Sample records for selective separation uranium

  1. Separation of Zirconium from Uranium in U-Zr Alloys Using a Chlorination Process

    E-print Network

    Parkison, Adam J

    2013-06-04

    The fundamental behavior underpinning a new processing concept was demonstrated which is capable of separating uranium from zirconium in U-Zr alloys through the formation and selective volatilization of their respective chlorides. Bench...

  2. Separation of Zirconium from Uranium in U-Zr Alloys Using a Chlorination Process 

    E-print Network

    Parkison, Adam J

    2013-06-04

    The fundamental behavior underpinning a new processing concept was demonstrated which is capable of separating uranium from zirconium in U-Zr alloys through the formation and selective volatilization of their respective chlorides. Bench...

  3. Uranium isotope separation from 1941 to the present

    NASA Astrophysics Data System (ADS)

    Maier-Komor, Peter

    2010-02-01

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of 239Pu was included into the atomic bomb program. 235U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  4. Bio-/Photo-Chemical Separation and Recovery of Uranium

    SciTech Connect

    Francis,A.J.; Dodge, C.J.

    2008-03-12

    Citric acid forms bidentate, tridentate, binuclear or polynuclear species with transition metals and actinides. Biodegradation of metal citrate complexes is influenced by the type of complex formed with metal ions. While bidentate complexes are readily biodegraded, tridentate, binuclear and polynuclear species are recalcitrant. Likewise certain transition metals and actinides are photochemically active in the presence of organic acids. Although the uranyl citrate complex is not biodegraded, in the presence of visible light it undergoes photochemical oxidation/reduction reactions which result in the precipitation of uranium as UO{sub 3} {center_dot} H{sub 2}O. Consequently, we developed a process where uranium is extracted from contaminated soils and wastes by citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, whereas uranyl citrate which is recalcitrant remains in solution. Photochemical degradation of the uranium citrate complex resulted in the precipitation of uranium. Thus the toxic metals and uranium in mixed waste are recovered in separate fractions for recycling or for disposal. The use of naturally-occurring compounds and the combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in cost.

  5. Process for the separation of uranium contained in an alkaline liquor

    SciTech Connect

    Lyaudet, G.; Vial, J.

    1981-03-17

    Uranium is recovered from alkaline leach liquors of uranium ores by treating the leach liquors with an ion exchange resin in the ammonium form to provide a solution of salts and complexes of uranium and ammonium from which the uranium is separated by treating with heat or an acid.

  6. Separation of metallic impurities from uranium by anion exchange on Dowex 1×8 resin

    Microsoft Academic Search

    R. J. Rosenberg; A.-M. Forsbacka; N. Gras

    1991-01-01

    The separation of metallic impurities from uranium by anion exchange with a Dowex 1×8 resin has been investigated. The following elements can be quantitatively separated from 400 mg uranium using a 1 cm diameter 15 or 30 cm long column. The elements Ag, Al, Ba, Ca, Cr, Cs, K, Mg, Mn, Na, Ni, Rb, REE, Sc, Th, Ti and Y

  7. Method of separating and recovering uranium and related cations from spent Purex-type systems

    DOEpatents

    Mailen, J.C.; Tallent, O.K.

    1987-02-25

    A process for separating uranium and related cations from a spent Purex-type solvent extraction system which contains degradation complexes of tributylphosphate wherein the system is subjected to an ion-exchange process prior to a sodium carbonate scrubbing step. A further embodiment comprises recovery of the separated uranium and related cations. 5 figs.

  8. Selected uranium and uranium-thorium occurrences in New Hampshire

    USGS Publications Warehouse

    Bothner, W.A.

    1978-01-01

    Secondary uranium mineralization occurs in a northwest-trending fracture zone in the Devonian Concord Granite in recent rock cuts along Interstate Highway 89 near New London, New Hampshire. A detailed plane table map of this occurrence was prepared. Traverses using total gamma ray scintillometers throughout the pluton of Concord Granite identified two additional areas in which very small amounts of secondary mineralization occurs in the marginal zones of the body. All three areas lie along the same northwest trend. A ground radiometry survey of a large part of the Jurassic White Mountain batholith was conducted. Emphasis was placed on those areas from which earlier sampling by Butler (1975) had been done. No unusual geological characteristics were apparent around sample localities from which anomalous U and Th had been reported.. The results of this survey confirm previous conclusions that the red, coarse-grained, biotite granite phase of the Conway Granite is more radioactive than other phases of the Conway Granite or other rock types of the White Mountain Plutonic-Volcanic Series. Aplites associated with the Conway Granite were found .generally to be as radioactive as the red Conway Granite.

  9. Charge-Separation in Uranium Diazomethane Complexes Leading to C-H Activation and Chemical Transformation

    E-print Network

    Meyer, Karsten

    Charge-Separation in Uranium Diazomethane Complexes Leading to C-H Activation and Chemical of diphenyldiazomethane with [((t-Bu ArO)3tacn)UIII ] (1) results in an 2 -bound diphenyldiazomethane uranium complex-shell ligand, [((t-Bu ArO)3tacn)UIV (2 -NNCPh2)] (2). Treating Ph2CN2 with a uranium complex that contains

  10. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Pruett, David J. (Knoxville, TN); McTaggart, Donald R. (Knoxville, TN)

    1984-01-01

    Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc.sup.+7 therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.

  11. Analytical applications of a liquid anion-exchanger for the separation of uranium(IV) in malonate solution.

    PubMed

    Dalvi, M B; Khopkar, S M

    1978-10-01

    Uranium was quantitatively extracted with 4% Amberlite LA-1 in xylene at pH 2.5-4.0 from 0.001 M malonic acid. It was stripped from the organic phase with 0.01 M sodium hydroxide and determined spectrophotometrically at 530 nm as its complex with 4-(2-pyridylazo) resorcinol. Of various liquid anion-exchangers tested, Amberlite LA-1 was found to be best. Uranium was separated from alkali and alkaline earth metal ions, thallium(I), iron(II), silver, arsenic(III) and tin(IV) by selective extraction, and from zinc, cadmium, nickel, copper(II), cobalt(II), chromium(III), aluminium, iron(III), lead, bismuth, antimony(III) and yttrium by selective stripping. The separation from scandium, zirconium, thorium and vanadium(V) was done by exploiting differences in the stability of chloro-complexes. PMID:18962334

  12. Comparison of the addition of hydrogen, helium, and deuterium gases in the separation of uranium isotopes according to the separation of nozzle process

    Microsoft Academic Search

    Heeschen

    1972-01-01

    In the separation of uranium isotopes by the separation nozzle prccess, ; a mixture of UFâ with a light addition gas is used as the processing gas. ; The influence of the additional gases hydrogen, deuterium, and helium on the fiow ; rate of the gas mixture in the nozzle and the separation of the uranium isotopes ; was studied,

  13. Evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(IV) and uranium(VI)

    PubMed Central

    2013-01-01

    Background Previously described methods to separate dissolved U(IV) from dissolved U(VI) under acidic anoxic conditions prior to laboratory analysis were ineffective with materials currently available commercially. Three strong anion exchange resins were examined for their efficiency in separating, recovering, and preserving both redox states during separation. Results Under oxic conditions, recovery of U(VI) from three exchange resins (Bio-Rad AG® 1x8 Poly-Prep® prefilled columns, Bio-Rad AG® 1x8 powder, and Dowex® 1x8 powder) ranged from 72% to 100% depending on the dosed mass, eluent volume, and resin selected. Dowex® 1x8 resin was the only resin found to provide 100% recovery of U(VI) with fewer than 5 bed volumes of eluent. Under anoxic conditions, all three resins oxidized U(IV) in aqueous solutions with relatively low U(IV) concentrations (<3x10-6 M). Resin-induced oxidation was observed visually using a leuco dye, safranin-o. Oxidants associated with the resin were irreversibly reduced by the addition of Ti(III). After anoxic resin pre-treatment, a series of U(IV)/U(VI) mixtures at micro-molar levels were prepared and separated using the Dowex® 1x8 resin with 100% recovery of both U(IV) and U(VI) with no resin-induced changes in oxidation state. Conclusions Currently available anion exchange resins with apparently identical physical properties were found to have significantly different recoveries for hexavalent uranium at micro-molar concentrations. A novel qualitative technique was developed to visually assess oxidative capacities of anion exchange resins under acidic anoxic conditions. A protocol was developed for pre-treatment and use of currently available anion exchange resins to achieve quantitative separation of U(IV) and U(VI) in aqueous solutions with low U(IV) concentrations. This method can be applied to future work to quantitatively assess dissolved U(IV) and U(VI) concentrations in both laboratory and field samples. PMID:23363052

  14. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Friedman, Horace A. (Oak Ridge, TN)

    1985-01-01

    A method for decontaminating uranium product from the Purex process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO.sub.2.sup.2+) uranium and heptavalent technetium (TcO.sub.4 -). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H.sub.2 C.sub.2 O.sub.4), and the Tc-oxalate complex is readily separated from the uranium by solvent extraction with 30 vol. % tributyl phosphate in n-dodecane.

  15. Depleted uranium particles in selected Kosovo samples

    Microsoft Academic Search

    P. R Danesi; A Markowicz; E Chinea-Cano; W Burkart; B Salbu; D Donohue; F Ruedenauer; M Hedberg; S Vogt; P Zahradnik; A Ciurapinski

    2003-01-01

    Selected soil samples, collected in Kosovo locations where DU ammunition was expended during the 1999 Balkan conflict, have been investigated by secondary ion mass spectrometry (SIMS), X-ray fluorescence imaging using a micro-beam (?-XRF) and scanning electron microscopy equipped with an energy dispersive X-ray fluorescence detector (SEM-EDXRF), with the objective to test the suitability of these techniques to identify the presence

  16. Separation of tc from Uranium and development of metallic Technetium waste forms

    NASA Astrophysics Data System (ADS)

    Mausolf, Edward John

    The isotope Technetium-99 (99Tc) is a major fission product of the nuclear industry. In the last decade, approximately 20 tons of 99Tc have been produced by the US nuclear industry. Due to its long half-life (t1/2 = 214,000 yr), beta radiotoxicity, and high mobility as pertechnetate [TcO4]-, Tc represents long-term concern to the biosphere. Various options have been considered to manage 99Tc. One of them is its separation from spent fuel, conversion to the metal and incorporation into a metallic waste form for long-term disposal. After dissolution of spent fuel in nitric acid and extraction of U and Tc in organic media, previously developed methods can be used to separate Tc from U, convert the separate Tc stream to the metal and reuse the uranium component of the fuel. A variety of metallic waste forms, ranging from pure Tc metal to ternary Tc alloys combined with stainless steel (SS) and Zr are proposed. The goal of this work was to examine three major questions: What is the optimal method to separate Tc from U? After separation, what is the most efficient method to convert the Tc stream to Tc metal? Finally, what is the corrosion behavior of Tc metal, Tc-SS alloys and Tc-Zr-SS alloys in 0.01M NaCl? The goal is to predict the long term behavior of Tc metallic waste in a hypothetical storage environment. In this work, three methods have been used to separate Tc from U: anionic exchange resin, liquid-liquid extraction and precipitation. Of the three methods studied, anionic exchange resins is the most selective. After separation of Tc from U, three different methods were studied to convert the Tc stream to the metal: thermal treatment under hydrogen atmosphere, electrochemical and chemical reduction of pertechnetate in aqueous media. The thermal treatment of the Tc stream under hydrogen atmosphere is the preferred method to produce Tc metal. After Tc metal is isolated, it will be incorporated into a metal host phase. Three different waste forms were produced for corrosion studies in this work: Pure Tc metal, SS(Tc 2 wt%)Zr and SS(Tc 1.34 wt%) alloys. Corrosion rate measurements indicate that both SS(Tc 2 wt%)Zr and SS(Tc 1.34 wt%) alloys corrode more slowly than metallic Tc in the solutions tested.

  17. Selective Recovery of Enriched Uranium from Inorganic Wastes

    SciTech Connect

    Kimura, R. T.

    2003-02-26

    Uranium as U(IV) and U(VI) can be selectively recovered from liquids and sludge containing metal precipitates, inorganic salts, sand and silt fines, debris, other contaminants, and slimes, which are very difficult to de-water. Chemical processes such as fuel manufacturing and uranium mining generate enriched and natural uranium-bearing wastes. This patented Framatome ANP (FANP) uranium recovery process reduces uranium losses, significantly offsets waste disposal costs, produces a solid waste that meets mixed-waste disposal requirements, and does not generate metal-contaminated liquids. At the head end of the process is a floating dredge that retrieves liquids, sludge, and slimes in the form of a slurry directly from the floor of a lined surface impoundment (lagoon). The slurry is transferred to and mixed in a feed tank with a turbine mixer and re-circulated to further break down the particles and enhance dissolution of uranium. This process uses direct steam injection and sodium hypochlorite addition to oxidize and dissolves any U(IV). Cellulose is added as a non-reactive filter aid to help filter slimes by giving body to the slurry. The slurry is pumped into a large recessed-chamber filter press then de-watered by a pressure cycle-controlled double-diaphragm pump. U(VI) captured in the filtrate from this process is then precipitated by conversion to U(IV) in another Framatome ANP-patented process which uses a strong reducing agent to crystallize and settle the U(IV) product. The product is then dewatered in a small filter press. To-date, over 3,000 Kgs of U at 3% U-235 enrichment were recovered from a 8100 m2 hypalon-lined surface impoundment which contained about 10,220 m3 of liquids and about 757 m3 of sludge. A total of 2,175 drums (0.208 m3 or 55 gallon each) of solid mixed-wastes have been packaged, shipped, and disposed. In addition, 9463 m3 of low-U liquids at <0.001 KgU/m3 were also further processed and disposed.

  18. Supercritical fluid extraction and separation of uranium from other actinides.

    PubMed

    Quach, Donna L; Mincher, Bruce J; Wai, Chien M

    2014-06-15

    The feasibility of separating U from nitric acid solutions of mixed actinides using tri-n-butylphosphate (TBP)-modified supercritical fluid carbon dioxide (sc-CO2) was investigated. The actinides U, Np, Pu, and Am were extracted into sc-CO2 modified with TBP from a range of nitric acid concentrations, in the absence of, or in the presence of, a number of traditional reducing and/or complexing agents to demonstrate the separation of these metals from U under sc-CO2 conditions. The separation of U from Pu using sc-CO2 was successful at nitric acid concentrations of less than 3M in the presence of acetohydroxamic acid (AHA) or oxalic acid (OA) to mitigate Pu extraction, and the separation of U from Np was successful at nitric acid concentrations of less than 1M in the presence of AHA, OA, or sodium nitrite to mitigate Np extraction. Americium was not well extracted under any condition studied. PMID:24801893

  19. Enhanced Method for Molybdenum Separation and Isotopic Determination in Geological Samples and Uranium-Rich Materials

    NASA Astrophysics Data System (ADS)

    Migeon, V.; Bourdon, B.; Pili, E.

    2014-12-01

    Molybdenum (Mo) shares analogous geochemical properties with uranium. Mo ispresent as a minor or a trace element in uranium ores under two main oxidation states: +IVand +VI. Mo has seven stable isotopes (92, 94, 95, 96, 97, 98 and 100). In natural systems,Mo and Mo isotopes were shown to fractionate during redox reactions. Because Morepresents an impurity difficult to separate in the nuclear fuel cycle, it has the potential to beused as an indicator of the origins of uranium concentrates, in the framework of nuclearforensics. This work focuses on developing an enhanced separation method for Mo from auranium-rich matrix (uranium ore, uranium concentrate) in order to analyze the massfractionation induced by processes typical of the nuclear fuel cycle. Purification of Mo forisotope ratio measurements is performed with a three-step separation on ion-exchange resins,with yields between 45 and 82%. Matrix and isobaric interferences (Zr, Ru) were reduced ingeological and uranium standards, such as U/Mo ? 2*10-4, Zr/Mo ? 1*10-3, Ru/Mo ? 6*10-4and Fe/Mo ? 4*10-3. Mo isotopic compositions were measured on a Neptune Plus MC-ICPMSequipped with Jet cones, for a concentration of 30 ng/ml. The achieved sensitivity is~1200-1800 V/ppm with interferences below 10 mV and an overall reproducibility of 0.02 ‰on the ?98Mo values. A double spike, with 97Mo and 100Mo, was added to the samples beforethe purification. It allows for correction of the chemical and instrumental mass fractionations,without requiring a quantitative yield. For igneous rocks, ?98Mo values range between -0.55and -0.03 ‰, relative to the NIST-SRM 3134 molybdenum standard. Fractionation amonguranium ore concentrates is higher, with ?98Mo ranging between 0.02 and -2.84 ‰.

  20. Radiometric Determination of Uranium in Natural Waters after Enrichment and Separation by Cation-Exchange and Liquid-Liquid Extraction

    E-print Network

    I. Pashalidis; H. Tsertos

    2003-04-28

    The alpha-radiometric determination of uranium after its pre-concentration from natural water samples using the cation-exchange resin Chelex-100, its selective extraction by tributylphosphate and electrodeposition on stainless steel discs is reported. The validity of the separation procedure and the chemical recoveries were checked by addition of uranium standard solution as well as by tracing with U-232. The average uranium yield was determined to be (97 +- 2) % for the cation-exchange, (95 +- 2) % for the liquid-liquid extraction, and more than 99% for the electrodeposition. Employing high-resolution alpha-spectroscopy, the measured activity of the U-238 and U-234 radioisotopes was found to be of similar magnitude; i.e. ~7 mBq/L and ~35 mBq/L for ground- and seawater samples, respectively. The energy resolution (FWHM) of the alpha-peaks was 22 keV, while the Minimum Detectable Activity (MDA) was estimated to be 1 mBq/L (at the 95% confidence limit).

  1. Uranium and thorium sequential separation from norm samples by using a SIA system.

    PubMed

    Mola, M; Nieto, A; Peñalver, A; Borrull, F; Aguilar, C

    2014-01-01

    This study presents a sequential radiochemical separation method for uranium and thorium isotopes using a novel Sequential Injection Analysis (SIA) system with an extraction chromatographic resin (UTEVA). After the separation, uranium and thorium isotopes have been quantified by using alpha-particle spectrometry. The developed method has been tested by analyzing an intercomparison sample (phosphogypsum sample) from International Atomic Energy Agency (IAEA) with better recoveries for uranium and thorium than the obtained by using a classical method (93% for uranium using the new methodology and 82% with the classical method, and in the case of thorium the recoveries were 70% for the semi-automated method and 60% for the classical strategy). Afterwards, the method was successfully applied to different Naturally Occurring Radioactive Material (NORM) samples, in particular sludge samples taken from a drinking water treatment plant (DWTP) and also sediment samples taken from an area of influence of the dicalcium phosphate (DCP) factory located close to the Ebro river reservoir in Flix (Catalonia). The obtained results have also been compared with the obtained by the classical method and from that comparison it has been demonstrated that the presented strategy is a good alternative to existing methods offering some advantages as minimization of sample handling, reduction of solvents volume and also an important reduction of the time per analysis. PMID:24172603

  2. Studies on separation and purification of fission (99)Mo from neutron activated uranium aluminum alloy.

    PubMed

    Rao, Ankita; Kumar Sharma, Abhishek; Kumar, Pradeep; Charyulu, M M; Tomar, B S; Ramakumar, K L

    2014-07-01

    A new method has been developed for separation and purification of fission (99)Mo from neutron activated uranium-aluminum alloy. Alkali dissolution of the irradiated target (100mg) results in aluminum along with (99)Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-?-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of (99)Mo was carried out using anion exchange method. The radiochemical yield of fission (99)Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards. PMID:24657474

  3. Chiral Separations of Selected Pharmaceuticals on Avidin Column

    Microsoft Academic Search

    Ahsanul Haque; James T. Stewart

    1998-01-01

    An unexplored commercially available avidin protein column was investigated for chiral separation of selected pharmaceuticals. Mobile phase compositions such as pH, buffer strength, and organic modifier were varied to affect separation of racemic mixtures. Baseline resolution of enantiomers were successfully achieved for thalidomide, glutethimide, primaquine, aminoglutethimide, hydroxyzine, chlorthalidone, and pyridoglutethimide. Partial separation of enantiomers were achieved for oxazepam, lorazepam, verapamil,

  4. Sample selection and testing of separation processes

    NASA Technical Reports Server (NTRS)

    Karr, L. J.

    1985-01-01

    Phase partitioning, which has become an important tool for the separation and purification of biological materials, was studied. Instruments available for this technique were researched and a countercurrent distribution apparatus, the Biosheff MK2N, was purchased. Various proteins, polysaccharides and cells were studied as models to determine operating procedures and conditions for this piece of equipment. Results were compared with those obtained from other similar equipment, including a nonsynchronous coil planet centrifuge device. Additionally, work was done with affinity ligands attached to PEG, which can further enhance the separation capabilities of phase partitioning.

  5. Analysis of civilian processing programs in reduction of excess separated plutonium and high-enriched uranium

    SciTech Connect

    Persiani, P.J.

    1995-12-31

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials.

  6. Selective adsorption of uranium on activated charcoal from electrolytic aqueous solutions

    SciTech Connect

    Saleem, M.; Afzal, M. (Quaid-I-Azam Univ., Islamabad (Pakistan)); Qadeer, R.; Hanif, J. (Pakistan Institute of Nuclear Science and Technology, Islamabad (Pakistan))

    1992-02-01

    Adsorption of uranium onto various solids is important from purification, environmental, and radioactive waste disposal points of view. Adsorption of uranium on activated charcoal has been studied as a function of shaking time, amount of adsorbent, pH, concentration of adsorbate, and temperature. Uranium adsorption obeys the Langmuir isotherm. {Delta}H{degrees} and {Delta}S{degrees} were calculated from the slope and intercept of plots ln K{sub D} vs 1/T. The influence of different anions and cations on uranium adsorption has been examined. The adsorption of other metal ions on activated charcoal has been studied under specified conditions to check its selectivity; consequently, uranium was removed from Cs, Ba, Zn, and Co. More than 98% adsorbed uranium on activated charcoal can be recovered with 65 ml of 3 M HNO{sub 3} solution. A wavelength dispersive x-ray fluorescence spectrometer was used for measuring uranium concentration.

  7. Development of non-denaturing off-gel isoelectric focusing for the separation of uranium-protein complexes in fish.

    PubMed

    Bucher, Guillaume; Frelon, Sandrine; Simon, Olivier; Lobinski, Ryszard; Mounicou, Sandra

    2014-05-01

    An off-gel non-denaturing isoelectric focusing (IEF) method was developed to separate uranium-biomolecule complexes from biological samples as a first step in a multidimensional metalloproteomic approach. Analysis of a synthetic uranium-bovine serum albumin complex demonstrated the focusing ability of the liquid-phase IEF method and the preservation of most of the uranium-protein interactions. The developed method was applied to gill cytosol prepared from zebrafish (Danio rerio) exposed to depleted uranium. The results were compared in terms of resolution, recovery, and protein identities with those obtained by in-gel IEF using an immobilized pH gradient gel strip. PMID:24691723

  8. Motion Segmentation by Subspace Separation: Model Selection and Reliability Evaluation

    Microsoft Academic Search

    Ken-ichi Kanatani

    2002-01-01

    Reformulating the Costeira-Kanade algorithm as a pure mathematical theorem, we present a robust segmentation procedure, which we call subspace separation, by incorpo- rating model selection using the geometric AIC. We then study the problem of estimating the number of independent motions using model selection. Finally, we present criteria for evaluating the reliability of individual segmentation results. Again, model selection plays

  9. Selected nondestructive assay instrumentation for an international safeguards system at uranium enrichment plants

    Microsoft Academic Search

    J. W. Tape; M. P. Baker; R. Strittmatter; M. Jain; M. L. Evans

    1979-01-01

    A selected set of nondestructive assay instruments for an international safeguards system at uranium enrichment plants is currently under development. These instruments are of three types: in-line enrichment meters for feed, product, and tails streams; area radiation monitors for direct detection of high-enriched uranium production, and an enrichment meter for spent alumina trap material. The current status of the development

  10. Engineering High-Fidelity Residue Separations for Selective Harvest

    SciTech Connect

    Kevin L. Kenney; Christopher T. Wright; Reed L. Hoskinson; J. Rochard Hess; David J. Muth, Jr.

    2006-07-01

    Composition and pretreatment studies of corn stover and wheat stover anatomical fractions clearly show that some corn and wheat stover anatomical fractions are of higher value than others as a biofeedstock. This premise, along with soil sustainability and erosion control concerns, provides the motivation for the selective harvest concept for separating and collecting the higher value residue fractions in a combine during grain harvest. This study recognizes the analysis of anatomical fractions as theoretical feedstock quality targets, but not as practical targets for developing selective harvest technologies. Rather, practical quality targets were established that identified the residue separation requirements of a selective harvest combine. Data are presented that shows that a current grain combine is not capable of achieving the fidelity of residue fractionation established by the performance targets. However, using a virtual engineering approach, based on an understanding of the fluid dynamics of the air stream separation, the separation fidelity can be significantly improved without significant changes to the harvester design. A virtual engineering model of a grain combine was developed and used to perform simulations of the residue separator performance. The engineered residue separator was then built into a selective harvest test combine, and tests performed to evaluate the separation fidelity. Field tests were run both with and without the residue separator installed in the test combine, and the chaff and straw residue streams were collected during harvest of Challis soft white spring wheat. The separation fidelity accomplished both with and without the residue separator was quantified by laboratory screening analysis. The screening results showed that the engineered baffle separator did a remarkable job of effecting high-fidelity separation of the straw and chaff residue streams, improving the chaff stream purity and increasing the straw stream yield.

  11. Control structure selection for Reactor, Separator and Recycle Process

    E-print Network

    Skogestad, Sigurd

    Control structure selection for Reactor, Separator and Recycle Process T. Larsson M.S. Govatsmark S to control", for a simple plant with a liquid phase reactor, a distillation column and recycle of unreacted processes is the presence of recycle. Variations of a plant with reaction, separation and mass recycle, see

  12. Highly Selective Separation of DNA Fragments Using Optically Directed Transport

    SciTech Connect

    Braiman, Avital [ORNL; Rudakov, Fedor M [ORNL; Thundat, Thomas George [ORNL

    2010-01-01

    We present a design that allows selective separation of biomolecules of a particular size without performing complete separation of the sample by size. By focusing a laser beam onto a photoelectrode in contact with an electrolyte medium, a highly localized and optically controlled photoelectrophoretic trap is created. Moving the light beam along the photoelectrode consequently moves the trap. We demonstrate that by manipulating the speed of the photoelectrophoretic trap biomolecules of a particular size can be selectively separated from the mixture. We achieve a qualitative agreement between our experimental results and numerical simulations.

  13. Innovative lasers for uranium isotope separation. Final report, September 1, 1989--April 1, 1993

    SciTech Connect

    Brake, M.L.; Gilgenbach, R.M.

    1993-07-01

    Copper vapor laser have important applications to uranium atomic vapor laser isotope separation (AVLIS). We have investigated two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave, and (2) electron beam excitation/pumping of large-volume copper vapor lasers. Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, have been investigated in three separate experimental configurations. The first examined the application of CW (0-500W) power and was found to be an excellent method for producing an atomic copper vapor from copper chloride. The second used a pulsed (5kW, 0.5--5 kHz) signal superimposed on the CW signal to attempt to produce vaporization, dissociation and excitation to the laser states. Enhanced emission of the optical radiation was observed but power densities were found to be too low to achieve lasing. In a third experiment we attempted to increase the applied power by using a high power magnetron to produce 100 kW of pulsed power. Unfortunately, difficulties with the magnetron power supply were encountered leaving inconclusive results. Detailed modeling of the electromagnetics of the system were found to match the diagnostics results well. An electron beam pumped copper vapor system (350 kV, 1.0 kA, 300 ns) was investigated in three separate copper chloride heating systems, external chamber, externally heated chamber and an internally heated chamber. Since atomic copper spectral lines were not observed, it is assumed that a single pulse accelerator is not capable of both dissociating the copper chloride and exciting atomic copper and a repetitively pulsed electron beam generator is needed.

  14. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, James A. (Livermore, CA); Hayden, Jr., Howard W. (Oakridge, TN)

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  15. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60[degree]C) or long extraction times (23 h). Adding KMnO[sub 4] in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  16. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60{degree}C) or long extraction times (23 h). Adding KMnO{sub 4} in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  17. Recursive Mahalanobis Separability Measure for Gene Subset Selection

    Microsoft Academic Search

    Kezhi Z. Mao; Wenyin Tang

    2011-01-01

    Mahalanobis class separability measure provides an effective evaluation of the discriminative power of a feature subset, and is widely used in feature selection. However, this measure is computationally intensive or even prohibitive when it is applied to gene expression data. In this study, a recursive approach to Mahalanobis measure evaluation is proposed, with the goal of reducing computational overhead. Instead

  18. Rapid separation and purification of uranium and plutonium from dilute-matrix samples

    DOE PAGESBeta

    Armstrong, Christopher R.; Ticknor, Brian W.; Hall, Gregory; Cadieux, James R.

    2014-03-11

    This work presents a streamlined separation and purification approach for trace uranium and plutonium from dilute (carrier-free) matrices. The method, effective for nanogram quantities of U and femtogram to picogram quantities of Pu, is ideally suited for environmental swipe samples that contain a small amount of collected bulk material. As such, it may be applicable for processing swipe samples such as those collected in IAEA inspection activities as well as swipes that are loaded with unknown analytes, such as those implemented in interlaboratory round-robin or proficiency tests. Additionally, the simplified actinide separation could find use in internal laboratory monitoring ofmore »clean room conditions prior to or following more extensive chemical processing. We describe key modifications to conventional techniques that result in a relatively rapid, cost-effective, and efficient U and Pu separation process. We demonstrate the efficacy of implementing anion exchange chromatography in a single column approach. We also show that hydrobromic acid is an effective substitute in lieu of hydroiodoic acid for eluting Pu. Lastly, we show that nitric acid is an effective digestion agent in lieu of perchloric acid and/or hydrofluoric acid. A step by step procedure of this process is detailed.« less

  19. Numerical simulation of bellows effect on flow and separation of uranium isotopes in a supercritical gas centrifuge

    NASA Astrophysics Data System (ADS)

    Borisevich, V. D.; Morozov, O. E.; Godisov, O. N.

    2000-12-01

    Numerical solving of the Navier-Stokes and convection-diffusion equations by the finite difference technique has been applied to study the influence of bellows on the flow and separation of uranium isotopes in a single supercritical gas centrifuge. Dependence of the separative power of a gas centrifuge on geometric parameters and position of a bellows on a rotor wall as well as the effect of scoop drag and feed flow on isotope separation in a gas centrifuge with a bellows have been obtained in computing experiments. It was demonstrated that increase of the separative power with increase of the gas centrifuge length is less considerable than predicted by the Dirac's law.

  20. Distribution of uranium and some selected trace metals in human scalp hair from Balkans.

    PubMed

    Zunic, Z S; Tokonami, S; Mishra, S; Arae, H; Kritsananuwat, R; Sahoo, S K

    2012-11-01

    The possible consequences of the use of depleted uranium (DU) used in Balkan conflicts in 1995 and 1999 for the people and the environment of this reason need attention. The heavy metal content in human hair may serve as a good indicator of dietary, environmental and occupational exposures to the metal compounds. The present work summarises the distribution of uranium and some selected trace metals such as Mn, Ni, Cu, Zn, Sr, Cd and Cs in the scalp hair of inhabitants from Balkans exposed to DU directly and indirectly, i.e. Han Pijesak, Bratoselce and Gornja Stubla areas. Except U and Cs, all other metals were compared with the worldwide reported values of occupationally unexposed persons. Uranium concentrations show a wide variation ranging from 0.9 ± 0.05 to 449 ± 12 µg kg(-1). Although hair samples were collected from Balkan conflict zones, uranium isotopic measurement ((235)U/(238)U) shows a natural origin rather than DU. PMID:22940792

  1. (1) Selective separation and solidification of radioactive nuclides by zeolites

    NASA Astrophysics Data System (ADS)

    Mimura, Hitoshi; Sato, Nobuaki; Kirishima, Akira

    Massive tsunami generated by the Great East Japan Earthquake attacked the Fukushima Daiichi Nuclear Power Plant and caused the nuclear accident of level 7 to overturn the safety myth of the nuclear power generation. The domestic worst accident does not yet reach the convergence, and many inhabitants around the power plant are forced to double pains of earthquake disaster and nuclear accident. Large amounts of high-activity-level water over 200,000 tons are accumulated on the basement floor of each turbine building, which is a serious obstacle to take measures for the nuclear accident. For the decontamination of high-activity-level water containing seawater, the inorganic ion-exchangers having high selectivity are effective especially for the selective removal of radioactive Cs. On the other hand, radioactive Cs and I released into the atmosphere from the power plant spread widely around Fukushima prefecture, and the decontamination of rainwater and soil become the urgent problem. At present, passing about four months after nuclear accident, the radioactive nuclides of 137Cs and 134Cs are mainly contained in the high-activity-level water and the selective adsorbents for radioactive Cs play an important part in the decontamination. Since the construction of original decontamination system is an urgent necessity, selective separation methods using inorganic ion-exchangers are greatly expected. From the viewpoint of cost efficiency and high Cs-selectivity, natural zeolites are effective for the decontamination of radioactive Cs. This special issue deals with the selective separation and solidification of radioactive Cs and Sr using zeolites.

  2. The synthesis, characterization and application of iron oxide nanocrystals in magnetic separations for arsenic and uranium removal

    NASA Astrophysics Data System (ADS)

    Mayo, John Thomas

    Arsenic and uranium in the environment are hazardous to human health and require better methods for detection and remediation. Nanocrystalline iron oxides offer a number of advantages as sorbents for water purification and environmental remediation. First, highly uniform and crystalline iron oxide nanocrystals (nMAG) were prepared using thermal decomposition of iron salts in organic solutions; for the applications of interest in this thesis, a central challenge was the adaptation of these conventional synthetic methods to the needs of low infrastructure and economically disadvantaged settings. We show here that it is possible to form highly uniform and magnetically responsive nanomaterials using starting reagents and equipment that are readily available and economical. The products of this approach, termed the 'Kitchen Synthesis', are of comparable quality and effectiveness to laboratory materials. The narrow size distributions of the iron oxides produced in the laboratory synthesis made it possible to study the size-dependence of the magnetic separation efficiency of nanocrystals; generally as the diameter of particles increased they could be removed under lower applied magnetic fields. In this work we take advantage of this size-dependence to use magnetic separation as a tool to separate broadly distributed populations of magnetic materials. Such work makes it possible to use these materials in multiplexed separation and sensing schemes. With the synthesis and magnetic separation studies of these materials completed, it was possible to optimize their applications in water purification and environmental remediation. These materials removed both uranium and arsenic from contaminated samples, and had remarkably high sorption capacities --- up to 12 wt% for arsenic and 30 wt% for uranium. The contaminated nMAG is removed from the drinking water by either retention in a sand column, filter, or by magnetic separation. The uranium adsorption process was also utilized for the enhanced detection of uranium in environmental matrices. By relying on alpha-particle detection in well-formed and dense nMAG films, it was possible to improve soil detection of uranium by more than ten-thousand-fold. Central for this work was a detailed understanding of the chemistry at the iron oxide interface, and the role of the organic coatings in mediating the sorption process.

  3. A review of selected aspects of the effect of water vapor on fission gas release from uranium oxycarbide

    Microsoft Academic Search

    1994-01-01

    A selective review is presented of previous measurements and the analysis of experiments on the effect of water vapor on fission gas release from uranium oxycarbide. Evidence for the time-dependent composition of the uranium oxycarbide fuel; the diffusional release of fission gas; and the initial, rapid and limited release of stored fission gas is discussed. In regard to the initial,

  4. Use of zirconium(IV) arsenophosphate columns for cation exchange separation of metal ions interfering in the spectrophotometric determination of uranium with sodium diethyl dithiocarbamate

    SciTech Connect

    Varshney, K.G.; Agrawal, S.; Anwar, S.; Varshney, K.

    1985-01-01

    A simple cation exchange method has been developed for the quantitative separation of uranium from some metal ions which generally interfere in its spectrophotometric determination using sodium diethyl dithiocarbamate as a reagent. The method requires only a single bed operation and enables a satisfactory (Error + or - separation of uranium (UO/sub 2/ (II)) up to 1080 ..mu..g from ten metal ions on a 2 g column of zirconium (IV) arsenophosphate cation exchanger in H(I) form.

  5. Feature Subset Selection, Class Separability, and Genetic Algorithms

    SciTech Connect

    Cantu-Paz, E

    2004-01-21

    The performance of classification algorithms in machine learning is affected by the features used to describe the labeled examples presented to the inducers. Therefore, the problem of feature subset selection has received considerable attention. Genetic approaches to this problem usually follow the wrapper approach: treat the inducer as a black box that is used to evaluate candidate feature subsets. The evaluations might take a considerable time and the traditional approach might be unpractical for large data sets. This paper describes a hybrid of a simple genetic algorithm and a method based on class separability applied to the selection of feature subsets for classification problems. The proposed hybrid was compared against each of its components and two other feature selection wrappers that are used widely. The objective of this paper is to determine if the proposed hybrid presents advantages over the other methods in terms of accuracy or speed in this problem. The experiments used a Naive Bayes classifier and public-domain and artificial data sets. The experiments suggest that the hybrid usually finds compact feature subsets that give the most accurate results, while beating the execution time of the other wrappers.

  6. Separation and mass spectrometry of nanogram quantities of uranium and thorium from thorium-uranium dioxide fuels

    Microsoft Academic Search

    L. W. Green; N. L. Elliot; T. H. Longhurst

    1983-01-01

    A microchemical procedure was developed for the separation and isotopic analysis of U and Th from irradiated (Th,U)Oâ fuel. The separation procedure consisted of two stages; in the first a tributyl phosphate impregnated resin bead was equilibrated with the dissolved fuel in 0.08 M HF\\/6 M HNOâ solution. The bead sorbed approximately 1.7 ..mu..g of U and 4.8..mu..g of Th

  7. The separation of uranium ions by natural and modified diatomite from aqueous solution.

    PubMed

    Sprynskyy, Myroslav; Kovalchuk, Iryna; Buszewski, Bogus?aw

    2010-09-15

    In this work the natural and the surfactant modified diatomite has been tested for ability to remove uranium ions from aqueous solutions. Such controlling factors of the adsorption process as initial uranium concentration, pH, contact time and ionic strength have been investigated. Effect of ionic strength of solution has been examined using the solutions of NaCl, Na(2)CO(3) and K(2)SO(4). The pseudo-first order and the pseudo-second order models have been used to analyze the adsorption kinetic results, whereas the Langmuir and the Freundlich isotherms have been used to the equilibrium adsorption data. The effects of the adsorbent modification as well as uranium adsorption on the diatomite surface have been studied using X-ray powder diffraction, scanning electron microscopy and FTIR spectroscopy. The maximum adsorption capacities of the natural and the modified diatomite towards uranium were 25.63 micromol/g and 667.40 micromol/g, respectively. The desorptive solutions of HCl, NaOH, Na(2)CO(3), K(2)SO(4), CaCO(3), humic acid, cool and hot water have been tested to recover uranium from the adsorbent. The highest values of uranium desorption (86%) have been reached using 0.1M HCl. PMID:20542374

  8. Spatial separation of state- and size-selected neutral clusters

    E-print Network

    Trippel, Sebastian; Stern, Stephan; Mullins, Terry; Holmegaard, Lotte; Küpper, Jochen

    2012-01-01

    We demonstrate the spatial separation of the prototypical indole(H2O) clusters from the various species present in the supersonic expansion of mixtures of indole and water. The major molecular constituents of the resulting molecular beam are H2O, indole, indole(H2O), and indole(H2O)2. It is a priori not clear whether such floppy systems are amenable to strong manipulation using electric fields. Here, we have exploited the cold supersonic molecular beam and the electrostatic deflector to separate indole(H2O) from the other molecular species as well as the helium seed gas. The experimental results are quantitatively explained by trajectory simulations, which also demonstrate that the quantum-state selectivity of the process leads to samples of indole(H2O) in low-lying rotational states. The prepared clean samples of indole(H2O) are ideally suited for investigations of the stereodynamics of this complex system, including time-resolved half-collision and diffraction experiments of fixed-in-space clusters. Our fin...

  9. Recursive Mahalanobis separability measure for gene subset selection.

    PubMed

    Mao, K Z; Tang, Wenyin

    2011-01-01

    Mahalanobis class separability measure provides an effective evaluation of the discriminative power of a feature subset, and is widely used in feature selection. However, this measure is computationally intensive or even prohibitive when it is applied to gene expression data. In this study, a recursive approach to Mahalanobis measure evaluation is proposed, with the goal of reducing computational overhead. Instead of evaluating Mahalanobis measure directly in high-dimensional space, the recursive approach evaluates the measure through successive evaluations in 2D space. Because of its recursive nature, this approach is extremely efficient when it is combined with a forward search procedure. In addition, it is noted that gene subsets selected by Mahalanobis measure tend to overfit training data and generalize unsatisfactorily on unseen test data, due to small sample size in gene expression problems. To alleviate the overfitting problem, a regularized recursive Mahalanobis measure is proposed in this study, and guidelines on determination of regularization parameters are provided. Experimental studies on five gene expression problems show that the regularized recursive Mahalanobis measure substantially outperforms the nonregularized Mahalanobis measures and the benchmark recursive feature elimination (RFE) algorithm in all five problems. PMID:20479500

  10. Selective separation of phosphate and fluoride from semiconductor wastewater.

    PubMed

    Warmadewanthi, B; Liu, J C

    2009-01-01

    Hydrofluoric acid (HF) and phosphoric acid (H(3)PO(4)) are widely used in semiconductor industry for etching and rinsing purposes. Consequently, significant amount of wastewater containing phosphate and fluoride is generated. Selective separation of phosphate and fluoride from the semiconductor wastewater, containing 936 mg/L of fluoride, 118 mg/L of phosphate, 640 mg/L of sulfate, and 26.7 mg/L of ammonia, was studied. Chemical precipitation and flotation reactions were utilized in the two-stage treatment processes. The first-stage reaction involved the addition of magnesium chloride (MgCl(2)) to induce selective precipitation of magnesium phosphate. The optimal condition was pH 10 and molar ratio, [Mg(2 + )]/[(PO(4) (3-))], of 3:1, and 66.2% of phosphate was removed and recovered as bobierrite (Mg(3)(PO(4))(2).8H(2)O). No reaction was found between MgCl(2) and fluoride. Calcium chloride (CaCl(2)) was used in the second-stage reaction to induce precipitation of calcium fluoride and calcium phosphate. The optimum molar ratio, [Ca(2 + )]/[F(-)], was 0.7 at pH 10, and residual fluoride concentration of 10.7 mg/L and phosphate concentration of lower than 0.5 mg/L was obtained. Thermodynamic equilibrium was modeled with PHREEQC and compared with experimental results. Sodium dodecylsulfate (SDS) was an effective collector for subsequent solid-liquid removal via dispersed air flotation (DiAF). The study demonstrated that phosphate can be selectively recovered from the wastewater. Potential benefits include recovery of phosphate for reuse, lower required dosage of calcium for fluoride removal, and less amount of CaF(2) sludge. PMID:19474500

  11. Device for selectively separating and connecting a rotatable shaft

    SciTech Connect

    Maucher, P.; Friedmann, O.

    1985-06-04

    Device for selectively separating and connecting a rotatable shaft, such as the crankshaft of an internal combustion engine, to a flywheel assembly of a friction clutch has a bearing in which the flywheel assembly is rotatable relative to the shaft, a friction plate non-rotatably connected to the shaft and having friction surfaces disposed at the opposite sides thereof, two pressure plates forming part of the flywheel assembly and each having a friction surface cooperating with one of the friction surfaces of the friction plates, the pressure plate being axially movably but non-rotatably connected to each other and, one of the pressure plates being held against axial movement relative to the bearing, operating means for moving the other of the pressure plates axially, spring means disposed on the friction plate between the connection to the shaft and the friction surfaces disposed thereon for biasing the friction plate in direction away from the axially-fixed pressure plate, and stop means for limiting the extent of axial movement of the friction surfaces of the friction plate.

  12. PERFORMANCE OF PULSED SIEVE-PLATE EXTRACTION COLUMND DURING THE SEPARATION OF URANIUM FROM THORIUM

    Microsoft Academic Search

    J. Behmoiras; K. J. Bril; P. Krumholz

    1962-01-01

    In the TBP--diluent-water systems, the distribution coefficients of all ; extractable species are severely depressed at high concentration levels of ; uranium in the organic phase. The highest degree of decontamination per each ; scrubbing stage of a discontinuous mixer-settler is obtained when nearly ; saturated TBP solutions in uranyl nitrate are used. However, using pulsed sieve-; plate extraction columns,

  13. Selected Hanford reactor and separations operating data for 1960--1964

    SciTech Connect

    Gydesen, S.P.

    1992-09-01

    The purpose of this letter report is to reconstruct from available information that data which can be used to develop daily reactor operating history for 1960--1964. The information needed for source team calculations (as determined by the Source Terms Task Leader) were extracted and included in this report. The data on the amount of uranium dissolved by the separations plants (expressed both as tons and as MW) is also included in this compilation.

  14. Separation of Selected Flavonoids by use of RP?HPLC\\/NP?HPTLC Coupled Methods

    Microsoft Academic Search

    Miros?aw A. Hawry?; Janusz Makar

    2007-01-01

    Phenolic compounds, such as phenolic acids, flavonoids, flavonoid glycosides, and resveratrol, were chromatographed on thin?layers of silica in various eluent systems. Systems with the highest selectivity were chosen. Also, reversed?phase HPLC systems were optimized for the separation of investigated compounds and most the selective system was applied for the separation of two phenolic extracts – Polygonum avicularis and Polygonum hydropiper.

  15. Review of Selective Ion Separations at BYU Using Liquid Membrane and Solid Phase Extraction Procedures

    Microsoft Academic Search

    Reed M. Izatt

    1997-01-01

    Research in selective ion separations at Brigham Young University hasinvolved the use of liquid membranes of the bulk, emulsion, thin sheetsupported, hollow fiber supported, and two-module hollow fiber supportedtypes as well as solid phase extraction using immobilized ligands. By use ofdesigned cation and anion selective macrocyclic ligands, it has beenpossible to accomplish a wide range of interesting separations. Theprinciples underlying

  16. Single layer hydrogenated graphyne membrane for selective hydrogen separation: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Alaghemandi, Mohammad

    2015-06-01

    Using molecular dynamics simulations, we have investigated hydrogenated graphyne layers as molecular-sieving membranes. Hydrogenated ?-graphyne layer with no defect indicated a complete separation capability for a mixture of H2/CH4. The separation selectivity for H2/N2 mixture was about 700 at room temperature using the same membrane. This value reduced by increasing the temperature. However, presence of defects in the membrane dramatically decreased the separation selectivity for both studied mixtures. Surprisingly, increasing the temperature enhanced the separation selectivity using the defected hydrogenated ?-graphyne membrane. Hydrogenated ?-graphyne layer with no defect did not show any permeability effect for the studied gases.

  17. Method and apparatus for isotope separation

    Microsoft Academic Search

    S. Ahmed; J. Gergely

    1988-01-01

    This patent describes an apparatus for separating of a selected isotope from a uranium substance, comprising: an evacuated envelope defining an interaction volume extending along an interaction axis between first and second light transmissive window elements, and including a feed inlet for input of uranium substance at a point mid-way along the axis; disc aperture members formed from sputtering-resistant material

  18. Extraction of bivalent vanadium as its pyridine thiocyanate complex and separation from uranium, titanium, chromium and aluminium.

    PubMed

    Yatirajam, V; Arya, S P

    A simple method is described for the extraction of V(II) as its pyridine thiocyanate complex. Vanadate is reduced to V(II) in 1-2N sulphuric acid by zinc amalgam. Thiocyanate and pyridine are added, the solution is adjusted to pH 5.2-5.5 and the complex extracted with chloroform. The vanadium is back-extracted with peroxide solution. Zinc from the reductant accompanies the vanadium but alkali and alkaline earth metal ions, titanium, uranium, chromium and aluminium are separated, besides those ions reduced to the elements by zinc amalgam. The method takes about 20 min and is applicable to microgram as well as milligram amounts of vanadium. PMID:18961744

  19. Separation of uranium(VI) and transition metal ions with 4-(2-thiazolylazo)resorcinol by capillary electrophoresis.

    PubMed

    Evans, L; Collins, G E

    2001-03-01

    A capillary electrophoresis method utilizing 4-(2-thiazolylazo)resorcinol (TAR) was developed to separate uranium, cobalt, cadmium, nickel, titanium and copper metal ions. TAR was chosen as the visible absorbing chelating ligand because of its ability to form stable complexes with a wide variety of metals. Several parameters that included pH, electrophoretic run buffer concentration, buffer type and the influence of chelating ligand in the electrophoretic run buffer were examined to determine the best separating conditions. Optimum separation of the six metal chelates was achieved in a 15 mM Na2B4O7-NaH2PO4, pH 8.3 buffer containing 0.1 mM TAR. Method validation included injection and method precision studies as well as detection limit and linear dynamic range determination. High-ppb to low-ppm (w/w ratio) detection limits were achieved with linear dynamic ranges between 0.1 and 75 ppm. PMID:11269590

  20. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography

    SciTech Connect

    Garland, P.A.; Thomas, J.M.; Brock, M.L.; Daniel, E.W. (comps.)

    1980-06-01

    A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, and (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.

