, Andrea; Polishchuk, Roman S.

2014-01-01

185

Sphingosine mediates TNF?-induced lysosomal membrane permeabilization and ensuing programmed cell death in hepatoma cells  

PubMed Central

Normally, cell proliferation and death are carefully balanced in higher eukaryotes, but one of the most important regulatory mechanisms, apoptosis, is upset in many malignancies, including hepatocellular-derived ones. Therefore, reinforcing cell death often is mandatory in anticancer therapy. We previously reported that a combination of tumor necrosis factor-? (TNF) and cycloheximide (CHX) efficiently kill HTC cells, a rat hepatoma line, in an apoptosis-like mode. Death is actively mediated by the lysosomal compartment, although lysosomal ceramide was previously shown not to be directly implicated in this process. In the present study, we show that TNF/CHX increase lysosomal ceramide that is subsequently converted into sphingosine. Although ceramide accumulation does not significantly alter the acidic compartment, the sphingosine therein generated causes lysosomal membrane permeabilization (LMP) followed by relocation of lysosomal cathepsins to the cytoplasm. TNF/CHX-induced LMP is effectively abrogated by siRNAs targeting acid sphingomyelinase or acid ceramidase, which prevent both LMP and death induced by TNF/CHX. Taken together, our results demonstrate that lysosomal accumulation of ceramide is not detrimental per se, whereas its degradation product sphingosine, which has the capacity to induce LMP, appears responsible for the observed apoptotic-like death. PMID:22454477

Ullio, Chiara; Casas, Josefina; Brunk, Ulf T.; Sala, Giuseppina; Fabriàs, Gemma; Ghidoni, Riccardo; Bonelli, Gabriella; Baccino, Francesco M.; Autelli, Riccardo

2012-01-01

186

Organelle proteomics: identification of the exocytic machinery associated with the natural killer cell secretory lysosome.  

PubMed

Natural killer (NK) cells and cytotoxic T lymphocytes eliminate virally infected and transformed cells. Target cell killing is mediated by the regulated exocytosis of secretory lysosomes, which deliver perforin and proapoptotic granzymes to the infected or transformed cell. Yet despite the central role that secretory lysosome exocytosis plays in the immune response to viruses and tumors, little is known about the molecular machinery that regulates the docking and fusion of this organelle with the plasma membrane. To identify potential components of this exocytic machinery we used proteomics to define the protein composition of the NK cell secretory lysosome membrane. Secretory lysosomes were isolated from the NK cell line YTS by subcellular fractionation, integral membrane proteins and membrane-associated proteins were enriched using Triton X-114 and separated by SDS-PAGE, and tryptic peptides were identified by LC ESI-MS/MS. In total 221 proteins were identified unambiguously in the secretory lysosome membrane fraction of which 61% were predicted to be either integral membrane proteins or membrane-associated proteins. A significant proportion of the proteins identified play a role in vesicular trafficking, including members of both the Rab GTPase and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and protein families. These proteins include Rab27a and the SNARE vesicle-associated membrane protein-7, both of which were enriched in the secretory lysosome fraction and represent potential components of the machinery that regulates the exocytosis of this organelle in NK cells. PMID:17272266

Casey, Tammy M; Meade, Josephine L; Hewitt, Eric W

2007-05-01

187

Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use.  

PubMed

The anti-proliferative activities of all twenty-five targeted kinase inhibitor drugs that are in clinical use were measured in two large assay panels: (1) a panel of proliferation assays of forty-four human cancer cell lines from diverse tumour tissue origins; and (2) a panel of more than 300 kinase enzyme activity assays. This study provides a head-on comparison of all kinase inhibitor drugs in use (status Nov. 2013), and for six of these drugs, the first kinome profiling data in the public domain. Correlation of drug activities with cancer gene mutations revealed novel drug sensitivity markers, suggesting that cancers dependent on mutant CTNNB1 will respond to trametinib and other MEK inhibitors, and cancers dependent on SMAD4 to small molecule EGFR inhibitor drugs. Comparison of cellular targeting efficacies reveals the most targeted inhibitors for EGFR, ABL1 and BRAF(V600E)-driven cell growth, and demonstrates that the best targeted agents combine high biochemical potency with good selectivity. For ABL1 inhibitors, we computationally deduce optimized kinase profiles for use in a next generation of drugs. Our study shows the power of combining biochemical and cellular profiling data in the evaluation of kinase inhibitor drug action. PMID:24651269

Uitdehaag, Joost C M; de Roos, Jeroen A D M; van Doornmalen, Antoon M; Prinsen, Martine B W; de Man, Jos; Tanizawa, Yoshinori; Kawase, Yusuke; Yoshino, Kohichiro; Buijsman, Rogier C; Zaman, Guido J R

2014-01-01

188

Rapid parallel attentional target selection in single-color and multiple-color visual search.  

PubMed

Previous work has demonstrated that when targets are defined by a constant feature, attention can be directed rapidly and in parallel to sequentially presented target objects at different locations. We assessed how fast attention is allocated to multiple objects when this process cannot be controlled by a unique color-specific attentional template. N2pc components were measured as temporal markers of the attentional selection of 2 color-defined targets that were presented in rapid succession. Both targets either had the same color (one color task) or differed in color (two color task). Although there were small but systematic delays of target selection in the two color task relative to the one color task, attention was allocated extremely rapidly to both target objects in the two color task, which is inconsistent with the hypothesis that their selection was based on a slow switch between different color templates. Two follow-up experiments demonstrated that these delays did not reflect template switch costs, but were the result of competitive interactions between simultaneously active attentional templates. These results show that the control of focal attention during multiple-feature search operates much faster and more flexibly than is usually assumed. (PsycINFO Database Record (c) 2015 APA, all rights reserved). PMID:25485665

Grubert, Anna; Eimer, Martin

2015-02-01

189

Attention blinks for selection, not perception or memory: reading sentences and reporting targets.  

PubMed

In whole report, a sentence presented sequentially at the rate of about 10 words/s can be recalled accurately, whereas if the task is to report only two target words (e.g., red words), the second target suffers an attentional blink if it appears shortly after the first target. If these two tasks are carried out simultaneously, is there an attentional blink, and does it affect both tasks? Here, sentence report was combined with report of two target words (Experiments 1 and 2) or two inserted target digits, Arabic numerals or word digits (Experiments 3 and 4). When participants reported only the targets an attentional blink was always observed. When they reported both the sentence and targets, sentence report was quite accurate but there was an attentional blink in picking out the targets when they were part of the sentence. When targets were extra digits inserted in the sentence there was no blink when viewers also reported the sentence. These results challenge some theories of the attentional blink: Blinks result from online selection, not perception or memory. PMID:22022894

Potter, Mary C; Wyble, Brad; Olejarczyk, Jennifer

2011-12-01

190

Multiple factors dictate target selection by Hfq-binding small RNAs  

PubMed Central

Hfq-binding small RNAs (sRNAs) in bacteria modulate the stability and translational efficiency of target mRNAs through limited base-pairing interactions. While these sRNAs are known to regulate numerous mRNAs as part of stress responses, what distinguishes targets and non-targets among the mRNAs predicted to base pair with Hfq-binding sRNAs is poorly understood. Using the Hfq-binding sRNA Spot 42 of Escherichia coli as a model, we found that predictions using only the three unstructured regions of Spot 42 substantially improved the identification of previously known and novel Spot 42 targets. Furthermore, increasing the extent of base-pairing in single or multiple base-pairing regions improved the strength of regulation, but only for the unstructured regions of Spot 42. We also found that non-targets predicted to base pair with Spot 42 lacked an Hfq-binding site, folded into a secondary structure that occluded the Spot 42 targeting site, or had overlapping Hfq-binding and targeting sites. By modifying these features, we could impart Spot 42 regulation on non-target mRNAs. Our results thus provide valuable insights into the requirements for target selection by sRNAs. PMID:22388518

Beisel, Chase L; Updegrove, Taylor B; Janson, Ben J; Storz, Gisela

2012-01-01

191

A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder.  

PubMed

Sulfatases are key enzymatic regulators of sulfate homeostasis with several biological functions including degradation of glycosaminoglycans (GAGs) and other macromolecules in lysosomes. In a severe lysosomal storage disorder, multiple sulfatase deficiency (MSD), global sulfatase activity is deficient due to mutations in the sulfatase-modifying factor 1 (SUMF1) gene, encoding the essential activator of all sulfatases. We identify a novel regulatory layer of sulfate metabolism mediated by a microRNA. miR-95 depletes SUMF1 protein levels and suppresses sulfatase activity, causing the disruption of proteoglycan catabolism and lysosomal function. This blocks autophagy-mediated degradation, causing cytoplasmic accumulation of autophagosomes and autophagic substrates. By targeting miR-95 in cells from MSD patients, we can effectively increase residual SUMF1 expression, allowing for reactivation of sulfatase activity and increased clearance of sulfated GAGs. The identification of this regulatory mechanism opens the opportunity for a unique therapeutic approach in MSD patients where the need for exogenous enzyme replacement is circumvented. PMID:25524633

Frankel, Lisa B; Di Malta, Chiara; Wen, Jiayu; Eskelinen, Eeva-Liisa; Ballabio, Andrea; Lund, Anders H

2014-01-01

192

Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample  

Microsoft Academic Search

We describe the algorithm for selecting quasar candidates for optical spectroscopy in the Sloan Digital Sky Survey. Quasar candidates are selected via their nonstellar colors in ugriz broadband photometry and by matching unresolved sources to the FIRST radio catalogs. The automated algorithm is sensitive to quasars at all redshifts lower than z~5.8. Extended sources are also targeted as low-redshift quasar

Xiaohui Fan; Heidi Jo Newberg; Michael A. Strauss; Daniel E. Vanden Berk; Donald P. Schneider; Brian Yanny; Adam Boucher; Scott Burles; Joshua A. Frieman; James E. Gunn; Patrick B. Hall; Zeljko Ivezic; Stephen Kent; Jon Loveday; Robert H. Lupton; Constance M. Rockosi; David J. Schlegel; Chris Stoughton; Mark SubbaRao; Donald G. York

2002-01-01

193

Lysosomes and ?-synuclein form a dangerous duet leading to neuronal cell death  

PubMed Central

Neurodegenerative diseases are (i) characterized by a selective neuronal vulnerability to degeneration in specific brain regions; and (ii) likely to be caused by disease-specific protein misfolding. Parkinson’s disease (PD) is characterized by the presence of intraneuronal proteinacious cytoplasmic inclusions, called Lewy Bodies (LB). ?-Synuclein, an aggregation prone protein, has been identified as a major protein component of LB and the causative for autosomal dominant PD. Lysosomes are responsible for the clearance of long-lived proteins, such as ?-synuclein, and for the removal of old or damaged organelles, such as mitochondria. Interestingly, PD-linked ?-synuclein mutants and dopamine-modified wild-type ?-synuclein block its own degradation, which result in insufficient clearance, leading to its aggregation and cell toxicity. Moreover, both lysosomes and lysosomal proteases have been found to be involved in the activation of certain cell death pathways. Interestingly, lysosomal alterations are observed in the brains of patients suffering from sporadic PD and also in toxic and genetic rodent models of PD-related neurodegeneration. All these events have unraveled a causal link between lysosomal impairment, ?-synuclein accumulation, and neurotoxicity. In this review, we emphasize the pathophysiological mechanisms connecting ?-synuclein and lysosomal dysfunction in neuronal cell death. PMID:25177278

Bourdenx, Mathieu; Bezard, Erwan; Dehay, Benjamin

2014-01-01

194

Frontoparietal theta activity supports behavioral decisions in movement-target selection  

PubMed Central

There is recent EEG evidence describing task-related changes of theta power in spatial attention and reaching/pointing tasks. Here, we aim to better characterize this theta activity and determine whether it is associated with visuospatial memory or with visuospatial selection functions of the frontoparietal cortex. We recorded EEG from 20 participants during a movement precuing task with center-out joystick movements. Precues displayed 1, 2, or 4 potential targets and were followed (stimulus onset asynchrony 1.2 s) by a central response cue indicating the movement-target. Remembering the precued target location(s) was mandatory in one and optional in a second version of the task. Analyses evaluated two slow brain potentials (CNV, contingent negative variation and CDA, contralateral delay activity) and task-related power changes. Results showed a differential modulation of frontal CNV and parietal CDA, consistent with earlier described set-size effects on motor preparation and visual short-term memory. Short-lived phases of theta event-related synchronization (ERS) were found 150–500 ms after precue and response cue presentation, exhibiting parietal and frontal maxima. The increase of frontoparietal theta power following response cue presentation was strongly modulated by target load, i.e., absent for 1-target (when the movement-target could be selected in advance), contrasting with a robust 20–50% ERS response in 2- and 4-target conditions. The scalp distribution, the timing, and the modulation by set-size suggest a role of theta activity in movement-target selection. The results support a recently proposed view of theta as emerging around behavioral decision points, linked to the evaluation of choice-relevant information. PMID:22629241

Rawle, Christian J.; Miall, R. Chris; Praamstra, Peter

2012-01-01

195

Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas  

PubMed Central

Targeting of lysosomes is a novel therapeutic anti-cancer strategy for killing the otherwise apoptosis-resistant cancer cells. Such strategies are urgently needed for treatment of brain tumors, especially the glioblastoma, which is the most frequent and most malignant type. The aim of the present study was to investigate the presence of lysosomes in astrocytic brain tumors focussing also on the therapy resistant tumor stem cells. Expression of the lysosomal marker LAMP-1 (lysosomal-associated membrane protein-1) was investigated by immunohistochemistry in 112 formalin fixed paraffin embedded astrocytomas and compared with tumor grade and overall patient survival. Moreover, double immunofluorescence stainings were performed with LAMP-1 and the astrocytic marker GFAP and the putative stem cell marker CD133 on ten glioblastomas. Most tumors expressed the LAMP-1 protein in the cytoplasm of the tumor cells, while the blood vessels were positive in all tumors. The percentage of LAMP-1 positive tumor cells and staining intensities increased with tumor grade but variations in tumors of the same grade were also found. No association was found between LAMP-1 expression and patient overall survival in the individual tumor grades. LAMP-1/GFAP showed pronounced co-expression and LAMP-1/CD133 was co-expressed as well suggesting that tumor cells including the proposed tumor stem cells contain lysosomes. The results suggest that high amounts of lysosomes are present in glioblastomas and in the proposed tumor stem cells. Targeting of lysosomes may be a promising novel therapeutic strategy against this highly malignant neoplasm. PMID:23826410

Jensen, Stine S; Aaberg-Jessen, Charlotte; Christensen, Karina G; Kristensen, Bjarne

2013-01-01

196

W::Neo: a novel dual-selection marker for high efficiency gene targeting in Drosophila.  

PubMed

We have recently developed a so-called genomic engineering approach that allows for directed, efficient and versatile modifications of Drosophila genome by combining the homologous recombination (HR)-based gene targeting with site-specific DNA integration. In genomic engineering and several similar approaches, a "founder" knock-out line must be generated first through HR-based gene targeting, which can still be a potentially time and resource intensive process. To significantly improve the efficiency and success rate of HR-based gene targeting in Drosophila, we have generated a new dual-selection marker termed W::Neo, which is a direct fusion between proteins of eye color marker White (W) and neomycin resistance (Neo). In HR-based gene targeting experiments, mutants carrying W::Neo as the selection marker can be enriched as much as fifty times by taking advantage of the antibiotic selection in Drosophila larvae. We have successfully carried out three independent gene targeting experiments using the W::Neo to generate genomic engineering founder knock-out lines in Drosophila. PMID:22348139

Zhou, Wenke; Huang, Juan; Watson, Annie M; Hong, Yang

2012-01-01

197

Lysosomal Storage Disorders in the Newborn  

PubMed Central

Lysosomal storage disorders are rare inborn errors of metabolism, with a combined incidence of 1 in 1500 to 7000 live births. These relatively rare disorders are seldom considered when evaluating a sick newborn. A significant number of the >50 different lysosomal storage disorders, however, do manifest in the neonatal period and should be part of the differential diagnosis of several perinatal phenotypes. We review the earliest clinical features, diagnostic tests, and treatment options for lysosomal storage disorders that can present in the newborn. Although many of the lysosomal storage disorders are characterized by a range in phenotypes, the focus of this review is on the specific symptoms and clinical findings that present in the perinatal period, including neurologic, respiratory, endocrine, and cardiovascular manifestations, dysmorphic features, hepatosplenomegaly, skin or ocular involvement, and hydrops fetalis/congenital ascites. A greater awareness of these features may help to reduce misdiagnosis and promote the early detection of lysosomal storage disorders. Implementing therapy at the earliest stage possible is crucial for several of the lysosomal storage disorders; hence, an early appreciation of these disorders by physicians who treat newborns is essential. PMID:19336380

Staretz-Chacham, Orna; Lang, Tess C.; LaMarca, Mary E.; Krasnewich, Donna; Sidransky, Ellen

2009-01-01

198

A solid-phase affinity labeling method for target-selective isolation and modification of proteins.  

PubMed

Solid-phase affinity labeling of a target protein, peanut agglutinin (PNA), with the specifically designed chemical tool 1 selectively and effectively furnished the labeled PNA. Furthermore, this method was applicable to native human carbonic anhydrase II in red blood cell lysate using the chemical tool 2 without the need for tedious manipulations. PMID:25360454

Kuwahara, Daichi; Hasumi, Takahiro; Kaneko, Hajime; Unno, Madoka; Takahashi, Daisuke; Toshima, Kazunobu

2014-12-21

199

MADS-box genes of maize: frequent targets of selection during domestication  

E-print Network

MADS-box genes of maize: frequent targets of selection during domestication QIONG ZHAO1 development. We examined DNA sequence variation in 32 maize MADS-box genes and 32 randomly chosen maize loci and investigated their involvement in maize domestication and improvement. Using neutrality tests and a test based

Doebley, John

200

Metformin Selectively Targets Cancer Stem Cells, and Acts Together with Chemotherapy to Block Tumor Growth  

E-print Network

Metformin Selectively Targets Cancer Stem Cells, and Acts Together with Chemotherapy to Block Tumor Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts Abstract The cancer stem cell hypothesis suggests that, unlike most cancer cells within a tumor, cancer stem cells resist

201

Cancer cachexia is regulated by selective targeting of skeletal muscle gene products  

PubMed Central

Cachexia is a syndrome characterized by wasting of skeletal muscle and contributes to nearly one-third of all cancer deaths. Cytokines and tumor factors mediate wasting by suppressing muscle gene products, but exactly which products are targeted by these cachectic factors is not well understood. Because of their functional relevance to muscle architecture, such targets are presumed to represent myofibrillar proteins, but whether these proteins are regulated in a general or a selective manner is also unclear. Here we demonstrate, using in vitro and in vivo models of muscle wasting, that cachectic factors are remarkably selective in targeting myosin heavy chain. In myotubes and mouse muscles, TNF-? plus IFN-? strongly reduced myosin expression through an RNA-dependent mechanism. Likewise, colon-26 tumors in mice caused the selective reduction of this myofibrillar protein, and this reduction correlated with wasting. Under these conditions, however, loss of myosin was associated with the ubiquitin-dependent proteasome pathway, which suggests that mechanisms used to regulate the expression of muscle proteins may be cachectic factor specific. These results shed new light on cancer cachexia by revealing that wasting does not result from a general downregulation of muscle proteins but rather is highly selective as to which proteins are targeted during the wasting state. PMID:15286803

Acharyya, Swarnali; Ladner, Katherine J.; Nelsen, Lori L.; Damrauer, Jeffrey; Reiser, Peter J.; Swoap, Steven; Guttridge, Denis C.

2004-01-01

202

Selective Cancer Targeting via Aberrant Behavior of Cancer Cell-associated Glucocorticoid Receptor  

Microsoft Academic Search

Glucocorticoid receptors (GRs) are ubiquitous, nuclear hormone receptors residing in cell types of both cancer and noncancerous origin. It is not known whether cancer cell–associated GR alone can be selectively manipulated for delivery of exogenous genes to its nucleus for eliciting anticancer effect. We find that GR ligand, dexamethasone (Dex) in association with cationic lipoplex (termed as targeted lipoplex) could

Amarnath Mukherjee; Kumar P Narayan; Krishnendu Pal; Jerald M Kumar; Nandini Rangaraj; Shasi V Kalivendi; Rajkumar Banerjee

2009-01-01

203

TARGET SELECTION FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT (APOGEE)  

SciTech Connect

The Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a high-resolution infrared spectroscopic survey spanning all Galactic environments (i.e., bulge, disk, and halo), with the principal goal of constraining dynamical and chemical evolution models of the Milky Way. APOGEE takes advantage of the reduced effects of extinction at infrared wavelengths to observe the inner Galaxy and bulge at an unprecedented level of detail. The survey's broad spatial and wavelength coverage enables users of APOGEE data to address numerous Galactic structure and stellar populations issues. In this paper we describe the APOGEE targeting scheme and document its various target classes to provide the necessary background and reference information to analyze samples of APOGEE data with awareness of the imposed selection criteria and resulting sample properties. APOGEE's primary sample consists of {approx}10{sup 5} red giant stars, selected to minimize observational biases in age and metallicity. We present the methodology and considerations that drive the selection of this sample and evaluate the accuracy, efficiency, and caveats of the selection and sampling algorithms. We also describe additional target classes that contribute to the APOGEE sample, including numerous ancillary science programs, and we outline the targeting data that will be included in the public data releases.

Zasowski, G.; Johnson, Jennifer A.; Andrews, B.; Epstein, C. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Frinchaboy, P. M.; Jackson, K. [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States); Majewski, S. R.; Chojnowski, S. D.; Skrutskie, M. F.; Beaton, R. L. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Nidever, D. L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Pinto, H. J. Rocha; Girardi, L. [Laboratorio Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro, RJ 20921-400 (Brazil); Cudworth, K. M. [Yerkes Observatory, University of Chicago, Williams Bay, WI 53191 (United States); Munn, J. [US Naval Observatory, Flagstaff Station, Flagstaff, AZ 86001 (United States); Blake, C. H. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Covey, K. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Deshpande, R.; Fleming, S. W. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Fabbian, D., E-mail: gail.zasowski@gmail.com [Instituto de Astrofisica de Canarias, Calle Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); and others

2013-10-01

204

Monitoring intracellular cavitation during selective targeting of the retinal pigment epithelium  

Microsoft Academic Search

Selective targeting of the Retinal Pigment Epithelium (RPE), by either applying trains of microsecond laser pulses or, in our approach, by repetitively scanning a tightly focused spot across the retina, achieves destruction of RPE cells while avoiding damage to the overlying photoreceptors. Both techniques have been demonstrated as attractive methods for the treatment of retinal diseases that are caused by

Clemens Alt; Costas M. Pitsillides; Jan Roegener; Charles P. Lin

2003-01-01

205

In vivo photoacoustic imaging with multiple selective targeting using bioconjugated gold nanorods  

NASA Astrophysics Data System (ADS)

In this study, photoacoustic imaging is utilized to probe information from oncogene surface molecules of cancer cell with the aid of specific targeting. The ultimate goal is to provide prediction of clinical outcome and treatment response of anti-cancer drugs. Different from single targeting in most research, we accomplished multiple targeting to obtain a molecular profile potentially representing tumor characteristics or to locate the heterogeneous population in one lesion. By conjugating different antibodies to gold nanorods corresponding to different peak absorption bands, multiple targeting and simultaneous detection with photoacoustic imaging can be achieved with laser irradiation at the respective peak optical absorption wavelength. Her2 and EGFR were chosen as our primary target molecules. The targeting complex was evaluated in two types of oral cancer cells, OECM1 and Cal27. The OECM1 cell line overexpresses Her2 but has low expression of EGFR, while Cal27 cell line expresses both antibodies. Also, the targeting efficacy to OECM1 can be further improved by using mixed nanoprobes. The cancer cells were induced on the back of the mice by subcutaneous injection. The captured images show that both cancer cells exhibit a higher photoacoustic response (maximum 3 dB) than control groups with specific targeting, thus demonstrating the feasibility of multiple selective targeting with bioconjugated gold nanorods. Images of multiple targeting with mixed nanoprobes of OECM1 cells also reveal further enhancement of targeting (4 dB). The results showed potential of in vivo photoacoustic molecular imaging, providing a better guidance for diagnosis and treatment of cancer.

Wei, Chen-Wei; Liao, Chao-Kang; Chen, Ying-Yi; Wang, Churng-Ren Chris; Ding, Ann-Ann; Shiehd, Dar-Bin; Li, Pai-Chi

2008-02-01

206

Peptide nucleic acids targeting ?-globin mRNAs selectively inhibit hemoglobin production in murine erythroleukemia cells  

PubMed Central

In the treatment of hemoglobinopathies, amending altered hemoglobins and/or globins produced in excess is an important part of therapeutic strategies and the selective inhibition of globin production may be clinically beneficial. Therefore the development of drug-based methods for the selective inhibition of globin accumulation is required. In this study, we employed peptide nucleic acids (PNAs) to alter globin gene expression. The main conclusion of the present study was that PNAs designed to target adult murine ?-globin mRNA inhibit hemoglobin accumulation and erythroid differentiation of murine erythroleukemia (MEL) cells with high efficiency and fair selectivity. No major effects were observed on cell proliferation. Our study supports the concept that PNAs may be used to target mRNAs that, similar to globin mRNAs, are expressed at very high levels in differentiating erythroid cells. Our data suggest that PNAs inhibit the excess production of globins involved in the pathophysiology of hemoglobinopathies. PMID:25405921

MONTAGNER, GIULIA; GEMMO, CHIARA; FABBRI, ENRICA; MANICARDI, ALEX; ACCARDO, IGEA; BIANCHI, NICOLETTA; FINOTTI, ALESSIA; BREVEGLIERI, GIULIA; SALVATORI, FRANCESCA; BORGATTI, MONICA; LAMPRONTI, ILARIA; BRESCIANI, ALBERTO; ALTAMURA, SERGIO; CORRADINI, ROBERTO; GAMBARI, ROBERTO

2015-01-01

207

Peptide nucleic acids targeting ?-globin mRNAs selectively inhibit hemoglobin production in murine erythroleukemia cells.  

PubMed

In the treatment of hemoglobinopathies, amending altered hemoglobins and/or globins produced in excess is an important part of therapeutic strategies and the selective inhibition of globin production may be clinically beneficial. Therefore the development of drug-based methods for the selective inhibition of globin accumulation is required. In this study, we employed peptide nucleic acids (PNAs) to alter globin gene expression. The main conclusion of the present study was that PNAs designed to target adult murine ?-globin mRNA inhibit hemoglobin accumulation and erythroid differentiation of murine erythroleukemia (MEL) cells with high efficiency and fair selectivity. No major effects were observed on cell proliferation. Our study supports the concept that PNAs may be used to target mRNAs that, similar to globin mRNAs, are expressed at very high levels in differentiating erythroid cells. Our data suggest that PNAs inhibit the excess production of globins involved in the pathophysiology of hemoglobinopathies. PMID:25405921

Montagner, Giulia; Gemmo, Chiara; Fabbri, Enrica; Manicardi, Alex; Accardo, Igea; Bianchi, Nicoletta; Finotti, Alessia; Breveglieri, Giulia; Salvatori, Francesca; Borgatti, Monica; Lampronti, Ilaria; Bresciani, Alberto; Altamura, Sergio; Corradini, Roberto; Gambari, Roberto

2015-01-01

208

Interactions between autophagic and endo-lysosomal markers in endothelial cells.  

PubMed

Autophagic and endo-lysosomal degradative pathways are essential for cell homeostasis. Availability of reliable tools to interrogate these pathways is critical to unveil their involvement in physiology and pathophysiology. Although several probes have been recently developed to monitor autophagic or lysosomal compartments, their specificity has not been validated through co-localization studies with well-known markers. Here, we evaluate the selectivity and interactions between one lysosomal (Lyso-ID) and one autophagosomal (Cyto-ID) probe under conditions modulating autophagy and/or endo-lysosomal function in live cells. The probe for acidic compartments Lyso-ID was fully localized inside vesicles positive for markers of late endosome-lysosomes, including Lamp1-GFP and GFP-CINCCKVL. Induction of autophagy by amino acid deprivation in bovine aortic endothelial cells caused an early and potent increase in the fluorescence of the proposed autophagy dye Cyto-ID. Cyto-ID-positive compartments extensively co-localized with the autophagosomal fluorescent reporter RFP-LC3, although the time and/or threshold for organelle detection was different for each probe. Interestingly, use of Cyto-ID in combination with Lysotracker Red or Lyso-ID allowed the observation of structures labeled with either one or both probes, the extent of co-localization increasing upon treatment with protease inhibitors. Inhibition of the endo-lysosomal pathway with chloroquine or U18666A resulted in the formation of large Cyto-ID and Lyso-ID-positive compartments. These results constitute the first assessment of the selectivity of Cyto-ID and Lyso-ID as probes for the autophagic and lysosomal pathways, respectively. Our observations show that these probes can be used in combination with protein-based markers for monitoring the interactions of both pathways in live cells. PMID:23203316

Oeste, Clara L; Seco, Esther; Patton, Wayne F; Boya, Patricia; Pérez-Sala, Dolores

2013-05-01

209

Reduction of Nanoparticle Avidity Enhances the Selectivity of Vascular Targeting and PET Detection of Pulmonary Inflammation  

PubMed Central

Targeting nanoparticles (NPs) loaded with drugs and probes to precise locations in the body may improve the treatment and detection of many diseases. Generally, to achieve targeting, affinity ligands are introduced on the surface of NPs that can bind to molecules present on the cell of interest. Optimization of ligand density is a critical parameter in controlling NP binding to target cells and a higher ligand density is not always the most effective. In this study, we investigated how NP avidity affects targeting to the pulmonary vasculature, using NPs targeted to ICAM-1. This cell adhesion molecule is expressed by quiescent endothelium at modest levels and is upregulated in a variety of pathological settings. NP avidity was controlled by ligand density, with the expected result that higher avidity NPs demonstrated greater pulmonary uptake than lower avidity NPs in both naïve and pathological mice. However, in comparison with high avidity NPs, low avidity NPs exhibited several-fold higher selectivity of targeting to pathological endothelium. This finding was translated into a PET imaging platform that was more effective in detecting pulmonary vascular inflammation using low avidity NPs. Furthermore, computational modeling revealed that elevated expression of ICAM-1 on the endothelium is critical for multivalent anchoring of NPs with low avidity, while high avidity NPs anchor effectively to both quiescent and activated endothelium. These results provide a paradigm that can be used to optimize NP targeting by manipulating ligand density, and may find biomedical utility for increasing detection of pathological vasculature. PMID:23383962

Zern, Blaine J.; Chacko, Ann-Marie; Liu, Jin; Greineder, Colin F.; Blankemeyer, Eric R.; Radhakrishnan, Ravi; Muzykantov, Vladimir

2013-01-01

210

Structure of Transmembrane Domain of Lysosome-associated Membrane Protein Type 2a (LAMP-2A) Reveals Key Features for Substrate Specificity in Chaperone-mediated Autophagy.  

