Science.gov

Sample records for selective separation uranium

  1. Selection of a matrix for the recovery of uranium by wet high-intensity magnetic separation

    SciTech Connect

    Svoboda, J.

    1985-05-30

    The concentration, by wet high-intensity magnetic separation (WHIMS), of gold and uranium in materials resulting from the cyanidation of Witwatersrand ores was tested on an industrial scale on two South African gold mines, and the results are discussed in detail. The mechanical and metallurgical performance of the carousel magnetic separators was found to be satisfactory, but, for the large-scale application of WHIMS in the South African mining industry, a more cost-effective machine is required. It was decided that, in the present work, the information contained in several unpublished internal Mintek communications should be summarized and used as guidelines in the selection of matrices that would be suitable for the recovery of finely dispersed, weakly magnetic minerals.

  2. Amidoxime-grafted hydrothermal carbon microspheres for highly selective separation of uranium.

    PubMed

    Geng, Junxia; Ma, Lijian; Wang, Hang; Liu, Jun; Bai, Chiyao; Song, Qiang; Li, Juan; Hou, Min; Li, Shoujian

    2012-09-01

    A new amidoxime-functionalized carbonaceous sorbent has been successfully prepared using hydrothermal carbon microsphere as solid matrix and diaminomaleonitrile as precursor of amidoxime ligand. Effects of pH, sorbent dosage, contact time, temperature, initial U(VI) concentration and ionic strength on U(VI) sorption were investigated in detail through batch experiments. Sorption of U(VI) on the sorbent was pH-dependent. Sorption equilibrium was reached in 5 min. Distinctively, higher temperature was beneficial to the sorption of U(VI) in the range of 15-60 degrees C, high ionic strength up to 1 mol L(-1) NaNO3 had almost no effect on the sorption, and the maximum U(VI) sorption capacity of 466 mg g(-1) was observed under the conditions tested. The as-synthesized sorbent exhibited a high selectivity for U(VI) over other 12 competing ions coexisting in a simulated nuclear industrial effluent sample and the U(VI) sorption amount reached up to 1.09 mmol g(-1), accounting for about 52% of the total sorption amount. PMID:23035476

  3. Separation of uranium on polyurethane foam impregnated with trioctylphosphine oxide

    SciTech Connect

    Korkisch, J.; Steffan, I.

    1983-01-01

    A method is described for the quantitative separation of uranium from practically all other elements in 1M hydrochloric acid solution containing ascorbic acid. From such a solution uranium is retained selectively by a column containing open-cell polyurethane foam impregnated with tri-n-octylphosphine oxide (TOPO). The uranium together with TOPO is eluted with ethanol and then it is adsorbed on a column of Dowex 1 anion exchange resin from a HCl-organic solvent system. Uranium is eluted with 1M hydrochloric acid. 5 tables.

  4. Uranium Metal Analysis via Selective Dissolution

    SciTech Connect

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2008-09-10

    Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

  5. Three novel triazine-based materials with different O/S/N set of donor atoms: One-step preparation and comparison of their capability in selective separation of uranium.

    PubMed

    Bai, Chiyao; Zhang, Meicheng; Li, Bo; Tian, Yin; Zhang, Shuang; Zhao, Xiaosheng; Li, Yang; Wang, Lei; Ma, Lijian; Li, Shoujian

    2015-12-30

    Cyanuric chloride was chosen as a core skeleton which reacted with desired linker molecules, urea, thiourea and thiosemicarbazide, to prepare three novel functional covalent triazine-based frameworks, CCU (O-donor set), CCTU (S-donor set) and CCTS (S, N-donor set) respectively, designed for selective adsorption of U(VI). The products have high nitrogen concentration (>30wt%), regular structure, relatively high chemical and thermal stability. Adsorption behaviors of the products on U(VI) were examined by batch experiments. CCU and CCTU can extract U(VI) from simulated nuclear industrial effluent containing 12 co-existing cations with relatively high selectivity (54.4% and 54.2%, respectively). Especially, effects of donor atoms O/S on adsorption were investigated, and the outcomes indicate that the difference in coordinating ability between the donor atoms is weakened in large conjugated systems, and the related functional groups with originally very strong coordination abilities may not be the best choice for the application in selective adsorption of uranium and also other metals. The as-proposed approach can easily be expanded into design and preparation of new highly efficient adsorbents for selective separation and recovery of uranium through adjusting the structures, types and amounts of functional groups of adsorbents by choosing suitable linkers. PMID:26218304

  6. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    SciTech Connect

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

  7. Age determination of highly enriched uranium: separation and analysis of 231Pa.

    PubMed

    Morgenstern, A; Apostolidis, C; Mayer, K

    2002-11-01

    An analytical procedure has been developed for the age determination of highly enriched uranium samples exploiting the mother/daughter pair 235U/231Pa. Protactinium is separated from bulk uranium through highly selective sorption to silica gel and is subsequently quantified using alpha-spectrometry. The method has been validated using uranium standard reference materials of known ages. It affords decontamination factors exceeding 2.5 x 10(7), overall recoveries in the range of 80-85%, and a combined uncertainty below 5%. PMID:12433081

  8. Uranium isotope separation from 1941 to the present

    NASA Astrophysics Data System (ADS)

    Maier-Komor, Peter

    2010-02-01

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of 239Pu was included into the atomic bomb program. 235U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  9. Bio-/Photo-Chemical Separation and Recovery of Uranium

    SciTech Connect

    Francis,A.J.; Dodge, C.J.

    2008-03-12

    Citric acid forms bidentate, tridentate, binuclear or polynuclear species with transition metals and actinides. Biodegradation of metal citrate complexes is influenced by the type of complex formed with metal ions. While bidentate complexes are readily biodegraded, tridentate, binuclear and polynuclear species are recalcitrant. Likewise certain transition metals and actinides are photochemically active in the presence of organic acids. Although the uranyl citrate complex is not biodegraded, in the presence of visible light it undergoes photochemical oxidation/reduction reactions which result in the precipitation of uranium as UO{sub 3} {center_dot} H{sub 2}O. Consequently, we developed a process where uranium is extracted from contaminated soils and wastes by citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, whereas uranyl citrate which is recalcitrant remains in solution. Photochemical degradation of the uranium citrate complex resulted in the precipitation of uranium. Thus the toxic metals and uranium in mixed waste are recovered in separate fractions for recycling or for disposal. The use of naturally-occurring compounds and the combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in cost.

  10. Supercritical Fluid Extraction and Separation of Uranium from Other Actinides

    SciTech Connect

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2014-06-01

    This paper investigates the feasibility of separating uranium from other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of an extraction and counter current stripping technique, which would be a more efficient and environmentally benign technology for used nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U(VI), Np(VI), Pu(IV), and Am(III)) were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, the separation of uranium from plutonium in sc-CO2 modified with TBP was successful at nitric acid concentrations of less than 3 M in the presence of acetohydroxamic acid or oxalic acid, and the separation of uranium from neptunium was successful at nitric acid concentrations of less than 1 M in the presence of acetohydroxamic acid, oxalic acid, or sodium nitrite.

  11. Study of uranium isotope separation using CO 2 laser and CO laser

    NASA Astrophysics Data System (ADS)

    Li, Yude; Zhang, Yunguang; Kuang, Yizhong; Liu, Weiming; Zhang, Xiouyun; Qiu, Yi; Xu, Yonggen; Chen, Mei; Liu, Jinglum

    2010-06-01

    First, the kinetic investigation of UF 6 + HCl reaction and the isotopic selectivity under CO laser irradiation is performed. On this investigation, the kinetics of UF 6 + HCl reaction by using an intracativity CO laser and CO 2 laser irradiation system, and the isotopic selectivity for this process are studied theoretically. It is found that under the resonant CO laser and CO 2 laser irradiations, the laser-catalyzed reaction rate can increase, and a good selectivity can be achieved. The uranium isotope separation factors ? calculated are about 2.44 ˜ 4.05 at laser intensity 50 ˜ 100 W cm -2 and temperature 235 K.

  12. Mesoporous Carbon Membranes for Selective Gas Separations

    SciTech Connect

    2009-04-01

    This factsheet describes a study whose focus is on translating a novel class of material developed at Oak Ridge National Laboratory—selfassembled mesoporous carbon—into robust, efficient membrane systems for selective industrial gas separations.

  13. Method of separating and recovering uranium and related cations from spent Purex-type systems

    DOEpatents

    Mailen, J.C.; Tallent, O.K.

    1987-02-25

    A process for separating uranium and related cations from a spent Purex-type solvent extraction system which contains degradation complexes of tributylphosphate wherein the system is subjected to an ion-exchange process prior to a sodium carbonate scrubbing step. A further embodiment comprises recovery of the separated uranium and related cations. 5 figs.

  14. Separation of uranium from nitric and hydrochloric acid solutions with extractant-coated magnetic microparticles.

    SciTech Connect

    Kaminski, M. D.; Nunez, L.; Chemical Engineering

    2000-01-01

    The magnetically assisted chemical separation (MACS) process utilizes selective magnetic microparticle composites to separate dissolved metals from solution. In this study, MACS particles were coated with neutral and acidic organophosphorus extractants,octyl(phenyl)-N,N-diisobutylcarbamoylmethyl phosphine oxide (CMPO), tributyl phosphate (TBP), trioctylphosphine oxide (TOPO), and bis(2-ethyl-hexyl)phosphoric acid (D{sub 2}EHPA or HDEHP) and were evaluated for the separation of uranyl ions from nitric- and hydrochloric-acid solutions. The results suggest that a synergistic interaction between the particle surface and solvent coating may explain why the particles display, in some cases, orders of magnitude of higher partitioning coefficients than are estimated from solvent-extraction measurements. Particles coated with TBP and those coated with a combination of TOPO and D{sub 2}EHPA displayed the most desirable characteristics for removing uranium from dilute acid environments typical of contaminated groundwater. Uranium separation from moderate to highly acidic waste streams typical of Department of Energy (DOE) nuclear wastes is best accomplished using particles coated with a combination of CMPO and TBP.

  15. Separation of uranium using microcapsule of Tri-N-octylphosphine oxide

    SciTech Connect

    Kamoshida, M.; Iwamoto, T.; Fukasawa, T.; Mimura, H.

    2007-07-01

    A tri-n-octylphosphine oxide (TOPO) microcapsule has been developed for separating uranium from sulfuric acid solutions that have been used to decontaminate uranium waste. The distribution coefficient of the uranium was about 100 ml/g for a sulfuric acid concentration of 0.1-1.0 mol/L. The separation factor for uranium from iron, a representative metal dissolved in waste solution, was about 1000. A 1 g of TOPO microcapsule can remove uranium from about 50 mL of waste solution. The spent microcapsule easily decomposed when heated to about 300- 500 deg. C completely decomposed when heated to 300 deg. C. This TOPO microcapsule is thus well suited for volume reduction of uranium-bearing waste. (authors)

  16. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Pruett, David J. (Knoxville, TN); McTaggart, Donald R. (Knoxville, TN)

    1984-01-01

    Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc.sup.+7 therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.

  17. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Pruett, D.J.; McTaggart, D.R.

    1983-08-31

    Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc/sup +7/ therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.

  18. Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining

    SciTech Connect

    S. D. Herrmann; S. X. Li

    2010-09-01

    A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl – 1 wt% Li2O at 650 °C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 °C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

  19. Surface selective membranes for carbon dioxide separation

    SciTech Connect

    Luebke, D.R.; Pennline, H.W.; Myers, C.R.

    2005-09-01

    In this study, hybrid membranes have been developed for the selective separation of CO2 from mixtures containing H2. Beginning with commercially available Pall alumina membrane tubes with nominal pore diameter of 5 nm, hybrids were produced by silation with a variety of functionalities designed to facilitate the selective adsorption of CO2 onto the pore surface. The goal is to produce a membrane which can harness the power of surface diffusion to give the selectivity of polymer membranes with the permeance of inorganic membranes.

  20. Evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(IV) and uranium(VI)

    PubMed Central

    2013-01-01

    Background Previously described methods to separate dissolved U(IV) from dissolved U(VI) under acidic anoxic conditions prior to laboratory analysis were ineffective with materials currently available commercially. Three strong anion exchange resins were examined for their efficiency in separating, recovering, and preserving both redox states during separation. Results Under oxic conditions, recovery of U(VI) from three exchange resins (Bio-Rad AG® 1x8 Poly-Prep® prefilled columns, Bio-Rad AG® 1x8 powder, and Dowex® 1x8 powder) ranged from 72% to 100% depending on the dosed mass, eluent volume, and resin selected. Dowex® 1x8 resin was the only resin found to provide 100% recovery of U(VI) with fewer than 5 bed volumes of eluent. Under anoxic conditions, all three resins oxidized U(IV) in aqueous solutions with relatively low U(IV) concentrations (<3x10-6 M). Resin-induced oxidation was observed visually using a leuco dye, safranin-o. Oxidants associated with the resin were irreversibly reduced by the addition of Ti(III). After anoxic resin pre-treatment, a series of U(IV)/U(VI) mixtures at micro-molar levels were prepared and separated using the Dowex® 1x8 resin with 100% recovery of both U(IV) and U(VI) with no resin-induced changes in oxidation state. Conclusions Currently available anion exchange resins with apparently identical physical properties were found to have significantly different recoveries for hexavalent uranium at micro-molar concentrations. A novel qualitative technique was developed to visually assess oxidative capacities of anion exchange resins under acidic anoxic conditions. A protocol was developed for pre-treatment and use of currently available anion exchange resins to achieve quantitative separation of U(IV) and U(VI) in aqueous solutions with low U(IV) concentrations. This method can be applied to future work to quantitatively assess dissolved U(IV) and U(VI) concentrations in both laboratory and field samples. PMID:23363052

  1. Ultratrace Uranium Fingerprinting with Isotope Selective Laser Ionization Spectrometry

    SciTech Connect

    Ziegler, Summer L.; Bushaw, Bruce A.

    2008-08-01

    Uranium isotope ratios can provide source information for tracking uranium contamination in a variety of fields, ranging from occupational bioassay to monitoring aftereffects of nuclear accidents. We describe the development of Isotope Selective Laser Ionization Spectrometry (ISLIS) for ultratrace measurement of the minor isotopes 234U, 235U, and 236U with respect to 238U. Optical isotopic selectivity in three-step excitation with single-mode continuous wave lasers is capable of measuring the minor isotopes at relative abundances below 1 ppm, and is not limited by isobaric interferences such as 235UH+ during measurement of 236U. This relative abundance limit approaches the threshold for measurement of uranium minor isotopes with conventional mass spectrometry, typically 10-7, but without mass spectrometric analysis of the laser-created ions. Uranyl nitrate standards from an international blind comparison were used to test analytical performance for different isotopic compositions and with quantities ranging from 11 ng to 10 µg total uranium. Isotopic ratio determination was demonstrated over a linear dynamic range of 7 orders of magnitude with a few percent relative precision and detection limits below 500 fg for the minor isotopes.

  2. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Friedman, H.A.

    1984-06-13

    A method for decontaminating uranium product from the Purex 5 process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO/sub 2//sup 2 +/) uranium and heptavalent technetium (TcO/sub 4/-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H/sub 2/C/sub 2/O/sub 4/), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.

  3. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Friedman, Horace A. (Oak Ridge, TN)

    1985-01-01

    A method for decontaminating uranium product from the Purex process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO.sub.2.sup.2+) uranium and heptavalent technetium (TcO.sub.4 -). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H.sub.2 C.sub.2 O.sub.4), and the Tc-oxalate complex is readily separated from the uranium by solvent extraction with 30 vol. % tributyl phosphate in n-dodecane.

  4. Selective Recovery of Enriched Uranium from Inorganic Wastes

    SciTech Connect

    Kimura, R. T.

    2003-02-26

    Uranium as U(IV) and U(VI) can be selectively recovered from liquids and sludge containing metal precipitates, inorganic salts, sand and silt fines, debris, other contaminants, and slimes, which are very difficult to de-water. Chemical processes such as fuel manufacturing and uranium mining generate enriched and natural uranium-bearing wastes. This patented Framatome ANP (FANP) uranium recovery process reduces uranium losses, significantly offsets waste disposal costs, produces a solid waste that meets mixed-waste disposal requirements, and does not generate metal-contaminated liquids. At the head end of the process is a floating dredge that retrieves liquids, sludge, and slimes in the form of a slurry directly from the floor of a lined surface impoundment (lagoon). The slurry is transferred to and mixed in a feed tank with a turbine mixer and re-circulated to further break down the particles and enhance dissolution of uranium. This process uses direct steam injection and sodium hypochlorite addition to oxidize and dissolves any U(IV). Cellulose is added as a non-reactive filter aid to help filter slimes by giving body to the slurry. The slurry is pumped into a large recessed-chamber filter press then de-watered by a pressure cycle-controlled double-diaphragm pump. U(VI) captured in the filtrate from this process is then precipitated by conversion to U(IV) in another Framatome ANP-patented process which uses a strong reducing agent to crystallize and settle the U(IV) product. The product is then dewatered in a small filter press. To-date, over 3,000 Kgs of U at 3% U-235 enrichment were recovered from a 8100 m2 hypalon-lined surface impoundment which contained about 10,220 m3 of liquids and about 757 m3 of sludge. A total of 2,175 drums (0.208 m3 or 55 gallon each) of solid mixed-wastes have been packaged, shipped, and disposed. In addition, 9463 m3 of low-U liquids at <0.001 KgU/m3 were also further processed and disposed.

  5. Supercritical fluid extraction and separation of uranium from other actinides.

    PubMed

    Quach, Donna L; Mincher, Bruce J; Wai, Chien M

    2014-06-15

    The feasibility of separating U from nitric acid solutions of mixed actinides using tri-n-butylphosphate (TBP)-modified supercritical fluid carbon dioxide (sc-CO2) was investigated. The actinides U, Np, Pu, and Am were extracted into sc-CO2 modified with TBP from a range of nitric acid concentrations, in the absence of, or in the presence of, a number of traditional reducing and/or complexing agents to demonstrate the separation of these metals from U under sc-CO2 conditions. The separation of U from Pu using sc-CO2 was successful at nitric acid concentrations of less than 3M in the presence of acetohydroxamic acid (AHA) or oxalic acid (OA) to mitigate Pu extraction, and the separation of U from Np was successful at nitric acid concentrations of less than 1M in the presence of AHA, OA, or sodium nitrite to mitigate Np extraction. Americium was not well extracted under any condition studied. PMID:24801893

  6. Enhanced Method for Molybdenum Separation and Isotopic Determination in Geological Samples and Uranium-Rich Materials

    NASA Astrophysics Data System (ADS)

    Migeon, V.; Bourdon, B.; Pili, E.

    2014-12-01

    Molybdenum (Mo) shares analogous geochemical properties with uranium. Mo ispresent as a minor or a trace element in uranium ores under two main oxidation states: +IVand +VI. Mo has seven stable isotopes (92, 94, 95, 96, 97, 98 and 100). In natural systems,Mo and Mo isotopes were shown to fractionate during redox reactions. Because Morepresents an impurity difficult to separate in the nuclear fuel cycle, it has the potential to beused as an indicator of the origins of uranium concentrates, in the framework of nuclearforensics. This work focuses on developing an enhanced separation method for Mo from auranium-rich matrix (uranium ore, uranium concentrate) in order to analyze the massfractionation induced by processes typical of the nuclear fuel cycle. Purification of Mo forisotope ratio measurements is performed with a three-step separation on ion-exchange resins,with yields between 45 and 82%. Matrix and isobaric interferences (Zr, Ru) were reduced ingeological and uranium standards, such as U/Mo ? 2*10-4, Zr/Mo ? 1*10-3, Ru/Mo ? 6*10-4and Fe/Mo ? 4*10-3. Mo isotopic compositions were measured on a Neptune Plus MC-ICPMSequipped with Jet cones, for a concentration of 30 ng/ml. The achieved sensitivity is~1200-1800 V/ppm with interferences below 10 mV and an overall reproducibility of 0.02 ‰on the ?98Mo values. A double spike, with 97Mo and 100Mo, was added to the samples beforethe purification. It allows for correction of the chemical and instrumental mass fractionations,without requiring a quantitative yield. For igneous rocks, ?98Mo values range between -0.55and -0.03 ‰, relative to the NIST-SRM 3134 molybdenum standard. Fractionation amonguranium ore concentrates is higher, with ?98Mo ranging between 0.02 and -2.84 ‰.

  7. Uranium and thorium sequential separation from norm samples by using a SIA system.

    PubMed

    Mola, M; Nieto, A; Peñalver, A; Borrull, F; Aguilar, C

    2014-01-01

    This study presents a sequential radiochemical separation method for uranium and thorium isotopes using a novel Sequential Injection Analysis (SIA) system with an extraction chromatographic resin (UTEVA). After the separation, uranium and thorium isotopes have been quantified by using alpha-particle spectrometry. The developed method has been tested by analyzing an intercomparison sample (phosphogypsum sample) from International Atomic Energy Agency (IAEA) with better recoveries for uranium and thorium than the obtained by using a classical method (93% for uranium using the new methodology and 82% with the classical method, and in the case of thorium the recoveries were 70% for the semi-automated method and 60% for the classical strategy). Afterwards, the method was successfully applied to different Naturally Occurring Radioactive Material (NORM) samples, in particular sludge samples taken from a drinking water treatment plant (DWTP) and also sediment samples taken from an area of influence of the dicalcium phosphate (DCP) factory located close to the Ebro river reservoir in Flix (Catalonia). The obtained results have also been compared with the obtained by the classical method and from that comparison it has been demonstrated that the presented strategy is a good alternative to existing methods offering some advantages as minimization of sample handling, reduction of solvents volume and also an important reduction of the time per analysis. PMID:24172603

  8. DISSOLUTION OF METAL OXIDES AND SEPARATION OF URANIUM FROM LANTHANIDES AND ACTINIDES IN SUPERCRITICAL CARBON DIOXIDE

    SciTech Connect

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2013-10-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO2 modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO2 and counter current stripping columns is presented.

  9. Dissolution of metal oxides and separation of uranium from lanthanides and actinides in supercritical carbon dioxide

    SciTech Connect

    Quach, D.L.; Wai, C.M.; Mincher, B.J.

    2013-07-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO{sub 2}) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO{sub 2} modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO{sub 2} modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO{sub 2} and counter current stripping columns is presented. (authors)

  10. THE EFFECT OF BURNUP AND SEPARATION EFFICIENCY ON URANIUM UTILIZATION AND RADIOTOXICITY

    SciTech Connect

    Samuel Bays; Steven Piet

    2001-11-01

    This paper addresses two fundamental issues of fuel cycle sustainability. The two primary issues of interest are efficient use of the natural uranium resource (cradle), and management of nuclear waste radiotoxicity (grave). Both uranium utilization and radiotoxicity are directly influenced by the burnup achieved during irradiation (transmutation related) and where applicable the separation efficiency (partitioning related). Burnup influences the in-growth of transuranics by breeding them into the fuel cycle. Transuranic breeding is virtually essential to resource sustainability because it increases utilization of naturally abundant fertile U-238. However, the direct consequence of this build-up is the in-growth of transuranic isotopes which generally increase the source of future geologically committed radiotoxicity. For scenarios involving recycle, separation efficiency influences the degree to which this transuranic source term is removed from active service in the fuel stream and made a disposal legacy of human activity.

  11. Non-malleability under Selective Opening Attacks: Implication and Separation

    E-print Network

    International Association for Cryptologic Research (IACR)

    Non-malleability under Selective Opening Attacks: Implication and Separation Zhengan Huang1 were clarified by B¨ohl et al. [3]. Bellare et al. [2] separated IND-CPA (even IND-CCA2) and SIM-SO-CPA security. Recently, Hofheinz and Rupp [16] showed a separation between IND-CCA2 and IND-SO-CCA2 security

  12. Sample selection and testing of separation processes

    NASA Technical Reports Server (NTRS)

    Karr, L. J.