  1. Separation of mixed post-consumer PET–POM–PVC plastic waste using selective flotation

    Microsoft Academic Search

    Thongchai Takoungsakdakun; Sangobtip Pongstabodee

    2007-01-01

    The main objective of this research is to separate a mixed post-consumer engineering plastic waste (PET, POM, and PVC) based on type of plastic using selective flotation separation. Depressing effect of wetting agent and aluminium sulfate on plastic is attributed mainly to the separation. POM is separated from the mixture waste when using 500mg\\/l calcium lignosulfonate as a wetting agent

  2. Chromatographic selectivity study of 4-fluorophenylacetic acid positional isomers separation

    Microsoft Academic Search

    Tyson Chasse; Robert Wenslow; Yuri Bereznitski

    2007-01-01

    Unique properties of the fluorine atom stimulate widespread use and development of new organofluorine compounds in agrochemistry, biotechnology and pharmacology applications. However, relatively few synthetic methods exhibit a high degree of fluorination selectivity, which ultimately results in the presence of structurally related fluorinated isomers in the synthetic product. This outcome is undesirable from a pharmaceutical perspective as positional isomers possess

  3. Removal of uranium from aqueous HF solutions. [DOE patent application

    Microsoft Academic Search

    H. Pulley; S. F. Seltzer

    1978-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separating the solution from the settled particulates. The CaFâ is selected to have a nitrogen surface area in a

  4. Natural Gamma Emitters after a Selective Chemical Separation of a TENORM residue: Preliminary Results

    NASA Astrophysics Data System (ADS)

    de Freitas, Antonio Alves; dos Santos, Adir Janete Godoy; Pecequilo, Brigitte Roxana Soreanu; Abrão, Alcídio

    2008-08-01

    An analytical procedure was established in order to obtain selective fractions containing radium isotopes (228Ra), thorium (232Th), and rare earths from RETOTER (REsíduo de TÓrio e TErras Raras), a solid residue rich in rare earth elements, thorium isotopes and small amount of natural uranium generated from the operation of a thorium pilot plant for purification and production of pure thorium nitrate at IPEN -CNEN/SP. The paper presents preliminary results of 228Ra, 226Ra, 238U, 210Pb, and 40K concentrations in the selective fractions and total residue determined by high-resolution gamma spectroscopy, considering radioactive equilibrium of the samples.

  5. Selective Adsorption of Uranium on Activated Charcoal from Electrolytic Aqueous Solutions

    Microsoft Academic Search

    M. Saleem; M. Afzal; Riaz Qadeer; Javed Hanif

    1992-01-01

    Adsorption of uranium on activated charcoal has been studied as a function of shaking time, amount of adsorbent, pH, concentration of adsorbate, and temperature. Uranium adsorption obeys the Langmuir isotherm. ?H? and ?S? were calculated from the slope and intercept of plots of ln KD vs 1\\/T. The influence of different anions and cations on uranium adsorption has been examined.

  6. Motion Segmentation by Subspace Separation and Model Selection

    Microsoft Academic Search

    Ken-ichi Kanatani

    2001-01-01

    Reformulating the Costeira-Kanade algorithm as a pure mathematical theorem independent of the Tomasi-Kanade factorization, we present a robust segmentation algorithm by incorporating such techniques as dimension correction, model selection using the geometric AIC, and least-median fitting. Doing numerical simulations, we demonstrate that our algorithm dramatically outperforms existing methods. It does not involve any parameters which need to be adjusted empirically.

  7. Separation of thorium and uranium from silicate rock samples using two commercial extraction chromatographic resins.

    PubMed

    Yokoyama, T; Makishima, A; Nakamura, E

    1999-01-01

    A new chemical separation technique to isolate Th and U from silicate rocks was established by using two kinds of commercial extraction chromatographic resins. In the first column procedure, with U/TEVA·spec resin, almost all elements except Th and U were eluted by 4 M HNO(3). Th was then separated by using 5 M HCl, and U was finally isolated by successive addition of 0.1 M HNO(3). A significant amount of Zr still remained in the Th fraction, which was then further purified in the second column stage using TEVA·spec resin. In the second procedure, Zr was eluted first by using 2 M HNO(3), and then Th was collected by 0.1 M HNO(3). Both the Th and U fractions obtained by these procedures were sufficiently pure for thermal ionization mass spectrometric (TIMS) analysis. Recovery yields of Th and U exceeded 90%, and total blanks were <19 pg for Th and <10 pg for U. Our method has advantages over previous methods in terms of matrix effects, tailing problems, and degree of isolation. Since Th and U are effectively separated without suffering any matrix interference from coexisting cations and anions, this technique can be used not only for the analysis of igneous rock samples but also for the analysis of soils, marine sediments, carbonates, phosphates and seawater, groundwater, and surface water. PMID:21662935

  8. Selective aqueous extraction of organics coupled with trapping by membrane separation

    DOEpatents

    van Eikeren, Paul (Bend, OR); Brose, Daniel J. (Bend, OR); Ray, Roderick J. (Bend, OR)

    1991-01-01

    An improvement to processes for the selective extractation of organic solutes from organic solvents by water-based extractants is disclosed, the improvement comprising coupling various membrane separation processes with the organic extraction process, the membrane separation process being utilized to continuously recycle the water-based extractant and at the same time selectively remove or concentrate organic solute from the water-based extractant.

  9. A Bayesian Nonlinear Source Separation Method for Smart Ion-selective Electrode Arrays

    E-print Network

    Paris-Sud XI, Université de

    1 A Bayesian Nonlinear Source Separation Method for Smart Ion-selective Electrode Arrays Leonardo T that smart sensor arrays equipped with a blind source separation (BSS) algorithm offer a promising solution. A typical example of ISE is the glass electrode used for measuring the pH value. Moreover, ISEs for ions

  10. Costs of antibiotic resistance - separating trait effects and selective effects.

    PubMed

    Hall, Alex R; Angst, Daniel C; Schiessl, Konstanze T; Ackermann, Martin

    2015-03-01

    Antibiotic resistance can impair bacterial growth or competitive ability in the absence of antibiotics, frequently referred to as a 'cost' of resistance. Theory and experiments emphasize the importance of such effects for the distribution of resistance in pathogenic populations. However, recent work shows that costs of resistance are highly variable depending on environmental factors such as nutrient supply and population structure, as well as genetic factors including the mechanism of resistance and genetic background. Here, we suggest that such variation can be better understood by distinguishing between the effects of resistance mechanisms on individual traits such as growth rate or yield ('trait effects') and effects on genotype frequencies over time ('selective effects'). We first give a brief overview of the biological basis of costs of resistance and how trait effects may translate to selective effects in different environmental conditions. We then review empirical evidence of genetic and environmental variation of both types of effects and how such variation may be understood by combining molecular microbiological information with concepts from evolution and ecology. Ultimately, disentangling different types of costs may permit the identification of interventions that maximize the cost of resistance and therefore accelerate its decline. PMID:25861384

  11. Costs of antibiotic resistance – separating trait effects and selective effects

    PubMed Central

    Hall, Alex R; Angst, Daniel C; Schiessl, Konstanze T; Ackermann, Martin

    2015-01-01

    Antibiotic resistance can impair bacterial growth or competitive ability in the absence of antibiotics, frequently referred to as a ‘cost’ of resistance. Theory and experiments emphasize the importance of such effects for the distribution of resistance in pathogenic populations. However, recent work shows that costs of resistance are highly variable depending on environmental factors such as nutrient supply and population structure, as well as genetic factors including the mechanism of resistance and genetic background. Here, we suggest that such variation can be better understood by distinguishing between the effects of resistance mechanisms on individual traits such as growth rate or yield (‘trait effects’) and effects on genotype frequencies over time (‘selective effects’). We first give a brief overview of the biological basis of costs of resistance and how trait effects may translate to selective effects in different environmental conditions. We then review empirical evidence of genetic and environmental variation of both types of effects and how such variation may be understood by combining molecular microbiological information with concepts from evolution and ecology. Ultimately, disentangling different types of costs may permit the identification of interventions that maximize the cost of resistance and therefore accelerate its decline. PMID:25861384

  12. Selective dissolution and recovery of depleted uranium from armor plate. Final report, 26 June 1986-5 May 1987

    SciTech Connect

    Czupryna, G.; Levy, R.D.; Gold, H.

    1987-05-05

    The impacted armor targets used in testing high density armor-piercing ammunition containing depleted uranium (DU) are subject to disposal as low-level radioactive waste. Because of the costs associated with disposal of the entire armor plate and the limited use of secured commercial sites in the future, the U.S. Army is seeking to identify and evaluate new technologies for decontaminating these armor plates. The objectives of this Phase I SBIR program are two-fold, namely: to develop a selective solvent that can decontaminate impacted armor targets containing DU for disposal or recycle, and to identify and characterize technologies that can remove depleted uranium from the solvent for solvent recycle and uranium recovery for easier hazardous-waste disposal.

  13. An improved extraction chromatographic resin for the separation of uranium from acidic nitrate media

    Microsoft Academic Search

    Mark L Dietz; E. Philip Horwitz; Larry R Sajdak; Renato Chiarizia

    2001-01-01

    The preparation and characterization of a new extraction chromatographic resin exhibiting extraordinarily strong retention of hexavalent uranyl ion over a wide range of nitric acid concentrations and very high selectivity for U(VI) over Fe(III) and numerous other cations is described. This new material (designated U\\/TEVA-2) comprises a novel liquid stationary phase consisting of an equimolar mixture of diamyl amylphosphonate (DA[AP])

  14. Functional Sorbents for Selective Capture of Plutonium, Americium, Uranium, and Thorium in Blood

    SciTech Connect

    Yantasee, Wassana; Sangvanich, Thanapon; Creim, Jeffrey A.; Pattamakomsan, Kanda; Wiacek, Robert J.; Fryxell, Glen E.; Addleman, Raymond S.; Timchalk, Charles

    2010-09-01

    Nano-engineered solid sorbents for chelation of actinides (239Pu, 241Am, uranium, thorium) from human blood were developed and evaluated in vitro. These sorbents, known as the self-assembled monolayer on mesoporous supports (SAMMSTM), are hybrid materials created from attachment of organic moieties onto extremely high surface area mesoporous silica. The organic moieties known to be effective at capturing actinides including three isomers of hydroxypyridinone, diphosphonic acid, acetamide phosphonic acid, glycinyl urea, and diethylenetriamine pentaacetate analog were evaluated. SAMMS are being reported elsewhere as potential candidates for orally administered drug for radionuclide decorporation. Herein, actinide decorporation of SAMMS in blood were evaluated to assess their viability for sorbent hemoperfusion in renal insufficient patients, whose kidney clear radionuclides at very slow rate. Sorption affinity (Kd), sorption rate, selectivity, and stability of SAMMS were measured in batch contact experiments. An isomer of hydroxypyridinone (3,4-HOPO) on SAMMS demonstrated the highest affinity for decorporation of all four actinides and outperformed the DTPA analog on SAMMS and on commercial resins by a factor of 103-fold in term of affinity. A fifty percent reduction of actinides in blood was achieved within minutes with no evidence of protein fouling and material leaching in blood after 24 hr of contact time. Less than 0.4 wt.% of Si was dissolved from 3,4-HOPO-SAMMS across the pH of 0 to 8. The engineered form of SAMMS (bead format) was further evaluated in a 100-fold scaled-down hemoperfusion device and showed no blood clotting after 2 hr. A 0.2 g of SAMMS could reduce 50 wt.% of 100 ppb uranium in 50 mL of plasma in just 18 min and that of 500 dpm mL-1 in just 24 min. 3,4-HOPO-SAMMS has a long shelf-life in air and at room temperature for at least 8 years, indicating their feasibility for stockpiling in preparedness for emergency.

  15. Ultrafiltration of uranyl peroxide nanoclusters for the separation of uranium from aqueous solution.

    PubMed

    Wylie, Ernest M; Peruski, Kathryn M; Weidman, Jacob L; Phillip, William A; Burns, Peter C

    2014-01-01

    Uranyl peroxide cluster species were produced in aqueous solution by the treatment of uranyl nitrate with hydrogen peroxide, lithium hydroxide, and potassium chloride. Ultrafiltration of these cluster species using commercial sheet membranes with molecular mass cutoffs of 3, 8, and 20 kDa (based on polyethylene glycol) resulted in U rejection values of 95, 85, and 67% by mass, respectively. Ultrafiltration of untreated uranyl nitrate solutions using these membranes resulted in virtually no rejection of U. These results demonstrate the ability to use the filtration of cluster species as a means for separating U from solutions on the basis of size. Small-angle X-ray scattering, Raman spectroscopy, and electrospray ionization mass spectrometry confirmed the presence of uranyl peroxide cluster species in solution and were used to characterize their size, shape, and dispersity. PMID:24313601

  16. Removal of uranium from aqueous HF solutions

    Microsoft Academic Search

    H. Pulley; S. F. Seltzer

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separating the solution from the settled particulates. The CaF2 is selected to have a nitrogen surface area in a

  17. A technique for the selection of the fuel pin diameter for a uranium\\/zirconium alloy-fueled pressurized water reactor

    Microsoft Academic Search

    D. B. Lancaster; D. B. Dullen; H. Pfeifer; C. S. Erwin; R. L. Marsh; A. E. Levin

    1992-01-01

    In this paper, uranium metal alloys were previously suggested for use in advanced pressurized water reactors; a method is proposed to select an appropriate fuel rod diameter for a uranium alloy-fueled reactor. The method attempts to isolate effects caused only by the change in pin diameter; therefore, the thermal margin is maintained by holding a constant departure from nucleate boiling

  18. Method for converting uranium oxides to uranium metal

    DOEpatents

    Duerksen, Walter K. (Norris, TN)

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  19. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. [474 references

    SciTech Connect

    Thomas, J.M.; Garland, P.A.; White, M.B.; Daniel, E.W.

    1980-09-01

    This bibliography, a compilation of 474 references, is the fourth in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base was created for the Grand Junction Office of the Department of Energy's National Uranium Resource Evaluation Project by the Ecological Sciences Information Center, Oak Ridge National Laboratory. The references in the bibliography are arranged by subject category: (1) geochemistry, (2) exploration, (3) mineralogy, (4) genesis of deposits, (5) geology of deposits, (6) uranium industry, (7) geology of potential uranium-bearing areas, and (8) reserves and resources. The references are indexed by author, geographic location, quadrangle name, geoformational feature, and keyword.

  20. Improvement of multi jet low pressure impactor for high collection efficiency of UF5 in the molecular laser isotope separation of uranium

    Microsoft Academic Search

    Yoshikazu Kuga; Benjamin Jurcik; Sakae Satooka; Kazuo Takeuchi

    1995-01-01

    A numerical and experimental study for the collection of photo-produced UF5 particles was performed for the low pressure impactors which have different design factors at typical flow conditions (upstream pressure of the impactor = 10–15 Torr, pressure ratio of downstream to upstream of the impactor, PdownPup = 0.2–0.5) in the molecular laser isotope separation of uranium at RIKEN (RIMLIS). Smaller

  1. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks

    Microsoft Academic Search

    Christian Pin; JoséFrancisco Santos Zalduegui

    1997-01-01

    A new method for the concomitant separation of the light rare-earth elements (LREEs), thorium and uranium is described, and applied to the determination of 143Nd144Nd ratios, and concentrations of Sm, Nd, Th and U in silicate rocks, using isotope dilution and thermal ionization mass spectrometry. The proposed scheme is based on two recently introduced extraction chromatographic materials, referred to as

  2. Determination of uranium and thorium in complex samples using chromatographic separation, ICP-MS and spectrophotometric detection

    Microsoft Academic Search

    Martina Rožmari?; Astrid Gojmerac Ivši?; Željko Grahek

    2009-01-01

    The paper describes a research of possible application of UTEVA and TRU resins and anion exchanger AMBERLITE CG-400 in nitrate form for the isolation of uranium and thorium from natural samples. The results of determination of distribution coefficient have shown that uranium and thorium bind on TRU and UTEVA resins from the solutions of nitric and hydrochloric acids, and binding

  3. Adsorbate shape selectivity: Separation of the HF\\/134a azeotrope over carbogenic molecular sieve

    Microsoft Academic Search

    Allan Hong; Ravindra K. Mariwala; Michael S. Kane; Henry C. Foley

    1995-01-01

    Experimental evidence is provided for adsorptive shape selectivity in the separation of the azeotrope between HF and 1,1,1,2-tetrafluoroethane (134a) over pyrolyzed poly(furfuryl alcohol)-derived carbogenic molecular sieve (PPFA-CMS). The separation can be accomplished over coconut charcoal or Carbosieve G on the basis of the differences in the extent of equilibrium adsorption of HF and 134a. On these adsorbents 134a is more

  4. Selective separation of Eu{sup 3+} using polymer-enhanced ultrafiltration

    SciTech Connect

    Norton, M.V.

    1994-03-01

    A process to selectively remove {sup 241}Am from liquid radioactive waste was investigated as an actinide separation method applicable to Hanford and other waste sites. The experimental procedures involved removal of Eu, a nonradioactive surrogate for Am, from aqueous solutions at pH 5 using organic polymers in conjunction with ultrafiltration. Commercially available polyacrylic acid (60,000 MW) and Pacific Northwest Laboratory`s (PNL) synthesized E3 copolymer ({approximately}10,000 MW) were tested. Test solutions containing 10 {mu}g/mL of Eu were dosed vath each polymer at various concentrations in order to bind Eu (i.e., by complexation and/or cation exchange) for subsequent rejection by an ultrafiltration coupon. Test solutions were filtered with and without polymer to determine if enhanced Eu separation could be achieved from polymer treatment. Both polymers significantly increased Eu removal. Optimum concentrations were 20 {mu}g/mL of polyacrylic acid and 100 {mu}g/mL of E3 for 100% Eu rejection by the Amicon PM10 membrane at 55 psi. In addition to enhancement of removal, the polymers selectively bound Eu over Na, suggesting that selective separation of Eu was possible. This suggests that polymer-enhanced ultrafiltration is a potential process for separation of {sup 241}Am from Hanford tank waste, further investigation of binding agents and membranes effective under very alkaline and high ionic strength is warranted. This process also has potential applications for selective separation of toxic metals from industrial process streams.

  5. EFFECT OF SULFOBUTYL ETHER BETA-CYCLODEXTRIN MODIFIER ON SELECTIVITY OF REVERSED PHASE HPLC SEPARATIONS

    Microsoft Academic Search

    Kenley K. Ngim; Qiqing Zhong; Kavita Mistry; Nik Chetwyn

    2012-01-01

    Selectivity changes imparted by sulfobutyl ether beta-cyclodextrin (SBECD) modifier were evaluated in reversed phase HPLC separations. The mixed mode capabilities of SBECD, including cation exchange and an orthogonal hydrophobic interaction (i.e., via inclusion complex), altered the typical retention properties of a C18 column. This enabled several racemates (fenoterol, idazoxan hydrolyzate, orciprenaline, terbutaline, tranylcypromine, imazalil) to be resolved. The selectivity of

  6. Selective synthesis of maleic anhydride by spatial separation of n-butane oxidation and catalyst reoxidation

    Microsoft Academic Search

    Klaus Georg Golbig; Joachim Werther

    1997-01-01

    The selective oxidation and ammoxidation of hydrocarbons in fixed-bed or fluidized-bed reactors is conventionally characterized by the simultaneous presence of oxygen gas and hydrocarbon vapor at the active sites of the catalyst. In order to increase the selectivity it has been suggested (Sze and Gelbein, 1976; Contractor and Sleight, 1987; Contractor, 1988) to separate the reaction into two parts; i.e.

  7. Balancing Selection in Species with Separate Sexes: Insights from Fisher’s Geometric Model

    PubMed Central

    Connallon, Tim; Clark, Andrew G.

    2014-01-01

    How common is balancing selection, and what fraction of phenotypic variance is attributable to balanced polymorphisms? Despite decades of research, answers to these questions remain elusive. Moreover, there is no clear theoretical prediction about the frequency with which balancing selection is expected to arise within a population. Here, we use an extension of Fisher’s geometric model of adaptation to predict the probability of balancing selection in a population with separate sexes, wherein polymorphism is potentially maintained by two forms of balancing selection: (1) heterozygote advantage, where heterozygous individuals at a locus have higher fitness than homozygous individuals, and (2) sexually antagonistic selection (a.k.a. intralocus sexual conflict), where the fitness of each sex is maximized by different genotypes at a locus. We show that balancing selection is common under biologically plausible conditions and that sex differences in selection or sex-by-genotype effects of mutations can each increase opportunities for balancing selection. Although heterozygote advantage and sexual antagonism represent alternative mechanisms for maintaining polymorphism, they mutually exist along a balancing selection continuum that depends on population and sex-specific parameters of selection and mutation. Sexual antagonism is the dominant mode of balancing selection across most of this continuum. PMID:24812306

  8. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    SciTech Connect

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  9. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    Microsoft Academic Search

    Madhav R. Ghate; Ralph T. Yang

    1987-01-01

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and

  10. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    Microsoft Academic Search

    M. R. Ghate; R. T. Yang

    1985-01-01

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and

  11. Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide

    E-print Network

    Wu, Jianzhong

    the separation of hydrogen and carbon dioxide via adsorption in activated carbons. In the simulations, both hydrogen and carbon dioxide molecules are modeled as Lennard-Jones spheres, and the activated carbons essentially no preference over the two gases and the selectivity of carbon dioxide relative to hydrogen falls

  12. A robust and conductive metal-impregnated graphene oxide membrane selectively separating organic vapors.

    PubMed

    Lam, Do Van; Gong, Tao; Won, Sejeong; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Changgu; Lee, Seung-Mo

    2015-02-14

    A small amount of Zn impregnated by ALD triggered enhancement of the mechanical as well as electrical properties of the graphene oxide (GO) membrane. In addition, the Zn-impregnated membranes selectively separated diverse organic vapors while maintaining high water permeability. PMID:25572131

  13. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    SciTech Connect

    Bartsch, Richard A.

    2012-06-04

    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  14. Selective extraction and separation of Fe, Mn oxides and organic materials in river surficial sediments.

    PubMed

    Li, Feng-mei; Wang, Xiao-li; Li, Yu; Guo, Shu-hai; Zhong, Ai-ping

    2006-01-01

    In order to investigate the adsorption mechanism of trace metals to surficial sediments (SSs), a selective extraction procedure was improved in the present work. The selective extraction procedure has been proved to selectively remove and separate Fe, Mn oxides and organic materials (OMs) in the non-residual fraction from the SSs collected in Songhua River, China. After screening different kinds of conventional extractants of Fe and Mn oxides and OMs used for separation of heavy metals in the soils and sediments, NH2OH x HC1 (0.1 mol/L) + HNO3 (0.1 mol/L), (NH4)2C204 (0.2 mol/L) + H2C2O4 (pH 3.0), and 30% of H2O2 were respectively applied to selectively extract Mn oxides, Fe/Mn oxides and OMs. After the extraction treatments, the target components were removed with extraction efficiencies between 86.09% -93.36% for the hydroxylamine hydrochloride treatment, 80.63% -101.09% for the oxalate solution extraction, and 94.76%-102.83% for the hydrogen peroxide digestion, respectively. The results indicate that this selective extraction technology was effective for the extraction and separation of Fe, Mn oxides and OMs in the SSs, and important for further mechanism study of trace metal adsorption onto SSs. PMID:17294971

  15. Isotope separation by laser technology

    NASA Astrophysics Data System (ADS)

    Stoll, Wolfgang

    2002-03-01

    Isotope separation processes operate on very small differences, given either by the Quotient of masses with the same number of electrons or by their mass difference. When separating isotopes of light elements in mass quantities, thermodynamic processes accounting for the quotient, either in diffusion, chemical reactivity or distillation are used. For heavy elements those quotients are very small. Therefore they need a large number of separation steps. Large plants with high energy consumption result from that. As uranium isotope separation is the most important industrial field, alternatives, taking account for the mass difference, as e.g. gas centrifuges, have been developed. They use only a fraction of the energy input, but need a very large number of machines, as the individual throughput is small. Since it was discovered, that molecules of high symmetry like Uranium-Hexafluoride as a deep-cooled gas stream can be ionized by multiple photon excitation, this process was studied in detail and in competition to the selective ionization of metal vapors, as already demonstrated with uranium. The paper reports about the principles of the laser excitation for both processes, the different laboratory scale and prototypical plants built, the difficulties with materials, as far as the metal vapor laser separation is concerned, and the difficulties experienced in the similarity in molecular spectra. An overview of the relative economic merits of the different processes and the auspices in a saturated market for uranium isotope separation, together with other potential markets for molecular laser separation, is contained in the conclusions.

  16. Adsorbate shape selectivity: Separation of the HF/134a azeotrope over carbogenic molecular sieve

    SciTech Connect

    Hong, A.; Mariwala, R.K.; Kane, M.S.; Foley, H.C. [Univ. of Delaware, Nework, DE (United States)

    1995-03-01

    Experimental evidence is provided for adsorptive shape selectivity in the separation of the azeotrope between HF and 1,1,1,2-tetrafluoroethane (134a) over pyrolyzed poly(furfuryl alcohol)-derived carbogenic molecular sieve (PPFA-CMS). The separation can be accomplished over coconut charcoal or Carbosieve G on the basis of the differences in the extent of equilibrium adsorption of HF and 134a. On these adsorbents 134a is more strongly bound than HF, thus it elutes much more slowly from the bed. The heat of adsorption for 134a in the vicinity of 200 C on Carbosieve G is {approximately}8.8 kcal/mol. In contrast, when the same azeotropic mixture is separated over PPFA-CMS prepared at 500 C, 134a is not adsorbed. As a result 134a elutes from the bed first, followed by HF. The reversal is brought about by the narrower pore size and pore size distribution of the PPFA-CMS versus that for Carbosieve G. Thus the separation over PPFA-CMS is an example of adsorbate shape selectivity and represents a limiting case of kinetic separation.

  17. Optimal SVM parameter selection for non-separable and unbalanced datasets.

    PubMed

    Jiang, Peng; Missoum, Samy; Chen, Zhao

    2014-10-01

    This article presents a study of three validation metrics used for the selection of optimal parameters of a support vector machine (SVM) classifier in the case of non-separable and unbalanced datasets. This situation is often encountered when the data is obtained experimentally or clinically. The three metrics selected in this work are the area under the ROC curve (AUC), accuracy, and balanced accuracy. These validation metrics are tested using computational data only, which enables the creation of fully separable sets of data. This way, non-separable datasets, representative of a real-world problem, can be created by projection onto a lower dimensional sub-space. The knowledge of the separable dataset, unknown in real-world problems, provides a reference to compare the three validation metrics using a quantity referred to as the "weighted likelihood". As an application example, the study investigates a classification model for hip fracture prediction. The data is obtained from a parameterized finite element model of a femur. The performance of the various validation metrics is studied for several levels of separability, ratios of unbalance, and training set sizes. PMID:25258621

  18. Selective Separation of Rare Earth Metals by Solvent Extraction in the Presence of New Hydrophilic Chelating Polymers Functionalized with Ethylenediaminetetraacetic Acid. II. Separation Properties by Solvent Extraction

    Microsoft Academic Search

    HIDETO MATSUYAMA; YOSHIKAZU MIYAMOTO; MASAAKI TERAMOTO; MASAHIRO GOTO; FUMIYUKI NAKASHIO

    1996-01-01

    The selective separation of rare earth metals by solvent extraction including chelating polymers in the aqueous phase was investigated. The chelating polymers were synthesized in this laboratory by introducing ethylenediaminetetraacetic acid (EDTA) onto water-soluble polyallylamine. The highest selectivity obtained for the Y\\/Er separation system was 14.7, which was much higher than that in conventional solvent extraction (about 1.4) and also

  19. Large-Flow-Area Flow-Selective Liquid/Gas Separator

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Bradley, Karla F.

    2010-01-01

    This liquid/gas separator provides the basis for a first stage of a fuel cell product water/oxygen gas phase separator. It can separate liquid and gas in bulk in multiple gravity environments. The system separates fuel cell product water entrained with circulating oxygen gas from the outlet of a fuel cell stack before allowing the gas to return to the fuel cell stack inlet. Additional makeup oxygen gas is added either before or after the separator to account for the gas consumed in the fuel cell power plant. A large volume is provided upstream of porous material in the separator to allow for the collection of water that does not exit the separator with the outgoing oxygen gas. The water then can be removed as it continues to collect, so that the accumulation of water does not impede the separating action of the device. The system is designed with a series of tubes of the porous material configured into a shell-and-tube heat exchanger configuration. The two-phase fluid stream to be separated enters the shell-side portion of the device. Gas flows to the center passages of the tubes through the porous material and is then routed to a common volume at the end of the tubes by simple pressure difference from a pumping device. Gas flows through the porous material of the tubes with greater ease as a function of the ratio of the dynamic viscosity of the water and gas. By careful selection of the dimensions of the tubes (wall thickness, porosity, diameter, length of the tubes, number of the tubes, and tube-to-tube spacing in the shell volume) a suitable design can be made to match the magnitude of water and gas flow, developed pressures from the oxygen reactant pumping device, and required residual water inventory for the shellside volume.

  20. Bioremediation of uranium contamination with enzymatic uranium reduction

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1992-01-01

    Enzymatic uranium reduction by Desulfovibrio desulfuricans readily removed uranium from solution in a batch system or when D. desulfuricans was separated from the bulk of the uranium-containing water by a semipermeable membrane. Uranium reduction continued at concentrations as high as 24 mM. Of a variety of potentially inhibiting anions and metals evaluated, only high concentrations of copper inhibited uranium reduction. Freeze-dried cells, stored aerobically, reduced uranium as fast as fresh cells. D. desulfuricans reduced uranium in pH 4 and pH 7.4 mine drainage waters and in uraniumcontaining groundwaters from a contaminated Department of Energy site. Enzymatic uranium reduction has several potential advantages over other bioprocessing techniques for uranium removal, the most important of which are as follows: the ability to precipitate uranium that is in the form of a uranyl carbonate complex; high capacity for uranium removal per cell; the formation of a compact, relatively pure, uranium precipitate.

  1. Selective separation of fluorescent-magnetic nanoparticles with different magnetite-doping levels.

    PubMed

    Park, Sang-Eun; Park, Sang-Joon; Lee, Sang-Wha; Lee, Joong-Kee

    2011-05-01

    Fluorescent-labeled magnetic nanoparticles were explored as a biomedical agent for selective magnetic separation. By adjusting the loading volume of citrate-stabilized magnetites during a sol-gel reaction with silicon alkoxide, magnetites were simultaneously embedded into both the surface and inside the silica matrix, consequently leading to magnetic nanoparticles with different doping levels of magnetites. For endowing them with multifunctional tools in biomedical fields, magnetic nanoparticles were further encapsulated with silica thin layer labeled with fluorescent organic dyes (such as Alexa Fluor 488 and 594). Fluorescent-magnetic nanoparticles with different magnetism successfully displayed the differential separation of fluorescence spectra under an external magnetic field. PMID:21780495

  2. In-line assay monitor for uranium hexafluoride

    DOEpatents

    Wallace, S.A.

    1980-03-21

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from uranium-235. The uranium-235 content of the specimen is determined from comparison of the accumulated 185 keV energy counts and reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen.

  3. Isotopic composition and origin of uranium and plutonium in selected soil samples collected in Kosovo

    Microsoft Academic Search

    P. R. Danesi; A. Bleise; W. Burkart; T. Cabianca; M. J. Campbell; M. Makarewicz; J. Moreno; C. Tuniz; M. Hotchkis

    2003-01-01

    Soil samples collected from locations in Kosovo where depleted uranium (DU) ammunition was expended during the 1999 Balkan conflict were analysed for uranium and plutonium isotopes content (234U,235U,236U,238U,238Pu,239+240Pu). The analyses were conducted using gamma spectrometry (235U,238U), alpha spectrometry (238Pu,239+240Pu), inductively coupled plasma–mass spectrometry (ICP—MS) (234U,235U,236U,238U) and accelerator mass spectrometry (AMS) (236U). The results indicated that whenever the U concentration exceeded

  4. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    DOEpatents

    Baker, Richard W. (Palo Alto, CA); Pinnau, Ingo (Palo Alto, CA); He, Zhenjie (Fremont, CA); Da Costa, Andre R. (Menlo Park, CA); Daniels, Ramin (San Jose, CA); Amo, Karl D. (Mountain View, CA); Wijmans, Johannes G. (Menlo Park, CA)

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  5. Radioecological survey at selected sites hit by depleted uranium ammunitions during the 1999 Kosovo conflict

    Microsoft Academic Search

    Umberto Sansone; Pier Roberto Danesi; Sabrina Barbizzi; Maria Belli; Michael Campbell; Stefania Gaudino; Guogang Jia; Rita Ocone; Alessandra Pati; Silvia Rosamilia; Luisa Stellato

    2001-01-01

    A field study, organised, coordinated and conducted under the responsibility of the United Nations Environment Programme (UNEP), took place in Kosovo in November 2000 to evaluate the level of depleted uranium (DU) released into the environment by the use of DU ammunition during the 1999 conflict. Representatives of six different scientific organisations took part in the mission and a total

  6. A closed uranium cycle at HAPO. Phase 1

    Microsoft Academic Search

    1959-01-01

    This study was undertaken to determine the most feasible and economical process or path for closing the uranium fuel cycle at HAPO, and to establish what benefits, other than improvement in FPD`s competitive position, would result from the selected closed fuel cycle. The study was separated into four phases; Phase I includes the selection and organization of plausible processes and

  7. Selective separation of copper with Lix 864 in a hollow fiber module

    Microsoft Academic Search

    M. E. Campderrós; A. Acosta; J. Marchese

    1998-01-01

    The transfer and separation of Cu(II), Co(II), Ni(II) and Zn(II) ions across a hollow fiber supported liquid membrane containing LIX 864 as the mobile carrier dissolved in kerosene solvent has been investigated. The flux and selectivity for copper has been studied as a function of the feed flow, the carrier concentration in the liquid membrane and the extraction solution acidity.

  8. Selective separation of seawater Mg 2+ ions for use in downstream water treatment processes

    Microsoft Academic Search

    Marina Telzhensky; Liat Birnhack; Orly Lehmann; Eial Windler; Ori Lahav

    2011-01-01

    A nanofiltration-based method is presented for selectively separating soluble Mg(II) species from seawater, with the aim of using the Mg-loaded brine for either enriching desalinated water with magnesium ions or for enhancing precipitation of struvite from wastewater steams. Two 2.4? commercial NF membranes were tested under varying operational conditions. The membrane that was chosen for further investigation (DS-5 DL, Osmonics)

  9. Synthesis and Evaluation of an Ion?Imprinted Functionalized Sorbent for Selective Separation of Cadmium Ion

    Microsoft Academic Search

    Jin Tan

    2005-01-01

    An ion?imprinted functionalized sorbent for selective separation of Cd from aqueous solution was prepared by molecular imprinting technique in combination with the sol?gel process. The procedures involved the synthesis of mesoporous silica through hydrolysis of tetraethoxysilicate with cetyltrimethylammonium bromide as the structure director, the complex formation between Cd and 3?mercaptopropyltrimethoxysilane, and subsequent co?hydrolysis and co?condensation of the complex with the

  10. Appraisal of selected epidemiologic issues from studies of lung cancer among uranium and hard rock miners

    SciTech Connect

    Petersen, G R; Sever, L E

    1982-04-01

    An extensive body of published information about lung cancer among uranium miners was reviewed and diverse information, useful in identifying important issues but not in resolving them was found. Measuring exposure and response; thresholds of exposure; latency or the period from first mining experience to death; effort to predict excess risk of death, using a model; effects of smoking and radon daughter exposure on the histology of lung tumors; and the interplay of factors on the overall risk of death were all examined. The general concept of thresholds; that is, an exposure level below which risk does not increase was considered. The conclusion is that it should be possible to detect and estimate an epidemiologic threshold when the cohorts have been followed to the death of all members. Issues concerning latency in the studies of uranium miners published to date were examined. It is believed that the induction-latent period for lung cancer among uranium miners may be: as little as 10 to more than 40 years; dependent on age at which exposure begins; exposure rate; and ethnicity or smoking habits. Although suggested as factual, their existence is uncertain. An effect due to the exposure rate may exist although it has not been factual, their existence is uncertain. An effect due to the exposure rate may exist although it has not been confirmed. The median induction-latent period appears to be in excess of the 15 years frequently cited for US uranium miner. A distinct pattern of shorter induction-latent periods with increasing age at first mining exposure is reported. The evidence for and against an unusual histologic pattern of lung cancers among uranium miners was examined. The ratio of epidermoid to small cell types was close to 1:2; the ratio in the general population is nearer 2:1. The histologic pattern warrants closer attention of pathologists and epidemiologists. (ERB) (ERB)

  11. Uranium geochemistry of selected rock units from the Marysvale Volcanic Field, Piute County, Utah

    SciTech Connect

    Hoffer, R.L.

    1982-01-01

    The Marysvale Volcanic Field is an area rich in uranium. This study was undertaken to determine if the uranium deposits might be of volcanogenic origin. This geochemical study consisted of determining the major, minor and trace element concentrations of the major volcanic units, and the relationships of the rock chemistry to uranium mineralization. The units in the Marysvale Volcanic Field, consist of ash-flow tuffs, intermediate lava flows, and associated intrusives of the Bullion Canyon volcanics and ash-flow tuffs, volcaniclastic deposits, domes and stocks of the Mount Belknap volcanics. When compared to overlaying welded tuff or rhyolitic units, the vitrophyric samples from the Mount Belknap volcanic units, are all enriched in F, Cs, and U, and that 50% of the vitrophyres are enriched in Cr, Cu, Mo, Ni, Zr, Pb, Sr, V, and Zn. Overlying untis have been devitrified and have released U as well as other trace elements into the volcanogenic system. This study has reevaluated the Marysvale Central Mining District and has proposed another theory as to the origin of the uranium deposits in that area. This hypothesis places a previously unidentified caldera around the area, and this author has named it the Marysvale caldera. Evidence for this caldera includes: arcurate faults which surround the region; alteration patterns which appear to form a circular pattern along the boundary of the proposed caldera; the presence of small monzonite intrusive bodies appear to ring the caldera; the presence of ash-flow tuffs which thicken appreciably along the northeast boundary of the caldera; and the central intrusive which may represent a resurgent phase of the proposed caldera. This seems to be a viable alternative to the magmatic hydrothermal origin for the uranium deposits presently proposed for the Central Mining District.

  12. Novel syntergistic agent for selective separation of yttrium from other rare earth metals

    SciTech Connect

    Miyata, Terufumi; Goto, Masahiro; Nakashio, Fumiyuki [Kyushu Univ., Fukuoka (Japan)

    1995-06-01

    An oil-soluble synergistic agent has been developed for the selective separation of yttrium (Y) from the other rare earth metals. The synergistic agent is a polyaminocarboxylic acid alkylderivative and has interfacial activity like that of surfactants. Separation of yttrium from heavy rare earth metals (erbium (Er) and holmium (Ho)) in the presence of the synergistic agent was carried out with a 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester as a carrier using a hollow-fiber membrane extractor. The new agent shows a synergistic effect on the permeation rate of rare earth metals at the oil-water interface. By the addition of a small amount of the agent, the selectivity for yttrium from the two rare earth metals was enhanced remarkably, because of the permeation rate of Y was selectively decreased compared with those of Er and Ho. The synergistic effect is discussed from the viewpoint of the stability constant for rare earth metals and the interfacial activity of the synergistic agent. The difference in interaction between the synergistic agent and rare earth ions at the oil-water interface results in an increase in the separation efficiency.

  13. Flame treatment for the selective wetting and separation of PVC and PET

    SciTech Connect

    Pascoe, R.D.; O'Connell, B

    2003-07-01

    Flame treatment has been used for many years to modify the surface of plastics to allow coatings to be added. The effect of the treatment is to produce hydrophilic species on the surface of the plastic making it water-wettable. The production of hydrophilic plastic surfaces is also required in the selective separation of plastics by froth flotation. For the process to be selective one plastic must be rendered hydrophilic while another remains hydrophobic. In this study the potential for separation of PVC and PET has been investigated. Flame treatment was shown to be very effective in producing a hydrophilic surface on both plastics, although the process was not selective under the conditions investigated. Raising the temperature of the plastics above their softening point produced a hydrophobic recovery. As the softening point of PVC was significantly lower than for PET it was possible to produce a significant difference in hydrophobicity, as judged using contact angle measurement. When immersed in water the contact angle of the PVC was found to be strongly dependent on the pH. Good separation efficiency of the two plastics was achieved by froth flotation from pH 4 to 9. One particular advantage of the technique is that no chemical reagents may be required in the flotation stage. The practicalities of designing a flake treatment system however have to be addressed before considering it to be a viable industrial process.

  14. Corrosion of friction rock stabilizers in selected uranium and copper mine waters. Report of Investigations\\/1984

    Microsoft Academic Search

    M. M. Tilman; A. F. Jolly; L. A. Neumeier

    1984-01-01

    The Bureau of Mines evaluated corrosion resistance of Split Set friction rock stabilizer mine roof bolts to aid in better prediction of useful service life. Electrochemical corrosion testing was conducted utilizing an automated corrosion measurement system. Natural and\\/or synthetic mine waters from four uranium and two copper mines were the test media for the two types of high-strength, low-alloy (HSLA)

  15. Uranium industry annual 1998

    SciTech Connect

    NONE

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  16. Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption.

    PubMed

    Liu, Xiaojuan; Ge, Lei; Li, Wei; Wang, Xiuzhong; Li, Feng

    2015-01-14

    The removal of oil and organic pollutants from water is highly desired due to frequent oil spill accidents, as well as the increase of industrial oily wastewater. Here, superhydrophobic and superoleophilic textile has been successfully prepared for the application of effective oil/water separation and selective oil adsorption. This textile was fabricated by functionalizing the commercial textile with layered double hydroxide (LDH) microcrystals and low surface energy molecules. The LDH microcrystals were immobilized on the microfibers of the textile through an in situ growth method, and they formed a nestlike microstructure. The combination of the hierarchical structure and the low surface energy molecules made the textile superhydrophobic and superoleophilic. Further experiments demonstrated that the as-prepared textile not only can be applied as effective membrane materials for the separation of oil and water mixtures with high separation efficiency (>97%), but also can be used as a bag for the selective oil adsorption from water. Thus, such superhydrophobic and superoleophilic textile is a very promising material for the application of oil spill cleanup and industrial oily wastewater treatment. PMID:25490110

  17. Highly selective separation of aminoglycoside antibiotics on a zwitterionic Click TE-Cys column.

    PubMed

    Wei, Jie; Shen, Aijin; Wan, Huihui; Yan, Jingyu; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2014-07-01

    Hydrophilic interaction liquid chromatography has emerged as a valuable alternative approach to ion-pair chromatography for the separation of aminoglycoside antibiotics in recent years. However, the resolution of structurally related aminoglycosides is a great challenge owing to the limited selectivity. In this work, a cysteine-based zwitterionic stationary phase (named Click TE-Cys) was utilized and compared with five commonly used hydrophilic interaction liquid chromatography columns. Click TE-Cys displayed much better selectivity for structurally similar aminoglycosides. The retention behaviors of aminoglycosides were investigated in detail, revealing that low pH (2.7 or 3.0) and high buffer concentration (?50 mM) were preferable for achieving good peak shape and selectivity. Effective resolution of ten aminoglycosides including spectinomycin, dihydrostreptomycin, streptomycin, gentamicin C1, gentamicin C2/C2a, gentamicin C1a, kanamycin, paromonycin, tobramycin, and neomycin was realized at optimized conditions. Additionally, spectinomycin and its related impurities were successfully resolved. The results indicated the great potential of the Click TE-Cys column in the separation of aminoglycoside mixtures and related impurities. PMID:24798626

  18. Imprint-coating synthesis of selective functionalized ordered mesoporous sorbents for separation and sensors

    DOEpatents

    Dai, Sheng (Knoxville, TN); Burleigh, Mark C. (Lenoir City, TN); Shin, Yongsoon (Richland, WA)

    2001-01-01

    The present invention relates generally to mesoporous sorbent materials having high capacity, high selectivity, fast kinetics, and molecular recognition capability. The invention also relates to a process for preparing these mesoporous substrates through molecular imprinting techniques which differ from convention techniques in that a template molecule is bound to one end of bifunctional ligands to form a complex prior to binding of the bifunctional ligands to the substrate. The present invention also relates to methods of using the mesoporous sorbent materials, for example, in the separation of toxic metals from process effluents, paints, and other samples; detection of target molecules, such as amino acids, drugs, herbicides, fertilizers, and TNT, in samples; separation and/or detection of substances using chromatography; imaging agents; sensors; coatings; and composites.

  19. Selective and efficient control of coherent population transfer with time-separated chirped pulses

    SciTech Connect

    Yang Xihua; Zhang Zhenhua; Yan Xiaona; Li Chunfang [Department of Physics, Shanghai University, Shanghai 200444 (China)

    2010-03-15

    We propose a selective, efficient, and robust way to realize control of coherent population transfer in a {Lambda}-type four-level system with a closely spaced doublet in the final state with time-separated chirped pump pulse and Stokes pulse pair by merging stimulated Raman adiabatic passage, temporal coherent control, and chirped adiabatic passage techniques. Moreover, an arbitrary coherent superposition between the final doublet, or between the intermediate state and either of the doublets can be created. This method holds the ability to 'control with control' and has potential applications in coherent control of chemical reactions and quantum information processing.

  20. Microemulsion electrokinetic chromatography of corticosteroids. Effect of surfactants and cyclodextrins on the separation selectivity.

    PubMed

    Pomponio, Romeo; Gotti, Roberto; Fiori, Jessica; Cavrini, Vanni

    2005-07-15

    The separation of neutral hydrophobic corticosteroids (cortisone, cortisone acetate, hydrocortisone, hydrocortisone acetate, prednisolone and prednisolone acetate) by microemulsion electrokinetic chromatography (MEEKC) was studied. In the preparation of microemulsion, heptane was the solvent, n-butanol the co-surfactant and, as anionic surfactants, sodium dodecyl sulfate (SDS) or taurodeoxycholic acid sodium salt (STDC) were employed. Using an acidic running buffer, (phosphate pH 2.5) a strong suppression of the electroosmotic flow (EOF) was observed; this resulted in a fast anodic migration of the analytes partitioned into the negatively charged microemulsion droplets. Under these conditions, STDC showed better separation of corticosteroids than the conventional SDS; however, the use of a single anionic surfactant did not provide the required selectivity. The addition of the neutral surfactant polyoxyethylene glycol octadecyl ether (Brij 76) significantly altered the migration of each analytes allowing a better tuning of separation; however, in order to obtain adequate resolution between couples of adjacent critical peaks, the addition of neutral cyclodextrins (CDs) was found to be essential. This apparently complex system (CD-MEEKC), was optimized by studying the effect of the most important parameters affecting separation: STDC concentration, Brij 76 concentration, nature and concentration of cyclodextrins. Following a rational step-by-step approach, the optimised conditions providing the complete separation of the analytes were found to be: 4.0% STDC, 2.5% Brij 76, 6.6% n-butanol, 1.36% heptane and 85.54% of a solution 5 mM beta-CD in 50 mM phosphate buffer (pH 2.5). The optimized system was preliminary applied to the detection of corticosteroids related substances at impurity level and it could be considered a useful orthogonal alternative to HPLC methods. PMID:16013593

  1. A recyclable supramolecular membrane for size-selective separation of nanoparticles

    NASA Astrophysics Data System (ADS)

    Krieg, Elisha; Weissman, Haim; Shirman, Elijah; Shimoni, Eyal; Rybtchinski, Boris

    2011-03-01

    Most practical materials are held together by covalent bonds, which are irreversible. Materials based on noncovalent interactions can undergo reversible self-assembly, which offers advantages in terms of fabrication, processing and recyclability, but the majority of noncovalent systems are too fragile to be competitive with covalent materials for practical applications, despite significant attempts to develop robust noncovalent arrays. Here, we report nanostructured supramolecular membranes prepared from fibrous assemblies in water. The membranes are robust due to strong hydrophobic interactions, allowing their application in the size-selective separation of both metal and semiconductor nanoparticles. A thin (12 µm) membrane is used for filtration (~5 nm cutoff), and a thicker (45 µm) membrane allows for size-selective chromatography in the sub-5 nm domain. Unlike conventional membranes, our supramolecular membranes can be disassembled using organic solvent, cleaned, reassembled and reused multiple times.

  2. Rapid uranium preconcentration and separation method from fresh water samples for total U and 235U/238U isotope ratio measurements by ICP-MS.

    PubMed

    Tagami, K; Uchida, S

    2007-05-29

    A simple and rapid method using TRU resin cartridges (Eichrom Technologies, Inc., USA) and quadrupole ICP-MS for total uranium (U) and 235U/238U isotope ratio measurements in fresh water samples was investigated. After U extraction on the resin by sample solution loading, three alkaline reagents, tetramethyl ammonium hydroxide (TMAH), NaOH and NH4OH were studied for U elution behavior from the resin cartridges and applicability of these eluates was evaluated with respect to direct introduction to ICP-MS. Among the studied eluants, TMAH showed the best results with high U recovery and no counting interferences with internal standard elements such as thallium and bismuth. Moreover, U in water samples was separated from many major and minor elements with the TRU cartridges. Almost all U was concentrated in 10 mL of 0.014 M TMAH in 2 h using 200 mL of water sample. PMID:17499076

  3. Selection of Water-Dispersible Carbon Black for Fabrication of Uranium Oxicarbide Microspheres

    SciTech Connect

    Contescu, Cristian I [ORNL; Baker, Frederick S [ORNL; Hunt, Rodney Dale [ORNL; Collins, Jack Lee [ORNL; Burchell, Timothy D [ORNL

    2008-01-01

    Fabrication of uranium oxicarbide (UCO) microspheres, a component of TRISO fuel particles for high temperature nuclear power systems, is based on the internal gelation process of uranium salts in presence of carbon black. In order to obtain a high quality product, carbon black should remain dispersed during all phases of the gelation process. In this study, the surface and structural properties of several commercial carbon black materials, and their use in combination with ionic and non-ionic dispersing agents was examined with the goal of finding optimal conditions for stabilizing submicron-sized carbon black dispersions. Traditional methods for stabilizing dispersions, based on the use of dispersing agents, failed to stabilize carbon dispersions against large pH variations, typical for the internal gelation process. An alternate dispersing method was proposed, based on using surface-modified carbons functionalized with strongly ionizing surface groups (sodium sulfonate). With a proper choice of surface modifiers, these advanced carbons disperse easily to particles in the range of 0.15 V0.20 m and the dispersions remain stable during the conditions of internal gelation.

  4. Summary report on reprocessing evaluation of selected inactive uranium mill tailings sites

    SciTech Connect

    Not Available

    1983-09-01

    Sandia National Laboratories has been assisting the Department of Energy in the Uranium Mill Tailings Remedial Actions Program (UMTRAP) the purpose of which is to implement the provisions of Title I of Public Law 95-604, Uranium Mill Tailings Radiation Control Act of 1978.'' As part of this program, there was a need to evaluate the mineral concentration of the residual radioactive materials at some of the designated processing sites to determine whether mineral recovery would be practicable. Accordingly, Sandia contracted Mountain States Research and Development (MSRD), a division of Mountain States Mineral Enterprises, to drill, sample, and test tailings at 12 sites to evaluate the cost of and the revenue that could be derived from mineral recovery. UMTRAP related environmental and engineering sampling and support activities were performed in conjunction with the MSRD operations. This summary report presents a brief description of the various activities in the program and of the data and information obtained and summarizes the results. 8 refs., 9 tabs.