PubMed

Chaperone-mediated autophagy (CMA) is a highly regulated cellular process that mediates the degradation of a selective subset of cytosolic proteins in lysosomes. Increasing CMA activity is one way for a cell to respond to stress, and it leads to enhanced turnover of non-critical cytosolic proteins into sources of energy or clearance of unwanted or damaged proteins from the cytosol. The lysosome-associated membrane protein type 2a (LAMP-2A) together with a complex of chaperones and co-chaperones are key regulators of CMA. LAMP-2A is a transmembrane protein component for protein translocation to the lysosome. Here we present a study of the structure and dynamics of the transmembrane domain of human LAMP-2A in n-dodecylphosphocholine micelles by nuclear magnetic resonance (NMR). We showed that LAMP-2A exists as a homotrimer in which the membrane-spanning helices wrap around each other to form a parallel coiled coil conformation, whereas its cytosolic tail is flexible and exposed to the cytosol. This cytosolic tail of LAMP-2A interacts with chaperone Hsc70 and a CMA substrate RNase A with comparable affinity but not with Hsp40 and RNase S peptide. Because the substrates and the chaperone complex can bind at the same time, thus creating a bimodal interaction, we propose that substrate recognition by chaperones and targeting to the lysosomal membrane by LAMP-2A are coupled. This can increase substrate affinity and specificity as well as prevent substrate aggregation, assist in the unfolding of the substrate, and promote the formation of the higher order complex of LAMP-2A required for translocation. PMID:25342746

Rout, Ashok K; Strub, Marie-Paule; Piszczek, Grzegorz; Tjandra, Nico

2014-12-19

211

A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission.  

PubMed

We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells. PMID:25382395

Sreenath, Kesavapillai; Yuan, Zhao; Allen, John R; Davidson, Michael W; Zhu, Lei

2015-01-01

212

A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission.  

PubMed

We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells. PMID:25378058

Sreenath, Kesavapillai; Yuan, Zhao; Allen, John R; Davidson, Michael W; Zhu, Lei

2014-11-01

213

Transcriptional Activation of Lysosomal Exocytosis Promotes Cellular Clearance  

PubMed Central

Summary Lysosomes are cellular organelles primarily involved in degradation and recycling processes. During lysosomal exocytosis, a Ca2+-regulated process, lysosomes are docked to the cell surface and fuse with the plasma membrane (PM), emptying their content outside the cell. This process has an important role in secretion and PM repair. Here we show that the transcription factor EB (TFEB) regulates lysosomal exocytosis. TFEB increases the pool of lysosomes in the proximity of the PM and promotes their fusion with PM by raising intracellular Ca2+ levels through the activation of the lysosomal Ca2+ channel MCOLN1. Induction of lysosomal exocytosis by TFEB overexpression rescued pathologic storage and restored normal cellular morphology both in vitro and in vivo in lysosomal storage diseases (LSDs). Our data indicate that lysosomal exocytosis may directly modulate cellular clearance and suggest an alternative therapeutic strategy for disorders associated with intracellular storage. PMID:21889421

Medina, Diego L.; Fraldi, Alessandro; Bouche, Valentina; Annunziata, Fabio; Mansueto, Gelsomina; Spampanato, Carmine; Puri, Claudia; Pignata, Antonella; Martina, Jose A.; Sardiello, Marco; Palmieri, Michela; Polishchuk, Roman; Puertollano, Rosa; Ballabio, Andrea

2011-01-01

214

Target selection and comparison of mission design for space debris removal by DLR's advanced study group  

NASA Astrophysics Data System (ADS)

Space debris is a growing problem. Models show that the Kessler syndrome, the exponential growth of debris due to collisions, has become unavoidable unless an active debris removal program is initiated. The debris population in LEO with inclination between 60° and 95° is considered as the most critical zone. In order to stabilize the debris population in orbit, especially in LEO, 5 to 10 objects will need to be removed every year. The unique circumstances of such a mission could require that several objects are removed with a single launch. This will require a mission to rendezvous with a multitude of objects orbiting on different altitudes, inclinations and planes. Removal models have assumed that the top priority targets will be removed first. However this will lead to a suboptimal mission design and increase the ?V-budget. Since there is a multitude of targets to choose from, the targets can be selected for an optimal mission design. In order to select a group of targets for a removal mission the orbital parameters and political constraints should also be taken into account. Within this paper a number of the target selection criteria are presented. The possible mission targets and their order of retrieval is dependent on the mission architecture. A comparison between several global mission architectures is given. Under consideration are 3 global missions of which a number of parameters are varied. The first mission launches multiple separate deorbit kits. The second launches a mother craft with deorbit kits. The third launches an orbital tug which pulls the debris in a lower orbit, after which a deorbit kit performs the final deorbit burn. A RoM mass and cost comparison is presented. The research described in this paper has been conducted as part of an active debris removal study by the Advanced Study Group (ASG). The ASG is an interdisciplinary student group working at the DLR, analyzing existing technologies and developing new ideas into preliminary concepts.

van der Pas, Niels; Lousada, Joao; Terhes, Claudia; Bernabeu, Marc; Bauer, Waldemar

2014-09-01

215

Target-selective protein S-nitrosylation by sequence motif recognition.  

PubMed

S-nitrosylation is a ubiquitous protein modification emerging as a principal mechanism of nitric oxide (NO)-mediated signal transduction and cell function. S-nitrosylases can use NO synthase (NOS)-derived NO to modify selected cysteines in target proteins. Despite proteomic identification of over a thousand S-nitrosylated proteins, few S-nitrosylases have been identified. Moreover, mechanisms underlying site-selective S-nitrosylation and the potential role of specific sequence motifs remain largely unknown. Here, we describe a stimulus-inducible, heterotrimeric S-nitrosylase complex consisting of inducible NOS (iNOS), S100A8, and S100A9. S100A9 exhibits transnitrosylase activity, shuttling NO from iNOS to the target protein, whereas S100A8 and S100A9 coordinately direct site selection. A family of proteins S-nitrosylated by iNOS-S100A8/A9 were revealed by proteomic analysis. A conserved I/L-X-C-X2-D/E motif was necessary and sufficient for iNOS-S100A8/A9-mediated S-nitrosylation. These results reveal an elusive parallel between protein S-nitrosylation and phosphorylation, namely, stimulus-dependent posttranslational modification of selected targets by primary sequence motif recognition. PMID:25417112

Jia, Jie; Arif, Abul; Terenzi, Fulvia; Willard, Belinda; Plow, Edward F; Hazen, Stanley L; Fox, Paul L

2014-10-23

216

Using Multiplexed Assays of Oncogenic Drivers in Lung Cancers to Select Targeted Drugs  

PubMed Central

IMPORTANCE Targeting oncogenic drivers (genomic alterations critical to cancer development and maintenance) has transformed the care of patients with lung adenocarcinomas. The Lung Cancer Mutation Consortium was formed to perform multiplexed assays testing adenocarcinomas of the lung for drivers in 10 genes to enable clinicians to select targeted treatments and enroll patients into clinical trials. OBJECTIVES To determine the frequency of oncogenic drivers in patients with lung adenocarcinomas and to use the data to select treatments targeting the identified driver(s) and measure survival. DESIGN, SETTING, AND PARTICIPANTS From 2009 through 2012, 14 sites in the United States enrolled patients with metastatic lung adenocarcinomas and a performance status of 0 through 2 and tested their tumors for 10 drivers. Information was collected on patients, therapies, and survival. INTERVENTIONS Tumors were tested for 10 oncogenic drivers, and results were used to select matched targeted therapies. MAIN OUTCOMES AND MEASURES Determination of the frequency of oncogenic drivers, the proportion of patients treated with genotype-directed therapy, and survival. RESULTS From 2009 through 2012, tumors from 1007 patients were tested for at least 1 gene and 733 for 10 genes (patients with full genotyping). An oncogenic driver was found in 466 of 733 patients (64%). Among these 733 tumors, 182 tumors (25%) had the KRAS driver; sensitizing EGFR, 122 (17%); ALK rearrangements, 57 (8%); other EGFR, 29 (4%); 2 or more genes, 24 (3%); ERBB2 (formerly HER2), 19 (3%); BRAF, 16 (2%); PIK3CA, 6 (<1%); MET amplification, 5 (<1%); NRAS, 5 (<1%); MEK1, 1 (<1%); AKT1, 0. Results were used to select a targeted therapy or trial in 275 of 1007 patients (28%). The median survival was 3.5 years (interquartile range [IQR], 1.96-7.70) for the 260 patients with an oncogenic driver and genotype-directed therapy compared with 2.4 years (IQR, 0.88-6.20) for the 318 patients with any oncogenic driver(s) who did not receive genotype-directed therapy (propensity score–adjusted hazard ratio, 0.69 [95% CI, 0.53-0.9], P = .006). CONCLUSIONS AND RELEVANCE Actionable drivers were detected in 64% of lung adenocarcinomas. Multiplexed testing aided physicians in selecting therapies. Although individuals with drivers receiving a matched targeted agent lived longer, randomized trials are required to determine if targeting therapy based on oncogenic drivers improves survival. PMID:24846037

Kris, Mark G.; Johnson, Bruce E.; Berry, Lynne D.; Kwiatkowski, David J.; Iafrate, A. John; Wistuba, Ignacio I.; Varella-Garcia, Marileila; Franklin, Wilbur A.; Aronson, Samuel L.; Su, Pei-Fang; Shyr, Yu; Camidge, D. Ross; Sequist, Lecia V.; Glisson, Bonnie S.; Khuri, Fadlo R.; Garon, Edward B.; Pao, William; Rudin, Charles; Schiller, Joan; Haura, Eric B.; Socinski, Mark; Shirai, Keisuke; Chen, Heidi; Giaccone, Giuseppe; Ladanyi, Marc; Kugler, Kelly; Minna, John D.; Bunn, Paul A.

2014-01-01

217

65Zn2+ Transport by lobster hepatopancreatic lysosomal membrane vesicles.  

PubMed

In crustaceans, the hepatopancreas is the major organ system responsible for heavy metal detoxification, and within this structure the lysosomes and the endoplasmic reticulum are two organelles that regulate cytoplasmic metal concentrations by selective sequestration processes. This study characterized the transport processes responsible for zinc uptake into hepatopancreatic lysosomal membrane vesicles (LMV) and the interactions between the transport of this metal and those of calcium, copper, and cadmium in the same preparation. Standard centrifugation methods were used to prepare purified hepatopancreatic LMV and a rapid filtration procedure, to quantify 65Zn2+ transfer across this organellar membrane. LMV were osmotically reactive and exhibited a time course of uptake that was linear for 15-30 sec and approached equilibrium by 300 sec. 65Zn2+ influx was a hyperbolic function of external zinc concentration and followed Michaelis-Menten kinetics for carrier transport (Km = 32.3 +/- 10.8 microM; Jmax = 20.7 +/- 2.6 pmol/mg protein x sec). This carrier transport was stimulated by the addition of 1 mM ATP (Km = 35.89 +/- 10.58 microM; Jmax = 31.94+/-3.72 pmol/mg protein/sec) and replaced by an apparent slow diffusional process by the simultaneous presence of 1 mM ATP+250 microM vanadate. Thapsigargin (10 microM) was also a significant inhibitor of zinc influx (Km = 72.87 +/- 42.75 microM; Jmax =22.86 +/- 4.03 pmol/mg protein/sec), but not as effective in this regard as was vanadate. Using Dixon analysis, cadmium and copper were shown to be competitive inhibitors of lysosomal membrane vesicle 65Zn2+ influx by the ATP-dependent transport process (cadmium Ki = 68.1 +/- 3.2 microM; copper Ki = 32.7 +/- 1.9 microM). In the absence of ATP, an outwardly directed H+ gradient stimulated 65Zn2+ uptake, while a proton gradient in the opposite direction inhibited metal influx. The present investigation showed that 65Zn2+ was transported by hepatopancreatic lysosomal vesicles by ATP-dependent, vanadate-, thapsigargin-, and divalent cation-inhibited, carrier processes that illustrated Michaelis-Menten influx kinetics and was stimulated by an outwardly directed proton gradient. These transport properties as a whole suggest that this transporter may be a lysosomal isoform of the ER Sarco-Endoplasmic Reticulum Calcium ATPase. PMID:16432883

Mandal, Prabir K; Mandal, Anita; Ahearn, Gregory A

2006-03-01

218

Correction of target-controlled infusion following wrong selection of emulsion concentrations of propofol  

PubMed Central

Background We investigated the correction methods following wrong-settings of emulsion concentrations of propofol as a countermeasure against erroneous target-controlled infusions (TCI). Methods TCIs were started with targeting 4.0 µg/ml of effect-site concentration (Ceff) of propofol, and the emulsion concentrations were selected for 2.0% instead of 1.0% (FALSE1-2, n = 24), or 1.0% instead of 2.0% (FALSE2-1, n = 24). These wrong TCIs were corrected at 3 min after infusion start. During FALSE1-2, the deficit was filled up while injecting after equilibrium (n = 12), or while overriding (n = 12). During FALSE2-1, the overdose was evacuated while targeting Ceff (n = 12) or targeting plasma concentration (Cp) (n = 12). The gravimetrical measurements of TCI reproduced the Cp and Ceff using simulations. The reproduced Ceff at 3 min (Ceff-3min) and the time to be normalized within ± 5% of target Ceff (T±5%), were compared between the correction methods. Results During the wrong TCI, Ceff-3min was 1.98 ± 0.01 µg/ml in FALSE1-2, and 7.99 ± 0.05 µg/ml in FALSE2-1. In FALSE1-2, T±5% was significantly shorter when corrected while overriding (3.9 ± 0.25 min), than corrected after equilibrium (6.9 ± 0.05 min) (P < 0.001). In FALSE2-1, T±5% was significantly shorter during targeting Cp (3.6 ± 0.04 min) than targeting Ceff (6.7 ± 0.15 min) (P < 0.001). Conclusions The correction methods, based on the pharmacokinetic and pharmacodynamic characteristics, could effectively and rapidly normalize the wrong TCI following erroneously selections of the emulsion concentration of propofol. PMID:24910730

Chae, Yun-Jeong; Joe, Han Bum; Lee, Won-Il; Kim, Jin-A

2014-01-01

219

Gene expression levels are a target of recent natural selection in the human genome.  

PubMed

Changes in gene expression may represent an important mode of human adaptation. However, to date, there are relatively few known examples in which selection has been shown to act directly on levels or patterns of gene expression. In order to test whether single nucleotide polymorphisms (SNPs) that affect gene expression in cis are frequently targets of positive natural selection in humans, we analyzed genome-wide SNP and expression data from cell lines associated with the International HapMap Project. Using a haplotype-based test for selection that was designed to detect incomplete selective sweeps, we found that SNPs showing signals of selection are more likely than random SNPs to be associated with gene expression levels in cis. This signal is significant in the Yoruba (which is the population that shows the strongest signals of selection overall) and shows a trend in the same direction in the other HapMap populations. Our results argue that selection on gene expression levels is an important type of human adaptation. Finally, our work provides an analytical framework for tackling a more general problem that will become increasingly important: namely, testing whether selection signals overlap significantly with SNPs that are associated with phenotypes of interest. PMID:19091723

Kudaravalli, Sridhar; Veyrieras, Jean-Baptiste; Stranger, Barbara E; Dermitzakis, Emmanouil T; Pritchard, Jonathan K

2009-03-01

220

A new lactoferrin- and iron-dependent lysosomal death pathway is induced by benzo[a]pyrene in hepatic epithelial cells  

SciTech Connect

While lysosomal disruption seems to be a late step of necrosis, a moderate lysosomal destabilization has been suggested to participate early in the apoptotic cascade. The origin of lysosomal dysfunction and its precise role in apoptosis or apoptosis-like process still needs to be clarified, especially upon carcinogen exposure. In this study, we focused on the implication of lysosomes in cell death induced by the prototype carcinogen benzo[a]pyrene (B[a]P; 50 nM) in rat hepatic epithelial F258 cells. We first demonstrated that B[a]P affected lysosomal morphology (increase in size) and pH (alkalinization), and that these changes were involved in caspase-3 activation and cell death. Subsequently, we showed that lysosomal modifications were partly dependent on mitochondrial dysfunction, and that lysosomes together with mitochondria participate in B[a]P-induced oxidative stress. Using two iron chelators (desferrioxamine and deferiprone) and siRNA targeting the lysosomal iron-binding protease lactoferrin, we further demonstrated that both lysosomal iron content and lactoferrin were required for caspase-3 activation and apoptosis-like cell death.

Gorria, Morgane; Tekpli, Xavier; Rissel, Mary [Inserm U620, Group Toxicity of polycyclic aromatic hydrocarbons, Equipe Labellisee Ligue contre le Cancer, 2 av Pr. Leon Bernard, 35043 Rennes cedex (France)]|[Universite Rennes 1, IFR140, 2 av Pr. Leon Bernard, 35043 Rennes cedex (France); Sergent, Odile [UPRES EA 3891, UFR des Sciences Pharmaceutiques et Biologiques, Universite de Rennes 1, 2, av. Pr. Leon Bernard, 34043 Rennes cedex (France); Huc, Laurence [Inserm U620, Group Toxicity of polycyclic aromatic hydrocarbons, Equipe Labellisee Ligue contre le Cancer, 2 av Pr. Leon Bernard, 35043 Rennes cedex (France)]|[Universite Rennes 1, IFR140, 2 av Pr. Leon Bernard, 35043 Rennes cedex (France); Landvik, Nina [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Fardel, Olivier; Dimanche-Boitrel, Marie-Therese [Inserm U620, Group Toxicity of polycyclic aromatic hydrocarbons, Equipe Labellisee Ligue contre le Cancer, 2 av Pr. Leon Bernard, 35043 Rennes cedex (France)]|[Universite Rennes 1, IFR140, 2 av Pr. Leon Bernard, 35043 Rennes cedex (France); Holme, Jorn A. [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Lagadic-Gossmann, Dominique [Inserm U620, Group Toxicity of polycyclic aromatic hydrocarbons, Equipe Labellisee Ligue contre le Cancer, 2 av Pr. Leon Bernard, 35043 Rennes cedex (France)]|[Universite Rennes 1, IFR140, 2 av Pr. Leon Bernard, 35043 Rennes cedex (France)], E-mail: dominique.lagadic@rennes.inserm.fr

2008-04-15

221

Lysosomal membrane permeabilization in cell death.  

PubMed

Mitochondrial outer membrane permeabilization (MOMP) constitutes one of the major checkpoint(s) of apoptotic and necrotic cell death. Recently, the permeabilization of yet another organelle, the lysosome, has been shown to initiate a cell death pathway, in specific circumstances. Lysosomal membrane permeabilization (LMP) causes the release of cathepsins and other hydrolases from the lysosomal lumen to the cytosol. LMP is induced by a plethora of distinct stimuli including reactive oxygen species, lysosomotropic compounds with detergent activity, as well as some endogenous cell death effectors such as Bax. LMP is a potentially lethal event because the ectopic presence of lysosomal proteases in the cytosol causes digestion of vital proteins and the activation of additional hydrolases including caspases. This latter process is usually mediated indirectly, through a cascade in which LMP causes the proteolytic activation of Bid (which is cleaved by the two lysosomal cathepsins B and D), which then induces MOMP, resulting in cytochrome c release and apoptosome-dependent caspase activation. However, massive LMP often results in cell death without caspase activation; this cell death may adopt a subapoptotic or necrotic appearance. The regulation of LMP is perturbed in cancer cells, suggesting that specific strategies for LMP induction might lead to novel therapeutic avenues. PMID:18955971

Boya, P; Kroemer, G

2008-10-27

222

Application of support vector machine-based ranking strategies to search for target-selective compounds.  

PubMed

Support vector machine (SVM)-based selectivity searching has recently been introduced to identify compounds in virtual screening libraries that are not only active for a target protein, but also selective for this target over a closely related member of the same protein family. In simulated virtual screening calculations, SVM-based strategies termed preference ranking and one-versus-all ranking were successfully applied to rank a database and enrich high-ranking positions with selective compounds while removing nonselective molecules from high ranks. In contrast to the original SVM approach developed for binary classification, these strategies enable learning from more than two classes, considering that distinguishing between selective, promiscuously active, and inactive compounds gives rise to a three-class prediction problem. In this chapter, we describe the extension of the one-versus-all strategy to four training classes. Furthermore, we present an adaptation of the preference ranking strategy that leads to higher recall of selective compounds than previously investigated approaches and is applicable in situations where the removal of nonselective compounds from high-ranking positions is not required. PMID:20838983

Wassermann, Anne Mai; Geppert, Hanna; Bajorath, Jürgen

2011-01-01

223

Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype-targeted drugs.  

PubMed

Serotonin (5-hydroxytryptamine, or 5-HT) receptors mediate a plethora of physiological phenomena in the brain and the periphery. Additionally, serotonergic dysfunction has been implicated in nearly every neuropsychiatric disorder. The effects of serotonin are mediated by fourteen GPCRs. Both the therapeutic actions and side effects of commonly prescribed drugs are frequently due to nonspecific actions on various 5-HT receptor subtypes. For more than 20 years, the search for clinically efficacious drugs that selectively target 5-HT receptor subtypes has been only occasionally successful. This review provides an overview of 5-HT receptor pharmacology and discusses two recent 5-HT receptor subtype-selective drugs, lorcaserin and pimavanserin, which target the 5HT2C and 5HT2A receptors and provide new treatments for obesity and Parkinson's disease psychosis, respectively. PMID:24292660

Meltzer, Herbert Y; Roth, Bryan L

2013-12-01

224

Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells  

NASA Astrophysics Data System (ADS)

Core-shell nanoparticles based on fluorescent nanodiamonds coated with a biocompatible N-(2-hydroxypropyl)methacrylamide copolymer shell were developed for background-free near-infrared imaging of cancer cells. The particles showed excellent colloidal stability in buffers and culture media. After conjugation with a cyclic RGD peptide they selectively targeted integrin ?v?3 receptors on glioblastoma cells with high internalization efficacy.Core-shell nanoparticles based on fluorescent nanodiamonds coated with a biocompatible N-(2-hydroxypropyl)methacrylamide copolymer shell were developed for background-free near-infrared imaging of cancer cells. The particles showed excellent colloidal stability in buffers and culture media. After conjugation with a cyclic RGD peptide they selectively targeted integrin ?v?3 receptors on glioblastoma cells with high internalization efficacy. Electronic supplementary information (ESI) available: Materials and methods, colloidal stability studies and cell viability studies. See DOI: 10.1039/c4nr02776k

Slegerova, Jitka; Hajek, Miroslav; Rehor, Ivan; Sedlak, Frantisek; Stursa, Jan; Hruby, Martin; Cigler, Petr

2014-12-01

225

Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype–targeted drugs  

PubMed Central

Serotonin (5-hydroxytryptamine, or 5-HT) receptors mediate a plethora of physiological phenomena in the brain and the periphery. Additionally, serotonergic dysfunction has been implicated in nearly every neuropsychiatric disorder. The effects of serotonin are mediated by fourteen GPCRs. Both the therapeutic actions and side effects of commonly prescribed drugs are frequently due to nonspecific actions on various 5-HT receptor subtypes. For more than 20 years, the search for clinically efficacious drugs that selectively target 5-HT receptor subtypes has been only occasionally successful. This review provides an overview of 5-HT receptor pharmacology and discusses two recent 5-HT receptor subtype–selective drugs, lorcaserin and pimavanserin, which target the 5HT2C and 5HT2A receptors and provide new treatments for obesity and Parkinson’s disease psychosis, respectively. PMID:24292660

Meltzer, Herbert Y.; Roth, Bryan L.

2013-01-01

226

Diverse actions and target-site selectivity of neonicotinoids: structural insights.  

PubMed

The nicotinic acetylcholine receptors (nAChRs) are targets for human and veterinary medicines as well as insecticides. Subtype-selectivity among the diverse nAChR family members is important for medicines targeting particular disorders, and pest-insect selectivity is essential for the development of safer, environmentally acceptable insecticides. Neonicotinoid insecticides selectively targeting insect nAChRs have important applications in crop protection and animal health. Members of this class exhibit strikingly diverse actions on their nAChR targets. Here we review the chemistry and diverse actions of neonicotinoids on insect and mammalian nAChRs. Electrophysiological studies on native nAChRs and on wild-type and mutagenized recombinant nAChRs have shown that basic residues particular to loop D of insect nAChRs are likely to interact electrostatically with the nitro group of neonicotinoids. In 2008, the crystal structures were published showing neonicotinoids docking into the acetylcholine binding site of molluscan acetylcholine binding proteins with homology to the ligand binding domain (LBD) of nAChRs. The crystal structures showed that 1) glutamine in loop D, corresponding to the basic residues of insect nAChRs, hydrogen bonds with the NO(2) group of imidacloprid and 2) neonicotinoid-unique stacking and CH-pi bonds at the LBD. A neonicotinoid-resistant strain obtained by laboratory-screening has been found to result from target site mutations, and possible reasons for this are also suggested by the crystal structures. The prospects of designing neonicotinoids that are safe not only for mammals but also for beneficial insects such as honey bees (Apis mellifera) are discussed in terms of interactions with non-alpha nAChR subunits. PMID:19321668

Matsuda, Kazuhiko; Kanaoka, Satoshi; Akamatsu, Miki; Sattelle, David B

2009-07-01

227

The Ubiquitin–Proteasome System and the Autophagic–Lysosomal System in Alzheimer Disease  

PubMed Central

As neurons age, their survival depends on eliminating a growing burden of damaged, potentially toxic proteins and organelles—a capability that declines owing to aging and disease factors. Here, we review the two proteolytic systems principally responsible for protein quality control in neurons and their important contributions to Alzheimer disease pathogenesis. In the first section, the discovery of paired helical filament ubiquitination is described as a backdrop for discussing the importance of the ubiquitin–proteasome system in Alzheimer disease. In the second section, we review the prominent involvement of the lysosomal system beginning with pathological endosomal–lysosomal activation and signaling at the very earliest stages of Alzheimer disease followed by the progressive failure of autophagy. These abnormalities, which result in part from Alzheimer-related genes acting directly on these lysosomal pathways, contribute to the development of each of the Alzheimer neuropathological hallmarks and represent a promising therapeutic target. PMID:22908190

Ihara, Yasuo; Morishima-Kawashima, Maho; Nixon, Ralph

2012-01-01

228

Spectral selective radio frequency emissions from laser induced breakdown of target materials  

NASA Astrophysics Data System (ADS)

The radio frequency emissions scanned over broad spectral range (30 MHz-1 GHz) from single shot nanosecond (7 ns) and picosecond (30 ps) laser induced breakdown (LIB) of different target materials (atmospheric air, aluminum, and copper) are presented. The dominant emissions from ns-LIB, compared to those from the ps-LIB, indicate the presence and importance of atomic and molecular clusters in the plasma. The dynamics of laser pulse-matter interaction and the properties of the target materials were found to play an important role in determining the plasma parameters which subsequently determine the emissions. Thus, with a particular laser and target material, the emissions were observed to be spectral selective. The radiation detection capability was observed to be relatively higher, when the polarization of the input laser and the antenna is same.

Vinoth Kumar, L.; Manikanta, E.; Leela, Ch.; Prem Kiran, P.

2014-08-01

229

Mitochondrial permeability transition pore as a selective target for anti-cancer therapy  

PubMed Central

Mitochondrial outer membrane permeabilization (MOMP) is the ultimate step in dozens of lethal apoptotic signal transduction pathways which converge on mitochondria. One of the representative systems proposed to be responsible for the MOMP is the mitochondrial permeability transition pore (MPTP). Although the molecular composition of the MPTP is not clearly understood, the MPTP attracts much interest as a promising target for resolving two conundrums regarding cancer treatment: tumor selectivity and resistance to treatment. The regulation of the MPTP is closely related to metabolic reprogramming in cancer cells including mitochondrial alterations. Restoration of deregulated apoptotic machinery in cancer cells by tumor-specific modulation of the MPTP could therefore be a promising anti-cancer strategy. Currently, a number of MPTP-targeting agents are under pre-clinical and clinical studies. Here, we reviewed the structure and regulation of the MPTP as well as the current status of the development of promising MPTP-targeting drugs. PMID:23483560

Suh, Dong H.; Kim, Mi-Kyung; Kim, Hee S.; Chung, Hyun H.; Song, Yong S.

2012-01-01

230

Microfluidics for drug discovery and development: from target selection to product lifecycle management.  

PubMed

Microfluidic technologies' ability to miniaturize assays and increase experimental throughput have generated significant interest in the drug discovery and development domain. These characteristics make microfluidic systems a potentially valuable tool for many drug discovery and development applications. Here, we review the recent advances of microfluidic devices for drug discovery and development and highlight their applications in different stages of the process, including target selection, lead identification, preclinical tests, clinical trials, chemical synthesis, formulations studies and product management. PMID:18190858

Kang, Lifeng; Chung, Bong Geun; Langer, Robert; Khademhosseini, Ali

2008-01-01

231

Microfluidics for Drug Discovery and Development: From Target Selection to Product Lifecycle Management  

PubMed Central

Microfluidic technologies’ ability to miniaturize assays and increase experimental throughput have generated significant interest in the drug discovery and development domain. These characteristics make microfluidic systems a potentially valuable tool for many drug discovery and development applications. Here, we review the recent advances of microfluidic devices for drug discovery and development and highlight their applications in different stages of the process, including target selection, lead identification, preclinical tests, clinical trials, chemical synthesis, formulations studies, and product management. PMID:18190858

Kang, Lifeng; Chung, Bong Geun; Langer, Robert; Khademhosseini, Ali

2009-01-01

232

Giant Lysosomes as a Chemotherapy Resistance Mechanism in Hepatocellular Carcinoma Cells  

PubMed Central

Despite continuous improvements in therapeutic protocols, cancer-related mortality is still one of the main problems facing public health. The main cause of treatment failure is multi-drug resistance (MDR: simultaneous insensitivity to different anti-cancer agents), the underlying molecular and biological mechanisms of which include the activity of ATP binding cassette (ABC) proteins and drug compartmentalisation in cell organelles. We investigated the expression of the main ABC proteins and the role of cytoplasmic vacuoles in the MDR of six hepatocellular carcinoma (HCC) cell lines, and confirmed the accumulation of the yellow anti-cancer drug sunitinib in giant (four lines) and small cytoplasmic vacuoles of lysosomal origin (two lines). ABC expression analyses showed that the main ABC protein harboured by all of the cell lines was PGP, whose expression was not limited to the cell membrane but was also found on lysosomes. MTT assays showed that the cell lines with giant lysosomes were more resistant to sorafenib treatment than those with small lysosomes (p<0.01), and that verapamil incubation can revert this resistance, especially if it is administered after drug pre-incubation. The findings of this study demonstrate the involvement of PGP-positive lysosomes in drug sequestration and MDR in HCC cell lines. The possibility of modulating this mechanism using PGP inhibitors could lead to the development of new targeted strategies to enhance HCC treatment. PMID:25493932

Colombo, Federico; Trombetta, Elena; Cetrangolo, Paola; Maggioni, Marco; Razini, Paola; De Santis, Francesca; Torrente, Yvan; Prati, Daniele; Torresani, Erminio; Porretti, Laura

2014-01-01

233

Lysosomal abnormalities in hereditary spastic paraplegia types SPG15 and SPG11  

PubMed Central

Objective Hereditary spastic paraplegias (HSPs) are among the most genetically diverse inherited neurological disorders, with over 70 disease loci identified (SPG1-71) to date. SPG15 and SPG11 are clinically similar, autosomal recessive disorders characterized by progressive spastic paraplegia along with thin corpus callosum, white matter abnormalities, cognitive impairment, and ophthalmologic abnormalities. Furthermore, both have been linked to early-onset parkinsonism. Methods We describe two new cases of SPG15 and investigate cellular changes in SPG15 and SPG11 patient-derived fibroblasts, seeking to identify shared pathogenic themes. Cells were evaluated for any abnormalities in cell division, DNA repair, endoplasmic reticulum, endosomes, and lysosomes. Results Fibroblasts prepared from patients with SPG15 have selective enlargement of LAMP1-positive structures, and they consistently exhibited abnormal lysosomal storage by electron microscopy. A similar enlargement of LAMP1-positive structures was also observed in cells from multiple SPG11 patients, though prominent abnormal lysosomal storage was not evident. The stabilities of the SPG15 protein spastizin/ZFYVE26 and the SPG11 protein spatacsin were interdependent. Interpretation Emerging studies implicating these two proteins in interactions with the late endosomal/lysosomal adaptor protein complex AP-5 are consistent with shared abnormalities in lysosomes, supporting a converging mechanism for these two disorders. Recent work with Zfyve26?/? mice revealed a similar phenotype to human SPG15, and cells in these mice had endolysosomal abnormalities. SPG15 and SPG11 are particularly notable among HSPs because they can also present with juvenile parkinsonism, and this lysosomal trafficking or storage defect may be relevant for other forms of parkinsonism associated with lysosomal dysfunction. PMID:24999486

Renvoisé, Benoît; Chang, Jaerak; Singh, Rajat; Yonekawa, Sayuri; FitzGibbon, Edmond J; Mankodi, Ami; Vanderver, Adeline; Schindler, Alice B; Toro, Camilo; Gahl, William A; Mahuran, Don J; Blackstone, Craig; Pierson, Tyler Mark

2014-01-01

234

Lysosomal involvement in beryllium phosphate toxicity.  