    1985-01-01

    Phase partitioning, which has become an important tool for the separation and purification of biological materials, was studied. Instruments available for this technique were researched and a countercurrent distribution apparatus, the Biosheff MK2N, was purchased. Various proteins, polysaccharides and cells were studied as models to determine operating procedures and conditions for this piece of equipment. Results were compared with those obtained from other similar equipment, including a nonsynchronous coil planet centrifuge device. Additionally, work was done with affinity ligands attached to PEG, which can further enhance the separation capabilities of phase partitioning.

  13. Analysis of civilian processing programs in reduction of excess separated plutonium and high-enriched uranium

    SciTech Connect

    Persiani, P.J.

    1995-12-31

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials.

  14. Nonproliferation analysis of the reduction of excess separated plutonium and high-enriched uranium

    SciTech Connect

    Persiani, P.J.

    1995-08-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials.

  15. Direct Separation of Molybdenum from Solid Uranium Matrices Employing Pyrohydrolysis, a Green Separation Method, and Its Determination by Ion Chromatography.

    PubMed

    Mishra, Vivekchandra G; Thakur, Uday K; Shah, Dipti J; Gupta, Neeraj K; Jeyakumar, Subbiah; Tomar, Bhupendra S; Ramakumar, Karanam L

    2015-11-01

    Pyrohydrolysis is a well-established separation method, and it is being used as a sample preparation method for several materials for further determination of non-metals such as halogens, boron, and sulfur. Analytes are retained in a diluted solution that is suitable for carrying out analysis by several determination techniques and minimizing the use of concentrated reagents. Pyrohydrolysis separation of metals has not been reported yet. The present study demonstrates the pyrohydrolysis separation of Mo as MoO4(2-) from uranium materials and its subsequent determination using ion chromatography coupled with suppressed conductivity detector. With use of TGA and XRD the volatilization behavior of Mo was studied. Important parameters for the pyrohydrolysis method required for the quantitative separation of Mo were evaluated. The precision of the method was better than 5% at 25 ppm of Mo. The accuracy was evaluated by analysis of a CRM (U3O8-ILCE-IV). The method was applied to determine Mo in ammonium diuranate samples, where the conventional methods suffer from the loss of Mo. PMID:26465172

  16. Methods for selective functionalization and separation of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H (Inventor); Smalley, Richard E. (Inventor); Marek, legal representative, Irene Marie (Inventor)

    2011-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  17. Engineering High-Fidelity Residue Separations for Selective Harvest

    SciTech Connect

    Kevin L. Kenney; Christopher T. Wright; Reed L. Hoskinson; J. Rochard Hess; David J. Muth, Jr.

    2006-07-01

    Composition and pretreatment studies of corn stover and wheat stover anatomical fractions clearly show that some corn and wheat stover anatomical fractions are of higher value than others as a biofeedstock. This premise, along with soil sustainability and erosion control concerns, provides the motivation for the selective harvest concept for separating and collecting the higher value residue fractions in a combine during grain harvest. This study recognizes the analysis of anatomical fractions as theoretical feedstock quality targets, but not as practical targets for developing selective harvest technologies. Rather, practical quality targets were established that identified the residue separation requirements of a selective harvest combine. Data are presented that shows that a current grain combine is not capable of achieving the fidelity of residue fractionation established by the performance targets. However, using a virtual engineering approach, based on an understanding of the fluid dynamics of the air stream separation, the separation fidelity can be significantly improved without significant changes to the harvester design. A virtual engineering model of a grain combine was developed and used to perform simulations of the residue separator performance. The engineered residue separator was then built into a selective harvest test combine, and tests performed to evaluate the separation fidelity. Field tests were run both with and without the residue separator installed in the test combine, and the chaff and straw residue streams were collected during harvest of Challis soft white spring wheat. The separation fidelity accomplished both with and without the residue separator was quantified by laboratory screening analysis. The screening results showed that the engineered baffle separator did a remarkable job of effecting high-fidelity separation of the straw and chaff residue streams, improving the chaff stream purity and increasing the straw stream yield.

  18. The selective use of thorium and heterogeneity in uranium-efficient pressurized water reactors

    E-print Network

    Kamal, Altamash

    1982-01-01

    Systematic procedures have been developed and applied to assess the uranium utilization potential of a broad range of options involving the selective use of thorium in Pressurized Water Reactors (PWRs) operating on the ...

  19. Determination of uranium and thorium in complex samples using chromatographic separation, ICP-MS and spectrophotometric detection.

    PubMed

    Rozmari?, Martina; Ivsi?, Astrid Gojmerac; Grahek, Zeljko

    2009-11-15

    The paper describes a research of possible application of UTEVA and TRU resins and anion exchanger AMBERLITE CG-400 in nitrate form for the isolation of uranium and thorium from natural samples. The results of determination of distribution coefficient have shown that uranium and thorium bind on TRU and UTEVA resins from the solutions of nitric and hydrochloric acids, and binding strength increases proportionally to increase the concentration of acids. Uranium and thorium bind rather strongly to TRU resin from the nitric acid in concentration ranging from 0.5 to 5 mol L(-1), while large quantities of other ions present in the sample do not influence on the binding strength. Due to the difference in binding strength in HCl and HNO(3) respectively, uranium and thorium can be easily separated from each other on the columns filled with TRU resin. Furthermore, thorium binds to anion exchanger in nitrate form from alcohol solutions of nitric acid very strongly, while uranium does not, so they can be easily separated. Based on these results, we have created the procedures of preconcentration and separation of uranium and thorium from the soil, drinking water and seawater samples by using TRU and UTEVA resins and strong base anion exchangers in nitrate form. In one of the procedures, uranium and thorium bind directly from the samples of drinking water and seawater on the column filled with TRU resin from 0.5 mol L(-1) HNO(3) in a water sample. After binding, thorium is separated from uranium with 0.5 mol L(-1) HCl, and uranium is eluted with deionised water. By applying the described procedure, it is possible to achieve the concentration factor of over 1000 for the column filled with 1g of resin and splashed with 2L of the sample. Spectrophotometric determination with Arsenazo III, with this concentration factor results in detection limits below 1 microg L(-1) for uranium and thorium. In the second procedure, uranium and thorium are isolated from the soil samples with TRU resin, while they are separated from each other on the column filled with anion exchanger in alcohol solutions. Anion exchanger combined with alcohol solutions enables isolation of thorium from soil samples and its separation from a wide range of elements, as well as spectrophotometric determination, ICP-MS determination, and other determination techniques. PMID:19782236

  20. New chromatographic materials for the separation and concentration of uranium from environmental matrices

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Chiarizia, R.; Diamond, H.

    1991-01-01

    Extraction chromatography, in which an inert support is impregnated with an extractant solution to form a chromatographic resin, combines the specificity of extraction with the ease of operation of an ion exchange column, thereby overcoming the principal drawbacks of the two methods when used alone. Previous work in this laboratory on the design of selective extractants for use in nuclear fuel reprocessing and in nuclear waste treatment has led to the development of several new phosphorus-based neutral organic extractants. In this report, we examine the use of two of these materials as stationary phases in extraction chromatography for the isolation of uranium from environmental samples. 2 refs., 2 figs., 1 tab.

  1. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  2. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, James A. (Livermore, CA); Hayden, Jr., Howard W. (Oakridge, TN)

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  3. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60{degree}C) or long extraction times (23 h). Adding KMnO{sub 4} in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  4. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60[degree]C) or long extraction times (23 h). Adding KMnO[sub 4] in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  5. Sequential separation of lanthanides, thorium and uranium using novel solid phase extraction method from high acidic nuclear wastes.

    PubMed

    Kesava Raju, Ch Siva; Subramanian, M S

    2007-06-25

    A novel grafted polymer for selective extraction and sequential separation of lanthanides, thorium and uranium from high acidic wastes has been developed by grafting Merrifield chloromethylated (MCM) resin with octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO) (MCM-CMPO). The grafting process is well characterized using FT-IR spectroscopy, (31)P and (13)C CPMAS (cross-polarized magic angle spin) NMR spectroscopy and CHNPS elemental analysis. The influence of various physico-chemical parameters during metal ion extraction by the resin phase are studied and optimized by both static and dynamic methods. The resin shows very high sorption capacity values of 0.960mmolg(-1) for U(VI), 0.984mmolg(-1) for Th(IV), 0.488mmolg(-1) for La(III) and 0.502mmolg(-1) for Nd(III) under optimum HNO(3) medium, respectively. The grafted polymer shows faster rate exchange kinetics (<5min is sufficient for 50% extraction) and greater preconcentration ability, with reusability exceeding 20 cycles. During desorption process, sequential separation of the analytes is possible with varying eluting agents. The developed grafted resin has been successfully applied in extracting Th(IV) from high matrix monazite sand, U(VI) and Th(IV) from simulated nuclear spent fuel mixtures. All the analytical data is based on triplicate analysis and measurements are within 3.5% rsd reflecting the reproducibility and reliability of the developed method. PMID:17178189

  6. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    SciTech Connect

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  7. Site evaluations for the uranium-atomic vapor laser isotope separation (U-AVLIS) production plant

    SciTech Connect

    Wolsko, T.; Absil, M.; Cirillo, R.; Folga, S.; Gillette, J.; Habegger, L.; Whitfield, R.

    1991-07-01

    This report describes a uranium-atomic vapor laser isotope separation (U-AVLIS) production plant siting study conducted during 1990 to identify alternative plant sites for examination in later environmental impact studies. A siting study methodology was developed in early 1990 and was implemented between June and December. This methodology had two parts. The first part -- a series of screening analyses that included exclusionary and other criteria -- was conducted to identify a reasonable number of candidates sites. This slate of candidate sites was then subjected to more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. To fully appreciate the siting study methodology, it is important to understand the U-AVLIS program and site requirements. 16 refs., 29 figs., 54 tabs.

  8. Rapid separation and purification of uranium and plutonium from dilute-matrix samples

    SciTech Connect

    Armstrong, Christopher R.; Ticknor, Brian W.; Hall, Gregory; Cadieux, James R.

    2014-03-11

    This work presents a streamlined separation and purification approach for trace uranium and plutonium from dilute (carrier-free) matrices. The method, effective for nanogram quantities of U and femtogram to picogram quantities of Pu, is ideally suited for environmental swipe samples that contain a small amount of collected bulk material. As such, it may be applicable for processing swipe samples such as those collected in IAEA inspection activities as well as swipes that are loaded with unknown analytes, such as those implemented in interlaboratory round-robin or proficiency tests. Additionally, the simplified actinide separation could find use in internal laboratory monitoring of clean room conditions prior to or following more extensive chemical processing. We describe key modifications to conventional techniques that result in a relatively rapid, cost-effective, and efficient U and Pu separation process. We demonstrate the efficacy of implementing anion exchange chromatography in a single column approach. We also show that hydrobromic acid is an effective substitute in lieu of hydroiodoic acid for eluting Pu. Lastly, we show that nitric acid is an effective digestion agent in lieu of perchloric acid and/or hydrofluoric acid. A step by step procedure of this process is detailed.

  9. Rapid separation and purification of uranium and plutonium from dilute-matrix samples

    DOE PAGESBeta

    Armstrong, Christopher R.; Ticknor, Brian W.; Hall, Gregory; Cadieux, James R.

    2014-03-11

    This work presents a streamlined separation and purification approach for trace uranium and plutonium from dilute (carrier-free) matrices. The method, effective for nanogram quantities of U and femtogram to picogram quantities of Pu, is ideally suited for environmental swipe samples that contain a small amount of collected bulk material. As such, it may be applicable for processing swipe samples such as those collected in IAEA inspection activities as well as swipes that are loaded with unknown analytes, such as those implemented in interlaboratory round-robin or proficiency tests. Additionally, the simplified actinide separation could find use in internal laboratory monitoring ofmore »clean room conditions prior to or following more extensive chemical processing. We describe key modifications to conventional techniques that result in a relatively rapid, cost-effective, and efficient U and Pu separation process. We demonstrate the efficacy of implementing anion exchange chromatography in a single column approach. We also show that hydrobromic acid is an effective substitute in lieu of hydroiodoic acid for eluting Pu. Lastly, we show that nitric acid is an effective digestion agent in lieu of perchloric acid and/or hydrofluoric acid. A step by step procedure of this process is detailed.« less

  10. Selective separation of ultra-fine particles by magnetophoresis

    SciTech Connect

    Ying, T.; Prenger, F. Coyne; Wingo, R. M.; Worl, L. A.

    2002-01-01

    The selective and-specific extraction of species of interest fiom local environmental and other sample sources are importaut fbr scientific research, industrial processes, and environmental applications. A novel process for selective separation of ultrafine particles using 'magnetophoresis' is investigated. The principle of this process is that the direction and velocity of particle movement in a magnetic field are determined by magnetic, gravitational, and drag fbrces. By controlling these fbrces, one is able to control the migration rates of different species and then magnetically fiactionate mixtures of species into discrete groups. This study demonstrated for the fist time the selective separation of various species, such as iron (111) oxide, cupric (11) oxide, samarium (In) oxide, and cerium (III) oxide, by magnetophoresis. To better understand this phenomenon, a fbrce-balance model was developed that provides a good interpretation of the experimental results.

  11. Separation of simple sugars by selectivity inverted parametric pumping

    SciTech Connect

    Sheng, P.; Costa, C.A.V.

    1998-12-01

    An alternative process to separate the isomeric mixture of fructose and glucose is presented. A laboratory study of a two-column, selectivity inverted, direct-mode parametric pump is reported. An anionic resin in carbonate form and a cationic resin in calcium form are used as adsorbents for the columns. The experimental results show that it is possible to simultaneously obtain separation and concentration with this system. A kinetic model assuming linear equilibrium, intraparticle pore diffusion, and axial dispersion is proposed and solved. The model solutions are compared with experimental results, and the comparisons indicate good prediction capabilities.

  12. Transport Selectivity of Nuclear Pores, Phase Separation, and Membraneless Organelles.

    PubMed

    Schmidt, H Broder; Görlich, Dirk

    2016-01-01

    Nuclear pore complexes (NPCs) provide a selective passageway for receptor-mediated active transport between nucleus and cytoplasm, while maintaining the distinct molecular compositions of both compartments at large. In this review we discuss how NPCs gain a remarkable sorting selectivity from non-globular FG domains and their phase separation into dense polymer meshworks. The resulting sieve-like FG hydrogels are effective barriers to normal macromolecules but are at the same time highly permeable to shuttling nuclear transport receptors, which bind to FG motifs as well as to their designated cargoes. Phase separation driven by disordered protein domains was recently also recognized as being pivotal to the formation of membraneless organelles, making it an important emerging principle in cell biology. PMID:26705895

  13. Tagged-particle separation The technique of magnetic separation is a successful method to select cells with a desired

    E-print Network

    Kurchan, Jorge

    1 Tagged-particle separation The technique of magnetic separation is a successful method to select a field pulls from the magnetised particles, which are then driven into a separate path and collected. Several people in PMMH (M Hoyos, M. Martin,...) have been involved in separation techniques. Fast

  14. (1) Selective separation and solidification of radioactive nuclides by zeolites

    NASA Astrophysics Data System (ADS)

    Mimura, Hitoshi; Sato, Nobuaki; Kirishima, Akira

    Massive tsunami generated by the Great East Japan Earthquake attacked the Fukushima Daiichi Nuclear Power Plant and caused the nuclear accident of level 7 to overturn the safety myth of the nuclear power generation. The domestic worst accident does not yet reach the convergence, and many inhabitants around the power plant are forced to double pains of earthquake disaster and nuclear accident. Large amounts of high-activity-level water over 200,000 tons are accumulated on the basement floor of each turbine building, which is a serious obstacle to take measures for the nuclear accident. For the decontamination of high-activity-level water containing seawater, the inorganic ion-exchangers having high selectivity are effective especially for the selective removal of radioactive Cs. On the other hand, radioactive Cs and I released into the atmosphere from the power plant spread widely around Fukushima prefecture, and the decontamination of rainwater and soil become the urgent problem. At present, passing about four months after nuclear accident, the radioactive nuclides of 137Cs and 134Cs are mainly contained in the high-activity-level water and the selective adsorbents for radioactive Cs play an important part in the decontamination. Since the construction of original decontamination system is an urgent necessity, selective separation methods using inorganic ion-exchangers are greatly expected. From the viewpoint of cost efficiency and high Cs-selectivity, natural zeolites are effective for the decontamination of radioactive Cs. This special issue deals with the selective separation and solidification of radioactive Cs and Sr using zeolites.

  15. How Many Separable Sources? Model Selection In Independent Components Analysis

    PubMed Central

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher's iris data set and Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian. PMID:25811988

  16. Nonproliferation and safeguards aspects of fuel cycle programs in reduction of excess separated plutonium and high-enriched uranium

    SciTech Connect

    Persiani, P.J.

    1995-06-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. Reference annual mass flows and inventories for a representative 1,400 Mwe Pressurized Water Reactor (PWR) fuel cycle have been investigated for three cases: the 100 percent uranium oxide UO{sub 2} fuel loading once through cycle, and the 33 percent mixed oxide MOX loading configuration for a first and second plutonium recycle. The analysis addresses fuel cycle developments; plutonium and uranium inventory and flow balances; nuclear fuel processing operations; UO{sub 2} once-through and MOX first and second recycles; and the economic incentives to draw-down the excess separated plutonium stores. The preliminary analysis explores several options in reducing the excess separated plutonium arisings and HEU, and the consequences of the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials on nonproliferation and safeguards policy assessments.

  17. pH effect on the separation of uranium fluoride effluents by the reverse osmosis process

    SciTech Connect

    Yun Chen ); Min-Lin Chu; Mu-Chang Shieh , Lung-tan, )

    1992-04-01

    Ammonium fluoride solutions and uranium fluoride effluents (UFE) with solute concentrations from 0.101 to 7,920 kg/m{sup 3}, at pH 2.80 to 9.60, have been treated with a continuous feedback reverse osmosis (RO) process. The solute rejections of NH{sub 4}{sup +}, F{sup {minus}}, and U{sup 6+} depend heavily on the feed pH value. For ammonium fluoride solutions, the rejection ratio of NH{sub 4}{sup +} decreases sharply from ca. 90 to 44.2% with the feed pH increased from 3.30 to 9.60, while that of F{sup {minus}} increases abruptly from 44.8 to 99.9% at the same pH change. For UFE solutions, the rejection ratio of U{sup 6+} remains greater than 90% at pH 2.80-7.13, while that of F{sup {minus}} decreases steadily from 96.4 to 18.8% with decreasing feed pH. Accordingly, the fluoride ions can be separated from UFE solutions under acidic conditions. The changes of solute rejection with feed pH can be explained by the different solubilities of the solutes in the membrane at different pH values. The UFE solutions with {alpha} and {beta} activities at 20.4-53.7 and 8.99-21.3 ({times} 10{sup 5} Baq/m{sup 3}) can be reduced to a level lower than 2.41 and 3.37 ({times}10{sup 5} Baq/m{sup 3}), respectively, by the current RO process.

  18. Separation of Zirconium from Uranium in U-Zr Alloys Using a Chlorination Process 

    E-print Network

    Parkison, Adam J

    2013-06-04

    -scale chlorination and volatilization experiments were conducted on uranium, zirconium, and a U-50 wt% Zr alloy in order to gather the data needed to develop processing methods and equipment. It is also proposed that the demonstrated chlorination process may...

  19. A Catalytic Beacon Sensor for Uranium with Parts-per-Trillion Sensitivity and Millionfold Selectivity

    SciTech Connect

    Liu, Juewen; Brown, Andrea K.; Meng, Xiangli; Cropek, Donald M.; IstokD., Jonathan; Watson, David B; Liu, Yi

    2007-01-01

    Here, we report a catalytic beacon sensor for uranyl (UO{sub 2}{sup 2+}) based on an in vitro-selected UO{sub 2}{sup 2+}-specific DNAzyme. The sensor consists of a DNA enzyme strand with a 3' quencher and a DNA substrate with a ribonucleotide adenosine (rA) in the middle and a fluorophore and a quencher at the 5' and 3' ends, respectively. The presence of UO{sub 2}{sup 2+} causes catalytic cleavage of the DNA substrate strand at the rA position and release of the fluorophore and thus dramatic increase of fluorescence intensity. The sensor has a detection limit of 11 parts per trillion (45 pM), a dynamic range up to 400 nM, and selectivity of >1-million-fold over other metal ions. The most interfering metal ion, Th(IV), interacts with the fluorescein fluorophore, causing slightly enhanced fluorescence intensity, with an apparent dissociation constant of {approx}230 {micro}M. This sensor rivals the most sensitive analytical instruments for uranium detection, and its application in detecting uranium in contaminated soil samples is also demonstrated. This work shows that simple, cost-effective, and portable metal sensors can be obtained with similar sensitivity and selectivity as much more expensive and sophisticated analytical instruments. Such a sensor will play an important role in environmental remediation of radionuclides such as uranium.

  20. Electrochemical separation of uranium in the molten system LiF-NaF-KF-UF4

    NASA Astrophysics Data System (ADS)

    Korenko, M.; Straka, M.; Szatmáry, L.; Ambrová, M.; Uhlí?, J.

    2013-09-01

    This article is focused on the electrochemical investigation (cyclic voltammetry and related studies) of possible reduction of U4+ ions to metal uranium in the molten system LiF-NaF-KF(eut.)-UF4 that can provide basis for the electrochemical extraction of uranium from molten salts. Two-step reduction mechanism for U4+ ions involving one electron exchange in soluble/soluble U4+/U3+ system and three electrons exchange in the second step were found on the nickel working electrode. Both steps were found to be reversible and diffusion controlled. Based on cyclic voltammetry, the diffusion coefficients of uranium ions at 530 °C were found to be D(U4+) = 1.64 × 10-5 cm2 s-1 and D(U3+) 1.76 × 10-5 cm2 s-1. Usage of the nickel spiral electrode for electrorefining of uranium showed fairly good feasibility of its extraction. However some oxidant present during the process of electrorefining caused that the solid deposits contained different uranium species such as UF3, UO2 and K3UO2F5.

  1. Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator

    E-print Network

    Ma, Hongshen

    Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic morphological differences can be used to distinguish target cancer cells from contaminant leukocytes. Existing the microfluidic ratchet mechanism separates cancer cells from leukocytes based on a combination of size

  2. Selected Hanford reactor and separations operating data for 1960--1964

    SciTech Connect

    Gydesen, S.P.

    1992-09-01

    The purpose of this letter report is to reconstruct from available information that data which can be used to develop daily reactor operating history for 1960--1964. The information needed for source team calculations (as determined by the Source Terms Task Leader) were extracted and included in this report. The data on the amount of uranium dissolved by the separations plants (expressed both as tons and as MW) is also included in this compilation.

  3. Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

    SciTech Connect

    Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Carter, Jennifer C.

    2012-08-22

    This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.

  4. Molecular dynamics simulation of nanoporous graphene for selective gas separation

    E-print Network

    Au, Harold (Harold S.)

    2012-01-01

    Graphene with sub-nanometer sized pores has the potential to act as a filter for gas separation with considerable efficiency gains compared to traditional technologies. Nanoporous graphene membranes are expected to yield ...