  5. Uranium resource technology, Seminar 3, 1980

    SciTech Connect

    Morse, J.G. (ed.)

    1980-01-01

    This conference proceedings contains 20 papers and 1 panel discussion on uranium mining and ore treatment, taking into account the environmental issues surrounding uranium supply. Topics discussed include: the US uranium resource base, the technology and economics of uranium recovery from phosphate resources, trends in preleash materials handling of sandstone uranium ores, groundwater restoration after in-situ uranium leaching, mitigation of the environmental impacts of open pit and underground uranium mining, remedial actions at inactive uranium mill tailings sites, environmental laws governing in-situ solution mining of uranium, and the economics of in-situ solution mining. 16 papers are indexed separately.

  6. Efficacy of cytokine removal by plasmadiafiltration using a selective plasma separator: in vitro sepsis model.

    PubMed

    Li, Mingxin; Xue, Jun; Liu, Junfeng; Kuang, Dingwei; Gu, Yong; Lin, Shanyan

    2011-02-01

    More effective removal of pro- and anti-inflammatory cytokines may play an important role in the treatment of sepsis. Plasmadiafiltration (PDF) with a larger selective plasma separator was performed to study the cytokine and plasma protein permeability profiles of the membrane in an in vitro sepsis model. The in vitro sepsis model was constructed by exposure of human whole blood to bacterial lipopolysaccharide. EVACURE 2A, a selective plasma separator, was placed in the blood circuit of PDF. Sieving coefficients of cytokines and plasma protein were tested in post-dilution PDF mode at the following operating parameters: blood flow rate 150 mL/min; dialysate flow rate 33.33 mL/min; replacing fluid flow rate 6.67 mL/min; ultrafiltration rate 5 mL/min. An enzyme linked immunoadsorbent assay was used to measure the concentrations of tumor necrosis factor-? (TNF-?), high-mobility group box 1 protein (HMGB1), interleukin-1? (IL-1?), interleukin-1 receptor antagonist (IL-1ra), interleukin-2 (IL-2), interleukin-2 receptor (IL-2r), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10) in plasma and ultrafiltrate. Sieving coefficients of different solutes ranged from 0.1 to 1.0 at first, decreased 10%-60% after 1 h of PDF, and then remained stable. Total clearance rates of cytokines ranged from 15 to 80 mL/min. The concentrations of cytokines decreased 20-80% after 1 hour of PDF. The sieving coefficient of albumin was 0.1 at first and then decreased to 0.05 after 1 hour of therapy. Plasmadiafiltration with Evacure 2A plasma separator can effectively remove almost all of the inflammatory mediators with low albumin loss. PMID:21272259

  7. Selective separation of rare earth metals by solvent extraction in the presence of new hyrophilic chelating polymers functionalized with ethylenediaminetetraacetic acid. II. Separation properties by solvent extraction

    SciTech Connect

    Matsuyama, Hideto; Miyamoto, Yoshikazu; Teramoto, Masaaki [Kyoto Inst. of Technology, Kyoto (Japan)] [and others

    1996-03-01

    The selective separation of rare earth metals by solvent extraction including chelating polymers in the aqueous phase was investigated. The chelating polymers were synthesized in this laboratory by introducing ethylenediaminetetraacetic acid (EDTA) onto water-soluble polyallylamine. The highest selectivity obtained for the Y/Er separation system was 14.7, which was much higher than that in extraction including EDTA (about 5.0). This means that the number of extraction stages required can be considerably reduced by the addition of chelating polymers. The effects of several experimental conditions such as pH, extractant concentrations, chelating polymer concentrations, and initial total rare earth metal concentrations, chelating polymer concentrations, and initial total rare earth metal concentrations on the separation factors and the distribution ratios for the Y/Er system were studied in detail. Furthermore, this extraction method was applied to other separation systems (Y/Dy, Y/Ho, Y/Tm). A remarkably high separation factor (12.6) was obtained for the Y/Tm system and the Y/Er system, although the separation factors were comparable to those in the presence of EDTA in the Y/Dy and Y/Ho systems.

  8. Control Structure Selection for Reactor, Separator, and Recycle T. Larsson, M. S. Govatsmark, S. Skogestad,* and C. C. Yu

    E-print Network

    Skogestad, Sigurd

    Control Structure Selection for Reactor, Separator, and Recycle Processes T. Larsson, M. S to control", for a simple plant with a liquid-phase reactor, a distillation column, and recycle of unreacted processes is the presence of recycle. Variations of a plant with reaction, separation, and mass recycle (see

  9. Selective separation of lambdacyhalothrin by porous/magnetic molecularly imprinted polymers prepared by Pickering emulsion polymerization.

    PubMed

    Hang, Hui; Li, Chunxiang; Pan, Jianming; Li, Linzi; Dai, Jiangdong; Dai, Xiaohui; Yu, Ping; Feng, Yonghai

    2013-10-01

    Porous/magnetic molecularly imprinted polymers (PM-MIPs) were prepared by Pickering emulsion polymerization. The reaction was carried out in an oil/water emulsion using magnetic halloysite nanotubes as the stabilizer instead of a toxic surfactant. In the oil phase, the imprinting process was conducted by radical polymerization of functional and cross-linked monomers, and porogen chloroform generated steam under the high reaction temperature, which resulted in some pores decorated with easily accessible molecular binding sites within the as-made PM-MIPs. The characterization demonstrated that the PM-MIPs were porous and magnetic inorganic-polymer composite microparticles with magnetic sensitivity (M(s) = 0.7448 emu/g), thermal stability (below 473 K) and magnetic stability (over the pH range of 2.0-8.0). The PM-MIPs were used as a sorbent for the selective binding of lambdacyhalothrin (LC) and rapidly separated under an external magnetic field. The Freundlich isotherm model gave a good fit to the experimental data. The adsorption kinetics of the PM-MIPs was well described by pseudo-second-order kinetics, indicating that the chemical process could be the rate-limiting step in the adsorption of LC. The selective recognition experiments exhibited the outstanding selective adsorption effect of the PM-MIPs for target LC. Moreover, the PM-MIPs regeneration without significant loss in adsorption capacity was demonstrated by at least four repeated cycles. PMID:23894024

  10. Uranium industry annual 1995

    SciTech Connect

    NONE

    1996-05-01

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  11. Uranium extraction process

    SciTech Connect

    Rose, M.A.

    1983-05-03

    Uranium is extracted from wet process phosphoric acid by extraction with a mixture of a diorganophosphate and a neutral phosphorus compound, which is preferably a triorgano phosphine oxide, in the presence of nitrate to form an organic extract layer containing uranium and an aqueous acid layer, which are separated.

  12. Rapid and selective separation for mixed proteins with thiol functionalized magnetic nanoparticles

    PubMed Central

    2012-01-01

    Thiol group functionalized silica-coated magnetic nanoparticles (Si-MNPs@SH) were synthesized for rapid and selective magnetic field-based separation of mixed proteins. The highest adsorption efficiencies of binary proteins, bovine serum albumin (BSA; 66 kDa; pI = 4.65) and lysozyme (LYZ; 14.3 kDa; pI = 11) were shown at the pH values corresponding to their own pI in the single-component protein. In the mixed protein, however, the adsorption performance of BSA and LYZ by Si-MNPs@SH was governed not only by pH but also by the molecular weight of each protein in the mixed protein. PMID:22650609

  13. Comparative ease of separation of mixtures of selected nuisance anions (nitrate, nitrite, sulfate, phosphate) using Octolig.

    PubMed

    Stull, Frederick W; Martin, Dean F

    2009-12-01

    Mixtures of sodium salts of nitrate, nitrite, sulfate, and phosphate were prepared in relative amounts present in atomic waste containers with a view to effect removal by chromatography over Octolig, commercially available material with polyethylenediamine moieties covalently attached to high-surface area silica gel. Separation was attempted using aqueous solutions and column chromatography with Octolig. It is presumed that this material is capable of removing the anions by means of encapsulation. Matrix effects were tested by varying the relative concentrations. Rates of elution were varied 5-fold without adverse effect. The order of selectivity was found to be phosphate > sulfate > nitrite > nitrate through experiments altering the volume and relative concentrations. Quantitative removal of all anions (375 ppm of each) could be achieved given reasonable volumes of Octolig. An effort at regeneration by altering the pH of the eluant indicated the stability of the encapsulated anions. PMID:20183512

  14. Separability of stimulus parameter encoding by on-off directionally selective rabbit retinal ganglion cells

    PubMed Central

    Nowak, Przemyslaw; Dobbins, Allan C.; Gawne, Timothy J.; Grzywacz, Norberto M.

    2011-01-01

    The ganglion cell output of the retina constitutes a bottleneck in sensory processing in that ganglion cells must encode multiple stimulus parameters in their responses. Here we investigate encoding strategies of On-Off directionally selective retinal ganglion cells (On-Off DS RGCs) in rabbits, a class of cells dedicated to representing motion. The exquisite axial discrimination of these cells to preferred vs. null direction motion is well documented: it is invariant with respect to speed, contrast, spatial configuration, spatial frequency, and motion extent. However, these cells have broad direction tuning curves and their responses also vary as a function of other parameters such as speed and contrast. In this study, we examined whether the variation in responses across multiple stimulus parameters is systematic, that is the same for all cells, and separable, such that the response to a stimulus is a product of the effects of each stimulus parameter alone. We extracellularly recorded single On-Off DS RGCs in a superfused eyecup preparation while stimulating them with moving bars. We found that spike count responses of these cells scaled as independent functions of direction, speed, and luminance. Moreover, the speed and luminance functions were common across the whole sample of cells. Based on these findings, we developed a model that accurately predicted responses of On-Off DS RGCs as products of separable functions of direction, speed, and luminance (r = 0.98; P < 0.0001). Such a multiplicatively separable encoding strategy may simplify the decoding of these cells' outputs by the higher visual centers. PMID:21325684

  15. Metal-organic and zeolite imidazolate frameworks (MOFs and ZIFs) for highly selective separations

    SciTech Connect

    Omar M. Yaghi

    2012-09-17

    Metal-organic and zeolite imidazolate frameworks (MOFs and ZIFs) have been investigated for the realization as separation media with high selectivity. These structures are held together with strong bonds, making them architecturally, chemically, and thermally stable. Therefore, employing well designed building units, it is possible to discover promising materials for gas and vapor separation. This grant was focused on the study of MOFs and ZIFs with these specific objectives: (i) to develop a strategy for producing MOFs and ZIFs that combine high surface areas with active sites for their use in gas adsorption and separation of small organic compounds, (ii) to introduce active sites in the framework by a post-synthetic modification and metalation of MOFs and ZIFs, and (iii) to design and synthesize MOFs with extremely high surface areas and large pore volumes to accommodate large amounts of guest molecules. By the systematic study, this effort demonstrated how to introduce active functional groups in the frameworks, and this is also the origin of a new strategy, which is termed isoreticular functionalization and metalation. However, a large pore volume is still a prerequisite feature. One of the solutions to overcome this challenge is an isoreticular expansion of a MOF�������¢����������������s structure. With triangular organic linker and square building units, we demonstrated that MOF-399 has a unit cell volume 17 times larger than that of the first reported material isoreticular to it, and it has the highest porosity (94%) and lowest density (0.126 g cm-3) of any MOF reported to date. MOFs are not just low density materials; the guest-free form of MOF-210 demonstrates an ultrahigh porosity, whose BET surface area was estimated to be 6240 m2 g-1 by N2 adsorption measurements.

  16. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    SciTech Connect

    Not Available

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  17. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOEpatents

    Ghate, M.R.; Yang, R.T.

    1985-10-03

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

  18. Selectivity differences of water-soluble vitamins separated on hydrophilic interaction stationary phases.

    PubMed

    Yang, Yuanzhong; Boysen, Reinhard I; Hearn, Milton T W

    2013-06-01

    In this study, the retention behavior and selectivity differences of water-soluble vitamins were evaluated with three types of polar stationary phases (i.e. an underivatized silica phase, an amide phase, and an amino phase) operated in the hydrophilic interaction chromatographic mode with ESI mass spectrometric detection. The effects of mobile phase composition, including buffer pH and concentration, on the retention and selectivity of the vitamins were investigated. In all stationary phases, the neutral or weakly charged vitamins exhibited very weak retention under each of the pH conditions, while the acidic and more basic vitamins showed diverse retention behaviors. With the underivatized silica phase, increasing the salt concentration of the mobile phase resulted in enhanced retention of the acidic vitamins, but decreased retention of the basic vitamins. These observations thus signify the involvement of secondary mechanisms, such as electrostatic interaction in the retention of these analytes. Under optimized conditions, a baseline separation of all vitamins was achieved with excellent peak efficiency. In addition, the effects of water content in the sample on retention and peak efficiency were examined, with sample stacking effects observed when the injected sample contained a high amount of water. PMID:23554360

  19. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOEpatents

    Ghate, Madhav R. (Morgantown, WV); Yang, Ralph T. (Williamsville, NY)

    1987-01-01

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

  20. Vortex-aided inertial microfluidic device for continuous particle separation with high size-selectivity, efficiency,

    E-print Network

    Papautsky, Ian

    flow for blood plasma separation (with $62% yield) and separation of 10 lm and 4 lm diameter par to order cells into equili- bration positions for size-based particle separation, blood filtrationVortex-aided inertial microfluidic device for continuous particle separation with high size

  1. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Cotter, Theodore P. (Los Alamos, NM); Greiner, Norman R. (Los Alamos, NM); Boyer, Keith (Los Alamos, NM)

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  2. Laser isotope separation

    DOEpatents

    Robinson, C. Paul (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Cotter, Theodore P. (Munich, DE); Boyer, Keith (Los Alamos, NM); Greiner, Norman R. (Los Alamos, NM)

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  3. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Remedial action selection report. Revised final report

    SciTech Connect

    Not Available

    1991-12-01

    The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose. First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado.

  4. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Remedial action selection report

    SciTech Connect

    Not Available

    1991-12-01

    The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose. First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado.

  5. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene

    SciTech Connect

    Xiang, Sheng-Chang [University of Texas at San Antonio (UTSA); Zhang, Zhangjing [University of Texas at San Antonio (UTSA); Zhao, Cong-Gui [University of Texas at San Antonio (UTSA); Hong, Kunlun [ORNL; Zhao, Xuebo [University of Newcastle upon Tyne; Ding, De-Rong [University of Texas at San Antonio (UTSA); Xie, Ming-Hua [University of Texas, Pan American, Edinburg, TX; Wu, Chuan-De [University of Texas, Pan American, Edinburg, TX; Madhab, Das [University of Texas at San Antonio (UTSA); Gill, Rachel [University of Newcastle upon Tyne; Thomas, K Mark [University of Newcastle upon Tyne; Chen, Banglin [University of Texas at San Antonio (UTSA)

    2011-01-01

    Separation of acetylene and ethylene is an important industrial process because both compounds are essential reagents for a range of chemical products and materials. Current separation approaches include the partial hydrogenation of acetylene into ethylene over a supported Pd catalyst, and the extraction of cracked olefins using an organic solvent; both routes are costly and energy consuming. Adsorption technologies may allow separation, but microporous materials exhibiting highly selective adsorption of C{sub 2}H{sub 2}/C{sub 2}H{sub 4} have not been realized to date. Here, we report the development of tunable microporous enantiopure mixed-metal-organic framework (M'MOF) materials for highly selective separation of C{sub 2}H{sub 2} and C{sub 2}H{sub 4}. The high selectivities achieved suggest the potential application of microporous M'MOFs for practical adsorption-based separation of C{sub 2}H{sub 2}/C{sub 2}H{sub 4}.

  6. Effect of ?-irradiation of ion imprinted polymer (IIP) particles for the preconcentrative separation of dysprosium from other selected lanthanides

    Microsoft Academic Search

    V. M Biju; J. Mary Gladis; T. Prasada Rao

    2003-01-01

    The selectivity of zinc with respect to copper ions was improved by ?-irradiation of surface imprinted polymer particles. We have reported the preparation of dysprosium ion imprinted polymer (IIP) particles by covalent approach during molecular imprinting. This paper reports the results obtained after ?-irradiation of dysprosium IIP particles and their use in the preconcentration\\/separation of dysprosium from dilute aqueous solutions

  7. Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules

    EPA Science Inventory

    Novel magnetically separable TiO2-guanidine-(Ni,Co)Fe2O4 nanomaterials were prepared and characterised by a series of techniques including XRD, SEM, TEM, N2 physisorption as well as XPS and subsequently tested for their photocatalytic activities in the selective transformation of...

  8. Separated at birth: the interlinked origins of Darwin's unconscious selection concept and the application of sexual selection to race.

    PubMed

    Alter, Stephen G

    2007-01-01

    This essay traces the interlinked origins of two concepts found in Charles Darwin's writings: "unconscious selection," and sexual selection as applied to humanity's anatomical race distinctions. Unconscious selection constituted a significant elaboration of Darwin's artificial selection analogy. As originally conceived in his theoretical notebooks, that analogy had focused exclusively on what Darwin later would call "methodical selection," the calculated production of desired changes in domestic breeds. By contrast, unconscious selection produced its results unintentionally and at a much slower pace. Inspiration for this concept likely came from Darwin's early reading of works on both animal breeding and physical ethnology. Texts in these fields described the slow and unplanned divergence of anatomical types, whether animal or human, under the guidance of contrasting ideals of physical perfection. These readings, it is argued, also led Darwin to his theory of sexual selection as applied to race, a theme he discussed mainly in his book The Descent of Man (1871). There Darwin described how the racial version of sexual selection operated on the same principle as unconscious selection. He thereby effectively reunited these kindred concepts. PMID:18175603

  9. Selective extraction of metal ions from aqueous phase to ionic liquids: a novel thermodynamic approach to separations.

    PubMed

    Janssen, Camiel H C; Sánchez, Antonio; Kobrak, Mark N

    2014-11-10

    The selective extraction of metals from aqueous mixtures has generally relied on the use of selective ionophores. We present an alternative strategy that exploits a recently developed approach to extraction into an ionic liquid phase, and show that a high degree of control over selectivity can be obtained by tuning the relative concentrations of extraction agents. A thermodynamic model for the approach is presented, and an experimental separation of strontium and potassium ions is performed. It is shown that tuning the concentrations of the species involved can shift the ratio of potassium to strontium in the ionic liquid phase from 4:1 to 3:4. This extraction is performed under mild conditions with relatively common reagents. The result is a proof-of-concept for a novel separations scheme that could have great importance in a wide range of technological applications. PMID:25155578

  10. Uranium Ore Uranium is extracted

    E-print Network

    Milling of Uranium Ore Uranium is extracted from ore with strong acids or bases. The uranium is concentrated in a solid substance called"yellowcake." Chemical Conversion Plants convert the uranium in yellowcake to uranium hexafluoride (UF6 ), a compound that can be made into nuclear fuel. Enrichment

  11. Selective flotation separation of plastics by chemical conditioning with methyl cellulose

    Microsoft Academic Search

    Huiting Shen; E. Forssberg; R. J. Pugh

    2002-01-01

    The floatability of seven plastics (POM, PVC, PET, PMMA, PC, PS and ABS) in the presence of methyl cellulose (MC) and separation of plastics mixtures were investigated in this paper. It was found that the seven plastics can be separated into three groups by using the wetting agent MC. Group one includes POM and PVC. They are depressed at very

  12. Theoretical prediction of Am(iii)/Eu(iii) selectivity to aid the design of actinide-lanthanide separation agents.

    PubMed

    Bryantsev, Vyacheslav S; Hay, Benjamin P

    2015-04-21

    Selective extraction of minor actinides from lanthanides is a critical step in the reduction of radiotoxicity of spent nuclear fuels. However, the design of suitable ligands for separating chemically similar 4f- and 5f-block trivalent metal ions poses a significant challenge. First-principles calculations should play an important role in the design of new separation agents, but their ability to predict metal ion selectivity has not been systematically evaluated. In this work, we examine the ability of several density functional theory methods to predict selectivity of Am(iii) and Eu(iii) with oxygen, mixed oxygen-nitrogen, and sulfur donor ligands. The results establish a computational method capable of predicting the correct order of selectivities obtained from liquid-liquid extraction and aqueous phase complexation studies. To allow reasonably accurate predictions, it was critical to employ sufficiently flexible basis sets and provide proper account of solvation effects. The approach is utilized to estimate the selectivity of novel amide-functionalized diazine and 1,2,3-triazole ligands. PMID:25824656

  13. Pervaporation & Vapor Permeation Membrane Processes for the Selective Separation of Liquid and Vapor Mixtures

    EPA Science Inventory

    Pervaporation and vapor permeation are membrane-based processes which have been proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from dilute fermentation broths, solvent/biofu...

  14. Pervaporation and Vapor Permeation Tutorial: Membrane Processes for the Selective Separation of Liquid and Vapor Mixtures

    EPA Science Inventory

    Pervaporation and vapor permeation are membrane-based processes proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from fermentation broths, solvent/biofuel dehydration to meet ...

  15. Assembly of multiple components in a hybrid microcapsule: designing a magnetically separable Pd catalyst for selective hydrogenation.

    PubMed

    Amali, Arlin Jose; Sharma, Bikash; Rana, Rohit Kumar

    2014-09-15

    In analogy to the role of long-chain polyamines in biosilicification, poly-L-lysine facilitates the assembly of nanocomponents to design multifunctional microcapsule structures. The method is demonstrated by the fabrication of a magnetically separable catalyst that accommodates Pd nanoparticles (NPs) as active catalyst, Fe3O4 NPs as magnetic component for easy recovery of the catalyst, and silica NPs to impart stability and selectivity to the catalyst. In addition, polyamines embedded inside the microcapsule prevent the agglomeration of Pd NPs and thus result in efficient catalytic activity in hydrogenation reactions, and the hydrophilic silica surface results in selectivity in reactions depending on the polarity of substrates. PMID:25088358

  16. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    SciTech Connect

    Kenneth L. Nash; Sue B. Clark; Gregg Lumetta

    2009-09-23

    With increased application of MOX fuels and longer burnup times for conventional fuels, higher concentrations of the transplutonium actinides Am and Cm (and even heavier species like Bk and Cf) will be produced. The half-lives of the Am isotopes are significantly longer than those of the most important long-lived, high specific activity lanthanides or the most common Cm, Bk and Cf isotopes, thus the greatest concern as regards long-term radiotoxicity. With the removal and transmutation of Am isotopes, radiation levels of high level wastes are reduced to near uranium mineral levels within less than 1000 years as opposed to the time-fram if they remain in the wastes.

  17. A highly selective photometric method for uranium(VI) using a pyrimidyl azo dye in the presence of EDTA.

    PubMed

    Singh, I; Saini, R

    1994-12-01

    The sodium salt of 2,4,6-tris(1-hydroxy-4-sulphonaphthyl-2-azo)pyrimidine gives a 1:1 violet coloured complex with uranyl(II) at pH 5.5-6.5 in the presence of EDTA absorbing maximum at 560 nm, where no other metal, including lanthanides, forms a complex. The Sandell's sensitivity of colour reaction is 6.14 ngU(VI)/cm(2). The developed method has been applied to the determination of uranium(VI) in synthetic samples corresponding to mineral monazite and some uranium alloys. PMID:18966188

  18. Regeneration of hydrofluoric acid and selective separation of Si(IV) in a process for producing ultra-clean coal

    Microsoft Academic Search

    Karen M. Steel; John W. Patrick

    2004-01-01

    A technique for selectively separating approximately 65 wt.% of the Si(IV) in coal has been developed. The technique first uses aqueous hydrofluoric acid (HF) to react with aluminosilicates and quartz to form fluoride complexed Al and Si species in solution. Aluminium cations, in the form of Al(NO3)3, are then added to the solution to complex fluoride as AlF2+ and hydrolyse

  19. Atomic vapor laser isotope separation using resonance ionization

    SciTech Connect

    Comaskey, B.; Crane, J.; Erbert, G.; Haynam, C.; Johnson, M.; Morris, J.; Paisner, J.; Solarz, R.; Worden, E.

    1986-09-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power-reactor fuel has been under development for over 10 years. In June 1985, the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for enriched uranium. Resonance photoionization is the heart of the AVLIS process. We discuss those fundamental atomic parameters that are necessary for describing isotope-selective resonant multistep photoionization along with the measurement techniques that we use. We illustrate the methodology adopted with examples of other elements that are under study in our program.

  20. Use of ligand-modified micellar-enhanced ultrafiltration to selectively separate copper ions from wastewater streams

    SciTech Connect

    Shadizadeh, S.B.

    1992-12-31

    The selective removal of target ions from an aqueous solution containing ions of like charge by ligand-modified micellar-enhanced ultrafiltration (LM-MEUF), is presented. In LM-MEUF, surfactant and specially tailored ligand are added to the contaminated stream. The surfactant forms aggregates called micelles, the hydrocarbon core of which the ligand complexed with the target species will solubilize. The surfactant is chosen to have the same charge type as the target ion; therefore, other ions (with similar charge) will not associate with the micelle, which makes the separation of the target ion selective. The solution is then processed by ultrafiltration, using a membrane with pore size small enough to block the passage of the micelles. In this study the divalent copper is the target ion in the solution containing divalent calcium. The surfactant is cetylpyridinium chloride (CPC) and the ligand is 4-hexadecyloxybenzyliminodiacetic acid (C{sub 16}BIDA). Experiments were conducted with batch stirred cells and the results have been compared to separation that take place under a variety of conditions in the LM-MEUF process. Rejections of copper of up to 99.8% are observed, with almost no rejection of calcium, showing that LM-MEUF has excellent selectivity and separation efficiency.

  1. Use of ion exchange membranes as separators in batteries. [Review of factors influencing selective transport

    Microsoft Academic Search

    Shaffer

    1966-01-01

    The factors which influence selective transport are reviewed. The fluxes of electric current and matter through membranes are analyzed in terms of the thermodynamics of irreversible processes. The effects of a selective membrane on the operation of a silver\\/zinc battery are discussed.

  2. Physicochemical Characterization of Capstone Depleted Uranium Aerosols I: Uranium Concentration in Aerosols as a Function of Time and Particle Size

    SciTech Connect

    Parkhurst, MaryAnn; Cheng, Yung-Sung; Kenoyer, Judson L.; Traub, Richard J.

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing depleted uranium were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time particularly within the first minute after the shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% 30 min after perforation. In the Bradley vehicle, the initial (and maximum) uranium concentration was lower than those observed in the Abrams tank and decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in the cyclone samplers, which collected aerosol continuously for 2 h post perforation. The percentages of uranium mass in the cyclone separator stages from the Abrams tank tests ranged from 38% to 72% and, in most cases, varied with particle size, typically with less uranium associated with the smaller particle sizes. Results with the Bradley vehicle ranged from 18% to 29% and were not specifically correlated with particle size.

  3. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    Microsoft Academic Search

    M. H. Ghate; R. T. Yang

    1987-01-01

    This patent describes the method for bulk separation of multi-component gases generated in a coal gasification process wherein coal is gasified in a gasifier to produce gasification products including a mixture of gases comprising hydrogen, carbon monoxide, methane, and acid gas components carbon dioxide and hydrogen sulfide. It consists of the steps of conveying a stream comprising the mixture of

  4. Separation of alcohol-water mixtures by selective adsorption. Final technical report

    Microsoft Academic Search

    Dearborn

    1982-01-01

    The plastic waste that is generated during the manufacture of electric storage batteries has been utilized in the preparation of new and different resins. This waste is pure polyvinyl chloride and in storage batteries sintered sheets of the poly;mer are used as cell separators. The scrap, in the form of thin flakes, can be ground to any particle size range

  5. Preserving Ultra-Pure Uranium233

    Microsoft Academic Search

    Alan M Krichinsky; Steven A. Goldberg; Ian D. Hutcheon

    2011-01-01

    Uranium-233 (²³³U) is a synthetic isotope of uranium formed under reactor conditions during neutron capture by natural thorium (²³²Th). At high purities, this synthetic isotope serves as a crucial reference material for accurately quantifying and characterizing uranium-bearing materials assays and isotopic distributions for domestic and international nuclear safeguards. Separated, high purity ²³³U is stored in vaults at Oak Ridge National

  6. High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion

    E-print Network

    Willsky, Alan S.

    We consider the problem of high-dimensional Gaussian graphical model selection. We identify a set of graphs for which an efficient estimation algorithm exists, and this algorithm is based on thresholding of empirical ...

  7. Investigation of lithium isotope separation in a plasma with isotopically selective ICR heating

    Microsoft Academic Search

    A. I. Karchevskii; Yu. A. Muromkin; A. I. Myachikov; V. G. Pashkovskii; A. L. Ustinov; A. V. Chepkasov

    1993-01-01

    An experimental investigation of isotopically selective ion heating has been carried out in a lithium plasma under ion cyclotron resonance (ICR) conditions. The isotopic components (⁶Li{sup +} and ⁷Li{sup +}) were subjected to selective ICR heating in a plasma column of diameter 6 cm with an average plasma density 10¹² cm⁻³. A solenoidal rotating electric field (E â 0.5 V\\/cm),

  8. Membrane-based hybrid processes for high water recovery and selective inorganic pollutant separation

    Microsoft Academic Search

    S. M. C Ritchie; D Bhattacharyya

    2002-01-01

    The removal of heavy metals (e.g. Pb(II), Cd(II), Cu(II), etc.) and oxyanions (e.g. nitrate, As(III, V), Cr(VI), etc.) is of immense interest for treatment of groundwater and other dilute aqueous systems. However, the presence of non-toxic components, such as hardness (Ca, Mg) and sulfate, can interfere with the separation of toxic species. For example, pressure-driven membrane processes, such as reverse

  9. Selective Separation of Gallium from Acidic Leach Solutions by Emulsion Liquid Membranes

    Microsoft Academic Search

    R. A. Kumbasar; O. Tutkun

    2006-01-01

    The separation and concentration of gallium from acidic leach solutions, containing various other ions such as iron, cobalt, nickel, zinc, cadmium, lead, copper, and aluminium, by an emulsion liquid membrane (ELM) technique using tributyl phosphate (TBP) as carrier has been presented. Liquid membrane consists of a diluent, a surfactant (ECA 4360J), and an extractant (TBP), and 0.1 M HCl or 0.1 M

  10. Novel composite hollow fibre gas separation membranes with high selectivity and improved solvent resistance

    Microsoft Academic Search

    Franco Tasselli; Raffaella Aloe; Johannes C. Jansen; Enrico Drioli

    2006-01-01

    Composite gas separation membranes with a 0.1–3 ?m thick film of Hyflon AD 60X on a porous hollow fibre ultrafiltration membrane support of amorphous poly(ether ether ketone), were prepared. The influence of the coating conditions on the film thickness and on the pure gas transport properties was studied. The gas transport properties were related to the film thickness and to

  11. Size-selective separations of biological macromolecules on mesocylinder silica arrays.

    PubMed

    El-Safty, Sherif; Shenashen, M A

    2011-05-23

    In order to control the design functionality of mesocylinder filters for molecular sieving of proteins, we fabricated tight mesocylinder silica nanotube (NT) arrays as promising filter candidates for size-exclusion separation of high-concentration macromolecules, such as insulin (INS), ?-amylase (AMY), ?-lactoglobulin (?-LG), and myosin (MYO) proteins. In this study, hexagonal mesocylinder structures were fabricated successfully inside anodic alumina membrane (AAM) nanochannels using a variety of cationic and nonionic surfactants as templates. The systematic design of the nanofilters was based on densely patterned polar silane coupling agents ("linkers") onto the AAM nanochannels, leading to the fabrication of mesocylinder silica arrays with vertical alignment and open surfaces of top-bottom ends inside AAM. Further surface coating of silica NTs hybrid AAM with hydrophobic agents facilitated the production of extremely robust constructed sequences of membranes without the formation of air gaps among NT arrays. The fabricated membranes with impermeable coated layers, robust surfaces, and uniformly multidirectional cylinder pores in nanoscale sizes rapidly separate large quantities of proteins within seconds. Meanwhile, comprehensive factors that affect the performance of the molecular transport, diffusivity, and filtration rate through nanofilter membranes were discussed. The mesocylinder filters of macromolecules show promise for the efficient separation and molecular transport of large molecular weight and size as well as concentrations of proteins. PMID:21565316

  12. Evaluation of health risks associated with proposed ground water standards at selected inactive uranium mill-tailings sites

    SciTech Connect

    Hamilton, L.D.; Medeiros, W.H.; Meinhold, A.; Morris, S.C.; Moskowitz, P.D.; Nagy, J.; Lackey, K.

    1989-04-01

    The US Environmental Protection Agency (EPA) has proposed ground water standards applicable to all inactive uranium mill-tailings sites. The proposed standards include maximum concentration limits (MCL) for currently regulated drinking water contaminants, as well as the addition of standards for molybdenum, uranium, nitrate, and radium-226 plus radium-228. The proposed standards define the point of compliance to be everywhere downgradient of the tailings pile, and require ground water remediation to drinking water standards if MCLs are exceeded. This document presents a preliminary description of the Phase 2 efforts. The potential risks and hazards at Gunnison, Colorado and Lakeview, Oregon were estimated to demonstrate the need for a risk assessment and the usefulness of a cost-benefit approach in setting supplemental standards and determining the need for and level of restoration at UMTRA sites. 8 refs., 12 tabs.

  13. Uranium droplet core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    Uranium droplet nuclear rocket is conceptually designed to utilize the broad temperature range ofthe liquid phase of metallic uranium in droplet configuration which maximizes the energy transfer area per unit fuel volume. In a baseline system dissociated hydrogen at 100 bar is heated to 6000 K, providing 2000 second of Isp. Fission fragments and intense radian field enhance the dissociation of molecular hydrogen beyond the equilibrium thermodynamic level. Uranium droplets in the core are confined and separated by an axisymmetric vortex flow generated by high velocity tangential injection of hydrogen in the mid-core regions. Droplet uranium flow to the core is controlled and adjusted by a twin flow nozzle injection system.

  14. 300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report

    SciTech Connect

    Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

    2009-06-30

    The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although amendment arrival response data indicate some degree of overlap between the reactive species and thus potential for the formation of calcium-phosphate mineral phases (i.e., apatite formation), the efficiency of this treatment approach was relatively poor. In general, uranium performance monitoring results support the hypothesis that limited long-term treatment capacity (i.e., apatite formation) was established during the injection test. Two separate overarching issues affect the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. In addition, the long-term stability of uranium sequestered via apatite is dependent on the chemical speciation of uranium, surface speciation of apatite, and the mechanism of retention, which is highly susceptible to dynamic geochemical conditions. It was expected that uranium sequestration in the presence of hydroxyapatite would occur by sorption and/or surface complexation until all surface sites have been depleted, but that the high carbonate concentrations in the 300 Area would act to inhibit the transformation of sorbed uranium to chernikovite and/or autunite. Adsorption of uranium by apatite was never considered a viable approach for in situ uranium sequestration in and of itself, because by definition, this is a reversible reaction. The efficacy of uranium sequestration by apatite assumes that the adsorbed uranium would subsequently convert to autunite, or other stable uranium phases. Because this appears to not be the case in the 300 Area aquifer, even in locations near the river, apatite may have limited efficacy for the retention and long-term immobilization of uranium at the 300 Area site..

  15. Isotope separation by laser means

    DOEpatents

    Robinson, C. Paul (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Cotter, Theodore P. (Los Alamos, NM); Greiner, Norman R. (Los Alamos, NM); Boyer, Keith (Los Alamos, NM)

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  16. Multicomponent gas separation by selective surface flow (SSF) and poly-trimethylsilylpropyne (PTMSP) membranes

    Microsoft Academic Search

    M. Anand; M. Langsam; M. B. Rao; S. Sircar

    1997-01-01

    A selective surface flow (SSF) membrane consisting of a thin layer of a nanoporous carbon was produced in a tubular form using a macroporous alumina support. The membrane was tested for hydrogen enrichment applications. Simulated waste gases from a petrochemical refinery and a hydrogen pressure swing adsorption unit were used as the feed gas to the membrane. Very high rejections

  17. Design of linear ligands for selective separation using a genetic algorithm applied to molecular architecture.

    PubMed

    Santiso, Erik E; Musolino, Nicholas; Trout, Bernhardt L

    2013-07-22

    Continuous purification of chemical reaction products through adsorption-based operations during workup may present advantages over batch chromatography or crystallization. In pharmaceutical syntheses, however, the desired product is often structurally similar to byproducts or unconverted reactant, so that identifying a suitable adsorption medium is challenging. We developed an in silico screening process to design organic ligands which, when chemically bound to a solid surface, would constitute an effective adsorption for a pharmaceutically relevant mixture of reaction products. This procedure employs automated molecular dynamics simulations to evaluate potential ligands, by measuring the difference in adsorption energy of two solutes which differed by one functional group. Then, a genetic algorithm was used to iteratively improve a population of such ligands through selection and reproduction steps. This procedure identified chemical designs of the surface-bound ligands that were outside the set we considered using chemical intuition. The ligand designs achieved selectivity by exploiting phenyl-phenyl stacking which was sterically hindered in the case of one solution component. The ligand designs had selectivity energies of 0.8-1.6 kcal/mol in single-ligand, solvent-free simulations, if entropic contributions to the relative selectivity are neglected. We believe this molecular evolution technique presents a useful method for the directed exploration of chemical space or for molecular design, when the chemical properties of interest can be efficiently evaluated through simulations. PMID:23844994

  18. Reclamation at Anaconda's open pit uranium mine, new mexico

    Microsoft Academic Search

    J. F. Reynolds; M. J. Cwik; N. E. Kelley

    1978-01-01

    Nearly 22 years of open pit uranium mining in the semi-arid grasslands of northwestern New Mexico resulted in 1052 ha of surface disturbance before mining ceased in 1978. A reclamation program to rehabilitate this surface disturbance includes overburden analysis, separation and selective deposition, and physical-vegetational stabilization procedures. Initial short-term revegetation pilot projects indicate that certain types of overburden can support

  19. Coupling of non-selective adsorption with selective elution for novel in-line separation and detection of cadmium by vapour generation atomic absorption spectrometry.

    PubMed

    Zhang, Yanlin; Adeloju, Samuel B

    2015-05-01

    Non-selective adsorption of Cd(2+) ions on a cation exchange fiber and subsequent selective elution with a KI solution has been strategically utilized to develop a highly selective in-line separation of Cd(2+) ions from other metal ions for its rapid and reliable quantification by cold vapour-atomic absorption spectrometry. After retention of Cd(2+) with a high efficiency on cation exchange fiber, selective elution of the retained Cd(2+) was subsequently accomplished with 0.3M KI. Vapour generation of Cd for in-line CV-AAS determination was then achieved by merging the eluate with HCl and NaBH4. Interferences from most base metals with the vapour generation of Cd were eliminated by this approach, with the exception of Pb(2+)ions which was removed by co-precipitation with BaSO4 prior to the in-line separation. Substantial improvement in sensitivity of the in-line CV-AAS determination of Cd was achieved by increasing the sample loading time. A detection limit of 0.6 ng L(-1) (3?) was obtained with sample loading time of 120 s, corresponding to a consumption of 24 mL of sample solution. Application of the method to the determination of Cd in certified sediment and fish samples gave a good agreement with the certified values. Further validation by recovery study in real fish sample digests and water gave average Cd recoveries of 98.7±1.0% for fish and 92±3% for water with RSD of 1.5% for fish and 4% for water, respectively. PMID:25770618

  20. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    SciTech Connect

    Kenneth L. Nash

    2009-09-22

    Implementation of a closed loop nuclear fuel cycle requires the utilization of Pu-containing MOX fuels with the important side effect of increased production of the transplutonium actinides, most importantly isotopes of Am and Cm. Because the presence of these isotopes significantly impacts the long-term radiotoxicity of high level waste, it is important that effective methods for their isolation and/or transmutation be developed. Furthermore, since transmutation is most efficiently done in the absence of lanthanide fission products (high yield species with large thermal neutron absorption cross sections) it is important to have efficient procedures for the mutual separation of Am and Cm from the lanthanides. The chemistries of these elements are nearly identical, differing only in the slightly stronger strength of interaction of trivalent actinides with ligand donor atoms softer than O (N, Cl-, S). Research being conducted around the world has led to the development of new reagents and processes with considerable potential for this task. However, pilot scale testing of these reagents and processes has demonstrated the susceptibility of the new classes of reagents to radiolytic and hydrolytic degradation. In this project, separations of trivalent actinides from fission product lanthanides have been investigated in studies of 1) the extraction and chemical stability properties of a class of soft-donor extractants that are adapted from water-soluble analogs, 2) the application of water soluble soft-donor complexing agents in tandem with conventional extractant molecules emphasizing fundamental studies of the TALSPEAK Process. This research was conducted principally in radiochemistry laboratories at Washington State University. Collaborators at the Radiological Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) have contributed their unique facilities and capabilities, and have supported student internships at PNNL to broaden their academic experience. New information has been developed to qualify the extraction potential of a class of pyridine-functionalized tetraaza complexants indicating potential single contact Am-Nd separation factors of about 40. The methodology developed for characterization will find further application in our continuing efforts to synthesize and characterize new reagents for this separation. Significant new insights into the performance envelope and supporting information on the TALSPEAK process has also been developed.

  1. Nickel(II)-immobilized sulfhydryl cotton fiber for selective binding and rapid separation of histidine-tagged proteins.

    PubMed

    He, Xiao-Mei; Zhu, Gang-Tian; Lu, Wei; Yuan, Bi-Feng; Wang, Hong; Feng, Yu-Qi

    2015-07-31

    In the current study, a novel nickel(II)-immobilized sulfhydryl cotton fiber (SCF-Ni(2+)) was prepared in a simple way based on the coordination effect between Ni(2+) and thiol group on the surface of SCF. The composition and element mapping of SCF-Ni(2+) fibers were demonstrated by energy-dispersive X-ray (EDX) spectroscopy. Based on the high affinity of Ni(2+) to 6×His on histidine-tagged (His-tagged) proteins, SCF-Ni(2+) fibers were then further used as an immobilized metal ion affinity chromatography (IMAC) adsorbent for selective binding and rapid separation of His-tagged proteins using an in- pipette-tip SPE format. Our results showed that SCF-Ni(2+) adsorbent can selectively capture His-tagged proteins from protein mixture and Escherichia coli cell lysates. Taken together, the developed method provides a rapid, convenient and efficient approach for the purification of His-tagged proteins. PMID:26087962

  2. Mechanical- and oil-durable superhydrophobic polyester materials for selective oil absorption and oil/water separation.

    PubMed

    Wu, Lei; Zhang, Junping; Li, Bucheng; Wang, Aiqin

    2014-01-01

    The low stability and complicated fabrication procedures seriously hindered practical applications of superhydrophobic materials. Here we present a facile approach for preparing durable superhydrophobic polyester materials by dip-coating in a nanocomposite solution of polymerized tetraethoxysilane and n-hexadecyltriethoxysilane. The coated samples exhibit excellent superhydrophobicity, superoleophilicity, mechanical and chemical stabilities. This is attributed to the tight binding of the nanocomposite on the polyester fibers and the inherent stability of silicone. The coated samples can quickly absorb petrol, diesel and crude oil, and show very high selectivity in oil/water separation. In addition, the coated samples could maintain their superhydrophobicity, oil absorption capacity and oil/water selectivity after harsh mechanical damage, 90 days of immersion in oils and ten cycles of absorption-desorption. Moreover, this approach is simple and can be easily scaled up for producing samples on a large size, which makes it very promising for practical oil absorption. PMID:24183438

  3. Are spatial selection and identity extraction separable when attention is controlled endogenously?

    Microsoft Academic Search

    Shahab Ghorashi; Thomas M. Spalek; James T. Enns; Vincent Di Lollo

    2009-01-01

    Visual search for a target involves two processes: spatial selection and identity extraction. Ghorashi, Enns, and Di Lollo\\u000a (2008) found these processes to be independent and surmised that they were carried out along distinct visual pathways: dorsal\\u000a and ventral, respectively. The two experiments that are described in the present article evaluated this hypothesis. Attentional-blink\\u000a methodology was combined with voluntary spatial

  4. Oxidation states of uranium in depleted uranium particles from Kuwait

    Microsoft Academic Search

    B. Salbu; K. Janssens; O. C. Lind; K. Proost; L. Gijsels; P. R. Danesi

    2004-01-01

    The oxidation states of uranium in depleted uranium (DU) particles were determined by synchrotron radiation based ?-XANES, applied to individual particles isolated from selected samples collected at different sites in Kuwait. Based on scanning electron microscopy with X-ray microanalysis prior to ?-XANES, DU particles ranging from submicrons to several hundred micrometers were observed. The median particle size depended on sources

  5. Extraction and separation of bismuth(III).

    PubMed

    Langade, A D; Shinde, V M

    1981-10-01

    Separation of bismuth from beryllium, lead, iron(III), indium, scandium, lanthanum, antimony(III), zirconium, titanium, thorium, vanadium(V), molybdenum(VI), uranium (VI) and chromium(VI) is achieved by selective extraction of bismuth from 0.1M sodium salicylate solution (adjusted to pH 7) into mesityl oxide (MeO). The extracted species is Bi (HOC(6)H(4)COO)(3).3MeO. The results are accurate within +/- 0.5%, with a standard deviation of 0.8%. The separation and determination of bismuth takes only 15 min. PMID:18963000

  6. Development of the Plasma Separation Process

    SciTech Connect

    Korn, S.L.; Ridolphi, F.

    1982-01-01

    The Plasma Separation Process (PSP) is being developed by TRW for the U.S. Department of Energy as part of the Advanced Isotope Separation (AIS) program for uranium enrichment. The process employs the principle of ion cyclotron resonance to selectively energize the U-235 isotope in a plasma containing U-235 and U-238 ions. Under DOE contract, TRW has assembled integrated test facilities for the development of PSP for uranium enrichment. The latest of these test facilities, capable of demonstrating full process performance, was completed last year and became operational in October 1981. A PSP Development Module Facility, whose conceptual design was recently completed by TRW and Union Carbide Corporation, Nuclear Division, represents the final process scale-up to a production-sized unit.

  7. Study of selective heating at ion cyclotron resonance for the plasma separation process

    NASA Astrophysics Data System (ADS)

    Compant La Fontaine, A.; Pashkovsky, V. G.

    1995-12-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucléaires de Saclay and Cité Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number kz is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the kz spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge-Kutta method. The influence of ion-ion collisions, inhomogeneity of the static magnetic field B0, and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44Ca heating measurements, made with an energy analyzer.

  8. Hydrothermal alteration of organic matter in uranium ores, Elliot Lake, Canada: Implications for selected organic-rich deposits

    SciTech Connect

    Mossman, D.J. [Mount Allison Univ., Sackville (Canada)] [Mount Allison Univ., Sackville (Canada); Nagy, B. [Univ. of Arizona, Tucson (United States)] [Univ. of Arizona, Tucson (United States); Davis, D.W. [Royal Ontario Museum, Toronto, Ontario (Canada)] [Royal Ontario Museum, Toronto, Ontario (Canada)

    1993-07-01

    Organic matter in the uraniferous Matinenda Formation, Elliot Lake, is preserved in the forms of syngenetic kerogen and solid bitumen as it is in many of the Oklo uranium deposits and in the Witwatersrand gold-uranium ores. The Elliot Lake kerogen is a vitrinite-like material considered to be remnants of the Precambrian cyanobacterial mats. The kerogen at Elliot Lake has reflectances (in oil) ranging from 2.63-7.31% RO{sub max}, high aromaticity, relatively low (0.41-0.60) atomic H/C ratios, and it contains cryptocrystalline graphite. Bitumen, present primarily as dispersed globules (up to 0.5 mm dia.), has reflectances from 0.72-1.32% RO{sub max}, atomic H/C ratios of 0.71-0.81, and is somewhat less aromatic than the kerogen. Overall similarity in molecular compositions indicates that liquid bitumen was derived from kerogen by processes similar to hydrous pyrolysis. The carbon isotopic composition of kerogen ({minus}15.62 to {minus}24.72%), and the now solid bitumen ({minus}25.91 to {minus}33.00%) are compatible with these processes. Despite having been subjected to several thermal episodes, ca. 2.45 Ga old kerogen of microbiological origin here survived as testimony of the antiquity of life on Earth. U-Pb isotopic data from discrete kerogen grains at Elliot Lake form a scattered array intersecting concordia at 2130 {+-} 100 Ma, correspond to the Nipissing event. U-Pb systems were totally reset by this event. Uranium and lead show subsequently partial mobility, the average of which is indicated by the lower concordia intersect of 550 {+-} 260 Ma. The migrated bitumen contains virtually no uranium and thorium but has a large excess of {sup 206}Pb, which indicates that the once liquid bitumen must have acted as a sink for mobile intermediate decay products of {sup 238}U. Emplacement of the Nipissing diabase may have been responsible for producing the bitumen and, indirectly, for its enrichment in {sup 206}Pb as a result of outgassing of {sup 222}Rn.