PubMed Central

The fate of i.v. administered particles of beryllium phosphate (50 mumol/kg) has been investigated by electron microscopy in the liver of the rat. These particles were endocytosed by the Kupffer cells within 15 min of administration but they were never found in the endothelial or parenchymal cells of the liver. Endocytosed particles were rapidly degraded within vesicles which were identified as secondary lysosomes. Pronounced swelling of these lysosomes subsequently developed, within 60 min of administration, resulting in distension of the entire cell. This vacuolation was entirely restricted to the Kupffer cells, particularly those in the pericanalicular region of the hepatic lobules. Lysosomal swelling, or even rupture, probably resulted in the subsequent death of these cells by the intra-cytoplasmic release of beryllium. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:7066177

Dinsdale, D.

1982-01-01

235

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein-induced lysosomal translocation of proapoptotic effectors is mediated by phosphofurin acidic cluster sorting protein-2 (PACS-2).  

PubMed

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of liver cancer cell lines requires death receptor-5 (DR5)-dependent permeabilization of lysosomal membranes. Ligated DR5 triggers recruitment of the proapoptotic proteins Bim and Bax to lysosomes, releasing cathepsin B into the cytosol where it mediates mitochondria membrane permeabilization and activation of executioner caspases. Despite the requirement for lysosome membrane permeabilization during TRAIL-induced apoptosis, little is known about the mechanism that controls recruitment of Bim and Bax to lysosomal membranes. Here we report that TRAIL induces recruitment of the multifunctional sorting protein phosphofurin acidic cluster sorting protein-2 (PACS-2) to DR5-positive endosomes in Huh-7 cells where it forms an immunoprecipitatable complex with Bim and Bax on lysosomal membranes. shRNA-targeted knockdown of PACS-2 prevents recruitment of Bim or Bax to lysosomes, blunting the TRAIL-induced lysosome membrane permeabilization. Consistent with the reduced lysosome membrane permeabilization, shRNA knockdown of PACS-2 in Huh-7 cells reduced TRAIL-induced apoptosis and increased clonogenic cell survival. The determination that recombinant PACS-2 bound Bim but not Bax in vitro and that shRNA knockdown of Bim blocked Bax recruitment to lysosomes suggests that TRAIL/DR5 triggers endosomal PACS-2 to recruit Bim and Bax to lysosomes to release cathepsin B and induce apoptosis. Together, these findings provide insight into the lysosomal pathway of apoptosis. PMID:22645134

Werneburg, Nathan W; Bronk, Steve F; Guicciardi, Maria Eugenia; Thomas, Laurel; Dikeakos, Jimmy D; Thomas, Gary; Gores, Gregory J

2012-07-13

236

Chlorin e6 Conjugated Interleukin-6 Receptor Aptamers Selectively Kill Target Cells Upon Irradiation  

PubMed Central

Photodynamic therapy (PDT) uses the therapeutic properties of light in combination with certain chemicals, called photosensitizers, to successfully treat brain, breast, prostate, and skin cancers. To improve PDT, current research focuses on the development of photosensitizers to specifically target cancer cells. In the past few years, aptamers have been developed to directly deliver cargo molecules into target cells. We conjugated the photosensitizer chlorin e6 (ce6) with a human interleukin-6 receptor (IL-6R) binding RNA aptamer, AIR-3A yielding AIR-3A-ce6 for application in high efficient PDT. AIR-3A-ce6 was rapidly and specifically internalized by IL-6R presenting (IL-6R+) cells. Upon light irradiation, targeted cells were selectively killed, while free ce6 did not show any toxic effect. Cells lacking the IL-6R were also not affected by AIR-3A-ce6. With this approach, we improved the target specificity of ce6-mediated PDT. In the future, other tumor-specific aptamers might be used to selectively localize photosensitizers into cells of interest and improve the efficacy and specificity of PDT in cancer and other diseases. PMID:24481022

Kruspe, Sven; Meyer, Cindy; Hahn, Ulrich

2014-01-01

237

Increased lysosomal biogenesis in activated microglia and exacerbated neuronal damage after traumatic brain injury in progranulin-deficient mice.  

PubMed

Progranulin (PGRN) is known to play a role in the pathogenesis of neurodegenerative diseases. Recently, it has been demonstrated that patients with the homozygous mutation in the GRN gene present with neuronal ceroid lipofuscinosis, and there is growing evidence that PGRN is related to lysosomal function. In the present study, we investigated the possible role of PGRN in the lysosomes of activated microglia in the cerebral cortex after traumatic brain injury (TBI). We showed that the mouse GRN gene has two possible coordinated lysosomal expression and regulation (CLEAR) sequences that bind to transcription factor EB (TFEB), a master regulator of lysosomal genes. PGRN was colocalized with Lamp1, a lysosomal marker, and Lamp1-positive areas in GRN-deficient (KO) mice were significantly expanded compared with wild-type (WT) mice after TBI. Expression of all the lysosome-related genes examined in KO mice was significantly higher than that in WT mice. The number of activated microglia with TFEB localized to the nucleus was also significantly increased in KO as compared with WT mice. Since the TFEB translocation is regulated by the mammalian target of rapamycin complex 1 (mTORC1) activity in the lysosome, we compared ribosomal S6 kinase 1 (S6K1) phosphorylation that reflects mTORC1 activity. S6K1 phosphorylation in KO mice was significantly lower than that in WT mice. In addition, the number of nissl-positive and fluoro-jade B-positive cells around the injury was significantly decreased and increased, respectively, in KO as compared with WT mice. These results suggest that PGRN localized in the lysosome is involved in the activation of mTORC1, and its deficiency leads to increased TFEB nuclear translocation with a resultant increase in lysosomal biogenesis in activated microglia and exacerbated neuronal damage in the cerebral cortex after TBI. PMID:23830905

Tanaka, Y; Matsuwaki, T; Yamanouchi, K; Nishihara, M

2013-10-10

238

Targeting hunter distribution based on host resource selection and kill sites to manage disease risk.  

PubMed

Endemic and emerging diseases are rarely uniform in their spatial distribution or prevalence among cohorts of wildlife. Spatial models that quantify risk-driven differences in resource selection and hunter mortality of animals at fine spatial scales can assist disease management by identifying high-risk areas and individuals. We used resource selection functions (RSFs) and selection ratios (SRs) to quantify sex- and age-specific resource selection patterns of collared (n = 67) and hunter-killed (n = 796) nonmigratory elk (Cervus canadensis manitobensis) during the hunting season between 2002 and 2012, in southwestern Manitoba, Canada. Distance to protected area was the most important covariate influencing resource selection and hunter-kill sites of elk (AICw = 1.00). Collared adult males (which are most likely to be infected with bovine tuberculosis (Mycobacterium bovis) and chronic wasting disease) rarely selected for sites outside of parks during the hunting season in contrast to adult females and juvenile males. The RSFs showed selection by adult females and juvenile males to be negatively associated with landscape-level forest cover, high road density, and water cover, whereas hunter-kill sites of these cohorts were positively associated with landscape-level forest cover and increasing distance to streams and negatively associated with high road density. Local-level forest was positively associated with collared animal locations and hunter-kill sites; however, selection was stronger for collared juvenile males and hunter-killed adult females. In instances where disease infects a metapopulation and eradication is infeasible, a principle goal of management is to limit the spread of disease among infected animals. We map high-risk areas that are regularly used by potentially infectious hosts but currently underrepresented in the distribution of kill sites. We present a novel application of widely available data to target hunter distribution based on host resource selection and kill sites as a promising tool for applying selective hunting to the management of transmissible diseases in a game species. PMID:24324876

Dugal, Cherie J; van Beest, Floris M; Vander Wal, Eric; Brook, Ryan K

2013-10-01

239

Targeting hunter distribution based on host resource selection and kill sites to manage disease risk  

PubMed Central

Endemic and emerging diseases are rarely uniform in their spatial distribution or prevalence among cohorts of wildlife. Spatial models that quantify risk-driven differences in resource selection and hunter mortality of animals at fine spatial scales can assist disease management by identifying high-risk areas and individuals. We used resource selection functions (RSFs) and selection ratios (SRs) to quantify sex- and age-specific resource selection patterns of collared (n = 67) and hunter-killed (n = 796) nonmigratory elk (Cervus canadensis manitobensis) during the hunting season between 2002 and 2012, in southwestern Manitoba, Canada. Distance to protected area was the most important covariate influencing resource selection and hunter-kill sites of elk (AICw = 1.00). Collared adult males (which are most likely to be infected with bovine tuberculosis (Mycobacterium bovis) and chronic wasting disease) rarely selected for sites outside of parks during the hunting season in contrast to adult females and juvenile males. The RSFs showed selection by adult females and juvenile males to be negatively associated with landscape-level forest cover, high road density, and water cover, whereas hunter-kill sites of these cohorts were positively associated with landscape-level forest cover and increasing distance to streams and negatively associated with high road density. Local-level forest was positively associated with collared animal locations and hunter-kill sites; however, selection was stronger for collared juvenile males and hunter-killed adult females. In instances where disease infects a metapopulation and eradication is infeasible, a principle goal of management is to limit the spread of disease among infected animals. We map high-risk areas that are regularly used by potentially infectious hosts but currently underrepresented in the distribution of kill sites. We present a novel application of widely available data to target hunter distribution based on host resource selection and kill sites as a promising tool for applying selective hunting to the management of transmissible diseases in a game species. PMID:24324876

Dugal, Cherie J; van Beest, Floris M; Vander Wal, Eric; Brook, Ryan K

2013-01-01

240

Lysosomal Ca(2+) homeostasis: role in pathogenesis of lysosomal storage diseases.  

PubMed

Disrupted cellular Ca(2+) signaling is believed to play a role in a number of human diseases including lysosomal storage diseases (LSD). LSDs are a group of ?50 diseases caused predominantly by mutations in lysosomal proteins that result in accumulation of macromolecules within the lysosome. We recently reported that Niemann-Pick type C (NPC) is the first human disease to be associated with defective lysosomal Ca(2+) uptake and defective NAADP-mediated lysosomal Ca(2+) release. These defects in NPC cells leads to the disruption in endocytosis and subsequent lipid storage that is a feature of this disease. In contrast, Chediak-Higashi Syndrome cells have been reported to have enhanced lysosomal Ca(2+) uptake whilst the TRPML1 protein defective in mucolipidosis type IV is believed to function as a Ca(2+) channel. In this review we provide a summary of the current knowledge on the role of lysosomal Ca(2+) signaling in the pathogenesis of this group of diseases. PMID:21724254

Lloyd-Evans, Emyr; Platt, Frances M

2011-08-01

241

THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE  

SciTech Connect

The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg{sup 2}, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations (BAOs) in the distribution of Ly{alpha} absorption from the spectra of a sample of {approx}150,000 z > 2.2 quasars. Along with measuring the angular diameter distance at z Almost-Equal-To 2.5, BOSS will provide the first direct measurement of the expansion rate of the universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithm for quasars in the redshift range 2.2 < z < 3.5, where their colors tend to overlap those of the far more numerous stars. During the first year of the BOSS survey, quasar target selection (QTS) methods were developed and tested to meet the requirement of delivering at least 15 quasars deg{sup -2} in this redshift range, with a goal of 20 out of 40 targets deg{sup -2} allocated to the quasar survey. To achieve these surface densities, the magnitude limit of the quasar targets was set at g {<=} 22.0 or r {<=} 21.85. While detection of the BAO signature in the distribution of Ly{alpha} absorption in quasar spectra does not require a uniform target selection algorithm, many other astrophysical studies do. We have therefore defined a uniformly selected subsample of 20 targets deg{sup -2}, for which the selection efficiency is just over 50% ({approx}10 z > 2.20 quasars deg{sup -2}). This 'CORE' subsample will be fixed for Years Two through Five of the survey. For the remaining 20 targets deg{sup -2}, we will continue to develop improved selection techniques, including the use of additional data sets beyond the Sloan Digital Sky Survey (SDSS) imaging data. In this paper, we describe the evolution and implementation of the BOSS QTS algorithms during the first two years of BOSS operations (through 2011 July), in support of the science investigations based on these data, and we analyze the spectra obtained during the first year. During this year, 11,263 new z > 2.20 quasars were spectroscopically confirmed by BOSS, roughly double the number of previously known quasars with z > 2.20. Our current algorithms select an average of 15 z > 2.20 quasars deg{sup -2} from 40 targets deg{sup -2} using single-epoch SDSS imaging. Multi-epoch optical data and data at other wavelengths can further improve the efficiency and completeness of BOSS QTS.

Ross, Nicholas P.; Kirkpatrick, Jessica A.; Carithers, William C.; Ho, Shirley [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Myers, Adam D. [Department of Astronomy, MC-221, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Sheldon, Erin S. [Brookhaven National Laboratory, Blgd 510, Upton, NY 11375 (United States); Yeche, Christophe; Aubourg, Eric [CEA, Centre de Saclay, IRFU, 91191 Gif-sur-Yvette (France); Strauss, Michael A.; Lee, Khee-Gan [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Bovy, Jo; Blanton, Michael R.; Hogg, David W. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Brandt, W. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Croft, Rupert A. C. [Bruce and Astrid McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Da Silva, Robert [Department of Astronomy and Astrophysics, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Dawson, Kyle [Department of Physics and Astronomy, University of Utah, UT (United States); Eisenstein, Daniel J. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Hennawi, Joseph F., E-mail: npross@lbl.gov [Max-Planck-Institut fuer Astronomie, Konigstuhl 17, 69117 Heidelberg (Germany); and others

2012-03-01

242

Aptamer CaCO3 Nanostructures: A Facile, pH-Responsive, Specific Platform for Targeted Anticancer Theranostics.  

PubMed

The application of cancer theranostics depends on the development of multifunctional nanostructured platforms for accurate cell targeting and controlled drug release, imaging, and therapy. Herein, a comprehensive, easily fabricated anticancer theranostic platform with a high drug-loading capacity, termed an aptamer-functionalized calcium carbonate (CaCO3 ) nanostructure (apt-CCN), is reported. Flow cytometry and confocal fluorescence microscopy studies demonstrate that apt-CCNs can specifically bind to target cancer cells, but not to control cells, and that they possess highly efficient internalization to target cancer cells. This smart nanostructure selectively reaches the lysosomes through receptor-mediated endocytosis and is responsive to the relatively low lysosome pH (4.5-5.5), which facilitates the release of doxorubicin. The apt-CCN platform offers targeted and efficient drug transport, as well as target-specific delivery of imaging agents for cancer diagnosis and therapy. PMID:25377905

Zhou, Cuisong; Chen, Tao; Wu, Cuichen; Zhu, Guizhi; Qiu, Liping; Cui, Cheng; Hou, Weijia; Tan, Weihong

2015-01-01

243

Target Selection and Deselection at the Berkeley StructuralGenomics Center  

SciTech Connect

At the Berkeley Structural Genomics Center (BSGC), our goalis to obtain a near-complete structural complement of proteins in theminimal organisms Mycoplasma genitalium and M. pneumoniae, two closelyrelated pathogens. Current targets for structure determination have beenselected in six major stages, starting with those predicted to be mosttractable to high throughput study and likely to yield new structuralinformation. We report on the process used to select these proteins, aswell as our target deselection procedure. Target deselection reducesexperimental effort by eliminating targets similar to those recentlysolved by the structural biology community or other centers. We measurethe impact of the 69 structures solved at the BSGC as of July 2004 onstructure prediction coverage of the M. pneumoniae and M. genitaliumproteomes. The number of Mycoplasma proteins for which thefold couldfirst be reliably assigned based on structures solved at the BSGC (24 M.pneumoniae and 21 M. genitalium) is approximately 25 percent of the totalresulting from work at all structural genomics centers and the worldwidestructural biology community (94 M. pneumoniae and 86M. genitalium)during the same period. As the number of structures contributed by theBSGC during that period is less than 1 percent of the total worldwideoutput, the benefits of a focused target selection strategy are apparent.If the structures of all current targets were solved, the percentage ofM. pneumoniae proteins for which folds could be reliably assigned wouldincrease from approximately 57 percent (391 of 687) at present to around80 percent (550 of 687), and the percentage of the proteome that could beaccurately modeled would increase from around 37 percent (254 of 687) toabout 64 percent (438 of 687). In M. genitalium, the percentage of theproteome that could be structurally annotated based on structures of ourremaining targets would rise from 72 percent (348 of 486) to around 76percent (371 of 486), with the percentage of accurately modeled proteinswould rise from 50 percent (243 of 486) to 58 percent (283 of 486).Sequences and data on experimental progress on our targets are availablein the public databases Target DB and PEPCdb.

Chandonia, John-Marc; Kim, Sung-Hou; Brenner, Steven E.

2005-03-22

244

A Proteolytic Cascade Controls Lysosome Rupture and Necrotic Cell Death Mediated by Lysosome-Destabilizing Adjuvants  

PubMed Central

Recent studies have linked necrotic cell death and proteolysis of inflammatory proteins to the adaptive immune response mediated by the lysosome-destabilizing adjuvants, alum and Leu-Leu-OMe (LLOMe). However, the mechanism by which lysosome-destabilizing agents trigger necrosis and proteolysis of inflammatory proteins is poorly understood. The proteasome is a cellular complex that has been shown to regulate both necrotic cell death and proteolysis of inflammatory proteins. We found that the peptide aldehyde proteasome inhibitors, MG115 and MG132, block lysosome rupture, degradation of inflammatory proteins and necrotic cell death mediated by the lysosome-destabilizing peptide LLOMe. However, non-aldehyde proteasome inhibitors failed to prevent LLOMe-induced cell death suggesting that aldehyde proteasome inhibitors triggered a pleotropic effect. We have previously shown that cathepsin C controls lysosome rupture, necrotic cell death and the adaptive immune response mediated by LLOMe. Using recombinant cathepsin C, we found that aldehyde proteasome inhibitors directly block cathepsin C, which presumably prevents LLOMe toxicity. The cathepsin B inhibitor CA-074-Me also blocks lysosome rupture and necrotic cell death mediated by a wide range of necrosis inducers, including LLOMe. Using cathepsin-deficient cells and recombinant cathepsins, we demonstrate that the cathepsins B and C are not required for the CA-074-Me block of necrotic cell death. Taken together, our findings demonstrate that lysosome-destabilizing adjuvants trigger an early proteolytic cascade, involving cathepsin C and a CA-074-Me-dependent protease. Identification of these early events leading to lysosome rupture will be crucial in our understanding of processes controlling necrotic cell death and immune responses mediated by lysosome-destabilizing adjuvants. PMID:24893007

Muehlbauer, Stefan M.; Chandran, Kartik; Diaz-Griffero, Felipe

2014-01-01

245

Lysosomal Membrane Permeability Stimulates Protein Aggregate Formation in Neurons of a Lysosomal Disease  

PubMed Central

Protein aggregates are a common pathological feature of neurodegenerative diseases and several lysosomal diseases, but it is currently unclear what aggregates represent for pathogenesis. Here we report the accumulation of intraneuronal aggregates containing the macroautophagy adapter proteins p62 and NBR1 in the neurodegenerative lysosomal disease late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). CLN2 disease is caused by a deficiency in the lysosomal enzyme tripeptidyl peptidase I, which results in aberrant lysosomal storage of catabolites, including the subunit c of mitochondrial ATP synthase (SCMAS). In an effort to define the role of aggregates in CLN2, we evaluated p62 and NBR1 accumulation in the CNS of Cln2?/? mice. Although increases in p62 and NBR1 often suggest compromised degradative mechanisms, we found normal ubiquitin–proteasome system function and only modest inefficiency in macroautophagy late in disease. Importantly, we identified that SCMAS colocalizes with p62 in extra-lysosomal aggregates in Cln2?/? neurons in vivo. This finding is consistent with SCMAS being released from lysosomes, an event known as lysosomal membrane permeability (LMP). We predicted that LMP and storage release from lysosomes results in the sequestration of this material as cytosolic aggregates by p62 and NBR1. Notably, LMP induction in primary neuronal cultures generates p62-positive aggregates and promotes p62 localization to lysosomal membranes, supporting our in vivo findings. We conclude that LMP is a previously unrecognized pathogenic event in CLN2 disease that stimulates cytosolic aggregate formation. Furthermore, we offer a novel role for p62 in response to LMP that may be relevant for other diseases exhibiting p62 accumulation. PMID:23804102

Micsenyi, Matthew C.; Sikora, Jakub; Stephney, Gloria; Dobrenis, Kostantin

2013-01-01

246

Genomic selection identifies vertebrate transcription factor Fezf2 binding sites and target genes.  

PubMed

Identification of transcription factor targets is critical to understanding gene regulatory networks. Here, we uncover transcription factor binding sites and target genes employing systematic evolution of ligands by exponential enrichment (SELEX). Instead of selecting randomly synthesized DNA oligonucleotides as in most SELEX studies, we utilized zebrafish genomic DNA to isolate fragments bound by Fezf2, an evolutionarily conserved gene critical for vertebrate forebrain development. This is, to our knowledge, the first time that SELEX is applied to a vertebrate genome. Computational analysis of bound genomic fragments predicted a core consensus binding site, which identified response elements that mediated Fezf2-dependent transcription both in vitro and in vivo. Fezf2-bound fragments were enriched for conserved sequences. Surprisingly, ?20% of these fragments overlapped well annotated protein-coding exons. Through loss of function, gain of function, and chromatin immunoprecipitation, we further identified and validated eomesa/tbr2 and lhx2b as biologically relevant target genes of Fezf2. Mutations in eomesa/tbr2 cause microcephaly in humans, whereas lhx2b is a critical regulator of cell fate and axonal targeting in the developing forebrain. These results demonstrate the feasibility of employing genomic SELEX to identify vertebrate transcription factor binding sites and target genes and reveal Fezf2 as a transcription activator and a candidate for evaluation in human microcephaly. PMID:21471212

Chen, Lishan; Zheng, Jiashun; Yang, Nan; Li, Hao; Guo, Su

2011-05-27

247

Patient selection and targeted treatment in the management of platinum-resistant ovarian cancer  

PubMed Central

Ovarian cancer (OC) has the highest mortality rate of any gynecologic cancer, and patients generally have a poor prognosis due to high chemotherapy resistance and late stage disease diagnosis. Platinum-resistant OC can be treated with cytotoxic chemotherapy such as paclitaxel, topotecan, pegylated liposomal doxorubicin, and gemcitabine, but many patients eventually relapse upon treatment. Fortunately, there are currently a number of targeted therapies in development for these patients who have shown promising results in recent clinical trials. These treatments often target the vascular endothelial growth factor pathway (eg, bevacizumab and aflibercept), DNA repair mechanisms (eg, iniparib and olaparib), or they are directed against folate related pathways (eg, pemetrexed, farletuzumab, and vintafolide). As many targeted therapies are only effective in a subset of patients, there is an increasing need for the identification of response predictive biomarkers. Selecting the right patients through biomarker screening will help tailor therapy to patients and decrease superfluous treatment to those who are biomarker negative; this approach should lead to improved clinical results and decreased toxicities. In this review the current targeted therapies used for treating platinum-resistant OC are discussed. Furthermore, use of prognostic and response predictive biomarkers to define OC patient populations that may benefit from specific targeted therapies is also highlighted. PMID:24109193

Leamon, Christopher P; Lovejoy, Chandra D; Nguyen, Binh

2013-01-01

248

Patient selection and targeted treatment in the management of platinum-resistant ovarian cancer.  

PubMed

Ovarian cancer (OC) has the highest mortality rate of any gynecologic cancer, and patients generally have a poor prognosis due to high chemotherapy resistance and late stage disease diagnosis. Platinum-resistant OC can be treated with cytotoxic chemotherapy such as paclitaxel, topotecan, pegylated liposomal doxorubicin, and gemcitabine, but many patients eventually relapse upon treatment. Fortunately, there are currently a number of targeted therapies in development for these patients who have shown promising results in recent clinical trials. These treatments often target the vascular endothelial growth factor pathway (eg, bevacizumab and aflibercept), DNA repair mechanisms (eg, iniparib and olaparib), or they are directed against folate related pathways (eg, pemetrexed, farletuzumab, and vintafolide). As many targeted therapies are only effective in a subset of patients, there is an increasing need for the identification of response predictive biomarkers. Selecting the right patients through biomarker screening will help tailor therapy to patients and decrease superfluous treatment to those who are biomarker negative; this approach should lead to improved clinical results and decreased toxicities. In this review the current targeted therapies used for treating platinum-resistant OC are discussed. Furthermore, use of prognostic and response predictive biomarkers to define OC patient populations that may benefit from specific targeted therapies is also highlighted. PMID:24109193

Leamon, Christopher P; Lovejoy, Chandra D; Nguyen, Binh

2013-01-01

249

Lysosomal-mitochondrial cross-talk during cell death.  

PubMed

Lysosomes are membrane-bound organelles, which contain an arsenal of different hydrolases, enabling them to act as the terminal degradative compartment of the endocytotic, phagocytic and autophagic pathways. During the last decade, it was convincingly shown that destabilization of lysosomal membrane and release of lysosomal content into the cytosol can initiate the lysosomal apoptotic pathway, which is dependent on mitochondria destabilization. The cleavage of BID to t-BID and degradation of anti-apoptotic BCL-2 proteins by lysosomal cysteine cathepsins were identified as links to the mitochondrial cytochrome c release, which eventually leads to caspase activation. There have also been reports about the involvement of lysosome destabilization and lysosomal proteases in the extrinsic apoptotic pathway, although the molecular mechanism is still under debate. In the present article, we discuss the cross-talk between lysosomes and mitochondria during apoptosis and its consequences for the fate of the cell. PMID:20696281

Repnik, Urška; Turk, Boris

2010-11-01

250

Deficiency of sphingosine-1-phosphate lyase impairs lysosomal metabolism of the amyloid precursor protein.  

PubMed

Progressive accumulation of the amyloid ? protein in extracellular plaques is a neuropathological hallmark of Alzheimer disease. Amyloid ? is generated during sequential cleavage of the amyloid precursor protein (APP) by ?- and ?-secretases. In addition to the proteolytic processing by secretases, APP is also metabolized by lysosomal proteases. Here, we show that accumulation of intracellular sphingosine-1-phosphate (S1P) impairs the metabolism of APP. Cells lacking functional S1P-lyase, which degrades intracellular S1P, strongly accumulate full-length APP and its potentially amyloidogenic C-terminal fragments (CTFs) as compared with cells expressing the functional enzyme. By cell biological and biochemical methods, we demonstrate that intracellular inhibition of S1P-lyase impairs the degradation of APP and CTFs in lysosomal compartments and also decreases the activity of ?-secretase. Interestingly, the strong accumulation of APP and CTFs in S1P-lyase-deficient cells was reversed by selective mobilization of Ca(2+) from the endoplasmic reticulum or lysosomes. Intracellular accumulation of S1P also impairs maturation of cathepsin D and degradation of Lamp-2, indicating a general impairment of lysosomal activity. Together, these data demonstrate that S1P-lyase plays a critical role in the regulation of lysosomal activity and the metabolism of APP. PMID:24808180

Karaca, Ilker; Tamboli, Irfan Y; Glebov, Konstantin; Richter, Josefine; Fell, Lisa H; Grimm, Marcus O; Haupenthal, Viola J; Hartmann, Tobias; Gräler, Markus H; van Echten-Deckert, Gerhild; Walter, Jochen

2014-06-13

251

Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases.  

PubMed

Birt-Hogg-Dubé syndrome, a human disease characterized by fibrofolliculomas (hair follicle tumors) as well as a strong predisposition toward the development of pneumothorax, pulmonary cysts, and renal carcinoma, arises from loss-of-function mutations in the folliculin (FLCN) gene. In this study, we show that FLCN regulates lysosome function by promoting the mTORC1-dependent phosphorylation and cytoplasmic sequestration of transcription factor EB (TFEB). Our results indicate that FLCN is specifically required for the amino acid-stimulated recruitment of mTORC1 to lysosomes by Rag GTPases. We further demonstrated that FLCN itself was selectively recruited to the surface of lysosomes after amino acid depletion and directly bound to RagA via its GTPase domain. FLCN-interacting protein 1 (FNIP1) promotes both the lysosome recruitment and Rag interactions of FLCN. These new findings define the lysosome as a site of action for FLCN and indicate a critical role for FLCN in the amino acid-dependent activation of mTOR via its direct interaction with the RagA/B GTPases. PMID:24081491

Petit, Constance S; Roczniak-Ferguson, Agnes; Ferguson, Shawn M

2013-09-30

252

A RANKL-PKC?-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts.  