  5. Single layer hydrogenated graphyne membrane for selective hydrogen separation: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Alaghemandi, Mohammad

    2015-06-01

    Using molecular dynamics simulations, we have investigated hydrogenated graphyne layers as molecular-sieving membranes. Hydrogenated ?-graphyne layer with no defect indicated a complete separation capability for a mixture of H2/CH4. The separation selectivity for H2/N2 mixture was about 700 at room temperature using the same membrane. This value reduced by increasing the temperature. However, presence of defects in the membrane dramatically decreased the separation selectivity for both studied mixtures. Surprisingly, increasing the temperature enhanced the separation selectivity using the defected hydrogenated ?-graphyne membrane. Hydrogenated ?-graphyne layer with no defect did not show any permeability effect for the studied gases.

  6. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography

    SciTech Connect

    Garland, P.A.; Thomas, J.M.; Brock, M.L.; Daniel, E.W.

    1980-06-01

    A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, and (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.

  7. Dynamic graphene filters for selective gas-water-oil separation

    NASA Astrophysics Data System (ADS)

    Bong, Jihye; Lim, Taekyung; Seo, Keumyoung; Kwon, Cho-Ah; Park, Ju Hyun; Kwak, Sang Kyu; Ju, Sanghyun

    2015-09-01

    Selective filtration of gas, water, and liquid or gaseous oil is essential to prevent possible environmental pollution and machine/facility malfunction in oil-based industries. Novel materials and structures able to selectively and efficiently filter liquid and vapor in various types of solutions are therefore in continuous demand. Here, we investigate selective gas-water-oil filtration using three-dimensional graphene structures. The proposed approach is based on the adjustable wettability of three-dimensional graphene foams. Three such structures are developed in this study; the first allows gas, oil, and water to pass, the second blocks water only, and the third is exclusively permeable to gas. In addition, the ability of three-dimensional graphene structures with a self-assembled monolayer to selectively filter oil is demonstrated. This methodology has numerous potential practical applications as gas, water, and/or oil filtration is an essential component of many industries.

  8. Dynamic graphene filters for selective gas-water-oil separation

    PubMed Central

    Bong, Jihye; Lim, Taekyung; Seo, Keumyoung; Kwon, Cho-Ah; Park, Ju Hyun; Kwak, Sang Kyu; Ju, Sanghyun

    2015-01-01

    Selective filtration of gas, water, and liquid or gaseous oil is essential to prevent possible environmental pollution and machine/facility malfunction in oil-based industries. Novel materials and structures able to selectively and efficiently filter liquid and vapor in various types of solutions are therefore in continuous demand. Here, we investigate selective gas-water-oil filtration using three-dimensional graphene structures. The proposed approach is based on the adjustable wettability of three-dimensional graphene foams. Three such structures are developed in this study; the first allows gas, oil, and water to pass, the second blocks water only, and the third is exclusively permeable to gas. In addition, the ability of three-dimensional graphene structures with a self-assembled monolayer to selectively filter oil is demonstrated. This methodology has numerous potential practical applications as gas, water, and/or oil filtration is an essential component of many industries. PMID:26394930

  9. Dynamic graphene filters for selective gas-water-oil separation.

    PubMed

    Bong, Jihye; Lim, Taekyung; Seo, Keumyoung; Kwon, Cho-Ah; Park, Ju Hyun; Kwak, Sang Kyu; Ju, Sanghyun

    2015-01-01

    Selective filtration of gas, water, and liquid or gaseous oil is essential to prevent possible environmental pollution and machine/facility malfunction in oil-based industries. Novel materials and structures able to selectively and efficiently filter liquid and vapor in various types of solutions are therefore in continuous demand. Here, we investigate selective gas-water-oil filtration using three-dimensional graphene structures. The proposed approach is based on the adjustable wettability of three-dimensional graphene foams. Three such structures are developed in this study; the first allows gas, oil, and water to pass, the second blocks water only, and the third is exclusively permeable to gas. In addition, the ability of three-dimensional graphene structures with a self-assembled monolayer to selectively filter oil is demonstrated. This methodology has numerous potential practical applications as gas, water, and/or oil filtration is an essential component of many industries. PMID:26394930

  10. Separation of rare gases and chiral molecules by selective binding in porous organic cages.

    PubMed

    Chen, Linjiang; Reiss, Paul S; Chong, Samantha Y; Holden, Daniel; Jelfs, Kim E; Hasell, Tom; Little, Marc A; Kewley, Adam; Briggs, Michael E; Stephenson, Andrew; Thomas, K Mark; Armstrong, Jayne A; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M; Thallapally, Praveen K; Cooper, Andrew I

    2014-10-01

    The separation of molecules with similar size and shape is an important technological challenge. For example, rare gases can pose either an economic opportunity or an environmental hazard and there is a need to separate these spherical molecules selectively at low concentrations in air. Likewise, chiral molecules are important building blocks for pharmaceuticals, but chiral enantiomers, by definition, have identical size and shape, and their separation can be challenging. Here we show that a porous organic cage molecule has unprecedented performance in the solid state for the separation of rare gases, such as krypton and xenon. The selectivity arises from a precise size match between the rare gas and the organic cage cavity, as predicted by molecular simulations. Breakthrough experiments demonstrate real practical potential for the separation of krypton, xenon and radon from air at concentrations of only a few parts per million. We also demonstrate selective binding of chiral organic molecules such as 1-phenylethanol, suggesting applications in enantioselective separation. PMID:25038731

  11. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    NASA Astrophysics Data System (ADS)

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. Mark; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

    2014-10-01

    The separation of molecules with similar size and shape is an important technological challenge. For example, rare gases can pose either an economic opportunity or an environmental hazard and there is a need to separate these spherical molecules selectively at low concentrations in air. Likewise, chiral molecules are important building blocks for pharmaceuticals, but chiral enantiomers, by definition, have identical size and shape, and their separation can be challenging. Here we show that a porous organic cage molecule has unprecedented performance in the solid state for the separation of rare gases, such as krypton and xenon. The selectivity arises from a precise size match between the rare gas and the organic cage cavity, as predicted by molecular simulations. Breakthrough experiments demonstrate real practical potential for the separation of krypton, xenon and radon from air at concentrations of only a few parts per million. We also demonstrate selective binding of chiral organic molecules such as 1-phenylethanol, suggesting applications in enantioselective separation.

  12. Selectivity trend of gas separation through nanoporous graphene

    NASA Astrophysics Data System (ADS)

    Liu, Hongjun; Chen, Zhongfang; Dai, Sheng; Jiang, De-en

    2015-04-01

    By means of molecular dynamics (MD) simulations, we demonstrate that porous graphene can efficiently separate gases according to their molecular sizes. The flux sequence from the classical MD simulation is H2>CO2?N2>Ar>CH4, which generally follows the trend in the kinetic diameters. This trend is also confirmed from the fluxes based on the computed free energy barriers for gas permeation using the umbrella sampling method and kinetic theory of gases. Both brute-force MD simulations and free-energy calcualtions lead to the flux trend consistent with experiments. Case studies of two compositions of CO2/N2 mixtures further demonstrate the separation capability of nanoporous graphene.

  13. Synthesis of a novel chelating resin for the separation and preconcentration of uranium(VI) and its spectrophotometric determination.

    PubMed

    Hazer, Orhan; Kartal, Senol

    2009-04-01

    A novel chelating polymer including three different functional groups, such as amidoxime (-C(NH(2))=NOH), azo (-N=N-) and carboxylic acid (-COOH), was synthesized. The poly(acrylamidoxime-co-(1-(2-pirydylazo)-2-naphtyl-2-methacrylate)-co-methacrylicacid) (APM) polymer, prepared in three steps, was characterized by FT-IR and elemental analyses. The resin was used for solid-phase extractive separation and the preconcentration of trace amounts of uranium(VI). The determination of U(VI) was performed by a spectrophotometric method using Arsenazo III as a complexing agent. The optimum conditions were found for the quantitative recovery of U(VI) (pH 5; eluent, 3 mol L(-1) HClO(4); sample and eluent flow rates, 1 mL min(-1) etc.). The capacity of the APM resin for U(VI) was found to be 24.2 mg g(-1). A preconcentration factor of 37.5 and the three sigma detection limit of 1.6 microg L(-1) (n = 20) were achieved for U(VI) ions. The polymer was used for separating and preconcentrating the uranyl ion existing in seawater samples and a certified reference material (TMDA 70; fortified lake water sample). PMID:19359797

  14. Selective Metal Deposition on a Phase-Separated Polymer Blend Surface

    NASA Astrophysics Data System (ADS)

    Tsujioka, Tsuyoshi; Yamaguchi, Koji

    2013-07-01

    We report selective metal deposition on a phase-separated polymer blend surface. A polymer blend film consisting of polystyrene (PS) and a polystyrene-block-polybutadiene copolymer (PS-BR) was annealed, and a micro-phase-separated film was obtained. Pb was evaporated onto the phase-separated surface without an evaporation mask and was selectively deposited on the PS phase but not on the PS-BR phase. We achieved fine metal patterns corresponding to the microphase separation. This result suggests a novel method of preparing fine metal patterns for electronics and photonics.

  15. Natural Gamma Emitters after a Selective Chemical Separation of a TENORM residue: Preliminary Results

    SciTech Connect

    Alves de Freitas, Antonio; Abrao, Alcidio; Godoy dos Santos, Adir Janete; Pecequilo, Brigitte Roxana Soreanu

    2008-08-07

    An analytical procedure was established in order to obtain selective fractions containing radium isotopes ({sup 228}Ra), thorium ({sup 232}Th), and rare earths from RETOTER (REsiduo de TOrio e TErras Raras), a solid residue rich in rare earth elements, thorium isotopes and small amount of natural uranium generated from the operation of a thorium pilot plant for purification and production of pure thorium nitrate at IPEN -CNEN/SP. The paper presents preliminary results of {sup 228}Ra, {sup 226}Ra, {sup 238}U, {sup 210}Pb, and {sup 40}K concentrations in the selective fractions and total residue determined by high-resolution gamma spectroscopy, considering radioactive equilibrium of the samples.

  16. Metal-Organic Frameworks for Highly Selective Separations

    SciTech Connect

    Omar M. Yaghi

    2009-09-28

    This grant was focused on the study of metal-organic frameworks with these specific objectives. (1) To examine the use of MOFs with well-defined open metal sites for binding of gases and small organics. (2) To develop a strategy for producing MOFs that combine large pore size with high surface area for their use in gas adsorption and separation of polycyclic organic compounds. (3) To functionalize MOFs for the storage of inert gases such as methane. A brief outline of our progress towards these objectives is presented here as it forms part of the basis for the ideas to be developed under the present proposal.

  17. Molecularly imprinted polymers for RGD selective recognition and separation.

    PubMed

    Papaioannou, Emmanuel; Koutsas, Christos; Liakopoulou-Kyriakides, Maria

    2009-03-01

    Molecularly imprinted polymers that could recognize the tripeptide Arg-Gly-Asp have been produced with the use of two functional monomers and three different cross-linkers, respectively. Methacrylic acid and acrylamide were used as functional monomers and the role of the ethylene glycol dimethacrylate, trimethylpropane trimethacrylate and N,N'-methylene-bisacrylamide as crosslinking monomers, was investigated on their recognition capability. The % net rebinding and the imprinting factor values were obtained, giving for the methacrylic acid-trimethylpropane trimethacrylate polymer the highest values 12.3% and 2.44, respectively. In addition, this polymer presented lower dissociation constant (K(D)) value and the higher B (max)% of theoretical total binding sites than all the other polymers. Rebinding experiments with Lys-Gly-Asp, an analogue of Arg-Gly-Asp, and other different peptides, such as cholecystokinin C-terminal tri- and pentapeptide and gramicidin, further indicated the selectivity of methacrylic acid-trimethylpropane trimethacrylate copolymer for Arg-Gly-Asp giving specific selectivity factor values 1.27, 1.98, 1.31 and 1.67, respectively. PMID:18592344

  18. Costs of antibiotic resistance – separating trait effects and selective effects

    PubMed Central

    Hall, Alex R; Angst, Daniel C; Schiessl, Konstanze T; Ackermann, Martin

    2015-01-01

    Antibiotic resistance can impair bacterial growth or competitive ability in the absence of antibiotics, frequently referred to as a ‘cost’ of resistance. Theory and experiments emphasize the importance of such effects for the distribution of resistance in pathogenic populations. However, recent work shows that costs of resistance are highly variable depending on environmental factors such as nutrient supply and population structure, as well as genetic factors including the mechanism of resistance and genetic background. Here, we suggest that such variation can be better understood by distinguishing between the effects of resistance mechanisms on individual traits such as growth rate or yield (‘trait effects’) and effects on genotype frequencies over time (‘selective effects’). We first give a brief overview of the biological basis of costs of resistance and how trait effects may translate to selective effects in different environmental conditions. We then review empirical evidence of genetic and environmental variation of both types of effects and how such variation may be understood by combining molecular microbiological information with concepts from evolution and ecology. Ultimately, disentangling different types of costs may permit the identification of interventions that maximize the cost of resistance and therefore accelerate its decline. PMID:25861384

  19. Functional Sorbents for Selective Capture of Plutonium, Americium, Uranium, and Thorium in Blood

    SciTech Connect

    Yantasee, Wassana; Sangvanich, Thanapon; Creim, Jeffrey A.; Pattamakomsan, Kanda; Wiacek, Robert J.; Fryxell, Glen E.; Addleman, Raymond S.; Timchalk, Charles

    2010-09-01

    Nano-engineered solid sorbents for chelation of actinides (239Pu, 241Am, uranium, thorium) from human blood were developed and evaluated in vitro. These sorbents, known as the self-assembled monolayer on mesoporous supports (SAMMSTM), are hybrid materials created from attachment of organic moieties onto extremely high surface area mesoporous silica. The organic moieties known to be effective at capturing actinides including three isomers of hydroxypyridinone, diphosphonic acid, acetamide phosphonic acid, glycinyl urea, and diethylenetriamine pentaacetate analog were evaluated. SAMMS are being reported elsewhere as potential candidates for orally administered drug for radionuclide decorporation. Herein, actinide decorporation of SAMMS in blood were evaluated to assess their viability for sorbent hemoperfusion in renal insufficient patients, whose kidney clear radionuclides at very slow rate. Sorption affinity (Kd), sorption rate, selectivity, and stability of SAMMS were measured in batch contact experiments. An isomer of hydroxypyridinone (3,4-HOPO) on SAMMS demonstrated the highest affinity for decorporation of all four actinides and outperformed the DTPA analog on SAMMS and on commercial resins by a factor of 103-fold in term of affinity. A fifty percent reduction of actinides in blood was achieved within minutes with no evidence of protein fouling and material leaching in blood after 24 hr of contact time. Less than 0.4 wt.% of Si was dissolved from 3,4-HOPO-SAMMS across the pH of 0 to 8. The engineered form of SAMMS (bead format) was further evaluated in a 100-fold scaled-down hemoperfusion device and showed no blood clotting after 2 hr. A 0.2 g of SAMMS could reduce 50 wt.% of 100 ppb uranium in 50 mL of plasma in just 18 min and that of 500 dpm mL-1 in just 24 min. 3,4-HOPO-SAMMS has a long shelf-life in air and at room temperature for at least 8 years, indicating their feasibility for stockpiling in preparedness for emergency.

  20. Selective aqueous extraction of organics coupled with trapping by membrane separation

    SciTech Connect

    van Eikeren, P.; Brose, D.J.; Ray, R.J.

    1991-08-20

    This patent describes improvement in an organic/aqueous extraction process for the extraction of an organic solute from an organic solvent or solvent mixture with an aqueous-based extractant. The improvement comprises continuously recycling the aqueous-based extractant through a membrane separation process that selectively removes the organic solute from the aqueous-based extractant, the membrane separation process being selected from at least one of reverse osmosis, nanofiltration, ultrafiltration, membrane distillation, pervaporation, membrane contactor and supported-liquid membrane.

  1. Selective-tap blind signal processing for speech separation.

    PubMed

    Kokkinakis, Kostas; Loizou, Philipos C

    2009-01-01

    In this paper, we propose a new blind multichannel adaptive filtering scheme, which incorporates a partial-updating mechanism in the error gradient of the update equation. The proposed blind processing algorithm operates in the time-domain by updating only a selected portion of the adaptive filters. The algorithm steers all computational resources to filter taps having the largest magnitude gradient components on the error surface. Therefore, it requires only a small number of updates at each iteration and can substantially minimize overall computational complexity. Numerical experiments carried out in realistic blind identification scenarios indicate that the performance of the proposed algorithm is comparable to the performance of its full-update counterpart, but with the added benefit of a highly reduced computational complexity. PMID:19964609

  2. A simple-rapid method to separate uranium, thorium, and protactinium for U-series age-dating of materials.

    PubMed

    Knight, Andrew W; Eitrheim, Eric S; Nelson, Andrew W; Nelson, Steven; Schultz, Michael K

    2014-08-01

    Uranium-series dating techniques require the isolation of radionuclides in high yields and in fractions free of impurities. Within this context, we describe a novel-rapid method for the separation and purification of U, Th, and Pa. The method takes advantage of differences in the chemistry of U, Th, and Pa, utilizing a commercially-available extraction chromatographic resin (TEVA) and standard reagents. The elution behavior of U, Th, and Pa were optimized using liquid scintillation counting techniques and fractional purity was evaluated by alpha-spectrometry. The overall method was further assessed by isotope dilution alpha-spectrometry for the preliminary age determination of an ancient carbonate sample obtained from the Lake Bonneville site in western Utah (United States). Preliminary evaluations of the method produced elemental purity of greater than 99.99% and radiochemical recoveries exceeding 90% for U and Th and 85% for Pa. Excellent purity and yields (76% for U, 96% for Th and 55% for Pa) were also obtained for the analysis of the carbonate samples and the preliminary Pa and Th ages of about 39,000 years before present are consistent with (14)C-derived age of the material. PMID:24681438

  3. [Determination of 235U/238U isotope ratios in camphor tree bark samples by MC-ICP-MS after separation of uranium from matrix elements].

    PubMed

    Wang, Xiao-Ping; Zhang, Ji-Long

    2007-07-01

    Twelve camphor (cinnamomum camphora) tree bark samples were collected from Hiroshima and Kyoto, and the matrix element composition and morphology of the outer surface of these camphor tree bark samples were studied by EDXS and SEM respectively. After a dry decomposition, DOWEX 1-X8 anion exchange resin was used to separate uranium from matrix elements in these camphor tree bark samples. Finally, 235U/238 U isotope ratios in purified uranium solutions were determined by MC-ICP-MS. It was demonstrated that the outer surface of these camphor tree bark samples is porous and rough, with Al, Ca, Fe, K, Mg, Si, C, O and S as its matrix element composition. Uranium in these camphor tree bark samples can be efficiently separated and quantitatively recovered from the matrix element composition. Compared with those collected from Kyoto, the camphor tree bark samples collected from Hiroshima have significantly higher uranium contents, which may be due to the increased aerosol mass concentration during the city reconstruction. Moreover, the 235 U/23.U isotope ratios in a few camphor tree bark samples collected from Hiroshima are slightly higher than 0.007 25. PMID:17944430

  4. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. [474 references

    SciTech Connect

    Thomas, J.M.; Garland, P.A.; White, M.B.; Daniel, E.W.

    1980-09-01

    This bibliography, a compilation of 474 references, is the fourth in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base was created for the Grand Junction Office of the Department of Energy's National Uranium Resource Evaluation Project by the Ecological Sciences Information Center, Oak Ridge National Laboratory. The references in the bibliography are arranged by subject category: (1) geochemistry, (2) exploration, (3) mineralogy, (4) genesis of deposits, (5) geology of deposits, (6) uranium industry, (7) geology of potential uranium-bearing areas, and (8) reserves and resources. The references are indexed by author, geographic location, quadrangle name, geoformational feature, and keyword.

  5. Determination of Uranium Metal Concentration in Irradiated Fuel Storage Basin Sludge Using Selective Dissolution

    SciTech Connect

    Delegard, Calvin H.; Sinkov, Sergey I.; Chenault, Jeffrey W.; Schmidt, Andrew J.; Welsh, Terri L.; Pool, Karl N.

    2014-03-01

    Uranium metal corroding in water-saturated sludges now held in the US Department of Energy Hanford Site K West irradiated fuel storage basin can create hazardous hydrogen atmospheres during handling, immobilization, or subsequent transport and storage. Knowledge of uranium metal concentration in sludge thus is essential to safe sludge management and process design, requiring an expeditious routine analytical method to detect uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of 30 wt% or higher total uranium concentrations.

  6. Method for converting uranium oxides to uranium metal

    DOEpatents

    Duerksen, Walter K. (Norris, TN)

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  7. Uranium hexafluoride handling. Proceedings

    SciTech Connect

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  8. Microscale phase separator for selective extraction of CO2 from methanol solution flow

    NASA Astrophysics Data System (ADS)

    Fazeli, Abdolreza; Moghaddam, Saeed

    2014-12-01

    This study is aimed at understanding the limits in reducing the size of a membrane-based CO2 separator and its pressure head needs and energy consumption, while maximizing its selectivity. The separator consists of a flow channel capped by a hydrophobic nanoporous membrane through which CO2 exits the anode flow stream of a direct methanol fuel cell (DMFC). A systematic study is conducted to determine the effect of differential pressure across the membrane, flow velocity, and flow channel dimensions on the separation process. The extraction flux was found to change linearly with pressure difference across the membrane. The effect of flow velocity on the extraction flux was negligible up to a critical velocity beyond which the separation process ceased. The separation selectivity enhanced by increasing the differential pressure across the membrane but did not change with varying the flow velocity and channel depth. Using the findings of the first part of the study, an optimal micro-separator (with a footprint of approximately 10 × 1 mm2) was designed/fabricated for a 20 W DMFC and its performance was experimentally analyzed. An unprecedented separation selectivity of close to 200 was achieved at a differential pressure of about 10 kPa and negligible energy consumption.

  9. Functional Sorbents for Selective Capture of Plutonium, Americium, Uranium, and Thorium in Blood

    PubMed Central

    Yantasee, Wassana; Sangvanich, Thanapon; Creim, Jeffery A; Pattamakomsan, Kanda; Wiacek, Robert J; Fryxell, Glen E; Addleman, R Shane; Timchalk, Charles

    2010-01-01

    Self-assembled monolayer on mesoporous supports (SAMMS™) are hybrid materials created from attachment of organic moieties onto very high surface area mesoporous silica. SAMMS with surface chemistries including three isomers of hydroxypyridinone, diphosphonic acid, acetamide phosphonic acid, glycinyl urea, and diethylenetriamine pentaacetate (DTPA) analog were evaluated for chelation of actinides (239Pu, 241Am, uranium, thorium) from blood. Direct blood decorporation using sorbents does not have toxicity or renal challenges associated with traditional chelation therapy and may have potential applications for critical exposure cases, reduction of nonspecific dose during actinide radiotherapy, and for sorbent hemoperfusion in renal insufficient patients, whose kidney clear radionuclides at very slow rate. Sorption affinity (Kd), sorption rate, selectivity, and stability of SAMMS were measured in batch contact experiments. An isomer of hydroxypyridinone (3,4-HOPO) on SAMMS demonstrated the highest affinity for all four actinides from blood and plasma and greatly outperformed the DTPA analog on SAMMS and commercial resins. In batch contact, a fifty percent reduction of actinides in blood was achieved within minutes, and there was no evidence of protein fouling or material leaching in blood after 24 hr. The engineered form of SAMMS (bead format) was further evaluated in a 100-fold scaled-down hemoperfusion device and showed no blood clotting after 2 hr. A 0.2 g quantity of SAMMS could reduce 50 wt.% of 100 ppb uranium in 50 mL of plasma in 18 min and that of 500 dpm mL?1 in 24 min. 3,4-HOPO-SAMMS has a long shelf-life in air and at room temperature for at least 8 years, indicating its feasibility for stockpiling in preparedness for an emergency. The excellent efficacy and stability of SAMMS materials in complex biological matrices suggest that SAMMS can also be used as orally administered drugs and for wound decontamination. By changing the organic groups of SAMMS, they can be used not only for actinides but also for other radionuclides. By using the mixture of these SAMMS materials, broad spectrum decorporation of radionuclides is very feasible. PMID:20699706

  10. Introduction of structural affinity handles as a tool in selective nucleic acid separations

    NASA Technical Reports Server (NTRS)

    Willson, III, Richard Coale (Inventor); Cano, Luis Antonio (Inventor)

    2011-01-01

    The method is used for separating nucleic acids and other similar constructs. It involves selective introduction, enhancement, or stabilization of affinity handles such as single-strandedness in the undesired (or desired) nucleic acids as compared to the usual structure (e.g., double-strandedness) of the desired (or undesired) nucleic acids. The undesired (or desired) nucleic acids are separated from the desired (or undesired) nucleic acids due to capture by methods including but not limited to immobilized metal affinity chromatography, immobilized single-stranded DNA binding (SSB) protein, and immobilized oligonucleotides. The invention is useful to: remove contaminating genomic DNA from plasmid DNA; remove genomic DNA from plasmids, BACs, and similar constructs; selectively separate oligonucleotides and similar DNA fragments from their partner strands; purification of aptamers, (deoxy)-ribozymes and other highly structured nucleic acids; Separation of restriction fragments without using agarose gels; manufacture recombinant Taq polymerase or similar products that are sensitive to host genomic DNA contamination; and other applications.