  9. Molecular imprinting-based separation methods for selective analysis of fluoroquinolones in soils.

    PubMed

    Turiel, Esther; Martín-Esteban, Antonio; Tadeo, José Luis

    2007-11-23

    Molecularly imprinted polymers (MIPs) for fluoroquinolone antibiotics (FQs) have been synthesised in one single preparative step by precipitation polymerisation using ciprofloxacin (CIP) as template. Combinations of methacrylic acid (MAA) or 4-vinylpyridine (VP) as functional monomers, ethylene glycol dimethacrylate as crosslinker and dichloromethane, methanol, acetonitrile or toluene as porogens were tested. The experiments carried out by molecularly imprinted solid-phase extraction (MISPE) in cartridges did not allow to detect any imprint effect in the VP-based polymers whereas it was clearly observed in the MAA-based polymers. Among them, the MIP prepared in methanol using MAA as monomer showed the best performance and was chosen for further experiments. The ability of the selected MIP for the selective recognition of other widely used FQs (enoxacin, norfloxacin, danofloxacin and enrofloxacin) and quinolones (Qs) (cinoxacin, flumequine, nalidixic acid and oxolinic acid) was evaluated. The obtained results revealed the high selectivity of the obtained polymer, which was able to distinguish between FQs, that were recognised and retained onto the MIP cartridge, and Qs, which were washed out during loading and washing steps. The MIP was then packed into a stainless steel column (50mmx4.6mm i.d.) and evaluated as chromatography column for screening of FQs in soil samples. The mobile phase composition, flow rate, and the elution profile were then optimised in order to improve peak shape without sacrifying imprinting factor. Finally, under optimised conditions, soil samples spiked with CIP or with a mixture of fluoroquinolones in concentration of 0.5microgg(-1) were successfully analysed by the developed MIP-based procedures. PMID:17961582

  10. URANIUM RECOVERY AND PURIFICATION PROCESS AND PRODUCTION OF HIGH PURITY URANIUM TETRAFLUORIDE

    Microsoft Academic Search

    R. H. Bailes; R. S. Long; R. R. Grinstead

    1962-01-01

    A process is outlined for separating uranium from a large variety of ; impurities to give a purified solution from which pure UFâ can be obtained. ; The process comprises forming a solution containing >5 M chloride and the ; contaminated uranium, passing the solution through an anionic exchange resin to ; adsorb the anionic uranium chloride complexes and some

  11. The role of liquid membranes in the selective separation and recovery of zinc for the regeneration of Cr(III) passivation baths

    Microsoft Academic Search

    A. Urtiaga; E. Bringas; R. Mediavilla; I. Ortiz

    2010-01-01

    This work aims at the separation of the metallic impurities, namely Zn2+ and Fe3+, from trivalent chromium spent passivation baths used in the galvanic industry by means of selective liquid membranes as an efficient and necessary step in the regeneration of the baths for their useful life extension. A Liqui-Cel hollow fiber membrane contactor separated the spent bath from an

  12. Photophoretic separation of single-walled carbon nanotubes: a novel approach to selective chiral sorting.

    PubMed

    Smith, David; Woods, Christopher; Seddon, Annela; Hoerber, Heinrich

    2014-03-21

    For over two decades single-walled carbon nanotubes (SWCNTs) have been used in a broad range of electronic and optical applications, however the selective chiral sorting of SWCNTs with guaranteed optoelectronics characteristics is imperative to the industrial realization of such applications. In this paper we provide the results of modeling an optical sorting method that utilizes the inherent opto-electronic properties of the SWCNTs, thus guaranteeing the properties of the extracted populations. Utilizing the resonant transfer of photonic momentum, we simulate chiral sorting of two chiral populations in an aqueous environment based on the frequency dependent optical absorption properties of the nanotubes. We show that photonic sorting is not only feasible, but may be up to faster than density gradient centrifugation techniques. Our simulations investigate the effects of laser power, temperature and orientation. We find that 96% purity can be achieved in less than 12 minutes by operating at 9 × 10(7) W m(-2) (20 mW in a 20 ?m chamber) at elevated temperatures. PMID:24487342

  13. WATER AND WASTEWATER POLISHING USING 3M SELECTIVE SEPARATION REMEDIATION CARTRIDGE TECHNOLOGY

    SciTech Connect

    Hoffmann, K. M.; Scanlan, T. J.; Seely, D. C.

    2002-02-25

    3M has developed technology for selectively removing trace levels of dissolved contaminant materials from liquids using systems operating at flow rates up to 50 gallons per minute. This technology combines active particle chemistries with a particle-loaded membrane to achieve a new medium for liquid waste processing--a spiral wound filter cartridge. This technology has shown success by generating high decontamination factors and reducing contaminants to part per trillion levels. The spiral wound cartridge offers simplified installation, convenient replacement, and clean, easy disposal of a concentrated waste. By incorporating small, high surface area particles (5 to 80 microns) into a sturdy, yet porous, membrane greater removal efficiencies of even trace contaminants can be achieved at higher flow rates than with conventional column systems. In addition, the captive-particle medium prevents channeling of liquids and insures uniform flow across the sorbing particle surface. The cartridges fit into standard, commercially-available housings and whole system capital costs are substantially lower than those of column or reverse osmosis systems. Developmental work at high degrees of water polishing have included removal of mercury from contaminated wastewater, various radionuclides from process water, and organometallic species from surface water discharges. Laboratory testing and on-site demonstration data of these applications show the levels of success that have been achieved thus far.

  14. Development of a Precipitation Based Separation Scheme for Selective Removal and Recovery of Heavy Metals from Cadmium Rich Electroplating Industry Effluents

    Microsoft Academic Search

    Sezin Islamoglu; Levent Yilmaz; H. O. Ozbelge

    2006-01-01

    The treatment of electroplating wastes is a serious worldwide problem, because of their high content of many different heavy metals. Chemical precipitation based treatment methods could be an important alternative for fractional selective separation of heavy metals if they are systematically developed by sequencing of pH, adjusting the added portions of precipitating agents, and selecting the optimum time period before

  15. Wide Angle, Single Screen, Gridded Square-Loop Frequency Selective Surface for Diplexing Two Closely Separated Frequency Bands

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao (Inventor)

    1996-01-01

    The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incidence angle from 0 deg normal to 40 deg from normal.

  16. Using a Buffer Gas Modifier to Change Separation Selectivity in Ion Mobility Spectrometry

    PubMed Central

    Fernández-Maestre, Roberto; Wu, Ching; Hill, Herbert H.

    2010-01-01

    The mobilities of a set of common ?-amino acids, four tetraalkylammonium ions, 2,4-dimethyl pyridine (2,4-lutidine), 2,6-di-tert-butyl pyridine (DTBP), and valinol were determined using electrospray ionization-ion mobility spectrometry-quadrupole mass spectrometry (ESI-IMS-QMS) while introducing 2-butanol into the buffer gas. The mobilities of the test compounds decreased by varying extents with 2-butanol concentration in the mobility spectrometer. When the concentration of 2-butanol increased from 0.0 to 6.8 mmol m?3 (2.5×102 ppmv), percentage reductions in mobilities were: 13.6% (serine), 12.2% (threonine), 10.4% (methionine), 10.3% (tyrosine), 9.8% (valinol), 9.2% (phenylalanine), 7.8% (tryptophan), 5.6% (2,4-lutidine), 2.2% (DTBP), 1.0% (tetramethylammonium ion, TMA, and tetraethylammonium ion, TEA), 0.0% (tetrapropylammonium ion, TPA), and 0.3% (tetrabutylammonium ion, TBA). These variations in mobility depended on the size and steric hindrance on the charge of the ions, and were due to formation of large ion-2-butanol clusters. This selective variation in mobilities was applied to the resolution of a mixture of compounds with similar reduced mobilities such as serine and valinol, which overlapped in N2-only buffer gas in the IMS spectrum. The relative insensitivity of tetraalkylammonium ions and DTBP to the introduction of 2-butanol into the buffer gas was explained by steric hindrance of the four alkyl substituents in tetraalkylammonium ions and the two tert-butyl groups in DTBP, which shielded the positive charge of the ion from the attachment of 2-butanol molecules. Low buffer gas temperatures (100 °C) produced the largest reductions in mobilities by increasing ion-2-butanol interactions and formation of clusters; high temperatures (250 °C) prevented the formation of clusters, and no reduction in ion mobility was obtained with the introduction of 2-butanol into the buffer gas. Low temperatures and high concentrations of 2-butanol produced a series of ion clusters with one to three 2-butanol molecules in compounds without steric hindrance. Clusters of two and three molecules of 2-butanol were also visible. Ligand-saturation on the positive ions with 2-butanol molecules occurred at high concentrations of modifier (6.8 mmol m?3 at 150°C); when saturated, no further reduction in mobility occurred when 2-butanol was introduced into the buffer gas. PMID:21344065

  17. Selective Breeding for Infant Rat Separation-Induced Ultrasonic Vocalizations: Developmental Precursors of Passive and Active Coping Styles

    PubMed Central

    Brunelli, Susan A.; Hofer, Myron A.

    2009-01-01

    Human depression and anxiety disorders show inherited biases across generations, as do antisocial disorders characterized by aggression. Each condition is preceded in children by behavioral inhibition or aggressive behavior, respectively, and both are characterized by separation anxiety disorders. In affected families, adults and children exhibit different forms of altered autonomic nervous system regulation and hypothalamic-pituitary-adrenal activity in response to stress. Because it is difficult to determine mechanisms accounting for these associations, animal studies are useful for studying the fundamental relationships between biological and behavioral traits. Pharmacologic and behavioral studies suggest that infant rat ultrasonic vocalizations (USV) are a measure of an early anxiety-like state related to separation anxiety. However, it was not known whether or not early ultrasound emissions in infant rats are markers for genetic risk for anxiety states later in life. To address these questions, we selectively bred two lines of rats based on high and low rates of USV to isolation at postnatal (P) 10 days of age. To our knowledge, ours is the only laboratory that has ever selectively bred on the basis of an infantile trait related to anxiety. The High and Low USV lines show two distinct sets of patterns of behavior, physiology and neurochemistry from infancy through adulthood. As adults High line rats demonstrate “anxious”/“depressed” phenotypes in behavior and autonomic nervous system (ANS) regulation to standard laboratory tests. In Lows, on the other hand, behavior and autonomic regulation are consistent with an “aggressive” phenotype. The High and Low USV lines are the first genetic animal models implicating long-term associations of contrasting “coping styles” with early attachment responses. They thus present a potentially powerful model for examining gene-environment interactions in the development of life-long affective regulation. PMID:17543397

  18. Selective breeding for infant rat separation-induced ultrasonic vocalizations: developmental precursors of passive and active coping styles.

    PubMed

    Brunelli, Susan A; Hofer, Myron A

    2007-09-01

    Human depression and anxiety disorders show inherited biases across generations, as do antisocial disorders characterized by aggression. Each condition is preceded in children by behavioral inhibition or aggressive behavior, respectively, and both are characterized by separation anxiety disorders. In affected families, adults and children exhibit different forms of altered autonomic nervous system regulation and hypothalamic-pituitary-adrenal activity in response to stress. Because it is difficult to determine mechanisms accounting for these associations, animal studies are useful for studying the fundamental relationships between biological and behavioral traits. Pharmacologic and behavioral studies suggest that infant rat ultrasonic vocalizations (USV) are a measure of an early anxiety-like state related to separation anxiety. However, it was not known whether or not early ultrasound emissions in infant rats are markers for genetic risk for anxiety states later in life. To address these questions, we selectively bred two lines of rats based on high and low rates of USV to isolation at postnatal (P) 10 days of age. To our knowledge, ours is the only laboratory that has ever selectively bred on the basis of an infantile trait related to anxiety. The High and Low USV lines show two distinct sets of patterns of behavior, physiology and neurochemistry from infancy through adulthood. As adults High line rats demonstrate "anxious"/"depressed" phenotypes in behavior and autonomic nervous system (ANS) regulation to standard laboratory tests. In Lows, on the other hand, behavior and autonomic regulation are consistent with an "aggressive" phenotype. The High and Low USV lines are the first genetic animal models implicating long-term associations of contrasting "coping styles" with early attachment responses. They thus present a potentially powerful model for examining gene-environment interactions in the development of life-long affective regulation. PMID:17543397

  19. Novel microorganism for selective separation of coal from ash and pyrite. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1996-12-31

    The selective separation of pyrite and ash-forming minerals from coal can be accomplished by flotation, agglomeration and selective flocculation. The methods currently used for selective flocculation of coals include addition of natural or synthetic polymeric flocculants along with precise pH control. In some cases, these flocculants are nonselective or work imperfectly. It is known that many highly charged planktonic algae and bacteria will adhere to certain solid surfaces if the charge or hydrophobic interaction between the organism and the solids are favorable for adhesion. The resultant microorganism-mineral entities, if formed, can flocculate and can be separated. In addition, many living organisms produce extracellular biopolymers that can also cause flocculation. The microorganism, M. phlei, has the properties of being both highly charged and highly hydrophobic. The aim of the present investigation is to study the effectiveness of M. phlei and biopolymers derived from the organism for selective flocculation and separation of fine coal from pyrite and ash.

  20. Mechanistic Investigation of Solvent Extraction Based on Anion-Functionalized Ionic Liquids for Selective Separation of Rare-Earth Ions

    SciTech Connect

    Sun, Xiaoqi [ORNL; Luo, Huimin [ORNL; Dai, Sheng [ORNL

    2013-01-01

    In this study, solvation has been found to be a dominant mechanism in a comprehensive ionic liquid based extraction system for rare earth elements (REEs). Trioctylmethylammonium di(2-ethylhexyl)phosphate ([TOMA][DEHP]), an ionic-liquid extractant, was used in 1-alkyl-3-methylimidizolium bis[(trifluoromethyl)sulfonyl]imide ([Cnmim][NTf2], n = 4, 6, 8, 10) and 1-alkyl-3-methylimidizolium bis(perfluoroethanesulfonyl)imide ([Cnmim][BETI], n = 4, 6, 8, 10) for the separation of REEs. Surprisingly, a very similar extraction behavior was observed even as the carbon chain length on the ionic-liquid (IL) cation increased from butyl (C4) to hexyl (C6), to octyl (C8), to decyl (C10). This behavior is in sharp contrast to that exhibited by the conventional neutral extractants, whose extraction efficiencies are strongly dependent on the hydrophobicity of IL cations. Furthermore, the addition of IL cations ([Cnmim]+) or IL anions ([NTf2]- or [BETI]-) to the aqueous phase had little effect on the extraction behavior of the above extraction system, ruling out the strong involvement of the ion-exchange mechanism associated with traditional IL-based extraction systems. Results showed that the extractabilities and selectivities of REEs using [TOMA][DEHP] in [C10mim][NTf2]/[BETI] are several orders of magnitude better than those achieved using conventional organic solvent, diisopropylbenzene (DIPB). This study highlights the potential of developing a comprehensive IL-based extraction strategy for REEs separations.

  1. Methyl parathion imprinted polymer nanoshell coated on the magnetic nanocore for selective recognition and fast adsorption and separation in soils.

    PubMed

    Xu, Shiying; Guo, Changjuan; Li, Yongxian; Yu, Zerong; Wei, Chaohai; Tang, Youwen

    2014-01-15

    Core-shell magnetic methyl parathion (MP) imprinted polymers (Fe3O4@MPIPs) were fabricated by a layer-by-layer self-assembly process. In order to take full advantage of the synergistic effect of hydrogen-binding interactions and ?-? accumulation between host and guest for molecular recognition, methacrylic acid and 4-vinyl pyridine were chosen as co-functional monomers and their optimal proportion were investigated. The core-shell and crystalline structure, morphology and magnetic properties of Fe3O4@MPIPs were characterized. The MP-imprinted nanoshell was almost uniform and about 100nm thick. Binding experiments demonstrated that Fe3O4@MPIPs possessed excellent binding properties, including high adsorption capacity and specific recognition, as well as fast adsorption kinetics and a fast phase separation rate. The equilibration adsorption capacity reached up to 9.1mg/g, which was 12 times higher than that of magnetic non-imprinted polymers, while adsorption reached equilibrium within 5min at a concentration of 0.2mmol/L. Furthermore, Fe3O4@MPIPs successfully provided selective separation and removal of MP in soils with a recovery and detection limit of 81.1-87.0% and 5.2ng/g, respectively. PMID:24275470

  2. Well-defined nanostructured surface-imprinted polymers for highly selective magnetic separation of fluoroquinolones in human urine.

    PubMed

    He, Yonghuan; Huang, Yanyan; Jin, Yulong; Liu, Xiangjun; Liu, Guoquan; Zhao, Rui

    2014-06-25

    The construction of molecularly imprinted polymers on magnetic nanoparticles gives access to smart materials with dual functions of target recognition and magnetic separation. In this study, the superparamagnetic surface-molecularly imprinted nanoparticles were prepared via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization using ofloxacin (OFX) as template for the separation of fluoroquinolones (FQs). Benefiting from the living/controlled nature of RAFT reaction, distinct core-shell structure was successfully constructed. The highly uniform nanoscale MIP layer was homogeneously grafted on the surface of RAFT agent TTCA modified Fe3O4@SiO2 nanoparticles, which favors the fast mass transfer and rapid binding kinetics. The target binding assays demonstrate the desirable adsorption capacity and imprinting efficiency of Fe3O4@MIP. High selectivity of Fe3O4@MIP toward FQs (ofloxacin, pefloxacin, enrofloxacin, norfloxacin, and gatifloxacin) was exhibited by competitive binding assay. The Fe3O4@MIP nanoparticles were successfully applied for the direct enrichment of five FQs from human urine. The spiked human urine samples were determined and the recoveries ranging from 83.1 to 103.1% were obtained with RSD of 0.8-8.2% (n = 3). This work provides a versatile approach for the fabrication of well-defined MIP on nanomaterials for the analysis of complicated biosystems. PMID:24853973

  3. Size-selective DNA separation: recovery spectra help determine the sodium chloride (NaCl) and polyethylene glycol (PEG) concentrations required.

    PubMed

    He, Zhangyong; Xu, Hong; Xiong, Min; Gu, Hongchen

    2014-10-01

    In the presence of sodium chloride (NaCl), DNA fragments can be size-selectively separated by varying the final concentration of polyethylene glycol (PEG). This separation strategy in combination with the use of paramagnetic particles provides a valuable platform for achieving the desired DNA size interval, which is important in automated library preparation for high-throughput DNA sequencing. Here, we report the establishment of recovery spectra of DNA fragments that enable the determination of suitable NaCl and PEG concentrations for size-selective separation. Firstly, at a given NaCl concentration, the recovery equation was obtained by fitting the DNA recovery ratios versus the PEG concentrations using the logistic function to determine the required parameters. Secondly, the slope function of the recovery equation was achieved by deducing its first derivative. Therefore, the recovery spectrum can be generated using the slope function based on those parameters. According to the recovery spectra of different length DNA fragments, suitable NaCl and PEG concentrations can be determined, respectively, by calculating their resolution values and recovery ratios. The strategy was effectively applied to the size-selective separation of 532-, 400-, and 307-bp fragments at the selected reagent concentrations with recoveries of 96.9, 64.7, and 85.9%, respectively. Our method enables good predictions of NaCl and PEG concentrations for size-selective DNA separation. PMID:25044673

  4. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOEpatents

    Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

    2001-01-01

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  5. Corrosion-resistant uranium

    DOEpatents

    Hovis, Jr., Victor M. (Kingston, TN); Pullen, William C. (Knoxville, TN); Kollie, Thomas G. (Oak Ridge, TN); Bell, Richard T. (Knoxville, TN)

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  6. Determination of uranium in zircon

    USGS Publications Warehouse

    Cuttitta, F.; Daniels, G.J.

    1959-01-01

    A routine fluorimetric procedure is described for the determination of trace amounts of uranium in zircon. It employs the direct extraction of uranyl nitrate with ethyl acetate using phosphate as a retainer for zirconium. Submicrogram amounts or uranium are separated in the presence of 100,000 times the amount of zirconium. The modified procedure has been worked out using synthetic mixtures of known composition and zircon. Results of analyses have an accuracy of 97-98% of the contained uranium and a standard deviation of less than 2.5%. ?? 1959.

  7. Mechanistic investigation of solvent extraction based on anion-functionalized ionic liquids for selective separation of rare-earth ions.

    PubMed

    Sun, Xiaoqi; Luo, Huimin; Dai, Sheng

    2013-06-21

    In this study, solvation has been found to be a dominant mechanism in an ionic liquid (IL)-based extraction system for rare earth elements (REEs). Trioctylmethylammonium di(2-ethylhexyl)phosphate ([TOMA][DEHP]), an anion-functionalized IL extractant, was used in 1-alkyl-3-methylimidizolium bis[(trifluoromethylsulfonyl)]imide ([C(n)mim][NTf2], n = 4, 6, 8, 10) and 1-alkyl-3-methylimidizolium bis(perfluoroethanesulfonyl)imide ([C(n)mim][BETI], n = 4, 6, 8, 10) for the separation of REEs. Surprisingly, a very similar extraction behavior was observed even as the carbon chain length on the IL cation increased from butyl (C4) to decyl (C10). This behavior is in sharp contrast to that exhibited by the conventional molecular extractants, whose extraction efficiencies are strongly dependent on the hydrophobicity of IL cations. Furthermore, the addition of IL cations ([C(n)mim](+)) in [C(n)mim]Cl form or IL anions ([NTf2](-) or [BETI](-)) in Li[NTf2] or Li[BETI] form to the aqueous phase had a minor effect on the extraction behavior of the above extraction system, ruling out the strong involvement of the ion-exchange mechanism associated with traditional IL-based extraction systems. Results showed that the extractabilities and selectivities of REEs using [TOMA][DEHP] in [C10mim][NTf2]/[BETI] are several orders of magnitude better than those achieved using a conventional organic solvent, diisopropylbenzene (DIPB). This study highlights the potential of developing a comprehensive IL-based extraction strategy for REEs separations via ionic extractants. PMID:23595558

  8. Effect of interwire separation on growth kinetics and properties of site-selective GaAs nanowires

    SciTech Connect

    Rudolph, D.; Schweickert, L.; Morkötter, S.; Loitsch, B.; Hertenberger, S.; Becker, J.; Bichler, M.; Finley, J. J.; Koblmüller, G., E-mail: Gregor.Koblmueller@wsi.tum.de [Walter Schottky Institut and Physik Department, Technische Universität München, Garching 85748 (Germany); Abstreiter, G. [Walter Schottky Institut and Physik Department, Technische Universität München, Garching 85748 (Germany); Institute for Advanced Study, Technische Universität München, Garching 85748 (Germany)

    2014-07-21

    We report tuning of the growth kinetics, geometry, and properties of autocatalytic GaAs nanowires (NW) by precisely controlling their density on SiO{sub 2}-mask patterned Si (111) substrates using selective area molecular beam epitaxy. Using patterned substrates with different mask opening size (40–120?nm) and pitch (0.25–3??m), we find that the NW geometry (length, diameter) is independent of the opening size, in contrast to non-catalytic GaAs NWs, whereas the NW geometry strongly depends on pitch, i.e., interwire separation and NW density. In particular, two distinct growth regimes are identified: a diffusion-limited regime for large pitches (low NW density) and a competitive growth regime for smaller pitches (high NW density), where axial and radial NW growth rates are reduced. The transition between these two regimes is significantly influenced by the growth conditions and shifts to smaller pitches with increasing As/Ga flux ratio. Ultimately, the pitch-dependent changes in growth kinetics lead to distinctly different photoluminescence properties, highlighting that mask template design is a very critical parameter for tuning intrinsic NW properties.

  9. Separative power of plasma centrifuges

    NASA Astrophysics Data System (ADS)

    Simpson, S. W.

    1981-10-01

    A three-fluid model of rotating plasmas is used to predict the efficiency of plasma centrifuges. It is found that partially ionized plasma centrifuges of the type investigated cannot match the separative power of gas centrifuges for uranium enrichment.

  10. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, William E. (Naperville, IL); Ackerman, John P. (Downers Grove, IL); Battles, James E. (Oak Forest, IL); Johnson, Terry R. (Wheaton, IL); Pierce, R. Dean (Naperville, IL)

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.

  11. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature.

    PubMed

    Li, Peng; He, Yabing; Zhao, Yunfeng; Weng, Linhong; Wang, Hailong; Krishna, Rajamani; Wu, Hui; Zhou, Wei; O'Keeffe, Michael; Han, Yu; Chen, Banglin

    2015-01-01

    Self-assembly of a trigonal building subunit with diaminotriazines (DAT) functional groups leads to a unique rod-packing 3D microporous hydrogen-bonded organic framework (HOF-3). This material shows permanent porosity and demonstrates highly selective separation of C2H2/CO2 at ambient temperature and pressure. PMID:25394888

  12. Polyoxometalates-based heterometallic organic-inorganic hybrid materials for rapid adsorption and selective separation of methylene blue from aqueous solutions.

    PubMed

    Yi, Fei-Yan; Zhu, Wei; Dang, Song; Li, Jian-Ping; Wu, Dai; Li, Yun-hui; Sun, Zhong-Ming

    2015-02-25

    A series of LnCu-polyoxometalates (POMs) were used for dye-wastewater treatment with rapid (within 1 min) and large-scale adsorption (up to 391.3 mg g(-1)) as well as excellent selective separation of cationic dyes. Furthermore, the adsorbed dyes can be easily desorbed, and the POMs still work very efficiently even after three cycles. PMID:25619159

  13. ANTHEM BLUE CROSS AND BLUE SHIELD You may select from two separate dental care plans to meet your individual needs. Premium cost

    E-print Network

    - 34 - ANTHEM BLUE CROSS AND BLUE SHIELD You may select from two separate dental care plans to meet two choices are: Anthem Blue Dental PPO Plus Anthem Blue Dental PPO NOTE: Children are eligible in retirement. PERA retirement benefits are based on your highest three years of earnings. Anthem Blue Dental

  14. Evidence for Natural Selection in Nucleotide Content Relationships Based on Complete Mitochondrial Genomes: Strong Effect of Guanine Content on Separation between Terrestrial and Aquatic Vertebrates.

    PubMed

    Sorimachi, Kenji; Okayasu, Teiji

    2015-01-01

    The complete vertebrate mitochondrial genome consists of 13 coding genes. We used this genome to investigate the existence of natural selection in vertebrate evolution. From the complete mitochondrial genomes, we predicted nucleotide contents and then separated these values into coding and non-coding regions. When nucleotide contents of a coding or non-coding region were plotted against the nucleotide content of the complete mitochondrial genomes, we obtained linear regression lines only between homonucleotides and their analogs. On every plot using G or A content purine, G content in aquatic vertebrates was higher than that in terrestrial vertebrates, while A content in aquatic vertebrates was lower than that in terrestrial vertebrates. Based on these relationships, vertebrates were separated into two groups, terrestrial and aquatic. However, using C or T content pyrimidine, clear separation between these two groups was not obtained. The hagfish (Eptatretus burgeri) was further separated from both terrestrial and aquatic vertebrates. Based on these results, nucleotide content relationships predicted from the complete vertebrate mitochondrial genomes reveal the existence of natural selection based on evolutionary separation between terrestrial and aquatic vertebrate groups. In addition, we propose that separation of the two groups might be linked to ammonia detoxification based on high G and low A contents, which encode Glu rich and Lys poor proteins. PMID:25853054

  15. Evidence for Natural Selection in Nucleotide Content Relationships Based on Complete Mitochondrial Genomes: Strong Effect of Guanine Content on Separation between Terrestrial and Aquatic Vertebrates

    PubMed Central

    Sorimachi, Kenji; Okayasu, Teiji

    2015-01-01

    The complete vertebrate mitochondrial genome consists of 13 coding genes. We used this genome to investigate the existence of natural selection in vertebrate evolution. From the complete mitochondrial genomes, we predicted nucleotide contents and then separated these values into coding and non-coding regions. When nucleotide contents of a coding or non-coding region were plotted against the nucleotide content of the complete mitochondrial genomes, we obtained linear regression lines only between homonucleotides and their analogs. On every plot using G or A content purine, G content in aquatic vertebrates was higher than that in terrestrial vertebrates, while A content in aquatic vertebrates was lower than that in terrestrial vertebrates. Based on these relationships, vertebrates were separated into two groups, terrestrial and aquatic. However, using C or T content pyrimidine, clear separation between these two groups was not obtained. The hagfish (Eptatretus burgeri) was further separated from both terrestrial and aquatic vertebrates. Based on these results, nucleotide content relationships predicted from the complete vertebrate mitochondrial genomes reveal the existence of natural selection based on evolutionary separation between terrestrial and aquatic vertebrate groups. In addition, we propose that separation of the two groups might be linked to ammonia detoxification based on high G and low A contents, which encode Glu rich and Lys poor proteins. PMID:25853054

  16. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report: Attachment 2, Geology report; Attachment 3, Groundwater hydrology report; Attachment 4, Water resources protection strategy: Final report

    SciTech Connect

    Chernoff, A.R. [USDOE Albuquerque Field Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Lacker, D.K. [Texas State Dept. of Health, Austin, TX (United States). Bureau of Radiation Control

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  17. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lowman, Idaho: Remedial action selection report for the Lowman UMTRA project site, Idaho

    SciTech Connect

    Matthews, M.L. (USDOE Albuquerque Field Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office); Nagel, J. (Idaho Dept. of Health and Welfare, Boise, ID (United States). Div. of Environmental Quality)

    1991-09-01

    The inactive uranium mill tailings site near Lowman, Idaho, was designated as one of 24 abandoned uranium tailings sites to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan and certify that the remedial action complies with the standards promulgated by the US Environmental Protection Agency (EPA). The remedial action plan (RAP), which includes this remedial action selection report (RAS), has been developed to serve a two-fold purpose. First, it describes the activities that are proposed by the DOE to accomplish long-term stabilization and control of residual radioactive materials at the inactive uranium processing site near Lowman, Idaho. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Idaho, and the NRC, becomes Appendix B of the Cooperative Agreement (No. DE-FC04-85AL20535) between the DOE and the State of Idaho.

  18. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lowman, Idaho: Remedial action selection report for the Lowman UMTRA project site, Idaho. Final report

    SciTech Connect

    Matthews, M.L. [USDOE Albuquerque Field Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Nagel, J. [Idaho Dept. of Health and Welfare, Boise, ID (United States). Div. of Environmental Quality

    1991-09-01

    The inactive uranium mill tailings site near Lowman, Idaho, was designated as one of 24 abandoned uranium tailings sites to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan and certify that the remedial action complies with the standards promulgated by the US Environmental Protection Agency (EPA). The remedial action plan (RAP), which includes this remedial action selection report (RAS), has been developed to serve a two-fold purpose. First, it describes the activities that are proposed by the DOE to accomplish long-term stabilization and control of residual radioactive materials at the inactive uranium processing site near Lowman, Idaho. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Idaho, and the NRC, becomes Appendix B of the Cooperative Agreement (No. DE-FC04-85AL20535) between the DOE and the State of Idaho.

  19. Uranium by controlled-potential coulometry

    SciTech Connect

    Not Available

    1981-01-01

    The method covers the determination of milligram amounts of uranium by controlled-potential coulometry. The determination is based on the direct electrolytic reduction of uranium(VI) at a mercury cathode under conditions such that the electrolysis proceeds with virtually 100% current efficiency, that is, under conditions such that the amount of electricity required to accomplish complete reduction is a measure of the amount of uranium(VI) present. The method includes a discussion of interferences, apparatus, reagents and materials, calibration of the integrator, separation procedure, coulometric determination of uranium(VI), calculations, precision, and accuracy. (JMT)

  20. Uranium in Soils Integrated Demonstration: Technology summary, March 1994

    SciTech Connect

    Not Available

    1994-03-01

    A recent Pacific Northwest Laboratory (PNL) study identified 59 waste sites at 14 DOE facilities across the nation that exhibit radionuclide contamination in excess of established limits. The rapid and efficient characterization of these sites, and the potentially contaminated regions that surround them represents a technological challenge with no existing solution. In particular, the past operations of uranium production and support facilities at several DOE sites have occasionally resulted in the local contamination of surface and subsurface soils. Such contamination commonly occurs within waste burial sites, cribs, pond bottom sediments and soils surrounding waste tanks or uranium scrap, ore, tailings, and slag heaps. The objective of the Uranium In Soils Integrated Demonstration is to develop optimal remediation methods for soils contaminated with radionuclides, principally uranium (U), at DOE sites. It is examining all phases involved in an actual cleanup, including all regulatory and permitting requirements, to expedite selection and implementation of the best technologies that show immediate and long-term effectiveness specific to the Fernald Environmental Management Project (FEMP) and applicable to other radionuclide contaminated DOE sites. The demonstration provides for technical performance evaluations and comparisons of different developmental technologies at FEMP sites, based on cost-effectiveness, risk-reduction effectiveness, technology effectiveness, and regulatory and public acceptability. Technology groups being evaluated include physical and chemical contaminant separations, in situ remediation, real-time characterization and monitoring, precise excavation, site restoration, secondary waste treatment, and soil waste stabilization.

  1. Extraction of Uranium, Neptunium and Plutonium from Caustic Media

    SciTech Connect

    Delmau, Laetitia H.; Bonnesen, Peter V.; Engle, Nancy L.; Raymond, Kenneth N.; Xu, Jade

    2004-03-28

    5 Fundamental research on uranium, neptunium and plutonium separation from alkaline media using solvent extraction is being conducted. Specific extractants for these actinides from alkaline media have been synthesized to investigate the feasibility of selective removal of these elements. Two families of extractants have been studied: terephthalamide and tetra(hydroxybenzyl)ethylene diamine derivatives. Fundamental studies were conducted to characterize their extraction behavior from a wide variety of aqueous conditions. The terephthalamide derivatives exhibit a significant extraction strength along with a discriminatory behavior among the actinides, plutonium being extracted the most strongly. Quantitative extraction of plutonium and moderate extraction of neptunium and uranium was achieved from a simple caustic solution. Interestingly, strontium is also quantitatively extracted by these derivatives. However, their stability to highly caustic solutions still needs to be imp roved. Tetra(hydroxybenzyl)ethylene diamine derivatives exhibit a very good stability to caustic conditions and are currently being studied.

  2. Correlation and prediction of partition coefficient using nonrandom two-liquid segment activity coefficient model for solvent system selection in counter-current chromatography separation.

    PubMed

    Ren, Da-Bing; Yang, Zhao-Hui; Liang, Yi-Zeng; Ding, Qiong; Chen, Chen; Ouyang, Mei-Lan

    2013-08-01

    Selection of a suitable solvent system is the first and foremost step for a successful counter-current chromatography (CCC) separation. In this paper, a thermodynamic model, nonrandom two-liquid segment activity coefficient model (NRTL-SAC) which uses four types of conceptual segments to describe the effective surface interactions for each solvent and solute molecule, was employed to correlate and predict the partition coefficients (K) of a given compound in a specific solvent system. Then a suitable solvent system was selected according to the predicted partition coefficients. Three solvent system families, heptane/methanol/water, heptane/ethyl acetate/methanol/water (Arizona) and hexane/ethyl acetate/methanol/water, and several solutes were selected to investigate the effectiveness of the NRTL-SAC model for predicting the partition coefficients. Comparison between experimental results and predicted results showed that the NRTL-SAC model is of potential for estimating the K value of a given compound. Also a practical separation case on magnolol and honokiol suggests the NRTL-SAC model is effective, reliable and practical for the purpose of predicting partition coefficients and selecting a suitable solvent system for CCC separation. PMID:23806351

  3. Decontamination of Sludgelike Uranium-Bearing Wastes: Decontamination Feasibility Judgment Using Radon Emanation Coefficients and Development of Decontamination Methods

    Microsoft Academic Search

    Tomozo SASAKI; Mitsutaka IMAMURA; Yasuyoshi GUNJI; Takeshi OKUDA; Kenichi FUJIWARA; Masakazu TAKAI; Kazuhiro ARAI; Yoshin MORIGAKI

    2008-01-01

    It is difficult to decontaminate sludgelike uranium-bearing wastes by wet methods, such as employing nitric acid for selective uranium dissolution. This is because these uranium-bearing wastes have very small pores inside which uranium is deposited, and the decontamination liquid cannot get inside the pores and so cannot dissolve the uranium. The present study found that radon emanation coefficient measurements can

  4. Uranium uptake by hydroponically cultivated crop plants.

    PubMed

    Soudek, Petr; Petrová, Sárka; Benešová, Dagmar; Dvo?áková, Marcela; Van?k, Tomáš

    2011-06-01

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC(50) value about 0.1mM. Cucumis sativa represented the most resistant plant to uranium (EC(50)=0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1mM or 0.5mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. PMID:21486682

  5. THE CHEMICAL ANALYSIS OF TERNARY ALLOYS OF PLUTONIUM WITH URANIUM AND MOLYBDENUM

    Microsoft Academic Search

    E. Foster; G. Phillips

    1960-01-01

    A procedure is described for the determination of plutonium, uranium, ; and molybdenum in their ternary alloys. The plutomum is separated from an acid ; solution of the alloy by absorption as the nitrate complex on a column of anion ; exchange resin. The uranium and molybdenum are recovered from the column ; effluent and determined without further separation. Uranium

  6. Rescuing a Treasure Uranium-233

    SciTech Connect

    Krichinsky, Alan M [ORNL] [ORNL; Goldberg, Dr. Steven A. [DOE SC - Chicago Office] [DOE SC - Chicago Office; Hutcheon, Dr. Ian D. [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL)

    2011-01-01

    Uranium-233 (233U) is a synthetic isotope of uranium formed under reactor conditions during neutron capture by natural thorium (232Th). At high purities, this synthetic isotope serves as a crucial reference for accurately quantifying and characterizing natural uranium isotopes for domestic and international safeguards. Separated 233U is stored in vaults at Oak Ridge National Laboratory. These materials represent a broad spectrum of 233U from the standpoint isotopic purity the purest being crucial for precise analyses in safeguarding uranium. All 233U at ORNL currently is scheduled to be down blended with depleted uranium beginning in 2015. Such down blending will permanently destroy the potential value of pure 233U samples as certified reference material for use in uranium analyses. Furthermore, no replacement 233U stocks are expected to be produced in the future due to a lack of operating production capability and the high cost of returning to operation this currently shut down capability. This paper will describe the efforts to rescue the purest of the 233U materials arguably national treasures from their destruction by down blending.

  7. In Vivo Nanodetoxication for Acute Uranium Exposure.

    PubMed

    Guzmán, Luis; Durán-Lara, Esteban F; Donoso, Wendy; Nachtigall, Fabiane M; Santos, Leonardo S

    2015-01-01

    Accidental exposure to uranium is a matter of concern, as U(VI) is nephrotoxic in both human and animal models, and its toxicity is associated to chemical toxicity instead of radioactivity. We synthesized different PAMAM G4 and G5 derivatives in order to prove their interaction with uranium and their effect on the viability of red blood cells in vitro. Furthermore, we prove the effectiveness of the selected dendrimers in an animal model of acute uranium intoxication. The dendrimer PAMAM G4-Lys-Fmoc-Cbz demonstrated the ability to chelate the uranyl ion in vivo, improving the biochemical and histopathologic features caused by acute intoxication with uranium. PMID:26083036

  8. Systematic and practical solvent system selection strategy based on the nonrandom two-liquid segment activity coefficient model for real-life counter-current chromatography separation.

    PubMed

    Ren, Da-Bing; Yi, Lun-Zhao; Qin, Yan-Hua; Yun, Yong-Huan; Deng, Bai-Chuan; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-05-01

    Solvent system selection is the first step toward a successful counter-current chromatography (CCC) separation. This paper introduces a systematic and practical solvent system selection strategy based on the nonrandom two-liquid segment activity coefficient (NRTL-SAC) model, which is efficient in predicting the solute partition coefficient. Firstly, the application of the NRTL-SAC method was extended to the ethyl acetate/n-butanol/water and chloroform/methanol/water solvent system families. Moreover, the versatility and predictive capability of the NRTL-SAC method were investigated. The results indicate that the solute molecular parameters identified from hexane/ethyl acetate/methanol/water solvent system family are capable of predicting a large number of partition coefficients in several other different solvent system families. The NRTL-SAC strategy was further validated by successfully separating five components from Salvia plebeian R.Br. We therefore propose that NRTL-SAC is a promising high throughput method for rapid solvent system selection and highly adaptable to screen suitable solvent system for real-life CCC separation. PMID:25818557

  9. Identifying important structural features of ionic liquid stationary phases for the selective separation of nonpolar analytes by comprehensive two-dimensional gas chromatography.

    PubMed

    Zhang, Cheng; Ingram, Isaiah C; Hantao, Leandro W; Anderson, Jared L

    2015-03-20

    A series of dicationic ionic liquid (IL)-based stationary phases were evaluated as secondary columns in comprehensive two-dimensional gas chromatography (GC×GC) for the separation of aliphatic hydrocarbons from kerosene. In order to understand the role that structural features of ILs play on the selectivity of nonpolar analytes, the solvation parameter model was used to probe the solvation properties of the IL-based stationary phases. It was observed that room temperature ILs containing long free alkyl side chain substituents and long linker chains between the two cations possess less cohesive forces and exhibited the highest resolution of aliphatic hydrocarbons. The anion component of the IL did not contribute significantly to the overall separation, as similar selectivities toward aliphatic hydrocarbons were observed when examining ILs with identical cations and different anions. In an attempt to further examine the separation capabilities of the IL-based GC stationary phases, columns of the best performing stationary phases were prepared with higher film thickness and resulted in enhanced selectivity of aliphatic hydrocarbons. PMID:25698381

  10. Separation science and technology

    Microsoft Academic Search

    B. F. Smith; N. Sauer; R. M. Chamberlin; S. Gottesfeld; B. R. Mattes; D. Q. Li; B. Swanson

    1998-01-01

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste

  11. Enhanced Control of PWR Primary Coolant Water Chemistry Using Selective Separation Systems for Recovery and Recycle of Enriched Boric Acid

    SciTech Connect

    Ken Czerwinski; Charels Yeamans; Don Olander; Kenneth Raymond; Norman Schroeder; Thomas Robison; Bryan Carlson; Barbara Smit; Pat Robinson

    2006-02-28

    The objective of this project is to develop systems that will allow for increased nuclear energy production through the use of enriched fuels. The developed systems will allow for the efficient and selective recover of selected isotopes that are additives to power water reactors' primary coolant chemistry for suppression of corrosion attack on reactor materials.

  12. Challenging conventional f-element separation chemistry--reversing uranyl(VI)/lanthanide(III) solvent extraction selectivity.

    PubMed

    Hawkins, C A; Bustillos, C G; Copping, R; Scott, B L; May, I; Nilsson, M

    2014-08-14

    The water soluble tetradentate Schiff base, N,N'-bis(5-sulfonatosalicylidene)-diaminoethane (H2salen-SO3), will readily coordinate to the uranyl(VI) cation, but not to the same extent to trivalent lanthanide cations. This allows for the reversal of conventional solvent extraction properties and opens the possibility for novel separation processes. PMID:24958394

  13. The effect of heat treatment on selective separation of nickel from Cd–Ni zinc plant residues

    Microsoft Academic Search

    Mohammad Sadegh Safarzadeh; Davood Moradkhani

    2010-01-01

    Addressed is the effect of heat treatment on the dissolution behavior of zinc, cadmium and nickel from Cd–Ni zinc plant residues. The proposal was considered for possible positive effect of heat treatment on the separation of nickel present in the residue, due to some phase transformations. The leaching experiments were carried out with the heat-treated residues at identical leaching conditions.

  14. Selective breeding for infant rat separation-induced ultrasonic vocalizations: Developmental precursors of passive and active coping styles

    Microsoft Academic Search

    Susan A. Brunelli; Myron A. Hofer

    2007-01-01

    Human depression and anxiety disorders show inherited biases across generations, as do antisocial disorders characterized by aggression. Each condition is preceded in children by behavioral inhibition or aggressive behavior, respectively, and both are characterized by separation anxiety disorders. In affected families, adults and children exhibit different forms of altered autonomic nervous system regulation and hypothalamic–pituitary–adrenal activity in response to stress.

  15. Mortality among uranium enrichment workers

    SciTech Connect

    Brown, D.P.; Bloom, T.

    1987-01-01

    A retrospective cohort mortality study was conducted on workers at the Portsmouth Uranium Enrichment facility in Pike County, Ohio, in response to a request from the Oil, Chemical and Atomic Workers International Local 3-689 for information on long-term health effects. Primary hazards included inhalation exposure to uranyl fluoride containing uranium-235 and uranium-234, technetium-99 compounds, and hydrogen-fluoride. Uranium-238 presented a nephrotoxic hazard. Statistically significant mortality deficits based on U.S. death rates were found for all causes, accidents, violence, and diseases of nervous, circulatory, respiratory, and digestive systems. Standardized mortality rates were 85 and 54 for all malignant neoplasms and for other genitourinary diseases, respectively. Deaths from stomach cancer and lymphatic/hematopoietic cancers were insignificantly increased. A subcohort selected for greatest potential uranium exposure has reduced deaths from these malignancies. Insignificantly increased stomach cancer mortality was found after 15 years employment and after 15 years latency. Routine urinalysis data suggested low internal uranium exposures.

  16. Hybrid Graphene Oxide Based Plasmonic-Magnetic Multifunctional Nanoplatform for Selective Separation and Label-Free Identification of Alzheimer's Disease Biomarkers.

    PubMed

    Demeritte, Teresa; Viraka Nellore, Bhanu Priya; Kanchanapally, Rajashekhar; Sinha, Sudarson Sekhar; Pramanik, Avijit; Chavva, Suhash Reddy; Ray, Paresh Chandra

    2015-06-24

    Despite intense efforts, Alzheimer's disease (AD) is one of the top public health crisis for society even at 21st century. Since presently there is no cure for AD, early diagnosis of possible AD biomarkers is crucial for the society. Driven by the need, the current manuscript reports the development of magnetic core-plasmonic shell nanoparticle attached hybrid graphene oxide based multifunctional nanoplatform which has the capability for highly selective separation of AD biomarkers from whole blood sample, followed by label-free surface enhanced Raman spectroscopy (SERS) identification in femto gram level. Experimental ELISA data show that antibody-conjugated nanoplatform has the capability to capture more than 98% AD biomarkers from the whole blood sample. Reported result shows that nanoplatform can be used for SERS "fingerprint" identification of ?-amyloid and tau protein after magnetic separation even at 100 fg/mL level. Experimental results indicate that very high sensitivity achieved is mainly due to the strong plasmon-coupling which generates huge amplified electromagnetic fields at the "hot spot". Experimental results with nontargeted HSA protein, which is one of the most abundant protein components in cerebrospinal fluid (CSF), show that multifunctional nanoplatform based AD biomarkers separation and identification is highly selective. PMID:26027901

  17. Separation scheme for selective and quantitative isolation of cobalt from neutron-irradiated biological materials by ion exchange and extraction chromatography

    SciTech Connect

    Dybczynski, R.; Danko, B.; Maleszewska, H. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1994-01-01

    Highly reliable radiochemical separation scheme for selective and quantitative isolation of trace amounts of cobalt from neutron-irradiated biological materials was elaborated. The method consists in wet-ashing of the sample with HNO{sub 3} + HClO{sub 4} (1:1) mixture plus vanadium salt (oxidation catalyst), removal of silica by evaporation with HF and separation of cobalt from accompanying ions successively on 3 columns with Dowex 1-X8[Cl{sup -}] from 0.5 M HCl, Dowex 1-X8[Cl{sup -}] from 8 M HCl + 2 M MgCl{sub 2} and tri-n-octylphosphine oxide (TOPO) supported on styrene-divinylbenzene copolymer, from 7 M HCl solution, respectively. Cobalt of very high radiochemical purity is finally recovered in 1.2 M HCl solution with practically 100% yield. The separation scheme is universally applicable, to biological samples of both animal and plant origin and was devised to become an integral part of the very accurate ({open_quotes}definitive{close_quotes}) method of cobalt determination by neutron activation analysis (NAA). Preliminary results on Co determination by NAA in some certified reference materials confirmed high reliability of the devised separation scheme.

  18. Importance of MS selectivity and chromatographic separation in LC-MS/MS-based methods when investigating pharmaceutical metabolites in water. Dipyrone as a case of study.

    PubMed

    Ibáñez, M; Gracia-Lor, E; Sancho, J V; Hernández, F

    2012-08-01

    Pharmaceuticals are emerging contaminants of increasing concern because of their presence in the aquatic environment and potential to reach drinking-water sources. After human and/or veterinary consumption, pharmaceuticals can be excreted in unchanged form, as the parent compound, and/or as free or conjugated metabolites. Determination of most pharmaceuticals and metabolites in the environment is commonly made by liquid chromatography (LC) coupled to mass spectrometry (MS). LC coupled to tandem MS is the technique of choice nowadays in this field. The acquisition of two selected reaction monitoring (SRM) transitions together with the retention time is the most widely accepted criterion for a safe quantification and confirmation assay. However, scarce attention is normally paid to the selectivity of the selected transitions as well as to the chromatographic separation. In this work, the importance of full spectrum acquisition high-resolution MS data using a hybrid quadrupole time-of-flight analyser and/or a suitable chromatographic separation (to reduce the possibility of co-eluting interferences) is highlighted when investigating pharmaceutical metabolites that share common fragment ions. For this purpose, the analytical challenge associated to the determination of metabolites of the widely used analgesic dipyrone (also known as metamizol) in urban wastewater is discussed. Examples are given on the possibilities of reporting false positives of dypirone metabolites by LC-MS/MS under SRM mode due to a wrong assignment of identity of the compounds detected. PMID:22899513

  19. Helium separation

    Microsoft Academic Search

    Frazier

    1965-01-01

    This is a process of separating helium from a helium-containing natural gas. The gas is contacted within a closed vessel with a mass of small, hollow, hole-free, glass particles through which the helium selectively diffuses relative to the other components of the gas mixture. A positive helium partial-pressure differential is maintained across the glass walls of the particles with the

  20. Long-Gradient Separations Coupled with Selected Reaction Monitoring for Highly Sensitive, Large Scale Targeted Protein Quantification in a Single Analysis

    SciTech Connect

    Shi, Tujin; Fillmore, Thomas L.; Gao, Yuqian; Zhao, Rui; He, Jintang; Schepmoes, Athena A.; Nicora, Carrie D.; Wu, Chaochao; Chambers, Justin L.; Moore, Ronald J.; Kagan, Jacob; Srivastava, Sudhir; Liu, Alvin Y.; Rodland, Karin D.; Liu, Tao; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2013-10-01

    Long-gradient separations coupled to tandem MS were recently demonstrated to provide a deep proteome coverage for global proteomics; however, such long-gradient separations have not been explored for targeted proteomics. Herein, we investigate the potential performance of the long-gradient separations coupled with selected reaction monitoring (LG-SRM) for targeted protein quantification. Direct comparison of LG-SRM (5 h gradient) and conventional LC-SRM (45 min gradient) showed that the long-gradient separations significantly reduced background interference levels and provided an 8- to 100-fold improvement in LOQ for target proteins in human female serum. Based on at least one surrogate peptide per protein, an LOQ of 10 ng/mL was achieved for the two spiked proteins in non-depleted human serum. The LG-SRM detection of seven out of eight endogenous plasma proteins expressed at ng/mL or sub-ng/mL levels in clinical patient sera was also demonstrated. A correlation coefficient of >0.99 was observed for the results of LG-SRM and ELISA measurements for prostate-specific antigen (PSA) in selected patient sera. Further enhancement of LG-SRM sensitivity was achieved by applying front-end IgY14 immunoaffinity depletion. Besides improved sensitivity, LG-SRM offers at least 3 times higher multiplexing capacity than conventional LC-SRM due to ~3-fold increase in average peak widths for a 300-min gradient compared to a 45-min gradient. Therefore, LG-SRM holds great potential for bridging the gap between global and targeted proteomics due to its advantages in both sensitivity and multiplexing capacity.

  1. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    SciTech Connect

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.

    1981-09-01

    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.