PubMed

Bone resorption by osteoclasts requires a large number of lysosomes that release proteases in the resorption lacuna. Whether lysosomal biogenesis is a consequence of the action of transcriptional regulators of osteoclast differentiation or is under the control of a different and specific transcriptional pathway remains unknown. We show here, through cell-based assays and cell-specific gene deletion experiments in mice, that the osteoclast differentiation factor RANKL promotes lysosomal biogenesis once osteoclasts are differentiated through the selective activation of TFEB, a member of the MITF/TFE family of transcription factors. This occurs following PKC? phosphorylation of TFEB on three serine residues located in its last 15 amino acids. This post-translational modification stabilizes and increases the activity of this transcription factor. Supporting these biochemical observations, mice lacking in osteoclasts--either TFEB or PKC?--show decreased lysosomal gene expression and increased bone mass. Altogether, these results uncover a RANKL-dependent signaling pathway taking place in differentiated osteoclasts and culminating in the activation of TFEB to enhance lysosomal biogenesis-a necessary step for proper bone resorption. PMID:23599343

Ferron, Mathieu; Settembre, Carmine; Shimazu, Junko; Lacombe, Julie; Kato, Shigeaki; Rawlings, David J; Ballabio, Andrea; Karsenty, Gerard

2013-04-15

253

Recruitment of folliculin to lysosomes supports the amino acid–dependent activation of Rag GTPases  

PubMed Central

Birt-Hogg-Dubé syndrome, a human disease characterized by fibrofolliculomas (hair follicle tumors) as well as a strong predisposition toward the development of pneumothorax, pulmonary cysts, and renal carcinoma, arises from loss-of-function mutations in the folliculin (FLCN) gene. In this study, we show that FLCN regulates lysosome function by promoting the mTORC1-dependent phosphorylation and cytoplasmic sequestration of transcription factor EB (TFEB). Our results indicate that FLCN is specifically required for the amino acid–stimulated recruitment of mTORC1 to lysosomes by Rag GTPases. We further demonstrated that FLCN itself was selectively recruited to the surface of lysosomes after amino acid depletion and directly bound to RagA via its GTPase domain. FLCN-interacting protein 1 (FNIP1) promotes both the lysosome recruitment and Rag interactions of FLCN. These new findings define the lysosome as a site of action for FLCN and indicate a critical role for FLCN in the amino acid–dependent activation of mTOR via its direct interaction with the RagA/B GTPases. PMID:24081491

Petit, Constance S.; Roczniak-Ferguson, Agnes

2013-01-01

254

Early Delivery of Misfolded PrP from ER to Lysosomes by Autophagy.  

PubMed

Prion diseases are linked to the accumulation of a misfolded isoform (PrP(Sc)) of prion protein (PrP). Evidence suggests that lysosomes are degradation endpoints and sites of the accumulation of PrP(Sc). We questioned whether lysosomes participate in the early quality control of newly generated misfolded PrP. We found PrP carrying the disease-associated T182A mutation (Mut-PrP) was delivered to lysosomes in a Golgi-independent manner. Time-lapse live cell imaging revealed early formation and uptake of GFP-tagged Mut-PrP aggregates into LysoTracker labeled vesicles. Compared with Wt-PrP, Mut-PrP expression was associated with an elevation in several markers of the autophagy-lysosomal pathway, and it extensively colocalized with the autophagosome-specific marker, LC3B. In autophagy deficient (ATG5(-/-)) mouse embryonic fibroblasts, or in normal cells treated with the autophagy-inhibitor 3-MA, Mut-PrP colocalization with lysosomes was reduced to a similar extent. Additionally, 3-MA selectively impaired the degradation of insoluble Mut-PrP, resulting in an increase in protease-resistant PrP, whereas the induction of autophagy by rapamycin reduced it. These findings suggest that autophagy might function as a quality control mechanism to limit the accumulation of misfolded PrP that normally leads to the generation of PrP(Sc). PMID:24454378

Cortes, Constanza J; Qin, Kefeng; Norstrom, Eric M; Green, William N; Bindokas, Vytautas P; Mastrianni, James A

2013-01-01

255

Transport of proteins to the yeast vacuole: autophagy, cytoplasm-to-vacuole targeting, and role of the vacuole in degradation  

Microsoft Academic Search

The vacuole\\/lysosome performs a central role in degradation. Proteins and organelles are transported to the vacuole by selective and non-selective pathways. Transport to the vacuole by autophagy is the primary mode for degradation of cytoplasmic constituents under starvation conditions. Autophagy overlaps mechanistically and genetically with a biosynthetic pathway termed Cvt (Cytoplasm-to-vacuole targeting) that operates under vegetative conditions to transport the

Sarah A. Teter; Daniel J. Klionsky

2000-01-01

256

Theater targets plume edge extraction and hardbody aimpoint selection using morphological image processing  

NASA Astrophysics Data System (ADS)

(U) Future successful ballistic missile booster intercepts will require advanced automatic target detection, tracking, classification and identification (ADTCI) image processing techniques. Two such techniques are presented in this classified SECRET paper using the synthetic scene generator model (SSGM) in combination with the advanced systems (AVS) image processing package. Two challenging multispectral cases are treated: (1) missile hardbody occultation by the missile exhaust plume, and (2) variable plume/hardbody system (PHS) gradient intensities generated by missile tumbling due to exiting the sensible atmosphere. The target detection, tracking and edge extraction methods selected for this study include morphological, open-close operations within decision- level fusion for the obscuration case and pixel-level fusion for variable edge intensities. Other investigators have approached this issue on similar image processing techniques. The multispectral (2.69 - 2.95 micrometer SWIR; 4.17 - 4.2, 4.35 - 4.50 micrometer MWIR; and 8.0 - 12.0 micrometer LWIR) target/background imagery includes SWIRM/MWIR boost phase track (with occlusion problem) and LWIR aimpoint selection (with tumbling problem). The two classified missile systems are: (1) a depressed-angle submarine launched ballistic missile (SLBM) and (2) a medium range ballistic missile (MRBM). The results indicate that for 6 degrees of freedom (6 DOF) hardbodies, ATDCI geometrical pattern reference libraries should be optimized to accommodate the extreme variable gradient geometries for tumbling midcourse targets. For boost- phase missile hardbody occultation by missile exhaust plumes, segmentation and feature extraction should be implemented in each bandpass before processing to the ATDCI classifier. This study demonstrates that although the plume/hardbody system edges were extracted, the geometry of the target edge often deviated from symmetry.

Paiva, Clifford A.

1997-06-01

257

In vivo phage display selection of an ovarian cancer targeting peptide for SPECT/CT imaging  

PubMed Central

The often fatal outcome of ovarian cancer (OC) is related to inadequate detection methods, which may be overcome by development of nuclear imaging agents. Cancer targeting peptides have been identified using in vivo bacteriophage (phage) display technology; however, the majority of these ligands target tumor vasculature. To overcome this problem, a two-tier phage display method was employed to select an ovarian cancer targeting peptide with good pharmacokinetic and imaging properties. A fUSE5 15-amino acid peptide library was screened against xenografted human OC SKOV-3 tumors in mice, which was followed by selection against enriched SKOV-3 cells. The selected peptide RSLWSDFYASASRGP (J18) was synthesized with a GSG-spacer and a 1,4,7,10-tetraazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) chelator and radiolabeled with 111In. SKOV-3 xenografted mice were used to evaluate the biodistribution and single photon emission computed tomography (SPECT) imaging capabilities of the radiolabeled peptide. Competitive binding experiments using 111In-DOTA-GSG-J18 indicated that the peptide displayed a half maximal inhibitory concentration (IC50) value of 10.5 ± 1.1 ?M. Biodistribution studies revealed that tumor uptake was 1.63 ± 0.68, 0.60 ± 0.32, 0.31 ± 0.12 and 0.10 ± 0.02% injected dose/g at 30 min, 1 h, 2 h and 4 h post-injection of 111In-DOTA-GSG-J18, respectively. SPECT/CT imaging demonstrated good tumor uptake and minimal background binding. This study demonstrated successful utilization of a two-tier phage display selection process to identify an ovarian cancer avid peptide with excellent SPECT/CT imaging capabilities. PMID:25250205

Soendergaard, Mette; Newton-Northup, Jessica R; Deutscher, Susan L

2014-01-01

258

Prevalence of lysosomal storage diseases in Portugal  

Microsoft Academic Search

Lysosomal storage diseases (LSDs) are a group of inherited metabolic disorders individually considered as rare, and few data on its prevalence has been reported in the literature. The overall birth prevalence of the 29 different LSDs studied in the Portuguese population was calculated to be 25\\/100 000 live births, twice the prevalence previously described in Australia and in The Netherlands.

Rui Pinto; Carla Caseiro; Manuela Lemos; Lurdes Lopes; Augusta Fontes; Helena Ribeiro; Eugénia Pinto; Elisabete Silva; Sónia Rocha; Ana Marcão; Isaura Ribeiro; Lúcia Lacerda; Gil Ribeiro; Olga Amaral; M C Sá Miranda; MC Sá Miranda

2004-01-01

259

PITPs as Targets for Selectively Interfering With Phosphoinositide Signaling in Cells  

PubMed Central

Sec14-like phosphatidylinositol transfer proteins (PITPs) integrate diverse territories of intracellular lipid metabolism with stimulated phosphatidylinositol-4-phosphate production, and are discriminating portals for interrogating phosphoinositide signaling. Yet, neither Sec14-like PITPs, nor PITPs in general, have been exploited as targets for chemical inhibition for such purposes. Herein, we validate the first small molecule inhibitors (SMIs) of the yeast PITP Sec14. These SMIs are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs), and are effective inhibitors in vitro and in vivo. We further establish Sec14 is the sole essential NPPM target in yeast, that NPPMs exhibit exquisite targeting specificities for Sec14 (relative to related Sec14-like PITPs), propose a mechanism for how NPPMs exert their inhibitory effects, and demonstrate NPPMs exhibit exquisite pathway selectivity in inhibiting phosphoinositide signaling in cells. These data deliver proof-of-concept that PITP-directed SMIs offer new and generally applicable avenues for intervening with phosphoinositide signaling pathways with selectivities superior to those afforded by contemporary lipid kinase-directed strategies. PMID:24292071

Nile, Aaron H.; Tripathi, Ashutosh; Yuan, Peihua; Mousley, Carl J.; Suresh, Sundari; Wallace, Iain Michael; Shah, Sweety D.; Pohlhaus, Denise Teotico; Temple, Brenda; Nislow, Corey; Giaever, Guri; Tropsha, Alexander; Davis, Ronald W.; St Onge, Robert P.; Bankaitis, Vytas A.

2013-01-01

260

New approaches to selectively target cancer-associated matrix metalloproteinase activity.  

PubMed

Heightened matrix metalloproteinase (MMP) activity has been noted in the context of the tumor microenvironment for many years, and causal roles for MMPs have been defined across the spectrum of cancer progression. This is primarily due to the ability of the MMPs to process extracellular matrix (ECM) components and to regulate the bioavailability/activity of a large repertoire of cytokines and growth factors. These characteristics made MMPs an attractive target for therapeutic intervention but notably clinical trials performed in the 1990s did not fulfill the promise of preclinical studies. The reason for the failure of early MMP inhibitor (MMPI) clinical trials that are multifold but arguably principal among them was the inability of early MMP-based inhibitors to selectively target individual MMPs and to distinguish between MMPs and other members of the metzincin family. In the decades that have followed the MMP inhibitor trials, innovations in chemical design, antibody-based strategies, and nanotechnologies have greatly enhanced our ability to specifically target and measure the activity of MMPs. These advances provide us with the opportunity to generate new lines of highly selective MMPIs that will not only extend the overall survival of cancer patients, but will also afford us the ability to utilize heightened MMP activity in the tumor microenvironment as a means by which to deliver MMPIs or MMP activatable prodrugs. PMID:25325988

Tauro, Marilena; McGuire, Jeremy; Lynch, Conor C

2014-12-01

261

Gold nanorods for target selective SPECT/CT imaging and photothermal therapy in vivo  

PubMed Central

The development of theranostic agents with high detection sensitivity and antitumor efficacy at low concentration is a challenging task for target selective imaging and therapy of cancers. In this study, folate-conjugated and radioactive-iodine-labeled gold nanorods (GNRs) were designed and synthesized for target selective SPECT/CT imaging and subsequent thermal ablation of folate-receptor-overexpressing cancers. Both (ortho-pyridyl) disulfide-poly(ethylene glycol)-folate and a short peptide, H2N-Tyr-Asn-Asn-Leu-Ala-Cys-OH, were conjugated on the surface of the GNRs through thiol chemistry. The tyrosine in the peptide sequence was introduced for radioactive-iodine labeling through an iodine-tyrosine interaction. The labeling efficiency of radioactive iodine was more than 99%. Radiochemical stability tests on iodine-125-labeled GNRs in human serum showed that 91% of the iodine-125 remained intact on the GNRs after incubation for 24 h. In vitro and in vivo results in this study confirmed the potential utility of folate-conjugated and iodine-125-labeled GNRs as smart theranostic agents. This type of platform may also be useful for the targeted SPECT/CT imaging and photothermal therapy of inflammatory diseases such as atherosclerosis and arthritis, in which folate-receptor-overexpressing macrophages play pivotal roles. PMID:23256055

Jang, Boseung; Park, Seonhwa; Kang, Se Hun; Kim, Joa Kyum; Kim, Seok-Ki; Kim, In-Hoo; Choi, Yongdoo

2012-01-01

262

Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample  

E-print Network

We describe the target selection and resulting properties of a spectroscopic sample of luminous, red galaxies (LRG) from the imaging data of the Sloan Digital Sky Survey (SDSS). These galaxies are selected on the basis of color and magnitude to yield a sample of luminous, intrinsically red galaxies that extends fainter and further than the main flux-limited portion of the SDSS galaxy spectroscopic sample. The sample is designed to impose a passively-evolving luminosity and rest-frame color cut to a redshift of 0.38. Additional, yet more luminous, red galaxies are included to a redshift of 0.5. Approximately 12 of these galaxies per square degree are targeted for spectroscopy, so the sample will number over 100,000 with the full survey. SDSS commissioning data indicate that the algorithm efficiently selects luminous (M_g=-21.4), red galaxies, that the spectroscopic success rate is very high, and that the resulting set of galaxies is approximately volume-limited out to z=0.38. When the SDSS is complete, the LRG spectroscopic sample will fill over 1h^-3 Gpc^3 with an approximately homogeneous population of galaxies and will therefore be well suited to studies of large-scale structure and clusters out to z=0.5.

D. J. Eisenstein; J. Annis; J. E. Gunn; A. S. Szalay; A. J. Connolly; R. C. Nichol; N. A. Bahcall; M. Bernardi; S. Burles; F. J. Castander; M. Fukugita; D. W. Hogg; Z. Ivezic; G. R. Knapp; R. H. Lupton; V. Narayanan; M. Postman; D. E. Riechart; M. Richmond; D. P. Schneider; D. J. Schlegel; M. A. Strauss; M. SubbaRao; D. L. Tucker; D. Vanden Berk; M. S. Vogeley; D. H. Weinberg; B. Yanny

2001-08-09

263

Targeted insertion of foreign genes into the tobacco plastid genome without physical linkage to the selectable marker gene  

SciTech Connect

To determine whether targeted DNA insertion into the tobacco plastid genome can be obtained without physical linkage to a selectable marker gene, we carried out biolistic transformation of chloroplasts in tobacco leaf segments with a 1:1 mix of two independently targeted antibiotic resistance genes. Plastid transformants were selected by spectinomycin resistance due to expression of an integrated aadA gene. Integration of the unselected kanamycin resistance (kan) gene into the same plastid genome was established by Southern probing in {approx}20% of the spectinomycin-selected clones. Efficient cotransformation will facilitate targeted plastid genome modification without physical linkage to a marker gene. 26 refs., 5 figs., 1 tab.

Carrer, H.; Maliga, P. [State Univ. of New Jersey, Piscataway, NJ (United States)] [State Univ. of New Jersey, Piscataway, NJ (United States)

1995-08-01

264

Phototoxic effects of lysosome-associated genetically encoded photosensitizer KillerRed  

NASA Astrophysics Data System (ADS)

KillerRed is a unique phototoxic red fluorescent protein that can be used to induce local oxidative stress by green-orange light illumination. Here we studied phototoxicity of KillerRed targeted to cytoplasmic surface of lysosomes via fusion with Rab7, a small GTPase that is known to be attached to membranes of late endosomes and lysosomes. It was found that lysosome-associated KillerRed ensures efficient light-induced cell death similar to previously reported mitochondria- and plasma membrane-localized KillerRed. Inhibitory analysis demonstrated that lysosomal cathepsins play an important role in the manifestation of KillerRed-Rab7 phototoxicity. Time-lapse monitoring of cell morphology, membrane integrity, and nuclei shape allowed us to conclude that KillerRed-Rab7-mediated cell death occurs via necrosis at high light intensity or via apoptosis at lower light intensity. Potentially, KillerRed-Rab7 can be used as an optogenetic tool to direct target cell populations to either apoptosis or necrosis.

Serebrovskaya, Ekaterina O.; Ryumina, Alina P.; Boulina, Maria E.; Shirmanova, Marina V.; Zagaynova, Elena V.; Bogdanova, Ekaterina A.; Lukyanov, Sergey A.; Lukyanov, Konstantin A.

2014-07-01

265

Structural genomics of human proteins – target selection and generation of a public catalogue of expression clones  

PubMed Central

Background The availability of suitable recombinant protein is still a major bottleneck in protein structure analysis. The Protein Structure Factory, part of the international structural genomics initiative, targets human proteins for structure determination. It has implemented high throughput procedures for all steps from cloning to structure calculation. This article describes the selection of human target proteins for structure analysis, our high throughput cloning strategy, and the expression of human proteins in Escherichia coli host cells. Results and Conclusion Protein expression and sequence data of 1414 E. coli expression clones representing 537 different proteins are presented. 139 human proteins (18%) could be expressed and purified in soluble form and with the expected size. All E. coli expression clones are publicly available to facilitate further functional characterisation of this set of human proteins. PMID:15998469

Büssow, Konrad; Scheich, Christoph; Sievert, Volker; Harttig, Ulrich; Schultz, Jörg; Simon, Bernd; Bork, Peer; Lehrach, Hans; Heinemann, Udo

2005-01-01

266

Selection of target mutation in rat gastrointestinal tract E. coli by minute dosage of enrofloxacin  

PubMed Central

It has been suggested that bacterial resistance is selected within a mutation selection window of antibiotics. More recent studies showed that even extremely low concentration of antibiotic could select resistant bacteria in vitro. Yet little is known about the exact antibiotic concentration range that can effectively select for resistant organisms in animal gastrointestinal (GI) tract. In this study, the effect of different dosages of enrofloxacin on resistance and mutation development in rat GI tract E. coli was investigated by determining the number of resistant E. coli recoverable from rat fecal samples. Our data showed that high dose antibiotic treatment could effectively eliminate E. coli with single gyrA mutation in the early course of treatment, yet the eradication effects diminished upon prolonged treatment. Therapeutic and sub-therapeutic dose (1/10 and 1/100 of therapeutic doses) of enrofloxacin could effectively select for mutation in GI tract E. coli at the later course of enrofloxacin treatment and during the cessation periods. Surprisingly, very low dose of enrofloxacin (1/1000 therapeutic dose) could also select for mutation in GI tract E. coli at the later course of enrofloxacin treatment, only with slightly lower efficiency. No enrofloxacin-resistant E. coli could be selected at all test levels of enrofloxacin during long term treatment and the strength of antibiotic treatment does not alter the overall level of E. coli in rat GI tract. This study demonstrated that long term antibiotic treatment seems to be the major trigger for the development of target mutations in GI tract E. coli, which provided insight into the rational use of antibiotics in animal husbandry. PMID:25237308

Lin, Dachuan; Chen, Kaichao; Li, Ruichao; Liu, Lizhang; Guo, Jiubiao; Yao, Wen; Chen, Sheng

2014-01-01

267

Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase shp2.  

PubMed

Protein tyrosine phosphatases (PTPs) have been the subject of considerable pharmaceutical-design efforts because of the ubiquitous connections between misregulation of PTP activity and human disease. PTP-inhibitor discovery has been hampered, however, by the difficulty in identifying cell-permeable compounds that can selectively target PTP active sites, and no PTP inhibitors have progressed to the clinic. The identification of allosteric sites on target PTPs therefore represents a potentially attractive solution to the druggability problem of PTPs. Here we report that the oncogenic PTP Shp2 contains an allosteric-inhibition site that renders the enzyme sensitive to potent and selective inhibition by cell-permeable biarsenical compounds. Because Shp2 contains no canonical tetracysteine biarsenical-binding motif, the enzyme's inhibitor-binding site is not readily predictable from its primary or three-dimensional structure. Intriguingly, however, Shp2's PTP domain does contain a cysteine residue (C333) at a position that is removed from the active site and is occupied by proline in other classical PTPs. We show that Shp2's unusual cysteine residue constitutes part of a Shp2-specific allosteric-inhibition site, and that Shp2's sensitivity to biarsenicals is dependent on the presence of the naturally occurring C333. The determinative role of this residue in conferring inhibitor sensitivity is surprising because C333's side chain is inaccessible to solvent in Shp2 crystal structures. The discovery of this cryptic Shp2 allosteric site may provide a means for targeting Shp2 activity with high specificity and suggests that buried-yet-targetable allosteric sites could be similarly uncovered in other protein families. PMID:25519989

Chio, Cynthia M; Lim, Christopher S; Bishop, Anthony C

2015-01-20

268

PIF-pocket as a target for C. albicans Pkh selective inhibitors.  

PubMed

The phosphoinositide-dependent protein kinase 1, PDK1, is a master kinase that phosphorylates the activation loop of up to 23 AGC kinases. S. cerevisiae has three PDK1 orthologues, Pkh1-3, which also phosphorylate AGC kinases (e.g., Ypk, Tpk, Pkc1, and Sch9). Pkh1 and 2 are redundant proteins involved in multiple essential cellular functions, including endocytosis and cell wall integrity. Based on similarities with the budding yeast, the Pkh of fungal infectious species was postulated as a novel target for antifungals. Here, we found that depletion of Pkh eventually induces oxidative stress and DNA double-strand breaks, leading to programmed cell death. This finding supports Pkh as an antifungal target since pharmacological inhibition of Pkh would lead to the death of yeast cells, the ultimate goal of antifungals. It was therefore of interest to further investigate the possibility to develop Pkh inhibitors with selectivity for Candida Pkh that would not inhibit the human ortholog. Here, we describe C. albicans Pkh2 biochemically, structurally and by using chemical probes in comparison to human PDK1. We found that a regulatory site on the C. albicans Pkh2 catalytic domain, the PIF-pocket, diverges from human PDK1. Indeed, we identified and characterized PS77, a new small allosteric inhibitor directed to the PIF-pocket, which has increased selectivity for C. albicans Pkh2. Together, our results describe novel features of the biology of Pkh and chemical biology approaches that support the validation of Pkh as a drug target for selective antifungals. PMID:23911092

Pastor-Flores, Daniel; Schulze, Jörg O; Bahí, Anna; Giacometti, Romina; Ferrer-Dalmau, Jofre; Passeron, Susana; Engel, Matthias; Süss, Evelyn; Casamayor, Antonio; Biondi, Ricardo M

2013-10-18

269

ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage.  

PubMed

Photodynamic therapy (PDT) involves photosensitizing agents that, in the presence of oxygen and light, initiate formation of cytotoxic reactive oxygen species (ROS). PDT commonly induces both apoptosis and autophagy. Previous studies with murine hepatoma 1c1c7 cells indicated that loss of autophagy-related protein 7 (ATG7) inhibited autophagy and enhanced the cytotoxicity of photosensitizers that mediate photodamage to mitochondria or the endoplasmic reticulum. In this study, we examined two photosensitizing agents that target lysosomes: the chlorin NPe6 and the palladium bacteriopheophorbide WST11. Irradiation of wild-type 1c1c7 cultures loaded with either photosensitizer induced apoptosis and autophagy, with a blockage of autophagic flux. An ATG7- or ATG5-deficiency suppressed the induction of autophagy in PDT protocols using either photosensitizer. Whereas ATG5-deficient cells were quantitatively similar to wild-type cultures in their response to NPe6 and WST11 PDT, an ATG7-deficiency suppressed the apoptotic response (as monitored by analyses of chromatin condensation and procaspase-3/7 activation) and increased the LD(50) light dose by > 5-fold (as monitored by colony-forming assays). An ATG7-deficiency did not prevent immediate lysosomal photodamage, as indicated by loss of the lysosomal pH gradient. However, unlike wild-type and ATG5-deficient cells, the lysosomes of ATG7-deficient cells recovered this gradient within 4 h of irradiation, and never underwent permeabilization (monitored as release of endocytosed 10-kDa dextran polymers). We propose that the efficacy of lysosomal photosensitizers is in part due to both promotion of autophagic stress and suppression of autophagic prosurvival functions. In addition, an effect of ATG7 unrelated to autophagy appears to modulate lysosomal photodamage. PMID:22889762

Kessel, David H; Price, Michael; Reiners, John J

2012-09-01

270

ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage  

PubMed Central

Photodynamic therapy (PDT) involves photosensitizing agents that, in the presence of oxygen and light, initiate formation of cytotoxic reactive oxygen species (ROS). PDT commonly induces both apoptosis and autophagy. Previous studies with murine hepatoma 1c1c7 cells indicated that loss of autophagy-related protein 7 (ATG7) inhibited autophagy and enhanced the cytotoxicity of photosensitizers that mediate photodamage to mitochondria or the endoplasmic reticulum. In this study, we examined two photosensitizing agents that target lysosomes: the chlorin NPe6 and the palladium bacteriopheophorbide WST11. Irradiation of wild-type 1c1c7 cultures loaded with either photosensitizer induced apoptosis and autophagy, with a blockage of autophagic flux. An ATG7- or ATG5-deficiency suppressed the induction of autophagy in PDT protocols using either photosensitizer. Whereas ATG5-deficient cells were quantitatively similar to wild-type cultures in their response to NPe6 and WST11 PDT, an ATG7-deficiency suppressed the apoptotic response (as monitored by analyses of chromatin condensation and procaspase-3/7 activation) and increased the LD50 light dose by > 5-fold (as monitored by colony-forming assays). An ATG7-deficiency did not prevent immediate lysosomal photodamage, as indicated by loss of the lysosomal pH gradient. However, unlike wild-type and ATG5-deficient cells, the lysosomes of ATG7-deficient cells recovered this gradient within 4 h of irradiation, and never underwent permeabilization (monitored as release of endocytosed 10-kDa dextran polymers). We propose that the efficacy of lysosomal photosensitizers is in part due to both promotion of autophagic stress and suppression of autophagic prosurvival functions. In addition, an effect of ATG7 unrelated to autophagy appears to modulate lysosomal photodamage. PMID:22889762

Kessel, David H.; Price, Michael; Reiners, Jr., John J.

2012-01-01

271

Siramesine triggers cell death through destabilisation of mitochondria, but not lysosomes.  

PubMed

A sigma-2 receptor agonist siramesine has been shown to trigger cell death of cancer cells and to exhibit a potent anticancer activity in vivo. However, its mechanism of action is still poorly understood. We show that siramesine can induce rapid cell death in a number of cell lines at concentrations above 20 ?M. In HaCaT cells, cell death was accompanied by caspase activation, rapid loss of mitochondrial membrane potential (MMP), cytochrome c release, cardiolipin peroxidation and typical apoptotic morphology, whereas in U-87MG cells most apoptotic hallmarks were not notable, although MMP was rapidly lost. In contrast to the rapid loss of MMP above 20 ?M siramesine, a rapid increase in lysosomal pH was observed at all concentrations tested (5-40 ?M); however, it was not accompanied by lysosomal membrane permeabilisation (LMP) and the release of lysosomal enzymes into the cytosol. Increased lysosomal pH reduced the lysosomal degradation potential as indicated by the accumulation of immature forms of cysteine cathepsins. The lipophilic antioxidant ?-tocopherol, but not the hydrophilic antioxidant N-acetyl-cysteine, considerably reduced cell death and destabilisation of mitochondrial membranes, but did not prevent the increase in lysosomal pH. At concentrations below 15 ?M, siramesine triggered cell death after 2 days or later, which seems to be associated with a general metabolic and energy imbalance due to defects in the endocytic pathway, intracellular trafficking and energy production, and not by a specific molecular event. Overall, we show that cell death in siramesine-treated cells is induced by destabilisation of mitochondria and is independent of LMP and the release of cathepsins into the cytosol. Moreover, it is unlikely that siramesine acts exclusively through sigma-2 receptors, but rather through multiple molecular targets inside the cell. Our findings are therefore of significant importance in designing the next generation of siramesine analogues with high anticancer potential. PMID:24091661

?esen, M Hafner; Repnik, U; Turk, V; Turk, B

2013-01-01

272

Tumor necrosis factor-related apoptosis-inducing ligand activates a lysosomal pathway of apoptosis that is regulated by Bcl-2 proteins.  

PubMed

The present studies were performed to determine whether lysosomal permeabilization contributes to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity and to reconcile a role for lysosomes with prior observations that Bcl-2 family members regulate TRAIL-induced apoptosis. In KMCH cholangiocarcinoma cells stably expressing Mcl-1 small interference RNA (siRNA), treatment with TRAIL induced a redistribution of the cathepsin B from lysosomes to the cytosol. Pharmacological and small hairpin RNA-targeted inhibition of cathepsin B attenuated TRAIL-mediated apoptosis as assessed by morphological, biochemical, and clonogenic assays. Neither Bid siRNA nor Bak siRNA prevented cathepsin B release. In contrast, treatment of the cells with Bim siRNA or the JNK inhibitor SP600125 attenuated lysosomal permeabilization and cell death. Moreover, Bim and active Bax co-localized to lysosomes in TRAIL-treated cells in a JNK-dependent manner, and Bax siRNA reduced TRAIL-induced lysosomal permeabilization and cell death. Finally, BH3 domain peptides permeabilized isolated lysosomes in the presence of Bax. Collectively, these data suggest that TRAIL can trigger an apoptotic pathway that involves JNK-dependent activation of Bim, which in turn induces Bax-mediated permeabilization of lysosomes. PMID:17686764

Werneburg, Nathan W; Guicciardi, M Eugenia; Bronk, Steve F; Kaufmann, Scott H; Gores, Gregory J

2007-09-28

273

Visual target selection employing local-to-global strategies for support vector machines  

NASA Astrophysics Data System (ADS)

In this paper, we propose a new measure of novelty detection for target selection in visual scenes. Our approach to the definition of novelty is based on the use of local kernels and Fisher information metric in the context of support vector machine regression. We discuss the applications in the specific context of visual saccades as a mechanism of search and discuss naturel generations of the approach in other contexts. We also propose natural regularization approaches arising from consideration of the problem that can be applied to learning machines including the SVM.

Eghbalnia, Hamid; Assadi, Amir H.

2000-03-01

274

Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus  

NASA Astrophysics Data System (ADS)

Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.

Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.

2012-10-01

275

Aptamers selected for higher-affinity binding are not more specific for the target ligand  

PubMed Central

Previous study of eleven different in vitro-selected RNA aptamers that bind guanosine triphosphate (GTP) with Kds ranging from 8µM to 9nM showed that more information is required to specify the structures of the higher-affinity aptamers. We are interested in understanding how the more complex aptamers achieve higher affinities for the ligand. In vitro selection produces structural solutions to a functional problem that are are as simple as possible in terms of the information content needed to define them. It has long been assumed that the simplest way to improve the affinity of an aptamer is to increase the shape and functional group complementarity of the RNA binding pocket for the ligand. This argument underlies the hypothesis that selection for higher-affinity aptamers automatically leads to structures that bind more specifically to the target molecule. Here, we examined the binding specificities of the eleven GTP aptamers by carrying out competition binding studies with sixteen different chemical analogs of GTP. The aptamers have distinct patterns of specificity, implying that each RNA is a structurally-unique solution to the problem of GTP binding. However, these experiments failed to provide evidence that higher-affinity aptamers bind more specifically to GTP. We suggest that the simplest way to improve aptamer Kds may be to increase the stability of the RNA tertiary structure with additional intramolecular RNA-RNA interactions; increasingly-specific ligand binding may emerge only in response to direct selection for specificity. PMID:16771507

Carothers, James M.; Oestreich, Stephanie C.; Szostak, Jack W.