  11. Microphase separated structures of block copolymer thin film with non-volatile selective solvent

    NASA Astrophysics Data System (ADS)

    Yamamoto, Katsuhiro; Umegaki, Naoya; Matsutani, Taito; Takagi, Hideaki; Ito, Eri; Sakurai, Shinichi

    2010-11-01

    Microphase separated structures of block copolymer, polystyrene-b-polyisoprene (PS-b-PI, phiPS = 14%) including non-volatile selective solvent thin films were investigated using grazing incidence small angle X-ray scattering technique. The diethyl phthalate (DEP) was used as a non-volatile selective solvent which solves PS only. The DEP swelled PS phase selectively and the microphase separated structure transited from the PS spherical domain to the lamellar domain with an increase in DEP content in the bulk state. Similarly, the phase separated structure in the thin film prepared by spin cast on a silicon wafer from the mixture of toluene/DEP and block copolymer changed according to the initial DPE concentration. However, the morphologies developed in the thin film were shifted to the structures at lower DEP concentration than that expected from the initial concentration. Moreover, the cylindrical and lamellar domains were aligned parallel and perpendicularly to the substrate, respectively.

  12. Highly Selective Membranes For The Separation Of Organic Vapors Using Super-Glassy Polymers

    DOEpatents

    Pinnau, Ingo (Palo Alto, CA); Lokhandwala, Kaaeid (Menlo Park, CA); Nguyen, Phuong (Fremont, CA); Segelke, Scott (Mountain View, CA)

    1997-11-18

    A process for separating hydrocarbon gases of low boiling point, particularly methane, ethane and ethylene, from nitrogen. The process is performed using a membrane made from a super-glassy material. The gases to be separated are mixed with a condensable gas, such as a C.sub.3+ hydrocarbon. In the presence of the condensable gas, improved selectivity for the low-boiling-point hydrocarbon gas over nitrogen is achieved.

  13. In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis.

    PubMed

    Xu, Jiajie; Guzman, Juan J L; Andersen, Stephen J; Rabaey, Korneel; Angenent, Largus T

    2015-04-21

    We had extracted n-caproate from bioreactor broth. Here, we introduced in-line membrane electrolysis that utilized a pH gradient between two chambers to transfer the product into undissociated n-caproic acid without chemical addition. Due to the low maximum solubility of this acid, selective phase separation occurred, allowing simple product separation into an oily liquid containing ?90% n-caproic and n-caprylic acid. PMID:25792085

  14. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    SciTech Connect

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  15. Balancing Selection in Species with Separate Sexes: Insights from Fisher’s Geometric Model

    PubMed Central

    Connallon, Tim; Clark, Andrew G.

    2014-01-01

    How common is balancing selection, and what fraction of phenotypic variance is attributable to balanced polymorphisms? Despite decades of research, answers to these questions remain elusive. Moreover, there is no clear theoretical prediction about the frequency with which balancing selection is expected to arise within a population. Here, we use an extension of Fisher’s geometric model of adaptation to predict the probability of balancing selection in a population with separate sexes, wherein polymorphism is potentially maintained by two forms of balancing selection: (1) heterozygote advantage, where heterozygous individuals at a locus have higher fitness than homozygous individuals, and (2) sexually antagonistic selection (a.k.a. intralocus sexual conflict), where the fitness of each sex is maximized by different genotypes at a locus. We show that balancing selection is common under biologically plausible conditions and that sex differences in selection or sex-by-genotype effects of mutations can each increase opportunities for balancing selection. Although heterozygote advantage and sexual antagonism represent alternative mechanisms for maintaining polymorphism, they mutually exist along a balancing selection continuum that depends on population and sex-specific parameters of selection and mutation. Sexual antagonism is the dominant mode of balancing selection across most of this continuum. PMID:24812306

  16. Ion Selective Ceramics for Waste Separations. Input for Annual Accomplishments Report

    SciTech Connect

    Spoerke, Erik David

    2015-10-01

    This report discusses“Ion-Selective Ceramics for Waste Separations” which aims to develop an electrochemical approach to remove fission product waste (e.g., Cs+ ) from the LiCl-KCl molten salts used in the pyroprocessing of spent nuclear fuel.

  17. Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide

    E-print Network

    Wu, Jianzhong

    the separation of hydrogen and carbon dioxide via adsorption in activated carbons. In the simulations, both hydrogen and carbon dioxide molecules are modeled as Lennard-Jones spheres, and the activated carbons essentially no preference over the two gases and the selectivity of carbon dioxide relative to hydrogen falls

  18. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    SciTech Connect

    Bartsch, Richard A.

    2012-06-04

    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  19. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Zhang, Qiu Gen; Han, Guang Lu; Gong, Yi; Zhu, Ai Mei; Liu, Qing Lin

    2013-10-01

    Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles.Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles. Electronic supplementary information (ESI) available: Synthesis and characterization of SPEK-C; effect of the sulfonation degree on membrane formation; structure and properties of the self-assembled membranes; separation of cyt.c by the self-assembled membranes; size-selective separation of gold nanoparticles by the self-assembled membranes; comparison with commercial flat sheet ultrafiltration membranes. See DOI: 10.1039/c3nr03362g

  20. Bioremediation of uranium contamination with enzymatic uranium reduction

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1992-01-01

    Enzymatic uranium reduction by Desulfovibrio desulfuricans readily removed uranium from solution in a batch system or when D. desulfuricans was separated from the bulk of the uranium-containing water by a semipermeable membrane. Uranium reduction continued at concentrations as high as 24 mM. Of a variety of potentially inhibiting anions and metals evaluated, only high concentrations of copper inhibited uranium reduction. Freeze-dried cells, stored aerobically, reduced uranium as fast as fresh cells. D. desulfuricans reduced uranium in pH 4 and pH 7.4 mine drainage waters and in uraniumcontaining groundwaters from a contaminated Department of Energy site. Enzymatic uranium reduction has several potential advantages over other bioprocessing techniques for uranium removal, the most important of which are as follows: the ability to precipitate uranium that is in the form of a uranyl carbonate complex; high capacity for uranium removal per cell; the formation of a compact, relatively pure, uranium precipitate.

  1. Adsorbate shape selectivity: Separation of the HF/134a azeotrope over carbogenic molecular sieve

    SciTech Connect

    Hong, A.; Mariwala, R.K.; Kane, M.S.; Foley, H.C.

    1995-03-01

    Experimental evidence is provided for adsorptive shape selectivity in the separation of the azeotrope between HF and 1,1,1,2-tetrafluoroethane (134a) over pyrolyzed poly(furfuryl alcohol)-derived carbogenic molecular sieve (PPFA-CMS). The separation can be accomplished over coconut charcoal or Carbosieve G on the basis of the differences in the extent of equilibrium adsorption of HF and 134a. On these adsorbents 134a is more strongly bound than HF, thus it elutes much more slowly from the bed. The heat of adsorption for 134a in the vicinity of 200 C on Carbosieve G is {approximately}8.8 kcal/mol. In contrast, when the same azeotropic mixture is separated over PPFA-CMS prepared at 500 C, 134a is not adsorbed. As a result 134a elutes from the bed first, followed by HF. The reversal is brought about by the narrower pore size and pore size distribution of the PPFA-CMS versus that for Carbosieve G. Thus the separation over PPFA-CMS is an example of adsorbate shape selectivity and represents a limiting case of kinetic separation.

  2. Optimal SVM parameter selection for non-separable and unbalanced datasets

    PubMed Central

    Jiang, Peng; Missoum, Samy; Chen, Zhao

    2014-01-01

    This article presents a study of three validation metrics used for the selection of optimal parameters of a support vector machine (SVM) classifier in the case of non-separable and unbalanced datasets. This situation is often encountered when the data is obtained experimentally or clinically. The three metrics selected in this work are the area under the ROC curve (AUC), accuracy, and balanced accuracy. These validation metrics are tested using computational data only, which enables the creation of fully separable sets of data. This way, non-separable datasets, representative of a real-world problem, can be created by projection onto a lower dimensional sub-space. The knowledge of the separable dataset, unknown in real-world problems, provides a reference to compare the three validation metrics using a quantity referred to as the “weighted likelihood”. As an application example, the study investigates a classification model for hip fracture prediction. The data is obtained from a parameterized finite element model of a femur. The performance of the various validation metrics is studied for several levels of separability, ratios of unbalance, and training set sizes. PMID:25258621

  3. In-line assay monitor for uranium hexafluoride

    DOEpatents

    Wallace, S.A.

    1980-03-21

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from uranium-235. The uranium-235 content of the specimen is determined from comparison of the accumulated 185 keV energy counts and reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen.

  4. Loading Capacities for Uranium, Plutonium and Neptunium in High Caustic Nuclear Waste Storage Tanks Containing Selected Sorbents

    SciTech Connect

    OJI, LAWRENCE

    2004-11-16

    In this study the loading capacities of selected actinides onto some of the most common sorbent materials which are present in caustic nuclear waste storage tanks have been determined. Some of these transition metal oxides and activated carbons easily absorb or precipitate plutonium, neptunium and even uranium, which if care is not taken may lead to unwanted accumulation of some of these fissile materials in nuclear waste tanks during waste processing. Based on a caustic synthetic salt solution simulant bearing plutonium, uranium and neptunium and ''real'' nuclear waste supernate solution, the loading capacities of these actinides onto iron oxide (hematite), activated carbon and anhydrous sodium phosphate have been determined. The loading capacities for plutonium onto granular activated carbon and iron oxide (hematite) in a caustic synthetic salt solution were, respectively, 3.4 0.22 plus or minus and 5.5 plus or minus 0.38 microgram per gram of sorbent. The loading capacity for plutonium onto a typical nuclear waste storage tank sludge solids was 2.01 microgram per gram of sludge solids. The loading capacities for neptunium onto granular activated carbon and iron oxide (hematite) in a caustic synthetic salt solution were, respectively, 7.9 plus or minus 0.52 and greater than 10 microgram per gram of sorbent. The loading capacity for neptunium onto a typical nuclear waste storage tank sludge solids was 4.48 microgram per gram of sludge solids. A typical nuclear waste storage tank solid material did not show any significant affinity for uranium. Sodium phosphate showed significant affinity for both neptunium and uranium, with loading capacities of 6.8 and 184.6 plus or minus 18.5 microgram per gram of sorbent, respectively.

  5. Large-Flow-Area Flow-Selective Liquid/Gas Separator

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Bradley, Karla F.

    2010-01-01

    This liquid/gas separator provides the basis for a first stage of a fuel cell product water/oxygen gas phase separator. It can separate liquid and gas in bulk in multiple gravity environments. The system separates fuel cell product water entrained with circulating oxygen gas from the outlet of a fuel cell stack before allowing the gas to return to the fuel cell stack inlet. Additional makeup oxygen gas is added either before or after the separator to account for the gas consumed in the fuel cell power plant. A large volume is provided upstream of porous material in the separator to allow for the collection of water that does not exit the separator with the outgoing oxygen gas. The water then can be removed as it continues to collect, so that the accumulation of water does not impede the separating action of the device. The system is designed with a series of tubes of the porous material configured into a shell-and-tube heat exchanger configuration. The two-phase fluid stream to be separated enters the shell-side portion of the device. Gas flows to the center passages of the tubes through the porous material and is then routed to a common volume at the end of the tubes by simple pressure difference from a pumping device. Gas flows through the porous material of the tubes with greater ease as a function of the ratio of the dynamic viscosity of the water and gas. By careful selection of the dimensions of the tubes (wall thickness, porosity, diameter, length of the tubes, number of the tubes, and tube-to-tube spacing in the shell volume) a suitable design can be made to match the magnitude of water and gas flow, developed pressures from the oxygen reactant pumping device, and required residual water inventory for the shellside volume.

  6. Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration

    SciTech Connect

    Francis, C. W.

    1993-09-01

    To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

  7. Design and Development of Selective Extractants for An/Ln Separations

    SciTech Connect

    Robert T. Paine

    2009-12-04

    This study has succeeded in further developing phosphinoylmethyl pyridine compounds as selective recognition and separations agents for trivalent lanthanide and actinide ions present in nuclear materials. The parameters for efficient separations have been further elucidated and factors important to further development have been identified. Further development will lead to optimal extractant design for effective actinide ion partitioning under process practical conditions. The primary objective of the project involved the design, synthesis, and characterization of the extraction performance of 2,6-bis(phosphinomethyl)pyridine N,P,P{prime}-trioxides (NOPOPO) as potential reagents for the separation of Am, Cm, and fission product lanthanides from other transuranics and fission products and for acting as a separations 'platform' for the mutual separation of Am/Cm from the lanthanides. The secondary but critical objective of the project focused on the characterization of aqueous acid and radiation stability of NOPOPO ligands. Further, the project served as a interdisciplinary training vehicle for new, young investigators in actinide separations chemistry.

  8. Appraisal of selected epidemiologic issues from studies of lung cancer among uranium and hard rock miners

    SciTech Connect

    Petersen, G R; Sever, L E

    1982-04-01

    An extensive body of published information about lung cancer among uranium miners was reviewed and diverse information, useful in identifying important issues but not in resolving them was found. Measuring exposure and response; thresholds of exposure; latency or the period from first mining experience to death; effort to predict excess risk of death, using a model; effects of smoking and radon daughter exposure on the histology of lung tumors; and the interplay of factors on the overall risk of death were all examined. The general concept of thresholds; that is, an exposure level below which risk does not increase was considered. The conclusion is that it should be possible to detect and estimate an epidemiologic threshold when the cohorts have been followed to the death of all members. Issues concerning latency in the studies of uranium miners published to date were examined. It is believed that the induction-latent period for lung cancer among uranium miners may be: as little as 10 to more than 40 years; dependent on age at which exposure begins; exposure rate; and ethnicity or smoking habits. Although suggested as factual, their existence is uncertain. An effect due to the exposure rate may exist although it has not been factual, their existence is uncertain. An effect due to the exposure rate may exist although it has not been confirmed. The median induction-latent period appears to be in excess of the 15 years frequently cited for US uranium miner. A distinct pattern of shorter induction-latent periods with increasing age at first mining exposure is reported. The evidence for and against an unusual histologic pattern of lung cancers among uranium miners was examined. The ratio of epidermoid to small cell types was close to 1:2; the ratio in the general population is nearer 2:1. The histologic pattern warrants closer attention of pathologists and epidemiologists. (ERB) (ERB)

  9. Uranium geochemistry of selected rock units from the Marysvale Volcanic Field, Piute County, Utah

    SciTech Connect

    Hoffer, R.L.

    1982-01-01

    The Marysvale Volcanic Field is an area rich in uranium. This study was undertaken to determine if the uranium deposits might be of volcanogenic origin. This geochemical study consisted of determining the major, minor and trace element concentrations of the major volcanic units, and the relationships of the rock chemistry to uranium mineralization. The units in the Marysvale Volcanic Field, consist of ash-flow tuffs, intermediate lava flows, and associated intrusives of the Bullion Canyon volcanics and ash-flow tuffs, volcaniclastic deposits, domes and stocks of the Mount Belknap volcanics. When compared to overlaying welded tuff or rhyolitic units, the vitrophyric samples from the Mount Belknap volcanic units, are all enriched in F, Cs, and U, and that 50% of the vitrophyres are enriched in Cr, Cu, Mo, Ni, Zr, Pb, Sr, V, and Zn. Overlying untis have been devitrified and have released U as well as other trace elements into the volcanogenic system. This study has reevaluated the Marysvale Central Mining District and has proposed another theory as to the origin of the uranium deposits in that area. This hypothesis places a previously unidentified caldera around the area, and this author has named it the Marysvale caldera. Evidence for this caldera includes: arcurate faults which surround the region; alteration patterns which appear to form a circular pattern along the boundary of the proposed caldera; the presence of small monzonite intrusive bodies appear to ring the caldera; the presence of ash-flow tuffs which thicken appreciably along the northeast boundary of the caldera; and the central intrusive which may represent a resurgent phase of the proposed caldera. This seems to be a viable alternative to the magmatic hydrothermal origin for the uranium deposits presently proposed for the Central Mining District.

  10. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    DOEpatents

    Baker, Richard W. (Palo Alto, CA); Pinnau, Ingo (Palo Alto, CA); He, Zhenjie (Fremont, CA); Da Costa, Andre R. (Menlo Park, CA); Daniels, Ramin (San Jose, CA); Amo, Karl D. (Mountain View, CA); Wijmans, Johannes G. (Menlo Park, CA)

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  11. Selective comprehensive multidimensional separation for resolution enhancement in high performance liquid chromatography. Part II: applications.

    PubMed

    Groskreutz, Stephen R; Swenson, Michael M; Secor, Laura B; Stoll, Dwight R

    2012-03-01

    In this second paper of a two-part series, we demonstrate the utility of an approach to enhancing the resolution of select portions of conventional 1D-LC separations, which we refer to as selective comprehensive two-dimensional HPLC (sLC × LC), in three quite different example applications. In the first paper of the series we described the principles of this approach, which breaks the long-standing link in online multi-dimensional chromatography between the timescales of sampling the first dimension (¹D) separation and the separation of fractions of ¹D effluent in the second dimension. In the first example, the power of the sLC × LC approach to significantly reduce the analysis time and method development effort is demonstrated by selectively enhancing the resolution of critical pairs of peaks that are unresolved by a one-dimensional separation (1D-LC) alone. Transfer and subsequent ²D separations of multiple fractions of a particular ¹D peak produces a two-dimensional chromatogram that reveals the coordinates of the peaks in the 2D separation space. The added time dimension of sLC × LC chromatograms also facilitates the application of sophisticated chemometric curve resolution algorithms to further resolve peaks that are otherwise chromatographically unresolved. This is demonstrated in this work by the targeted analysis of phenytoin in urban wastewater effluent using UV diode array detection. Quantitation by both standard addition and external calibration methods yielded results that were not statistically different from 2D-LC/MS/MS analysis of the same samples. Next, we demonstrate the utility of sLC × LC for reducing ion suppression due to matrix effects in electrospray ionization mass spectrometry through the analysis of cocaine in urban wastewater effluent. Finally, we explore the flexibility of the approach in its application to two select regions of a single ¹D separation of triclosan and cocaine. The diversity of these applications demonstrates the power and versatility of the sLC × LC approach, which will benefit tremendously from further optimization and advances in valve technology that specifically address the needs of this new technique. PMID:21816400

  12. Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications

    SciTech Connect

    Mei Hong; Richard Noble; John Falconer

    2007-09-24

    Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H2 separation from other light gases (CO2, CH4, CO). However, current zeolite membranes have either too big zeolite pores or a large number of defects and have not been successful for H2 separation from light gases. The objective of this study is to develop zeolite membranes that are more suitable for H2 separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO2 and CH4 adsorption. Silylation on B-ZSM-5 membranes increased H2 selectivity both in single component and in mixtures with CO2, CH4, or N2. Single gas and binary mixtures of H2/CO2 and H2/CH4 were permeated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one B-ZSM-5 membrane after silylation, the H2/CO2 separation selectivity at 473 K increased from 1.4 to 37, whereas the H2/CH4 separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated BZSM-5 membrane was activated with activation energy of {approx}10 kJ/mol, but the CO2 and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H2 permeance and H2/CO2 and H2/CH4 separation selectivities increased with temperature. At 673 K, the H2 permeance was 1.0x10-7 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1, and the H2/CO2 separation selectivity was 47. Above 673 K, the silylated membrane catalyzed reverse water gas shift reaction and still separated H2 with high selectivity; and it was thermally stable. However, silylation decreased H2 permeance more than one order of magnitude. Increasing the membrane feed pressure increased the H2 flux and the H2 mole fraction in the permeate stream for both H2/CO2 and H2/CH4 mixtures. The H2 separation performance of the silylated B-ZSM-5 membranes depended on the initial membrane quality and acidity, as well as the silane precursors. Another approach used in this study is optimizing the synthesis of small-pore SAPO-34 (CHA) membranes and/or modifying SAPO-34 membranes by silylation or ion exchange. For SAPO-34 membranes, strong CO2 adsorption inhibited H2 adsorption and decreased H2 permeances, especially at low temperatures. At 253 K, CO2/H2 separation selectivities of a SAPO-34 membrane were greater than 100 with CO2 permeances of about 3 x 10-8 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1. The high reverse-selectivity of the SAPO-34 membranes can minimize H2 recompression because H2 remained in the retentate stream at a higher pressure. The CO2/H2 separation selectivity exhibited a maximum with CO2 feed concentration possibly caused by a maximum in the CO2/H2 sorption selectivity with increased CO2 partial pressure. The SAPO-34 membrane separated H2 from CH4 because CH4 is close to the SAPO-34 pore size so its diffusivity (ABSTRACT TRUNCATED)

  13. New influence factor inducing difficulty in selective flotation separation of Cu-Zn mixed sulfide minerals

    NASA Astrophysics Data System (ADS)

    Deng, Jiu-shuai; Mao, Ying-bo; Wen, Shu-ming; Liu, Jian; Xian, Yong-jun; Feng, Qi-cheng

    2015-02-01

    Selective flotation separation of Cu-Zn mixed sulfides has been proven to be difficult. Thus far, researchers have found no satisfactory way to separate Cu-Zn mixed sulfides by selective flotation, mainly because of the complex surface and interface interaction mechanisms in the flotation solution. Undesired activation occurs between copper ions and the sphalerite surfaces. In addition to recycled water and mineral dissolution, ancient fluids in the minerals are observed to be a new source of metal ions. In this study, significant amounts of ancient fluids were found to exist in Cu-Zn sulfide and gangue minerals, mostly as gas-liquid fluid inclusions. The concentration of copper ions released from the ancient fluids reached 1.02 × 10-6 mol/L, whereas, in the cases of sphalerite and quartz, this concentration was 0.62 × 10-6 mol/L and 0.44 × 10-6 mol/L, respectively. As a result, the ancient fluid is a significant source of copper ions compared to mineral dissolution under the same experimental conditions, which promotes the unwanted activation of sphalerite. Therefore, the ancient fluid is considered to be a new factor that affects the selective flotation separation of Cu-Zn mixed sulfide ores.