  2. Open Onlay Mesh Repair for Major Abdominal Wall Hernias with Selective Use of Components Separation and Fibrin Sealant

    Microsoft Academic Search

    Andrew N. Kingsnorth; M. Kamran Shahid; Aby J. Valliattu; Robert A. Hadden; Christine S. Porter

    2008-01-01

    Background  The objective of the study was to reassess the efficacy of the open onlay technique for repair of major incisional hernias,\\u000a utilizing the modern adjuncts of components separation and fibrin sealant to reduce the principal complications of seroma\\u000a and recurrence. Major incisional hernias were defined as >10 cm transverse diameter.\\u000a \\u000a \\u000a \\u000a Methods  A prospective audit was applied to 116 patients undergoing open

  3. Separation and quantitation of phenolic compounds in mainstream cigarette smoke by capillary gas chromatography with mass spectrometry in the selected-ion mode.

    PubMed

    Nanni, E J; Lovette, M E; Hicks, R D; Fowler, K W; Borgerding, M F

    1990-05-01

    Cigarette smoke condensate is a complex chemical matrix and determination of phenolic compounds in it frequently requires extensive and laborious sample preparation. By utilizing derivatization techniques and capillary column gas chromatography with mass spectrometry in the selected-ion mode, separation and quantitation of selected phenolic compounds found in mainstream cigarette smoke can be accomplished with minimal sample preparation. This method has been used to determine concentrations of phenol, o-cresol, m-cresol, p-cresol, catechol, resorcinol and hydroquinone in cigarette smoke condensate from a number of commercially available cigarettes and a new cigarette which heats, but does not burn, tobacco. Unlike tobacco-burning cigarettes, levels of the phenolic compounds in the new cigarette smoke are at or below the detection limits for most of the compounds. This result is attributed to the unique design of the new cigarette. PMID:2355067

  4. Preparation of zirconium oxy ion-imprinted particle for the selective separation of trace zirconium ion from water.

    PubMed

    Ren, Yueming; Liu, Pingxin; Liu, Xiaoli; Feng, Jing; Fan, Zhuangjun; Luan, Tianzhu

    2014-10-01

    Zr(IV) oxy ion-imprinted particle (Zr-IIP) was prepared using the metal ion imprinting technique in a sol-gel process on the surface of amino-silica. The dosages of zirconium ions as imprinted target, (3-aminopropyl) triethoxysilane (APTES) as a functional monomer and teraethyl orthosilicate (TEOS) as a cross-linker were optimized. The prepared Zr-IIP and Zr(IV) oxy ion non-imprinted particle (Zr-NIP) were characterized. pH effect, binding ability and the selectivity were investigated in detail. The results showed that the Zr-IIP had an excellent binding capacity and selectivity in the water. The equilibrium data fitted well to the pseudo-second-order kinetic and the Langmuir model for Zr(IV) binding onto Zr-IIP, respectively. The saturate binding capacity of Zr-IIP was found to be 196.08 ?mol g(-1), which was 18 times higher than that of Zr-NIP. The sequence of binding efficiency of Zr-IIP for various ions was Zr(IV)>Cu(II)>Sb(III)>Eu(III). The coordination number has an important effect on the dimensional binding capacity. The equilibrium binding capacity of Zr-IIP for Zr(IV) decreased little under various concentrations of Pb(II) ions. The analysis of relative selectivity coefficient (Kr) indicated that the Zr-IIP had an appreciable binding specificity towards Zr(IV) although the competitive ions coexisted in the water. The Zr-IIP could serve as an efficient selective material for recovering or removing zirconium from the water environment. PMID:25004058

  5. Selective Separation of Arsenic(III) and (V) Ions with Ferric Complex of Chelating Ion-Exchange Resin

    Microsoft Academic Search

    Isao Yoshida; Keihei Ueno; Hiroshi Kobayashi

    1978-01-01

    Trace levels of aqueous arsenic(III) and (V) ions were adsorbed selectively onto the ferric complex of a chelating resin, Uniselec UR-10. The adsorption was markedly dependent upon the pH of the aqueous phase. The distribution ratio and the specific adsorption capacity of arsenic(III) were 23,000 and 0.47 mmole\\/g, respectively, at the optimum pH for the adsorption, 9.2. The corresponding values

  6. Bioremediation of uranium contaminated soils and wastes

    SciTech Connect

    Francis, A.J.

    1998-12-31

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  7. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  8. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, John P. (Downers Grove, IL)

    1992-01-01

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  9. Cherenkov light detection as a velocity selector for uranium fission products at intermediate energies

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Enomoto, A.; Kouno, J.; Yamaki, S.; Matsunaga, S.; Suzaki, F.; Suzuki, T.; Abe, Y.; Nagae, D.; Okada, S.; Ozawa, A.; Saito, Y.; Sawahata, K.; Kitagawa, A.; Sato, S.

    2014-12-01

    The in-flight particle separation capability of intermediate-energy radioactive ion (RI) beams produced at a fragment separator can be improved with the Cherenkov light detection technique. The cone angle of Cherenkov light emission varies as a function of beam velocity. This can be exploited as a velocity selector for secondary beams. Using heavy ion beams available at the HIMAC synchrotron facility, the Cherenkov light angular distribution was measured for several thin radiators with high refractive indices (n = 1.9 ~ 2.1). A velocity resolution of ~10-3 was achieved for a 56Fe beam with an energy of 500 MeV/nucleon. Combined with the conventional rigidity selection technique coupled with energy-loss analysis, the present method will enable the efficient selection of an exotic species from huge amounts of various nuclides, such as uranium fission products at the BigRIPS fragment separator located at the RI Beam Factory.

  10. Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples.

    PubMed

    Fasih Ramandi, Negin; Shemirani, Farzaneh

    2015-01-01

    For the first time, a selective ionic liquid ferrofluid has been used in dispersive solid phase extraction (IL-FF-D-SPE) for simultaneous preconcentration and separation of lead and cadmium in milk and biological samples combined with flame atomic absorption spectrometry. To improve the selectivity of the ionic liquid ferrofluid, the surface of TiO2 nanoparticles with a magnetic core as sorbent was modified by loading 1-(2-pyridylazo)-2-naphtol. Due to the rapid injection of an appropriate amount of ionic liquid ferrofluid into the aqueous sample by a syringe, extraction can be achieved within a few seconds. In addition, based on the attraction of the ionic liquid ferrofluid to a magnet, no centrifugation step is needed for phase separation. The experimental parameters of IL-FF-D-SPE were optimized using a Box-Behnken design (BBD) after a Plackett-Burman screening design. Under the optimum conditions, the relative standard deviations of 2.2% and 2.4% were obtained for lead and cadmium, respectively (n=7). The limit of detections were 1.21 µg L(-1) for Pb(II) and 0.21 µg L(-1) for Cd(II). The preconcentration factors were 250 for lead and 200 for cadmium and the maximum adsorption capacities of the sorbent were 11.18 and 9.34 mg g(-1) for lead and cadmium, respectively. PMID:25281121

  11. Selective extraction, solubilization, and reversed-phase high-performance liquid chromatography separation of the main proteins from myelin using tetrahydrofuran/water mixtures.

    PubMed

    Díaz, R S; Regueiro, P; Monreal, J; Tandler, C J

    1991-05-01

    The number of solvents capable of dissolving myelin and proteolipid protein (PLP) and of being used as a mobile phase for the separation of myelin proteins by reversed-phase high-performance liquid chromatography (RP-HPLC) is very limited. In a thorough study, we found that aqueous tetrahydrofuran (THF) fulfilled such a requirement. The maximal amount of protein extracted corresponded to a THF/water ratio of 4:1 v/v and a polarity index of 5.16. This mixture dissolved a purified PLP preparation completely, 60% of proteins from fresh myelin, and 20% of white matter total proteins. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of those extracts, followed by densitometric analysis, showed that the amount and type of proteins dissolved depended on the polarity (i.e., the content of water) of the solvent mixture used. This selective effect was greater for basic protein in myelin preparations. Crude extracts highly enriched in basic protein can be prepared. In addition, the solvent system THF/water proved to be very useful as a mobile phase in RP-HPLC for separating myelin proteins. Using a C3 column and a linear gradient from 30% to 100% THF in water, both containing 0.1% trifluoroacetic acid (TFA), we separated completely the three main protein fractions of central nervous system (CNS) myelin in a short period of time. The high solubility power of THF/water mixtures prolonged greatly the life of the column. PMID:1886164

  12. Method for fabricating laminated uranium composites

    DOEpatents

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  13. Plasma–Hydrogen Reduction of Waste Uranium Hexafluoride

    Microsoft Academic Search

    Yu. N. Tumanov; N. M. Trotsenko; A. V. Zagnit'ko; A. F. Galkin

    2001-01-01

    A technological scheme for plasma–hydrogen reduction of 235U waste uranium hexafluoride, producing metallic uranium and water-free hydrogen fluoride, is proposed. The results of experimental investigations of the basic stages of this technological scheme are examined: production of U–F–H plasma flow and production and separation of uranium melt and water-free hydrogen fluoride. The level of plasma and high-frequency technology for implementing

  14. Collision-Induced Release, Ion Mobility Separation, and Amino Acid Sequence Analysis of Subunits from Mass-Selected Noncovalent Protein Complexes

    NASA Astrophysics Data System (ADS)

    Rathore, Deepali; Dodds, Eric D.

    2014-09-01

    In recent years, mass spectrometry has become a valuable tool for detecting and characterizing protein-protein interactions and for measuring the masses and subunit stoichiometries of noncovalent protein complexes. The gas-phase dissociation of noncovalent protein assemblies via tandem mass spectrometry can be useful in confirming subunit masses and stoichiometries; however, dissociation experiments that are able to yield subunit sequence information must usually be conducted separately. Here, we furnish proof of concept for a method that allows subunit sequence information to be directly obtained from a protein aggregate in a single gas-phase analysis. The experiments were carried out using a quadrupole time-of-flight mass spectrometer equipped with a traveling-wave ion mobility separator. This instrument configuration allows for a noncovalent protein assembly to be quadrupole selected, then subjected to two successive rounds of collision-induced dissociation with an intervening stage of ion mobility separation. This approach was applied to four model proteins as their corresponding homodimers: glucagon, ubiquitin, cytochrome c, and ?-lactoglobulin. In each case, b- and y-type fragment ions were obtained upon further collisional activation of the collisionally-released subunits, resulting in up to 50% sequence coverage. Owing to the incorporation of an ion mobility separation, these results also suggest the intriguing possibility of measuring complex mass, complex collisional cross section, subunit masses, subunit collisional cross sections, and sequence information for the subunits in a single gas-phase experiment. Overall, these findings represent a significant contribution towards the realization of protein interactomic analyses, which begin with native complexes and directly yield subunit identities.

  15. Meniscus Membranes For Separation

    DOEpatents

    Dye, Robert C. (Irvine, CA); Jorgensen, Betty (Jemez Springs, NM); Pesiri, David R. (Aliso Viejo, CA)

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  16. Meniscus membranes for separations

    DOEpatents

    Dye, Robert C. (Irvine, CA); Jorgensen, Betty (Jemez Springs, NM); Pesiri, David R. (Aliso Viejo, CA)

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  17. Modified superparamagnetic nanocomposite microparticles for highly selective Hg(II) or Cu(II) separation and recovery from aqueous solutions.

    PubMed

    Mandel, Karl; Hutter, Frank; Gellermann, Carsten; Sextl, Gerhard

    2012-10-24

    The synthesis of a reusable, magnetically switchable nanocomposite microparticle, which can be modified to selectively extract and recover Hg(II) or Cu(II) from water, is reported. Superparamagnetic iron oxide (magnetite) nanoparticles act as the magnetic component in this system, and these nanoparticles were synthesized in a continuous way, allowing their large-scale production. A new process was used to create a silica matrix, confining the magnetite nanoparticles using a cheap silica source [sodium silicate (water glass)]. This results in a well-defined, filigree micrometer-sized nanocomposite via a fast, simple, inexpensive, and upscalable process. Hence, because of the ideal size of the resulting microparticles and their comparably large magnetization, particle extraction from fluids by low-cost magnets is achieved. PMID:22970866

  18. Increasing the Accuracy in the Measurement of the Minor Isotopes of Uranium: Care in Selection of Reference Materials, Baselines and Detector Calibration

    NASA Astrophysics Data System (ADS)

    Poths, J.; Koepf, A.; Boulyga, S. F.

    2008-12-01

    The minor isotopes of uranium (U-233, U-234, U-236) are increasingly useful for tracing a variety of processes: movement of anthropogenic nuclides in the environment (ref 1), sources of uranium ores (ref 2), and nuclear material attribution (ref 3). We report on improved accuracy for U-234/238 and U-236/238 by supplementing total evaporation protocol TIMS measurement on Faraday detectors (ref 4)with multiplier measurement for the minor isotopes. Measurement of small signals on Faraday detectors alone is limited by noise floors of the amplifiers and accurate measurement of the baseline offsets. The combined detector approach improves the reproducibility to better than ±1% (relative) for the U-234/238 at natural abundance, and yields a detection limit for U-236/U-238 of <0.2 ppm. We have quantified contribution of different factors to the uncertainties associated with these peak jumping measurement on a single detector, with an aim of further improvement. The uncertainties in the certified values for U-234 and U-236 in the uranium standard NBS U005, if used for mass bias correction, dominates the uncertainty in their isotopic ratio measurements. Software limitations in baseline measurement drives the detection limit for the U-236/U-238 ratio. This is a topic for discussion with the instrument manufacturers. Finally, deviation from linearity of the response of the electron multiplier with count rate limits the accuracy and reproducibility of these minor isotope measurements. References: (1) P. Steier et al(2008) Nuc Inst Meth(B), 266, 2246-2250. (2) E. Keegan et al (2008) Appl Geochem 23, 765-777. (3) K. Mayer et al (1998) IAEA-CN-98/11, in Advances in Destructive and Non-destructive Analysis for Environmental Monitoring and Nuclear Forensics. (4) S. Richter and S. Goldberg(2003) Int J Mass Spectrom, 229, 181-197.

  19. Organic Separation Test Results

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations, could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.

  20. Diffusion and Leaching of Selected Radionuclides (Iodine-129, Technetium-99, and Uranium) Through Category 3 Waste Encasement Concrete and Soil Fill Material

    SciTech Connect

    Mattigod, Shas V.; Whyatt, Greg A.; Serne, R. Jeffrey; Martin, P. F.; Schwab, Kristen E.; Wood, Marcus I.

    2001-09-24

    An assessment of long-term performance of Category 3 waste-enclosing cement grouts requires data about the leachability/diffusion of radionuclide species (iodine-129, technetium-99, and uranium) when the waste forms come in contact with groundwater. Leachability data were collected by conducting dynamic (ANS-16.1) and static leach tests on radionuclide-containing cement specimens. The diffusivity of radionuclides in soil and concrete media was collected by conducting soil-soil and concrete-soil half-cell experiments.

  1. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, Steven A. (Knoxville, TN); Creech, Edward T. (Oak Ridge, TN); Northcutt, Walter G. (Oak Ridge, TN)

    1983-01-01

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  2. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1982-09-27

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.

  3. DETERMINATION OF RARE EARTH ELEMENTS IN URANIUM COMPOUNDS

    Microsoft Academic Search

    T. Nakazima; M. Takahashi; H. Kawaguchi

    1958-01-01

    A method has been developed for the determination of rare earth elements ; including yttrium in uranium and its compounds. The greater portion of the ; uranium is separated from the rare earths by ether extraction. The rare earths ; are then precipitated as fluorides and subsequently purified as hydroxides. ; Lanthanum was used as the carrier. The efficiency of

  4. Whole-rock uranium analysis by fission track activation

    NASA Technical Reports Server (NTRS)

    Weiss, J. R.; Haines, E. L.

    1974-01-01

    We report a whole-rock uranium method in which the polished sample and track detector are separated in a vacuum chamber. Irradiation with thermal neutrons induces uranium fission in the sample, and the detector records the integrated fission track density. Detection efficiency and geometric factors are calculated and compared with calibration experiments.

  5. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.

    PubMed

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-04-01

    In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid-liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions. PMID:25576783

  6. Removal of uranium from aqueous HF solutions

    Microsoft Academic Search

    Howard Pulley; Steven F. Seltzer

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a

  7. Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry.

    PubMed

    Varga, Zsolt; Katona, Róbert; Stefánka, Zsolt; Wallenius, Maria; Mayer, Klaus; Nicholl, Adrian

    2010-03-15

    A novel and simple analytical procedure has been developed for the trace-level determination of lanthanides (rare-earth elements) in uranium-bearing materials by inductively coupled plasma sector-field mass spectrometry (ICP-SFMS). The method involves a selective extraction chromatographic separation of lanthanides using TRU resin followed by ICP-SFMS analysis. The limits of detection of the method proposed is in the low pg g(-1) range, which are approximately two orders of magnitude better than that of without chemical separation. The method was validated by the measurement of reference material and applied for the analysis of uranium ore concentrates (yellow cakes) for nuclear forensic purposes, as a potential application of the methodology. PMID:20152406

  8. New reversed phase-high performance liquid chromatographic method for selective separation of yttrium from all rare earth elements employing nitrilotriacetate complexes in anion exchange mode.

    PubMed

    Dybczy?ski, Rajmund S; Kulisa, Krzysztof; Pyszynska, Marta; Bojanowska-Czajka, Anna

    2015-03-20

    Separation of Y from other rare earth elements (REE) is difficult because of similarity of its ionic radius to ionic radii of Tb, Dy and Ho. In the new RP-HPLC system with C18 column, tetra-n-butyl ammonium hydroxide (TBAOH) as an ion interaction reagent (IIR), nitrilotriacetic acid (NTA) as a complexing agent at pH=2.8-3.5, and post column derivatization with Arsenazo III, yttrium is eluted in the region of light REE, between Nd and Sm and is base line separated from Nd and Sm and even from promethium. Simple model employing literature data on complex formation of REE with NTA and based on anion exchange mechanism was developed to foresee the order of elution of individual REE. The model correctly predicted that lanthanides up to Tb will be eluted in the order of increasing Atomic Number (At.No.) but all heavier REE will show smaller retention factors than Tb. Concurrent UV/VIS detection at 658nm and the use of radioactive tracers together with ?-ray spectrometric measurements made possible to establish an unique elution order of elution of REE: La, Ce, Pr, Nd, Pm, Y, Sm, Er, Ho, Tm, Yb, Eu, Lu, Dy+Gd, Tb, Sc. The real place of Y however, in this elution series differs from that predicted by the model (Y between Sm and Eu). The method described in this work enables selective separation of Y from La, Ce, Pr, Nd, Pm, Sm and all heavier REE treated as a group. PMID:25700726

  9. 230Th-234U Age-Dating Uranium by Mass Spectrometry

    Microsoft Academic Search

    R W Williams; A M Gaffney

    2012-01-01

    This is the standard operating procedure used by the Isotope Ratio Mass Spectrometry Group of the Chemical Sciences Division at LLNL for the preparation of a sample of uranium oxide or uranium metal for ²³°Th-²³⁴U age-dating. The method described here includes the dissolution of a sample of uranium oxide or uranium metal, preparation of a secondary dilution, spiking of separate

  10. Novel microorganism for selective separation of coal from ash and pyrite. Sixth quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1995-08-01

    The objective of this research project is to study the effectiveness of a novel hydrophobic microorganism, Mycobacterium phlei (M. phlei), for the selective flocculation of coal from pyrite and ash forming minerals. During the reporting period, the flocculation efficiencies of Illinois No. 6 and KY No. 9 coal in the presence of whole and ruptured cells of M. phlei were studied. The effect of synthetic flocculants were also studied for comparison at selected pH values. Results showed that the whole cells of M. phlei can flocculate coal very effectively and rapidly for both the coal samples. However, with ruptured cells of M. phlei the flocculation efficiency is significantly less which can be attributed to the loss of extracellular surfactants during rupturing. Separation of flocs using column flotation was studied for both the coal samples in the acidic pH range. Results indicated that excellent rejection of pyritic sulfur and ash could be obtained with a high combustible recovery. DLVO calculations were performed for all the minerals used in this study to calculate the interaction energies in the presence of whole cells and ruptured cells of M. phlei. A minimum in interaction energy is observed between coal and whole cells of M. phlei at pH 4 which is probably responsible for the higher adhesion and flocculation efficiencies at the pH. However, with ruptured cells the interaction energy increases thus decreasing the amount of M. phlei cells adhering to the surface.

  11. DEPLETED URANIUM TECHNICAL WORK

    EPA Science Inventory

    The Depleted Uranium Technical Work is designed to convey available information and knowledge about depleted uranium to EPA Remedial Project Managers, On-Scene Coordinators, contractors, and other Agency managers involved with the remediation of sites contaminated with this mater...

  12. Plant-uptake of uranium: Hydroponic and soil system studies

    USGS Publications Warehouse

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  13. PROPERTIES OF URANIUM CARBIDES

    Microsoft Academic Search

    W. Chubb; R. F. Dickerson

    1962-01-01

    Properties of uranium carbides are reviewed and brought up to date. ; Photographs and photomicrographs of uranium carbides fabricated by melting and ; casting techniques and by powder metallurgy techniques are presented. Recent ; data confirm that uranium monocarbide has metallic conductivity (a thermal ; conductivity of approximately 0.055 cal\\/sec-cm- deg C and a resistivity of ; approximately 35 microhm-cm)

  14. Depleted Uranium Technical Brief

    E-print Network

    Depleted Uranium Technical Brief United States Environmental Protection Agency Office of Air and Radiation Washington, DC 20460 EPA-402-R-06-011 December 2006 #12;#12;Depleted Uranium Technical Brief EPA of Radiation and Indoor Air Radiation Protection Division ii #12;iii #12;FOREWARD The Depleted Uranium

  15. Oxidation states of uranium in depleted uranium particles from Kuwait.

    PubMed

    Salbu, B; Janssens, K; Lind, O C; Proost, K; Gijsels, L; Danesi, P R

    2005-01-01

    The oxidation states of uranium in depleted uranium (DU) particles were determined by synchrotron radiation based mu-XANES, applied to individual particles isolated from selected samples collected at different sites in Kuwait. Based on scanning electron microscopy with X-ray microanalysis prior to mu-XANES, DU particles ranging from submicrons to several hundred micrometers were observed. The median particle size depended on sources and sampling sites; small-sized particles (median 13 microm) were identified in swipes taken from the inside of DU penetrators holes in tanks and in sandy soil collected below DU penetrators, while larger particles (median 44 microm) were associated with fire in a DU ammunition storage facility. Furthermore, the (236)U/(235)U ratios obtained from accelerator mass spectrometry demonstrated that uranium in the DU particles originated from reprocessed fuel (about 10(-2) in DU from the ammunition facility, about 10(-3) for DU in swipes). Compared to well-defined standards, all investigated DU particles were oxidized. Uranium particles collected from swipes were characterized as UO(2), U(3)O(8) or a mixture of these oxidized forms, similar to that observed in DU affected areas in Kosovo. Uranium particles formed during fire in the DU ammunition facility were, however, present as oxidation state +5 and +6, with XANES spectra similar to solid uranyl standards. Environmental or health impact assessments for areas affected by DU munitions should therefore take into account the presence of respiratory UO(2), U(3)O(8) and even UO(3) particles, their corresponding weathering rates and the subsequent mobilisation of U from oxidized DU particles. PMID:15511555

  16. Separation of zirconium by extraction chromatography with amberlite LA-1 from malonic acid

    SciTech Connect

    Narayanan, P.; Khopkar, S.M.

    1985-01-01

    Zirconium was separated by extraction chromatography with Amberlite LA-1 as an extractant from 1 X 10/sup -3/ M to 2.5 to 10/sup -1/ M of malonic acid at pH 2.0 to 6.0. It was stripped with various mineral acids and determined spectrophotometrically with arsenazo-III at 665 nm. Zirconium was separated from alkali, alkaline earths, yttrium, lanthanum, chromium(III), manganese, cobalt, nickel, copper, zinc, cadmium and aluminium by process of selective extraction. It was also separated from scandium, titanium, thorium, uranium and bismuth by process of selective stripping with various mineral acids. The method was extended for the analysis of zirconium in zircon.

  17. Vegetational stabilization of uranium spoil areas, grants, New Mexico

    Microsoft Academic Search

    1979-01-01

    Factors that could be detrimental to vegetative stabilization of uranium mine and mill waste material were examined. Physical and chemical analyses of materials from an open-pit uranium mine and material from three inactive mill tailing piles in New Mexico were performed. Analyses for selected trace elements in mill tailing material and associated vegetation from piles in New Mexico, Colorado, and

  18. Melting of uranium-contaminated metal cylinders by electroslag refining

    Microsoft Academic Search

    T. Uda; Y. Ozawa; H. Iba

    1987-01-01

    Melt refining as a means of uranium decontamination of metallic wastes by electroslag refining was examined. Electroslag refining was selected because it is easy to scale up to the necessary industrial levels. Various thicknesses of iron and aluminum cylinders with uranium concentrations close to actual metallic wastes were melted by adding effective fluxes for decontamination. Thin-walled iron and aluminum cylinders

  19. MICRONUCLEI IN EPITHELIAL CELLS FROM SPUTUM OF URANIUM WORKERS

    EPA Science Inventory

    The exfoliated-cell micronucleus (MN) assay was used to assess cytogenetic effects of exposure to radon progeny and cigarette smoke among 99 Colorado plateau uranium workers. ubjects were selected at random from employees in underground and open-pit uranium mines, ore mills, labo...

  20. Hyperfine structure in the configuration F3DS2 of uranium

    Microsoft Academic Search

    R. Avril; A. Ginibre; Alain D. Petit

    1993-01-01

    Experiments of technological interest for the project of laser isotope separation of uranium (Atomic Vapor Laser Isotope Separation, 'AVLIS') have yielded experimental data concerning the hyperfine structure (hfs) of levels of atomic uranium. The present paper reports on these data, their obtention and a parametric interpretation by the Condon Racah-Slater method. The experimental setup uses a Laser Induced Fluorescence technique

  1. Innovative Separations Technologies

    SciTech Connect

    J. Tripp; N. Soelberg; R. Wigeland

    2011-05-01

    Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

  2. New separators for battery systems

    Microsoft Academic Search

    J. Lee; V. Dagostino

    1981-01-01

    The reported study takes into consideration separators for miniature cells, such as silver\\/zinc button cells, and separators for aircraft nickel\\/cadmium batteries. It is pointed out that separators for energy systems having an aqueous electrolyte, either acid or basic, can be prepared by selective modification of radiation grafting parameters. A new family of separators, known as the 'SC' series, has been

  3. Magnetic separation for soil decontamination

    SciTech Connect

    Avens, L.R.; Worl, L.A.; deAguero, K.J.; Padilla, D.D.; Prenger, F.C.; Stewart, W.F.; Hill, D.D. [Los Alamos National Lab., NM (United States); Tolt, T.L. [Lockheed Environmental Systems and Technologies (United States)

    1993-02-01

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology.

  4. Magnetic separation for soil decontamination

    SciTech Connect

    Avens, L.R.; Worl, L.A.; deAguero, K.J.; Padilla, D.D.; Prenger, F.C.; Stewart, W.F.; Hill, D.D. (Los Alamos National Lab., NM (United States)); Tolt, T.L. (Lockheed Environmental Systems and Technologies (United States))

    1993-01-01

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology.

  5. Novel ion imprinted polymer magnetic mesoporous silica nano-particles for selective separation and determination of lead ions in food samples.

    PubMed

    Aboufazeli, Forouzan; Zhad, Hamid Reza Lotfi; Sadeghi, Omid; Karimi, Mohammad; Najafi, Ezzatollah

    2013-12-15

    A novel Pb(II) ion imprinted polymer coated on magnetic mesoporous silica was synthesised and characterised by scanning electron microscopy (SEM), thermal gravimetric/differential thermal analysis (TG/DTA), elemental analysis (CHN) and low angle X-ray powder diffraction (XRD). The application of this sorbent was investigated in preconcentration and determination of low concentrations of lead ions. Through this study, various effective factors on determination, such as pH of the sample solution, eluent including type, concentration and volume, adsorption and desorption time which are effective on the method efficiency, were appraised. In order to investigate the selectivity of this sorbent toward Pb(II) ions, the effect of variety of ions on preconcentration and recovery of Pb(II) ions were also investigated. The limit of detection (LOD) was found to be lower than 1.3 ?g L(-1) and the recovery and relative standard deviation (RSD%) of the method were higher than 97.3% and lower than 2.9%, respectively. The application of this sorbent was investigated in separation and determination of lead-contaminated food with concentration below the detection limit of flame atomic adsorption spectroscopy. Validation of the presented method was performed by analysing several standard reference materials with certified lead concentrations. PMID:23993507

  6. Separations inside a cube

    E-print Network

    A. F. F. Teixeira

    2001-12-28

    Two points are randomly selected inside a three-dimensional euclidian cube. The value l of their separation lies somewhere between zero and the length of a diagonal of the cube. The probability density P(l) of the separation is obtained analytically. Also a Monte Carlo computer simulation is performed, showing good agreement with the formulas obtained.

  7. BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.

    SciTech Connect

    FRANCIS,A.J.

    1998-09-17

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  8. [Internal contamination with depleted uranium and health disorders].

    PubMed

    Pranji?, Nurka; Karamehi?, Jasenko; Ljuca, Farid; Zigi?, Zlata; Asceri?, Mensura

    2002-01-01

    In this review we used the published data on depleted uranium (experimental and epidemiological) from the current literature. Depleted uranium is a toxic heavy metal that in high dose may cause poisoning and health effects as those caused by lead, mercury, and chromium. It is slightly radioactive. The aim of this review was to select, to arrange, to present references of scientific papers, and to summarise the data in order to give a comprehensive image of the results of toxicological studies on depleted uranium that have been done on animals (including carcinogenic activity). We have also used epidemiological posted study results related to occupational and environmental exposure to depleted uranium. The toxicity of uranium has been studied extensively. The results of the studies indicated primarily its chemical toxicity, particularly renal effects, but depleted uranium is not radiological hazard. Uranium is not metal determined to be carcinogenic (the International Agency of Research on Cancer). The military use of depleted uranium will give additional insight into the toxicology of depleted uranium. The present controversy over the radiological and chemical toxicity of depleted uranium used in the Gulf War requests further experimental and clinical investigations of its effects on the biosphere and human beings. PMID:11917690

  9. Ion-exchange and selectivity behavior of thermally treated and. gamma. -irradiated phases of zirconium(IV) arsenophosphate cation exchanger: separation of Al(III) from some metal ions and removal of cations from water

    SciTech Connect

    Varshney, K.G.; Varshney, K.; Agrawal, S.

    1983-01-01

    Ion-exchange and selectivity behavior of zirconium(IV) arsenophosphate (ZAP) has been studied systematically after thermal and irradiation treatments. As a result, an increase in the ion-exchange capacity and a complete reversal in the selectivity sequence for some common metal ions has been observed on heating. The modified phase of ZAP has been utilized successfully for the quantitative separation of aluminum from numerous metal ions and for the removal of cations from water. 5 figures, 3 tables.

  10. N,N'-Dialkyl-N,N'-diaryl-1,10-phenanthroline-2,9-dicarboxamides as donor ligands for separation of rare earth elements with a high and unusual selectivity. DFT computational and experimental studies.

    PubMed

    Ustynyuk, Yu A; Borisova, N E; Babain, V A; Gloriozov, I P; Manuilov, A Y; Kalmykov, S N; Alyapyshev, M Yu; Tkachenko, L I; Kenf, E V; Ustynyuk, N A

    2015-05-01

    N,N'-Dialkyl-N,N'-diaryl-1,10-phenanthroline-2,9-dicarboxamides (IV) were predicted (DFT simulation) and then were proved experimentally to be efficient donor ligands with high and unusual selectivity for the extraction separation of lanthanides. Distribution coefficients D of lanthanide cations in two-phase aqueous solution-polar organic solvent decrease with increasing Ln(3+) atomic number. The selectivity factors SFLn1/Ln2 for adjacent lanthanide ions were found to be about 3. PMID:25828700

  11. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    SciTech Connect

    Not Available

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

  12. Welding of uranium and uranium alloys

    SciTech Connect

    Mara, G.L.; Murphy, J.L.

    1982-03-26

    The major reported work on joining uranium comes from the USA, Great Britain, France and the USSR. The driving force for producing this technology base stems from the uses of uranium as a nuclear fuel for energy production, compact structures requiring high density, projectiles, radiation shielding, and nuclear weapons. This review examines the state-of-the-art of this technology and presents current welding process and parameter information. The welding metallurgy of uranium and the influence of microstructure on mechanical properties is developed for a number of the more commonly used welding processes.

  13. Evaporation of Enriched Uranium Solutions Containing Organophosphates

    SciTech Connect

    Pierce, R.A.

    1999-03-18

    The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The preliminary SRTC data, in conjunction with information in the literature, is promising. However, very few experiments have been run, and none of the results have been confirmed with repeat tests. As a result, it is believed that insufficient data exists at this time to warrant Separations making any process or program changes based on the information contained in this report. When this data is confirmed in future testing, recommendations will be presented.

  14. Accurate measurement of uranium isotope ratios in soil samples using thermal ionization mass spectrometry equipped with a warp energy filter

    Microsoft Academic Search

    Sarata Kumar Sahoo; Yuji Nakamura; Kunio Shiraishi; Akimasa Masuda

    2004-01-01

    A chemical and mass-spectrometric procedure for uranium isotopic analysis using a thermal ionisation mass spectrometer equipped with a Wide Aperture Retardation Potential energy filter has been developed and applied to uranium isotopic measurements for various soil samples. Soil samples were digested using a microwave digestor. Uranium was isolated from soil samples by the chemical separation procedure based on the use

  15. Microbial transformation of uranium in wastes

    SciTech Connect

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.; Cline, J.E. (Brookhaven National Lab., Upton, NY (USA); Oak Ridge Y-12 Plant, TN (USA))

    1989-01-01

    Contamination of soils, water, and sediments by radionuclides and toxic metals from the disposal of uranium processing wastes is a major national concern. Although much is known about the physico- chemical aspects of U, we have little information on the effects of aerobic and anaerobic microbial activities on the mobilization or immobilization of U and other toxic metals in mixed wastes. In order to understand the mechanisms of microbial transformations of uranium, we examined a contaminated pond sediment and a sludge sample from the uranium processing facility at Y-12 Plant, Oak Ridge, TN. The uranium concentration in the sediment and sludge samples was 923 and 3080 ug/g dry wt, respectively. In addition to U, the sediment and sludge samples contained high levels of toxic metals such as Cd, Cr, Cu, Hg, Pb, Ni, and Zn. The association of uranium with the various mineral fractions of the sediment and sludge was determined by selective chemical extraction techniques. Uranium was associated to varying degrees with the exchangeable carbonate, iron oxide, organic, and inert fractions in both samples. Initial results in samples amended with carbon and nitrogen indicate immobilization of U due to enhanced indigenous microbial activity under anaerobic conditions. 23 refs., 4 figs., 5 tabs.

  16. Characterization of streamflow, water quality, and instantaneous dissolved solids, selenium, and uranium loads in selected reaches of the Arkansas River, southeastern Colorado, 2009-2010

    USGS Publications Warehouse

    Ivahnenko, Tamara; Ortiz, Roderick F.; Stogner, Robert W.

    2013-01-01

    As a result of continued water-quality concerns in the Arkansas River, including metal contamination from historical mining practices, potential effects associated with storage and movement of water, point- and nonpoint-source contamination, population growth, storm-water flows, and future changes in land and water use, the Arkansas River Basin Regional Resource Planning Group (RRPG) developed a strategy to address these issues. As such, a cooperative strategic approach to address the multiple water-quality concerns within selected reaches of the Arkansas River was developed to (1) identify stream reaches where stream-aquifer interactions have a pronounced effect on water quality and (or) where reactive transport, and physical and (or) chemical alteration of flow during conveyance, is occurring, (2) quantify loading from point sources, and (3) determine source areas and mass loading for selected constituents. (To see the complete abstract, open Report PDF.)

  17. Preparation of uranium compounds

    DOEpatents

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  18. EVALUATION OF URANIUM-SILICON ALLOY

    Microsoft Academic Search

    Ryan

    1954-01-01

    A fuel element resistant to core failure at high HAPO irradiation ; exposure levels was desired and an alloy fuel element which might meet this ; requirement was studied. The uranium -1.5 at% silicon alloy was selected as it ; does not quench crack during heat treatment, can be fabricated under production ; conditions, and has a low reactivity loss.

  19. Uranium provinces of North America; their definition, distribution, and models

    USGS Publications Warehouse

    Finch, Warren Irvin

    1996-01-01

    Uranium resources in North America are principally in unconformity-related, quartz-pebble conglomerate, sandstone, volcanic, and phosphorite types of uranium deposits. Most are concentrated in separate, well-defined metallogenic provinces. Proterozoic quartz-pebble conglomerate and unconformity-related deposits are, respectively, in the Blind River?Elliot Lake (BRELUP) and the Athabasca Basin (ABUP) Uranium Provinces in Canada. Sandstone uranium deposits are of two principal subtypes, tabular and roll-front. Tabular sandstone uranium deposits are mainly in upper Paleozoic and Mesozoic rocks in the Colorado Plateau Uranium Province (CPUP). Roll-front sandstone uranium deposits are in Tertiary rocks of the Rocky Mountain and Intermontane Basins Uranium Province (RMIBUP), and in a narrow belt of Tertiary rocks that form the Gulf Coastal Uranium Province (GCUP) in south Texas and adjacent Mexico. Volcanic uranium deposits are concentrated in the Basin and Range Uranium Province (BRUP) stretching from the McDermitt caldera at the Oregon-Nevada border through the Marysvale district of Utah and Date Creek Basin in Arizona and south into the Sierra de Pe?a Blanca District, Chihuahua, Mexico. Uraniferous phosphorite occurs in Tertiary sediments in Florida, Georgia, and North and South Carolina and in the Lower Permian Phosphoria Formation in Idaho and adjacent States, but only in Florida has economic recovery been successful. The Florida Phosphorite Uranium Province (FPUP) has yielded large quantities of uranium as a byproduct of the production of phosphoric acid fertilizer. Economically recoverable quantities of copper, gold, molybdenum, nickel, silver, thorium, and vanadium occur with the uranium deposits in some provinces. Many major epochs of uranium mineralization occurred in North America. In the BRELUP, uranium minerals were concentrated in placers during the Early Proterozoic (2,500?2,250 Ma). In the ABUP, the unconformity-related deposits were most likely formed initially by hot saline formational water related to diagenesis (?1,400 to 1,330 Ma) and later reconcentrated by hydrothermal events at ?1,280??1,000, ?575, and ?225 Ma. Subsequently in North America, only minor uranium mineralization occurred until after continental collision in Permian time (255 Ma). Three principal epochs of uranium mineralization occurred in the CPUP: (1) ??210?200 Ma, shortly after Late Triassic sedimentation; (2) ??155?150 Ma, in Late Jurassic time; and (3) ??135 Ma, after sedimentation of the Upper Jurassic Morrison Formation. The most likely source of the uranium was silicic volcaniclastics for the three epochs derived from a volcanic island arc at the west edge of the North American continent. Uranium mineralization occurred during Eocene, Miocene, and Pliocene times in the RMIBUP, GCUP, and BRUP. Volcanic activity took place near the west edge of the continent during and shortly after sedimentation of the host rocks in these three provinces. Some volcanic centers in the Sierra de Pe?a Blanca district within the BRUP may have provided uranium-rich ash to host rocks in the GCUP. Most of the uranium provinces in North America appear to have a common theme of close associations to volcanic activity related to the development of the western margin of the North American plate. The south and west margin of the Canadian Shield formed the leading edge of the progress of uranium source development and mineralization from the Proterozoic to the present. The development of favorable hosts and sources of uranium is related to various tectonic elements developed over time. Periods of major uranium mineralization in North America were Early Proterozoic, Middle Proterozoic, Late Triassic?Early Jurassic, Early Cretaceous, Oligocene, and Miocene. Tertiary mineralization was the most pervasive, covering most of Western and Southern North America.

  20. Production of Mo-99 using low-enriched uranium silicide

    SciTech Connect

    Hutter, J. C.; Srinivasan, B.; Vicek, M.; Vandegrift, G. F.

    1994-09-01

    Over the last several years, uranium silicide fuels have been under development as low-enriched uranium (LEU) targets for Mo-99. The use of LEU silicide is aimed at replacing the UAl{sub x} alloy in the highly-enriched uranium dissolution process. A process to recover Mo-99 from low-enriched uranium silicide is being developed at Argonne National Laboratory. The uranium silicide is dissolved in alkaline hydrogen peroxide. Experiments performed to determine the optimum dissolution procedure are discussed, and the results of dissolving a portion of a high-burnup (>40%) U{sub 3}Si{sub 2} miniplate are presented. Future work related to Mo-99 separation and waste disposal are also discussed.

  1. Anomalous occurrence of uranium in alpine peats, Summit County, Colorado, and results of a simple sample fractionation procedure

    USGS Publications Warehouse

    Leventhal, Joel S.; Jennings, Joan K.; Lemke, Alan J.

    1978-01-01

    Samples from Summit County, Colo., were fractionated for analyses of organic content and uranium. The uranium is related to organic content but not to type of organic matter. In one area uranium values are around 100 ppm in bulk samples and as much as 200 ppm in certain separated fractions of the samples; this is much higher than the 1-10 ppm normal uranium values for peat.

  2. Application of supported liquid membranes for removal of uranium from groundwater

    SciTech Connect

    Chiarizia, R.; Horwitz, E.P.; Rickert, P.G.; Hodgson, K.M. (Argonne National Lab., IL (USA); Westinghouse Hanford Co., Richland, WA (USA))

    1989-01-01

    The separation of uranium from Hanford site groundwater as studied by hollow-fiber supported liquid membranes, SLM. The carrier bis(2,4,4-trimethylpentyl)phosphinic acid, H(DTMPep), contained in the commercial extractant Cyanex{trademark} 272 was used as a membrane carrier, because of its selectivity for U over calcium and magnesium. The water soluble complexing agent, 1-hydroxyethane-1,1-diphosphonic acid, HEDPA, was used as stripping agent. Polypropylene hollow-fibers and n-dodecane were used as polymeric support and diluent, respectively. Laboratory scale hollow-fiber modules were employed in a recycling mode, using as feed synthetic groundwater at pH 2, to confirm the capability of the proposed SLM system to separate and concentrate U(VI) in the strip solution. Information was obtained on the U(VI) concentration factor and on the long-term performance of the SLMs. Encouraging results were obtained both with a conventional module and with a module containing a carrier solution reservoir. Industrial scale modules were used at Hanford to test the SLM separation of U(VI) from real contaminated groundwater. The uranium concentration was reduced from approximately 3500 ppB to about 1 ppB in a few hours. 9 refs., 8 figs., 4 tabs.

  3. Uranium transport in the Walker River Basin, California and Nevada

    USGS Publications Warehouse

    Benson, L.V.; Leach, D.L.

    1979-01-01

    During the summer of 1976 waters from tributaries, rivers, springs and wells were sampled in the Walker River Basin. Snow and sediments from selected sites were also sampled. All samples were analyzed for uranium and other elements. The resulting data provide an understanding of the transport of uranium within a closed hydrologic basin as well as providing a basis for the design of geochemical reconnaissance studies for the Basin and Range Province of the Western United States. Spring and tributary data are useful in locating areas containing anomalous concentrations of uranium. However, agricultural practices obscure the presence of known uranium deposits and render impossible the detection of other known deposits. Uranium is extremely mobile in stream waters and does not appear to sorb or precipitate. Uranium has a long residence time (2500 years) in the open waters of Walker Lake; however, once it crosses the sediment-water interface, it is reduced to the U(IV) state and is lost from solution. Over the past two million years the amount of uranium transported to the terminal point of the Walker River system may have been on the order of 4 ?? 108 kg. This suggests that closed basin termini are sites for significant uranium accumulations and are, therefore, potential sites of uranium ore deposits. ?? 1979.

  4. Removal of uranium(VI) from aqueous solution using iminodiacetic acid derivative functionalized SBA-15 as adsorbents.

    PubMed

    Wang, Yu-Long; Song, Li-Juan; Zhu, Lu; Guo, Bo-Long; Chen, Su-Wen; Wu, Wang-Suo

    2014-03-01

    Three different functional SBA-15 were prepared by a post-grafting method using three iminodiacetic acid derivatives of ethylenediaminetriacetic acid (ED3A), diethylenetriaminetetraacetic acid (DT4A), and 1,2-cyclohexylenedinitrilotriacetic acid (CyD3A), which were used as adsorbents for removal of uranium(vi) from aqueous solution. These materials were characterized by FT-IR, NMR, TEM, nitrogen adsorption/desorption experiments, and elemental analysis. The effect of pH, ionic strength, contact time, solid-liquid ratio, initial metal ion concentration, temperature, and coexisting ions on uranium(vi) sorption behaviors of the functionalized SBA-15 was studied. Typical sorption isotherms (Langmuir and Freundlich) were determined for the sorption process, and the maximum sorption capacity was calculated. The influence of functional groups on uranium(vi) sorption was also discussed. As a result, compared with other current U(vi) sorbents (granite, kaolin, attapulgite), SBA-15-1,2-cyclohexylenedinitrilotriacetic acid (SBA-15-CyD3A) possessed good selective sorption properties, which had potential application in separation of uranium(vi). PMID:24435450

  5. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    SciTech Connect

    Isselhardt, B H

    2011-09-06

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  6. Uranium industry annual 1993

    SciTech Connect

    Not Available

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  7. Separation and determination of trace metal ions using organic chelating reagents

    SciTech Connect

    Palmieri, M.D.

    1987-11-01

    The four reagents tested were N,N-dihexylacetamide (DHA), 2,6-diacetylpyridine bis(furoylhydrazone) (H/sub 2/dapf), 1,3-dimethyl-4-acetyl-2-pyrazolin-5-one (DMAP) and N-methylfurohydroxamic acid (NMFHA). DHA and H/sub 2/dapf were investigated for their complex formation with uranium, and DMAP and NMFHA were used as chelating agents in high performance liquid chromatography (HPLC). Uranium(VI) is preferentially extracted from nitric acid solutions using DHA in toluene. The extraction characteristics of the U-DHA complex are studied. A 119,000 ..mu..gL/sup -1/ U solution is analyzed for twenty-six elements. The U is extracted with DHA, and the trace metal ions are then determined by inductively coupled plasma-mass spectrometry. Uranium must be removed from the sample before analysis to prevent ionization suppression. H/sub 2/dapf is synthesized and characterized. Studies of the complexation of metal ions with H/sub 2/dapf is described. U(VI) forms a stable complex with H/sub 2/dapf, and a procedure for selectively determining trace U by spectrophotometry is presented. DMAP complexes of Cu(II), Fe(III), Ga(III), Th(IV), U(VI), V(V), and Zr(IV) are separated using reversed phase HPLC. NMFHA complex of Al(III), Fe(III), Hf(IV), Nb(V), Sb(III), and Zr(IV) are separated using reversed phase HPLC. NMFHA is also used to separate uranium(VI) from trace lanthanide ions. 266 refs., 46 figs., 24 tabs

  8. World Uranium Reserves

    NSDL National Science Digital Library

    James Hopf

    This American Energy Independence website provides a brief overview of potential supplies of uranium for nuclear energy. The author, nuclear engineer James Hopf, believes that there are large reserves of uranium available, and that more will be discovered if needed. Links to literature cited and related resources are included.

  9. Uranium: A Dentist's perspective

    PubMed Central

    Toor, R. S. S.; Brar, G. S.

    2012-01-01

    Uranium is a naturally occurring radionuclide found in granite and other mineral deposits. In its natural state, it consists of three isotopes (U-234, U-235 and U-238). On an average, 1% – 2% of ingested uranium is absorbed in the gastrointestinal tract in adults. The absorbed uranium rapidly enters the bloodstream and forms a diffusible ionic uranyl hydrogen carbonate complex (UO2HCO3+) which is in equilibrium with a nondiffusible uranyl albumin complex. In the skeleton, the uranyl ion replaces calcium in the hydroxyapatite complex of the bone crystal. Although in North India, there is a risk of radiological toxicity from orally ingested natural uranium, the principal health effects are chemical toxicity. The skeleton and kidney are the primary sites of uranium accumulation. Acute high dose of uranyl nitrate delays tooth eruption, and mandibular growth and development, probably due to its effect on target cells. Based on all previous research and recommendations, the role of a dentist is to educate the masses about the adverse effects of uranium on the overall as well as the dental health. The authors recommended that apart from the discontinuation of the addition of uranium to porcelain, the Public community water supplies must also comply with the Environmental Protection Agency (EPA) standards of uranium levels being not more than 30 ppb (parts per billion). PMID:24478959

  10. Uranium in river water

    Microsoft Academic Search

    M. R. Palmer; J. M. Edmond

    1993-01-01

    The concentration of dissolved uranium has been determined in over 250 river waters from the Orinoco, Amazon, and Ganges basins. Uranium concentrations are largely determined by dissolution of limestones, although weathering of black shales represents an important additional source in some basins. In shield terrains the level of dissolved U is transport limited. Data from the Amazon indicate that floodplains

  11. Alumina modified by dimethyl sulfoxide as a new selective solid phase extractor for separation and preconcentration of inorganic mercury(II).

    PubMed

    Soliman, Ezzat M; Saleh, Mohamed B; Ahmed, Salwa A

    2006-03-15

    Dimethyl sulfoxide (DMSO) was simply immobilized to neutral alumina via quite strong hydrogen bonding between sulfoxide oxygen and surface alumina hydroxo groups. The produced alumina-modified dimethyl sulfoxide (AMDMSO) solid phase (SP)-extractor experienced high thermal and medium stability. Moreover, the small and compact size of DMSO moiety permit high surface coverage evaluated to be 2.1+/-0.1 mmol g(-1) of alumina. Hg(II) uptake was 1.90 mmol g(-1)(distribution coefficient log K(d)=5.658) at pH 1.0 or 2.0, 1.68 mmol g(-1) (log K(d)=4.067) at pH 3.0 or 4.0 while the metal ions Ca(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) showed low values 0.513-0.118 mmol g(-1) (log K(d)<3.0) in the pH range 4.0-7.0. A mechanism was suggested to explain the unique uptake of Hg(II) ions by binding as neutral and chloroanionic species predominate at pH values< or =3.0 of a medium rich in chloride ions. A direct and fast batch separation mode was achieved successfully to retain selectively Hg(II) in presence of other eight coexisting metal ions. Thus, Hg(II) was completely retained; Ca(II), Co(II), Ni(II) and Cd(II) were not retained, while Pb(II), Cu(II), Zn(II) and Fe(III) exhibited very low percentage retention evaluated to be 0.42, 0.49, 1.4 and 5.43%, respectively. The utility of the new modified alumina sorbent for concentrating of ultratrace amounts of Hg(II) was performed by percolating 2l of doubly distilled water, drinking tap water, and Nile river water spiked with 10 ng/l over 100mg of the sorbent packed in a minicolumn used as a thin layer enrichment bed prior to the determination by CV-AAS. The high recovery values obtained (98.5+/-0.5, 98.5+/-0.5 and 103.0+/-1.0) based on excellent enrichment factor 1000, along with a good precision (R.S.D.% 0.51-0.97%, N=3) demonstrate the accuracy and validity of the new modified alumina sorbent for preconcentrating ultratrace amounts of Hg(II) with no matrix interference. PMID:18970531

  12. CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS

    E-print Network

    Hart, Gus

    CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS by David T. Oliphant. Woolley Dean, College of Physical and Mathematical Sciences #12;ABSTRACT CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS David T. Oliphant Department of Physics and Astronomy

  13. 16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM RECOVERY PROCESSED RELATIVELY PURE MATERIALS AND SOLUTIONS AND SOLID RESIDUES WITH RELATIVELY LOW URANIUM CONTENT. URANIUM RECOVERY INVOLVED BOTH SLOW AND FAST PROCESSES. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  14. Uranium triamidoamine chemistry.