2014-01-01

276

Rapid Recycling of Ca2+ between IP3-Sensitive Stores and Lysosomes  

PubMed Central

Inositol 1,4,5-trisphosphate (IP3) evokes release of Ca2+ from the endoplasmic reticulum (ER), but the resulting Ca2+ signals are shaped by interactions with additional intracellular organelles. Bafilomycin A1, which prevents lysosomal Ca2+ uptake by inhibiting H+ pumping into lysosomes, increased the amplitude of the initial Ca2+ signals evoked by carbachol in human embryonic kidney (HEK) cells. Carbachol alone and carbachol in combination with parathyroid hormone (PTH) evoke Ca2+ release from distinct IP3-sensitive Ca2+ stores in HEK cells stably expressing human type 1 PTH receptors. Bafilomycin A1 similarly exaggerated the Ca2+ signals evoked by carbachol or carbachol with PTH, indicating that Ca2+ released from distinct IP3-sensitive Ca2+ stores is sequestered by lysosomes. The Ca2+ signals resulting from store-operated Ca2+ entry, whether evoked by thapsigargin or carbachol, were unaffected by bafilomycin A1. Using Gd3+ (1 mM) to inhibit both Ca2+ entry and Ca2+ extrusion, HEK cells were repetitively stimulated with carbachol to assess the effectiveness of Ca2+ recycling to the ER after IP3-evoked Ca2+ release. Blocking lysosomal Ca2+ uptake with bafilomycin A1 increased the amplitude of each carbachol-evoked Ca2+ signal without affecting the rate of Ca2+ recycling to the ER. This suggests that Ca2+ accumulated by lysosomes is rapidly returned to the ER. We conclude that lysosomes rapidly, reversibly and selectively accumulate the Ca2+ released by IP3 receptors residing within distinct Ca2+ stores, but not the Ca2+ entering cells via receptor-regulated, store-operated Ca2+ entry pathways. PMID:25337829

López Sanjurjo, Cristina I.; Tovey, Stephen C.; Taylor, Colin W.

2014-01-01

277

Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity.  

PubMed

In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells. ROS led to an early permeabilization of lysosomal membranes as demonstrated by the reduction of lysosome fluorescence with acridine orange and the release of lysosomal proteases to cytosol. Treatment with antioxidants inhibited ROS generation, preserved the integrity of lysosomal membrane and increased cell proliferation in a concentration-dependent manner. Lysosome disruption was followed by mitochondrial depolarization, cytosolic release of cytochrome C and caspases activation. Although no change in the total amount of Bax was observed, the translocation of Bax from cytosol to mitochondria, the cleavage of the pro-apoptotic protein Bid, together with the decrease of the anti-apoptotic proteins Bcl-XL and Bcl-2 indicated the involvement of Bcl-2 family proteins in the induction of the mitochondrial pathway. It was also demonstrated that cathepsin D, but not caspase-8, contributed to Bid cleavage. In conclusion, Pc13-induced cell photodamage is triggered by ROS generation and activation of the mitochondrial apoptotic pathway through the release of lysosomal proteases. In addition, our results also indicated that Pc13 induced a caspase-dependent apoptotic response, being activation of caspase-8, -9 and -3 the result of a post-mitochondrial event. PMID:23994488

Marino, Julieta; García Vior, María C; Furmento, Verónica A; Blank, Viviana C; Awruch, Josefina; Roguin, Leonor P

2013-11-01

278

Small-molecule anticancer compounds selectively target the hemopexin domain of matrix metalloproteinase-9.  

PubMed

Lack of target specificity by existing matrix metalloproteinase (MMP) inhibitors has hindered antimetastatic cancer drug discovery. Inhibitors that bind to noncatalytic sites of MMPs and disrupt protease signaling function have the potential to be more specific and selective. In this work, compounds that target the hemopexin (PEX) domain of MMP-9 were identified using an in silico docking approach and evaluated using biochemical and biological approaches. Two of the selected compounds interfere with MMP-9-mediated cancer cell migration and proliferation in cells expressing exogenous or endogenous MMP-9. Furthermore, these inhibitors do not modulate MMP-9 catalytic activity. The lead compound, N-[4-(difluoromethoxy)phenyl]-2-[(4-oxo-6-propyl-1H-pyrimidin-2-yl)sulfanyl]-acetamide, specifically binds to the PEX domain of MMP-9, but not other MMPs. This interaction between the compound and the PEX domain results in the abrogation of MMP-9 homodimerization and leads to blockage of a downstream signaling pathway required for MMP-9-mediated cell migration. In a tumor xenograft model, this pyrimidinone retarded MDA-MB-435 tumor growth and inhibited lung metastasis. Thus, we have shown for the first time that a novel small-molecule interacts specifically with the PEX domain of MMP-9 and inhibits tumor growth and metastasis by reducing cell migration and proliferation. PMID:21646471

Dufour, Antoine; Sampson, Nicole S; Li, Jian; Kuscu, Cem; Rizzo, Robert C; Deleon, Jennifer L; Zhi, Jizu; Jaber, Nadia; Liu, Eric; Zucker, Stanley; Cao, Jian

2011-07-15

279

Update on the Pfam5000 Strategy for Selection of StructuralGenomics Targets  

SciTech Connect

Structural Genomics is an international effort to determine the three-dimensional shapes of all important biological macromolecules, with a primary focus on proteins. Target proteins should be selected according to a strategy that is medically and biologically relevant, of good financial value, and tractable. In 2003, we presented the ''Pfam5000'' strategy, which involves selecting the 5,000 most important families from the Pfam database as sources for targets. In this update, we show that although both the Pfam database and the number of sequenced genomes have increased in size, the expected benefits of the Pfam5000 strategy have not changed substantially. Solving the structures of proteins from the 5,000 largest Pfam families would allow accurate fold assignment for approximately 65 percent of all prokaryotic proteins (covering 54 percent of residues) and 63 percent of eukaryotic proteins (42 percent of residues). Fewer than 2,300 of the largest families on this list remain to be solved, making the project feasible in the next five years given the expected throughput to be achieved in the production phase of the Protein Structure Initiative.

Chandonia, John-Marc; Brenner, Steven E.

2005-06-27

280

Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics  

SciTech Connect

Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the pg/mL to low ng/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in the cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides or their posttranslational modifications (PTMs), as well as advances in MS instrumentation, which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.

Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Weijun; Smith, Richard D.

2012-04-01

281

SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner  

PubMed Central

Androgen receptor (AR) plays an important regulatory role in prostate cancer. AR's transcriptional activity is regulated by androgenic ligands, but also by post-translational modifications, such as SUMOylation. To study the role of AR SUMOylation in genuine chromatin environment, we compared androgen-regulated gene expression and AR chromatin occupancy in PC-3 prostate cancer cell lines stably expressing wild-type (wt) or doubly SUMOylation site-mutated AR (AR-K386R,K520R). Our genome-wide gene expression analyses reveal that the SUMOylation modulates the AR function in a target gene and pathway selective manner. The transcripts that are differentially regulated by androgen and SUMOylation are linked to cellular movement, cell death, cellular proliferation, cellular development and cell cycle. Fittingly, SUMOylation mutant AR cells proliferate faster and are more sensitive to apoptosis. Moreover, ChIP-seq analyses show that the SUMOylation can modulate the chromatin occupancy of AR on many loci in a fashion that parallels their differential androgen-regulated expression. De novo motif analyses reveal that FOXA1, C/EBP and AP-1 motifs are differentially enriched at the wtAR- and the AR-K386R,K520R-preferred genomic binding positions. Taken together, our data indicate that SUMOylation does not simply repress the AR activity, but it regulates AR's interaction with the chromatin and the receptor's target gene selection. PMID:24981513

Sutinen, Päivi; Malinen, Marjo; Heikkinen, Sami; Palvimo, Jorma J.

2014-01-01

282

Selective targeting of liver cancer with the endothelial marker CD146  

PubMed Central

Hepatocellular carcinomas are well-vascularized tumors; the endothelial cells in these tumors have a specific phenotype. Our aim was to develop a new approach for tumor-specific drug delivery with monoclonal antibody targeting of endothelial ligands. CD146, a molecule expressed on the endothelial surface of hepatocellular carcinoma, was identified as a promising candidate for targeting. In the present study, endothelial cells immediately captured circulating anti-CD146 (ME-9F1) antibody, while antibody binding in tumors was significantly higher than in hepatic endothelium. Macroscopically, after intravenous injection, there were no differences in the mean accumulation of anti-CD146 antibody in tumor compared to liver tissue, due to a compensating higher blood vessel density in the liver tissue. Additional blockade of nontumoral epitopes and intra-arterial administration, improved selective antibody capture in the tumor microvasculature and largely prevented antibody distribution in the lung and liver. The potential practical use of this approach was demonstrated by imaging of radionuclide-labeled ME-9F1 antibody, which showed excellent tumor-selective uptake. Our results provide a promising principle for the use of endothelial markers for intratumoral drug delivery. Tumor endothelium–based access might offer new opportunities for the imaging and therapy of hepatocellular carcinoma and other liver malignancies. PMID:25238265

Thomann, Stefan; Longerich, Thomas; Bazhin, Alexandr V.; Mier, Walter; Schemmer, Peter; Ryschich, Eduard

2014-01-01

283

Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics  

PubMed Central

Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the low ng/mL to pg/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides including posttranslational modifications (PTMs), as well as advances in MS instrumentation which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed. PMID:22577010

Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Wei-Jun; Smith, Richard D.

2012-01-01

284

Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors  

PubMed Central

Brain tumors, either primary (e.g., glioblastoma multiforme) or secondary (metastatic), remain among the most intractable and fatal of all cancers. We have shown that nanovesicles consisting of Saposin C (SapC) and dioleylphosphatidylserine (DOPS) are able to effectively target and kill cancer cells both in vitro and in vivo. These actions are a consequence of the affinity of SapC-DOPS for phosphatidylserine, an acidic phospholipid abundantly present in the outer membrane of a variety of tumor cells and tumor-associated vasculature. In this study, we first characterize SapC-DOPS bioavailability and antitumor effects on human glioblastoma xenografts, and confirm SapC-DOPS specificity towards phosphatidylserine by showing that glioblastoma targeting is abrogated after in vivo exposure to lactadherin, which binds phosphatidylserine with high affinity. Second, we demonstrate that SapC-DOPS selectively targets brain metastases-forming cancer cells both in vitro, in co-cultures with human astrocytes, and in vivo, in mouse models of brain metastases derived from human breast or lung cancer cells. Third, we demonstrate that SapC-DOPS nanovesicles have cytotoxic activity against metastatic breast cancer cells in vitro, and prolong the survival of mice harboring brain metastases. Taken together, these results support the potential of SapC-DOPS for the diagnosis and therapy of primary and metastatic brain tumors. PMID:25051370

Blanco, Víctor M.; Chu, Zhengtao; Vallabhapurapu, Subrahmanya D.; Sulaiman, Mahaboob K.; Kendler, Ady; Rixe, Olivier; Warnick, Ronald E.; Franco, Robert S.; Qi, Xiaoyang

2014-01-01

285

Scientific objectives and selection of targets for the SMART-1 Infrared Spectrometer (SIR)  

USGS Publications Warehouse

The European SMART-1 mission to the Moon, primarily a testbed for innovative technologies, was launched in September 2003 and will reach the Moon in 2005. On board are several scientific instruments, including the point-spectrometer SMART-1 Infrared Spectrometer (SIR). Taking into account the capabilities of the SMART-1 mission and the SIR instrument in particular, as well as the open questions in lunar science, a selection of targets for SIR observations has been compiled. SIR can address at least five topics: (1) Surface/regolith processes; (2) Lunar volcanism; (3) Lunar crust structure; (4) Search for spectral signatures of ices at the lunar poles; and (5) Ground truth and study of geometric effects on the spectral shape. For each topic we will discuss specific observation modes, necessary to achieve our scientific goals. The majority of SIR targets will be observed in the nadir-tracking mode. More than 100 targets, which require off-nadir pointing and off-nadir tracking, are planned. It is expected that results of SIR observations will significantly increase our understanding of the Moon. Since the exact arrival date and the orbital parameters of the SMART-1 spacecraft are not known yet, a more detailed planning of the scientific observations will follow in the near future. ?? 2004 Elsevier Ltd. All rights reserved.

Basilevsky, A.T.; Keller, H.U.; Nathues, A.; Mall, U.; Hiesinger, H.; Rosiek, M.

2004-01-01

286

Selection of flowing liquid lead target structural materials for accelerator driven transmutation applications  

SciTech Connect

The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as in a corrosive environment. The structural material of the target should have a good compatibility with liquid lead, a sufficient mechanical strength at elevated temperatures, a good performance under an intense irradiation environment, and a low neutron absorption cross section; these factors have been used to rank the applicability of a wide range of materials for structural containment Nb-1Zr has been selected for use as the structural container for the LANL ABC/ATW molten lead target. Corrosion and mass transfer behavior for various candidate structural materials in liquid lead are reviewed, together with the beneficial effects of inhibitors and various coatings to protect substrate against liquid lead corrosion. Mechanical properties of some candidate materials at elevated temperatures and the property changes resulting from 800 MeV proton irradiation are also reviewed.

Park, J.J.; Buksa, J.J.

1994-08-01

287

Multifunctional envelope-type nano device for controlled intracellular trafficking and selective targeting in vivo.  

PubMed

Nanomedicine is expected to be a basic technology for using nucleic acids as a drug, in which treating the cause of diseases represent the ultimate therapy. However, a sophisticated delivery system is required for efficient delivery of RNA/DNA, since these compounds need precise control of intracellular trafficking as well as biodistribution. Here we report on the use of a multifunctional envelope-type nano device (MEND) which is capable of intracellular trafficking such as endosomal escape, delivery to mitochondria, as well as active targeting to selective tissues/cells in vivo. In this review, we focused on the controlled intracellular trafficking of antigens for advanced immunotherapy, and then introduced a mitochondrial delivery system as an organelle targeting system for unmet medical needs. We also provide a successful in vivo delivery of siRNA to the liver based on a newly designed pH-responsive cationic lipid. Finally we will discuss an important role of an active targeting system using a peptide ligand to adipose vasculature. These progresses in drug delivery system will break through the barriers exist in our body, tissues and cells and open a window for future Nanomedicine. PMID:24794902

Kajimoto, Kazuaki; Sato, Yusuke; Nakamura, Takashi; Yamada, Yuma; Harashima, Hideyoshi

2014-09-28

288

Recombinogenic Properties of Pyrococcus furiosus Strain COM1 Enable Rapid Selection of Targeted Mutants  

PubMed Central

We recently reported the isolation of a mutant of Pyrococcus furiosus, COM1, that is naturally and efficiently competent for DNA uptake. While we do not know the exact nature of this mutation, the combined transformation and recombination frequencies of this strain allow marker replacement by direct selection using linear DNA. In testing the limits of its recombination efficiency, we discovered that marker replacement was possible with as few as 40 nucleotides of flanking homology to the target region. We utilized this ability to design a strategy for selection of constructed deletions using PCR products with subsequent excision, or “pop-out,” of the selected marker. We used this method to construct a “markerless” deletion of the trpAB locus in the GLW101 (COM1 ?pyrF) background to generate a strain (JFW02) that is a tight tryptophan auxotroph, providing a genetic background with two auxotrophic markers for further strain construction. The utility of trpAB as a selectable marker was demonstrated using prototrophic selection of plasmids and genomic DNA containing the wild-type trpAB alleles. A deletion of radB was also constructed that, surprisingly, had no obvious effect on either recombination or transformation, suggesting that its gene product is not involved in the COM1 phenotype. Attempts to construct a radA deletion mutation were unsuccessful, suggesting that this may be an essential gene. The ease and speed of this procedure will facilitate the construction of strains with multiple genetic changes and allow the construction of mutants with deletions of virtually any nonessential gene. PMID:22544252

Farkas, Joel; Stirrett, Karen; Lipscomb, Gina L.; Nixon, William; Scott, Robert A.; Adams, Michael W. W.

2012-01-01

289

Lysosomal dysfunction results in altered energy balance.  

PubMed

The mucopolysaccharidosis (MPS) type VII mouse was originally described as the adipose storage deficiency mouse because of its extreme lean phenotype of unknown etiology. Here, we show that adipose storage deficiency and lower leptin levels are common to five different lysosomal storage diseases (LSDs): MPSI, MPSIIIB, MPSVII, Niemann-Pick type A/B, and infantile neuronal ceroid lipofuscinosis. Elevated circulating pro-inflammatory proteins (VCAM1 and MCP1) were found in multiple LSDs. Multiple anti-inflammatory strategies (dexamethasone, MCP1 deficiency, M3 expression) failed to alter adiposity in LSD animals. All of the models had normal or greater caloric intake and lower to normal metabolic rate, fasting plasma glucose, non-esterified fatty acids, cholesterol, and triglycerides. Triglycerides were lower in the livers of MPSI mice, and the trend was lower in the muscle. Lipid absorption and processing in MPSI mice were indistinguishable from those in normal mice following oral gavage of olive oil. The increased lean mass of MPSI and MPSIIIB mice suggests a shift in adipose triglycerides to lysosomal storage. In agreement, MPSI livers had a similar total caloric content but reduced caloric density, indicating a shift in energy from lipids to proteins/carbohydrates (lysosomal storage). Enzyme replacement therapy normalized the caloric density within 48 h without reducing total caloric content. This was due to an increase in lipids. Recycling of stored material is likely reduced or nonexistent. Therefore, to maintain homeostasis, energy is likely diverted to synthesis at the expense of typical energy storage depots. Thus, these diseases will serve as important tools in studying the role of lysosome function in metabolism and obesity. PMID:17911106

Woloszynek, Josh C; Coleman, Trey; Semenkovich, Clay F; Sands, Mark S

2007-12-01

290

Lysosomal Degradation of Ubiquitin-Tagged Receptors  

NSDL National Science Digital Library

Access to the article is free, however registration and sign-in are required. Cytosolic proteins are tagged with the polypeptide ubiquitin for eventual destruction by the proteasome. A recent paper in Cell (L. Hicke and H. Riezman, vol. 84, p. 277) shows that in yeast ubiquitin also serves to tag membrane proteins for degradation by proteases in the vacuole, the yeast equivalent of the lysosome.

Stella M. Hurtley (AAAS; Science Magazine, Europe Office)

1996-02-02

291

Rheumatologic aspects of lysosomal storage diseases  

Microsoft Academic Search

Lysosomal storage diseases are rare metabolic disorders, some of which can now be treated using enzyme replacement therapies.\\u000a Because the time point of treatment initiation significantly influences the outcome in Gaucher disease, Fabry disease, and\\u000a mucopolysaccharidosis type I, early diagnosis is of utmost importance. All three disorders can present with musculoskeletal\\u000a symptoms in early stages, therefore, the rheumatologist may be

Bernhard Manger; Eugen Mengel; Roland M. Schaefer

2007-01-01

292

Genetic Counseling for Lysosomal Storage Diseases  

Microsoft Academic Search

In many ways, the role of the genetic counselor working with patients and families with a lysosomal storage disease is similar\\u000a to a counselor in other pediatric and adult counseling situations. The goals of counseling; education, access to health care,\\u000a and supportive counseling are the same. Although the goals of counseling are simply stated, an effective counseling session\\u000a is always

Erin O'Rourke; Dawn Laney; Cindy Morgan; Kim Mooney; Jennifer Sullivan

293

Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1  

PubMed Central

Higher order visual areas that receive input from the primary visual cortex (V1) are specialized for the processing of distinct features of visual information. However, it is still incompletely understood how this functional specialization is acquired. Here we used in vivo two photon calcium imaging in the mouse visual cortex to investigate whether this functional distinction exists at as early as the level of projections from V1 to two higher order visual areas, AL and LM. Specifically, we examined whether sharpness of orientation and direction selectivity and optimal spatial and temporal frequency of projection neurons from V1 to higher order visual areas match with that of target areas. We found that the V1 input to higher order visual areas were indeed functionally distinct: AL preferentially received inputs from V1 that were more orientation and direction selective and tuned for lower spatial frequency compared to projection of V1 to LM, consistent with functional differences between AL and LM. The present findings suggest that selective projections from V1 to higher order visual areas initiates parallel processing of sensory information in the visual cortical network. PMID:24068987

Matsui, Teppei; Ohki, Kenichi

2013-01-01

294

AChBP-targeted ?-conotoxin correlates distinct binding orientations with nAChR subtype selectivity  

PubMed Central

Neuronal nAChRs are a diverse family of pentameric ion channels with wide distribution throughout cells of the nervous and immune systems. However, the role of specific subtypes in normal and pathological states remains poorly understood due to the lack of selective probes. Here, we used a binding assay based on acetylcholine-binding protein (AChBP), a homolog of the nicotinic acetylcholine ligand-binding domain, to discover a novel ?-conotoxin (?-TxIA) in the venom of Conus textile. ?-TxIA bound with high affinity to AChBPs from different species and selectively targeted the ?3?2 nAChR subtype. A co-crystal structure of Ac-AChBP with the enhanced potency analog TxIA(A10L), revealed a 20° backbone tilt compared to other AChBP–conotoxin complexes. This reorientation was coordinated by a key salt bridge formed between Arg5 (TxIA) and Asp195 (Ac-AChBP). Mutagenesis studies, biochemical assays and electrophysiological recordings directly correlated the interactions observed in the co-crystal structure to binding affinity at AChBP and different nAChR subtypes. Together, these results establish a new pharmacophore for the design of novel subtype-selective ligands with therapeutic potential in nAChR-related diseases. PMID:17660751

Dutertre, Sébastien; Ulens, Chris; Büttner, Regina; Fish, Alexander; van Elk, René; Kendel, Yvonne; Hopping, Gene; Alewood, Paul F; Schroeder, Christina; Nicke, Annette; Smit, August B; Sixma, Titia K; Lewis, Richard J

2007-01-01

295

Control and target gene selection for studies on UV-induced genotoxicity in whales  

PubMed Central

Background Despite international success in reducing ozone-depleting emissions, ultraviolet radiation (UV) is not expected to decrease for several decades. Thus, it is pressing to implement tools that allow investigating the capacity of wildlife to respond to excessive UV, particularly species like cetaceans that lack anatomical or physiological protection. One approach is to examine epidermal expression of key genes involved in genotoxic stress response pathways. However, quantitation of mRNA transcripts requires previous standardization, with accurate selection of control and target genes. The latter is particularly important when working with environmental stressors such as UV that can activate numerous genes. Results Using 20 epidermal biopsies from blue, fin and sperm whale, we found that the genes encoding the ribosomal proteins L4 and S18 (RPL4 and RPS18) were the most suitable to use as controls, followed by the genes encoding phosphoglycerate kinase 1 (PGK1) and succinate dehydrogenase complex subunit A (SDHA). A careful analysis of the transcription pathways known to be activated by UV-exposure in humans and mice led us to select as target genes those encoding for i) heat shock protein 70 (HSP70) an indicator of general cell stress, ii) tumour suppressor protein P53 (P53), a transcription factor activated by UV and other cell stressors, and iii) KIN17 (KIN), a cell cycle protein known to be up-regulated following UV exposure. These genes were successfully amplified in the three species and quantitation of their mRNA transcripts was standardised using RPL4 and RPS18. Using a larger sample set of 60 whale skin biopsies, we found that the target gene with highest expression was HSP70 and that its levels of transcription were correlated with those of KIN and P53. Expression of HSP70 and P53 were both related to microscopic sunburn lesions recorded in the whales’ skin. Conclusion This article presents groundwork data essential for future qPCR-based studies on the capacity of wildlife to resolve or limit UV-induced damage. The proposed target genes are HSP70, P53 and KIN, known to be involved in genotoxic stress pathways, and whose expression patterns can be accurately assessed by using two stable control genes, RPL4 and RPS18. PMID:23837727

2013-01-01

296

Lysosomal NEU1 deficiency affects Amyloid Precursor Protein levels and amyloid-? secretion via deregulated lysosomal exocytosis  

PubMed Central

Alzheimer’s disease (AD) belongs to a category of adult neurodegenerative conditions which are associated with intracellular and extracellular accumulation of neurotoxic protein aggregates. Understanding how these aggregates are formed, secreted and propagated by neurons has been the subject of intensive research, but so far no preventive or curative therapy for AD is available and clinical trials have been largely unsuccessful. Here we show that deficiency of the lysosomal sialidase NEU1 leads to the spontaneous occurrence of an AD-like amyloidogenic process in mice. This involves two consecutive events linked to NEU1 loss-of-function – accumulation and amyloidogenic processing of an oversialylated amyloid precursor protein in lysosomes, and extracellular release of A?-peptides by excessive lysosomal exocytosis. Furthermore, cerebral injection of NEU1 in an established AD mouse model substantially reduces ?-amyloid plaques. Our findings identify an additional pathway for the secretion of A? and define NEU1 as a potential therapeutic molecule for AD. PMID:24225533

Annunziata, Ida; Patterson, Annette; Helton, Danielle; Hu, Huimin; Moshiach, Simon; Gomero, Elida; Nixon, Ralph; d’Azzo, Alessandra

2013-01-01

297

Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells.  

PubMed

The treatment of locoregional recurrence (LRR) of head and neck squamous cell carcinoma (HNSCC) often requires a combination of surgery, radiation therapy and/or chemotherapy. Survival outcomes are poor and the treatment outcomes are morbid. Cold atmospheric plasma (CAP) is an ionized gas produced at room temperature under laboratory conditions. We have previously demonstrated that treatment with a CAP jet device selectively targets cancer cells using in vitro melanoma and in vivo bladder cancer models. In the present study, we wished to examine CAP selectivity in HNSCC in vitro models, and to explore its potential for use as a minimally invasive surgical approach that allows for specific cancer cell or tumor tissue ablation without affecting the surrounding healthy cells and tissues. Four HNSCC cell lines (JHU-022, JHU-028, JHU-029, SCC25) and 2 normal oral cavity epithelial cell lines (OKF6 and NOKsi) were subjected to cold plasma treatment for durations of 10, 30 and 45 sec, and a helium flow of 20 l/min-1 for 10 sec was used as a positive treatment control. We showed that cold plasma selectively diminished HNSCC cell viability in a dose-response manner, as evidenced by MTT assays; the viability of the OKF6 cells was not affected by the cold plasma. The results of colony formation assays also revealed a cell-specific response to cold plasma application. Western blot analysis did not provide evidence that the cleavage of PARP occurred following cold plasma treatment. In conclusion, our results suggest that cold plasma application selectively impairs HNSCC cell lines through non-apoptotic mechanisms, while having a minimal effect on normal oral cavity epithelial cell lines. PMID:25050490

Guerrero-Preston, Rafael; Ogawa, Takenori; Uemura, Mamoru; Shumulinsky, Gary; Valle, Blanca L; Pirini, Francesca; Ravi, Rajani; Sidransky, David; Keidar, Michael; Trink, Barry

2014-10-01

298

Evaluating the roles of autophagy and lysosomal trafficking defects in intracellular distribution-based drug-drug interactions involving lysosomes.  

PubMed

Many currently approved drugs possess weakly basic properties that make them substrates for extensive sequestration in acidic intracellular compartments such as lysosomes through an ion trapping-type mechanism. Lysosomotropic drugs often have unique pharmacokinetic properties that stem from the extensive entrapment in lysosomes, including an extremely large volume of distribution and a long half-life. Accordingly, pharmacokinetic drug-drug interactions can occur when one drug modifies lysosomal volume such that the degree of lysosomal sequestration of secondarily administered drugs is significantly altered. In this work, we have investigated potential mechanisms for drug-induced alterations in lysosomal volume that give rise to drug-drug interactions involving lysosomes. We show that eight hydrophobic amines, previously characterized as perpetrators in this type of drug-drug interaction, cause a significant expansion in lysosomal volume that was correlated with both the induction of autophagy and with decreases in the efficiency of lysosomal egress. We also show that well-known chemical inducers of autophagy caused an increase in apparent lysosomal volume and an increase in secondarily administered lysosomotropic drugs without negatively impacting vesicle-mediated lysosomal egress. These results could help rationalize how the induction of autophagy could cause variability in the pharmacokinetic properties of lysosomotropic drugs. PMID:23970383

Logan, Randall; Kong, Alex; Krise, Jeffrey P

2013-11-01

299

Biodistribution studies with tumor-targeting bispecific antibodies reveal selective accumulation at the tumor site  

PubMed Central

Bispecific antibodies are proteins that bind two different antigens and may retarget immune cells with a binding moiety specific for a leukocyte marker. A binding event in blood could in principle prevent antibody extravasation and accumulation at the site of disease. In this study, we produced and characterized two tetravalent bispecific antibodies that bind with high affinity to the alternatively-spliced EDB domain of fibronectin, a tumor-associated antigen. The bispecific antibodies simultaneously engaged the cognate antigens (murine T cell co-receptor CD3 and hen egg lysozyme) and selectively accumulated on murine tumors in vivo. The results, which were in agreement with predictions based on pharmacokinetic modeling and antibody binding characteristics, confirmed that bispecific antibodies can reach abluminal targets without being blocked by peripheral blood leukocytes. PMID:23032949

List, Thomas; Neri, Dario

2012-01-01

300

Target selection for a hypervelocity asteroid intercept vehicle flight validation mission  

NASA Astrophysics Data System (ADS)

Asteroids and comets have collided with the Earth in the past and will do so again in the future. Throughout Earth's history these collisions have played a significant role in shaping Earth's biological and geological histories. The planetary defense community has been examining a variety of options for mitigating the impact threat of asteroids and comets that approach or cross Earth's orbit, known as near-Earth objects (NEOs). This paper discusses the preliminary study results of selecting small (100-m class) NEO targets and mission analysis and design trade-offs for validating the effectiveness of a Hypervelocity Asteroid Intercept Vehicle (HAIV) concept, currently being investigated for a NIAC (NASA Advanced Innovative Concepts) Phase 2 study. In particular this paper will focus on the mission analysis and design for single spacecraft direct impact trajectories, as well as several mission types that enable a secondary rendezvous spacecraft to observe the HAIV impact and evaluate it's effectiveness.

Wagner, Sam; Wie, Bong; Barbee, Brent W.

2015-02-01

301

Gene Therapy for Advanced Melanoma: Selective Targeting and Therapeutic Nucleic Acids  

PubMed Central

Despite recent advances, the treatment of malignant melanoma still results in the relapse of the disease, and second line treatment mostly fails due to the occurrence of resistance. A wide range of mutations are known to prevent effective treatment with chemotherapeutic drugs. Hence, approaches with biopharmaceuticals including proteins, like antibodies or cytokines, are applied. As an alternative, regimens with therapeutically active nucleic acids offer the possibility for highly selective cancer treatment whilst avoiding unwanted and toxic side effects. This paper gives a brief introduction into the mechanism of this devastating disease, discusses the shortcoming of current therapy approaches, and pinpoints anchor points which could be harnessed for therapeutic intervention with nucleic acids. We bring the delivery of nucleic acid nanopharmaceutics into perspective as a novel antimelanoma therapeutic approach and discuss the possibilities for melanoma specific targeting. The latest reports on preclinical and already clinical application of nucleic acids in melanoma are discussed. PMID:23634303

Viola, Joana R.; Rafael, Diana F.; Wagner, Ernst; Besch, Robert; Ogris, Manfred

2013-01-01

302

Visual encoding and fixation target selection in free viewing: presaccadic brain potentials.  