  14. Selective separation of virgin and post-consumer polymers (PET and PVC) by flotation method

    SciTech Connect

    Burat, Firat; Gueney, Ali; Olgac Kangal, M.

    2009-06-15

    More and more polymer wastes are generated by industry and householders today. Recycling is an important process to reduce the amount of waste resulting from human activities. Currently, recycling technologies use relatively homogeneous polymers because hand-sorting waste is costly. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. At present, most waste polymers cause serious environmental problems. Burning polymers for recycling is not practiced since poisonous gases are released during the burning process. Particularly, polyvinyl chloride (PVC) materials among waste polymers generate hazardous HCl gas, dioxins containing Cl, etc., which lead to air pollution and shorten the life of the incinerator. In addition, they make other polymers difficult to recycle. Both polyethylene terephthalate (PET) and PVC have densities of 1.30-1.35 g/cm{sup 3} and cannot be separated using conventional gravity separation techniques. For this reason, polymer recycling needs new techniques. Among these techniques, froth flotation, which is also used in mineral processing, can be useful because of its low cost and simplicity. The main objective of this research is to recycle PET and PVC selectively from post-consumer polymer wastes and virgin polymers by using froth flotation. According to the results, all PVC particles were floated with 98.8% efficiency in virgin polymer separation while PET particles were obtained with 99.7% purity and 57.0% efficiency in post-consumer polymer separation.

  15. Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres.

    PubMed

    Fu, Jianwei; Xin, Qianqian; Wu, Xuechen; Chen, Zhonghui; Yan, Ya; Liu, Shujun; Wang, Minghuan; Xu, Qun

    2016-01-01

    Polydopamine (PDA) microspheres, synthesized by a facile oxidation polymerization route, were evaluated as a potential adsorbent for selective adsorption and separation of organic dyes. The adsorption processes towards nine water-soluble dyes (anionic dyes: methyl orange (MO), eosin-Y (EY), eosin-B (EB), acid chrome blue K (ACBK), neutral dye: neutral red (NR), and cationic dyes: rhodamine B (RhB), malachite green (MG), methylene blue (MB), safranine T (ST)) were thoroughly investigated. The adsorption selectivity of organic dyes onto PDA microspheres was successfully applied for the separation of dyes mixtures. Various influential factors such as solution pH, temperature, and contact time were employed to ascertain the optimal condition for adsorption of representative organic dyes including MB, MG and NR. The pseudo-first-order and pseudo-second-order kinetics models were used to fit the adsorption kinetics process. Five isothermal adsorption models (Langmuir, Dubnin-Radushkevich, Temkin, Freundlich and Harkins-Jura) were used to investigate the adsorption thermodynamics properties. The results showed that the PDA microspheres owned good selective adsorption ability towards cationic dyes. The adsorption kinetics process conformed to the pseudo-second-order kinetics model and the Langmuir isotherm model was more appropriate for tracing the adsorption behavior than other isotherm models. Thus, we can conclude PDA microspheres may be a high-efficiency selective adsorbent towards some cationic dyes. PMID:26407057

  16. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (ESTSC)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  17. Uranium industry annual 1998

    SciTech Connect

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  18. Uranium removal from soils: An overview from the Uranium in Soils Integrated Demonstration program

    SciTech Connect

    Francis, C.W.; Brainard, J.R.; York, D.A.; Chaiko, D.J.; Matthern, G.

    1994-09-01

    An integrated approach to remove uranium from uranium-contaminated soils is being conducted by four of the US Department of Energy national laboratories. In this approach, managed through the Uranium in Soils Integrated Demonstration program at the Fernald Environmental Management Project, Fernald, Ohio, these laboratories are developing processes that selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste that is difficult to manage or dispose of. These processes include traditional uranium extractions that use carbonate as well as some nontraditional extraction techniques that use citric acid and complex organic chelating agents such as naturally occurring microbial siderophores. A bench-scale engineering design for heap leaching; a process that uses carbonate leaching media shows that >90% of the uranium can be removed from the Fernald soils. Other work involves amending soils with cultures of sulfur and ferrous oxidizing microbes or cultures of fungi whose role is to generate mycorrhiza that excrete strong complexers for uranium. Aqueous biphasic extraction, a physical separation technology, is also being evaluated because of its ability to segregate fine particulate, a fundamental requirement for soils containing high levels of silt and clay. Interactions among participating scientists have produced some significant progress not only in evaluating the feasibility of uranium removal but also in understanding some important technical aspects of the task.

  19. Investigation of thermal treatment on selective separation of post consumer plastics prior to froth flotation

    SciTech Connect

    Guney, Ali; Poyraz, M. Ibrahim; Kangal, Olgac Burat, Firat

    2013-09-15

    Highlights: • Both PET and PVC have nearly the same densities. • The best pH value will be 4 for optimizing pH values. • Malic acid gave the best results for selective separation of PET and PVC. - Abstract: Plastics have become the widely used materials because of their advantages, such as cheapness, endurance, lightness, and hygiene. However, they cause waste and soil pollution and they do not easily decompose. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. Depending on their surface characteristics, these plastics can be separated from each other by flotation method which is useful mineral processing technique with its low cost and simplicity. The main objective of this study is to investigate the flotation characteristics of PET and PVC and determine the effect of plasticizer reagents on efficient plastic separation. For that purpose, various parameters such as pH, plasticizer concentration, plasticizer type, conditioning temperature and thermal conditioning were investigated. As a result, PET particles were floated with 95.1% purity and 65.3% efficiency while PVC particles were obtained with 98.1% purity and 65.3% efficiency.

  20. Modeling of the Microchemistry for Diffusion of Selected Impurities in Uranium

    SciTech Connect

    Kirkpatrick, J. R.; Bullock, J.S. IV

    2001-09-01

    Unalloyed metallic uranium used in some work done at Y-12 contains small quantities of impurities, the three most significant of which are carbon, iron, and silicon. During metallurgical processing, as the metal cools from a molten condition towards room temperature, the metallic matrix solution becomes supersaturated in each of the impurities whose concentration exceeds the solubility limit. Many impurity atoms form compounds with uranium that precipitate out of the solution, thus creating and growing inclusions. The objective of the present work is to study the distribution of impurity atoms about some of the inclusions, with a view toward examining the effect of the interaction between inclusions on the impurity atom distribution. The method used is time-dependent mass diffusion from the supersaturated solution to the surfaces of the inclusions. Micrographs of metal samples suggest that the inclusions form in successive stages. After each inclusion forms, it begins to draw impurity atoms from its immediate vicinity, thus altering the amounts and distributions of impurity atoms available for formation and growth of later inclusions. In the present work, a one-dimensional spherical approximation was used to simulate inclusions and their regions of influence. A first set of calculations was run to simulate the distribution of impurity atoms about the largest inclusions. Then, a second set of calculations was run to see how the loss of impurity atoms to the largest inclusions might affect the distribution of impurity atoms around the next stage of inclusions. Plots are shown for the estimated distributions of impurity atoms in the region of influence about the inclusions for the three impurities studied. The authors believe that these distributions are qualitatively correct. However, there is enough uncertainty about precisely when inclusions nucleate and begin to grow that one should not put too much reliance on the quantitative results. This work does provide a framework and an advance toward a comprehensive model of uranium metal microchemical distributions.

  1. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    SciTech Connect

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  2. Imprint-coating synthesis of selective functionalized ordered mesoporous sorbents for separation and sensors

    DOEpatents

    Dai, Sheng (Knoxville, TN); Burleigh, Mark C. (Lenoir City, TN); Shin, Yongsoon (Richland, WA)

    2001-01-01

    The present invention relates generally to mesoporous sorbent materials having high capacity, high selectivity, fast kinetics, and molecular recognition capability. The invention also relates to a process for preparing these mesoporous substrates through molecular imprinting techniques which differ from convention techniques in that a template molecule is bound to one end of bifunctional ligands to form a complex prior to binding of the bifunctional ligands to the substrate. The present invention also relates to methods of using the mesoporous sorbent materials, for example, in the separation of toxic metals from process effluents, paints, and other samples; detection of target molecules, such as amino acids, drugs, herbicides, fertilizers, and TNT, in samples; separation and/or detection of substances using chromatography; imaging agents; sensors; coatings; and composites.

  3. Isotopic composition and origin of uranium and plutonium in selected soil samples collected in Kosovo.

    PubMed

    Danesi, P R; Bleise, A; Burkart, W; Cabianca, T; Campbell, M J; Makarewicz, M; Moreno, J; Tuniz, C; Hotchkis, M

    2003-01-01

    Soil samples collected from locations in Kosovo where depleted uranium (DU) ammunition was expended during the 1999 Balkan conflict were analysed for uranium and plutonium isotopes content (234U, 235U, 236U, 238U, 238Pu, (239 + 240)Pu). The analyses were conducted using gamma spectrometry (235U, 238U), alpha spectrometry (238Pu, (239 + 240)Pu), inductively coupled plasma-mass spectrometry (ICP-MS) (234U, 235U, 236U, 238U) and accelerator mass spectrometry (AMS) (236U)). The results indicated that whenever the U concentration exceeded the normal environmental values (approximately 2 to 3 mg/kg) the increase was due to DU contamination. 236U was also present in the released DU at a constant ratio of 236U (mg/kg)/238U (mg/kg) = 2.6 x 10(-5), indicating that the DU used in the ammunition was from a batch that had been irradiated and then reprocessed. The plutonium concentration in the soil (undisturbed) was about 1 Bq/kg and, on the basis of the measured 238Pu/(239 + 240)Pu, could be entirely attributed to the fallout of the nuclear weapon tests of the 1960s (no appreciable contribution from DU). PMID:12500799

  4. Summary report on reprocessing evaluation of selected inactive uranium mill tailings sites

    SciTech Connect

    Not Available

    1983-09-01

    Sandia National Laboratories has been assisting the Department of Energy in the Uranium Mill Tailings Remedial Actions Program (UMTRAP) the purpose of which is to implement the provisions of Title I of Public Law 95-604, Uranium Mill Tailings Radiation Control Act of 1978.'' As part of this program, there was a need to evaluate the mineral concentration of the residual radioactive materials at some of the designated processing sites to determine whether mineral recovery would be practicable. Accordingly, Sandia contracted Mountain States Research and Development (MSRD), a division of Mountain States Mineral Enterprises, to drill, sample, and test tailings at 12 sites to evaluate the cost of and the revenue that could be derived from mineral recovery. UMTRAP related environmental and engineering sampling and support activities were performed in conjunction with the MSRD operations. This summary report presents a brief description of the various activities in the program and of the data and information obtained and summarizes the results. 8 refs., 9 tabs.

  5. Sulfate Separation from Aqueous Alkaline Solutions by Selective Crystallization of Alkali Metal Coordination Capsules

    SciTech Connect

    Rajbanshi, Arbin; Moyer, Bruce A; Custelcean, Radu

    2011-01-01

    Self-assembly of a tris(urea) anion receptor with Na{sub 2}SO{sub 4} or K{sub 2}SO{sub 4} yields crystalline capsules held together by coordinating Na{sup +} or K{sup +} cations and hydrogen-bonding water bridges, with the sulfate anions encapsulated inside urea-lined cavities. The sodium-based capsules can be selectively crystallized in excellent yield from highly competitive aqueous alkaline solutions ({approx}6 M Na{sup +}, pH 14), thereby providing for the first time a viable approach to sulfate separation from nuclear wastes.

  6. The Selective Separation of Anions and Cations in Nuclear Waste Using Commercially Available Molecular Recognition Technology (MRT) Products

    SciTech Connect

    Izatt, S. R.; Bruening, R. L.; Krakowiak, K. E.; Izatt, R. M.

    2003-02-25

    This paper describes the use of some of IBC's SuperLig{reg_sign}, MacroLig{reg_sign}, and AnaLig{reg_sign} molecular recognition technology products to effectively and selectively separate and recover cesium, technetium, strontium, and radium from radioactive waste solutions. Distinct advantages are given over conventional separation techniques. Separations are described and results given for the target ions over chemically similar ions often present at much higher concentrations. The separations are performed in solutions of either high or low pH and usually containing high concentrations of salts. Other separations involving components of radioactive and mixed waste are noted.

  7. Just in time-selection: A rapid semiautomated SELEX of DNA aptamers using magnetic separation and BEAMing.

    PubMed

    Hünniger, Tim; Wessels, Hauke; Fischer, Christin; Paschke-Kratzin, Angelika; Fischer, Markus

    2014-11-01

    A semiautomated two-step method for in vitro selection of DNA aptamers using magnetic separation and solid-phase emulsion polymerase chain reaction has been developed. The application of a magnetic separator allows the simultaneous processing of up to 12 SELEXs (systematic evolution of ligands by exponential enrichment) with different targets or buffer conditions. Using a magnetic separator and covalent target immobilization on magnetic beads, the selection process was simplified and the substeps of aptamer/target incubation, washing, and elution of the aptamers were merged into one automated procedure called "FISHing". Without further processing the resulting FISHing eluates are suitable for BEAMing (beads, emulsion, amplification, and magnetics), which includes the amplification by emPCR (emulsion polymerase chain reaction) and strand separation by the implementation of covalently immobilized reverse primers on magnetic beads. The novel selection process has been proved and validated by selecting and characterization of aptamers to the wine fining agent lysozyme. PMID:25286022

  8. Metal separation from mixed types of batteries using selective precipitation and liquid-liquid extraction techniques.

    PubMed

    Provazi, Kellie; Campos, Beatriz Amaral; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares

    2011-01-01

    The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted. PMID:20880689

  9. Calix[4]pyrroles: highly selective stationary phases for gas chromatographic separations.

    PubMed

    Fan, Jing; Wang, Zhenzhong; Li, Qian; Qi, Meiling; Shao, Shijun; Fu, Ruonong

    2014-10-01

    Calix[4]pyrroles offer a great potential as stationary phases for gas chromatography (GC) due to their unique structures and physicochemical properties. Herein we present the first report of using two calix[4]pyrroles, namely meso-tetra-cyclohexylcalix[4]pyrrole (THCP) and meso-octamethylcalix[4]pyrrole (OMCP). These stationary phases were statically coated onto capillary columns and investigated in terms of column efficiency, polarity, separation performance, thermal stability and repeatability. The columns achieved column efficiencies of 2200-3000plates/m and exhibited nonpolar nature with an average polarity of 67 for THCP and 64 for OMCP, respectively. THCP stationary phase shows high selectivity for analytes of different polarity and exhibits nice peak shapes, especially for aldehydes, alcohols and anilines that are prone to severe peak tailing in GC analysis. Interestingly, THCP stationary phase possesses superior resolving ability for aniline and benzenediol positional isomers while OMCP shows preferential selectivity for nonpolar analytes such as hexane isomers. Moreover, calix[4]pyrrole columns also have good thermal stability up to 260°C and repeatability with a relative standard deviation (RSD%) of less than 0.10% for run-to-run and less than 5.2% for column-to-column. This work demonstrates the unique separation performance of calix[4]pyrroles and their promising future as a new class of GC stationary phases. PMID:25173993

  10. Highly selective separation of enantiomers using a chiral porous organic cage.

    PubMed

    Zhang, Jun-Hui; Xie, Sheng-Ming; Wang, Bang-Jin; He, Pin-Gang; Yuan, Li-Ming

    2015-12-24

    Porous solids composed of shape-persistent organic cage molecules have attracted considerable attention due to their important applications such as molecular separation, heterogeneous catalysis, and gas storage. In this study, an imine-linked porous organic cage (POC) CC10 diluted with a polysiloxane OV-1701 was explored as a novel stationary phase for high-resolution gas chromatography (GC). A wide variety of enantiomers belonging to different classes of organic compounds have been resolved on the coated capillary column, including chiral alcohols, esters, ketones, ethers, halohydrocarbons, epoxides, and organic acids. The fabricated column complements to commercial ?-DEX 120 column and our recently reported CC3-R column for separating enantiomers, which indicates that the excellent chiral recognition ability of CC10 is not only interesting academically, but also has potential for practical application. In addition, CC10 also exhibits good selectivity for the separation of n-alkanes, n-alcohols, Grob mixture, and positional isomers. This work also indicates that this type of chiral POCs will become a new class of chiral selector in the near future. PMID:26632517

  11. Fast separation of selected cathinones and phenylethylamines by supercritical fluid chromatography.

    PubMed

    Pauk, Volodymyr; Žihlová, Veronika; Borovcová, Lucie; Havlí?ek, Vladimír; Schug, Kevin; Lemr, Karel

    2015-12-01

    The chromatographic behaviour of eleven synthetic cathinones and four phenylethylamines under supercritical/subcritical fluid conditions was investigated. Four stationary phases with sub-2?m particles (Waters Acquity UPC(2) BEH silica, BEH 2-ethylpyridine, CSH Fluoro-Phenyl, and HSS C18SB) were evaluated in terms of isomer resolution, chromatographic peak shape, and analysis time. Methanol, water, formic acid, ammonium hydroxide, ammonium acetate, and ammonium formate were mixed with carbon dioxide to test their influence on analyte retention and peak shapes. Methanol and ammonium cations were essential for successful separations. Efficient separations of four isomeric pairs (R>1), and most of the remaining analytes, were achieved in less than 3.3min on BEH and Fluoro-Phenyl columns with gradient of methanolic ammonium hydroxide in CO2. Drugs were detected by positive electrospray ionization-triple quadrupole mass spectrometry in selected reaction monitoring mode. Added detection specificity and faster separation of isomers on the BEH column using a steep gradient and high flow rate reduced analysis time of the mixture of 15 drugs to 1.6min. PMID:26585202

  12. From vesicles to micelles: microphase separation of amphiphilic dendrimer copolymers in a selective solvent.

    PubMed

    Lin, Bo; Liu, Lan; Zhang, Shijie; Huang, Junzuo; He, Fuan; Qi, Minhua

    2015-11-11

    The microphase separation of amphiphilic dendrimer copolymers in a selective solvent with different excluded volume effects (?S) is investigated using three-dimensional real space self-consistent field theory. The morphological transition of disorder-to-order and order-to-order is observed by systematically regulating the excluded volume effect parameter, interaction parameter of block species, and the spacer length of the second generation of the dendrimer. The ordered segregates of the dendrimer solution are observed with a stronger excluded volume effect due to the strong depletion effect of solvent on the dendrimer. The relative magnitude between hydrophobic block B and hydrophilic block C is very important for microphase separation: when they are equal (NB = NC), a structural shift from vesicles to micelles has been found upon increasing the interaction parameter, and the region of disordered morphology is controlled by the interfacial free energy (Uint); when NB > NC, the vesicular morphologies overwhelmingly appear in the ordered region and then NC increases to close to NB, and the ordered aggregates take a shift from vesicles to micelles. Furthermore, the amphiphilic block C of the dendrimer is intended to enlarge to NC > NB, the micellar morphology is dominant in the ordered regime with a stronger excluded volume effect, which contributes to the decrease in the hydrophobic block repulsion that is affected by the decrease in the entropic free energy (-TS). The knowledge obtained from the microphase separation of dendrimer solution induced by the excluded volume effect of selective solvent is full of referential significance in understanding the morphological transition from vesicles to micelles for the amphiphile in the field of soft matter. PMID:26394064

  13. Selective separation of rare earth metals by solvent extraction in the presence of new hyrophilic chelating polymers functionalized with ethylenediaminetetraacetic acid. II. Separation properties by solvent extraction

    SciTech Connect

    Matsuyama, Hideto; Miyamoto, Yoshikazu; Teramoto, Masaaki

    1996-03-01

    The selective separation of rare earth metals by solvent extraction including chelating polymers in the aqueous phase was investigated. The chelating polymers were synthesized in this laboratory by introducing ethylenediaminetetraacetic acid (EDTA) onto water-soluble polyallylamine. The highest selectivity obtained for the Y/Er separation system was 14.7, which was much higher than that in extraction including EDTA (about 5.0). This means that the number of extraction stages required can be considerably reduced by the addition of chelating polymers. The effects of several experimental conditions such as pH, extractant concentrations, chelating polymer concentrations, and initial total rare earth metal concentrations, chelating polymer concentrations, and initial total rare earth metal concentrations on the separation factors and the distribution ratios for the Y/Er system were studied in detail. Furthermore, this extraction method was applied to other separation systems (Y/Dy, Y/Ho, Y/Tm). A remarkably high separation factor (12.6) was obtained for the Y/Tm system and the Y/Er system, although the separation factors were comparable to those in the presence of EDTA in the Y/Dy and Y/Ho systems.

  14. Uranium industry annual 1995

    SciTech Connect

    1996-05-01

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  15. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    SciTech Connect

    Not Available

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  16. Ion imprinted polymer particles for separation of yttrium from selected lanthanides.

    PubMed

    Kala, Ramakrishnan; Rao, Talasila Prasada

    2006-06-01

    Lanthanide(III) (Dy, Gd, Tb and Y) ion imprinted polymer (IIP) materials were synthesized via single pot reaction by mixing lanthanide imprint ion with 5,7-dichloroquinoline-8-ol, 4-vinylpyridine, styrene, divinylbenzene and 2,2'-azobisisobutyronitrile in 2-methoxyethanol porogen. The imprint ion was removed by stirring the above materials (after powdering) with 6 mol/L HCl to obtain the respective lanthanide IIP particles. Y-Dy, Y-Gd and Dy-Gd polymer particles were obtained by physically mixing equal amounts of the respective leached individual lanthanide(III) particles. Control polymer (CP) particles were similarly prepared without imprint ion. Application of the above synthesized polymer particles was tested for separation of Y from Dy, Gd and Tb employing batch and column SPE methods using inductively coupled plasma atomic emission spectrometry for the determination. Optimization studies show that Y present in 500 mL can be preconcentrated using Dy-Gd IIP particles and eluted with 20 mL of 1.0 mol/L of HCl, providing an enrichment factor of approximately 25. Dy-Gd IIP particles offer higher selectivity coefficients for Y over other lanthanides compared to other IIP particles and commercial liquid-liquid extractants. Selectivity studies for Y over other coexisting inorganic species (other than lanthanides) were also conducted and the results obtained show a quantitative separation of Y from other inorganics other than Cu(II) and Fe(III). Furthermore, both batch and column studies indicate the purification of yttrium concentrate from 55.0 +/- 0.2 to 65.2 +/- 0.2% in a single stage of operation. PMID:16833087

  17. Metal-organic and zeolite imidazolate frameworks (MOFs and ZIFs) for highly selective separations

    SciTech Connect

    Omar M. Yaghi

    2012-09-17

    Metal-organic and zeolite imidazolate frameworks (MOFs and ZIFs) have been investigated for the realization as separation media with high selectivity. These structures are held together with strong bonds, making them architecturally, chemically, and thermally stable. Therefore, employing well designed building units, it is possible to discover promising materials for gas and vapor separation. This grant was focused on the study of MOFs and ZIFs with these specific objectives: (i) to develop a strategy for producing MOFs and ZIFs that combine high surface areas with active sites for their use in gas adsorption and separation of small organic compounds, (ii) to introduce active sites in the framework by a post-synthetic modification and metalation of MOFs and ZIFs, and (iii) to design and synthesize MOFs with extremely high surface areas and large pore volumes to accommodate large amounts of guest molecules. By the systematic study, this effort demonstrated how to introduce active functional groups in the frameworks, and this is also the origin of a new strategy, which is termed isoreticular functionalization and metalation. However, a large pore volume is still a prerequisite feature. One of the solutions to overcome this challenge is an isoreticular expansion of a MOF�������¢����������������s structure. With triangular organic linker and square building units, we demonstrated that MOF-399 has a unit cell volume 17 times larger than that of the first reported material isoreticular to it, and it has the highest porosity (94%) and lowest density (0.126 g cm-3) of any MOF reported to date. MOFs are not just low density materials; the guest-free form of MOF-210 demonstrates an ultrahigh porosity, whose BET surface area was estimated to be 6240 m2 g-1 by N2 adsorption measurements.