    PubMed

    Gardner, Benedict M; Liddle, Stephen T

    2015-07-01

    Triamidoamine (Tren) complexes of the p- and d-block elements have been well-studied, and they display a diverse array of chemistry of academic, industrial and biological significance. Such in-depth investigations are not as widespread for Tren complexes of uranium, despite the general drive to better understand the chemical behaviour of uranium by virtue of its fundamental position within the nuclear sector. However, the chemistry of Tren-uranium complexes is characterised by the ability to stabilise otherwise reactive, multiply bonded main group donor atom ligands, construct uranium-metal bonds, promote small molecule activation, and support single molecule magnetism, all of which exploit the steric, electronic, thermodynamic and kinetic features of the Tren ligand system. This Feature Article presents a current account of the chemistry of Tren-uranium complexes. PMID:26035690

  15. Alteration and arenization processes of granitic waste rock piles from former uranium Mines in Limousin, France.

    NASA Astrophysics Data System (ADS)

    Kanzari, Aisha; Boekhout, Flora; Gérard, Martine; Galoisy, Laurence; Phrommavanh, Vannapha; Descostes, Michael

    2014-05-01

    France counts approximately 200 former uranium mines, 50 of which are located in the Limousin region. Mining activities between 1945 and 2001 have generated close to 200 000 tons of waste rocks in the Limousin, with uranium levels corresponding essentially to the geological background. Waste rock piles from three former mining sites in this region, were selected according to their age, uranium content and petrological signature. These sites are part of the two-mica granitic complex of St Sylvestre massif, formed 324 million years ago. Granitic blocks that build up the waste rock piles have experienced different processes and intensities of alteration before their emplacement at the surface. These processes are responsible for the petrological heterogeneity throughout the waste rock pile at the time of construction. It is important to make a distinction within waste rocks between natural-cut-off waste rocks and economic-cut-off waste rocks. The latter represents a minority and is linked to stock prices. Natural-cut-off waste rocks contain about 20 ppm of uranium; economic-cut-off waste rocks contain about 100 to 300 ppm of uranium. The aims of this study are to 1) assess the neo-formation of U-bearing minerals hosted by these rocks, and 2) to characterize the weathering processes since the construction of the rock piles, including both mechanical and chemical processes. The structure of the waste rocks piles, from metric blocks to boulders of tens centimeters, induces an enhanced weathering rate, compared to a granitic massif. Mechanical fracturing and chemical leaching by rainwater (arenization) of the waste rocks produce a sandy-silty alteration phase. Silty-clay weathering aureoles of submetric-granitic blocks evolving into technic soil are mainly located below growing birch trees. Sampling on the rock piles was restricted to surface rocks. Samples collected consist mainly of granites, and rare lamprophyres with a high radiometric signal, thereby especially concentrated in uranium compared to the 200 000 tons of waste rock piles in the Limousin. The composition of clay minerals and the uranium content of the samples were investigated by XRD, ICP-MS, Optical microscopy, EDS and WDS punctual measurements or element mapping and SEM on both thin sections and on rock chips. The initial granite paragenesis (quartz, albite, sanidine, microcline, biotite, muscovite, apatite, rutile, zircon and monazite) was identified. Chlorite, smectite, kaolinite and secondary phosphates and sulfates are the main secondary minerals of the different stage of hydrothermal alteration and weathering. In the clay fraction, smectites are the main mineral phases. U-bearing minerals are different according to the alteration state of mine tailings. The mean content in uranium for selected samples is about 800 ppm and rises up to 5000 ppm for the separated clay fraction of the same samples. Initially and mainly hosted by monazite, uranium is found in phosphates such as autunite, or associated with smectites. Micromorphological studies reveal: • The formation of protosoils from weathering processes. • Different degrees of alteration in the rocks, smectite or kaolinite alteromorphose. • U oxy-hydroxides, nanometric minerals or coatings associated with smectite. • A complex paregenesis of submicrometric - nanometric U phosphates, suggesting uranium stabilization.

  16. Method for fluorination of uranium oxide

    DOEpatents

    Petit, George S. (Oak Ridge, TN)

    1987-01-01

    Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

  17. Inorganic separator technology program

    NASA Technical Reports Server (NTRS)

    Smatko, J. S.; Weaver, R. D.; Kalhammer, F. R.

    1973-01-01

    Testing and failure analyses of silver zinc cells with largely inorganic separators were performed. The results showed that the wet stand and cycle life objective of the silver-zinc cell development program were essentially accomplished and led to recommendations for cell composition, design, and operation that should yield further improvement in wet and cycle life. A series of advanced inorganic materials was successfully developed and formulated into rigid and semiflexible separator samples. Suitable screening tests for evaluation of largely inorganic separators were selected and modified for application to the separator materials. The results showed that many of these formulations are potentially superior to previously used materials and permitted selection of three promising materials for further evaluation in silver-zinc cells.

  18. Separation of metals by supported liquid membrane

    SciTech Connect

    Takigawa, D.Y.

    1992-05-19

    This patent describes a process of separating a preselected chemical species selected from the group consisting of aluminum, arsenic, antimony, bismuth, cadmium, chromium, copper, cobalt, gallium, gold, hafnium, indium, iridium, iron, lead, manganese, mercury, molybdenum, neodymium, nickel, niobium, osmium, palladium, platinum, rhenium, rhodium, ruthenium, selenium, silver, tantalum, tellurium, thallium, thorium, tin, tungsten, uranium, vanadium, zinc, or zirconium from a feedstream. It comprises providing a supported liquid membrane having both a first and a second side, the membrane comprised of microporous polybenzimidazole, the polybenzimidazole containing within the polybenzimidazole pores an extractant mixture selective for the preselected chemical species; contacting a feedstream containing the preselected chemical species with the first side of the supported liquid membrane in a feed compartment adjacent to the supported liquid membrane for a time sufficient to extract at least a portion of the preselected chemical species from the feedstream into the extractant mixture; and, contacting a stripping solution with the second side of the supported liquid membrane in a stripping compartment adjacent to the supported liquid membrane, for a time sufficient to extract at least a portion of the preselected chemical species from the extractant mixture into the stripping solution.

  19. 2013 Domestic Uranium Production Report

    E-print Network

    2013 Domestic Uranium Production Report May 2014 Independent Statistics & Analysis www.eia.gov U Administration | 2013 Domestic Uranium Production Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity, Renewables, and Uranium Statistics. Questions

  20. An equilibrium model for ligand-modified micellar-enhanced ultrafiltration, selective separation of metal ions using iminoacetic substituted polyamines and a theoretical model for the titration behavior of polyamines

    SciTech Connect

    Dharmawardana, U.R.

    1992-12-31

    This thesis consists of three chapters. Chapter 1, An equilibrium model for ligand-modified micellar-enhanced ultrafiltration, describes a theoretical model and experimental investigations which used the semi-equilibrium-dialysis method with N-n-dodecyl iminodiacetic acid as the ligand. In Chapter 2, Selective separation of metal ions using iminoacetic substituted polyamines, polyamines with a substituted ligand group are synthesized and used in investigating selective separation of copper ions from aqueous solution. In Chapter 3, A theoretical model for the titration behavior of polyamines, a novel approach to explain the titration behavior of polymeric amines based on the binding behavior of counterions is described. The application of this study is to the investigation of inexpensive and efficient methods of industrial waste water treatment.

  1. Optimization of a radioanalytical procedure for the determination of uranium isotopes in environmental samples

    Microsoft Academic Search

    M. Pimpl; B. Yoo; I. Yordanova

    1992-01-01

    A radiochemical procedure is described for the fast and sensitive measurement of uranium isotopes in gaseous and liquid effluents of nuclear facilities. Equally, this procedure is suitable to measure uranium isotopes in all kinds of environmental samples. Uranium is leached from ashed sample materials with HNO3, HF, and Al(NO3)3 solution and separated from matrix elements by extraction with trioctylphosphinic oxide

  2. Selective Separation of Rare Earth Metals by Solvent Extraction in the Presence of New Hydrophilic Chelating Polymers Functionalized with Ethylenediaminetetraacetic Acid. I. Development of New Hydrophilic Chelating Polymers and Their Adsorption Properties for Rare Earth Metals

    Microsoft Academic Search

    Hideto Matsuyama; Yoshikazu Miyamoto; Masaaki Teramoto; Masahiro Goto; Fumiyuki Nakashio

    1996-01-01

    New hydrophilic chelating polymers were synthesized by introducing ethylene-diaminetetraacetic acid (EDTA) onto water-soluble polyallylamine. The selective separation of rare earth metals by solvent extraction including these chelating polymers in the aqueous phase is the goal of this work. The polymers were characterized by IR analysis, elemental analysis, gel permeation chromatography (GPC) measurement, and pH titration. Two kinds of polymers with

  3. India's Worsening Uranium Shortage

    SciTech Connect

    Curtis, Michael M.

    2007-01-15

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  4. Depleted uranium management alternatives

    SciTech Connect

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  5. Properties of radio-frequency heated argon confined uranium plasmas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.

  6. The effects of solid rocket motor effluents on selected surfaces and solid particle size, distribution, and composition for simulated shuttle booster separation motors

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Linton, R. C.; Russell, W. M.; Trenkle, J. J.; Wilkes, D. R.

    1976-01-01

    A series of three tests was conducted using solid rocket propellants to determine the effects a solid rocket plume would have on thermal protective surfaces (TPS). The surfaces tested were those which are baselined for the shuttle vehicle. The propellants used were to simulate the separation solid rocket motors (SSRM) that separate the solid rocket boosters (SRB) from the shuttle launch vehicle. Data cover: (1) the optical effects of the plume environment on spacecraft related surfaces, and (2) the solid particle size, distribution, and composition at TPS sample locations.

  7. Battery separators

    SciTech Connect

    Clegg, G.A.; Pearson, E.J.

    1981-01-13

    A description is given of a synthetic pulp separator for a lead acid battery, the separator having two or more plies and a ribbed profile the surface adapted to face the positive having a higher content of synthetic pulp than the other surface.

  8. Micronuclei in epithelial cells from sputum of uranium workers

    Microsoft Academic Search

    D. P. Loomis; C. M. Shy; J. W. Allen; G. Saccomanno

    1990-01-01

    The exfoliated-cell micronucleus (MN) assay was used to assess cytogenetic effects of exposure to radon progeny and cigarette smoke among 99 Colorado plateau uranium workers. Subjects were selected at random from employees in underground and open-pit uranium mines, ore mills, laboratories, and offices participating in a sputum screening program from 1964-88. The prevalence of cells with MN was determined by

  9. Preliminary survey of separations technology applicable to the pretreatment of Hanford tank waste (1992--1993)

    SciTech Connect

    Lawrence, W.E.; Kurath, D.E.

    1994-04-01

    The US Department of Energy has established the Tank Waste Remediation System (TWRS) to manage and dispose of radioactive wastes stored at the Hanford Site. Within this program are evaluations of pretreatment system alternatives through literature reviews. The information in this report was collected as part of this project at Pacific Northwest Laboratory. A preliminary survey of literature on separations recently entered into the Hanford electronic databases (1992--1993) that have the potential for pretreatment of Hanford tank waste was conducted. Separation processes that can assist in the removal of actinides (uranium, plutonium, americium), lanthanides, barium, {sup 137}Cs, {sup 90}Sr,{sup 129 }I, {sup 63}Ni, and {sup 99}Tc were evaluated. Separation processes of interest were identified through literature searches, journal reviews, and participation in separation technology conferences. This report contains brief descriptions of the potential separation processes, the extent and/or selectivity of the separation, the experimental conditions, and observations. Information was collected on both national and international separation studies to provide a global perspective on recent research efforts.

  10. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, Alvin B. (Cincinnati, OH)

    1983-01-01

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  11. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, A.B.

    1982-10-27

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  12. Uranium purchases report 1994

    SciTech Connect

    NONE

    1995-07-01

    US utilities are required to report to the Secretary of Energy annually the country of origin and the seller of any uranium or enriched uranium purchased or imported into the US, as well as the country of origin and seller of any enrichment services purchased by the utility. This report compiles these data and also contains a glossary of terms and additional purchase information covering average price and contract duration. 3 tabs.

  13. Production of uranium dioxide

    Microsoft Academic Search

    J. E. Hart; D. L. Shuck; W. L. Lyon

    1977-01-01

    A continuous, four stage fluidized bed process for converting uranium hexafluoride (UFâ) to ceramic-grade uranium dioxide (UOâ) powder suitable for use in the manufacture of fuel pellets for nuclear reactors is disclosed. The process comprises the steps of first reacting UFâ with steam in a first fluidized bed, preferably at about 550°C, to form solid intermediate reaction products UOâFâ, UâOâ

  14. Determination of nanogram levels of lanthanoids in a marine macro-alga by neutron activation analysis combined with separation by selective precipitation

    Microsoft Academic Search

    Y. IWATAI; H. Imura; N. Suzuki

    1993-01-01

    Preseparation of lanthanoids by substoichiometric precipitation of calcium oxalate and simple radiochemical separation of lanthanoids by lanthanum oxalate have been developed. They were combined with neutron activation analysis of a marine macro-alga (Laminaria religiosa, brown alga) sample. Quantitative recovery of lanthanoids throughout the procedure was examined by radiotracer technique. Eleven lanthanoids, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er,

  15. Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review.

    PubMed

    Shen, Junjie; Schäfer, Andrea

    2014-12-01

    Inorganic contamination in drinking water, especially fluoride and uranium, has been recognized as a worldwide problem imposing a serious threat to human health. Among several treatment technologies applied for fluoride and uranium removal, nanofiltration (NF) and reverse osmosis (RO) have been studied extensively and proven to offer satisfactory results with high selectivity. In this review, a comprehensive summary and critical analysis of previous NF and RO applications on fluoride and uranium removal is presented. Fluoride retention is generally governed by size exclusion and charge interaction, while uranium retention is strongly affected by the speciation of uranium and size exclusion usually plays a predominant role for all species. Adsorption on the membrane occurs as some uranium species interact with membrane functional groups. The influence of operating conditions (pressure, crossflow velocity), water quality (concentration, solution pH), solute–solute interactions, membrane characteristics and membrane fouling on fluoride and uranium retention is critically reviewed. PMID:25461935

  16. Advanced uranium enrichment technologies. Hearing before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Sixth Congress, first session, September 22, 1979

    SciTech Connect

    Not Available

    1980-01-01

    This hearing was to learn about projected requirements for enriched uranium. The gas centrifuge work at Oak Ridge, Tennessee, and Portsmouth, Ohio, needed assessing. Laser isotope separation technique needed to be reviewed. Three technologies currently being emphasized in the Department of Energy's Advanced Isotope Separation (AIS) program were discussed; these included the Molecular Laser Isotope Separation (MLIS), Livermore's process called Atomic Vapor Laser Isotope Separation (AVLIS), and Plasma Separation Process (PSP). The status of each process was given. The present DOE AIS program calls for a process selection at the end of FY 1981, development module operation starting in the mid-1980's, pilot plant operations through the late 1980's and early 1990's, and a first production plant in the mid-1990's. (DP)

  17. Chest wall thickness measurements for enriched uranium: an alternative approach.

    PubMed

    Kramer, G H; Puscalau, M

    1994-05-01

    The Human Monitoring Laboratory has developed a technique to determine the chest wall thickness of an individual using information from the spectrum produced by internally deposited radionuclides. The technique has been investigated both theoretically and practically using phoswich detectors and the Lawrence Livermore Torso Phantom. The phantom was used with lung sets containing homogeneously distributed 93% enriched uranium, 20% enriched uranium, natural uranium, and 241Am. It was found that a 3-cm chest wall thickness can be estimated to within 9% when measuring 93% enriched uranium. The technique does not work for the latter two radionuclides because of an insufficient separation in the photon energies and poor resolution of the phoswich detectors. The technique is only of value for activity levels well above the detection limit. PMID:8175366

  18. Selected measurement data for plutonium and uranium

    SciTech Connect

    Anderson, M E; Lemming, J F

    1982-11-01

    This handbook is designed primarily for use by inspectors when verifying the nuclear material contents of samples by nondestructive means. It contains discussions of various properties and the applicability of the measurement of these properties toward verification of specific samples. Because the thrust of this handbook is with properties rather than techniques or instruments, portions of it may be useful to other analysts as a reference.

  19. Occurrence of Metastudtite (Uranium Peroxide Dihydrate) at a FUSRAP Site

    SciTech Connect

    Young, C.M.; Nelson, K.A. [Cabrera Services, Inc., 103 East Mount Royal Avenue, Baltimore, MD 21202 (United States); Stevens, G.T.; Grassi, V.J. [US Army Corps of Engineers, Philadelphia District, 100 Penn Square East, Philadelphia, PA 19107-3390 (United States)

    2006-07-01

    Uranium concentrations in groundwater in a localized area of a site exceed the USEPA Maximum Contaminant Level (MCL) by a factor of one thousand. Although the groundwater seepage velocity ranges up to 0.7 meters per day (m/day), data indicate that the uranium is not migrating in groundwater. We believe that the uranium is not mobile because of local geochemical conditions and the unstable nature of the uranium compound present at the site; uranium peroxide dihydrate (metastudtite). Metastudtite [UO{sub 4}.2(H{sub 2}O) or (U(O{sub 2})|O|(OH){sub 2}).3H{sub 2}O] has been identified at other sites as an alteration product in casks of spent nuclear fuel, but neither enriched nor depleted uranium were present at this site. Metastudtite was first identified as a natural mineral in 1983, although documented occurrences in the environment are uncommon. The U.S. Army Corps of Engineers (USACE) is conducting a remedial investigation at the DuPont Chambers Works in Deep water New Jersey under the Formerly Utilized Sites Remedial Action Program (FUSRAP) to evaluate radioactive contamination resulting from historical activities conducted in support of Manhattan Engineering District operations. From 1942 to 1947, Chambers Works converted uranium oxides to uranium tetrafluoride and uranium metal. More than half of the production at this facility resulted from the recovery process, where uranium-bearing dross and scrap were reacted with hydrogen peroxide to produce uranium peroxide dihydrate. The 280-hectare Chambers Works has produced some 600 products, including petrochemicals, aromatics, fluoro-chemicals, polymers, and elastomers. Contaminants resulting from these processes, including separate-phase petrochemicals, have also been detected within the boundaries of the FUSRAP investigation. USACE initiated remedial investigation field activities in 2002. The radionuclides of concern are natural uranium (U{sub nat}) and its short-lived progeny. Areas of impacted soil generally correspond to the footprints of the former production buildings. U{sub nat} concentrations in soil exceed the investigative screening value, 518 Becquerels per kilogram (Bq/kg) [14 pico-curies per gram (pCi/g)], to an approximate depth of 2.5 m. This depth corresponds to the depth of buried demolition debris from the uranium processing site. Aqueous-phase uranium has also been confirmed at the site and appears to coincide with uranium-impacted soils. Soil textures in the impacted area consist mainly of fine-grained silty sand and rubble. The hydraulic conductivities range from 5 E-6 to 1 E-5 m/s. Groundwater seepage velocity ranges from 0.003 m/day to 0.7 m/day in the impacted area. Groundwater investigations conducted throughout the FUSRAP site indicate that redox conditions in the shallow groundwater are reducing, with low dissolved oxygen concentrations, as would be expected underlying a petrochemical facility. In contrast, groundwater in the uranium source area is an oxidizing microenvironment, with elevated pH conditions, despite the presence of free-phase liquid hydrocarbons in close proximity. Dissolved oxygen is elevated in the uranium source area, which may be due to the presence of metastudtite. Metastudtite has been shown to produce hydrogen peroxide through the process of alpha irradiation of water molecules. Uranium peroxide dihydrate is more soluble in water than other hexavalent mineral forms. The literature suggests that in the absence of hydrogen peroxide, metastudtite is unstable in groundwater. Although the presence of metastudtite in the source area may have caused locally high levels of aqueous-phase uranium to form, the uranium ions may not be mobile outside of this small area because of significant abrupt changes in geochemical conditions. The ongoing groundwater investigation includes tasks to confirm the presence of metastudtite and hydrogen peroxide, and monitor for seasonal geochemical or hydrogeologic changes. (authors)

  20. Selective recovery of gallium with continuous counter-current foam separation and its application to leaching solution of zinc refinery residues

    Microsoft Academic Search

    T. Kinoshita; Y. Ishigaki; N. Shibata; K. Yamaguchi; S. Akita; S. Kitagawa; H. Kondou; S. Nii

    2011-01-01

    Continuous counter-current foam separation with simultaneous injections of metal and surfactant solutions into the rising foam bed was applied to gallium(III) recovery from hydrochloric acid solutions. A nonionic surfactant, poly(oxyethylene) nonylphenyl ether, used in this study showed a strong affinity to gallium(III) and played a double role of foam-producer and metal collector. The method was applied to multi-metals solutions of

  1. Comparison of Class Separability, Forward Sequential Search and Genetic Algorithms for Feature Selection in the Classification of Individual and Clustered Microcalcifications in Digital Mammograms

    Microsoft Academic Search

    Rolando R. Hernández-cisneros; Hugo Terashima-marín; Santiago E. Conant-pablos

    2007-01-01

    The presence of microcalcification clusters in digital mammograms is a primary indicator of early stages of malignant types\\u000a of breast cancer and its detection is important to prevent the disease. This paper uses a procedure for the classification\\u000a of microcalcification clusters in mammograms using sequential Difference of Gaussian filters (DoG) and feedforward Neural\\u000a Networks (NN). Three methods using class separability,

  2. An ion-exchange method for selective separation of palladium, platinum and rhodium from solutions obtained by leaching automotive catalytic converters

    Microsoft Academic Search

    Romulus Gaita; Sargon J. Al-Bazi

    1995-01-01

    An ion-exchange method has been developed for the separation of palladium, platinum and rhodium from a solution that is highly acidic and contains a considerable amount of lead, aluminum, iron and cerium, obtained by leaching a used honeycomb type automotive catalytic converter. A column of Amberlite IRA-93 anion-exchange resin was found appropriate to recover platinum metals from the pregnant solution.

  3. Chemical Equilibrium of the Dissolved Uranium in Groundwaters From a Spanish Uranium-Ore Deposit

    SciTech Connect

    Garralon, Antonio; Gomez, Paloma; Turrero, Maria Jesus; Buil, Belen; Sanchez, Lorenzo [Departamento de Medio Ambiente, CIEMAT, Avda. Complutense 22. Edificio 19, Madrid, 28040 (Spain)

    2007-07-01

    The main objectives of this work are to determine the hydrogeochemical evolution of an uranium ore and identify the main water/rock interaction processes that control the dissolved uranium content. The Mina Fe uranium-ore deposit is the most important and biggest mine worked in Spain. Sageras area is located at the north part of the Mina Fe, over the same ore deposit. The uranium deposit was not mined in Sageras and was only perturbed by the exploration activities performed 20 years ago. The studied area is located 10 Km northeast of Ciudad Rodrigo (Salamanca) at an altitude over 650 m.a.s.l. The uranium mineralization is related to faults affecting the metasediments of the Upper Proterozoic to Lower Cambrian schist-graywacke complex (CEG), located in the Centro-Iberian Zone of the Hesperian Massif . The primary uranium minerals are uraninite and coffinite but numerous secondary uranium minerals have been formed as a result of the weathering processes: yellow gummite, autunite, meta-autunite, torbernite, saleeite, uranotile, ianthinite and uranopilite. The water flow at regional scale is controlled by the topography. Recharge takes place mainly in the surrounding mountains (Sierra Pena de Francia) and discharge at fluvial courses, mainly Agueda and Yeltes rivers, boundaries S-NW and NE of the area, respectively. Deep flows (lower than 100 m depth) should be upwards due to the river vicinity, with flow directions towards the W, NW or N. In Sageras-Mina Fe there are more than 100 boreholes drilled to investigate the mineral resources of the deposit. 35 boreholes were selected in order to analyze the chemical composition of groundwaters based on their depth and situation around the uranium ore. Groundwater samples come from 50 to 150 m depth. The waters are classified as calcium-bicarbonate type waters, with a redox potential that indicates they are slightly reduced (values vary between 50 to -350 mV). The TOC varies between <0.1 and 4.0 mgC/L and the dissolved uranium has a maximum value of 7.7 mg/L. According the analytical data of dissolved uranium, the mineral closest to equilibrium seems to be UO{sub 2}(am). The tritium contents in the groundwaters vary between 1.5 and 7.3 T.U. Considering that the mean value of tritium in rainwater from the studied area has a value of 4 T.U., it can be concluded that the residence times of the groundwaters are relatively short, not longer than 50 years in the oldest case. (authors)

  4. Uranium resource technology, seminar 3, 1980

    Microsoft Academic Search

    1980-01-01

    This conference proceedings contains 20 papers and 1 panel discussion on uranium mining and ore treatment, taking into account the environmental issues surrounding uranium supply. Topics discussed include the U.S. uranium resource base, the technology and economics of uranium recovery from phosphate resources, trends in preleach materials handling of sandstone uranium ores, groundwater restoration after in-situ uranium leaching, mitigation of

  5. Uranium resource technology, Seminar 3, 1980

    Microsoft Academic Search

    1980-01-01

    This conference proceedings contains 20 papers and 1 panel discussion on uranium mining and ore treatment, taking into account the environmental issues surrounding uranium supply. Topics discussed include: the US uranium resource base, the technology and economics of uranium recovery from phosphate resources, trends in preleash materials handling of sandstone uranium ores, groundwater restoration after in-situ uranium leaching, mitigation of

  6. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A. (Knoxville, TN)

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  7. Acute chemical toxicity of uranium.

    PubMed

    Kathren, Ronald L; Burklin, Richard K

    2008-02-01

    Although human experience with uranium spans more than 200 years, the LD50 for acute intake in humans has not been well established. Large acute doses of uranium can produce death from chemical toxicity in rats, guinea pigs, and other small experimental animals, with variation in sensitivity among species. However, there has never been a death attributable to uranium poisoning in humans, and humans seem to be less sensitive to both acute and chronic toxic effects of uranium than other mammalian species studied. Highly relevant data on uranium toxicity in humans are available from the experience of persons administered large doses of uranium for therapy of diabetes and from acute accidental inhalation intakes. Although the data on which to establish oral and inhalation acute LD50 for uranium in humans are sparse, they are adequate to conclude that the LD50 for oral intake of soluble uranium compounds exceeds several grams of uranium and is at least 1.0 g for inhalation intakes. For intakes of uranium compounds of lesser solubility, acute LD50 values are likely to be significantly greater. It is suggested that 5 g be provisionally considered the acute oral LD50 for uranium in humans. For inhalation intakes of soluble compounds of uranium, 1.0 g of uranium is proposed as the provisional acute inhalation LD50. PMID:18188051

  8. Pseudo-stationary separation materials for highly parallel separations.

    SciTech Connect

    Singh, Anup K.; Palmer, Christopher (University of Montana, Missoula, MT)

    2005-05-01

    Goal of this study was to develop and characterize novel polymeric materials as pseudostationary phases in electrokinetic chromatography. Fundamental studies have characterized the chromatographic selectivity of the materials as a function of chemical structure and molecular conformation. The selectivities of the polymers has been studied extensively, resulting in a large body of fundamental knowledge regarding the performance and selectivity of polymeric pseudostationary phases. Two polymers have also been used for amino acid and peptide separations, and with laser induced fluorescence detection. The polymers performed well for the separation of derivatized amino acids, and provided some significant differences in selectivity relative to a commonly used micellar pseudostationary phase. The polymers did not perform well for peptide separations. The polymers were compatible with laser induced fluorescence detection, indicating that they should also be compatible with chip-based separations.

  9. DIMENSIONALLY STABLE URANIUM ALLOYS. III. URANIUM-CARBON ALLOYS

    Microsoft Academic Search

    I. Sheinhartz; J. L. Zambrow

    1959-01-01

    In an attempt to improve the strength at elevated temperatures of a 1.5% ; molybdenum in uranium alloy, a network of uranium carbide was incorporated within ; the structure of the alloy by use of powder-metallurgical techniques. ; Compositions containing up to 10% uranium carbide were evaluated by the use of ; hot hardness tests at temperatures up to 700

  10. Remedial action plan for the inactive uranium processing site at Naturita, Colorado. Remedial action selection report: Attachment 2, geology report; Attachment 3, ground water hydrology report; Attachment 4, supplemental information

    SciTech Connect

    NONE

    1998-03-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the U.S. Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, becomes Appendix B of the cooperative agreement between the DOE and the state of Colorado.

  11. Zinc Status Specifically Changes Preferences for Carbohydrate and Protein in Rats Selecting from Separate Carbohydrate, Protein, and Fat-Containing Diets1»2'3

    Microsoft Academic Search

    ANDNEIL F. SHAY

    This study examined how macronutrient intake preferences were specifically altered in the loss of appetite caused by experimentally produced zinc de ficiency. Outbred female rats were allowed to freely select from simultaneously provided carbohydrate-, protein-, and fat-rich diets to provide themselves with an acceptable total diet. Rats were divided into two groups and provided the three diets containing either adequate

  12. Uranium-titanium-niobium alloy

    Microsoft Academic Search

    Ludtka

    1990-01-01

    This patent describes a uranium alloy having small additions of Ti and Nb. It shows improved strength and ductility in cross-section of greater than one inch over prior uranium alloy having only Ti as an alloy element.

  13. Uranium deposits of Brazil

    SciTech Connect

    NONE

    1991-09-01

    Brazil is a country of vast natural resources, including numerous uranium deposits. In support of the country`s nuclear power program, Brazil has developed the most active uranium industry in South America. Brazil has one operating reactor (Angra 1, a 626-MWe PWR), and two under construction. The country`s economic challenges have slowed the progress of its nuclear program. At present, the Pocos de Caldas district is the only active uranium production. In 1990, the Cercado open-pit mine produced approximately 45 metric tons (MT) U{sub 3}O{sub 8} (100 thousand pounds). Brazil`s state-owned uranium production and processing company, Uranio do Brasil, announced it has decided to begin shifting its production from the high-cost and nearly depleted deposits at Pocos de Caldas, to lower-cost reserves at Lagoa Real. Production at Lagoa Real is schedules to begin by 1993. In addition to these two districts, Brazil has many other known uranium deposits, and as a whole, it is estimated that Brazil has over 275,000 MT U{sub 3}O{sub 8} (600 million pounds U{sub 3}O{sub 8}) in reserves.

  14. Pyrophoricity of uranium

    SciTech Connect

    Peacock, H.B.

    1992-03-01

    Uranium metal is pyrophoric and is capable of self-ignition in air provided conditions are favorable. Based on the data in this report, spontaneous ignition of spherical particles larger than 1/16 inch in diameter would not be expected to occur in air at room temperature (25[degree]C). The rate at which the uranium surface oxidizes in air, balanced against the rate at which the heat of reaction is lost to the surroundings, determines whether spontaneous ignition can occur. Heat loss to the surrounding environment depends on the thermal conductivity of the uranium including the oxide coating, and on the temperature gradient. The ignition temperature for uranium metal particles is a function of particle geometry, size or specific surface area, heating rate gas composition as well as the quantity and distribution of powder within a storage container. The most important variable; however, affecting the ignition temperature for single samples was found by Schnizlein and Bingle to be the specific surface area (surface area per gram) of the uranium particles. The ignition temperatures calculated from ANL data for 1/16, 1/4, and 1/2 inch diameter spherical particles are 333, 375, and 399[degree]C, respectively. The accuracy is believed to be about [plus minus]l0%, which is based on theoretical and experimental results.

  15. Pyrophoricity of uranium

    SciTech Connect

    Peacock, H.B.

    1992-03-01

    Uranium metal is pyrophoric and is capable of self-ignition in air provided conditions are favorable. Based on the data in this report, spontaneous ignition of spherical particles larger than 1/16 inch in diameter would not be expected to occur in air at room temperature (25{degree}C). The rate at which the uranium surface oxidizes in air, balanced against the rate at which the heat of reaction is lost to the surroundings, determines whether spontaneous ignition can occur. Heat loss to the surrounding environment depends on the thermal conductivity of the uranium including the oxide coating, and on the temperature gradient. The ignition temperature for uranium metal particles is a function of particle geometry, size or specific surface area, heating rate gas composition as well as the quantity and distribution of powder within a storage container. The most important variable; however, affecting the ignition temperature for single samples was found by Schnizlein and Bingle to be the specific surface area (surface area per gram) of the uranium particles. The ignition temperatures calculated from ANL data for 1/16, 1/4, and 1/2 inch diameter spherical particles are 333, 375, and 399{degree}C, respectively. The accuracy is believed to be about {plus_minus}l0%, which is based on theoretical and experimental results.

  16. Developments in uranium in 1987

    Microsoft Academic Search

    Chenoweth

    1988-01-01

    Legal and political factors, imports, and low prices continued to plague the domestic uranium industry. As a result, the Secretary of Energy in 1987 declared the domestic industry to be nonviable for the third straight year. Uranium exploration expenditures in the US declined for the ninth consecutive year. In 1987, an estimated $18 million was spent on uranium exploration, including

  17. Gamma Activation Analysis of Rare Earth Elements in Uranium Rocks

    Microsoft Academic Search

    A. P. Tonchev; B. Gleisberg; Ch. G. Christov; F. G. Kondev; L. P. Kulkina; N. P. Balabanov; V. D. Tcholakov

    1991-01-01

    A method is proposed for the chemical separation of the rare earth elements (REE) in samples with a high uranium content (0.1% to 3%) with the subsequent ?-ray irradiation in the microtron MT-25. For the quantitative determination of REE the relative analysis method was used. The method allows to analyse the massive samples (from 3 to 10 g) and provides

  18. Selectivity of monolithic supports under overloading conditions and their use for separation of human plasma and isolation of low abundance proteins.

    PubMed

    Brgles, Marija; Clifton, James; Walsh, Robert; Huang, Feilei; Rucevic, Marijana; Cao, Lulu; Hixson, Douglas; Müller, Egbert; Josic, Dj

    2011-04-29

    Human serum albumin (HSA) and immunoglobulin G (IgG) represent over 75% of all proteins present in human plasma. These two proteins frequently interfere with detection, determination and purification of low abundance proteins that can be potential biomarkers and biomarker candidates for various diseases. Some low abundance plasma proteins such as clotting factors and inhibitors are also important therapeutic agents. In this paper, the characterization of ion-exchange monolithic supports under overloading conditions was performed by use of sample displacement chromatography (SDC). If these supports were used for separation of human plasma, the composition of bound and eluted proteins in both anion- and cation-exchange mode is dependent on column loading. Under overloading conditions, the weakly bound proteins such as HSA in anion-exchange and IgG in cation-exchange mode are displaced by stronger binding proteins, and this phenomenon was not dependent on column size. Consequently, small monolithic columns with a column volume of 100 and 200 ?L are ideal supports for high-throughput screening in order to develop new methods for separation of complex mixtures, and for sample preparation in proteomic technology. PMID:21186030

  19. Selectivity of monolithic supports under overloading conditions and their use for separation of human plasma and isolation of low abundance proteins

    PubMed Central

    Brgles, Marija; Clifton, James; Walsh, Robert; Huang, Feilei; Rucevic, Marijana; Cao, Lulu; Hixson, Douglas; Müller, Egbert

    2011-01-01

    Human serum albumin (HSA) and immunoglobulin G (IgG) represent over 75% of all proteins present in human plasma. These two proteins frequently interfere with detection, determination and purification of low abundance proteins that can be potential biomarkers and biomarker candidates for various diseases. Some low abundance plasma proteins such as clotting factors and inhibitors are also important therapeutic agents. In this paper, the characterization of ion-exchange monolithic supports under overloading conditions was performed by use of sample displacement chromatography (SDC). If these supports were used for separation of human plasma, the composition of bound and eluted proteins in both anion- and cation-exchange mode is dependent on column loading. Under overloading conditions, the weakly bound proteins such as HSA in anion-exchange and IgG in cation-exchange mode are displaced by stronger binding proteins, and this phenomenon was not dependent on column size. Consequently, small monolithic columns with a column volume of 100 and 200 ?L are ideal supports for high-throughput screening in order to develop new methods for separation of complex mixtures, and for sample preparation in proteomic technology. PMID:21186030

  20. P(HPMA/EGDMA) beads grafted with fibrous chains by SI-ATRP method: agmatine functionalized affinity beads for selective separation of serum albumin.

    PubMed

    Bayramoglu, Gulay; Yakup Arica, M

    2014-02-01

    In this paper, novel core-shell polymeric affinity beads based on fibrous grafting and functionalization with a salt resistance affinity ligand were developed to separate and deplete serum albumin (SA) from human serum. Poly(hydroxypropyl methacrylate/ethyleneglycole dimethacrylate), p(HPMA/EGDMA), beads were prepared via suspension polymerization, and were grafted with poly(glycidyl methacrylate) (p(GMA)) via surface-initiated atom transfer radical polymerization (SI-ATRP) method. The grafted p(GMA) fibrous chains on the beads were modified with an affinity ligand (i.e., agmatine). The binding capacity of the affinity beads to SA was determined using aqueous solution of SA in a batch system. Batch adsorption studies showed that the amount of adsorbed SA was found to be 156.7 mg/g at 25 °C. The maximum adsorption capacity for affinity beads was observed at around pH 5.5. Adsorption of SA onto affinity beads significantly increased with increasing temperature, and reached a value 177.8 mg/g beads at 35 °C. The equilibrium data were found to be well described by Langmuir model, while the kinetic data were well fitted to the pseudo-second-order kinetic. The degree of the purity of SA was determined by using HPLC. Before and after adsorption, the peak areas of SA were used in the calculation of separated SA. PMID:23754324

  1. Extraction of uranium(VI), transuranium elements, and europium by bidentate neutral phosphorus- and phosphorus-nitrogen containing reagents with a substituent in the methylene bridge

    SciTech Connect

    Kochetkova, N.E.; Koiro, O.E.; Nesterova, N.P.; Medved, T.Ya.; Chmutova, M.K.; Myasoedov, B.F.; Kabachnik, M.I.

    1987-01-01

    It was established that the replacement of hydrogen in the bridge of tetraphenyl-methylenediphosphine dioxide induces a decrease in the extraction capacity of the reagent with respect to transplutonium elements, uranium(VI), and europium. There is no apparent regular correlation between the basicity and the extraction capacity of the reagent with respect to transplutonium elements, uranium(VI), and europium. There is no apparent regular correlation between the basicity and the extraction capacity of the substituted reagents. The replacement of hydrogen in the bridge of diphenyl(diethylcarbamoylmethyl)phosphine oxide causes a decrease in the extraction capacity of the reagent with respect to transplutonium elements, uranium(VI), and europium. In contrast to monodentate neutral reagents, when bidentate reagents are used, an increase in the extraction capacity of the reagents with increasing basicity is not always observed. The incorporation of fragments limiting its conformational mobility into the molecule of a bidentate reagent (in this case substituents in the methylene bridge) may lead to a violation of this law, since of all the factors influencing the extraction capacity of the reagent, the steric factor may predominate. When hydrogen is replaced in the bridge of tetraphenylmethylene-diphosphine dioxide, the separation factors of virtually all (with few exceptions) of the pairs of elements that the authors investigated are increased. Replacement of hydrogen in the bridge of diphenyl(diethylcarbamoylmethyl)phosphine oxide causes an increase in the separation factor of the pair U(VI)Am and has no effect on the separation factor of the pair Am/Eu. Replacement of hydrogen in the bridge does not lead to the production of more effective and substantially more selective reagents for extraction and separation of the elements, but some of the substituted reagents may prove useful in the separation of the elements.

  2. Electrochromatographic separation of proteins

    NASA Technical Reports Server (NTRS)

    Basak, S. K.; Velayudhan, A.; Kohlmann, K.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    We have developed a modified electrochromatography system which minimizes Joule heating at electric field strengths up to 125 V/cm. A non-linear equilibrium model is described which incorporates electrophoretic mobility, hydrodynamic flow velocity, and an electrically induced concentration polarization at the surface of the stationary phase. This model is able to provide useful estimates of protein retention time and velocity in a column packed with Sephadex gel and subjected to an electric field. A correlation of electrophoretic mobility of peptide and proteins with respect to their charge, molecular mass, and asymmetry enables the selection of solute target molecules for electrochromatographic separations. Good separation of protein mixtures have been obtained.

  3. Uranium mining and lung cancer in Navajo men

    SciTech Connect

    Samet, J.M.; Kutvirt, D.M.; Waxweiler, R.J.; Key, C.R.

    1984-06-07

    We performed a population-based case-control study to examine the association between uranium mining and lung cancer in Navajo men, a predominantly nonsmoking population. The 32 cases included all those occurring among Navajo men between 1969 and 1982, as ascertained by the New Mexico Tumor Registry. For each case in a Navajo man, two controls with nonrespiratory cancer were selected. Of the 32 Navajo patients, 72 per cent had been employed as uranium miners, whereas no controls had documented experience in this industry. The lower 95 per cent confidence limit for the relative risk of lung cancer associated with uranium mining was 14.4. Information on cigarette smoking was available for 21 of the 23 affected uranium miners; eight were nonsmokers and median consumption by the remainder was one to three cigarettes daily. These results demonstrate that in a rural nonsmoking population most of the lung cancer may be attributable to one hazardous occupation.

  4. Plasma core reactor simulations using RF uranium seeded argon discharges

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1975-01-01

    An experimental investigation was conducted using the United Technologies Research Center (UTRC) 80 kW and 1.2 MW RF induction heater systems to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor (PCR). A nonfissioning, steady-state RF-heated argon plasma seeded with pure uranium hexafluoride (UF6) was used. An overall objective was to achieve maximum confinement of uranium vapor within the plasma while simultaneously minimizing the uranium compound wall deposition. Exploratory tests were conducted using the 80 kW RF induction heater with the test chamber at approximately atmospheric pressure and discharge power levels on the order of 10 kW. Four different test chamber flow configurations were tested to permit selection of the configuration offering the best confinement characteristics for subsequent tests at higher pressure and power in the 1.2 MW RF induction heater facility.

  5. US developments in technology for uranium enrichment

    SciTech Connect

    Wilcox, W.J. Jr.; McGill, R.M.

    1982-01-01

    The purpose of this paper is to review recent progress and the status of the work in the United States on that part of the fuel cycle concerned with uranium enrichment. The United States has one enrichment process, gaseous diffusion, which has been continuously operated in large-scale production for the past 37 years; another process, gas centrifugation, which is now in the construction phase; and three new processes, molecular laser isotope separation, atomic vapor laser isotope separation, plasma separation process, in which the US has also invested sizable research and development efforts over the last few years. The emphasis in this paper is on the technical aspects of the various processes, but the important economic factors which will define the technological mix which may be applied in the next two decades are also discussed.

  6. Isotope separation by solar photoionization

    Microsoft Academic Search

    Mariella

    1982-01-01

    Isotope separation, particularly separation of isotopes of lithium, is achieved by exposing a beam of atoms to radiation that selectively excites atoms of a particular isotope without exciting atoms of other isotopes of that element. The excited atoms are ionized by solar radiation and the ions attracted to an ion collector plate maintained at a negative potential. The atoms not

  7. Laser-isotope-separation technology. [Review; economics

    SciTech Connect

    Jensen, R.J.; Blair, L.S.

    1981-01-01

    The Molecular Laser Isotope Separation (MLIS) process currently under development is discussed as an operative example of the use of lasers for material processing. The MLIS process, which uses infrared and ultraviolet lasers to process uranium hexafluoride (UF/sub 6/) resulting in enriched uranium fuel to be used in electrical-power-producing nuclear reactor, is reviewed. The economics of the MLIS enrichment process is compared with conventional enrichment technique, and the projected availability of MLIS enrichment capability is related to estimated demands for U.S. enrichment service. The lasers required in the Los Alamos MLIS program are discussed in detail, and their performance and operational characteristics are summarized. Finally, the timely development of low-cost, highly efficient ultraviolet and infrared lasers is shownd to be the critical element controlling the ultimate deployment of MLIS uranium enrichment. 8 figures, 7 tables.

  8. Use of tetracycline as complexing agent in radiochemical separations

    Microsoft Academic Search

    M. Saiki; M. J. C. Nastasi; F. W. Lima

    1981-01-01

    The use of the antibiotic agent tetracycline for analytical purposes in solvent extraction procedures is presented. Individual\\u000a extraction curves for the lanthanides, zinc, scandium, uranium, thorium, neptunium and protactinium were obtained. Separation\\u000a of those elements one from another, and of uranium from selenium, bromine, antimony, barium, tantalum and tungsten was carried\\u000a out. In all cases benzyl alcohol was the diluent

  9. THE ALLOY SYSTEMS URANIUM-TITANIUM, URANIUM-ZIRCONIUM AND URANIUM-TITANIUM- ZIRCONIUM

    Microsoft Academic Search

    B. W. Howlett; A. G. Knapton

    1959-01-01

    Dilatometric, metallographic, x-ray, and hightemperature x-ray methods ; were employed in a study of the uranium --titanium, uranium --zirconium and ; uranium --titanium --zirconium alloy systems. The three metals are mutually ; soluble in one another in their high-temperature body-centered cubic forms, and ; about 900 deg C complete solid solubility exists. There is general agreement ; between published versions

  10. Chromatographic Separations

    NSDL National Science Digital Library

    This interactive applet provides a simulation of the separation of a mixture of 5 substances across a chromatographic column. The effect of changing various chromatographic factors can simultaneously be seen in the time-dependent dedistribution of analytes along the column along with the development of the chromatogram.

  11. High loading uranium fuel plate

    DOEpatents

    Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry R. (Palos Heights, IL)

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  12. Selective separation and determination of the synthetic colorants in beverages by magnetic solid-phase dispersion extraction based on a Fe3 O4 /reduced graphene oxide nanocomposite followed by high-performance liquid chromatography with diode array detection.

    PubMed

    Wang, Xi; Chen, Ning; Han, Qing; Yang, Zaiyue; Wu, Jinhua; Xue, Cheng; Hong, Junli; Zhou, Xuemin; Jiang, Huijun

    2015-06-01

    A facile adsorbent, a nanocomposite of Fe3 O4 and reduced graphene oxide, was fabricated for the selective separation and enrichment of synthetic aromatic azo colorants by magnetic solid-phase dispersion extraction. The nanocomposite was synthesized in a one-step reduction reaction and characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and Brunauer-Emmett-Teller analysis. The colorants in beverages were quickly adsorbed onto the surface of the nanocomposite with strong ?-? interactions between colorants and reduced graphene oxide, and separated with the assistance of an external magnetic field. Moreover, the four colorants in beverages were detected at different wavelengths by high performance liquid chromatography with diode array detection. A linear dependence of peak area was obtained over 0.05-10 ?g/mL with the limits of detection of 10.02, 11.90, 10.41, 15.91 ng/mL for tartrazine, allure red, amaranth, and new coccine, respectively (signal to noise = 3). The recoveries for the spiked colorants were in the range of 88.95-95.89% with the relative standard deviation less than 2.66%. The results indicated that the nanocomposite of Fe3 O4 and reduced graphene oxide could be used as an excellent selective adsorbent for aromatic compounds and has potential applications in sample pretreatment. PMID:25864558

  13. Selective separation of rare earth metals by solvent extraction in the presence on new hydrophilic chelating polymers functionalized with ethylenediaminetetraacetic acid. I. Development of new hydrophilic chelating polymers and their adsorption properties for rare earth metals

    SciTech Connect

    Matsuyama, Hideto; Miyamoto, Yoshikazu; Teramoto, Masaaki [Kyoto Inst. of Technology, Kyoto (Japan)

    1996-03-01

    New hydrophilic chelating polymers were synthesized by introducing ethylenediaminetetraacetic acid (EDTA) onto water-soluble polyallylamine. The selective separation of rare earth metals by solvent extraction including these chelating polymers in the aqueous phase is the goal of this work. The polymers were characterized by IR analysis, elemental analysis, gel permeation chromatography (GPC) measurement, and pH titration. Two kinds of polymers with different solubilities in water were produced using different solvents. Both polymers were naturally precipitated in the presence of rare earth metals. This suggests that in the solvent extraction system including these chelating polymers, the recovery of the polymers is easy. Adsorption properties of Y{sup 3+} and Er{sup 3+} on these polymers were also investigated. The separation properties by adsorption on the polymers were comparable to those by EDTA. The chelating polymers had the characteristics that their separation factors decreased by adsorption and the total amount adsorbed increased with increasing pH or initial metal concentrations, although in the presence of EDTA these properties were found to be almost constant.

  14. Diffusion model of the non-stoichiometric uranium dioxide

    SciTech Connect

    Moore, Emily, E-mail: emily.moore@cea.fr [CEA Saclay, DEN-DPC-SCCME, 91191 Gif-sur-Yvette Cedex (France); Guéneau, Christine, E-mail: christine.gueneau@cea.fr [CEA Saclay, DEN-DPC-SCCME, 91191 Gif-sur-Yvette Cedex (France); Crocombette, Jean-Paul, E-mail: jean-paul.crocombette@cea.fr [CEA Saclay, DEN DEN, Service de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette Cedex (France)

    2013-07-15

    Uranium dioxide (UO{sub 2}), which is used in light water reactors, exhibits a large range of non-stoichiometry over a wide temperature scale up to 2000 K. Understanding diffusion behavior of uranium oxides under such conditions is essential to ensure safe reactor operation. The current understanding of diffusion properties is largely limited by the stoichiometric deviations inherent to the fuel. The present DICTRA-based model considers diffusion across non-stoichiometric ranges described by experimentally available data. A vacancy and interstitial model of diffusion is applied to the U–O system as a function of its defect structure derived from CALPHAD-type thermodynamic descriptions. Oxygen and uranium self and tracer diffusion coefficients are assessed for the construction of a mobility database. Chemical diffusion coefficients of oxygen are derived with respect to the Darken relation and migration energies of defects are evaluated as a function of stoichiometric deviation. - Graphical abstract: Complete description of Oxygen–Uranium diffusion as a function of composition at various temperatures according to the developed Dictra model. - Highlights: • Assessment of a uranium–oxygen diffusion model with Dictra. • Complete description of U–O diffusion over wide temperature and composition range. • Oxygen model includes terms for interstitial and vacancy migration. • Interaction terms between defects help describe non-stoichiometric domain of UO{sub 2±x}. • Uranium model is separated into mobility terms for the cationic species.