PubMed

In scrutinizing a scene, the eyes alternate between fixations and saccades. During a fixation, two component processes can be distinguished: visual encoding and selection of the next fixation target. We aimed to distinguish the neural correlates of these processes in the electrical brain activity prior to a saccade onset. Participants viewed color photographs of natural scenes, in preparation for a change detection task. Then, for each participant and each scene we computed an image heat map, with temperature representing the duration and density of fixations. The temperature difference between the start and end points of saccades was taken as a measure of the expected task-relevance of the information concentrated in specific regions of a scene. Visual encoding was evaluated according to whether subsequent change was correctly detected. Saccades with larger temperature difference were more likely to be followed by correct detection than ones with smaller temperature differences. The amplitude of presaccadic activity over anterior brain areas was larger for correct detection than for detection failure. This difference was observed for short "scrutinizing" but not for long "explorative" saccades, suggesting that presaccadic activity reflects top-down saccade guidance. Thus, successful encoding requires local scanning of scene regions which are expected to be task-relevant. Next, we evaluated fixation target selection. Saccades "moving up" in temperature were preceded by presaccadic activity of higher amplitude than those "moving down". This finding suggests that presaccadic activity reflects attention deployed to the following fixation location. Our findings illustrate how presaccadic activity can elucidate concurrent brain processes related to the immediate goal of planning the next saccade and the larger-scale goal of constructing a robust representation of the visual scene. PMID:23818877

Nikolaev, Andrey R; Jurica, Peter; Nakatani, Chie; Plomp, Gijs; van Leeuwen, Cees

2013-01-01

303

Prelysosomal and lysosomal connections between autophagy and endocytosis.  

PubMed Central

In isolated rat hepatocytes electroloaded with [14C]sucrose, autophaged sugar accumulated in lysosomes under control conditions, and in prelysosomal autophagic vacuoles (amphisomes) in the presence of asparagine, an inhibitor of autophagic-lysosomal fusion. Endocytic uptake of the sucrose-cleaving enzyme invertase resulted in rapid and complete degradation of autophaged sucrose in both amphisomes and lysosomes. Pre-accumulated sucrose was degraded equally well in both compartments, regardless of amphisomal-lysosomal flux inhibition by asparagine, suggesting that endocytic entry into the autophagic pathway can take place both at the lysosomal and at the amphisomal level. The completeness of sucrose degradation by endocytosed invertase furthermore indicates that all lysosomes involved in autophagy can also engage in endocytosis. Endocytosed invertase reached the amphisomes even when autophagy was blocked by 3-methyladenine, and autophaged sucrose reached this compartment even when endocytic influx was blocked by vinblastine, suggesting that amphisomes may exhibit some degree of permanence independently of either pathway. PMID:1575680

Gordon, P B; Høyvik, H; Seglen, P O

1992-01-01

304

Rag GTPases are cardioprotective by regulating lysosomal function.  

PubMed

The Rag family proteins are Ras-like small GTPases that have a critical role in amino-acid-stimulated mTORC1 activation by recruiting mTORC1 to lysosome. Despite progress in the mechanistic understanding of Rag GTPases in mTORC1 activation, little is known about the physiological function of Rag GTPases in vivo. Here we show that loss of RagA and RagB (RagA/B) in cardiomyocytes results in hypertrophic cardiomyopathy and phenocopies lysosomal storage diseases, although mTORC1 activity is not substantially impaired in vivo. We demonstrate that despite upregulation of lysosomal protein expression by constitutive activation of the transcription factor EB (TFEB) in RagA/B knockout mouse embryonic fibroblasts, lysosomal acidification is compromised owing to decreased v-ATPase level in the lysosome fraction. Our study uncovers RagA/B GTPases as key regulators of lysosomal function and cardiac protection. PMID:24980141

Kim, Young Chul; Park, Hyun Woo; Sciarretta, Sebastiano; Mo, Jung-Soon; Jewell, Jenna L; Russell, Ryan C; Wu, Xiaohui; Sadoshima, Junichi; Guan, Kun-Liang

2014-01-01

305

Rag GTPases are cardioprotective by regulating lysosomal function  

PubMed Central

The Rag family proteins are Ras-like small GTPases that play a critical role in amino acid-stimulated mTORC1 activation by recruiting mTORC1 to lysosome. Despite progress in the mechanistic understanding of Rag GTPases in mTORC1 activation, little is known about the physiological function of Rag GTPases in vivo. Here, we show that loss of RagA and RagB (RagA/B) in cardiomyocytes results in hypertrophic cardiomyopathy and phenocopies lysosomal storage diseases although mTORC1 activity is not substantially impaired in vivo. We demonstrate that despite upregulation of lysosomal protein expression by constitutive activation of the transcription factor EB (TFEB) in RagA/B knockout mouse embryonic fibroblasts, lysosomal acidification is compromised due to decreased v-ATPase level in the lysosome fraction. Our study uncovers RagA/B GTPases as key regulators of lysosomal function and cardiac protection. PMID:24980141

Kim, Young Chul; Mo, Jung-Soon; Jewell, Jenna L.; Russell, Ryan C.; Wu, Xiaohui; Sadoshima, Junichi; Guan, Kun-Liang

2014-01-01

306

Regulation of apoptosis-associated lysosomal membrane permeabilization.  

PubMed

Lysosomal membrane permeabilization (LMP) occurs in response to a large variety of cell death stimuli causing release of cathepsins from the lysosomal lumen into the cytosol where they participate in apoptosis signaling. In some settings, apoptosis induction is dependent on an early release of cathepsins, while under other circumstances LMP occurs late in the cell death process and contributes to amplification of the death signal. The mechanism underlying LMP is still incompletely understood; however, a growing body of evidence suggests that LMP may be governed by several distinct mechanisms that are likely engaged in a death stimulus- and cell-type-dependent fashion. In this review, factors contributing to permeabilization of the lysosomal membrane including reactive oxygen species, lysosomal membrane lipid composition, proteases, p53, and Bcl-2 family proteins, are described. Potential mechanisms to safeguard lysosomal integrity and confer resistance to lysosome-dependent cell death are also discussed. PMID:20077016

Johansson, Ann-Charlotte; Appelqvist, Hanna; Nilsson, Cathrine; Kågedal, Katarina; Roberg, Karin; Ollinger, Karin

2010-05-01

307

Cancer stem cells as targets for cancer therapy: selected cancers as examples  

PubMed Central

It is becoming increasingly evident that cancer constitutes a group of diseases involving altered stem-cell maturation/differentiation and the disturbance of regenerative processes. The observed malignant transformation is merely a symptom of normal differentiation processes gone astray rather than the primary event. This review focuses on the role of cancer stem cells (CSCs) in three common but also relatively under-investigated cancers: head and neck, ovarian, and testicular cancer. For didactic purpose, the physiology of stem cells is first introduced using hematopoietic and mesenchymal stem cells as examples. This is followed by a discussion of the (possible) role of CSCs in head and neck, ovarian, and testicular cancer. Aside from basic information about the pathophysiology of these cancers, current research results focused on the discovery of molecular markers specific to these cancers are also discussed. The last part of the review is largely dedicated to signaling pathways active within various normal and CSC types (e.g. Nanog, Nestin, Notch1, Notch2, Oct3 and 4, Wnt). Different elements of these pathways are also discussed in the context of therapeutic opportunities for the development of targeted therapies aimed at CSCs. Finally, alternative targeted anticancer therapies arising from recently identified molecules with cancer--(semi-)selective capabilities (e.g. apoptin, Brevinin-2R) are considered. PMID:18512024

Hombach-Klonisch, Sabine; Paranjothy, Ted; Wiechec, Emilia; Pocar, Paola; Mustafa, Tarek; Seifert, Anja; Zahl, Christian; Gerlach, Klaus Luis; Biermann, Katharina; Steger, Klaus; Hoang-Vu, Cuong; Schulze-Osthoff, Klaus; Los, Marek

2010-01-01

308

Identification of cytotoxic drugs that selectively target tumor cells with MYC overexpression.  

PubMed

Expression of MYC is deregulated in a wide range of human cancers, and is often associated with aggressive disease and poorly differentiated tumor cells. Identification of compounds with selectivity for cells overexpressing MYC would hence be beneficial for the treatment of these tumors. For this purpose we used cell lines with conditional MYCN or c-MYC expression, to screen a library of 80 conventional cytotoxic compounds for their ability to reduce tumor cell viability and/or growth in a MYC dependent way. We found that 25% of the studied compounds induced apoptosis and/or inhibited proliferation in a MYC-specific manner. The activities of the majority of these were enhanced both by c-MYC or MYCN over-expression. Interestingly, these compounds were acting on distinct cellular targets, including microtubules (paclitaxel, podophyllotoxin, vinblastine) and topoisomerases (10-hydroxycamptothecin, camptothecin, daunorubicin, doxorubicin, etoposide) as well as DNA, RNA and protein synthesis and turnover (anisomycin, aphidicholin, gliotoxin, MG132, methotrexate, mitomycin C). Our data indicate that MYC overexpression sensitizes cells to disruption of specific pathways and that in most cases c-MYC and MYCN overexpression have similar effects on the responses to cytotoxic compounds. Treatment of the cells with topoisomerase I inhibitors led to down-regulation of MYC protein levels, while doxorubicin and the small molecule MYRA-A was found to disrupt MYC-Max interaction. We conclude that the MYC pathway is only targeted by a subset of conventional cytotoxic drugs currently used in the clinic. Elucidating the mechanisms underlying their specificity towards MYC may be of importance for optimizing treatment of tumors with MYC deregulation. Our data also underscores that MYC is an attractive target for novel therapies and that cellular screenings of chemical libraries can be a powerful tool for identifying compounds with a desired biological activity. PMID:22132187

Frenzel, Anna; Zirath, Hanna; Vita, Marina; Albihn, Ami; Henriksson, Marie Arsenian

2011-01-01

309

3-Aminopropanal is a lysosomotropic aldehyde that causes oxidative stress and apoptosis by rupturing lysosomes.  

PubMed

During cerebral ischemia and following trauma, potent cytotoxic polyamine-derived aminoaldehydes form, diffuse, and damage adjacent tissues not directly subjected to the initial insult. One such aldehyde is 3-aminopropanal (3-AP). The mechanisms by which such a small aldehydic compound is excessively cytotoxic have been unclear until recently when we showed that 3-AP, having the structure of a weak lysosomotropic base, concentrates within the acidic vacuolar compartment and causes lysosomal rupture that, in turn, induces caspase activation and apoptotic cell death. Here, using cultured J774 cells and 3-AP as a way to selectively burst lysosomes, we show that moderate lysosomal rupture induces a transient wave of oxidative stress. The start of this oxidative stress period is concomitant with a short period of enhanced mitochondrial membrane potential that later fades and is replaced by a decreased potential before the oxidative stress diminishes. The result of the study suggests that oxidative stress, which has often been described during apoptosis induced by agonists other than oxidative stress per se, may be a consequence of lysosomal rupture with direct and/or indirect effects on mitochondrial respiration and electron transport causing a period of passing enhanced formation of reactive oxygen species. PMID:12969020

Yu, Zhengquan; Li, Wei; Brunk, Ulf T

2003-06-01

310

Glucose regulates protein catabolism in ras-transformed fibroblasts through a lysosomal-dependent proteolytic pathway.  

PubMed Central

Transformed cells are exposed to heterogeneous microenvironments, including low D-glucose (Glc) concentrations inside tumours. The regulation of protein turnover is commonly impaired in many types of transformed cells, but the role of Glc in this regulation is unknown. In the present study we demonstrate that Glc controls protein turnover in ras-transformed fibroblasts (KBALB). The regulation by Glc of protein breakdown was correlated with modifications in the levels of lysosomal cathepsins B, L and D, while autophagic sequestration and non-lysosomal proteolytic systems (m- and mu-calpains and the zeta-subunit of the proteasome) remained unaffected. Lactacystin, a selective inhibitor of the proteasome, depressed proteolysis, but did not prevent its regulation by Glc. The sole inhibition of the cysteine endopeptidases (cathepsins B and L, and calpains) by E-64d [(2S,3S)-trans-epoxysuccinyl-L-leucylamido-3-methylbutane ethyl ester] was also not sufficient to alter the effect of Glc on proteolysis. The Glc-dependent increase in proteolysis was, however, prevented after optimal inhibition of lysosomal cysteine and aspartic endopeptidases by methylamine. We conclude that, in transformed cells, Glc plays a critical role in the regulation of protein turnover and that the lysosomal proteolytic capacity is mainly responsible for the control of intracellular proteolysis by Glc. PMID:11415457

Tournu, C; Obled, A; Roux, M P; Ferrara, M; Omura, S; Béchet, D M

2001-01-01

311

Pulmonary arterial hypertension associated with impaired lysosomal endothelin-1 degradation.  

PubMed

We report on a boy with severe pulmonary arterial hypertension associated with mucolipidosis, a rare lysosomal storage disorder. During diagnostic catheterisation, we found increased endothelin-1 levels, but normal big endothelin-1-levels (the precursor form of endothelin-1), which suggests impaired degradation of endothelin-1 rather than increased synthesis. As endothelin-1 degradation takes place in the lysosome, it appears likely that lysosomal dysfunction caused by the underlying disease contributes to the development of pulmonary arterial hypertension in this patient. PMID:24910177

Recla, Sabine; Hahn, Andreas; Apitz, Christian

2014-06-01

312

The blood–brain barrier and treatment of lysosomal storage diseases  

Microsoft Academic Search

Lysosomes are ubiquitous, acidic intracellular compartments that fulfil a crucial role in degradation of macromolecules in cells. Specific lysosomal catabolic reactions may be impaired due to inherited defects in specific hydrolases, resulting in gradual intralysosomal accumulation of corresponding endogenous substrates. Such lysosomal deficiencies may ultimately result in devastating clinical symptoms, the so-called lysosomal storage diseases. Many of the inherited lysosomal

J. M. Aerts; M. J. van Breemen; A. P. Bussink; J. Brinkman; C. E. M. Hollak; M. Langeveld; G. E. Linthorst; A. C. Vedder; M. de Fost

2005-01-01

313

Antihypertensive effects of selective prostaglandin E2 receptor subtype 1 targeting  

PubMed Central

Clinical use of prostaglandin synthase–inhibiting NSAIDs is associated with the development of hypertension; however, the cardiovascular effects of antagonists for individual prostaglandin receptors remain uncharacterized. The present studies were aimed at elucidating the role of prostaglandin E2 (PGE2) E-prostanoid receptor subtype 1 (EP1) in regulating blood pressure. Oral administration of the EP1 receptor antagonist SC51322 reduced blood pressure in spontaneously hypertensive rats. To define whether this antihypertensive effect was caused by EP1 receptor inhibition, an EP1-null mouse was generated using a “hit-and-run” strategy that disrupted the gene encoding EP1 but spared expression of protein kinase N (PKN) encoded at the EP1 locus on the antiparallel DNA strand. Selective genetic disruption of the EP1 receptor blunted the acute pressor response to Ang II and reduced chronic Ang II–driven hypertension. SC51322 blunted the constricting effect of Ang II on in vitro–perfused preglomerular renal arterioles and mesenteric arteriolar rings. Similarly, the pressor response to EP1-selective agonists sulprostone and 17-phenyltrinor PGE2 were blunted by SC51322 and in EP1-null mice. These data support the possibility of targeting the EP1 receptor for antihypertensive therapy. PMID:17710229

Guan, Youfei; Zhang, Yahua; Wu, Jing; Qi, Zhonghua; Yang, Guangrui; Dou, Dou; Gao, Yuansheng; Chen, Lihong; Zhang, Xiaoyan; Davis, Linda S.; Wei, Mingfeng; Fan, Xuefeng; Carmosino, Monica; Hao, Chuanming; Imig, John D.; Breyer, Richard M.; Breyer, Matthew D.

2007-01-01

314

A guide to picking the most selective kinase inhibitor tool compounds for pharmacological validation of drug targets  

PubMed Central

To establish the druggability of a target, genetic validation needs to be supplemented with pharmacological validation. Pharmacological studies, especially in the kinase field, are hampered by the fact that many reference inhibitors are not fully selective for one target. Fortunately, the initial trickle of selective inhibitors released in the public domain has steadily swelled into a stream. However, rationally picking the most selective tool compound out of the increasing amounts of available inhibitors has become progressively difficult due to the lack of accurate quantitative descriptors of drug selectivity. A recently published approach, termed ‘selectivity entropy’, is an improved way of expressing selectivity as a single-value parameter and enables rank ordering of inhibitors. We provide a guide to select the best tool compounds for pharmacological validation experiments of candidate drug targets using selectivity entropy. In addition, we recommend which inhibitors to use for studying the biology of the 20 most investigated kinases that are clinically relevant: Abl (ABL1), AKT1, ALK, Aurora A/B, CDKs, MET, CSF1R (FMS), EGFR, FLT3, ERBB2 (HER2), IKBKB (IKK2), JAK2/3, JNK1/2/3 (MAPK8/9/10), MEK1/2, PLK1, PI3Ks, p38? (MAPK14), BRAF, SRC and VEGFR2 (KDR). PMID:22250956

Uitdehaag, Joost CM; Verkaar, Folkert; Alwan, Husam; de Man, Jos; Buijsman, Rogier C; Zaman, Guido JR

2012-01-01

315

A guide to picking the most selective kinase inhibitor tool compounds for pharmacological validation of drug targets.  

PubMed

To establish the druggability of a target, genetic validation needs to be supplemented with pharmacological validation. Pharmacological studies, especially in the kinase field, are hampered by the fact that many reference inhibitors are not fully selective for one target. Fortunately, the initial trickle of selective inhibitors released in the public domain has steadily swelled into a stream. However, rationally picking the most selective tool compound out of the increasing amounts of available inhibitors has become progressively difficult due to the lack of accurate quantitative descriptors of drug selectivity. A recently published approach, termed 'selectivity entropy', is an improved way of expressing selectivity as a single-value parameter and enables rank ordering of inhibitors. We provide a guide to select the best tool compounds for pharmacological validation experiments of candidate drug targets using selectivity entropy. In addition, we recommend which inhibitors to use for studying the biology of the 20 most investigated kinases that are clinically relevant: Abl (ABL1), AKT1, ALK, Aurora A/B, CDKs, MET, CSF1R (FMS), EGFR, FLT3, ERBB2 (HER2), IKBKB (IKK2), JAK2/3, JNK1/2/3 (MAPK8/9/10), MEK1/2, PLK1, PI3Ks, p38? (MAPK14), BRAF, SRC and VEGFR2 (KDR). PMID:22250956

Uitdehaag, Joost C M; Verkaar, Folkert; Alwan, Husam; de Man, Jos; Buijsman, Rogier C; Zaman, Guido J R

2012-06-01

316

Engineering of Targeted Nanoparticles for Cancer Therapy Using Internalizing Aptamers Isolated by Cell-Uptake Selection  

E-print Network

One of the major challenges in the development of targeted nanoparticles (NPs) for cancer therapy is to discover targeting ligands that allow for differential binding and uptake by the target cancer cells. Using prostate ...

Xiao, Zeyu

317

Linking Albinism and Immunity: The Secrets of Secretory Lysosomes  

NSDL National Science Digital Library

Lysosomes are membrane-bound organelles that are found in all mammalian cells and contain hydrolases and lipases required for protein and membrane degradation. In many cells of the immune system, lysosomes also contain secretory proteins that can be released by regulated exocytosis in response to an external stimulus, providing different cell types with a wide range of effector functions. Melanosomes also use a lysosome-related organelle to secrete melanin for pigmentation. Links between albinism and immunity in patients have uncovered a number of key proteins required for lysosomal secretion and have revealed a versatile secretory mechanism that can be fine-tuned by distinct interactions in different cell types.

Jane Stinchcombe (Sir William Dunn School of Pathology;); Giovanna Bossi (Sir William Dunn School of Pathology;); Gillian Griffiths (Sir William Dunn School of Pathology;)

2004-07-02

318

Lysine suppresses protein degradation through autophagic-lysosomal system in C2C12 myotubes.  

PubMed

Muscle mass is determined between protein synthesis and protein degradation. Reduction of muscle mass leads to bedridden condition and attenuation of resistance to diseases. Moreover, bedridden condition leads to additional muscle loss due to disuse muscle atrophy. In our previous study (Sato et al. 2013), we showed that administered lysine (Lys), one of essential amino acid, suppressed protein degradation in skeletal muscle. In this study, we investigated that the mechanism of the suppressive effects of Lys on skeletal muscle proteolysis in C2C12 cell line. C2C12 myotubes were incubated in the serum-free medium containing 10 mM Lys or 20 mM Lys, and myofibrillar protein degradation was determined by the rates of 3-methylhistidine (MeHis) release from the cells. The mammalian target of rapamycin (mTOR) activity from the phosphorylation levels of p70-ribosormal protein S6 kinase 1 and eIF4E-binding protein 1 and the autophagic-lysosomal system activity from the ratio of LC3-II/I in C2C12 myotubes stimulated by 10 mM Lys for 0-3 h were measured. The rates of MeHis release were markedly reduced by addition of Lys. The autophagic-lysosomal system activity was inhibited upon 30 min of Lys supplementation. The activity of mTOR was significantly increased upon 30 min of Lys supplementation. The suppressive effect of Lys on the proteolysis by the autophagic-lysosomal system was maintained partially when mTOR activity was inhibited by 100 nM rapamycin, suggesting that some regulator other than mTOR signaling, for example, Akt, might also suppress the autophagic-lysosomal system. From these results, we suggested that Lys suppressed the activity of the autophagic-lysosomal system in part through activation of mTOR and reduced myofibrillar protein degradation in C2C12 myotubes. PMID:24532005

Sato, Tomonori; Ito, Yoshiaki; Nedachi, Taku; Nagasawa, Takashi

2014-06-01

319

Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation.  

PubMed

The dynamics of visual selection and saccade preparation by the frontal eye field was investigated in macaque monkeys performing a search-step task combining the classic double-step saccade task with visual search. Reward was earned for producing a saccade to a color singleton. On random trials the target and one distractor swapped locations before the saccade and monkeys were rewarded for shifting gaze to the new singleton location. A race model accounts for the probabilities and latencies of saccades to the initial and final singleton locations and provides a measure of the duration of a covert compensation process-target-step reaction time. When the target stepped out of a movement field, noncompensated saccades to the original location were produced when movement-related activity grew rapidly to a threshold. Compensated saccades to the final location were produced when the growth of the original movement-related activity was interrupted within target-step reaction time and was replaced by activation of other neurons producing the compensated saccade. When the target stepped into a receptive field, visual neurons selected the new target location regardless of the monkeys' response. When the target stepped out of a receptive field most visual neurons maintained the representation of the original target location, but a minority of visual neurons showed reduced activity. Chronometric analyses of the neural responses to the target step revealed that the modulation of visually responsive neurons and movement-related neurons occurred early enough to shift attention and saccade preparation from the old to the new target location. These findings indicate that visual activity in the frontal eye field signals the location of targets for orienting, whereas movement-related activity instantiates saccade preparation. PMID:19261711

Murthy, Aditya; Ray, Supriya; Shorter, Stephanie M; Schall, Jeffrey D; Thompson, Kirk G

2009-05-01

320

Target Selection for the High Resolution Stereo Camera (HRSC) Experiment on Mars Express  

Microsoft Academic Search

In order to facilitate an effective planning of operations and to maximize the science return of the HRSC experiment, we are currently preparing a global list of targets to be imaged during the ESA Mars Express mission. The target list is organized as a table, each line of which represents a single target. Each target is specified in terms of

E. Hauber; G. Neukum

2002-01-01

321

Target Selection For The High Resolution Stereo Camera (hrsc) Experiment On Mars Express: Status Report  

Microsoft Academic Search

In order to facilitate effective operations planning and to maximize the science return of the HRSC\\/SRC experiment, we are currently preparing a global list of targets to be imaged during the ESA Mars Express mission. The target list is organized as a table, each line of which represents a single target. Each target is specified in terms of geographic location,

E. Hauber; G. Neukum

2002-01-01

322

IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase–driven tumors  

PubMed Central

Upregulation of the ERK1 and ERK2 (ERK1/2) MAP kinase (MAPK) cascade occurs in >30% of cancers1, often through mutational activation of receptor tyrosine kinases or other upstream genes, including KRAS and BRAF 2. Efforts to target endogenous MAPKs are challenged by the fact that these kinases are required for viability in mammals3,4. Additionally, the effectiveness of new inhibitors of mutant BRAF has been diminished by acquired tumor resistance through selection for BRAF-independent mechanisms of ERK1/2 induction2,5,6. Furthermore, recently identified ERK1/2-inducing mutations in MEK1 and MEK2 (MEK1/2) MAPK genes in melanoma confer resistance to emerging therapeutic MEK inhibitors, underscoring the challenges facing direct kinase inhibition in cancer7,8. MAPK scaffolds, such as IQ motif–containing GTPase activating protein 1 (IQGAP1)9,10, assemble pathway kinases to affect signal transmission11–13, and disrupting scaffold function therefore offers an orthogonal approach to MAPK cascade inhibition. Consistent with this, we found a requirement for IQGAP1 in RAS-driven tumorigenesis in mouse and human tissue. In addition, the ERK1/2-binding14 IQGAP1 WW domain peptide disrupted IQGAP1-ERK1/2 interactions, inhibited RAS- and RAF-driven tumorigenesis, bypassed acquired resistance to the BRAF inhibitor vemurafenib (PLX-4032) and acted as a systemically deliverable therapeutic to significantly increase the lifespan of tumor-bearing mice. Scaffold-kinase interaction blockade acts by a mechanism distinct from direct kinase inhibition and may be a strategy to target overactive oncogenic kinase cascades in cancer. PMID:23603816

Zehnder, Ashley M; Zhang, Jiajing; Zarnegar, Brian; Sage, Julien; Khavari, Paul A

2014-01-01

323

TBLR1 as an AR coactivator selectively activates AR target genes to inhibit prostate cancer growth  

PubMed Central

Androgen Receptor (AR), a steroid hormone receptor, is critical for prostate cancer growth. However, activation of AR by androgens can also lead to growth suppression and differentiation. Transcriptional cofactors play an important role in this switch between proliferative and anti-proliferative AR target gene programs. TBLR1, a core component of the nuclear receptor corepressor (NCoR) complex, shows both co-repressor and co-activator activities on nuclear receptors, but little is known about its effects on AR and prostate cancer. We characterized TBLR1 as a coactivator of AR in prostate cancer cells and the activation is both phosphorylation and 19S proteosome dependent. We showed that TBLR1 physically interacts with AR and directly occupies the androgen response elements of affected AR target genes in an androgen-dependent manner. TBLR1 is primarily localized in the nucleus in benign prostate cells and nuclear expression is significantly reduced in prostate cancer cells in culture. Similarly, in human tumor samples, the expression of TBLR1 in the nucleus is significantly reduced in the malignant glands compared to the surrounding benign prostatic glands (p<0.005). Stable ectopic expression of nuclear TBLR1 leads to androgen-dependent growth suppression of prostate cancer cells in vitro and in vivo by selective activation of androgen regulated genes associated with differentiation (e.g. KRT18) and growth suppression (e.g. NKX3.1), but not cell proliferation of the prostate. Understanding the molecular switches involved in the transition from AR dependent growth promotion to AR dependent growth suppression will lead to more successful prostate cancer treatments. PMID:24243687

Daniels, Garrett; Li, Yirong; Gellert, Lan Lin; Zhou, Albert; Melamed, Jonathan; Wu, Xinyu; Zhang, Xinming; Zhang, David; Meruelo, Daniel; Logan, Susan K.; Basch, Ross; Lee, Peng

2014-01-01

324

Emerging drug discovery approaches for selective targeting of “precursor” metastatic breast cancer cells: highlights and perspectives  

PubMed Central

Breast cancer is a prevalent disease and a major cause of morbidity and cancer-related deaths among women worldwide. A significant number of patients at the time of primary diagnosis present metastatic disease, at least to locoregional lymph nodes, which results in somewhat unpredictable prognosis that often prompts adjuvant systemic therapies of various kinds. The time course of distant recurrence is also unpredictable with some patients sustaining a recurrence within months after diagnosis, even during adjuvant treatments, while others can experience recurrence years or decades after initial diagnosis. To date, clinically approved therapeutics yielded marginal benefits for patients with systemic metastatic breast disease, since despite high clinical responses to various therapies, the patients virtually always become resistant and tumor relapses. Molecular profiling studies established that breast cancer is highly heterogeneous and encompasses diverse histological and molecular subtypes with distinct biological and clinical implications in particular in relation to the incidence of progression to metastasis. The latter has been recognized to result from late genetic events during the multistep progression proposed by the dominant theory of carcinogenesis. However, there is evidence that the dissemination of primary cancer can also be initiated at a very early stage of cancer development, originating from rare cell variants, possibly cancer stem-like cells (CSC), with invasive potential. These precursor metastatic cancer cells with stem-like properties are defined by their ability to self-renew and to regenerate cell variants, which have high plasticity and intrinsic invasive properties required for dissemination and tropism toward specific organs. Equally relevant to the CSC hypothesis for metastasis formation is the epithelial-mesenchymal transition (EMT) process, which is critical for the acquisition of cancer cell invasive behavior and for selection/gain of CSC properties. These exciting concepts have led to the formulation of various approaches for targeting precursor metastatic cells, and these have taken on greater priority in therapeutic drug discovery research by both academia and pharmaceuticals. In this review, we focus on current efforts in medicinal chemistry to develop small molecules able to target precursor metastatic cells via interference with the CSC/EMT differentiation program, self-renewal, and survival. It is not meant to be comprehensive and the reader is referred to selected reviews that provide coverage of related basic aspects. Rather, emphasis is given to promising molecules with CSC/EMT signaling at the preclinical stage and in clinical trials that are paving the way to new generations of anti-metastasis drugs. PMID:22046485

AAlaoui-Jamali, Moulay; Bijian, Krikor; Batist, Gerald

2011-01-01

325

Enrichment and analysis of secretory lysosomes from lymphocyte populations  

Microsoft Academic Search

BACKGROUND: In specialized cells, such as mast cells, macrophages, T lymphocytes and Natural Killer cells in the immune system and for instance melanocytes in the skin, secretory lysosomes (SL) have evolved as bifunctional organelles that combine degradative and secretory properties. Mutations in lysosomal storage, transport or sorting molecules are associated with severe immunodeficiencies, autoimmunity and (partial) albinism. In order to

Hendrik Schmidt; Christoph Gelhaus; Ralph Lucius; Melanie Nebendahl; Matthias Leippe; Ottmar Janssen

2009-01-01

326

Enzyme replacement and enhancement therapies: lessons from lysosomal disorders  

Microsoft Academic Search

The past decade has witnessed remarkable advances in our ability to treat inherited metabolic disorders, especially the lysosomal storage diseases, a group of more than 40 disorders, each of which is caused by the deficiency of a lysosomal enzyme or protein. During the past few years, both enzyme replacement and enhancement therapies have been developed to treat these disorders. This

Edward H. Schuchman; Robert J. Desnick

2002-01-01

327

Metallothionein protects against oxidative stress-induced lysosomal destabilization  

PubMed Central

The introduction of apo-ferritin or the iron chelator DFO (desferrioxamine) conjugated to starch into the lysosomal compartment protects cells against oxidative stress, lysosomal rupture and ensuing apoptosis/necrosis by binding intralysosomal redox-active iron, thus preventing Fenton-type reactions and ensuing peroxidation of lysosomal membranes. Because up-regulation of MTs (metallothioneins) also generates enhanced cellular resistance to oxidative stress, including X-irradiation, and MTs were found to be capable of iron binding in an acidic and reducing lysosomal-like environment, we propose that these proteins might similarly stabilize lysosomes following autophagocytotic delivery to the lysosomal compartment. Here, we report that Zn-mediated MT up-regulation, assayed by Western blotting and immunocytochemistry, results in lysosomal stabilization and decreased apoptosis following oxidative stress, similar to the protection afforded by fluid-phase endocytosis of apo-ferritin or DFO. In contrast, the endocytotic uptake of an iron phosphate complex destabilized lysosomes against oxidative stress, but this was suppressed in cells with up-regulated MT. It is suggested that the resistance against oxidative stress, known to occur in MT-rich cells, may be a consequence of autophagic turnover of MT, resulting in reduced iron-catalysed intralysosomal peroxidative reactions. PMID:16236025

Baird, Sarah K.; Kurz, Tino; Brunk, Ulf T.