  18. 300 AREA URANIUM CONTAMINATION

    SciTech Connect

    BORGHESE JV

    2009-07-02

    {sm_bullet} Uranium fuel production {sm_bullet} Test reactor and separations experiments {sm_bullet} Animal and radiobiology experiments conducted at the. 331 Laboratory Complex {sm_bullet} .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

  19. Selection and Characterization of Carbon Black and Surfactants for Development of Small Scale Uranium Oxicarbide Kernels

    SciTech Connect

    Contescu, Cristian I

    2006-01-01

    This report supports the effort for development of small scale fabrication of UCO (a mixture of UO{sub 2} and UC{sub 2}) fuel kernels for the generation IV high temperature gas reactor program. In particular, it is focused on optimization of dispersion conditions of carbon black in the broths from which carbon-containing (UO{sub 2} {center_dot} H{sub 2}O + C) gel spheres are prepared by internal gelation. The broth results from mixing a hexamethylenetetramine (HMTA) and urea solution with an acid-deficient uranyl nitrate (ADUN) solution. Carbon black, which is previously added to one or other of the components, must stay dispersed during gelation. The report provides a detailed description of characterization efforts and results, aimed at identification and testing carbon black and surfactant combinations that would produce stable dispersions, with carbon particle sizes below 1 {micro}m, in aqueous HMTA/urea and ADUN solutions. A battery of characterization methods was used to identify the properties affecting the water dispersability of carbon blacks, such as surface area, aggregate morphology, volatile content, and, most importantly, surface chemistry. The report introduces the basic principles for each physical or chemical method of carbon black characterization, lists the results obtained, and underlines cross-correlations between methods. Particular attention is given to a newly developed method for characterization of surface chemical groups on carbons in terms of their acid-base properties (pK{sub a} spectra) based on potentiometric titration. Fourier-transform infrared (FTIR) spectroscopy was used to confirm the identity of surfactants, both ionic and non-ionic. In addition, background information on carbon black properties and the mechanism by which surfactants disperse carbon black in water is also provided. A list of main physical and chemical properties characterized, samples analyzed, and results obtained, as well as information on the desired trend or range of values generally associated with better dispersability, is provided in the Appendix. Special attention was given to characterization of several surface-modified carbon blacks produced by Cabot Corporation through proprietary diazonium salts chemistry. As demonstrated in the report, these advanced carbons offer many advantages over traditional dispersions. They disperse very easily, do not require intensive mechanical shearing or sonication, and the particle size of the dispersed carbon black aggregates is in the target range of 0.15-0.20 {micro}m. The dispersions in water and HMTA/urea solutions are stable for at least 30 days; in conditions of simulated broth, the dispersions are stable for at least 6 hours. It is proposed that the optimization of the carbon black dispersing process is possible by replacing traditional carbon blacks and surfactants with surface-modified carbon blacks having suitable chemical groups attached on their surface. It is recognized that the method advanced in this report for optimizing the carbon black dispersion process is based on a limited number of tests made in aqueous and simulated broth conditions. The findings were corroborated by a limited number of tests carried out with ADUN solutions by the Nuclear Science and Technology Division at Oak Ridge National Laboratory (ORNL). More work is necessary, however, to confirm the overall recommendation based on the findings discussed in this report: namely, that the use of surface-modified carbon blacks in the uranium-containing broth will not adversely impact the chemistry of the gelation process, and that high quality uranium oxicarbide (UCO) kernels will be produced after calcination.

  20. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOEpatents

    Ghate, Madhav R. (Morgantown, WV); Yang, Ralph T. (Williamsville, NY)

    1987-01-01

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

  1. Flotation selectivity of novel alkyl dicarboxylate reagents for apatite-calcite separation.

    PubMed

    Karlkvist, Tommy; Patra, Anuttam; Rao, Kota Hanumantha; Bordes, Romain; Holmberg, Krister

    2015-05-01

    The investigation aims to demonstrate the conceptual thoughts behind developing mineral specific reagents for use in flotation of calcium containing ores. For this purpose, a series of dicarboxylate-based surfactants with varying distance between the carboxylate groups (one, two or three methylene groups) was synthesized. A surfactant with the same alkyl chain length but with only one carboxylate group was also synthesized and evaluated. The adsorption behavior of these new reagents on pure apatite and pure calcite surfaces was studied using Hallimond tube flotation, FTIR and ? potential measurements. The relation between the adsorption behavior of a given surfactant at a specific mineral surface and its molecular structure over a range of concentrations and pH values, as well as the region of maximum recovery, was established. It was found that one of the reagents, with a specific distance between the carboxylate groups, was much more selective for a particular mineral surface than the other homologues. For example, out of the four compounds synthesized, only the one where the carboxylate groups were separated by a single methylene group floated apatite but not calcite, whereas calcite was efficiently floated with the monocarboxylic reagent, but not with the other reagents synthesized. This selective adsorption of a given surfactant to a particular mineral surface relative to other mineral surfaces as evidenced in the flotation studies was substantiated by ? potential and infra-red spectroscopy data. PMID:25596367

  2. Separable Sustained and Selective Attention Factors Are Apparent in 5-Year-Old Children

    PubMed Central

    Underbjerg, Mette; George, Melanie S.; Thorsen, Poul; Kesmodel, Ulrik S.; Mortensen, Erik L.; Manly, Tom

    2013-01-01

    In adults and older children, evidence consistent with relative separation between selective and sustained attention, superimposed upon generally positive inter-test correlations, has been reported. Here we examine whether this pattern is detectable in 5-year-old children from the healthy population. A new test battery (TEA-ChJ) was adapted from measures previously used with adults and older children and administered to 172 5-year-olds. Test-retest reliability was assessed in 60 children. Ninety-eight percent of the children managed to complete all measures. Discrimination of visual and auditory stimuli were good. In a factor analysis, the two TEA-ChJ selective attention tasks (one visual, one auditory) loaded onto a common factor and diverged from the two sustained attention tasks (one auditory, one motor), which shared a common loading on the second factor. This pattern, which suggests that the tests are indeed sensitive to underlying attentional capacities, was supported by the relationships between the TEA-ChJ factors and Test of Everyday Attention for Children subtests in the older children in the sample. It is possible to gain convincing performance-based estimates of attention at the age of 5 with the results reflecting a similar factor structure to that obtained in older children and adults. The results are discussed in light of contemporary models of attention function. Given the potential advantages of early intervention for attention difficulties, the findings are of clinical as well as theoretical interest. PMID:24376591

  3. Affinity Selection of Peptide Binders with Magnetic Beads via Organic Phase Separation (MOPS).

    PubMed

    Murai, Ryuichi; Nogi, Taiki; Tateoka, Komei; Sato, Atsushi

    2015-01-01

    We describe a new method for affinity selection of peptide binders for soluble protein targets using magnetic beads via organic phase separation (MOPS) from a phage display library. As a model target molecule, a mouse monoclonal antibody against human integrin ?9?1 (Y9A2) immobilized onto protein G magnetic beads was incubated with a 15-mer or 20-mer random peptide phage-display library. The suspensions containing the phage-magnetic beads conjugates were then transferred onto the organic phase and centrifuged in order to recover the Y9A2 bound phage immobilized on the protein G magnetic beads in the lower organic phase. After three rounds of biopanning, we were able to isolate specific phage clones that could not be obtained by the conventional approach. Furthermore, this new approach was found to be highly effective for isolating phage-binders for Fc-fusion constructs; indeed, enrichment of specific phage-binders was observed after only the first panning cycle. Thus, MOPS can improve the selection of specific phage-binders for soluble protein targets mainly due to the removal of non-specific binders. PMID:26521834

  4. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOEpatents

    Ghate, M.R.; Yang, R.T.

    1985-10-03

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

  5. In-line assay monitor for uranium hexafluoride

    DOEpatents

    Wallace, Steven A. (Knoxville, TN)

    1981-01-01

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The monitor is intended for uses such as safeguard applications to assure that weapons grade uranium is not being produced in an enrichment cascade. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from the uranium-235 present in the specimen. Simultaneously, the gamma emissions from the uranium-235 of the specimen and the source emissions transmitted through the sample are counted and stored in a multiple channel analyzer. The uranium-235 content of the specimen is determined from the comparison of the accumulated 185 keV energy counts and the reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen. The process eliminates the necessity of knowing the system operating conditions and yet obtains the necessary data without need for large scintillation crystals and sophisticated mechanical designs.

  6. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  7. Separation and determination of arsenic species in water by selective exchange and hybrid resins.

    PubMed

    Ben Issa, Nureddin; Rajakovi?-Ognjanovi?, Vladana N; Marinkovi?, Aleksandar D; Rajakovi?, Ljubinka V

    2011-11-01

    A simple and efficient method for separation and determination of inorganic arsenic (iAs) and organic arsenic (oAs) in drinking, natural and wastewater was developed. If arsenic is present in water prevailing forms are inorganic acids of As(III) and As(V). oAs can be found in traces as monomethylarsenic acid, MMA(V), and dimethylarsenic acid, DMAs(V). Three types of resins: a strong base anion exchange (SBAE) and two hybrid (HY) resins: HY-Fe and HY-AgCl, based on the activity of hydrated iron oxides and a silver chloride were investigated. It was found that the sorption processes (ion exchange, adsorption and chemisorptions) of arsenic species on SBAE (ion exchange) and HY resins depend on pH values of water. The quantitative separation of molecular and ionic forms of iAs and oAs was achieved by SBAE and pH adjustment, the molecular form of As(III) that exists in the water at pH <8.0 was not bonded with SBAE, which was convenient for direct determination of As(III) concentration in the effluent. HY-Fe resin retained all arsenic species except DMAs(V), which makes possible direct measurements of this specie in the effluent. HY-AgCl resin retained all iAs which was convenient for direct determination of oAs species concentration in the effluent. The selective bonding of arsenic species on three types of resins makes possible the development of the procedure for measuring and calculation of all arsenic species in water. In order to determine capacity of resins the preliminary investigations were performed in batch system and fixed bed flow system. Resin capacities were calculated according to breakthrough points in a fixed bed flow system which is the first step in designing of solid phase extraction (SPE) module for arsenic speciation separation and determination. Arsenic adsorption behavior in the presence of impurities showed tolerance with the respect to potential interference of anionic compounds commonly found in natural water. Proposed method was established performing standard procedures: with external standard, certified reference material and standard addition method. Two analytical techniques: the inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectroscopy-hydride generation (AAS-GH) were comparatively applied for the determination of arsenic in all arsenic species in water. ICP-MS detection limit was 0.2 ?g L(-1) and relative standard deviation (RSD) of all arsenic species investigated was between 3.5 and 5.1%. PMID:21995928

  8. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Remedial action selection report

    SciTech Connect

    Not Available

    1991-12-01

    The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose. First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado.

  9. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Remedial action selection report. Revised final report

    SciTech Connect

    Not Available

    1991-12-01

    The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose. First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado.

  10. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial action selection report, Attachment 2, Geology report: Preliminary final

    SciTech Connect

    Not Available

    1993-08-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this document and the rest of the RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the State of Colorado.

  11. High resolution capillary column development for selective separations in gas chromatography

    SciTech Connect

    Przybyciel, M.

    1985-01-01

    A review of techniques for the preparation of high resolution capillary columns for gas chromatography is presented. Surface roughing, surface deactivation, stationary phase coating, and stationary phase crosslinking are discussed. Criteria for the selection of GC stationary phases and procedures for column evaluation are presented. A method is proposed for the isolation and determination of crude oil contamination in tropical plants and sediments. The method uses Florisil (TM) chromatography for the simultaneous clean-up and fractionation of aliphatic and aromatic hydrocarbons. Crosslinked SE-54 fused silica capillary columns prepared in our laboratory were employed for all GC separations. Mass spectrometry was used to help locate and identify specific oil components despite the intense background of the chromatogram. Crude oil components were identified in extracts of mangrove plant samples collected from the Peck Slip oil spill site at Media Munda, Puerto Rico. Crude oil components were also identified in sediment samples from controlled oil spill of Prudhoe Bay oil at Laguna de Chiriqui, Panama.

  12. Evaluation of selected detector systems for products formed in the atmospheric hydrolysis of uranium hexafluoride

    SciTech Connect

    Bostick, W.D.; Bostick, D.T.

    1987-03-01

    Sensitive detection of UF/sub 6/ hydrolysis products, either by discontinuous sampling or by continuous or near real-time monitoring, is an important safety consideration for DOE contractors handling large quantities of UF/sub 6/. Automated continuous or rapid intermittent remote sensing of these reaction products can provide an alarm signal when a preselected threshold value has been exceeded (absolute response) or when a significant emission excursion has occurred (rate of change of response). This report evaluates the performance of selected devices for the detection of airborne materials formed in the release of liquid UF/sub 6/ (approx. =1.3 g) into an enclosed volume of 6 m/sup 3/; these experiments were initiated on October 23, 1986. The detection principles investigated are: photometric, gas detector tubes, and electrochemical sensor.

  13. Vortex-aided inertial microfluidic device for continuous particle separation with high size-selectivity, efficiency,

    E-print Network

    Papautsky, Ian

    to label-free cell separation, purification and enrichment in a microfluidic device with designed geometries.7 Applications for separation of cells (erythrocytes/leukocytes,8­10 neuronal cells,6 cancer cells

  14. Selective separation of sodium ions from a mixture with phenylalanine by Donnan dialysis with a profiled sulfogroup cation exchange membrane

    NASA Astrophysics Data System (ADS)

    Vasil'eva, V. I.; Goleva, E. A.

    2013-11-01

    The possibility of separating ions of metal from a mixture with ampholyte (an amino acid) by Donnan dialysis with an MK-40 sulfogroup cation exchange membrane is demonstrated. Conditions ensuring the selectivity and intensity of the mass transfer of sodium ions from a mixture with bipolar phenylalanine ions into a diffusate containing hydrochloric acid through a cation exchange membrane are found.

  15. Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules

    EPA Science Inventory

    Novel magnetically separable TiO2-guanidine-(Ni,Co)Fe2O4 nanomaterials were prepared and characterised by a series of techniques including XRD, SEM, TEM, N2 physisorption as well as XPS and subsequently tested for their photocatalytic activities in the selective transformation of...

  16. Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection

    PubMed Central

    2013-01-01

    Background Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Results Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Conclusions Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The “isolated island character” of the different brines, that resulted from geological events and contemporary environmental conditions, create selective pressures driving evolutionary processes, and with time, lead to speciation and shape protistan community composition. We conclude that community assembly in DHABs is a mixture of isolated evolution (as evidenced by small changes in V4 primary structure in some taxa) and species sorting (as indicated by the regional absence/presence of individual taxon groups on high levels in taxonomic hierarchy). PMID:23834625

  17. A multi-functional oil-water separator from a selectively pre-wetted superamphiphobic paper.

    PubMed

    Ge, Dengteng; Yang, Lili; Wang, Chenbo; Lee, Elaine; Zhang, Yongquan; Yang, Shu

    2015-04-11

    A multi-functional oil-water separator is prepared from a paper towel spray coated with superamphiphobic (i.e., superhydrophobic and superoleophobic) nanoparticles. After the separator is pre-wetted with ethanol, followed by water, water can be removed from the light oil-water mixture and emulsions by gravity with high separation efficiency (99.9%) and separation flux. Vice versa, heavy oil can be removed by gravity on an ethanol-oil pre-wetted SA-paper. PMID:25750982

  18. Pervaporation & Vapor Permeation Membrane Processes for the Selective Separation of Liquid and Vapor Mixtures

    EPA Science Inventory

    Pervaporation and vapor permeation are membrane-based processes which have been proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from dilute fermentation broths, solvent/biofu...

  19. Pervaporation and Vapor Permeation Tutorial: Membrane Processes for the Selective Separation of Liquid and Vapor Mixtures

    EPA Science Inventory

    Pervaporation and vapor permeation are membrane-based processes proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from fermentation broths, solvent/biofuel dehydration to meet ...

  20. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    SciTech Connect

    Kenneth L. Nash; Sue B. Clark; Gregg Lumetta

    2009-09-23

    With increased application of MOX fuels and longer burnup times for conventional fuels, higher concentrations of the transplutonium actinides Am and Cm (and even heavier species like Bk and Cf) will be produced. The half-lives of the Am isotopes are significantly longer than those of the most important long-lived, high specific activity lanthanides or the most common Cm, Bk and Cf isotopes, thus the greatest concern as regards long-term radiotoxicity. With the removal and transmutation of Am isotopes, radiation levels of high level wastes are reduced to near uranium mineral levels within less than 1000 years as opposed to the time-fram if they remain in the wastes.

  1. Theoretical Prediction of Am(III)/Eu(III) Selectivity to Aid the Design of Actinide-Lanthanide Separation Agents

    DOE PAGESBeta

    Bryantsev, Vyacheslav S.; Hay, Benjamin P.

    2015-03-20

    Selective extraction of minor actinides from lanthanides is a critical step in the reduction of radiotoxicity of spent nuclear fuels. However, the design of suitable ligands for separating chemically similar 4f- and 5f-block trivalent metal ions poses a significant challenge. Furthermore, first-principles calculations should play an important role in the design of new separation agents, but their ability to predict metal ion selectivity has not been systematically evaluated. We examine the ability of several density functional theory methods to predict selectivity of Am(III) and Eu(III) with oxygen, mixed oxygen–nitrogen, and sulfur donor ligands. The results establish a computational method capablemore »of predicting the correct order of selectivities obtained from liquid–liquid extraction and aqueous phase complexation studies. To allow reasonably accurate predictions, it was critical to employ sufficiently flexible basis sets and provide proper account of solvation effects. The approach is utilized to estimate the selectivity of novel amide-functionalized diazine and 1,2,3-triazole ligands.« less

  2. Theoretical Prediction of Am(III)/Eu(III) Selectivity to Aid the Design of Actinide-Lanthanide Separation Agents

    SciTech Connect

    Bryantsev, Vyacheslav S.; Hay, Benjamin P.

    2015-03-20

    Selective extraction of minor actinides from lanthanides is a critical step in the reduction of radiotoxicity of spent nuclear fuels. However, the design of suitable ligands for separating chemically similar 4f- and 5f-block trivalent metal ions poses a significant challenge. Furthermore, first-principles calculations should play an important role in the design of new separation agents, but their ability to predict metal ion selectivity has not been systematically evaluated. We examine the ability of several density functional theory methods to predict selectivity of Am(III) and Eu(III) with oxygen, mixed oxygen–nitrogen, and sulfur donor ligands. The results establish a computational method capable of predicting the correct order of selectivities obtained from liquid–liquid extraction and aqueous phase complexation studies. To allow reasonably accurate predictions, it was critical to employ sufficiently flexible basis sets and provide proper account of solvation effects. The approach is utilized to estimate the selectivity of novel amide-functionalized diazine and 1,2,3-triazole ligands.

  3. A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17?-estradiol in milk.

    PubMed

    Gao, Ruixia; Cui, Xihui; Hao, Yi; Zhang, Lili; Liu, Dechun; Tang, Yuhai

    2016-03-01

    In this work, we prepared molecularly imprinted polymers (MIPs) combining surface molecular imprinting technique and magnetic separation for separation and determination of 17?-estradiol (E2) from milk. During the synthesis process, the acryloyl chloride was specially used to graft double bonds on Fe3O4 nanoparticles and served as co-functional monomer cooperating with acrylamide. The morphology, structure property, and the best polymerization and adsorption conditions of the prepared magnetic nanoparticles were investigated in detail. The obtained nanomaterials displayed high adsorption capacity of 12.62mg/g, fast equilibrium time of 10min, and satisfactory selectivity for target molecule. What's more, the MIPs was successfully applied as sorbents to specifically separate and enrich E2 from milk with a relatively high recovery (88.9-92.1%), demonstrating the potential application of the MIPs as solid phase extractant for rapid, highly-efficient, and cost-effective sample analysis. PMID:26471651

  4. Separating selection by diurnal and nocturnal pollinators on floral display and spur length in Gymnadenia conopsea.

    PubMed

    Sletvold, Nina; Trunschke, Judith; Wimmergren, Carolina; Agren, Jon

    2012-08-01

    Most plants attract multiple flower visitors that may vary widely in their effectiveness as pollinators. Floral evolution is expected to reflect interactions with the most important pollinators, but few studies have quantified the contribution of different pollinators to current selection on floral traits. To compare selection mediated by diurnal and nocturnal pollinators on floral display and spur length in the rewarding orchid Gymnadenia conopsea, we manipulated the environment by conducting supplemental hand-pollinations and selective pollinator exclusions in two populations in central Norway. In both populations, the exclusion of diurnal pollinators significantly reduced seed production compared to open pollination, whereas the exclusion of nocturnal pollinators did not. There was significant selection on traits expected to influence pollinator attraction and pollination efficiency in both the diurnal and nocturnal pollination treatment. The relative strength of selection among plants exposed to diurnal and nocturnal visitors varied among traits and populations, but the direction of selection was consistent. The results suggest that diurnal pollinators are more important than nocturnal pollinators for seed production in the study populations, but that both categories contribute to selection on floral morphology. The study illustrates how experimental manipulations can link specific categories of pollinators to observed selection on floral traits, and thus improve our understanding of how species interactions shape patterns of selection. PMID:22928416

  5. Selected values of chemical thermodynamic properties: compounds of uranium, protactinium, thorium, actinium, and the alkali metals. Final report

    SciTech Connect

    Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Nuttall, R.L.

    1981-05-01

    This publication contains tables of recommended values for the standard enthalpies (heats) of formation, Gibbs (free) energies of formation, entropies, enthalpy contents and heat capacities at 298.15 K, and enthalpies of formation at O K for compounds of uranium, protactinium, thorium, actinium, lithium, sodium, potassium, rubidium, cesium, and francium.

  6. Synthesis of surface imprinted nanospheres for selective removal of uranium from simulants of Sambhar salt lake and ground water.

    PubMed

    Milja, Thazhathuparambil Elias; Prathish, Krishnapillai Padmajakumari; Prasada Rao, Talasila

    2011-04-15

    Imprinted polymer nanospheres for uranium were prepared by complexing uranyl ion on to quinoline-8-ol functionalized 3-aminopropyltrimethoxysilane modified silica nanoparticles followed by surface imprinting with 4-VP (4-vinyl pyridine), HEMA (2-hydroxy ethyl methacrylate) and EGDMA (ethylene glycol dimethacrylate) as the functional monomers and cross linking agent respectively with AIBN (2,2'-azo-bis-isobutyronitrile) as initiator and 2-methoxyethanol as the porogen. Non-imprinted polymer material was also prepared under similar conditions omitting uranyl ion. The above materials were used for solid phase extraction of uranium. Recent realization that its chemical toxicity is dominant than radiation hazards makes decontamination a relevant topic for environmental point of view, particularly in the light of projected global thrust for uranium fuel based atomic power plants. The material offers high retention capacity of 97.1 ?mol g(-1) for 10 mg L(-1) of uranium that does not require tedious grinding and sieving steps, is water compatible and works in the pH range of 5-7, making it ideal for possible use in decontamination of polluted natural water samples or front end effluents of nuclear power reactors. PMID:21345587

  7. Use of ligand-modified micellar-enhanced ultrafiltration to selectively separate copper ions from wastewater streams

    SciTech Connect

    Shadizadeh, S.B.