  15. Reaction of uranium and the fluorocarbon FC-75

    SciTech Connect

    Young, R.H.

    1985-04-04

    Because of criticality concerns with water cooling in enriched uranium upgrading, a fluorocarbon has been evaluated as a replacement coolant for internal module components in the Plasma Separation Process (PSP). The interaction of bulk uranium and of powdered uranium with FC-75 has been investigated at temperatures between 200 and 700/sup 0/C. The gas pressure and the metal temperature were monitored as a function of time. Modest temperature changes of 50 to 100/sup 0/C were observed for the bulk uranium/fluorocarbon reaction. Much larger changes (up to 1000/sup 0/C) were noted for the reaction involving high surface area uranium powder. These temperature transients, particularly for the powdered uranium reaction, were short-lived (<10 seconds) and indicative of the formation of a protective layer of reaction products. Analysis of residual gas products by infrared spectroscopy indicated that one potentially serious hazard, UF/sub 6/, was not present; however, several small toxic fluorocarbons were produced by thermolysis and/or reaction. X-ray diffraction analysis of the residual solids indicated UF/sub 4/ and UO/sub 2/ were the major solid products. 5 refs., 11 figs., 1 tab.

  16. Progress in alkaline peroxide dissolution of low-enriched uranium metal and silicide targets

    SciTech Connect

    Chen, L.; Dong, D.; Buchholz, B.A.; Vandegrift, G.F. [Argonne National Lab., IL (United States). Chemical Technology Div.; Wu, D. [Univ. of Illinois, Urbana, IL (United States)

    1996-12-31

    This paper reports recent progress on two alkaline peroxide dissolution processes: the dissolution of low-enriched uranium metal and silicide (U{sub 3}Si{sub 2}) targets. These processes are being developed to substitute low-enriched for high-enriched uranium in targets used for production of fission-product {sup 99}Mo. Issues that are addressed include (1) dissolution kinetics of silicide targets, (2) {sup 99}Mo lost during aluminum dissolution, (3) modeling of hydrogen peroxide consumption, (4) optimization of the uranium foil dissolution process, and (5) selection of uranium foil barrier materials. Future work associated with these two processes is also briefly discussed.

  17. Helium soil-gas survey of the aurora uranium deposit, McDermitt Caldera Complex, Oregon

    SciTech Connect

    Reimer, G.M.

    1986-11-10

    Two soil gas helium surveys were carried out in a section of the McDermitt caldera complex of mineralized volcanic rocks in Oregon. A regional helium anomaly was found and is thought to be associated with uranium-rich tuffaceous fill of the caldera and the Aurora uranium deposit, which occurs near the northeastern rim of the Caldera. Local hydrology may have an effect on the displacement of the helium anomaly from the uranium deposit and be a carrier of helium from sources at depth. This study suggests that helium surveys may be useful in a volcanic environment by helping to select areas for exploratory drilling for uranium deposits.

  18. Bone as a Possible Target of Chemical Toxicity of Natural Uranium in Drinking Water

    PubMed Central

    Kurttio, Päivi; Komulainen, Hannu; Leino, Aila; Salonen, Laina; Auvinen, Anssi; Saha, Heikki

    2005-01-01

    Uranium accumulates in bone, affects bone metabolism in laboratory animals, and when ingested in drinking water increases urinary excretion of calcium and phosphate, important components in the bone structure. However, little is known about bone effects of ingested natural uranium in humans. We studied 146 men and 142 women 26–83 years of age who for an average of 13 years had used drinking water originating from wells drilled in bedrock, in areas with naturally high uranium content. Biochemical indicators of bone formation were serum osteocalcin and amino-terminal propeptide of type I procollagen, and a marker for bone resorption was serum type I collagen carboxy-terminal telopeptide (CTx). The primary measure of uranium exposure was uranium concentration in drinking water, with additional information on uranium intake and uranium concentration in urine. The data were analyzed separately for men and women with robust regression (which suppresses contributions of potential influential observations) models with adjustment for age, smoking, and estrogen use. The median uranium concentration in drinking water was 27 ?g/L (interquartile range, 6–116 ?g/L). The median of daily uranium intake was 36 ?g (7–207 ?g) and of cumulative intake 0.12 g (0.02–0.66 g). There was some suggestion that elevation of CTx (p = 0.05) as well as osteocalcin (p = 0.19) could be associated with increased uranium exposure (uranium in water and intakes) in men, but no similar relationship was found in women. Accordingly, bone may be a target of chemical toxicity of uranium in humans, and more detailed evaluation of bone effects of natural uranium is warranted. PMID:15626650

  19. Bone as a possible target of chemical toxicity of natural uranium in drinking water.

    PubMed

    Kurttio, Päivi; Komulainen, Hannu; Leino, Aila; Salonen, Laina; Auvinen, Anssi; Saha, Heikki

    2005-01-01

    Uranium accumulates in bone, affects bone metabolism in laboratory animals, and when ingested in drinking water increases urinary excretion of calcium and phosphate, important components in the bone structure. However, little is known about bone effects of ingested natural uranium in humans. We studied 146 men and 142 women 26-83 years of age who for an average of 13 years had used drinking water originating from wells drilled in bedrock, in areas with naturally high uranium content. Biochemical indicators of bone formation were serum osteocalcin and amino-terminal propeptide of type I procollagen, and a marker for bone resorption was serum type I collagen carboxy-terminal telopeptide (CTx). The primary measure of uranium exposure was uranium concentration in drinking water, with additional information on uranium intake and uranium concentration in urine. The data were analyzed separately for men and women with robust regression (which suppresses contributions of potential influential observations) models with adjustment for age, smoking, and estrogen use. The median uranium concentration in drinking water was 27 microg/L (interquartile range, 6-116 microg/L). The median of daily uranium intake was 36 microg (7-207 microg) and of cumulative intake 0.12 g (0.02-0.66 g). There was some suggestion that elevation of CTx (p = 0.05) as well as osteocalcin (p = 0.19) could be associated with increased uranium exposure (uranium in water and intakes) in men, but no similar relationship was found in women. Accordingly, bone may be a target of chemical toxicity of uranium in humans, and more detailed evaluation of bone effects of natural uranium is warranted. PMID:15626650

  20. Validation of KENO V.a for highly enriched uranium systems with hydrogen and\\/or carbon moderation

    Microsoft Academic Search

    E. P. Elliott; R. G. Vornehm; H. L. Jr. Dodds

    1993-01-01

    This paper describes the validation in accordance with ANSI\\/ANS-8.1-1983(R1988) of KENO V.a using the 27-group ENDF\\/B-IV cross-section library for systems containing highly-enriched uranium, carbon, and hydrogen and for systems containing highly-enriched uranium and carbon with high carbon to uranium (C\\/U) atomic ratios. The validation has been performed for two separate computational platforms: an IBM 3090 mainframe and an HP 9000

  1. Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy

    SciTech Connect

    none,

    2013-07-01

    For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding the rate-limiting step of uranium uptake from seawater is also essential in designing an effective uranium recovery system. Finally, economic analyses have been used to guide these studies and highlight what parameters, such as capacity, recyclability, and stability, have the largest impact on the cost of extraction of uranium from seawater. Initially, the cost estimates by the JAEA for extraction of uranium from seawater with braided polymeric fibers functionalized with amidoxime ligands were evaluated and updated. The economic analyses were subsequently updated to reflect the results of this project while providing insight for cost reductions in the adsorbent development through “cradle-to-grave” case studies for the extraction process. This report highlights the progress made over the last three years on the design, synthesis, and testing of new materials to extract uranium for seawater. This report is organized into sections that highlight the major research activities in this project: (1) Chelate Design and Modeling, (2) Thermodynamics, Kinetics and Structure, (3) Advanced Polymeric Adsorbents by Radiation Induced Grafting, (4) Advanced Nanomaterial Adsorbents, (5) Adsorbent Screening and Modeling, (6) Marine Testing, and (7) Cost and Energy Assessment. At the end of each section, future research directions are briefly discussed to highlight the challenges that still remain to reduce the cost of extractions of uranium for seawater. Finally, contributions from the Nuclear Energy University Programs (NEUP), which complement this research program, are included at the end of this report.

  2. URANIUM DIOXIDE FABRICATION

    Microsoft Academic Search

    D. W. Brite; R. J. Anicetti

    1960-01-01

    The techniques developed for fabricating (UOâ fuel element cores ; and swageable powders at HAPO are described. A simplified flow chart of some of ; the processes is presented. Types of fuel cores fabricated since the program ; began in 1956 are indicated. The experiences and observations are related both ; in fabricating the uranium dioxide fuel element cores for

  3. Field task proposal/agreement separation and purification of radioisotopes for research

    SciTech Connect

    Wilkes, W.R.; Eppley, R.E.

    1980-11-20

    The present purpose of this program is to produce high-purity uranium-234 (99%) and polonium-209 for the scientific community, both Governmental and non-Governmental. In addition, facilities for separation and purification of protactinium-231, thorium-230, and thorium-229 are maintained in stand-by condition for the resumption of these processes when conditions warrant. The uranium-234 isotope is separated from aged plutonium-238 material, purified, and converted to solid U{sub 3}O{sub 8}. This oxide is subsequently shipped to Oak Ridge National Laboratory for distribution through their Isotope Sales Group. The principal use of uranium-234, which is recovered from aged plutonium-238, is in fission detectors used to monitor reactors. Approximately one-third of the total uranium in a fission detector is uranium-234. The other two-thirds is uranium-235. A typical detector might contain 15 mg total uranium. As the neutron flux in the reactor causes fission of the uranium-235 in the detector, it also converts the uranium-234 to uranium-235.

  4. Methane/nitrogen separation process

    DOEpatents

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  5. Methane/nitrogen separation process

    DOEpatents

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  6. 6-(Tetrazol-5-yl)-2,2'-bipyridine: a highly selective ligand for the separation of lanthanides(III) and actinides(III).

    PubMed

    Kratsch, Jochen; Beele, Björn B; Koke, Carsten; Denecke, Melissa A; Geist, Andreas; Panak, Petra J; Roesky, Peter W

    2014-09-01

    The coordination structure in the solid state and solution complexation behavior of 6-(tetrazol-5-yl)-2,2'-bipyridine (HN4bipy) with samarium(III) was investigated as a model system for actinide(III)/lanthanide(III) separations. Two different solid 1:2 complexes, [Sm(N4bipy)2(OH)(H2O)2] (1) and [Sm(N4bipy)2(HCOO)(H2O)2] (2), were obtained from the reaction of samarium(III) nitrate with HN4bipy in isopropyl alcohol, resuspension in N,N-dimethylformamide (DMF), and slow crystallization. The formate anion coordinated to samarium in 2 is formed by decomposition of DMF to formic acid and dimethylamine. Time-resolved laser fluorescence spectroscopy (TRLFS) studies were performed with curium(III) and europium(III) by using HN4bipy as the ligand. Curium(III) is observed to form 1:2 and 1:3 complexes with increasing HN4bipy concentration; for europium(III), formation of 1:1 and 1:3 complexes is observed. Although the solid-state samarium complexes were confirmed as 1:2 species the 1:2 europium(III) solution complex in ethanol was not identified with TRLFS. The determined conditional stability constant for the 1:3 fully coordinated curium(III) complex species is more than 2 orders of magnitude higher than that for europium(III) (log ?3[Cm(N4bipy)3] = 13.8 and log ?3[Eu(N4bipy)3] = 11.1). The presence of added 2-bromodecanoic acid as a lipophilic anion source reduces the stability constant for formation of the 1:2 and 1:3 curium(III) complexes, but no ternary complexes were observed. The stability constants for the 1:3 metal ion-N4bipy complexes equate to a theoretical separation factor, SF(Cm(III)/Eu(III)) ? 500. However, the low solubility of the HN4bipy ligand in nonpolar solvents typically used in actinide-lanthanide liquid-liquid extractions prevents its use as a partitioning extractant until a more lipophilic HN4bipy-type ligand is developed. PMID:24967733

  7. Fluid-bed fluoride volatility process recovers uranium from spent uranium alloy fuels

    NASA Technical Reports Server (NTRS)

    Barghusen, J. J.; Chilenskas, A. A.; Gunderson, G. E.; Holmes, J. T.; Jonke, A. A.; Kincinas, J. E.; Levitz, N. M.; Potts, G. L.; Ramaswami, D.; Stethers, H.; Turner, K. S.

    1967-01-01

    Fluid-bed fluoride volatility process recovers uranium from uranium fuels containing either zirconium or aluminum. The uranium is recovered as uranium hexafluoride. The process requires few operations in simple, compact equipment, and eliminates aqueous radioactive wastes.

  8. Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

    SciTech Connect

    Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

    2007-06-01

    The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

  9. Determination of ¹³?Cs and ¹³?Cs/¹³?Cs atomic ratio in environmental samples by combining ammonium molybdophosphate (AMP)-selective Cs adsorption and ion-exchange chromatographic separation to triple-quadrupole inductively coupled plasma-mass spectrometry.

    PubMed

    Zheng, Jian; Bu, Wenting; Tagami, Keiko; Shikamori, Yasuyuki; Nakano, Kazumi; Uchida, Shigeo; Ishii, Nobuyoshi

    2014-07-15

    Since the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011, the activity ratio of (134)Cs/(137)Cs has been widely used as a tracer for contamination source identification. However, because of the short half-life of (134)Cs (2.06 y), this tracer will become unavailable in the near future. This article presents an analytical method for the determination of the long-lived (135)Cs (t(2/1) = 2 × 10(6) y) and the atomic ratio of (135)Cs/(137)Cs, as a promising geochemical tracer, in environmental samples. The analytical method involves ammonium molybdophosphate (AMP)-selective adsorption of Cs and subsequent two-stage ion-exchange chromatographic separation, followed by detection of isolated radiocesium isotopes via triple-quadrupole inductively coupled plasma-mass spectrometry (ICP-MS/MS). The AMP-selective adsorption of Cs and the chromatographic separation system showed high decontamination factors (10(4)-10(5)) for interfering elements, such as Ba, Mo, Sb, and Sn. Using ICP-MS/MS, only selected ions enter the collision/reaction cell to react with N2O, reducing the isobaric interferences ((135)Ba(+) and (137)Ba(+)) and polyatomic interferences ((95) Mo(40)Ar(+), (97) Mo(40)Ar(+), (119)Sn(16)O(+), and (121)Sb(16)O(+)) produced by sample matrix ions. The high abundance sensitivity (10(-9) for the (135)Cs/(133)Cs ratio) provided by ICP-MS/MS allowed reliable analysis of (135)Cs and (137)Cs isotopes with the lowest detection limits ever reported by mass counting methods (0.01 pg mL(-1) and 0.006 pg mL(-1), respectively). The developed analytical method was successfully applied to the determination of (135)Cs and (137)Cs isotopes in environmental samples (soil, litter, and lichen) collected after the FDNPP accident for contamination source identification. PMID:24931104

  10. Uranium from seawater

    SciTech Connect

    Gregg, D.; Folkendt, M.

    1982-09-21

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10/sup 5/, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10/sup 3/ in seawater instead of the reported values of 10/sup 5/. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10/sup 5/ in fresh water. However, the system was not tested in seawater.

  11. Separation of sodium-22 from irradiated targets

    DOEpatents

    Taylor, Wayne A. (Los Alamos, NM); Jamriska, David (Los Alamos, NM)

    1996-01-01

    A process for selective separation of sodium-22 from an irradiated target including dissolving an irradiated target to form a first solution, contacting the first solution with hydrated antimony pentoxide to selectively separate sodium-22 from the first solution, separating the hydrated antimony pentoxide including the separated sodium-22 from the first solution, dissolving the hydrated antimony pentoxide including the separated sodium-22 in a mineral acid to form a second solution, and, separating the antimony from the sodium-22 in the second solution.

  12. Component separations.

    PubMed

    Heller, Lior; McNichols, Colton H; Ramirez, Oscar M

    2012-02-01

    Component separation is a technique used to provide adequate coverage for midline abdominal wall defects such as a large ventral hernia. This surgical technique is based on subcutaneous lateral dissection, fasciotomy lateral to the rectus abdominis muscle, and dissection on the plane between external and internal oblique muscles with medial advancement of the block that includes the rectus muscle and its fascia. This release allows for medial advancement of the fascia and closure of up to 20-cm wide defects in the midline area. Since its original description, components separation technique underwent multiple modifications with the ultimate goal to decrease the morbidity associated with the traditional procedure. The extensive subcutaneous lateral dissection had been associated with ischemia of the midline skin edges, wound dehiscence, infection, and seroma. Although the current trend is to proceed with minimally invasive component separation and to reinforce the fascia with mesh, the basic principles of the techniques as described by Ramirez et al in 1990 have not changed over the years. Surgeons who deal with the management of abdominal wall defects are highly encouraged to include this technique in their collection of treatment options. PMID:23372455

  13. Separation system

    DOEpatents

    Rubin, Leslie S. (Newton, MA)

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  14. Spectroscopic studies of uranium species for environmental decontamination applications

    NASA Astrophysics Data System (ADS)

    Eng, Charlotte

    After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by the steel corrosion products or (b) in areas where the dissolved uranium/iron species, the products generated by the dissolution power of citric acid, was not properly rinsed away.

  15. Uranium resource technology, seminar 3, 1980

    SciTech Connect

    Morse, J.G. (ed.)

    1980-01-01

    This conference proceedings contains 20 papers and 1 panel discussion on uranium mining and ore treatment, taking into account the environmental issues surrounding uranium supply. Topics discussed include the U.S. uranium resource base, the technology and economics of uranium recovery from phosphate resources, trends in preleach materials handling of sandstone uranium ores, groundwater restoration after in-situ uranium leaching, mitigation of the environmental impacts of open pit and underground uranium mining, remedial actions at inactive uranium mill tailings sites, environmental laws governing in-situ solution mining of uranium, and the economics of in-situ solution mining.

  16. Controlling uranium reactivity March 18, 2008

    E-print Network

    Meyer, Karsten

    March 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many research groups have been involved in utilizing the large size and unique reactivity of the uranium atom

  17. Method of preparation of uranium nitride

    SciTech Connect

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  18. DEVELOPMENT OF THE EXCER PROCESS. III. PREPARATION OF URANIUM TETRAFLUORIDE FROM URANYL CHLORIDE BY IRON REDUCTION AND PRECIPITATION

    Microsoft Academic Search

    W. J. Neill; I. R. Higgins

    1958-01-01

    A flowsheet, based on laboraiory-scale experiments, is presented for ; preparation of uranium(IV) fluoride solution by reduction of uranyl chloride with ; metallic iron. The reduction was rapid, with 95% efficiency for 100% reduction. ; Precipitation of UFâ deg 3\\/4 HâO from this solution with HF ; separated the iron from the uranium by a factor of 10³. (auth);

  19. Selective separation and characterization of the stress degradation products of ondansetron hydrochloride by liquid chromatography with quadrupole time-of-flight mass spectrometry.

    PubMed

    Talluri, Murali V N Kumar; Keshari, Kundan Kumar; Kalariya, Pradipbhai D; Srinivas, Ragampeta

    2015-05-01

    Ondansetron hydrochloride was subjected to forced degradation studies under various conditions of hydrolysis (acidic, basic, and neutral), oxidation, photolysis, and thermal as prescribed by International Conference on Harmonisation guideline Q1A (R2). A simple, selective, precise, and accurate high-performance liquid chromatography method was developed on a Waters Xterra C18 (150 × 4.6 mm id, 3.5 ?m) column using 10 mM ammonium formate (pH 3.0)/methanol as a mobile phase in gradient elution mode at a flow rate of 0.6 mL/min. The method was extended to liquid chromatography quadrupole time-of-flight tandem mass spectrometry for identification and structural characterization of stress degradation products of ondansetron. The drug showed significant degradation in base hydrolytic and photolytic stress conditions in the liquid state, while it was found to be stable in neutral, acidic, thermal, and oxidative stress conditions. A total of five degradation products were characterized and most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation of the [M + H](+) ions of the drug and its degradation products. Finally, the developed method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonisation guideline Q2 (R1). PMID:25727389

  20. Uranium transfer around volcanic-associated uranium deposit

    Microsoft Academic Search

    Vladislav A. Petrov; Antje Wittenberg; Ulrich Schwarz-Schampera; Jörg Hammer

    \\u000a Only about 60% of the annual consumption in the nuclear fuel cycle is provided by primary uranium production at present. Hence,\\u000a a strong demand for additional exploration of additional uranium resources is identified in many countries. Hence, a large\\u000a potential exists for unconventional uranium deposits such as mobilization areas in the surroundings of known deposits. Besides\\u000a environmental aspects a deep

  1. Control of uranium hazards - Portsmouth uranium enrichment plant

    SciTech Connect

    Wagner, E.R.

    1985-11-01

    This report summarizes the Environmental, Safety and Health programs to control uranium hazards at the Portsmouth Gaseous Diffusion Plant. A description of the physical plant, the facility processes and the attendant uranium flows and effluents are provided. The hazards of uranium are discussed and the control systems are outlined. Finally, the monitoring programs are described and summaries of recent data are provided. 11 figs., 20 tabs.

  2. Sampling Plan for Assaying Plates Containing Depleted or Normal Uranium

    SciTech Connect

    Ivan R. Thomas

    2011-11-01

    This paper describes the rationale behind the proposed method for selecting a 'representative' sample of uranium metal plates, portions of which will be destructively assayed at the Y-12 Security Complex. The total inventory of plates is segregated into two populations, one for Material Type 10 (depleted uranium (DU)) and one for Material Type 81 (normal [or natural] uranium (NU)). The plates within each population are further stratified by common dimensions. A spreadsheet gives the collective mass of uranium element (and isotope for DU) and the piece count of all plates within each stratum. These data are summarized in Table 1. All plates are 100% uranium metal, and all but approximately 60% of the NU plates have Kel-F{reg_sign} coating. The book inventory gives an overall U-235 isotopic percentage of 0.22% for the DU plates, ranging from 0.19% to 0.22%. The U-235 ratio of the NU plates is assumed to be 0.71%. As shown in Table 1, the vast majority of the plates are comprised of depleted uranium, so most of the plates will be sampled from the DU population.

  3. Artwork Separation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Under a grant from California Institute of Technology, Jet Propulsion Laboratory (JPL) and LACMA (Los Angeles County Museum of Art) used image enhancement techniques to separate x-ray images of paintings when one had been painted on top of another. The technique is derived from computer processing of spacecraft-acquired imagery, and will allow earlier paintings, some of which have been covered for centuries, to be evaluated. JPL developed the program for "subtracting" the top painting and enhancing the bottom one, and believes an even more advanced system is possible.

  4. Method for fabricating uranium foils and uranium alloy foils

    DOEpatents

    Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  5. Uranium price forecasting methods

    SciTech Connect

    Fuller, D.M.

    1994-03-01

    This article reviews a number of forecasting methods that have been applied to uranium prices and compares their relative strengths and weaknesses. The methods reviewed are: (1) judgemental methods, (2) technical analysis, (3) time-series methods, (4) fundamental analysis, and (5) econometric methods. Historically, none of these methods has performed very well, but a well-thought-out model is still useful as a basis from which to adjust to new circumstances and try again.

  6. Uranium in prehistoric Indian pottery 

    E-print Network

    Filberth, Ernest William

    1976-01-01

    URANIUM IN PREHISTORIC INDIAN POTTERY A Thesis by ERNEST WILLIAM FILBERTH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1976 Major Subject...: Chemistry URANIUM IN PREHISTORIC INDIAN POTTERY A Thesis by ERNEST WILLIAM FILBERTH Approved as to style and content by: (Chairman of Committee) (Head of Department) (Member) (Membe (Member) (Member) December 1976 ABSTRACT Uranium in Prehistoric...

  7. NEWS AND INFORMATION: Depleted uranium

    Microsoft Academic Search

    Richard Wakeford

    2001-01-01

    The potential health effects arising from exposure to depleted uranium have been much in the news of late. Naturally occurring uranium contains the radioisotopes 238U (which dominates, at a current molar proportion of 99.3%), 235U and a small amount of 234U. Depleted uranium has an isotopic concentration of 235U that is below the 0.7% found naturally. This is either because

  8. Uranium Critical Point Location Problem

    E-print Network

    Iosilevskiy, Igor

    2013-01-01

    Significant uncertainty of our present knowledge for uranium critical point parameters is under consideration. Present paper is devoted to comparative analysis of possible resolutions for the problem of uranium critical point location, as well as to discussion of plausible scheme of decisive experiment, which could resolve existing uncertainty. New calculations of gas-liquid coexistence in uranium by modern thermodynamic code are included in the analysis.

  9. Mo-Ru-U (Molybdenum-Ruthenium-Uranium)

    Microsoft Academic Search

    2007-01-01

    This document is part of Subvolume C4 'Non-Ferrous Metal Systems. Part 4: Selected Nuclear Materials and Engineering Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Molybdenum-Ruthenium-Uranium.

  10. C-Mo-U (Carbon-Molybdenum-Uranium)

    Microsoft Academic Search

    2007-01-01

    This document is part of Subvolume C4 'Non-Ferrous Metal Systems. Part 4: Selected Nuclear Materials and Engineering Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Carbon-Molybdenum-Uranium.

  11. Mo-O-U (Molybdenum-Oxygen-Uranium)

    Microsoft Academic Search

    2007-01-01

    This document is part of Subvolume C4 'Non-Ferrous Metal Systems. Part 4: Selected Nuclear Materials and Engineering Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Molybdenum-Oxygen-Uranium.

  12. Mo-Si-U (Molybdenum-Silicon-Uranium)

    Microsoft Academic Search

    2007-01-01

    This document is part of Subvolume C4 'Non-Ferrous Metal Systems. Part 4: Selected Nuclear Materials and Engineering Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Molybdenum-Silicon-Uranium.

  13. Uranium geology of Bulgaria

    SciTech Connect

    Not Available

    1993-02-01

    Three major uranium districts containing several deposits, plus 32 additional deposits, have been identified in Bulgaria, all of which are detailed geologically in this article. Most of the deposits are located in the West Balkan mountains, the western Rhodope mountains, and the Thracian Basin. A few deposits occur in the East Balkan, eastern Rhodope and Sredna Gora mountains. The types of deposits are sandstone, vein, volcanic, and surficial. Sandstone deposits are hosted in Permian and Tertiary sediments. In early 1992, fifteen deposits were being exploited, of which roughly 70 percent of the uranium produced was being recovered using in-situ leaching (ISL) methods. The remainder was being recovered by conventional underground mining, except for one small deposit that utilized open-pit methods. Fifteen other Bulgarian deposits had been exhausted, while five deposits were still in the exploration stage. Uranium production began in Bulgaria in 1946, and cumulative production through 1991 exceeded 100 million pounds equivalent U3O8. Current annual production is on the order of one million pounds equivalent U3O8, about 750 thousand pounds of which are recovered by ISL operations.

  14. Sputtering of uranium

    NASA Technical Reports Server (NTRS)

    Gregg, R.; Tombrello, T. A.

    1978-01-01

    Results are presented for an experimental study of the sputtering of U-235 atoms from foil targets by hydrogen, helium, and argon ions, which was performed by observing tracks produced in mica by fission fragments following thermal-neutron-induced fission. The technique used allowed measurements of uranium sputtering yields of less than 0.0001 atom/ion as well as yields involving the removal of less than 0.01 monolayer of the uranium target surface. The results reported include measurements of the sputtering yields for 40-120-keV protons, 40-120-keV He-4(+) ions, and 40- and 80-keV Ar-40(+) ions, the mass distribution of chunks emitted during sputtering by the protons and 80-keV Ar-40(+) ions, the total chunk yield during He-4(+) sputtering, and some limited data on molecular sputtering by H2(+) and H3(+). The angular distribution of the sputtered uranium is discussed, and the yields obtained are compared with the predictions of collision cascade theory.

  15. The toxicity of depleted uranium.

    PubMed

    Briner, Wayne

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed. PMID:20195447

  16. The Toxicity of Depleted Uranium

    PubMed Central

    Briner, Wayne

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed. PMID:20195447

  17. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    DOEpatents

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  18. Field task proposal\\/agreement separation and purification of radioisotopes for research

    Microsoft Academic Search

    W. R. Wilkes; R. E. Eppley

    1980-01-01

    The present purpose of this program is to produce high-purity uranium-234 (99%) and polonium-209 for the scientific community, both Governmental and non-Governmental. In addition, facilities for separation and purification of protactinium-231, thorium-230, and thorium-229 are maintained in stand-by condition for the resumption of these processes when conditions warrant. The uranium-234 isotope is separated from aged plutonium-238 material, purified, and converted

  19. Particle separator

    DOEpatents

    Hendricks, Charles D. (Livermore, CA)

    1990-01-01

    Method and apparatus (10) are provided for separating and classifying particles (48,50,56) by dispersing the particles within a fluid (52) that is upwardly flowing within a cone-shaped pipe (12) that has its large end (20) above its small end (18). Particles of similar size and shape (48,50) migrate to individual levels (A,B) within the flowing fluid. As the fluid is deflected by a plate (42) at the top end of the pipe (12), the smallest particles are collected on a shelf-like flange (40). Ever larger particles are collected as the flow rate of the fluid is increased. To prevent particle sticking on the walls (14) of the pipe (12), additional fluid is caused to flow into the pipe (12) through holes (68) that are specifically provided for that purpose. Sticking is further prevented by high frequency vibrators (70) that are positioned on the apparatus (10).

  20. Comparison of the chemical characteristics of the uranium deposits of the Morrison Formation in the Grants uranium region, New Mexico

    USGS Publications Warehouse

    Spirakis, C.S.; Pierson, C.T.

    1983-01-01

    Statistical treatment of the chemical data of samples from the northeast Church Rock area, Ruby deposit, Mariano Lake deposit, and the Ambrosia Lake district indicates that primary ore-forming processes concentrated copper, iron, magnesium, manganese, molybdenum, selenium, vanadium, yttrium, arsenic, organic carbon, and sulfur, along with uranium. A barium halo that is associated with all of these deposits formed from secondary processes. Calcium and strontium were also enriched in the ores by secondary processes. Comparison of the chemical characteristics of the redistributed deposits in the Church Rock district to the primary deposits in the Grants uranium region indicates that calcium, manganese, strontium, yttrium, copper, iron, magnesium, molybdenum, lead, selenium, and vanadium are separated from uranium during redistribution of the deposits in the Church Rock area. Comparisons of the chemical characteristics of the Church Rock deposits and the secondary deposits at Ambrosia Lake suggest some differences in the processes that were involved in the genesis of the redistributed deposits in these two areas.

  1. Influence of attrition scrubbing, ultrasonic treatment, and oxidant additions on uranium removal from contaminated soils

    SciTech Connect

    Timpson, M.E.; Elless, M.P.; Francis, C.W.

    1994-06-01

    As part of the Uranium in Soils Integrated Demonstration Project being conducted by the US Department of Energy, bench-scale investigations of selective leaching of uranium from soils at the Fernald Environmental Management Project site in Ohio were conducted at Oak Ridge National Laboratory. Two soils (storage pad soil and incinerator soil), representing the major contaminant sources at the site, were extracted using carbonate- and citric acid-based lixiviants. Physical and chemical processes were used in combination with the two extractants to increase the rate of uranium release from these soils. Attrition scrubbing and ultrasonic dispersion were the two physical processes utilized. Potassium permanganate was used as an oxidizing agent to transform tetravalent uranium to the hexavalent state. Hexavalent uranium is easily complexed in solution by the carbonate radical. Attrition scrubbing increased the rate of uranium release from both soils when compared with rotary shaking. At equivalent extraction times and solids loadings, however, attrition scrubbing proved effective only on the incinerator soil. Ultrasonic treatments on the incinerator soil removed 71% of the uranium contamination in a single extraction. Multiple extractions of the same sample removed up to 90% of the uranium. Additions of potassium permanganate to the carbonate extractant resulted in significant changes in the extractability of uranium from the incinerator soil but had no effect on the storage pad soil.

  2. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    31 ? Money and Finance:Treasury ? 3 ? 2012-07-01 ? 2012-07-01 ? false ? Uranium feed; natural uranium feed. ? 540.317 ? Section 540.317 ? Money and Finance: Treasury ? Regulations Relating to Money and Finance (Continued) ? OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY ?...

  3. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    31 ? Money and Finance:Treasury ? 3 ? 2014-07-01 ? 2014-07-01 ? false ? Uranium feed; natural uranium feed. ? 540.317 ? Section 540.317 ? Money and Finance: Treasury ? Regulations Relating to Money and Finance (Continued) ? OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY ?...

  4. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    31 ? Money and Finance:Treasury ? 3 ? 2011-07-01 ? 2011-07-01 ? false ? Uranium feed; natural uranium feed. ? 540.317 ? Section 540.317 ? Money and Finance: Treasury ? Regulations Relating to Money and Finance (Continued) ? OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY ?...

  5. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    31 ? Money and Finance:Treasury ? 3 ? 2013-07-01 ? 2013-07-01 ? false ? Uranium feed; natural uranium feed. ? 540.317 ? Section 540.317 ? Money and Finance: Treasury ? Regulations Relating to Money and Finance (Continued) ? OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY ?...

  6. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    31 ? Money and Finance: Treasury ? 3 ? 2010-07-01 ? 2010-07-01 ? false ? Uranium feed; natural uranium feed. ? 540.317 ? Section 540.317 ? Money and Finance: Treasury ? Regulations Relating to Money and Finance (Continued) ? OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY ?...

  7. Transpassive electrodissolution of depleted uranium in alkaline electrolytes

    SciTech Connect

    Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

    1998-03-01

    To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO{sub 3}{center_dot}2H{sub 2}O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions.

  8. Detection of metal ions by liquid chromatographic separation of their 1,3-dimethyl-4-acetyl-2-pyrazolin-5-one chelates

    SciTech Connect

    Palmieri, M.D.; Fritz, J.S.

    1988-10-15

    Metal ions are determined by adding 1,3-dimethyl-4-acetyl-2-pyrazolin-5-one (DMAP) to an aqueous sample and then separating the metal chelates by direct injection onto a liquid chromatographic column. Separations on a C-18 silica column and a polystyrene-divinylbenzene column are compared, with a better separation seen on the polymeric column. It is found that the most efficient separations are seen at pH 5 with an acetic acid buffer. Separations of metal-DMAP complexes using different organic modifiers are compared. Good separations using acetonitrile and tetrahydrofuran are seen, and an inversion of retention is seen in tetrahydrofuran. Several metal ions can be separated and quantified; separation conditions, linear calibration curve ranges, and detection limits are presented for Fe(III), U(VI), Ga(III), and Cu(II). Interferences due to the presence of other ions in solution are investigated. Finally a method for selectively determining uranium with postcolumn reactor detection using Arsenazo I is presented.

  9. Long-term criticality control in radioactive waste disposal facilities using depleted uranium

    SciTech Connect

    Forsberg, C.W.

    1997-02-19

    Plant photosynthesis has created a unique planetary-wide geochemistry - an oxidizing atmosphere with oxidizing surface waters on a planetary body with chemically reducing conditions near or at some distance below the surface. Uranium is four orders of magnitude more soluble under chemically oxidizing conditions than it is under chemically reducing conditions. Thus, uranium tends to leach from surface rock and disposal sites, move with groundwater, and concentrate where chemically reducing conditions appear. Earth`s geochemistry concentrates uranium and can separate uranium from all other elements except oxygen, hydrogen (in water), and silicon (silicates, etc). Fissile isotopes include {sup 235}U, {sup 233}U, and many higher actinides that eventually decay to one of these two uranium isotopes. The potential for nuclear criticality exists if the precipitated uranium from disposal sites has a significant fissile enrichment, mass, and volume. The earth`s geochemistry suggests that isotopic dilution of fissile materials in waste with {sup 238}U is a preferred strategy to prevent long-term nuclear criticality in and beyond the boundaries of waste disposal facilities because the {sup 238}U does not separate from the fissile uranium isotopes. Geological, laboratory, and theoretical data indicate that the potential for nuclear criticality can be minimized by diluting fissile materials with-{sup 238}U to 1 wt % {sup 235}U equivalent.

  10. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    Microsoft Academic Search

    Coffinberry

    1959-01-01

    A plutonium-uranium alloy suitable for use as the fuel element in a fast ; breeder reactor is described. The alloy contains from 15 to 60 at.% titanium ; with the remainder uranium and plutonium in a specific ratio, thereby limiting ; the undesirable zeta phase and rendering the alloy relatively resistant to ; corrosion and giving it the essential characteristic

  11. Developments in uranium in 1987

    SciTech Connect

    Chenoweth, W.L.

    1988-10-01

    Legal and political factors, imports, and low prices continued to plague the domestic uranium industry. As a result, the Secretary of Energy in 1987 declared the domestic industry to be nonviable for the third straight year. Uranium exploration expenditures in the US declined for the ninth consecutive year. In 1987, an estimated $18 million was spent on uranium exploration, including 1.9 million ft of surface drilling. This drilling was done mainly in production areas and in areas of recent discoveries. Production of uranium concentrate decreased slightly in 1987, when 12.5 million lb of uranium oxide (U/sub 3/O/sub 8/) were produced, a 7% decrease from 1986. Uranium produced from mine water, solution mining, and as the byproduct of phosphoric acid and copper production accounted for about 38% of the total production in the US. At the end of 1987, only 5 uranium mills were operating in the US. The large, high-grade reserves being discovered and developed in Saskatchewan will enable Canada to dominate the world market for many years. Development of the Olympic Dam deposit continued in Australia and will being production in 1988. US uranium production is expected to increase slightly in 1988, as a new open-pit mine begin production. 3 figs., 2 tabs.

  12. The ? Phase in Uranium Alloys

    Microsoft Academic Search

    R G Loasby

    1958-01-01

    Electrical resistivity and magnetic susceptibility properties of two alloys based on ?-uranium are described and interpreted in terms of a theoretical structure derived from X-ray work by P. C. L. Pfeil. The implication of the earlier work, that uranium in the ? form is characterized by only four electrons per atom (as opposed to six for the ? and ?

  13. Compensation of Navajo Uranium Miners

    NSDL National Science Digital Library

    World Information Service on Energy Uranium Project

    This site addresses policy issues of the compensation of Navajo uranium miners. The site provides an annotated index of current issues, legislation, papers and presentations, books, and links that lead to more information on uranium miners. Imbedded links throughout the text lead to related information.

  14. Uranium levels in Cypriot groundwater samples determined by ICP-MS and ?-spectroscopy.

    PubMed

    Charalambous, Chrystalla; Aletrari, Maria; Piera, Panagiota; Nicolaidou-Kanari, Popi; Efstathiou, Maria; Pashalidis, Ioannis

    2013-02-01

    The uranium concentration and the isotopic ratio (238)U/(234)U have been determined in Cypriot groundwater samples by ICP-MS after ultrafiltration and acidification of the samples and ?-spectroscopy after pre-concentration and separation of uranium by cation-exchange (Chelex 100 resin) and electro-deposition on stainless steel discs. The uranium concentration in the groundwater samples varies strongly between 0.1 and 40 ?g l(-1). The highest uranium concentrations are found in groundwater samples associated with sedimentary rock formations and the obtained isotopic ratio (238)U/(234)U varies between 0.95 and 1.2 indicating basically the presence of natural uranium in the studied samples. The pH of the groundwater samples is neutral to weak alkaline (7 < pH < 8) and this is attributed to the carbonaceous content of the sedimentary rocks and the ophiolitic origin of the igneous rocks, which form the background geology in Cyprus. Generally, in groundwaters uranium concentration in solution increases with decreasing pH (7 < pH < 8) and this is attributed to the fact that at lower pH dissolution of soil minerals occurs, and uranium, which is adsorbed or forms solid solution with the geological matrix enters the aqueous phase. This is also corroborated by the strong correlation between the uranium concentration and the electrical conductivity (e.g. dissolved solids) measured in the groundwaters under investigation. PMID:23195433

  15. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOEpatents

    Travelli, A.

    1985-10-25

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  16. Cyclic membrane separation process

    DOEpatents

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  17. Cyclic membrane separation process

    DOEpatents

    Bowser, John

    2004-04-13

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  18. Dissolution of metallic uranium and its alloys, Part II: Screening study results: Identification of an effective non-thermal uranium dissolution method

    Microsoft Academic Search

    C. A. Laue; D. Gates-Anderson; T. E. Fitch

    2004-01-01

    Screening experiments were performed to evaluate reagent systems that deactivate pyrophoric, metallic depleted uranium waste\\u000a streams at ambient temperature. The results presented led to the selection of two systems, which would be investigated further,\\u000a for the design of the LLNL onsite treatment process of metallic depleted uranium wastes. The two feasible systems are: (a)\\u000a 7.5 mol\\/l H2

  19. Percutaneous absorption of uranium compounds.

    PubMed

    de Rey, B M; Lanfranchi, H E; Cabrini, R L

    1983-04-01

    Percutaneous absorption of soluble and insoluble uranium compounds has been induced in order to obtain information on penetration routes and the tissue injury produced by uranium salts. The high electron density of uranium provided a reliable way to visualize, by electron microscopy, the precise localization of the heavy compounds within the tissues. Few minutes after topical application of uranyl nitrate, dense deposits of uranium were observed at the epidermal barrier level. A few hours later, dense deposits were seen filling the intercellular spaces and were also scattered in the cytoplasm and nucleus. Mortality and body weight measurements indicated the high toxicity of uranyl nitrate and ammonium uranyl tricarbonate; uranyl acetate and ammonium diuranate were less toxic. As no penetration was achieved after uranium dioxide, no variations were detected on these parameters. PMID:6832127

  20. Electrified Separation Processes in Industry 

    E-print Network

    Appleby, A. J.

    1983-01-01

    in put for separation. For example, it can be used to operate a pump in a reverse osmosis device, or to provide an ionic potential difference in an electro dialysis cell which will allow selective separation of ions. If the two parts of the process... to the still. Multi-stage heat pump cycles, while possible, are economically impracticable. It is therefore clear that simple heat-pump cycles (particularly those using mechanical vapor recom pression) are only applicable to the separation of components...

  1. Validation of the WATEQ4 geochemical model for uranium

    SciTech Connect

    Krupka, K.M.; Jenne, E.A.; Deutsch, W.J.

    1983-09-01

    As part of the Geochemical Modeling and Nuclide/Rock/Groundwater Interactions Studies Program, a study was conducted to partially validate the WATEQ4 aqueous speciation-solubility geochemical model for uranium. The solubility controls determined with the WATEQ4 geochemical model were in excellent agreement with those laboratory studies in which the solids schoepite (UO/sub 2/(OH)/sub 2/ . H/sub 2/O), UO/sub 2/(OH)/sub 2/, and rutherfordine ((UO/sub 2/CO/sub 3/) were identified as actual solubility controls for uranium. The results of modeling solution analyses from laboratory studies of uranyl phosphate solids, however, identified possible errors in the characterization of solids in the original solubility experiments. As part of this study, significant deficiencies in the WATEQ4 thermodynamic data base for uranium solutes and solids were corrected. Revisions included recalculation of selected uranium reactions. Additionally, thermodynamic data for the hydroxyl complexes of U(VI), including anionic (VI) species, were evaluated (to the extent permitted by the available data). Vanadium reactions were also added to the thermodynamic data base because uranium-vanadium solids can exist in natural ground-water systems. This study is only a partial validation of the WATEQ4 geochemical model because the available laboratory solubility studies do not cover the range of solid phases, alkaline pH values, and concentrations of inorganic complexing ligands needed to evaluate the potential solubility of uranium in ground waters associated with various proposed nuclear waste repositories. Further validation of this or other geochemical models for uranium will require careful determinations of uraninite solubility over the pH range of 7 to 10 under highly reducing conditions and of uranyl hydroxide and phosphate solubilities over the pH range of 7 to 10 under oxygenated conditions.

  2. A literature review of interaction of oxidized uranium species and uranium complexes with soluble organic matter

    USGS Publications Warehouse

    Jennings, Joan K.; Leventhal, J.S.

    1978-01-01

    Organic material is commonly found associated with uranium ores in sandstone-type deposits. This review of the literature summarizes the classes and separations of naturally occurring organic material but the emphasis is on soluble organic species. The main class of materials of interest is humic substances which are high-molecular-weight complex molecules that are soluble in alkaline solution. These humic substances are able to solubilize (make soluble) minerals and also to complex [by ion exchange and (or) chelation] many cations. The natural process of soil formation results in both mineral decomposition and element complexing by organic species. Uranium in solution, such as ground water, can form many species with other elements or complexes present depending on Eh and pH. In natural systems (oxidizing Eh, pH 5-9) the uranium is usually present as a complex with hydroxide or carbonate. Thermodynamic data for these species are presented. Interacting metals and organic materials have been observed in nature and studied in the laboratory by many workers in diverse scientific disciplines. The results are not easily compared. Measurements of the degree of complexation are reported as equilibrium stability constant determinations. This type of research has been done for Mn, Fe, Cu, Zn, Pb, Ni, Co, Mg, Ca, Al, and to a limited degree for U. The use of Conditional Stability Constants has given quantitative results in some cases. The methods utilized in experiments and calculations are reviewed.

  3. Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations

    Microsoft Academic Search

    A. D. Russell; S. Emerson; B. K. Nelson; J. Erez; D. W. Lea

    1994-01-01

    The authors present results of an investigation of uranium\\/calcium ratios in cleaned foraminiferal calcite as a recorder of seawater uranium concentrations. For accurate reconstruction of past seawater uranium content, shell calcite must incorporate uranium in proportion to seawater concentration and must preserve its original uranium composition over time. Laboratory culture experiments with live benthic (Amphistegina lobifera) and live planktonic (Globigerinell

  4. EXAMINATION AND PROPERTIES OF URANIUM ALLOYS

    Microsoft Academic Search

    H. A. Saller; F. A. Rough

    1953-01-01

    The heat treatment, microstructure, hardness, and density data for a ; series of uranium alloys are described. These are alloys which were studied ; because of their potential interest for high-temperature water-corrosion ; resistance. The alloys studied include uranium--zirconium biiiary alloys, ; uranium-- zirconium-base ternary alloys, and uranium --molybdenum alloys. ; (auth);

  5. Uranium and plutonium isotopes in the atmosphere

    Microsoft Academic Search

    Y. Sakuragi; J. L. Meason; P. K. Kuroda

    1983-01-01

    Uranium 234 and 235 were found to be highly enriched relative to uranium 238 in several rain samples collected at Fayetteville, Arkansas, during the months of April and May 1980. The anomalous uranium appears to have originated from the Soviet satellite Cosmos-954, which fell over Canada on January 24, 1978. The uranium fallout occurred just about the time Mount St.

  6. Uranium accumulation by Pseudomonas sp. EPS5028

    Microsoft Academic Search

    Ana M. Marqués; Xavier Roca; M. Dolores Simon-Pujol; M. Carmen Fuste; Francisco Congregado

    1991-01-01

    Pseudomonas sp. EPS-5028 was examined for the ability to accumulate uranium from solutions. The uptake of uranium by this microorganism is very rapid and is affected by pH but not by temperature, metabolic inhibitors, culture time and the presence of various cations and anions. The amount of uranium absorbed by the cells increased as the uranium concentration of the solution

  7. APPENDIX J Partition Coefficients For Uranium

    E-print Network

    APPENDIX J Partition Coefficients For Uranium #12;Appendix J Partition Coefficients For Uranium J.1.0 Background The review of uranium Kd values obtained for a number of soils, crushed rock and their effects on uranium adsorption on soils are discussed below. The solution pH was also used as the basis

  8. Criticality safety aspects of K-25 building uranium deposit removal

    Microsoft Academic Search

    M. J. Haire; W. C. Jordan; J. C. Ingram

    1995-01-01

    The K-25 Building of the Oak Ridge Gaseous Diffusion Plant (now the K-25 site) went into operation during World War II as the first large-scale production plant to separate ²³⁵U from uranium by the gaseous diffusion process. It operated successfully until 1964, when it was placed in a standby mode. The U.S. Department of Energy (DOE) has initiated a decontamination

  9. Determination of thorium, uranium and plutonium isotopes in atmospheric samples

    Microsoft Academic Search

    F. S. Jiang; S. C. Lee; S. N. Bakhtiar; R. K. Kuroda

    1986-01-01

    A new procedure for the radiochemical measurements of thorium, uranium and plutonium in atmospheric samples is described. Analysis involves coprecipitation of these actinides with iron hydroxide from a 40-to 50-dm3 sample of rainwater, followed by radiochemical separation and purification procedures by the use of ion exchange chromatography (Dowex AG1×8) and solvent extraction. The new procedure enables one to determine the

  10. Agriculture in an area impacted by past uranium mining activities

    SciTech Connect

    Carvalho, F. P.; Oliveira, J. M. [Instituto Tecnologico e Nuclear, Departamento de Proteccao Radiologica e Seguranca Nuclear, E.N. 10, 2686-953 Sacavem (Portugal); Neves, O.; Vicente, E. M. [Instituto Superior Tecnico Centro de Petrologia e Geoquimica, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1049-001 Lisboa (Portugal); Abreu, M. M. [Dept Ciencias do Ambiente, Instituto Superior de Agronomia, Universidade Tecnica de Lisboa, Tapada da Ajuda 1399-017 Lisboa (Portugal)

    2007-07-01

    The shallow aquifer near the old Cunha Baixa uranium mine (Viseu, Portugal) was contaminated by acid mine drainage. Concentration of radionuclides in water from irrigation wells and in the topsoil layer of the agriculture fields nearby display enhanced concentrations of uranium, radium and polonium. Two types of agriculture land in this area were selected, one with enhanced and another with low uranium concentrations, for controlled growth of lettuce and potatoes. Plants were grown in replicate portions of land (two plots) in each soil type and were periodically irrigated with water from wells. In each soil, one plot was irrigated with water containing low concentration of dissolved uranium and the other plot with water containing enhanced concentration of dissolved uranium. At the end of the growth season, plants were harvested and analysed, along with soil and irrigation water samples. Results show the accumulation of radionuclides in edible parts of plants, specially in the field plots with higher radionuclide concentrations in soil. Radionuclides in irrigation water contributed less to the radioactivity accumulated in plants than radionuclides from soils. (authors)

  11. Donor-dependent Extent of Uranium Reduction for Bioremediation of Contaminated Sediment Microcosms

    SciTech Connect

    Palumbo, Anthony Vito [ORNL; Ravel, Bruce [Argonne National Laboratory (ANL); Phelps, Tommy Joe [ORNL; Schadt, Christopher Warren [ORNL; Brandt, Craig C [ORNL

    2009-01-01

    Bioremediation of uranium was investigated in microcosm experiments containing contaminated sediments from Oak Ridge, Tennessee to explore the importance of electron donor selection for uranium reduction rate and extent. In these experiments, all of the electron donors, including ethanol, glucose, methanol, and methanol with added humic acids, stimulated the reduction and immobilization of aqueous uranium by the indigenous microbial community. Uranium loss from solution began after the completion of nitrate reduction but essentially concurrent with sulfate reduction. When electron donor concentrations were normalized for their equivalent electron donor potential yield, the rates of uranium reduction were nearly equivalent for all treatments (0.55-0.95 {micro}mol L{sup -1} d{sup -1}). Uranium reduction with methanol proceeded after a 15-d longer lag time relative to that of ethanol or glucose. Significant differences were not found with the inclusion of humic acids. The extent of U reduction in sediment slurries measured by XANES at various time periods after the start of the experiment increased in the order of ethanol (5-7% reduced at 77 and 153 d), glucose (49% reduced at 53 d), and methanol (93% reduced at 90 d). The microbial diversity of ethanol- and methanol-amended microcosms in their late stage of U reduction was analyzed with 16S rRNA gene amplification. Members of the Geobacteraceae were found in all microcosms as well as other potential uranium-reducing organisms, such as Clostridium and Desulfosporosinus. The effectiveness of methanol relative to ethanol at reducing aqueous and sediment-hosted uranium suggests that bioremediation strategies that encourage fermentative poising of the subsurface to a lower redox potential may be more effective for long-term uranium immobilization as compared with selecting an electron donor that is efficiently metabolized by known uranium-reducing microorganisms.