2005-01-01

328

Lysosomal Storage Diseases: Is Impaired Apoptosis a Pathogenic Mechanism?  

Microsoft Academic Search

Lysosomal storage disorders are inborn diseases resulting from the lack or deficient activity of lysosomal hydrolases, transporters, or integral membrane proteins. Although most of the genes encoding these proteins have been characterized and many gene defects identified, the molecular bases underlying the pathophysiology of these genetic diseases still remain obscure. In this mini-review, the potential role of apoptotic cell death

Claudine Tardy; Nathalie Andrieu-Abadie; Robert Salvayre; Thierry Levade

2004-01-01

329

Allogeneic bone marrow transplantation for lysosomal storage diseases  

Microsoft Academic Search

Patients with lysosomal storage disorders have visceral, skeletal, and neurological abnormalities and a limited life expectancy. Bone marrow transplantation has been used to correct the metabolic defects and leads to metabolic improvements in most patients However, the long-term effect of such therapy is uncertain. We analysed the data from 63 patients transplanted for lysosomal storage diseases. The transplant-related mortality was

P. M. Hoogerbrugge; O. F. Brouwer; P. Bordigoni; G. Cornu; P. Kapaun; J. J. Ortega; A. O'Meara; G. Souillet; D. Frappaz; S. Blanche; A. Fischer; O. Ringden

1995-01-01

330

Lysosome/lipid droplet interplay in metabolic diseases.  

PubMed

Lysosomes and lipid droplets are generally considered as intracellular compartments with divergent roles in cell metabolism, lipid droplets serving as lipid reservoirs in anabolic pathways, whereas lysosomes are specialized in the catabolism of intracellular components. During the last few years, new insights in the biology of lysosomes has challenged this view by providing evidence for the importance of lysosome recycling as a sparing mechanism to maintain cellular fitness. On the other hand the understanding of lipid droplets has evolved from an inert intracellular deposit toward the status of an intracellular organelle with dynamic roles in cellular homeostasis beyond storage. These unrelated aspects have also recently converged in the finding of unexpected lipid droplet/lysosome communication through autophagy, and the discovery of lysosome-mediated lipid droplet degradation called lipopagy. Furthermore, adipocytes which are professional cells for lipid droplet formation were also shown to be active in peptide antigen presentation a pathway requiring lysosomal activity. The potential importance of lipid droplet/lysosome interplay is discussed in the context of metabolic diseases and the setting of chronic inflammation. PMID:23880642

Dugail, Isabelle

2014-01-01

331

Amino acids and mTORC1: from lysosomes to disease  

PubMed Central

The mechanistic target of rapamycin (mTOR) kinase controls growth and metabolism, and its deregulation underlies the pathogenesis of many diseases, including cancer, neurodegeneration, and diabetes. mTOR complex 1 (mTORC1) integrates signals arising from nutrients, energy, and growth factors, but how exactly these signals are propagated await to be fully understood. Recent findings have placed the lysosome, a key mediator of cellular catabolism, at the core of mTORC1 regulation by amino acids. A multiprotein complex that includes the Rag GTPases, Ragulator, and the v-ATPase forms an amino acid-sensing machinery on the lysosomal surface that affects the decision between cell growth and catabolism at multiple levels. The involvement of a catabolic organelle in growth signaling may have important implications for our understanding of mTORC1-related pathologies. PMID:22749019

Efeyan, Alejo; Zoncu, Roberto; Sabatini, David M.

2012-01-01

332

Intracellular selection of peptide inhibitors that target disulphide-bridged A?42 oligomers.  

PubMed

The ?-amyloid (A?) peptide aggregates into a number of soluble and insoluble forms, with soluble oligomers thought to be the primary factor implicated in Alzheimer's disease pathology. As a result, a wide range of potential aggregation inhibitors have been developed. However, in addition to problems with solubility and protease susceptibility, many have inadvertently raised the concentration of these soluble neurotoxic species. Sandberg et al. previously reported a ?-hairpin stabilized variant of A?42 that results from an intramolecular disulphide bridge (A21C/A31C; A?42cc), which generates highly toxic oligomeric species incapable of converting into mature fibrils. Using an intracellular protein-fragment complementation (PCA) approach, we have screened peptide libraries using E. coli that harbor an oxidizing environment to permit cytoplasmic disulphide bond formation. Peptides designed to target either the first or second ?-strand have been demonstrated to bind to A?42cc, lower amyloid cytotoxicity, and confer bacterial cell survival. Peptides have consequently been tested using wild-type A?42 via ThT binding assays, circular dichroism, MTT cytotoxicity assays, fluorescence microscopy, and atomic force microscopy. Results demonstrate that amyloid-PCA selected peptides function by both removing amyloid oligomers as well as inhibiting their formation. These data further support the use of semirational design combined with intracellular PCA methodology to develop A? antagonists as candidates for modification into drugs capable of slowing or even preventing the onset of AD. PMID:24947815

Acerra, Nicola; Kad, Neil M; Cheruvara, Harish; Mason, Jody M

2014-09-01

333

A statistical approach to selecting and confirming validation targets in -omics experiments  

PubMed Central

Background Genomic technologies are, by their very nature, designed for hypothesis generation. In some cases, the hypotheses that are generated require that genome scientists confirm findings about specific genes or proteins. But one major advantage of high-throughput technology is that global genetic, genomic, transcriptomic, and proteomic behaviors can be observed. Manual confirmation of every statistically significant genomic result is prohibitively expensive. This has led researchers in genomics to adopt the strategy of confirming only a handful of the most statistically significant results, a small subset chosen for biological interest, or a small random subset. But there is no standard approach for selecting and quantitatively evaluating validation targets. Results Here we present a new statistical method and approach for statistically validating lists of significant results based on confirming only a small random sample. We apply our statistical method to show that the usual practice of confirming only the most statistically significant results does not statistically validate result lists. We analyze an extensively validated RNA-sequencing experiment to show that confirming a random subset can statistically validate entire lists of significant results. Finally, we analyze multiple publicly available microarray experiments to show that statistically validating random samples can both (i) provide evidence to confirm long gene lists and (ii) save thousands of dollars and hundreds of hours of labor over manual validation of each significant result. Conclusions For high-throughput -omics studies, statistical validation is a cost-effective and statistically valid approach to confirming lists of significant results. PMID:22738145

2012-01-01

334

PFI-1 – A highly Selective Protein Interaction Inhibitor Targeting BET Bromodomains  

PubMed Central

Bromo and extra terminal (BET) proteins (BRD2, BRD3, BRD4 and BRDT) are transcriptional regulators required for efficient expression of several growth promoting and anti-apoptotic genes as well as for cell cycle progression. BET proteins are recruited to transcriptionally active chromatin via their two N-terminal bromodomains (BRDs), a protein interaction module that specifically recognizes acetylated lysine residues in histones H3 and H4. Inhibition of the BET-histone interaction results in transcriptional down-regulation of a number of oncogenes providing a novel pharmacological strategy for the treatment of cancer. Here we present a potent and highly selective dihydroquinazoline-2-one inhibitor, PFI-1 that efficiently blocks the interaction of BET BRDs with acetylated histone tails. Co-crystal structures showed that PFI-1 acts as an acetyl-lysine (Kac) mimetic inhibitor efficiently occupying the Kac binding site in BRD4 and BRD2. PFI-1 has antiproliferative effects on leukaemic cell lines and efficiently abrogates their clonogenic growth. Exposure of sensitive cell lines with PFI-1 results in G1 cell cycle arrest, down-regulation of MYC expression as well as induction of apoptosis and induces differentiation of primary leukaemic blasts. Intriguingly, cells exposed to PFI-1 showed significant down-regulation of Aurora B kinase, thus attenuating phosphorylation of the Aurora substrate H3S10 providing an alternative strategy for the specific inhibition of this well established oncology target. PMID:23576556

Picaud, Sarah; Costa, David Da; Thanasopoulou, Angeliki; Filippakopoulos, Panagis; Fish, Paul V.; Philpott, Martin; Fedorov, Oleg; Brennan, Paul; Bunnage, Mark E.; Owen, Dafydd R.; Bradner, James E.; Taniere, Philippe; O’Sullivan, Brendan; Müller, Susanne; Schwaller, Juerg; Stankovic, Tatjana; Knapp, Stefan

2013-01-01

335

Green tea extract selectively targets nanomechanics of live metastatic cancer cells  

NASA Astrophysics Data System (ADS)

Green tea extract (GTE) is known to be a potential anticancer agent (Yang et al 2009 Nat. Rev. Cancer 9 429-39) with various biological activities (Lu et al 2005 Clin. Cancer Res. 11 1675-83 Yang et al 1998 Carcinogenesis 19 611-6) yet the precise mechanism of action is still unclear. The biomechanical response of GTE treated cells taken directly from patient's body samples was measured using atomic force microscopy (AFM) (Binnig et al 1986 Phys. Rev. Lett. 56 930). We found significant increase in stiffness of GTE treated metastatic tumor cells, with a resulting value similar to untreated normal mesothelial cells, whereas mesothelial cell stiffness after GTE treatment is unchanged. Immunofluorescence analysis showed an increase in cytoskeletal-F-actin in GTE treated tumor cells, suggesting GTE treated tumor cells display mechanical, structural and morphological features similar to normal cells, which appears to be mediated by annexin-I expression, as determined by siRNA analysis of an in vitro cell line model. Our data indicates that GTE selectively targets human metastatic cancer cells but not normal mesothelial cells, a finding that is significantly advantageous compared to conventional chemotherapy agents.

Cross, Sarah E.; Jin, Yu-Sheng; Lu, Qing-Yi; Rao, JianYu; Gimzewski, James K.

2011-05-01

336

The granzyme B-Serpinb9 axis controls the fate of lymphocytes after lysosomal stress.  

PubMed

Cytotoxic lymphocytes (CLs) contain lysosome-related organelles (LROs) that perform the normal degradative functions of the lysosome, in addition to storage and release of powerful cytotoxins employed to kill virally infected or abnormal cells. Among these cytotoxins is granzyme B (GrB), a protease that has also been implicated in activation (restimulation)-induced cell death of natural killer (NK) and T cells, but the underlying mechanism and its regulation are unclear. Here we show that restimulation of previously activated human or mouse lymphocytes induces lysosomal membrane permeabilisation (LMP), followed by GrB release from LROs into the CL cytosol. The model lysosomal stressors sphingosine and Leu-Leu-methyl-ester, and CLs from gene-targeted mice were used to show that LMP releases GrB in both a time- and concentration-dependent manner, and that the liberated GrB is responsible for cell death. The endogenous GrB inhibitor Serpinb9 (Sb9) protects CLs against LMP-induced death but is decreasingly effective as the extent of LMP increases. We also used these model stressors to show that GrB is the major effector of LMP-mediated death in T cells, but that in NK cells additional effectors are released, making GrB redundant. We found that limited LMP and GrB release occurs constitutively in proliferating lymphocytes and in NK cells engaged with targets in vitro. In Ectromelia virus-infected lymph nodes, working NK cells lacking Sb9 are more susceptible to GrB-mediated death. Taken together, these data show that a basal level of LMP occurs in proliferating and activated lymphocytes, and is increased on restimulation. LMP releases GrB from LROs into the lymphocyte cytoplasm and its ensuing interaction with Sb9 dictates whether or not the cell survives. The GrB-Sb9 nexus may therefore represent an additional mechanism of limiting lymphocyte lifespan and populations. PMID:24488096

Bird, C H; Christensen, M E; Mangan, M S J; Prakash, M D; Sedelies, K A; Smyth, M J; Harper, I; Waterhouse, N J; Bird, P I

2014-06-01

337

Flow cytometry-based functional selection of RNA interference triggers for efficient epi-allelic analysis of therapeutic targets  

PubMed Central

Background The dose-response relationship is a fundamental pharmacological parameter necessary to determine therapeutic thresholds. Epi-allelic hypomorphic analysis using RNA interference (RNAi) can similarly correlate target gene dosage with cellular phenotypes. This however requires a set of RNAi triggers empirically determined to attenuate target gene expression to different levels. Results In order to improve our ability to incorporate epi-allelic analysis into target validation studies, we developed a novel flow cytometry-based functional screening approach (CellSelectRNAi) to achieve unbiased selection of shRNAs from high-coverage libraries that knockdown target gene expression to predetermined levels. Employing a Gaussian probability model we calculated that knockdown efficiency is inferred from shRNA sequence frequency profiles derived from sorted hypomorphic cell populations. We used this approach to generate a hypomorphic epi-allelic cell series of shRNAs to reveal a functional threshold for the tumor suppressor p53 in normal and transformed cells. Conclusion The unbiased CellSelectRNAi flow cytometry-based functional screening approach readily provides an epi-allelic series of shRNAs for graded reduction of target gene expression and improved phenotypic validation. PMID:24952598

2014-01-01

338

Precipitation effects on the selection of suitable non-variant targets intended for atmospheric correction of satellite remotely sensed imagery  

NASA Astrophysics Data System (ADS)

One of the most well-established atmospheric correction methods of satellite imagery is the use of the empirical line method using non-variant targets. Non-variant targets serve as pseudo-invariant targets since their reflectance values are stable across time. A recent adaptation of the empirical line method incorporates the use of ground reflectance measurements of selected non-variant targets. Most of the users are not aware of the existing conditions of the pseudo-invariant targets; i.e., whether they are dry or wet. Any omission of such effects may cause erroneous results; therefore, remote sensing users must be aware of such effects. This study assessed the effects of precipitation on five types of commonly located surfaces, including asphalt, concrete and sand, intended as pseudo-invariant targets for atmospheric correction. Spectroradiometric measurements were taken in wet and dry conditions to obtain the spectral signatures of the targets, from January 2010 to May 2011 (46 campaigns). An atmospheric correction of eleven Landsat TM/ETM + satellite images using the empirical line method was conducted. To identify the effects of precipitation, a comparison was conducted of the atmospheric path radiance component for wet and dry conditions. It was found that precipitation conditions such as rainfall affected the reflectance values of the surfaces, especially sand. Therefore, precipitation conditions need to be considered when using non-variant targets in atmospheric correction methods.

Themistocleous, Kyriacos; Hadjimitsis, Diofantos G.; Retalis, Adrianos; Chrysoulakis, Nektarios; Michaelides, Silas

2013-09-01

339

Abstract--Our sensor selection algorithm targets the problem of global self-localization of multi-sensor mobile  

E-print Network

Abstract--Our sensor selection algorithm targets the problem of global self-localization of multi-sensor mobile robots. The algorithm builds on the probabilistic reasoning using Bayes filters to estimate sensor measurement uncertainty and sensor validity in robot localization. For quantifying measurement uncertainty we

Koschan, Andreas

340

A target-selected Apc-mutant rat kindred enhances the modeling of familial human colon cancer  

E-print Network

A target-selected Apc-mutant rat kindred enhances the modeling of familial human colon cancer James) Progress toward the understanding and management of human colon cancer can be significantly advanced several unique and favorable features for the study of colon cancer. Tumor-bearing Pirc rats can live

Dove, William

341

Efficacy Trial of a Selective Prevention Program Targeting Both Eating Disorder Symptoms and Unhealthy Weight Gain among Female College Students  

ERIC Educational Resources Information Center

Objective: Evaluate a selective prevention program targeting both eating disorder symptoms and unhealthy weight gain in young women. Method: Female college students at high-risk for these outcomes by virtue of body image concerns (N = 398; M age = 18.4 years, SD = 0.6) were randomized to the Healthy Weight group-based 4-hr prevention program,…

Stice, Eric; Rohde, Paul; Shaw, Heather; Marti, C. Nathan

2012-01-01

342

Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage  

E-print Network

1 Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes electrolyte solutions with nonvolatile and nonflammable ionic liquids instead of actual carbonate mixtures could be safer. However, few definitions of thermal stability of electrolytes based on ionic liquids

Paris-Sud XI, Université de

343

Lysosomal Storage Causes Cellular Dysfunction in Mucolipidosis II Skin Fibroblasts*  

PubMed Central

Mucolipidosis II (ML-II) is a fatal inherited metabolic disease caused by deficiency of GlcNAc-phosphotransferase, which plays a role in generating the mannose 6-phosphate recognition marker on lysosomal enzymes. In ML-II, many lysosomal acid hydrolases are mistargeted out of cells, and lysosomes become filled with undigested substrates, which explains inclusion cell disease as an alternative name for this disease. In this study, we revealed various cellular phenotypes in ML-II skin fibroblasts. We quantitated phospholipid and cholesterol within cells and showed ?2-fold accumulation in ML-II as compared with normal cells. Lysosomal pH of ML-II cells was higher than that of normal cells (5.29 ± 0.08 versus 4.79 ± 0.10, p < 0.001). The proliferated lysosomes in ML-II cells were accumulated ?3-fold in amount as compared with normal cells. Intracellular logistics including endocytosis and mannose 6-phosphate receptor recycling were impaired in ML-II cells. To confirm whether these ML-II cellular phenotypes derive from deficient lysosomal acid hydrolases within lysosomes, we performed supplementation of lysosomal enzymes using a partially purified total enzyme mixture, which was derived from the conditioned culture medium of normal skin fibroblasts after NH4Cl treatment. This supplementation corrected all of the previously described ML-II phenotypes. In addition, the autophagic and mitochondrial impairment that we have previously reported improved, and inclusion bodies disappeared on electron micrography following total lysosomal enzyme supplementation. Our results indicate that various cellular phenotypes in ML-II are caused by the deficiency of many lysosomal enzymes and massive accumulation of undigested substrates. PMID:21846724

Otomo, Takanobu; Higaki, Katsumi; Nanba, Eiji; Ozono, Keiichi; Sakai, Norio

2011-01-01

344

Deciding Where to Attend: Priming of Pop-Out Drives Target Selection  

ERIC Educational Resources Information Center

With attention and eye-movements humans orient to targets of interest. This orienting occurs faster when the same target repeats: priming of pop-out (PoP). While reaction times (RTs) can be important, PoP's real function could be to steer "where" to orient, a possibility underexposed in many current paradigms, as these predesignate a target to…

Brascamp, Jan W.; Blake, Randolph; Kristjansson, Arni

2011-01-01

345

Human lysosomal elastase. Catalytic and immunological properties.  

PubMed

1. The elastase of human spleen was shown to exhibit endopeptidase activity against azo-casein and elastin. 2. Activity against several synthetic substrates was detected, and benzyloxycarbonyl-L-alanine 2-naphthyl ester was found to be a good substrate for routine use. 3. The enzyme showed a broad pH optimum in the range of 8.2-9.2 against azo-casein and the synthetic substrate. 4. The effect of inhibitors on the spleen elastase showed it to be a serine proteinase with a specificity similar to that of porcine pancreatic elastase. 5. Specific antisera were raised against the enzyme, and it was shown to be immunologically identical with the lysosomal elastase of human neutrophil leucocytes. PMID:938478

Starkey, P M; Barrett, A J

1976-05-01

346

From Target Selection to Post-Stimulation Analysis: Example of an Unconventional Faulted Reservoir  

NASA Astrophysics Data System (ADS)

As the global balance of supply and demand forces the hydrocarbon industry toward unconventional resources, technology- and economics-driven shale oil and gas production is gaining momentum throughout many basins worldwide. Production from such unconventional plays is facilitated by massive hydraulic fracturing treatments aimed at increasing permeability and reactivating natural fractures. Large-scale faulting and fracturing partly control stress distribution, hence stimulation-derived hydraulically-induced fracture systems development. Therefore, careful integrated approaches to target selection, treatment staging, and stimulation methods need to be used to economically maximize ultimate hydrocarbon recovery. We present a case study of a multistage, multilateral stimulation project in the Fort Worth Basin, Texas. Wells had to be drilled within city limits in a commercially developing building area. Well locations and trajectories were determined in and around large-scale faults using 3D surface seismic with throws varying from seven to thirty meters. As a result, three horizontal wells were drilled in the Lower Barnett Shale section, 150 m apart with the central well landed about 25 m shallower than the outside laterals. Surface seismic indicates that the surface locations are on top of a major fault complex with the lateral sections drilling away from the major fault system and through a smaller fault. Modeling of the borehole-based microseismic monitoring options led to the selection of an optimum set of configurations given the operational restrictions faced: monitoring would mainly take place using a horizontal array to be tractored downhole and moved according to the well and stage to be monitored. Wells were completed using a perf-and-plug approach allowing for each stimulation stage to obtain a precise orientation of the various three-component accelerometers of the monitoring array as well as the calibration of the velocity model used to process the microseismic data acquired. Real-time microseismic monitoring allowed (i) to avoid the water-bearing formation below the zone of interest, (ii) to bypass the faulted zone, and (iii) to modify as needed the perforation and stimulation plans. Completion led to an initial gas production of over 3 MMCF/day each. Early decline rates confirm successful completion in avoiding the faulted areas. Initial observations of the slickwater fracturing stimulation treatments for these three wells using an integrated approach involving mechanical modelling calibrated using microseismic data indicate that (i) a long bi-wing-like fracture system initiated prior to being followed by a complex fracture network; thus, explaining the fact that some events are mapped relatively far away from the injection site, (ii) proppant generally settled down in the near wellbore area during the fracture network development due to rapid decrease of fluid flow velocity away from the injection side. Initial b-value results seem to indicate that the target reservoir is naturally fractured and that the influence of a large fault system in the vicinity of the treated zone could be asserted.

LeCalvez, J. H.; Williams, M.; Xu, W.; Stokes, J.; Moros, H.; Maxwell, S. C.; Conners, S.

2011-12-01

347

HELIOSEISMOLOGY OF PRE-EMERGING ACTIVE REGIONS. I. OVERVIEW, DATA, AND TARGET SELECTION CRITERIA  

SciTech Connect

This first paper in a series describes the design of a study testing whether pre-appearance signatures of solar magnetic active regions were detectable using various tools of local helioseismology. The ultimate goal is to understand flux-emergence mechanisms by setting observational constraints on pre-appearance subsurface changes, for comparison with results from simulation efforts. This first paper provides details of the data selection and preparation of the samples, each containing over 100 members, of two populations: regions on the Sun that produced a numbered NOAA active region, and a 'control' sample of areas that did not. The seismology is performed on data from the GONG network; accompanying magnetic data from SOHO/MDI are used for co-temporal analysis of the surface magnetic field. Samples are drawn from 2001-2007, and each target is analyzed for 27.7 hr prior to an objectively determined time of emergence. The results of two analysis approaches are published separately: one based on averages of the seismology- and magnetic-derived signals over the samples, another based on Discriminant Analysis of these signals, for a statistical test of detectable differences between the two populations. We include here descriptions of a new potential-field calculation approach and the algorithm for matching sample distributions over multiple variables. We describe known sources of bias and the approaches used to mitigate them. We also describe unexpected bias sources uncovered during the course of the study and include a discussion of refinements that should be included in future work on this topic.

Leka, K. D.; Barnes, G.; Birch, A. C.; Dunn, T.; Javornik, B.; Braun, D. C. [NorthWest Research Associates, Boulder, CO 80301 (United States)] [NorthWest Research Associates, Boulder, CO 80301 (United States); Gonzalez-Hernandez, I. [National Solar Observatory, Tucson, AZ 85719 (United States)] [National Solar Observatory, Tucson, AZ 85719 (United States)

2013-01-10

348

Overcoming Concealment Effects of Targeting Moieties in the PEG Corona: Controlled Permeable Polymersomes Decorated with Folate-Antennae for Selective Targeting of Tumor Cells.  

PubMed

In the context of diligent efforts to improve the tumor targeting efficiency of drug carriers, a shape-persistent polymersome which possess a pH-tunable membrane as well as folate targeting antennae is reported. The membrane of such polymersomes behaves as gate which undergoes "on" and "off" switches in response to pH stimuli. Thus, polymersomes can effectively prohibit the premature release of chemotherapeutic agents such as doxorubicin in physiological conditions, but promote drug release once they are triggered in the acidified endosomal compartment. Importantly, the folate moieties are installed on the surface of polymersomes as protruding antennae by doping the polymersomes with folate-terminated block copolymers designed to have longer PEG segments. Thereby, the folate moieties are freed from concealment and steric effects exerted by the dense PEG corona. The cellular uptake of the FA-antennae polymersomes by tumor cells is significantly enhanced facilitated by the freely accessible folate antennae; however, the normal cells record a low level of cellular uptake due to the stealth property of the PEG corona. Overall, the excellent biocompatibility, controlled permeability, targeted internalization, as well as selective cytotoxicity of such polymersomes set up the basis for properly smart carrier for targeted drug delivery. PMID:25363281

Yassin, Mohamed A; Appelhans, Dietmar; Wiedemuth, Ralf; Formanek, Petr; Boye, Susanne; Lederer, Albena; Temme, Achim; Voit, Brigitte

2014-10-31

349

Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity  

PubMed Central

The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy) pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences. PMID:22697169

2012-01-01

350

Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target  

NASA Astrophysics Data System (ADS)

Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite's lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.

Selzer, Paul M.; Pingel, Sabine; Hsieh, Ivy; Ugele, Bernhard; Chan, Victor J.; Engel, Juan C.; Bogyo, Matthew; Russell, David G.; Sakanari, Judy A.; McKerrow, James H.

1999-09-01

351

Identification of target-binding peptide motifs by high-throughput sequencing of phage-selected peptides  

PubMed Central

High-throughput sequencing was previously applied to phage-selected peptides in order to gain insight into the abundance and diversity of isolated peptides. Herein we developed a procedure to efficiently compare the sequences of large numbers of phage-selected peptides for the purpose of identifying target-binding peptide motifs. We applied the procedure to analyze bicyclic peptides isolated against five different protein targets: sortase A, urokinase-type plasminogen activator, coagulation factor XII, plasma kallikrein and streptavidin. We optimized sequence data filters to reduce biases originating from the sequencing method and developed sequence correction algorithms to prevent identification of false consensus motifs. With our strategy, we were able to identify rare target-binding peptide motifs, as well as to define more precisely consensus sequences and sub-groups of consensus sequences. This information is valuable to choose peptide leads for drug development and it facilitates identification of epitopes. We furthermore show that binding motifs can be identified after a single round of phage selection. Such a selection regimen reduces propagation-related bias and may facilitate application of phage display in non-specialized laboratories, as procedures such as bacterial infection, phage propagation and purification are not required. PMID:25348396

Rentero Rebollo, Inmaculada; Sabisz, Michal; Baeriswyl, Vanessa; Heinis, Christian

2014-01-01

352

Proteasome activator complex PA28 identified as an accessible target in prostate cancer by in vivo selection of human antibodies  

PubMed Central

Antibody cancer therapies rely on systemically accessible targets and suitable antibodies that exert a functional activity or deliver a payload to the tumor site. Here, we present proof-of-principle of in vivo selection of human antibodies in tumor-bearing mice that identified a tumor-specific antibody able to deliver a payload and unveils the target antigen. By using an ex vivo enrichment process against freshly disaggregated tumors to purge the repertoire, in combination with in vivo biopanning at optimized phage circulation time, we have identified a human domain antibody capable of mediating selective localization of phage to human prostate cancer xenografts. Affinity chromatography followed by mass spectrometry analysis showed that the antibody recognizes the proteasome activator complex PA28. The specificity of soluble antibody was confirmed by demonstrating its binding to the active human PA28?? complex. Whereas systemically administered control phage was confined in the lumen of blood vessels of both normal tissues and tumors, the selected phage spread from tumor vessels into the perivascular tumor parenchyma. In these areas, the selected phage partially colocalized with PA28 complex. Furthermore, we found that the expression of the ? subunit of PA28 [proteasome activator complex subunit 1 (PSME1)] is elevated in primary and metastatic human prostate cancer and used anti-PSME1 antibodies to show that PSME1 is an accessible marker in mouse xenograft tumors. These results support the use of PA28 as a tumor marker and a potential target for therapeutic intervention in prostate cancer. PMID:23918357

Sánchez-Martín, David; Martínez-Torrecuadrada, Jorge; Teesalu, Tambet; Sugahara, Kazuki N.; Alvarez-Cienfuegos, Ana; Ximénez-Embún, Pilar; Fernández-Periáñez, Rodrigo; Martín, M. Teresa; Molina-Privado, Irene; Ruppen-Cañás, Isabel; Blanco-Toribio, Ana; Cañamero, Marta; Cuesta, Ángel M.; Compte, Marta; Kremer, Leonor; Bellas, Carmen; Alonso-Camino, Vanesa; Guijarro-Muñoz, Irene; Sanz, Laura; Ruoslahti, Erkki; Alvarez-Vallina, Luis

2013-01-01

353

Continuous systemic secretion of a lysosomal enzyme by genetically modified mouse skin fibroblasts.  

PubMed

Lysosomal enzymes secreted or externally supplied into the extracellular medium can be internalized by cells and targeted to lysosomes after binding to specific membrane receptors. This process allows for the replacement of the missing enzyme activity in deficient cells. Using a retroviral vector, we have introduced the human beta-glucuronidase cDNA into primary mouse skin fibroblasts. The genetically modified cells were then engrafted into neo-organs that had been previously implanted into the peritoneal cavity of syngeneic recipient mice. The hypervascularized structures, made of collagen and basic fibroblast growth factor-coated synthetic fibers embedded into extracellular matrix gel, allowed in vivo survival of engrafted fibroblasts that expressed the human beta-glucuronidase cDNA for at least 3 months. The human enzyme was detected in the liver, lung, and spleen of experimental animals, but became undetectable after removal of the neo-organ. This observation indicated that the human enzyme was secreted into the serum and then captured by distant organs. The use of genetically modified fibroblasts implanted into neo-organs may, therefore, represent a convenient approach to enzyme replacement therapy in lysosomal storage diseases. PMID:8356601

Moullier, P; Maréchal, V; Danos, O; Heard, J M

1993-08-01

354

SapC-DOPS-induced lysosomal cell death synergizes with TMZ in glioblastoma.  