    1992-12-31

    The selective removal of target ions from an aqueous solution containing ions of like charge by ligand-modified micellar-enhanced ultrafiltration (LM-MEUF), is presented. In LM-MEUF, surfactant and specially tailored ligand are added to the contaminated stream. The surfactant forms aggregates called micelles, the hydrocarbon core of which the ligand complexed with the target species will solubilize. The surfactant is chosen to have the same charge type as the target ion; therefore, other ions (with similar charge) will not associate with the micelle, which makes the separation of the target ion selective. The solution is then processed by ultrafiltration, using a membrane with pore size small enough to block the passage of the micelles. In this study the divalent copper is the target ion in the solution containing divalent calcium. The surfactant is cetylpyridinium chloride (CPC) and the ligand is 4-hexadecyloxybenzyliminodiacetic acid (C{sub 16}BIDA). Experiments were conducted with batch stirred cells and the results have been compared to separation that take place under a variety of conditions in the LM-MEUF process. Rejections of copper of up to 99.8% are observed, with almost no rejection of calcium, showing that LM-MEUF has excellent selectivity and separation efficiency.

  8. Facile fabrication of hydrophilic nanofibrous membranes with an immobilized metal-chelate affinity complex for selective protein separation.

    PubMed

    Zhu, Jing; Sun, Gang

    2014-01-22

    In this study, we report a facile approach to fabricate functionalized poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membranes as immobilized metal affinity membranes for selective protein separation. Hydrophilic PVA-co-PE nanofibrous membranes with controlled fiber sizes were prepared via a melt extrusion process. A chelating group, iminodiacetic acid (IDA), was covalently attached to cyanuric acid activated membrane surfaces to form coordinative complexes with metal ions. The prepared membranes were applied to recover a model protein, lysozyme, under various conditions, and a high lysozyme adsorption capacity of 199 mg/g membrane was found under the defined optimum conditions. Smaller fiber size with a higher immobilized metal ion density on membrane surfaces showed greater lysozyme adsorption capacity. The lysozyme adsorption capacity remained consistent during five repeated cycles of adsorption-elution operations, and up to 95% of adsorbed lysozyme was efficiently eluted by using a phosphate buffer containing 0.5 M NaCl and 0.5 M imidazole as an elution media. The successful separation of lysozyme with high purity from fresh chicken egg white was achieved by using the present affinity membrane. These remarkable features, such as high capacity and selectivity, easy regeneration, as well as reliable reusability, demonstrated the great potential of the metal-chelate affinity complex immobilized nanofibrous membranes for selective protein separation. PMID:24377297

  9. Atomic vapor laser isotope separation using resonance ionization

    SciTech Connect

    Comaskey, B.; Crane, J.; Erbert, G.; Haynam, C.; Johnson, M.; Morris, J.; Paisner, J.; Solarz, R.; Worden, E.

    1986-09-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power-reactor fuel has been under development for over 10 years. In June 1985, the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for enriched uranium. Resonance photoionization is the heart of the AVLIS process. We discuss those fundamental atomic parameters that are necessary for describing isotope-selective resonant multistep photoionization along with the measurement techniques that we use. We illustrate the methodology adopted with examples of other elements that are under study in our program.

  10. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    SciTech Connect

    Rich Ciora; Paul KT Liu

    2012-06-27

    In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.

  11. Transfer and the Part-Time Student: The Gulf Separating Community Colleges and Selective Universities

    ERIC Educational Resources Information Center

    Handel, Stephen J.

    2009-01-01

    When representatives from community colleges and selective four-year institutions gather, there is no greater flashpoint than the topic of part-time enrollment. This issue--that students coming from an institution comprising mostly part-time students should be enabled to transfer to selective four-year institutions in which full-time enrollment is…

  12. Physicochemical Characterization of Capstone Depleted Uranium Aerosols I: Uranium Concentration in Aerosols as a Function of Time and Particle Size

    SciTech Connect

    Parkhurst, MaryAnn; Cheng, Yung-Sung; Kenoyer, Judson L.; Traub, Richard J.

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing depleted uranium were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time particularly within the first minute after the shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% 30 min after perforation. In the Bradley vehicle, the initial (and maximum) uranium concentration was lower than those observed in the Abrams tank and decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in the cyclone samplers, which collected aerosol continuously for 2 h post perforation. The percentages of uranium mass in the cyclone separator stages from the Abrams tank tests ranged from 38% to 72% and, in most cases, varied with particle size, typically with less uranium associated with the smaller particle sizes. Results with the Bradley vehicle ranged from 18% to 29% and were not specifically correlated with particle size.

  13. High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion

    E-print Network

    Willsky, Alan S.

    We consider the problem of high-dimensional Gaussian graphical model selection. We identify a set of graphs for which an efficient estimation algorithm exists, and this algorithm is based on thresholding of empirical ...

  14. Evaluation of health risks associated with proposed ground water standards at selected inactive uranium mill-tailings sites

    SciTech Connect

    Hamilton, L.D.; Medeiros, W.H.; Meinhold, A.; Morris, S.C.; Moskowitz, P.D.; Nagy, J.; Lackey, K.

    1989-04-01

    The US Environmental Protection Agency (EPA) has proposed ground water standards applicable to all inactive uranium mill-tailings sites. The proposed standards include maximum concentration limits (MCL) for currently regulated drinking water contaminants, as well as the addition of standards for molybdenum, uranium, nitrate, and radium-226 plus radium-228. The proposed standards define the point of compliance to be everywhere downgradient of the tailings pile, and require ground water remediation to drinking water standards if MCLs are exceeded. This document presents a preliminary description of the Phase 2 efforts. The potential risks and hazards at Gunnison, Colorado and Lakeview, Oregon were estimated to demonstrate the need for a risk assessment and the usefulness of a cost-benefit approach in setting supplemental standards and determining the need for and level of restoration at UMTRA sites. 8 refs., 12 tabs.

  15. Control of selectivity via nanochemistry: monolithic capillary column containing hydroxyapatite nanoparticles for separation of proteins and enrichment of phosphopeptides.

    PubMed

    Krenkova, Jana; Lacher, Nathan A; Svec, Frantisek

    2010-10-01

    New monolithic capillary columns with embedded commercial hydroxyapatite nanoparticles have been developed and used for protein separation and selective enrichment of phosphopeptides. The rod-shaped hydroxyapatite nanoparticles were incorporated into the poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) monolith by simply admixing them in the polymerization mixture followed by in situ polymerization. The effect of percentages of monomers and hydroxyapatite nanoparticles in the polymerization mixture on the performance of the monolithic column was explored in detail. We found that the loading capacity of the monolith is on par with other hydroxyapatite separation media. However, the speed at which these columns can be used is higher due to the fast mass transport. The function of the monolithic columns was demonstrated with the separations of a model mixture of proteins including ovalbumin, myoglobin, lysozyme, and cytochrome c as well as a monoclonal antibody and its aggregates with protein A. Selective enrichment and MALDI/MS characterization of phosphopeptides fished-out from complex peptide mixtures of ovalbumin, ?-casein, and ?-casein digests were also achieved using the hydroxyapatite monolith. PMID:20806887

  16. Uranium droplet core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    Uranium droplet nuclear rocket is conceptually designed to utilize the broad temperature range ofthe liquid phase of metallic uranium in droplet configuration which maximizes the energy transfer area per unit fuel volume. In a baseline system dissociated hydrogen at 100 bar is heated to 6000 K, providing 2000 second of Isp. Fission fragments and intense radian field enhance the dissociation of molecular hydrogen beyond the equilibrium thermodynamic level. Uranium droplets in the core are confined and separated by an axisymmetric vortex flow generated by high velocity tangential injection of hydrogen in the mid-core regions. Droplet uranium flow to the core is controlled and adjusted by a twin flow nozzle injection system.

  17. 300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report

    SciTech Connect

    Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

    2009-06-30

    The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although amendment arrival response data indicate some degree of overlap between the reactive species and thus potential for the formation of calcium-phosphate mineral phases (i.e., apatite formation), the efficiency of this treatment approach was relatively poor. In general, uranium performance monitoring results support the hypothesis that limited long-term treatment capacity (i.e., apatite formation) was established during the injection test. Two separate overarching issues affect the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. In addition, the long-term stability of uranium sequestered via apatite is dependent on the chemical speciation of uranium, surface speciation of apatite, and the mechanism of retention, which is highly susceptible to dynamic geochemical conditions. It was expected that uranium sequestration in the presence of hydroxyapatite would occur by sorption and/or surface complexation until all surface sites have been depleted, but that the high carbonate concentrations in the 300 Area would act to inhibit the transformation of sorbed uranium to chernikovite and/or autunite. Adsorption of uranium by apatite was never considered a viable approach for in situ uranium sequestration in and of itself, because by definition, this is a reversible reaction. The efficacy of uranium sequestration by apatite assumes that the adsorbed uranium would subsequently convert to autunite, or other stable uranium phases. Because this appears to not be the case in the 300 Area aquifer, even in locations near the river, apatite may have limited efficacy for the retention and long-term immobilization of uranium at the 300 Area site..

  18. Size-selective separations of biological macromolecules on mesocylinder silica arrays.

    PubMed

    El-Safty, Sherif; Shenashen, M A

    2011-05-23

    In order to control the design functionality of mesocylinder filters for molecular sieving of proteins, we fabricated tight mesocylinder silica nanotube (NT) arrays as promising filter candidates for size-exclusion separation of high-concentration macromolecules, such as insulin (INS), ?-amylase (AMY), ?-lactoglobulin (?-LG), and myosin (MYO) proteins. In this study, hexagonal mesocylinder structures were fabricated successfully inside anodic alumina membrane (AAM) nanochannels using a variety of cationic and nonionic surfactants as templates. The systematic design of the nanofilters was based on densely patterned polar silane coupling agents ("linkers") onto the AAM nanochannels, leading to the fabrication of mesocylinder silica arrays with vertical alignment and open surfaces of top-bottom ends inside AAM. Further surface coating of silica NTs hybrid AAM with hydrophobic agents facilitated the production of extremely robust constructed sequences of membranes without the formation of air gaps among NT arrays. The fabricated membranes with impermeable coated layers, robust surfaces, and uniformly multidirectional cylinder pores in nanoscale sizes rapidly separate large quantities of proteins within seconds. Meanwhile, comprehensive factors that affect the performance of the molecular transport, diffusivity, and filtration rate through nanofilter membranes were discussed. The mesocylinder filters of macromolecules show promise for the efficient separation and molecular transport of large molecular weight and size as well as concentrations of proteins. PMID:21565316

  19. Selective interfacial synthesis of metal-organic frameworks on a polybenzimidazole hollow fiber membrane for gas separation.

    PubMed

    Biswal, Bishnu P; Bhaskar, Anand; Banerjee, Rahul; Kharul, Ulhas K

    2015-04-28

    Metal-organic frameworks (MOFs) have gained immense attention as new age materials due to their tuneable properties and diverse applicability. However, efforts on developing promising materials for membrane based gas separation, and control over the crystal growth positions on polymeric hollow fiber membranes still remain key challenges. In this investigation, a new, convenient and scalable room temperature interfacial method for growing MOFs (ZIF-8 and CuBTC) on either the outer or inner side of a polybenzimidazole based hollow fiber (PBI-BuI-HF) membrane surface has been achieved in a controlled manner. This was made possible by the appropriate selection of an immiscible solvent pair and the synthetic conditions. The growth of MOFs on the PBI-BuI-HF membrane by the interfacial method was continuous and showed an appreciable gas separation performance, conveying promise for their applicability. PMID:25813494

  20. Selective interfacial synthesis of metal-organic frameworks on a polybenzimidazole hollow fiber membrane for gas separation

    NASA Astrophysics Data System (ADS)

    Biswal, Bishnu P.; Bhaskar, Anand; Banerjee, Rahul; Kharul, Ulhas K.

    2015-04-01

    Metal-organic frameworks (MOFs) have gained immense attention as new age materials due to their tuneable properties and diverse applicability. However, efforts on developing promising materials for membrane based gas separation, and control over the crystal growth positions on polymeric hollow fiber membranes still remain key challenges. In this investigation, a new, convenient and scalable room temperature interfacial method for growing MOFs (ZIF-8 and CuBTC) on either the outer or inner side of a polybenzimidazole based hollow fiber (PBI-BuI-HF) membrane surface has been achieved in a controlled manner. This was made possible by the appropriate selection of an immiscible solvent pair and the synthetic conditions. The growth of MOFs on the PBI-BuI-HF membrane by the interfacial method was continuous and showed an appreciable gas separation performance, conveying promise for their applicability.Metal-organic frameworks (MOFs) have gained immense attention as new age materials due to their tuneable properties and diverse applicability. However, efforts on developing promising materials for membrane based gas separation, and control over the crystal growth positions on polymeric hollow fiber membranes still remain key challenges. In this investigation, a new, convenient and scalable room temperature interfacial method for growing MOFs (ZIF-8 and CuBTC) on either the outer or inner side of a polybenzimidazole based hollow fiber (PBI-BuI-HF) membrane surface has been achieved in a controlled manner. This was made possible by the appropriate selection of an immiscible solvent pair and the synthetic conditions. The growth of MOFs on the PBI-BuI-HF membrane by the interfacial method was continuous and showed an appreciable gas separation performance, conveying promise for their applicability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00299k

  1. Preparation and characterization of superparamagnetic molecularly imprinted polymers for selective adsorption and separation of vanillin in food samples.

    PubMed

    Ning, Fangjian; Peng, Hailong; Dong, Liling; Zhang, Zhong; Li, Jinhua; Chen, Lingxin; Xiong, Hua

    2014-11-19

    Novel water-compatible superparamagnetic molecularly imprinted polymers (M-MIPs) were prepared by coating superparamagnetic Fe3O4 nanoparticles with MIPs in a methanol-water reaction system. The M-MIPs were used for the selective adsorption and separation of vanillin from aqueous solution. The M-MIPs were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), and scanning electron microscopy (SEM). Results indicated that a core-shell structure of M-MIPs was obtained by coating a layer of silica and MIPs on the surface of the Fe3O4 nanoparticles. The obtained M-MIPs possess a loose and porous structure and can be rapidly separated from the solution using a magnet. The adsorption experiments showed that the binding capacity of the M-MIPs was significantly higher than that of the superparamagnetic non-molecularly imprinted polymers (M-NIPs). Meanwhile, the adsorption of M-MIPs reached equilibrium within 100 min, and the apparent maximum adsorption quantity (Qmax) and dissociation constant (Kd) were 64.12 ?mol g(-1) and 58.82 ?mol L(-1), respectively. The Scatchard analysis showed that homogeneous binding sites were formed on the M-MIP surface. The recoveries of 83.39-95.58% were achieved when M-MIPs were used for the pre-concentration and selective separation of vanillin in spiked food samples. These results provided the possibility for the separation and enrichment of vanillin from complicated food matrices by M-MIPs. PMID:25352428

  2. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples.

    PubMed

    Uzuriaga-Sánchez, Rosario Josefina; Khan, Sabir; Wong, Ademar; Picasso, Gino; Pividori, Maria Isabel; Sotomayor, Maria Del Pilar Taboada

    2016-01-01

    This work presents an efficient method for the preparation of magnetic nanoparticles modified with molecularly imprinted polymers (Mag-MIP) through core-shell method for the determination of biotin in milk food samples. The functional monomer acrylic acid was selected from molecular modeling, EGDMA was used as cross-linking monomer and AIBN as radical initiator. The Mag-MIP and Mag-NIP were characterized by FTIR, magnetic hysteresis, XRD, SEM and N2-sorption measurements. The capacity of Mag-MIP for biotin adsorption, its kinetics and selectivity were studied in detail. The adsorption data was well described by Freundlich isotherm model with adsorption equilibrium constant (KF) of 1.46 mL g(-1). The selectivity experiments revealed that prepared Mag-MIP had higher selectivity toward biotin compared to other molecules with different chemical structure. The material was successfully applied for the determination of biotin in diverse milk samples using HPLC for quantification of the analyte, obtaining the mean value of 87.4% recovery. PMID:26212997

  3. Coupling of non-selective adsorption with selective elution for novel in-line separation and detection of cadmium by vapour generation atomic absorption spectrometry.

    PubMed

    Zhang, Yanlin; Adeloju, Samuel B

    2015-05-01

    Non-selective adsorption of Cd(2+) ions on a cation exchange fiber and subsequent selective elution with a KI solution has been strategically utilized to develop a highly selective in-line separation of Cd(2+) ions from other metal ions for its rapid and reliable quantification by cold vapour-atomic absorption spectrometry. After retention of Cd(2+) with a high efficiency on cation exchange fiber, selective elution of the retained Cd(2+) was subsequently accomplished with 0.3M KI. Vapour generation of Cd for in-line CV-AAS determination was then achieved by merging the eluate with HCl and NaBH4. Interferences from most base metals with the vapour generation of Cd were eliminated by this approach, with the exception of Pb(2+)ions which was removed by co-precipitation with BaSO4 prior to the in-line separation. Substantial improvement in sensitivity of the in-line CV-AAS determination of Cd was achieved by increasing the sample loading time. A detection limit of 0.6 ng L(-1) (3?) was obtained with sample loading time of 120 s, corresponding to a consumption of 24 mL of sample solution. Application of the method to the determination of Cd in certified sediment and fish samples gave a good agreement with the certified values. Further validation by recovery study in real fish sample digests and water gave average Cd recoveries of 98.7±1.0% for fish and 92±3% for water with RSD of 1.5% for fish and 4% for water, respectively. PMID:25770618

  4. Selectivity Principles in Anion Separation by Crystallization of Hydrogen-Bonding Capsules

    SciTech Connect

    Custelcean, Radu; Bock, Aurelien; Moyer, Bruce A

    2010-01-01

    The fundamental factors controlling anion selectivity in the crystallization of hydrogen-bonding capsules [Mg(H2O)6][X L2] (X = SO42-, 1a; SeO42-, 1b; SO32-, 1c; CO32-, 1d; L = tris[2-(3-pyridylurea)ethyl]-amine) from water have been investigated by solution and solid-state thermodynamic measurements, anion competition experiments, and X-ray structural analysis. The crystal structures of 1a-d are isomorphous, thereby simplifying the interpretation of the observed selectivities based on differences in anion coordination geometries. The solubilities of 1a-d in water follow the order: 1a < 1b < 1c < 1d, which is consistent with the selectivity for the tetrahedral sulfate and selenate anions observed in competitive crystallization experiments. Crystallization of the capsules is highly exothermic, with the most favorable {Delta}H{sub cryst}{sup o} of -99.1 and -108.5 kJ/mol corresponding to SO42- and SeO42-, respectively, in agreement with the X-ray structural data showing shape complementarity between these tetrahedral anions and the urea-lined cavities of the capsules. Sulfite, on the other hand, has a significantly less negative {Delta}H{sub cryst}{sup o} of -64.6 kJ/mol, which may be attributed to its poor fit inside the capsules, involving repulsive interactions. The more favorable entropy of crystallization for this anion, however, partly offsets the enthalpic disadvantage, resulting in a solubility product very similar to that of the selenate complex. Because of their very similar shape and size, SO42- and SeO42- have a propensity to form solid solutions, which limits the selectivity between these two anions in competitive crystallizations. In the end, a comprehensive picture of contributing factors to anion selectivity in crystalline hydrogen-bonding capsules emerges.

  5. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    SciTech Connect

    Kenneth L. Nash

    2009-09-22

    Implementation of a closed loop nuclear fuel cycle requires the utilization of Pu-containing MOX fuels with the important side effect of increased production of the transplutonium actinides, most importantly isotopes of Am and Cm. Because the presence of these isotopes significantly impacts the long-term radiotoxicity of high level waste, it is important that effective methods for their isolation and/or transmutation be developed. Furthermore, since transmutation is most efficiently done in the absence of lanthanide fission products (high yield species with large thermal neutron absorption cross sections) it is important to have efficient procedures for the mutual separation of Am and Cm from the lanthanides. The chemistries of these elements are nearly identical, differing only in the slightly stronger strength of interaction of trivalent actinides with ligand donor atoms softer than O (N, Cl-, S). Research being conducted around the world has led to the development of new reagents and processes with considerable potential for this task. However, pilot scale testing of these reagents and processes has demonstrated the susceptibility of the new classes of reagents to radiolytic and hydrolytic degradation. In this project, separations of trivalent actinides from fission product lanthanides have been investigated in studies of 1) the extraction and chemical stability properties of a class of soft-donor extractants that are adapted from water-soluble analogs, 2) the application of water soluble soft-donor complexing agents in tandem with conventional extractant molecules emphasizing fundamental studies of the TALSPEAK Process. This research was conducted principally in radiochemistry laboratories at Washington State University. Collaborators at the Radiological Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) have contributed their unique facilities and capabilities, and have supported student internships at PNNL to broaden their academic experience. New information has been developed to qualify the extraction potential of a class of pyridine-functionalized tetraaza complexants indicating potential single contact Am-Nd separation factors of about 40. The methodology developed for characterization will find further application in our continuing efforts to synthesize and characterize new reagents for this separation. Significant new insights into the performance envelope and supporting information on the TALSPEAK process has also been developed.

  6. Radiostrontium separation and measurement in a single step using plastic scintillators plus selective extractants. Application to aqueous sample analysis.

    PubMed

    Bagán, H; Tarancón, A; Rauret, G; García, J F

    2011-02-01

    This study describes a new protocol for (90)Sr determination in water samples based on the use of a selective extractant (DtBuCH18C6) and plastic scintillator microspheres. The proposed procedure unifies chemical separation and sample measurement preparation in a single step to reduce the effort, time and reagents required for analysis. In addition, the final measurement does not produce mixed waste. The minimum activity detectable for 10 mL of sample solution is 0.46 Bq L(-1). Relative errors for the determination of (90)Sr activity in drinking, sea and river waters are less than 4%. PMID:21237307

  7. Hydrothermal alteration of organic matter in uranium ores, Elliot Lake, Canada: Implications for selected organic-rich deposits

    SciTech Connect

    Mossman, D.J.; Nagy, B.; Davis, D.W.

    1993-07-01

    Organic matter in the uraniferous Matinenda Formation, Elliot Lake, is preserved in the forms of syngenetic kerogen and solid bitumen as it is in many of the Oklo uranium deposits and in the Witwatersrand gold-uranium ores. The Elliot Lake kerogen is a vitrinite-like material considered to be remnants of the Precambrian cyanobacterial mats. The kerogen at Elliot Lake has reflectances (in oil) ranging from 2.63-7.31% RO{sub max}, high aromaticity, relatively low (0.41-0.60) atomic H/C ratios, and it contains cryptocrystalline graphite. Bitumen, present primarily as dispersed globules (up to 0.5 mm dia.), has reflectances from 0.72-1.32% RO{sub max}, atomic H/C ratios of 0.71-0.81, and is somewhat less aromatic than the kerogen. Overall similarity in molecular compositions indicates that liquid bitumen was derived from kerogen by processes similar to hydrous pyrolysis. The carbon isotopic composition of kerogen ({minus}15.62 to {minus}24.72%), and the now solid bitumen ({minus}25.91 to {minus}33.00%) are compatible with these processes. Despite having been subjected to several thermal episodes, ca. 2.45 Ga old kerogen of microbiological origin here survived as testimony of the antiquity of life on Earth. U-Pb isotopic data from discrete kerogen grains at Elliot Lake form a scattered array intersecting concordia at 2130 {+-} 100 Ma, correspond to the Nipissing event. U-Pb systems were totally reset by this event. Uranium and lead show subsequently partial mobility, the average of which is indicated by the lower concordia intersect of 550 {+-} 260 Ma. The migrated bitumen contains virtually no uranium and thorium but has a large excess of {sup 206}Pb, which indicates that the once liquid bitumen must have acted as a sink for mobile intermediate decay products of {sup 238}U. Emplacement of the Nipissing diabase may have been responsible for producing the bitumen and, indirectly, for its enrichment in {sup 206}Pb as a result of outgassing of {sup 222}Rn.