  12. Donor-dependent Extent of Uranium Reduction for Bioremediation of Contaminated Sediment Microcosms

    SciTech Connect

    Madden, Andrew S.; Palumbo, Anthony V.; Ravel, Bruce; Vishnivetskaya, Tatiana A.; Phelps, Tommy J.; Schadt, Christopher W.; Brandt, Craig C.; (ORNL); (NIST)

    2009-03-16

    Bioremediation of uranium was investigated in microcosm experiments containing contaminated sediments from Oak Ridge, Tennessee to explore the importance of electron donor selection for uranium reduction rate and extent. In these experiments, all of the electron donors, including ethanol, glucose, methanol, and methanol with added humic acids, stimulated the reduction and immobilization of aqueous uranium by the indigenous microbial community. Uranium loss from solution began after the completion of nitrate reduction but essentially concurrent with sulfate reduction. When electron donor concentrations were normalized for their equivalent electron donor potential yield, the rates of uranium reduction were nearly equivalent for all treatments (0.55-0.95 {micro}mol L{sup -1} d{sup -1}). Uranium reduction with methanol proceeded after a 15-d longer lag time relative to that of ethanol or glucose. Significant differences were not found with the inclusion of humic acids. The extent of U reduction in sediment slurries measured by XANES at various time periods after the start of the experiment increased in the order of ethanol (5-7% reduced at 77 and 153 d), glucose (49% reduced at 53 d), and methanol (93% reduced at 90 d). The microbial diversity of ethanol- and methanol-amended microcosms in their late stage of U reduction was analyzed with 16S rRNA gene amplification. Members of the Geobacteraceae were found in all microcosms as well as other potential uranium-reducing organisms, such as Clostridium and Desulfosporosinus. The effectiveness of methanol relative to ethanol at reducing aqueous and sediment-hosted uranium suggests that bioremediation strategies that encourage fermentative poising of the subsurface to a lower redox potential may be more effective for long-term uranium immobilization as compared with selecting an electron donor that is efficiently metabolized by known uranium-reducing microorganisms.

  13. The End of Cheap Uranium

    E-print Network

    Michael Dittmar

    2011-06-21

    Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

  14. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009

    SciTech Connect

    Chandler, David [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Sease, John D [ORNL; Guida, Tracey [University of Pittsburgh; Jolly, Brian C [ORNL

    2010-02-01

    This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

  15. 300-FF-1 Operable Unit physical separation of soils pilot plant study

    SciTech Connect

    Freeman-Pollard, J.R.

    1994-01-15

    Alternative Remedial Technologies, Inc. (ART) was selected in a competitive selection process to conduct a pilot study for the physical separation of soils in the North Process Pond of the 300 Area at the Hanford Site. In January 1994, ART mobilized its 15 tons-per-hour pilot plant to the site. The plant was initially staged in a commercial area to allow for pretest inspections and minor modifications. The plant was specifically designed for use as a physical separations unit and consisted of a feed hopper, wet screens, hydrocyclones, as well as settling and dewatering equipment. The plant was supported in the field with prescreening equipment, mobile generators, air compressors, and water storage tanks. The plant was moved into the surface contamination area on March 24, 1994. The testing was conducted during the period March 23, 1994 through April 13, 1994. Two soil types were treated during the testing: a natural soil contaminated with low levels of uranium, cesium, cobalt, and heavy metals, and a natural soil contaminated with a uranium carbonate material that was visually recognizable by the presence of a green sludge material in the soil matrix. The ``green`` material contained significantly higher levels of the same contaminants. Both source materials were treated by the plant in a manner that fed the material, produced clean gravel and sand fractions, and concentrated the contaminants in a sludge cake. Process water was recycled during the operations. The testing was extremely successful in that for both source waste streams, it was demonstrated that volume reductions of greater than 90% could be achieved while also meeting the test performance criteria. The volume reduction for the natural soils averaged a 93.8%, while the ``green`` soils showed a 91.4% volume reduction.

  16. Environmental readiness document advanced isotope separation program

    SciTech Connect

    Not Available

    1981-08-01

    Advanced Isotope Separation (AIS) techniques hold the promise of significantly reducing the cost of enriching uranium for use in commercial nuclear power reactors. By reducing uranium enrichment costs, the tails assay of an enrichment plant can be lowered resulting in a decrease in the requirements for natural uranium feed material and a small decrease in the cost of the electricity produced by nuclear power plants. With this increased efficiency of uranium enrichment, there will be an overall reduction in the environmental impacts associated with uranium processing in the front end of the fuel cycle. AIS is characterized by much lower energy requirements compared to diffusion; comparable energy requirements to centrifuge; generally similar offsite environmental and socioeconomic impacts to centrifuge; and substantially fewer secondary impacts than diffusion because of reduced need for power. In the broadest definitions of environmental concerns, the socio-political and security aspects of proliferation and safeguards are the most significant in reducing AIS to practice. The potential exists for exposure of plant workers or offsite personnel to radioactive material or process chemical during normal or accident conditions. Some AIS processes make use of strong magnetic or electromagnetic fields and lasers, and methods are required to monitor the levels of these radiations. The AIS processes will routinely generate chemical and radioactive wastes. Additional wastes may be generated during plant decontamination and decommissioning. All of these wastes must be managed to meet Federal and state requirements. Finally, based on preliminary designs, some of the AIS processes may require significant, relative to US and world supply, quantities of a coating material.

  17. Phosphazene membranes for gas separations

    DOEpatents

    Stewart, Frederick F.; Harrup, Mason K.; Orme, Christopher J.; Luther, Thomas A.

    2006-07-11

    A polyphosphazene having a glass transition temperature ("T.sub.g") of approximately -20.degree. C. or less. The polyphosphazene has at least one pendant group attached to a backbone of the polyphosphazene, wherein the pendant group has no halogen atoms. In addition, no aromatic groups are attached to an oxygen atom that is bound to a phosphorus atom of the backbone. The polyphosphazene may have a T.sub.g ranging from approximately -100.degree. C. to approximately -20.degree. C. The polyphosphazene may be selected from the group consisting of poly[bis-3-phenyl-1-propoxy)phosphazene], poly[bis-(2-phenyl-1-ethoxy)phosphazene], poly[bis-(dodecanoxypolyethoxy)-phosphazene], and poly[bis-(2-(2-(2-.omega.-undecylenyloxyethoxy)ethoxy)ethoxy)phosphazene]- . The polyphosphazene may be used in a separation membrane to selectively separate individual gases from a gas mixture, such as to separate polar gases from nonpolar gases in the gas mixture.

  18. Sensor systems for precise location of depleted uranium in soil and for enhancing the recovery of both zero valence and uranium oxides

    SciTech Connect

    Etheridge, J.A.; Monts, D.L.; Su, Y.; Waggoner, C.A. [Mississippi State Univ., Institute for Clean Energy Technology (ICET), Starkville, MS (United States)

    2007-07-01

    Depleted uranium (DU) has been the primary material used for the past two decades by the US military in armor piercing rounds. Domestic firing ranges that have been used for DU training purposes are located around the country and vary with regard to soil type, depth of vadose zone, and extent of contamination with other types of projectiles. A project is underway to develop a set of sensor systems to locate expended DU rounds and to process soil and debris to recover the material. Reactivity of zero valence DU material, even in dry sandy soils, results in rapid oxidation and diffusion of uranium minerals within the soil column. Detection techniques must be robust for both metallic and uranyl species. Radiological sensor techniques including both gamma spectroscopy and prompt gamma neutron analysis are being used in conjunction with electromagnetic imaging to locate the DU for excavation. Detection limits for both zero valence DU (ZVDU) and oxidized material will be discussed. Applicability of active and passive optical methods, such as spectral imaging and fluorescence spectroscopy, will be discussed as aids for achieving clean soil margins while excavating DU materials. Instrumentation selection for controlling processing equipment used to separate ZVDU and uranyl species from contaminated soil and debris will also be discussed. Preliminary findings for use of sodium iodide detectors and multichannel analyzer software are discussed for locating 25 and 105 mm DU penetrators. Optimum detector height of 15 cm (six inches) and detection depths up to 15 cm are discussed. A comparison of detector response of the Geonics EM61 MKII electromagnetic induction unit for DU and ferrous materials is reported. Difficulty of locating small DU penetrators using the one meter detection coil and differences in detector response for target orientation relative to the detection coil are reported. (authors)

  19. The Core: Uranium Institute

    NSDL National Science Digital Library

    The Uranium Institute (UI) is an international organization comprised of members who are involved in all "stages of the production of nuclear generated electricity" in the hopes of promoting the use of nuclear energy to supply energy demands, while minimizing environmental risks. The goals of the Institute are to monitor the outlook for the world's nuclear fuel markets, provide a forum between the nuclear fuel industry and the international organizations concerned with environmental issues as well as energy policy, and to make the public gain a general understanding of the nuclear fuel cycle. Sections are divided into three categories: Features, the UI, and the Industry. Although the site is somewhat news-oriented, it informs users about industries involved with nuclear-generated electricity and how they manage radioactive waste.

  20. Experimental Plan: Uranium Stabilization Through Polyphosphate Injection 300 Area Uranium Plume Treatability Demonstration Project

    SciTech Connect

    Wellman, Dawn M.; Fruchter, Jonathan S.; Vermeul, Vince R.

    2006-09-20

    This Test Plan describes a laboratory-testing program to be performed at Pacific Northwest National Laboratory (PNNL) in support of the 300-FF-5 Feasibility Study (FS). The objective of the proposed treatability test is to evaluate the efficacy of using polyphosphate injections to treat uranium contaminated groundwater in situ. This study will be used to: (1) Develop implementation cost estimates; (2) Identify implementation challenges; and (3) Investigate the technology's ability to meet remedial objectives These activities will be conducted in parallel with a limited field investigation, which is currently underway to more accurately define the vertical extent of uranium in the vadose zone, and in the capillary fringe zone laterally throughout the plume. The treatability test will establish the viability of the method and, along with characterization data from the limited field investigation, will provide the means for determining how best to implement the technology in the field. By conducting the treatability work in parallel with the ongoing Limited Field Investigation, the resulting Feasibility Study (FS) will provide proven, site-specific information for evaluating polyphosphate addition and selecting a suitable remediation strategy for the uranium plume within the FS time frame at an overall cost savings.

  1. Microbial Populations Stimulated for Hexavalent Uranium Reduction in Uranium Mine Sediment

    PubMed Central

    Suzuki, Yohey; Kelly, Shelly D.; Kemner, Kenneth M.; Banfield, Jillian F.

    2003-01-01

    Uranium-contaminated sediment and water collected from an inactive uranium mine were incubated anaerobically with organic substrates. Stimulated microbial populations removed U almost entirely from solution within 1 month. X-ray absorption near-edge structure analysis showed that U(VI) was reduced to U(IV) during the incubation. Observations by transmission electron microscopy, selected area diffraction pattern analysis, and energy-dispersive X-ray spectroscopic analysis showed two distinct types of prokaryotic cells that precipitated only a U(IV) mineral uraninite (UO2) or both uraninite and metal sulfides. Prokaryotic cells associated with uraninite and metal sulfides were inferred to be sulfate-reducing bacteria. Phylogenetic analysis of 16S ribosomal DNA obtained from the original and incubated sediments revealed that microbial populations were changed from microaerophilic Proteobacteria to anaerobic low-G+C gram-positive sporeforming bacteria by the incubation. Forty-two out of 94 clones from the incubated sediment were related to sulfate-reducing Desulfosporosinus spp., and 23 were related to fermentative Clostridium spp. The results suggest that, if in situ bioremediation were attempted in the uranium mine ponds, Desulfosporosinus spp. would be a major contributor to U(VI) and sulfate reduction and Clostridium spp. to U(VI) reduction. PMID:12620814

  2. Method and apparatus for storing hydrogen isotopes. [stored as uranium hydride in a block of copper

    DOEpatents

    McMullen, J.W.; Wheeler, M.G.; Cullingford, H.S.; Sherman, R.H.

    1982-08-10

    An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas is stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forms at a significantly lower temperature).

  3. Uranium Adsorption on Ion-Exchange Resins - Batch Testing

    SciTech Connect

    Mattigod, Shas V.; Golovich, Elizabeth C.; Wellman, Dawn M.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    The uranium adsorption performance of five resins (Dowex 1, Dowex 21K 16-30 [fresh], Dowex 21K 16-30 [regenerated], Purofine PFA600/4740, and ResinTech SIR-1200) were tested using unspiked, nitrate-spiked, and nitrate-spiked/pH adjusted source water from well 299-W19-36. These batch tests were conducted in support of a resin selection process in which the best resin to use for uranium treatment in the 200-West Area groundwater pump-and-treat system will be identified. The results from these tests are as follows: • The data from the high-nitrate (1331 mg/L) tests indicated that Dowex 1, Dowex 21K 16-30 (fresh), Purofine PFA600/4740, and ResinTech SIR-1200 all adsorbed uranium similarly well with Kd values ranging from ~15,000 to 95,000 ml/g. All four resins would be considered suitable for use in the treatment system based on uranium adsorption characteristics. • Lowering the pH of the high nitrate test conditions from 8.2 to 7.5 did not significantly change the uranium adsorption isotherms for the four tested resins. The Kd values for these four resins under high nitrate (1338 mg/L), lower pH (7.5) ranged from ~15,000 to 80,000 ml/g. • Higher nitrate concentrations greatly reduced the uranium adsorption on all four resins. Tests conducted with unspiked (no amendments; nitrate at 337 mg/L and pH at 8.2) source water yielded Kd values for Dowex 1, Dowex 21K 16-30 (fresh), Purofine PFA600/4740, and ResinTech SIR-1200 resins ranging from ~800,000 to >3,000,000 ml/g. These values are about two orders of magnitude higher than the Kd values noted from tests conducted using amended source water. • Compared to the fresh resin, the regenerated Dowex 21K 16-30 resin exhibited significantly lower uranium-adsorption performance under all test conditions. The calculated Kd values for the regenerated resin were typically an order of magnitude lower than the values calculated for the fresh resin. • Additional testing using laboratory columns is recommended to better resolve differences between the adsorption abilities of the resins and to develop estimates of uranium loading on the resins. By determining the quantity of uranium that each resin can adsorb and the time required to reach various levels of loading, resin lifetime in the treatment system can be estimated.

  4. SULFUR HEXAFLUORIDE TREATMENT OF USED NUCLEAR FUEL TO ENHANCE SEPARATIONS

    SciTech Connect

    Gray, J.; Torres, R.; Korinko, P.; Martinez-Rodriguez, M.; Becnel, J.; Garcia-Diaz, B.; Adams, T.

    2012-09-25

    Reactive Gas Recycling (RGR) technology development has been initiated at Savannah River National Laboratory (SRNL), with a stretch-goal to develop a fully dry recycling technology for Used Nuclear Fuel (UNF). This approach is attractive due to the potential of targeted gas-phase treatment steps to reduce footprint and secondary waste volumes associated with separations relying primarily on traditional technologies, so long as the fluorinators employed in the reaction are recycled for use in the reactors or are optimized for conversion of fluorinator reactant. The developed fluorination via SF{sub 6}, similar to the case for other fluorinators such as NF{sub 3}, can be used to address multiple fuel forms and downstream cycles including continued processing for LWR via fluorination or incorporation into a aqueous process (e.g. modified FLUOREX) or for subsequent pyro treatment to be used in advanced gas reactor designs such metal- or gas-cooled reactors. This report details the most recent experimental results on the reaction of SF{sub 6} with various fission product surrogate materials in the form of oxides and metals, including uranium oxides using a high-temperature DTA apparatus capable of temperatures in excess of 1000{deg}C . The experimental results indicate that the majority of the fission products form stable solid fluorides and sulfides, while a subset of the fission products form volatile fluorides such as molybdenum fluoride and niobium fluoride, as predicted thermodynamically. Additional kinetic analysis has been performed on additional fission products. A key result is the verification that SF{sub 6} requires high temperatures for direct fluorination and subsequent volatilization of uranium oxides to UF{sub 6}, and thus is well positioned as a head-end treatment for other separations technologies, such as the volatilization of uranium oxide by NF{sub 3} as reported by colleagues at PNNL, advanced pyrochemical separations or traditional full recycle approaches. Based on current results of the research at SRNL on SF{sub 6} fluoride volatility for UNF separations, SF{sub 6} treatment renders all anticipated volatile fluorides studied to be volatile, and all non-volatile fluorides studied to be non-volatile, with the notable exception of uranium oxides. This offers an excellent opportunity to use this as a head-end separations treatment process because: 1. SF{sub 6} can be used to remove volatile fluorides from a UNF matrix while leaving behind uranium oxides. Therefore an agent such as NF{sub 3} should be able to very cleanly separate a pure UF{sub 6} stream, leaving compounds in the bottoms such as PuF{sub 4}, SrF{sub 2} and CsF after the UNF matrix has been pre-treated with SF{sub 6}. 2. Due to the fact that the uranium oxide is not separated in the volatilization step upon direct contact with SF{sub 6} at moderately high temperatures (? 1000{deg}C), this fluoride approach may be wellsuited for head-end processing for Gen IV reactor designs where the LWR is treated as a fuel stock, and it is not desired to separate the uranium from plutonium, but it is desired to separate many of the volatile fission products. 3. It is likely that removal of the volatile fission products from the uranium oxide should simplify both traditional and next generation pyroprocessing techniques. 4. SF{sub 6} treatment to remove volatile fission products, with or without treatment with additional fluorinators, could be used to simplify the separations of traditional aqueous processes in similar fashion to the FLUOREX process. Further research should be conducted to determine the separations efficiency of a combined SF{sub 6}/NF{sub 3} separations approach which could be used as a stand-alone separations technology or a head-end process.

  5. Isotopic analysis of uranium using glow discharge optogalvanic spectroscopy and diode lasers

    Microsoft Academic Search

    C. M. Barshick; R. W. Shaw; J. P. Young; J. M. Ramsey

    1994-01-01

    A hollow cathode glow discharge has been coupled with tunable lasers for isotopically selective excitation of gaseous uranium atoms produced by cathodic sputtering. A CW argon ion laser-pumped titanium:sapphire ring laser and a semiconductor diode laser were employed. Optogalvanic detection of the discharge atom population allowed identification of [sup 235]U at depleted, natural, and enriched abundances in uranium metal and

  6. Laser induced phosphorescence uranium analysis

    DOEpatents

    Bushaw, Bruce A. (Kennewick, WA)

    1986-01-01

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  7. Laser induced phosphorescence uranium analysis

    DOEpatents

    Bushaw, B.A.

    1983-06-10

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  8. Modified sodium diuranate process for the recovery of uranium from uranium hexafluoride transport cylinder wash solution

    NASA Astrophysics Data System (ADS)

    Meredith, Austin Dean

    Uranium hexafluoride (UF6) containment cylinders must be emptied and washed every five years in order to undergo recertification, according to ANSI standards. During the emptying of the UF6 from the cylinders, a thin residue, or heel, of UF6 is left behind. This heel must be removed in order for recertification to take place. To remove it, the inside of the containment cylinder is washed with acid and the resulting solution generally contains three or four kilograms of uranium. Thus, before the liquid solution can be disposed of, the uranium must be separated. A modified sodium diuranate (SDU) uranium recovery process was studied to support development of a commercial process. This process was sought to ensure complete uranium recovery, at high purity, in order that it might be reused in the nuclear fuel cycle. An experimental procedure was designed and carried out in order to verify the effectiveness of the commercial process in a laboratory setting. The experiments involved a small quantity of dried UO2F2 powder that was dosed with 3wt% FeF3 and was dissolved in water to simulate the cylinder wash solution. Each experiment series started with a measured amount of this powder mixture which was dissolved in enough water to make a solution containing about 120 gmU/liter. The experiments involved validating the modified SDU extraction process. A potassium diuranate (KDU) process was also attempted. Very little information exists regarding such a process, so the task was undertaken to evaluate its efficacy and determine whether a potassium process yields any significant differences or advantages as compared to a sodium process. However, the KDU process ultimately proved ineffective and was abandoned. Each of the experiments was organized into a series of procedures that started with the UO2F2 powder being dissolved in water, and proceeded through the steps needed to first convert the uranium to a diuranate precipitate, then to a carbonate complex solution, and finally to a uranyl peroxide (UO4) precipitate product. Evaluation of operating technique, uranium recovery efficiency, and final product purity were part of each experiment. Evaluation of a technique for removing fluoride from the diuranate precipitation byproduct filtrate using granular calcite was also included at the end of the uranium recovery testing. It was observed that precipitation of sodium diuranate (SDU) was very nearly complete at a pH of 11-12, using room temperature conditions. Uranium residuals in the filtrate ranged from 3.6 - 19.6 ppm, meaning almost complete precipitation as SDU. It was postulated and then verified that a tailing reaction occurs in the SDU precipitation, which necessitates a digestion period of about 2 hours to complete the precipitation. Further, it was shown, during this phase of the process, that a partial precipitation step at pH 5.5 did not adequately separate iron contamination due to an overlap of uranium and iron precipitations at that condition. Carbonate extraction of the SDU required an extended (3-4 hours) digestion at 40°C and pH 7-8 to complete, with sodium bicarbonate found to be the preferred extractant. The carbonate extraction was also proven to successfully separate the iron contamination from the uranium. Potassium-based chemistry did produce a potassium diuranate (KDU) analogue of SDU, but the subsequent carbonate extraction using either potassium bicarbonate or potassium carbonate proved to be too difficult and was incomplete. The potassium testing was terminated at this step. The uranyl peroxide precipitation was found to operate best at pH 3.5 - 4.0, at room temperature, and required an expected, extended digestion period of 8 -10 hours. The reaction was nearly complete at those conditions, with a filtrate residual ranging from 2.4 to 36.8 ppmU. The uranyl peroxide itself was very pure, with impurity averages at a very low 0.8 ppmNa and 0.004 ppmFe. ASTM maximum levels are 20 ppmNa and 150 ppmFe. Fluoride removal from the SDU precipitation filtrate required multiple passes of the solution through a calcite

  9. Challenges Associated with Apatite Remediation of Uranium in the 300 Area Aquifer

    SciTech Connect

    Wellman, Dawn M.; Fruchter, Jonathan S.; Vermeul, Vincent R.; Williams, Mark D.

    2008-05-01

    Sequestration of uranium as insoluble phosphate phases appears to be a promising alternative for treating the uranium-contaminated groundwater at the Hanford 300 Area. The proposed approach involves both the direct formation of autunite by the application of a polyphosphate mixture, as well as the formation of apatite in the aquifer as a continuing source of phosphate for long-term treatment of uranium. After a series of bench-scale tests, a field treatability test was conducted in a well at the 300 Area. The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. The results indicated that while the direct formation of autunite appears to have been successful, the outcome of the apatite formation of the test was more limited. Two separate overarching issues impact the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. This paper summarizes these issues.

  10. Numerical Analysis of a Subsurface Uranium Pollution Problem

    NASA Astrophysics Data System (ADS)

    van Genuchten, M.; Pontedeiro, E.; Batalha, M.; Bezerra, C. R.; Su, J.

    2012-12-01

    An experimental and numerical analysis is provided of the subsurface transport of a uranium contaminant plume released from a uranium mining site in Brazil. Data from several monitoring wells suggest significant preferential transport through both a 5-m thick vadose zone below uranium holding ponds at the site, and into and through granular and fissured aquifers below and downgradient from the site. The data were analyzed in terms of a dual-porosity numerical model for variably-saturated water flow and contaminant transport. The flow formulation was still based on the standard Richards equation, but using composite unsaturated hydraulic conductivity functions to account for the separate effects of the fracture and matrix domains, while uranium transport was simulated using a full dual-porosity formulation. Special focus was on the mass transfer coefficient governing solute exchange between the fracture and matrix regions. An important parameter for systems with strong sorption (large retardation factors) is also the relative amount of sorption taking place in the matrix domain away from the main flow paths. Our presentation serves to honor the tremendous contributions over the years by Paul Witherspoon to hydrogeology and related earth sciences, particularly in the area of nuclear waste disposal.

  11. Continuous Operation Test at Engineering Scale Uranium Crystallizer

    NASA Astrophysics Data System (ADS)

    Washiya, Tadahiro; Tayama, Toshimitsu; Nakamura, Kazuhito; Yano, Kimihiko; Shibata, Atsuhiro; Nomura, Kazunori; Chikazawa, Takahiro; Nagata, Masanobu; Kikuchi, Toshiaki

    Uranium crystallization based on solubility difference is one of the remarkable technologies which can provide simple reprocessing process to separate uranium in nitric acid solution since the process is mainly controlled by temperature and concentration of solute ions. Japan Atomic Energy Agency (JAEA) and Mitsubishi Materials Corporation (MMC) are developing the crystallization process for elemental technology of FBR fuel reprocessing. [1-3] The uranium (U) crystallization process is a key technology for New Extraction System for TRU Recovery (NEXT) process that was evaluated as the most promising process for future FBR reprocessing. [4-6] We had developed an innovative crystallizer and carried out several fundamental investigations. On the basis of the results, we fabricated an engineering-scale crystallizer and have carried out continuous operation test to investigate the stability of the equipment at steady and non-steady state conditions by using depleted uranium. As for simulating typical failure events in the crystallizer, crystal accumulation and crystal blockage were induced intentionally, and monitoring method and resuming procedure were evaluated in this work. As the test results, no significant phenomenon was observed in the steady state test. And in the non-steady state test, process fluctuation could be detected by monitoring of screw torque and liquid level in the crystallizer, and all failure events are proven to be recovered by appropriate resumed procedures.

  12. UNIT OPERATION Separator, 3 phase separator, tank.

    E-print Network

    Hong, Deog Ki

    , , , input . hold-up . heat input out put . multi feed liquid volumeUNIT OPERATION 1. TANK Separator, 3 phase separator, tank. inlet outlet connection define gas volume . . valve, control system . column, reactor . 2. ROATING

  13. Volumetric determination of uranium titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, J.S.; Skinner, D.L.; Rader, L.F., Jr.

    1957-01-01

    Need for a more rapid volumetric method for the routine determination of uranium in uranium-rich materials has led to the development of a method that uses titanous sulfate as a reductant before oxidimetric titration. Separation of the hydrogen sulfide group is not necessary. Interfering elements precipitated by cupferron are removed by automatic filtrations made simultaneously rather than by the longer chloroform extraction method. Uranium is reduced from VI to IV by addition of an excess of titanous sulfate solution, cupric ion serving as an indicator by forming red metallic copper when reduction is complete. The copper is reoxidized by addition of mercuric perchlorate. The reduced uranium is then determined by addition of excess ferric sulfate and titration with ceric sulfate. The method has proved to be rapid, accurate, and economical.

  14. Estimation of Eu(3+) in bulk uranium by ligand sensitized fluorescence in dimethyl sulphoxide.

    PubMed

    Maji, S; Kumar, Satendra; Sankaran, K

    2014-12-10

    Ligand sensitized fluorescence of europium ion using thenoyltrifluoroacetone (TTA) as a sensitizing ligand and dimethyl sulphoxide (DMSO) as a solvent is studied for the first time. TTA ligand enhances the fluorescence of Eu(3+) by a factor of 40000 in DMSO. Linearity is obtained for a concentration range of 0.076-7.6ng/mL of Eu(3+) with a detection limit of 7.6pg/mL. The quenching of Eu(3+)-TTA fluorescence by uranium matrix was studied in different solvents and found to be less in DMSO. Consequently, estimation of Eu(3+) in a large excess of uranium becomes a possibility without the need to separate uranium from the solution, which has been demonstrated in this paper. Satisfactory results are obtained when Eu(3+) is present at a concentration of 0.6?g/g in uranium. PMID:24950382

  15. Estimation of Eu3+ in bulk uranium by ligand sensitized fluorescence in dimethyl sulphoxide

    NASA Astrophysics Data System (ADS)

    Maji, S.; Kumar, Satendra; Sankaran, K.

    2014-12-01

    Ligand sensitized fluorescence of europium ion using thenoyltrifluoroacetone (TTA) as a sensitizing ligand and dimethyl sulphoxide (DMSO) as a solvent is studied for the first time. TTA ligand enhances the fluorescence of Eu3+ by a factor of 40000 in DMSO. Linearity is obtained for a concentration range of 0.076-7.6 ng/mL of Eu3+ with a detection limit of 7.6 pg/mL. The quenching of Eu3+-TTA fluorescence by uranium matrix was studied in different solvents and found to be less in DMSO. Consequently, estimation of Eu3+ in a large excess of uranium becomes a possibility without the need to separate uranium from the solution, which has been demonstrated in this paper. Satisfactory results are obtained when Eu3+ is present at a concentration of 0.6 ?g/g in uranium.

  16. Conformational analysis investigation into the influence of nano-porosity of ultra-permeable ultra-selective polyimides on its diffusivity as potential membranes for use in the "green" separation of natural gases

    NASA Astrophysics Data System (ADS)

    Madkour, Tarek M.

    2013-08-01

    Nano-porous polymers of intrinsic microporosity, PIM, have exhibited excellent permeability and selectivity characteristics that could be utilized in an environmentally friendly gas separation process. A full understanding of the mechanism through which these membranes effectively and selectively allow for the permeation of specific gases will lead to further development of these membranes. Three factors obviously influenced the conformational behavior of these polymers, which are the presence of electronegative atoms, the presence of non-linearity in the polymeric backbones (backbone kinks) and the presence of bulky side groups on the polymeric chains. The dipole moment increased sharply with the presence of backbone kinks more than any other factor. Replacing the fluorine atoms with bulky alkyl groups didn't influence the dipole moment greatly indicating that the size of the side chains had much less dramatic influence on the dipole moment than having a bent backbone. Similarly, the presence of the backbone kinks in the polymeric chains influenced the polymeric chains to assume less extended configuration causing the torsional angles around the interconnecting bonds unable to cross the high potential energy barriers. The presence of the bulky side groups also caused the energy barriers of the cis-configurations to increase dramatically, which prevented the polymeric segments from experiencing full rotation about the connecting bonds. For these polymers, it was clear that the fully extended configurations are the preferred configurations in the absence of strong electronegative atoms, backbones kinks or bulky side groups. The addition of any of these factors to the polymeric structures resulted in the polymeric chains being forced to assume less extended configurations. Rather interestingly, the length or bulkiness of the side groups didn't affect the end-to-end distance distribution to a great deal since the presence of quite large bulky side chain such as the pentyl group has caused the polymeric chains to revert back to the fully extended configurations possibly due to the quite high potential energy barriers that the chains have to cross to reach the less extended configurational states.

  17. Process for alloying uranium and niobium

    SciTech Connect

    Holcombe, C.E.; Northcutt, W.G.; Masters, D.R.; Chapman, L.R.

    1990-12-31

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uranium sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  18. Operating and life-cycle costs for uranium-contaminated soil treatment technologies

    SciTech Connect

    Douthat, D.M.; Armstrong, A.Q. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.; Stewart, R.N. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-09-01

    The development of a nuclear industry in the US required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the US Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To avoid disposal of these soils in low-level radioactive waste burial sites, increasing emphasis has been placed on the remediating soils contaminated with uranium and other radionuclides. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the DOE Office of Technology Development (OTD) evaluates and compares the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium-contaminated soils. Each technology must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives.

  19. Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 3, Groundwater hydrology report

    SciTech Connect

    Not Available

    1993-07-01

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites (EPA, 1987). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 Public Law (PL) 95-604 (PL 95-604), the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that for Slick Rock, this assessment shall include hydrogeologic site characterization for two separate uranium processing sites, the Union Carbide (UC) site and the North Continent (NC) site, and for the proposed Burro Canyon disposal site.

  20. Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications

    E-print Network

    Helmreich, Grant

    2012-02-14

    The sintering behavior of uranium and uranium-zirconium alloys in the alpha phase were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding...

  1. Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications 

    E-print Network

    Helmreich, Grant

    2012-02-14

    The sintering behavior of uranium and uranium-zirconium alloys in the alpha phase were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding...

  2. Study of the oxidation state of arsenic and uranium in individual particles from uranium mine tailings, Hungary

    SciTech Connect

    Alsecz, A.; Osan, J.; Palfalvi, J.; Torok, Sz. [Hungarian Academy of Science, KFKI, Atomic Energy Research Institute, P. O. Box 49, H-1525 Budapest (Hungary); Sajo, I. [Chemical Research Centre of the Hungarian Academy of Sciences, Pusztaszeri ut 59-67, H-1025 Budapest (Hungary); Mathe, Z. [Mecsek Ore Environment, H-7614 Pecs, P.O. Box 121 (Hungary); Simon, R. [Forschungsgruppe Synchrotronstrahlung, Research Centre, D-76021 Karlshruhe (Germany); Falkenberg, G. [Hamburger Synchrotronstralungslabor (HASYLAB) at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg (Germany)

    2007-07-01

    Uranium ore mining and milling have been terminated in the Mecsek Mountains (southwest Hungary) in 1997. Mine tailings ponds are located between two important water bases, which are resources of the drinking water of the city of Pecs and the neighbouring villages. The average U concentration of the tailings material is 71.73 {mu}g/g, but it is inhomogeneous. Some microscopic particles contain orders of magnitude more U than the rest of the tailings material. Other potentially toxic elements are As and Pb of which chemical state is important to estimate mobility, because in mobile form they can risk the water basis and the public health. Individual U-rich particles were selected with solid state nuclear track detector (SSNTD) and after localisation the particles were investigated by synchrotron radiation based microanalytical techniques. The distribution of elements over the particles was studied by micro beam X-ray fluorescence ({mu}-XRF) and the oxidation state of uranium and arsenic was determined by micro X-ray absorption near edge structure ({mu}-XANES) spectroscopy. Some of the measured U-rich particles were chosen for studying the heterogeneity with {mu}-XRF tomography. Arsenic was present mainly in As(V) and uranium in U(VI) form in the original uranium ore particles, but in the mine tailings samples uranium was present mainly in the less mobile U(IV) form. Correlation was found between the oxidation state of As and U in the same analyzed particles. These results suggest that dissolution of uranium is not expected in short term period. (authors)

  3. Advanced isotope separation

    SciTech Connect

    Not Available

    1982-05-04

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

  4. The end of cheap uranium.

    PubMed

    Dittmar, Michael

    2013-09-01

    Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10±2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58±4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54±5 ktons by 2025 and, with the decline steepening, to at most 41±5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse. PMID:23683936

  5. Advanced uranium enrichment technologies

    SciTech Connect

    Merriman, R.

    1983-03-10

    The Advanced Gas Centrifuge and Atomic Vapor Laser Isotope Separation methods are described. The status and potential of the technologies are summarized, the programs outlined, and the economic incentives are noted. How the advanced technologies, once demonstrated, might be deployed so that SWV costs in the 1990s can be significantly reduced is described.

  6. Offshore oily-water separation

    SciTech Connect

    Shavel, E.S. Jr.; Yarbrough, H.F.

    1983-01-01

    Various oily-water separation devices were evaluated for deoiling drilling-rig deck drainage. A loose-media coalescer selected for the application averaged 92% removal of free oil over a 1-year period of operation when it was fitted for solids removal and media cleaning. Dispersed-air flotation cells were found to remove the same amount of oil from water that could be removed by filtration with a filter retaining particles with diameters greater than 8 microns. Filtration is a simple and accurate method for determining the oil-removal efficiency that can be expected from a flotation separator for a particular application.

  7. Uranium reference materials

    SciTech Connect

    Donivan, S.; Chessmore, R.

    1987-07-01

    The Technical Measurements Center has prepared uranium mill tailings reference materials for use by remedial action contractors and cognizant federal and state agencies. Four materials were prepared with varying concentrations of radionuclides, using three tailings materials and a river-bottom soil diluent. All materials were ground, dried, and blended thoroughly to ensure homogeneity. The analyses on which the recommended values for nuclides in the reference materials are based were performed, using independent methods, by the UNC Geotech (UNC) Chemistry Laboratory, Grand Junction, Colorado, and by C.W. Sill (Sill), Idaho National Engineering Laboratory, Idaho Falls, Idaho. Several statistical tests were performed on the analytical data to characterize the reference materials. Results of these tests reveal that the four reference materials are homogeneous and that no large systematic bias exists between the analytical methods used by Sill and those used by TMC. The average values for radionuclides of the two data sets, representing an unbiased estimate, were used as the recommended values for concentrations of nuclides in the reference materials. The recommended concentrations of radionuclides in the four reference materials are provided. Use of these reference materials will aid in providing uniform standardization among measurements made by remedial action contractors. 11 refs., 9 tabs.

  8. Uranium geochemistry in soil and groundwater at the F and H seepage basins

    SciTech Connect

    Serkiz, S.M.; Johnson, W.H.

    1994-09-01

    For 33 years, low activity liquid wastes from the chemical separation areas at the U.S. Department of Energy`s Savannah River Site were disposed of in unlined seepage basins. Soil and associated pore water samples of widely varying groundwater chemistries and contaminant concentrations were collected from the region downgradient of these basins using cone penetrometer technology. Analysis of samples using inductively coupled plasma - mass spectrometry has allowed the investigation of uranium partitioning between the aqueous phase and soil surfaces at this site. The distribution of uranium was examined with respect to the solution and soil chemistry (e.g., pH, redox potential, cation and contaminant concentration) and aqueous-phase chemical speciation modeling. The uranium soil source term at the F- and H-Area Seepage Basins (FHSB) is much smaller than has been used in previous modeling efforts. This should result in a much shorter remediation time and a greater effectiveness of a pump-and-treat design than previously predicted. Distribution coefficients at the (FHSB) were found to vary between 1.2 to 34,000 1 kg{sup {minus}1} for uranium. Differences in sorption of these elements can be explained primarily by changes in aqueous pH and the associated change in soil surface charge. Sorption models were fit directly to sorption isotherms from field samples. All models underestimated the fraction of uranium bound at low aqueous uranium concentrations. Linear models overestimated bound uranium at locations where the aqueous concentration was greater than 500 ppb. Mechanistic models provided a much better estimate of the bound uranium concentrations, especially at high aqueous concentrations. Since a large fraction of the uranium at the site is associated with the low-pH portion of the plume, consideration should be given to pumping water from the lowest pH portions of the plume in the F-Area.

  9. Uranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium(III)

    E-print Network

    Meyer, Karsten

    Uranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium-mail: kmeyer@ucsd.edu Abstract: The synthesis and spectroscopic characterization of the mononuclear uranium complex [((ArO)3tacn)UIII (NCCH3)] is reported. The uranium(III) complex reacts with organic azides

  10. Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China

    E-print Network

    Fayek, Mostafa

    Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern Available online 25 January 2005 Abstract We show evidence that the primary uranium minerals, uraninite-front uranium deposits, Xinjiang, northwestern China were biogenically precipitated and psuedomorphically

  11. L'URANIUM ET LES ARMES L'URANIUM APPAUVRI. Pierre Roussel*

    E-print Network

    Boyer, Edmond

    L'URANIUM ET LES ARMES À L'URANIUM APPAUVRI. Pierre Roussel* Institut de Physique Nucléaire, CNRS massivement dans la guerre du Golfe, des obus anti- chars ont été utilisés, avec des "charges d'uranium, avec une charge de 300 g d'uranium et tiré par des avions, l'autre de 120 mm de diamètre avec une

  12. Feasibility study of plutonium and uranium measurements in input dissolver solutions

    SciTech Connect

    Li, T.K. [Los Alamos National Lab., NM (United States); Kitagawa, O.; Kuno, Y.; Kurosawa, A. [Power Reactor & Nuclear Fuel Development Corp., Ibaraki-Ken (Japan)

    1995-10-01

    We are studying the isotope dilution gamma-ray spectrometry (IDGS) technique for the simultaneous measurements of concentrations and isotopic compositions for both plutonium and uranium in spent-fuel dissolver solutions at a reprocessing plant. Previous experiments have demonstrated that the IDGS technique can determine the elemental concentrations and isotopic compositions of plutonium in dissolver solutions. The chemical separation and recovery methods for just plutonium were ion-exchange techniques using anion exchange resin beads and filter papers. To keep both plutonium and uranium in the sample for simultaneous measurements, a new sample preparation method is being studied and developed: extraction chromatography. The technique uses U/TEVA{center_dot}Spec resin to separate fission products and recover both uranium and plutonium in the resin from dissolver solutions for measurements by high-resolution gamma-ray spectrometry.

  13. POTENTIAL TOXICITY OF URANIUM IN WATER

    EPA Science Inventory

    The nephrotoxic responses of mammalian species, including humans, to injected, inhaled, ingested, and topically applied uranium compounds have been thoroughly investigated. Because there appears to be on unequivocal reports of uranium-induced radiation effects in humans, it is ne...

  14. Reducing emissions from uranium dissolving

    SciTech Connect

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2} which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  15. Reducing emissions from uranium dissolving

    SciTech Connect

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO[sub x] emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO[sub x] fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO[sub x] emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO[sub 2] which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  16. Sandia's activities in uranium mill tailings remedial action

    SciTech Connect

    Neuhauser, S.

    1980-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978 requires that remedial action be taken at over 20 inactive uranium mill tailings sites in the United States. Standards promulgated by the EPA under this act are to be the operative standards for this activity. Proposed standards must still undergo internal review, public comment, and receive Nuclear Regulatory Commission concurrence before being finalized. Briefly reviewed, the standards deal separately with new disposal sites (Part A) and cleanup of soil and contaminated structures at existing locations (Part B). In several cases, the present sites are felt to be too close to human habitations or to be otherwise unacceptably located. These tailings will probably be relocated. New disposal sites for relocated tailings must satisfy certain standards. The salient features of these standards are summarized.

  17. Mechanisms of uranium interactions with hydroxyapatite: implications for groundwater remediation.

    PubMed

    Fuller, C C; Bargar, J R; Davis, J A; Piana, M J

    2002-01-15

    The speciation of U(VI) sorbed to synthetic hydroxyapatite was investigated using a combination of U LIII-edge XAS, synchrotron XRD, batch uptake measurements, and SEM-EDS. The mechanisms of U(VI) removal by apatite were determined in order to evaluate the feasibility of apatite-based in-situ permeable reactive barriers (PRBs). In batch U(VI) uptake experiments with synthetic hydroxyapatite (HA), near complete removal of dissolved uranium (>99.5%) to <0.05 microM was observed over a range of total U(VI) concentrations up to equimolar of the total P in the suspension. XRD and XAS analyses of U(VI)-reacted HA at sorbed concentrations < or = 4,700 ppm U(VI) suggested that uranium(VI) phosphate, hydroxide, and carbonate solids were not present at these concentrations. Fits to EXAFS spectra indicate the presence of Ca neighbors at 3.81 A. U-Ca separation, suggesting that U(VI) adsorbs to the HA surfaces as an inner-sphere complex. Uranium(VI) phosphate solid phases were not detected in HA with 4700 ppm sorbed U(VI) by backscatter SEM or EDS, in agreement with the surface complexation process. In contrast, U(VI) speciation in samples that exceeded 7000 ppm sorbed U(VI) included a crystalline uranium(VI) phosphate solid phase, identified as chernikovite by XRD. At these higher concentrations, a secondary, uranium(VI) phosphate solid was detected by SEM-EDS, consistent with chernikovite precipitation. Autunite formation occurred at total U:P molar ratios > or = 0.2. Our findings provide a basis for evaluating U(VI) sorption mechanisms by commercially available natural apatites for use in development of PRBs for groundwater U(VI) remediation. PMID:11827049

  18. Reduction of Hexavalent Uranium from Organic Complexes by Sulfate- and Iron-Reducing Bacteria

    PubMed Central

    Ganesh, R.; Robinson, K. G.; Reed, G. D.; Sayler, G. S.

    1997-01-01

    The influence of organic-hexavalent-uranium [U(VI)] complexation on U(VI) reduction by a sulfate-reducing bacterium (Desulfovibrio desulfuricans) and an iron-reducing bacterium (Shewanella alga) was evaluated. Four aliphatic ligands (acetate, malonate, oxalate, and citrate) and an aromatic ligand (tiron [4,5-dihydroxy-1,3-benzene disulfonic acid]) were used to study complexed-uranium bioavailability. The trends in uranium reduction varied with the nature and the amount of U(VI)-organic complex formed and the type of bacteria present. D. desulfuricans rapidly reduced uranium from a monodentate aliphatic (acetate) complex. However, reduction from multidentate aliphatic complexes (malonate, oxalate, and citrate) was slower. A decrease in the amount of organic-U(VI) complex in solution significantly increased the rate of reduction. S. alga reduced uranium more rapidly from multidentate aliphatic complexes than from monodentate aliphatic complexes. The rate of reduction decreased with a decrease in the amount of multidentate complexes present. Uranium from an aromatic (tiron) complex was readily available for reduction by D. desulfuricans, while an insignificant level of U(VI) from the tiron complex was reduced by S. alga. These results indicate that selection of bacteria for rapid uranium reduction will depend on the organic composition of waste streams. PMID:16535729

  19. Improved accountability method for measuring enriched uranium in H-Canyon dissolver solution at the Savannah River Site

    SciTech Connect

    Maxwell, S.L. III; Satkowski, J.; Mahannah, R.N.

    1992-01-01

    At the Savannah River Site (SRS), accountability measurement of enriched uranium dissolved in H-Canyon is performed using isotope dilution mass spectrometry (IDMS). In the IDMS analytical method, a known quantity of uranium{sup 233} is added to the sample solution containing enriched uranium and fission products. The resulting uranium mixture must first be purified using a separation technique in the shielded analytical( hot'') cells to lower radioactivity levels by removing fission products. Following this purification, the sample is analyzed by mass spectrometry to determine the total uranium content and isotopic abundance. The magnitude of the response of each uranium isotope in the sample solution and the response of the U{sup 233} spike is measured. By ratioing these responses, relative to the known quantity of the U{sup 233} spike, the uranium content can be determined. A hexane solvent extraction technique, used for years at SRS to remove fission products prior to the mass spectrometry analysis of uranium, has several problems. The hexone method is tedious, requires additional sample clean-up after the purified sample is removed from the shielded cells and requires the use of Resource Conservation and Recovery Act (RCRA)-listed hazardous materials (hexone and chromium compounds). A new high speed separation method that enables a rapid removal of fission products in a shielded cells environment has been developed by the SRS Central Laboratory to replace the hexone method. The new high speed column extraction chromatography technique employs applied vacuum and columns containing tri (2-ethyl-hexyl) phosphate (TEHP) solvent coated on a small particle inert support (SM-7 Bio Beads). The new separation is rapid, user friendly, eliminates the use of the RCA-listed hazardous chemicals and reduces the amount of solid waste generated by the separation method. 2 tabs. 4 figs.

  20. Improved accountability method for measuring enriched uranium in H-Canyon dissolver solution at the Savannah River Site

    SciTech Connect

    Maxwell, S.L. III; Satkowski, J.; Mahannah, R.N.

    1992-08-01

    At the Savannah River Site (SRS), accountability measurement of enriched uranium dissolved in H-Canyon is performed using isotope dilution mass spectrometry (IDMS). In the IDMS analytical method, a known quantity of uranium{sup 233} is added to the sample solution containing enriched uranium and fission products. The resulting uranium mixture must first be purified using a separation technique in the shielded analytical(``hot``) cells to lower radioactivity levels by removing fission products. Following this purification, the sample is analyzed by mass spectrometry to determine the total uranium content and isotopic abundance. The magnitude of the response of each uranium isotope in the sample solution and the response of the U{sup 233} spike is measured. By ratioing these responses, relative to the known quantity of the U{sup 233} spike, the uranium content can be determined. A hexane solvent extraction technique, used for years at SRS to remove fission products prior to the mass spectrometry analysis of uranium, has several problems. The hexone method is tedious, requires additional sample clean-up after the purified sample is removed from the shielded cells and requires the use of Resource Conservation and Recovery Act (RCRA)-listed hazardous materials (hexone and chromium compounds). A new high speed separation method that enables a rapid removal of fission products in a shielded cells environment has been developed by the SRS Central Laboratory to replace the hexone method. The new high speed column extraction chromatography technique employs applied vacuum and columns containing tri (2-ethyl-hexyl) phosphate (TEHP) solvent coated on a small particle inert support (SM-7 Bio Beads). The new separation is rapid, user friendly, eliminates the use of the RCA-listed hazardous chemicals and reduces the amount of solid waste generated by the separation method. 2 tabs. 4 figs.