PubMed

SapC-DOPS is a novel nanotherapeutic that has been shown to target and induce cell death in a variety of cancers, including glioblastoma (GBM). GBM is a primary brain tumor known to frequently demonstrate resistance to apoptosis-inducing therapeutics. Here we explore the mode of action for SapC-DOPS in GBM, a treatment being developed by Bexion Pharmaceuticals for clinical testing in patients. SapC-DOPS treatment was observed to induce lysosomal dysfunction of GBM cells characterized by decreased glycosylation of LAMP1 and altered proteolytic processing of cathepsin D independent of apoptosis and autophagic cell death. We observed that SapC-DOPS induced lysosomal membrane permeability (LMP) as shown by LysoTracker Red and Acridine Orange staining along with an increase of sphingosine, a known inducer of LMP. Additionally, SapC-DOPS displayed strong synergistic interactions with the apoptosis-inducing agent TMZ. Collectively our data suggest that SapC-DOPS induces lysosomal cell death in GBM cells, providing a new approach for treating tumors resistant to traditional apoptosis-inducing agents. PMID:25210852

Wojton, Jeffrey; Meisen, Walter Hans; Jacob, Naduparambil K; Thorne, Amy Haseley; Hardcastle, Jayson; Denton, Nicholas; Chu, Zhengtao; Dmitrieva, Nina; Marsh, Rachel; Van Meir, Erwin G; Kwon, Chang-Hyuk; Chakravarti, Arnab; Qi, Xiaoyang; Kaur, Balveen

2014-10-30

355

SapC-DOPS-induced lysosomal cell death synergizes with TMZ in glioblastoma  

PubMed Central

SapC-DOPS is a novel nanotherapeutic that has been shown to target and induce cell death in a variety of cancers, including glioblastoma (GBM). GBM is a primary brain tumor known to frequently demonstrate resistance to apoptosis-inducing therapeutics. Here we explore the mode of action for SapC-DOPS in GBM, a treatment being developed by Bexion Pharmaceuticals for clinical testing in patients. SapC-DOPS treatment was observed to induce lysosomal dysfunction of GBM cells characterized by decreased glycosylation of LAMP1 and altered proteolytic processing of cathepsin D independent of apoptosis and autophagic cell death. We observed that SapC-DOPS induced lysosomal membrane permeability (LMP) as shown by LysoTracker Red and Acridine Orange staining along with an increase of sphingosine, a known inducer of LMP. Additionally, SapC-DOPS displayed strong synergistic interactions with the apoptosis-inducing agent TMZ. Collectively our data suggest that SapC-DOPS induces lysosomal cell death in GBM cells, providing a new approach for treating tumors resistant to traditional apoptosis-inducing agents. PMID:25210852

Wojton, Jeffrey; Meisen, Walter Hans; Jacob, Naduparambil K.; Thorne, Amy Haseley; Hardcastle, Jayson; Denton, Nicholas; Chu, Zhengtao; Dmitrieva, Nina; Marsh, Rachel; Van Meir, Erwin G.; Kwon, Chang-Hyuk; Chakravarti, Arnab

2014-01-01

356

Arsenite exposure in human lymphoblastoid cell lines induces autophagy and coordinated induction of lysosomal genes  

PubMed Central

Chronic exposure to inorganic arsenic is associated with diverse, complex diseases, making the identification of the mechanism underlying arsenic-induced toxicity a challenge. An increasing body of literature from epidemiological and in vitro studies has demonstrated that arsenic is an immunotoxicant, but the mechanism driving arsenic-induced immunotoxicity is not well established. We have previously demonstrated that in human lymphoblastoid cell lines (LCL), arsenic-induced cell death is strongly associated with the induction of autophagy. In this study we utilized genome-wide gene expression analysis and functional assays to characterize arsenic-induced effects in seven LCL that were exposed to an environmentally relevant, minimally cytotoxic, concentration of arsenite (0.75 uM) over an eight-day time course. Arsenic exposure resulted in inhibition of cellular growth and induction of autophagy (measured by expansion of acidic vesicles) over the eight-day exposure duration. Gene expression analysis revealed that arsenic exposure increased global lysosomal gene expression, which was associated with increased functional activity of the lysosome protease, cathepsin D. The arsenic-induced expansion of the lysosomal compartment in LCL represents a novel target that may offer insight into the immunotoxic effects of arsenic. PMID:20816728

Bolt, Alicia M.; Douglas, Randi M.; Klimecki, Walter T.

2010-01-01

357

6-Gingerol induces apoptosis through lysosomal-mitochondrial axis in human hepatoma G2 cells.  

PubMed

6-Gingerol, a major phenolic compound derived from ginger, has been known to possess anticarcinogenic activities. However, the mechanisms are not well understood. In our previous study, it was demonstrated that lysosome and mitochondria may be the primary targets for 6-gingerol in HepG2 cells. Therefore, the aim was to evaluate lysosome-mitochondria cross-signaling in 6-gingerol-induced apoptosis. Apoptosis was detected by Hoechst 33342 and TUNEL assay after 24?h treatment, and the destabilization of lysosome and mitochondria were early upstream initiating events. This study showed that cathepsin D played a crucial role in the process of apoptosis. The release of cathepsin D to the cytosol appeared to be an early event that preceded the release of cytochrome c from mitochondria. Moreover, inhibition of cathepsin D activity resulted in suppressed release of cytochrome c. To further determine the involvement of oxidative stress in 6-gingerol-induced apoptosis, the intracellular generation of reactive oxygen species (ROS) and reduced glutathione (GSH) were examined. Taken together, these results suggest that cathepsin D may be a positive mediator of 6-gingerol induced apoptosis in HepG2 cells, acting upstream of cytochrome c release, and the apoptosis may be associated with oxidative stress. PMID:22389213

Yang, Guang; Wang, Shaopeng; Zhong, Laifu; Dong, Xu; Zhang, Wenli; Jiang, Liping; Geng, Chengyan; Sun, Xiance; Liu, Xiaofang; Chen, Min; Ma, Yufang

2012-11-01

358

Ubiquitin ligase Nedd4 promotes alpha-synuclein degradation by the endosomal-lysosomal pathway.  

PubMed

?-Synuclein is an abundant brain protein that binds to lipid membranes and is involved in the recycling of presynaptic vesicles. In Parkinson disease, ?-synuclein accumulates in intraneuronal inclusions often containing ubiquitin chains. Here we show that the ubiquitin ligase Nedd4, which functions in the endosomal-lysosomal pathway, robustly ubiquitinates ?-synuclein, unlike ligases previously implicated in its degradation. Purified Nedd4 recognizes the carboxyl terminus of ?-synuclein (residues 120-133) and attaches K63-linked ubiquitin chains. In human cells, Nedd4 overexpression enhances ?-synuclein ubiquitination and clearance by a lysosomal process requiring components of the endosomal-sorting complex required for transport. Conversely, Nedd4 down-regulation increases ?-synuclein content. In yeast, disruption of the Nedd4 ortholog Rsp5p decreases ?-synuclein degradation and enhances inclusion formation and ?-synuclein toxicity. In human brains, Nedd4 is present in pigmented neurons and is expressed especially strongly in neurons containing Lewy bodies. Thus, ubiquitination by Nedd4 targets ?-synuclein to the endosomal-lysosomal pathway and, by reducing ?-synuclein content, may help protect against the pathogenesis of Parkinson disease and other ?-synucleinopathies. PMID:21953697

Tofaris, George K; Kim, Hyoung Tae; Hourez, Raphael; Jung, Jin-Woo; Kim, Kwang Pyo; Goldberg, Alfred L

2011-10-11

359

Abnormal cortical lysosomal ?-hexosaminidase and ?-galactosidase activity at post-synaptic sites during Alzheimer's disease progression.  

PubMed

A critical role of endosomal-lysosomal system alteration in neurodegeneration is supported by several studies. Dysfunction of the lysosomal compartment is a common feature also in Alzheimer's disease. Altered expression of lysosomal glycohydrolases has been demonstrated not only in the brain and peripheral tissues of Alzheimer's disease patients, but also in presymptomatic subjects before degenerative phenomenon becomes evident. Moreover, the presence of glycohydrolases associated to the plasma membrane have been widely demonstrated and their alteration in pathological conditions has been documented. In particular, lipid microdomains-associated glycohydrolases can be functional to the maintenance of the proper glycosphingolipids pattern, especially at cell surface level, where they are crucial for the function of cell types such as neurons. In this study we investigated the localization of ?-hexosaminidase and ?-galactosidase glycohydrolases, both involved in step by step degradation of the GM1 to GM3 gangliosides, in lipid microdomains from the cortex of both an early and advanced TgCRND8 mouse model of Alzheimer's disease. Throughout immunoprecipitation experiments of purified cortical lipid microdomains, we demonstrated for the first time that ?-hexosaminidase and ?-galactosidase are associated with post-synaptic vesicles and that their activities are increased at both the early and the advanced stage of Alzheimer's disease. The early increase of lipid microdomain-associated ?-hexosaminidase and ?-galactosidase activities could have relevant implications for the pathophysiology of the disease since their possible pharmacological manipulation could shed light on new reliable targets and biological markers of Alzheimer's disease. PMID:25462158

Magini, Alessandro; Polchi, Alice; Tozzi, Alessandro; Tancini, Brunella; Tantucci, Michela; Urbanelli, Lorena; Borsello, Tiziana; Calabresi, Paolo; Emiliani, Carla

2015-01-01

360

In Vitro Attachment of Radioactive Endotoxins to Lysosomes  

PubMed Central

The experiments reported here demonstrate that under certain conditions endotoxin can interact with lysosomes in vitro. After incubation of large granular fraction with 51Cr-labeled antigen under the conditions required for acid hydrolytic activity, radioactivity was associated with the pellet after centrifugation. This effect can be inhibited by preincubation of the large granular fraction with unlabeled homologous or heterologous endotoxins. High resolution autoradiography showed that 14C-labeled endotoxin was predominantly attached to the lysosomes contained in the large granular fraction. The mechanism of this interaction and its relationship to the toxic effect of endotoxins on lysosomes are discussed. Images PMID:4949505

Bona, C.; Chedid, L.; Lamensans, A.

1971-01-01

361

Hydrops fetalis: manifestation in lysosomal storage diseases including Farber disease  

Microsoft Academic Search

The authors describe a case of disseminated lipogranulomatosis (Farber disease) presenting as nonimmune hydrops fetalis. This\\u000a is the tenth lysosomal storage disease which can show this clinical manifestation. The literature is reviewed for all hydrops\\u000a cases associated with lysosomal storage diseases.\\u000a \\u000a \\u000a Conclusion Although rare, the lysosomal storage diseases collectively are significant causes of non-immune hydrops and appropriate investigations\\u000a are required

Evelyn Kattner; A. Schäfer; K. Harzer

1997-01-01

362

Preparation of four fluorine-18-labeled estrogens and their selective uptakes in target tissues of immature rats  

SciTech Connect

Four fluorine-18-labeled estrogens have been prepared by simple displacement reactions utilizing reactive trifluoromethane sulfonate (triflate) precursors and F-18 fluoride ion. All four fluoroestrogens have high affinity for the estrogen receptor. In immature female rats, they are taken up by target tissues, such as the uterus, with very high selectivity: uterus-to-blood ratios at 1 hr are: Compound 1, 39; Compound 2, 12; Compound 3, 13; and Compound 4, 19. That the uptake process involves an estrogen-specific binder of limited capacity is demonstrated by the suppressive effect of coadministered unlabeled estradiol on target tissue uptake.

Kiesewetter, D.O.; Kilbourn, M.R.; Landvatter, S.W.; Heiman, D.F.; Katzenellenbogen, J.A.; Welch, M.J.

1984-11-01

363

C. elegans BLOC-1 Functions in Trafficking to Lysosome-Related Gut Granules  

PubMed Central

The human disease Hermansky-Pudlak syndrome results from defective biogenesis of lysosome-related organelles (LROs) and can be caused by mutations in subunits of the BLOC-1 complex. Here we show that C. elegans glo-2 and snpn-1, despite relatively low levels of amino acid identity, encode Pallidin and Snapin BLOC-1 subunit homologues, respectively. BLOC-1 subunit interactions involving Pallidin and Snapin were conserved for GLO-2 and SNPN-1. Mutations in glo-2 and snpn-1,or RNAi targeting 5 other BLOC-1 subunit homologues in a genetic background sensitized for glo-2 function, led to defects in the biogenesis of lysosome-related gut granules. These results indicate that the BLOC-1 complex is conserved in C. elegans. To address the function of C. elegans BLOC-1, we assessed the intracellular sorting of CDF-2::GFP, LMP-1, and PGP-2 to gut granules. We validated their utility by analyzing their mislocalization in intestinal cells lacking the function of AP-3, which participates in an evolutionarily conserved sorting pathway to LROs. BLOC-1(?) intestinal cells missorted gut granule cargo to the plasma membrane and conventional lysosomes and did not have obviously altered function or morphology of organelles composing the conventional lysosome protein sorting pathway. Double mutant analysis and comparison of AP-3(?) and BLOC-1(?) phenotypes revealed that BLOC-1 has some functions independent of the AP-3 adaptor complex in trafficking to gut granules. We discuss similarities and differences of BLOC-1 activity in the biogenesis of gut granules as compared to mammalian melanosomes, where BLOC-1 has been most extensively studied for its role in sorting to LROs. Our work opens up the opportunity to address the function of this poorly understood complex in cell and organismal physiology using the genetic approaches available in C. elegans. PMID:22916203

Hermann, Greg J.; Scavarda, Emily; Weis, Allison M.; Saxton, Daniel S.; Thomas, Laura L.; Salesky, Rebecca; Somhegyi, Hannah; Curtin, Thomas P.; Barrett, Alec; Foster, Olivia K.; Vine, Annalise; Erlich, Katherine; Kwan, Elizabeth; Rabbitts, Beverley M.; Warren, Kaila

2012-01-01

364

MDMA induces cardiac contractile dysfunction through autophagy upregulation and lysosome destabilization in rats.  

PubMed

The underlying mechanisms of cardiotoxicity of 3,4-methylenedioxymethylamphetamine (MDMA, "ecstasy") abuse are unclear. Autophagy exerts either adaptive or maladaptive effects on cardiac function in various pathological settings, but nothing is known on the role of autophagy in the MDMA cardiotoxicity. Here, we investigated the mechanism through which autophagy may be involved in MDMA-induced cardiac contractile dysfunction. Rats were injected intraperitoneally with MDMA (20mg/kg) or saline. Left ventricular (LV) echocardiography and LV pressure measurement demonstrated reduction of LV systolic contractility 24h after MDMA administration. Western blot analysis showed a time-dependent increase in the levels of microtubule-associated protein light chain 3-II (LC3-II) and cathepsin-D after MDMA administration. Electron microscopy showed the presence of autophagic vacuoles in cardiomyocytes. MDMA upregulated phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) at Thr172, mammalian target of rapamycin (mTOR) at Thr2446, Raptor at Ser792, and Unc51-like kinase (ULK1) at Ser555, suggesting activation of autophagy through the AMPK-mTOR pathway. The effects of autophagic inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) on LC3-II levels indicated that MDMA enhanced autophagosome formation, but attenuated autophagosome clearance. MDMA also induced release of cathepsins into cytosol, and western blotting and electron microscopy showed cardiac troponin I (cTnI) degradation and myofibril damage, respectively. 3-MA, CQ, and a lysosomal inhibitor, E64c, inhibited cTnI proteolysis and improved contractile dysfunction after MDMA administration. In conclusion, MDMA causes lysosome destabilization following activation of the autophagy-lysosomal pathway, through which released lysosomal proteases damage myofibrils and induce LV systolic dysfunction in rat heart. PMID:24491919

Shintani-ishida, Kaori; Saka, Kanju; Yamaguchi, Koji; Hayashida, Makiko; Nagai, Hisashi; Takemura, Genzou; Yoshida, Ken-ichi

2014-05-01

365

Tandem Mass Spectrometry for the Direct Assay of Lysosomal Enzymes in  

E-print Network

in a multiplex fashion to measure sev- eral lysosomal enzymes relevant to treatable lysosomal storage diseases. Mucopolysaccharidosis type I (MPS-I)4 is a lysosomal storage disorder caused by the deficiency of -L- iduronidase (IdTandem Mass Spectrometry for the Direct Assay of Lysosomal Enzymes in Dried Blood Spots

Gelb, Michael

366

Folate-targeted PEGylated liposomes improve the selectivity of PDT with meta-tetra(hydroxyphenyl)chlorin (m-THPC).  

PubMed

The folate receptor (FR) is over-expressed in many human tumours and is being intensively studied also in the field of nanomedicine as a target to enhance the selectivity of drug delivery to cancer cells by using nanocarriers bearing folic acid (FA) on their surface. In this study we report the encapsulation of the photosensitizer (PS) meta-tetra(hydroxyphenyl)chlorin (m-THPC) in FA-targeted PEGylated liposomes used as a novel drug delivery system for photodynamic therapy (PDT) of cancer. Our in vitro investigations revealed that only a modest fraction of targeted liposomes were internalized by specific endocytosis in FR-positive KB cells. However, FA-liposomes doubled the uptake of the entrapped m-THPC with respect to un-targeted liposomes and enhanced the photo-induced cytotoxicity in KB cells. In contrast, in FR-negative A549 cells FA-targeted or un-targeted liposomes exhibited a very similar extent of internalization and as a consequence the same photo-killing efficiency. PMID:23385966

Moret, Francesca; Scheglmann, Dietrich; Reddi, Elena

2013-05-01

367

Structure-Based Design of a Potent, Selective, and Brain Penetrating PDE2 Inhibitor with Demonstrated Target Engagement.  

PubMed

Structure-guided design led to the identification of the novel, potent, and selective phosphodiesterase 2 (PDE2) inhibitor 12. Compound 12 demonstrated a >210-fold selectivity versus PDE10 and PDE11 and was inactive against all other PDE family members up to 10 ?M. In vivo evaluation of 12 provided evidence that it is able to engage the target and to increase cGMP levels in relevant brain regions. Hence, 12 is a valuable tool compound for the better understanding of the role of PDE2 in cognitive impairment and other central nervous system related disorders. PMID:25221665

Buijnsters, Peter; De Angelis, Meri; Langlois, Xavier; Rombouts, Frederik J R; Sanderson, Wendy; Tresadern, Gary; Ritchie, Alison; Trabanco, Andrés A; VanHoof, Greet; Roosbroeck, Yves Van; Andrés, José-Ignacio

2014-09-11

368

A minimally invasive multifunctional nanoscale system for selective targeting, imaging, and NIR photothermal therapy of malignant tumors  

NASA Astrophysics Data System (ADS)

The anti-EGFR antibody, cetuximab, was labeled with IRDye 800CW fluorescent dye and conjugated to gold nanorods (GNR). GNR with aspect ratio of ~ 4 and plasmon resonance peak at ~785 nm were fabricated for use in these experiments. The IRDye:cetuximab:nanorod conjugate treatment with NIR light selectively heated the GNR and was sufficient to treat cancers. Excitation induced fluorescence of the IRDye 800CW enabling real-time imaging. We characterized and optimized the parameters for the conjugation of the GNR to cetuximab to facilitate active targeting of the nanorods to the site of the tumor. This combination of selective targeting, imaging, and photothermal treating of malignant cells is a viable approach for a variety of squamous cell carcinomas.

Green, H. N.; Martyshkin, D. V.; Rosenthal, E. L.; Mirov, S. B.

2011-03-01

369

TFEB activation promotes the recruitment of lysosomal glycohydrolases ?-hexosaminidase and ?-galactosidase to the plasma membrane.  

PubMed

Lysosomes are membrane-enclosed organelles containing acid hydrolases. They mediate a variety of physiological processes, such as cellular clearance, lipid homeostasis, energy metabolism and pathogen defence. Lysosomes can secrete their content through a process called lysosome exocytosis in which lysosomes fuse with the plasma membrane realising their content into the extracellular milieu. Lysosomal exocytosis is not only responsible for the secretion of lysosomal enzymes, but it also has a crucial role in the plasma membrane repair. Recently, it has been demonstrated that lysosome response to the physiologic signals is regulated by the transcription factor EB (TFEB). In particular, lysosomal secretion is transcriptionally regulated by TFEB which induces both the docking and fusion of lysosomes with the plasma membrane. In this work we demonstrated that TFEB nuclear translocation is accompanied by an increase of mature glycohydrolases ?-hexosaminidase and ?-galactosidase on cell surface. This evidence contributes to elucidate an unknown TFEB biological function leading the lysosomal glycohydrolases on plasma membrane. PMID:24055709

Magini, Alessandro; Polchi, Alice; Urbanelli, Lorena; Cesselli, Daniela; Beltrami, Antonio; Tancini, Brunella; Emiliani, Carla

2013-10-18

370

The Yeast Lysosome-like Vacuole: Endpoint and Crossroads  

PubMed Central

Summary Fungal vacuoles are acidic organelles with degradative and storage capabilities that have many similarities to mammalian lysosomes and plant vacuoles. In the past several years, well-developed genetic, genomic, biochemical and cell biological tools in S. cerevisiae have provided fresh insights into vacuolar protein sorting, organelle acidification, ion homeostasis, autophagy, and stress-related functions of the vacuole, and these insights have often found parallels in mammalian lysosomes. This review provides a broad overview of the defining features and functions of S. cerevisiae vacuoles and compares these features to mammalian lysosomes. Recent research challenges the traditional view of vacuoles and lysosomes as simply the terminal compartment of biosynthetic and endocytic pathways (i.e. the “garbage dump” of the cell), and suggests instead that these compartments are unexpectedly dynamic and highly regulated. PMID:18786576

Li, Sheena Claire; Kane, Patricia M.

2009-01-01

371

Regulation of lysosome biogenesis and functions in osteoclasts.  

PubMed

In order to resorb the mineralized bone extracellular matrix, the osteoclast relies on the generation of a resorption lacuna characterized by the presence of specific proteases and a low pH. Hence, bone resorption by osteoclasts is highly dependent on lysosomes, the organelles specialized in intra- and extracellular material degradation. This is best illustrated by the fact that multiple forms of human osteopetrosis are caused by mutations in genes encoding for lysosomal proteins. Yet, until recently, the molecular mechanisms regulating lysosomal biogenesis and function in osteoclasts were poorly understood. Here we review the latest developments in the study of lysosomal biogenesis and function in osteoclasts with an emphasis on the transcriptional control of these processes. PMID:23966172

Lacombe, Julie; Karsenty, Gérard; Ferron, Mathieu

2013-09-01

372

Regulation of lysosome biogenesis and functions in osteoclasts  

PubMed Central

In order to resorb the mineralized bone extracellular matrix, the osteoclast relies on the generation of a resorption lacuna characterized by the presence of specific proteases and a low pH. Hence, bone resorption by osteoclasts is highly dependent on lysosomes, the organelles specialized in intra- and extracellular material degradation. This is best illustrated by the fact that multiple forms of human osteopetrosis are caused by mutations in genes encoding for lysosomal proteins. Yet, until recently, the molecular mechanisms regulating lysosomal biogenesis and function in osteoclasts were poorly understood. Here we review the latest developments in the study of lysosomal biogenesis and function in osteoclasts with an emphasis on the transcriptional control of these processes. PMID:23966172

Lacombe, Julie; Karsenty, Gérard; Ferron, Mathieu

2013-01-01

373

Lysosomal storage diseases in non-immune hydrops fetalis pregnancies  

Microsoft Academic Search

BackgroundAt least 20 inborn errors of metabolism may cause hydrops fetalis. Most of these are lysosomal storage diseases. The study proposes a diagnostic flowchart for prenatal diagnosis of non-immune hydrops fetalis.

Angelique J. A. Kooper; Pim M. W. Janssens; Akosua N. J. A. de Groot; Maria L. F. Liebrand-van Sambeek; Catharina J. M. G. van den Berg; Gita B. Tan-Sindhunata; Paul P. van den Berg; Emilia K. Bijlsma; Arie P. T. Smits; Ron A. Wevers

2006-01-01

374

Secondary biochemical and morphological consequences in lysosomal storage diseases.  

PubMed

More than 50 hereditary lysosomal storage disorders (LSDs) are currently described. Most of these disorders are due to a deficiency of certain hydrolases/glycosidases and subsequent accumulation of nonhydrolyzable carbohydrate-containing compounds in lysosomes. Such accumulation causing hypertrophy of the lysosomal compartment is a characteristic feature of affected cells in LSDs. The investigation of biochemical and cellular parameters is of particular interest for understanding "life" of lysosomes in the normal state and in LSDs. This review highlights the wide spectrum of biochemical and morphological changes during developing LSDs that are extremely critical for many metabolic processes inside the various cells and tissues of affected persons. The data presented will help establish new complex strategies for metabolic correction of LSDs. PMID:25108325

Alroy, J; Garganta, C; Wiederschain, G

2014-07-01

375

Genetic Regulation of Caenorhabditis elegans Lysosome Related Organelle Function  

E-print Network

Lysosomes are membrane-bound organelles that contain acid hydrolases that degrade cellular proteins, lipids, nucleic acids, and oligosaccharides, and are important for cellular maintenance and protection against age-related ...

Soukas, Alexander A.

376

K-Targeted Metabolomic Analysis Extends Chemical Subtraction to DESIGNER Extracts: Selective Depletion of Extracts of Hops (Humulus lupulus).  

PubMed

This study introduces a flexible and compound targeted approach to Deplete and Enrich Select Ingredients to Generate Normalized Extract Resources, generating DESIGNER extracts, by means of chemical subtraction or augmentation of metabolites. Targeting metabolites based on their liquid-liquid partition coefficients (K values), K targeting uses countercurrent separation methodology to remove single or multiple compounds from a chemically complex mixture, according to the following equation: DESIGNER extract = total extract ± target compound(s). Expanding the scope of the recently reported depletion of extracts by immunoaffinity or solid phase liquid chromatography, the present approach allows a more flexible, single- or multi-targeted removal of constituents from complex extracts such as botanicals. Chemical subtraction enables both chemical and biological characterization, including detection of synergism/antagonism by both the subtracted targets and the remaining metabolite mixture, as well as definition of the residual complexity of all fractions. The feasibility of the DESIGNER concept is shown by K-targeted subtraction of four bioactive prenylated phenols, isoxanthohumol (1), 8-prenylnaringenin (2), 6-prenylnaringenin (3), and xanthohumol (4), from a standardized hops (Humulus lupulus L.) extract using specific solvent systems. Conversely, adding K-targeted isolates allows enrichment of the original extract and hence provides an augmented DESIGNER material. Multiple countercurrent separation steps were used to purify each of the four compounds, and four DESIGNER extracts with varying depletions were prepared. The DESIGNER approach innovates the characterization of chemically complex extracts through integration of enabling technologies such as countercurrent separation, K-by-bioactivity, the residual complexity concepts, as well as quantitative analysis by (1)H NMR, LC-MS, and HiFSA-based NMR fingerprinting. PMID:25437744

Ramos Alvarenga, René F; Friesen, J Brent; Nikoli?, Dejan; Simmler, Charlotte; Napolitano, José G; van Breemen, Richard; Lankin, David C; McAlpine, James B; Pauli, Guido F; Chen, Shao-Nong

2014-12-26

377

IRE1 directs proteasomal and lysosomal degradation of misfolded rhodopsin  

PubMed Central

Endoplasmic reticulum (ER) is responsible for folding of secreted and membrane proteins in eukaryotic cells. Disruption of ER protein folding leads to ER stress. Chronic ER stress can cause cell death and is proposed to underlie the pathogenesis of many human diseases. Inositol-requiring enzyme 1 (IRE1) directs a key unfolded protein response signaling pathway that controls the fidelity of ER protein folding. IRE1 signaling may be particularly helpful in preventing chronic ER stress and cell injury by alleviating protein misfolding in the ER. To examine this, we used a chemical-genetic approach to selectively activate IRE1 in mammalian cells and tested how artificial IRE1 signaling affected the fate of misfolded P23H rhodopsin linked to photoreceptor cell death. We found that IRE1 signaling robustly promoted the degradation of misfolded P23H rhodopsin without affecting its wild-type counterpart. We also found that IRE1 used both proteasomal and lysosomal degradation pathways to remove P23H rhodopsin. Surprisingly, when one degradation pathway was compromised, IRE1 signaling could still promote misfolded rhodopsin degradation using the remaining pathway. Last, we showed that IRE1 signaling also reduced levels of several other misfolded rhodopsins with lesser effects on misfolded cystic fibrosis transmembrane conductance regulator. Our findings reveal the diversity of proteolytic mechanisms used by IRE1 to eliminate misfolded rhodopsin. PMID:22219383

Chiang, Wei-Chieh; Messah, Carissa; Lin, Jonathan H.

2012-01-01

378

Highly stable aptamers selected from a 2'-fully modified fGmH RNA library for targeting biomaterials.  

PubMed

When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2' modification. This study aims to develop a novel class of highly stable, 2'-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2'-F-dG, 2'-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2'-partially modified RNA variants. Characterizations of fGmH RNA aptamers binding to purified SpA and to endogenous SpA present on the surface of S. aureus cells demonstrate fGmH RNA aptamer selectivity and stability. Significantly, fGmH RNA aptamers were able to functionalize, stabilize, and specifically deliver aggregation-prone silver nanoparticles (AgNPs) to S. aureus with SpA-dependent antimicrobial effects. This study describes a novel aptamer class with considerable potential to improve the in vivo applicability of nucleic acid-based affinity molecules to biomaterials. PMID:25443790

Friedman, Adam D; Kim, Dongwook; Liu, Rihe

2014-10-14

379

Selection and optimization of gene targets for the metabolic engineering of E. coli  

E-print Network

This thesis is about identifying genetic interventions that improve the performance of targeted pathways in the metabolism of the bacterium Escherichia coli. Three case studies illustrate three disparate approaches to ...

Fischer, Curt R., Ph. D. Massachusetts Institute of Technology

2009-01-01

380

Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis  

E-print Network

M. tuberculosis is evolving antibiotic resistance, threatening attempts at tuberculosis epidemic control. Mechanisms of resistance, including genetic changes favored by selection in resistant isolates, are incompletely ...

Farhat, Maha R

381

Surface-based constraints on target selection and distractor rejection: evidence from preview search.  

PubMed

In preview search when an observer ignores an early appearing set of distractors, there can subsequently be impeded detection of new targets that share the colour of this preview. This "negative carry-over effect" has been attributed to an active inhibitory process targeted against the old items and inadvertently their features. Here we extend negative carry-over effects to the case of stereoscopically defined surfaces of coplanar elements without common features. In Experiment 1 observers previewed distractors in one surface (1000ms), before being presented with the target and new distractors divided over the old and a new surface either above or below the old one. Participants were slower and less efficient to detect targets in the old surface. In Experiment 2 in both the first and second display the items were divided over two planes in the proportion 66/33% such that no new planes appeared following the preview, and there was no majority of items in any one plane in the final combined display. The results showed that participants were slower to detect the target when it occurred in the old majority surface. Experiment 3 held constant the 2D properties of the stimuli while varying the presence of binocular depth cues. The carry-over effect only occurred in the presence of binocular depth cues, ruling out any account of the results in terms of 2-D cues. The results suggest well formed surfaces in addition to simple features may be targets for inhibition in search. PMID:24594000

Dent, Kevin; Humphreys, Glyn W; He, Xun; Braithwaite, Jason J

2014-04-01

382

A rapid method for the preparation of ultrapure, functional lysosomes using functionalized superparamagnetic iron oxide nanoparticles.  

PubMed

Lysosomes are an emerging and increasingly important cellular organelle. With every passin