  8. Selective population of the [1s2s] {sup 1}S{sub 0} and [1s2s] {sup 3}S{sub 1} states of He-like uranium

    SciTech Connect

    Rzadkiewicz, J.; Stoehlker, Th.; Gumberidze, A.; Reuschl, R.; Spillmann, U.; Tashenov, S.; Trotsenko, S.; Banas, D.; Beyer, H. F.; Bosch, F.; Brandau, C.; Ionescu, D. C.; Kozhuharov, C.; Nandi, T.; Dong, C. Z.; Fritzsche, S.; Surzhykov, A.; Gojska, A.; Hagmann, S.; Sierpowski, D.

    2006-07-15

    The formation of the [1s2s] S states in heliumlike uranium (U{sup 90+}) has been studied in relativistic collisions of initially lithiumlike uranium (U{sup 89+}) ions with N{sub 2} target molecules. By measuring projectile x-ray emission in coincidence with projectile ionization, a strong selectivity for the formation of the [1s2s] S states in heliumlike uranium is observed. This selectivity is found to be unaffected by the subsequent rearrangement of the atomic orbitals involved. By measuring the photon emission associated with the decay of the [1s2s] {sup 1}S{sub 0} and the [1s2s] {sup 3}S{sub 1} substates, we obtain for their relative population probabilities a ratio of close to 1. This finding deviates considerably from the assumption of a statistical distribution 2J+1.

  9. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    SciTech Connect

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. M.; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

    2014-10-31

    Abstract: The rare gases krypton, xenon, and radon pose both an economic opportunity and a potential environmental hazard. Xenon is used in commercial lighting, medical imaging, and anesthesia, and can sell for $5,000 per kilogram. Radon, by contrast, Is naturally radioactive and the second largest cause of lung cancer, and radioactive xenon, 133Xe, was a major pollutant released In the Fukushima Daiichi Nuclear Power Plant disaster. We describe an organic cage molecule that can capture xenon and radon with unprecedented selectivity, suggesting new technologies for environmental monitoring, removal of pollutants, or the recovery of rare, valuable elements from air.

  10. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes.

    PubMed

    He, Rong; Girgih, Abraham T; Rozoy, Elodie; Bazinet, Laurent; Ju, Xing-Rong; Aluko, Rotimi E

    2016-04-15

    Rapeseed protein isolate was subjected to alcalase digestion to obtain a protein hydrolysate that was separated into peptide fractions using electrodialysis with ultrafiltration membrane (EDUF) technology. The EDUF process (6h duration) led to isolation of three peptide fractions: anionic (recovered in KCl-1 compartment), cationic (recovered in KCl-2 compartment), and those that remained in the feed compartment, which was labeled final rapeseed protein hydrolysate (FRPH). As expected the KCl-1 peptides were enriched in negatively-charged (43.57%) while KCl-2 contained high contents of positively-charged (28.35%) amino acids. All the samples inhibited angiotensin converting enzyme (ACE) and renin activities in dose-dependent manner with original rapeseed protein hydrolysate having the least ACE-inhibitory IC50 value of 0.0932±0.0037mg/mL while FRPH and KCl-2 had least renin-inhibitory IC50 values of 0.47±0.05 and 0.55±0.06mg/mL, respectively. Six hours after oral administration (100mg/kg body weight) to spontaneously hypertensive rats, the FRPH produced the maximum systolic blood pressure reduction of -51mmHg. PMID:26617047

  11. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    SciTech Connect

    N /A

    2004-09-30

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. They investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) an efficient combine-based threshing system for separating the intermodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  12. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    SciTech Connect

    Hess, J.R

    2005-01-31

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. We investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) An efficient combine-based threshing system for separating the internodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  13. Neutron-rich isotope production using a uranium carbide - carbon nanotubes SPES target prototype

    NASA Astrophysics Data System (ADS)

    Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Carturan, S.; Andrighetto, A.; Prete, G.; Vasquez, J.; Zanonato, P.; Colombo, P.; Jost, C. U.; Stracener, D. W.

    2013-05-01

    The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

  14. Neutron-Rich Isotope Production Using a Uranium Carbide Carbon Nanotubes SPES Target Prototype

    SciTech Connect

    Corradetti, Stefano; Biasetto, Lisa; Manzolaro, Mattia; Scarpa, Daniele; Carturan, S.; Andrighetto, Alberto; Prete, Gianfranco; Vasquez, Jose L; Zanonato, P.; Colombo, P.; Jost, Carola; Stracener, Daniel W

    2013-01-01

    The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

  15. Selective separation of copper(II) and nickel(II) from aqueous media using the complexation-ultrafiltration process.

    PubMed

    Molinari, Raffaele; Poerio, Teresa; Argurio, Pietro

    2008-01-01

    The polyethylenimine (PEI) as complexing agent was used to study the complexation-ultrafiltration (CP-UF) process in the selective removal of Cu(II) from Ni(II) contained in aqueous media. Preliminary tests showed that optimal chemical conditions for Cu(II) and Ni(II) complexation by the PEI polymer were pH>6.0 and 8.0, respectively, and polymer/metal weight ratio of 3.0 and 6.0, respectively. The effect of some important operating parameters on process selectivity was studied by performing UF tests at different parameters: pH, polymer/metal weight ratio, transmembrane pressure (TMP), and membrane cut-off in a batch experimental set-up. It was observed that process selectivity was achieved by choosing the pH value for obtaining a preferential copper complexation (pH 6.0), and the polymer/metal ratio needed to bound only the copper ion (3.0). The selective separation by UF tests was performed by using both a laboratory aqueous solution and a real aqueous effluent (water from Emoli torrent, Rende (CS)). The Iris 30 membrane at TMP of 200 kPa (2 bar) for both aqueous media gave the best results. A complete nickel recovery was reached, and copper recovery was the highest for this membrane (94% and 92%). Besides at this pressure, a lower water amount was needed to obtain total nickel recovery by diafiltration. A little higher membrane fouling was obtained by using the river effluent due to the presence of dissolved organic and inorganic matter. PMID:17825876

  16. Clicked Isoreticular Metal-Organic Frameworks and Their High Performance in the Selective Capture and Separation of Large Organic Molecules.

    PubMed

    Li, Pei-Zhou; Wang, Xiao-Jun; Tan, Si Yu; Ang, Chung Yen; Chen, Hongzhong; Liu, Jia; Zou, Ruqiang; Zhao, Yanli

    2015-10-19

    Three highly porous metal-organic frameworks (MOFs) with a uniform rht-type topological network but hierarchical pores were successfully constructed by the assembly of triazole-containing dendritic hexacarboxylate ligands with Zn(II) ions. These transparent MOF crystals present gradually increasing pore sizes upon extension of the length of the organic backbone, as clearly identified by structural analysis and gas-adsorption experiments. The inherent accessibility of the pores to large molecules endows these materials with unique properties for the uptake of large guest molecules. The visible selective adsorption of dye molecules makes these MOFs highly promising porous materials for pore-size-dependent large-molecule capture and separation. PMID:26316365

  17. Wide Angle, Single Screen, Gridded Square-Loop Frequency Selective Surface for Diplexing Two Closely Separated Frequency Bands

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao (Inventor)

    1996-01-01

    The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incidence angle from 0 deg normal to 40 deg from normal.

  18. Mechanistic Investigation of Solvent Extraction Based on Anion-Functionalized Ionic Liquids for Selective Separation of Rare-Earth Ions

    SciTech Connect

    Sun, Xiaoqi; Luo, Huimin; Dai, Sheng

    2013-01-01

    In this study, solvation has been found to be a dominant mechanism in a comprehensive ionic liquid based extraction system for rare earth elements (REEs). Trioctylmethylammonium di(2-ethylhexyl)phosphate ([TOMA][DEHP]), an ionic-liquid extractant, was used in 1-alkyl-3-methylimidizolium bis[(trifluoromethyl)sulfonyl]imide ([Cnmim][NTf2], n = 4, 6, 8, 10) and 1-alkyl-3-methylimidizolium bis(perfluoroethanesulfonyl)imide ([Cnmim][BETI], n = 4, 6, 8, 10) for the separation of REEs. Surprisingly, a very similar extraction behavior was observed even as the carbon chain length on the ionic-liquid (IL) cation increased from butyl (C4) to hexyl (C6), to octyl (C8), to decyl (C10). This behavior is in sharp contrast to that exhibited by the conventional neutral extractants, whose extraction efficiencies are strongly dependent on the hydrophobicity of IL cations. Furthermore, the addition of IL cations ([Cnmim]+) or IL anions ([NTf2]- or [BETI]-) to the aqueous phase had little effect on the extraction behavior of the above extraction system, ruling out the strong involvement of the ion-exchange mechanism associated with traditional IL-based extraction systems. Results showed that the extractabilities and selectivities of REEs using [TOMA][DEHP] in [C10mim][NTf2]/[BETI] are several orders of magnitude better than those achieved using conventional organic solvent, diisopropylbenzene (DIPB). This study highlights the potential of developing a comprehensive IL-based extraction strategy for REEs separations.

  19. Well-defined nanostructured surface-imprinted polymers for highly selective magnetic separation of fluoroquinolones in human urine.

    PubMed

    He, Yonghuan; Huang, Yanyan; Jin, Yulong; Liu, Xiangjun; Liu, Guoquan; Zhao, Rui

    2014-06-25

    The construction of molecularly imprinted polymers on magnetic nanoparticles gives access to smart materials with dual functions of target recognition and magnetic separation. In this study, the superparamagnetic surface-molecularly imprinted nanoparticles were prepared via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization using ofloxacin (OFX) as template for the separation of fluoroquinolones (FQs). Benefiting from the living/controlled nature of RAFT reaction, distinct core-shell structure was successfully constructed. The highly uniform nanoscale MIP layer was homogeneously grafted on the surface of RAFT agent TTCA modified Fe3O4@SiO2 nanoparticles, which favors the fast mass transfer and rapid binding kinetics. The target binding assays demonstrate the desirable adsorption capacity and imprinting efficiency of Fe3O4@MIP. High selectivity of Fe3O4@MIP toward FQs (ofloxacin, pefloxacin, enrofloxacin, norfloxacin, and gatifloxacin) was exhibited by competitive binding assay. The Fe3O4@MIP nanoparticles were successfully applied for the direct enrichment of five FQs from human urine. The spiked human urine samples were determined and the recoveries ranging from 83.1 to 103.1% were obtained with RSD of 0.8-8.2% (n = 3). This work provides a versatile approach for the fabrication of well-defined MIP on nanomaterials for the analysis of complicated biosystems. PMID:24853973

  20. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOEpatents

    Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

    2001-01-01

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  1. Summarizing results on the performance of a selective set of atmospheric plasma jets for separation of photons and reactive particles

    NASA Astrophysics Data System (ADS)

    Schneider, Simon; Jarzina, Fabian; Lackmann, Jan-Wilm; Golda, Judith; Layes, Vincent; Schulz-von der Gathen, Volker; Bandow, Julia Elisabeth; Benedikt, Jan

    2015-11-01

    A microscale atmospheric-pressure plasma jet is a remote plasma jet, where plasma-generated reactive particles and photons are involved in substrate treatment. Here, we summarize our efforts to develop and characterize a particle- or photon-selective set of otherwise identical jets. In that way, the reactive species or photons can be used separately or in combination to study their isolated or combined effects to test whether the effects are additive or synergistic. The final version of the set of three jets—particle-jet, photon-jet and combined jet—is introduced. This final set realizes the highest reproducibility of the photon and particle fluxes, avoids turbulent gas flow, and the fluxes of the selected plasma-emitted components are almost identical in the case of all jets, while the other component is effectively blocked, which was verified by optical emission spectroscopy and mass spectrometry. Schlieren-imaging and a fluid dynamics simulation show the stability of the gas flow. The performance of these selective jets is demonstrated with the example of the treatment of E. coli bacteria with the different components emitted by a He-only, a He/N2 and a He/O2 plasma. Additionally, measurements of the vacuum UV photon spectra down to the wavelength of 50?nm can be made with the photon-jet and the relative comparison of spectral intensities among different gas mixtures is reported here. The results will show that the vacuum UV photons can lead to the inactivation of the E.coli bacteria.

  2. Corrosion-resistant uranium

    DOEpatents

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  3. Mechanistic investigation of solvent extraction based on anion-functionalized ionic liquids for selective separation of rare-earth ions.

    PubMed

    Sun, Xiaoqi; Luo, Huimin; Dai, Sheng

    2013-06-21

    In this study, solvation has been found to be a dominant mechanism in an ionic liquid (IL)-based extraction system for rare earth elements (REEs). Trioctylmethylammonium di(2-ethylhexyl)phosphate ([TOMA][DEHP]), an anion-functionalized IL extractant, was used in 1-alkyl-3-methylimidizolium bis[(trifluoromethylsulfonyl)]imide ([C(n)mim][NTf2], n = 4, 6, 8, 10) and 1-alkyl-3-methylimidizolium bis(perfluoroethanesulfonyl)imide ([C(n)mim][BETI], n = 4, 6, 8, 10) for the separation of REEs. Surprisingly, a very similar extraction behavior was observed even as the carbon chain length on the IL cation increased from butyl (C4) to decyl (C10). This behavior is in sharp contrast to that exhibited by the conventional molecular extractants, whose extraction efficiencies are strongly dependent on the hydrophobicity of IL cations. Furthermore, the addition of IL cations ([C(n)mim](+)) in [C(n)mim]Cl form or IL anions ([NTf2](-) or [BETI](-)) in Li[NTf2] or Li[BETI] form to the aqueous phase had a minor effect on the extraction behavior of the above extraction system, ruling out the strong involvement of the ion-exchange mechanism associated with traditional IL-based extraction systems. Results showed that the extractabilities and selectivities of REEs using [TOMA][DEHP] in [C10mim][NTf2]/[BETI] are several orders of magnitude better than those achieved using a conventional organic solvent, diisopropylbenzene (DIPB). This study highlights the potential of developing a comprehensive IL-based extraction strategy for REEs separations via ionic extractants. PMID:23595558

  4. Synthesis of magnetic molecularly imprinted polymers for the selective separation and determination of metronidazole in cosmetic samples.

    PubMed

    Liu, Min; Li, Xiao-Yan; Li, Jun-Jie; Su, Xiao-Meng; Wu, Zong-Yuan; Li, Peng-Fei; Lei, Fu-Hou; Tan, Xue-Cai; Shi, Zhan-Wang

    2015-05-01

    In this study, novel magnetic molecularly imprinted polymers (MMIPs) were developed as a sorbent for solid-phase extraction (SPE) and used for the selective separation of metronidazole (MNZ) in cosmetics; MNZ was detected by high-performance liquid chromatography (HPLC). First, magnetic Fe3O4 nanoparticles (NPs) were prepared by the co-precipitation of Fe(2+)and Fe(3+) ions in an ammonia solution; then oleic acid (OA) was modified onto the surface of Fe3O4NPs. Finally, the MMIP was prepared by aqueous suspension polymerization, involving the copolymerization of Fe3O4NPs@OA with MNZ as the template molecule, methacrylic acid (MAA) as the functional monomer, ethylene glycol maleic rosinate acrylate (EGMRA) as the cross-linking agent, and 2,2-azobisisobutyronitrile (AIBN) as the initiator. The MMIP materials showed high selective adsorption capacity and fast binding kinetics for MNZ; the maximum adsorption amount of the MMIP to MNZ was 46.7 mg/g. The assay showed a linear range from 0.1 to 20.0 ?g/mL for MNZ with the correlation coefficient 0.999. The relative standard deviations (RSD) of intra- and inter-day ranging from 0.71 to 2.45% and from 1.06 to 5.20% were obtained. The MMIP can be applied to the enrichment and determination of MNZ in cosmetic products with the recoveries of spiked toner, powder, and cream cosmetic samples ranging from 90.6 to 104.2, 84.1 to 91.4, and 90.3 to 100.4%, respectively, and the RSD was <3.54%. PMID:25749799

  5. Identification of RNase-resistant RNAs in Saccharomyces cerevisiae extracts: Separation from chromosomal DNA by selective precipitation.

    PubMed

    Rodriguez, Blanca V; Malczewskyj, Eric T; Cabiya, Joshua M; Lewis, L Kevin; Maeder, Corina

    2016-01-01

    High-quality chromosomal DNA is a requirement for many biochemical and molecular biological techniques. To isolate cellular DNA, standard protocols typically lyse cells and separate nucleic acids from other biological molecules using a combination of chemical and physical methods. After a standard chemical-based protocol to isolate chromosomal DNA from Saccharomyces cerevisiae and then treatment with RNase A to degrade RNA, two RNase-resistant bands persisted when analyzed using gel electrophoresis. Interestingly, such resistant bands did not appear in preparations of Escherichia coli bacterial DNA after RNase treatment. Several enzymatic, chemical, and physical methods were employed in an effort to remove the resistant RNAs, including use of multiple RNases and alcohol precipitation, base hydrolysis, and chromatographic methods. These experiments resulted in the development of a new method for isolation of S. cerevisiae chromosomal DNA. This method utilizes selective precipitation of DNA in the presence of a potassium acetate/isopropanol mixture and produces high yields of chromosomal DNA without detectable contaminating RNAs. PMID:26416692

  6. Disperse fine equiaxed alpha alumina nanoparticles with narrow size distribution synthesised by selective corrosion and coagulation separation

    PubMed Central

    Pu, Sanxu; Li, Lu; Ma, Ji; Lu, Fuliang; Li, Jiangong

    2015-01-01

    Disperse fine equiaxed ?-Al2O3 nanoparticles with narrow size distribution are important materials in nanotechnology and nanomaterials, but syntheses of disperse fine equiaxed ?-Al2O3 nanoparticles usually result in fine ?-Al2O3 nanoparticles or large ?-Al2O3 nanoparticles larger than 15?nm. ?-Al2O3 has a higher surface energy than ?-Al2O3 and becomes thermodynamically not stable with respect to ?-Al2O3 at specific surface areas larger than 100?m2/g (at sizes smaller than 15?nm for spherical particles) at room temperature. So disperse fine equiaxed ?-Al2O3 nanoparticles smaller than 15?nm with narrow size distribution are extremely difficult to synthesise. Here we show the successful synthesis of disperse fine equiaxed ?-Al2O3 nanoparticles with average sizes below 10?nm and narrow size distribution by selective corrosion and refined fractionated coagulation separation. An almost fully dense nanocrystalline ?-Al2O3 ceramic with a relative density of 99.5% and an average grain size of 60?nm can be sintered from disperse fine equiaxed ?-Al2O3 nanoparticles with narrow size distribution. PMID:26166455

  7. Disperse fine equiaxed alpha alumina nanoparticles with narrow size distribution synthesised by selective corrosion and coagulation separation

    NASA Astrophysics Data System (ADS)

    Pu, Sanxu; Li, Lu; Ma, Ji; Lu, Fuliang; Li, Jiangong

    2015-07-01

    Disperse fine equiaxed ?-Al2O3 nanoparticles with narrow size distribution are important materials in nanotechnology and nanomaterials, but syntheses of disperse fine equiaxed ?-Al2O3 nanoparticles usually result in fine ?-Al2O3 nanoparticles or large ?-Al2O3 nanoparticles larger than 15?nm. ?-Al2O3 has a higher surface energy than ?-Al2O3 and becomes thermodynamically not stable with respect to ?-Al2O3 at specific surface areas larger than 100?m2/g (at sizes smaller than 15?nm for spherical particles) at room temperature. So disperse fine equiaxed ?-Al2O3 nanoparticles smaller than 15?nm with narrow size distribution are extremely difficult to synthesise. Here we show the successful synthesis of disperse fine equiaxed ?-Al2O3 nanoparticles with average sizes below 10?nm and narrow size distribution by selective corrosion and refined fractionated coagulation separation. An almost fully dense nanocrystalline ?-Al2O3 ceramic with a relative density of 99.5% and an average grain size of 60?nm can be sintered from disperse fine equiaxed ?-Al2O3 nanoparticles with narrow size distribution.

  8. Effect of interwire separation on growth kinetics and properties of site-selective GaAs nanowires

    SciTech Connect

    Rudolph, D.; Schweickert, L.; Morkötter, S.; Loitsch, B.; Hertenberger, S.; Becker, J.; Bichler, M.; Finley, J. J.; Koblmüller, G.; Abstreiter, G.

    2014-07-21

    We report tuning of the growth kinetics, geometry, and properties of autocatalytic GaAs nanowires (NW) by precisely controlling their density on SiO{sub 2}-mask patterned Si (111) substrates using selective area molecular beam epitaxy. Using patterned substrates with different mask opening size (40–120?nm) and pitch (0.25–3??m), we find that the NW geometry (length, diameter) is independent of the opening size, in contrast to non-catalytic GaAs NWs, whereas the NW geometry strongly depends on pitch, i.e., interwire separation and NW density. In particular, two distinct growth regimes are identified: a diffusion-limited regime for large pitches (low NW density) and a competitive growth regime for smaller pitches (high NW density), where axial and radial NW growth rates are reduced. The transition between these two regimes is significantly influenced by the growth conditions and shifts to smaller pitches with increasing As/Ga flux ratio. Ultimately, the pitch-dependent changes in growth kinetics lead to distinctly different photoluminescence properties, highlighting that mask template design is a very critical parameter for tuning intrinsic NW properties.

  9. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, William E. (Naperville, IL); Ackerman, John P. (Downers Grove, IL); Battles, James E. (Oak Forest, IL); Johnson, Terry R. (Wheaton, IL); Pierce, R. Dean (Naperville, IL)

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.

  10. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1992-08-25

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure.

  11. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report: Attachment 2, Geology report; Attachment 3, Groundwater hydrology report; Attachment 4, Water resources protection strategy: Final report

    SciTech Connect

    Chernoff, A.R.; Lacker, D.K.

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  12. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lowman, Idaho: Remedial action selection report for the Lowman UMTRA project site, Idaho

    SciTech Connect

    Matthews, M.L. . Uranium Mill Tailings Remedial Action Project Office); Nagel, J. . Div. of Environmental Quality)

    1991-09-01

    The inactive uranium mill tailings site near Lowman, Idaho, was designated as one of 24 abandoned uranium tailings sites to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan and certify that the remedial action complies with the standards promulgated by the US Environmental Protection Agency (EPA). The remedial action plan (RAP), which includes this remedial action selection report (RAS), has been developed to serve a two-fold purpose. First, it describes the activities that are proposed by the DOE to accomplish long-term stabilization and control of residual radioactive materials at the inactive uranium processing site near Lowman, Idaho. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Idaho, and the NRC, becomes Appendix B of the Cooperative Agreement (No. DE-FC04-85AL20535) between the DOE and the State of Idaho.

  13. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lowman, Idaho: Remedial action selection report for the Lowman UMTRA project site, Idaho. Final report

    SciTech Connect

    Matthews, M.L.; Nagel, J.

    1991-09-01

    The inactive uranium mill tailings site near Lowman, Idaho, was designated as one of 24 abandoned uranium tailings sites to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan and certify that the remedial action complies with the standards promulgated by the US Environmental Protection Agency (EPA). The remedial action plan (RAP), which includes this remedial action selection report (RAS), has been developed to serve a two-fold purpose. First, it describes the activities that are proposed by the DOE to accomplish long-term stabilization and control of residual radioactive materials at the inactive uranium processing site near Lowman, Idaho. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Idaho, and the NRC, becomes Appendix B of the Cooperative Agreement (No. DE-FC04-85AL20535) between the DOE and the State of Idaho.

  14. Biotin-conjugated N-methylisatoic anhydride: a chemical tool for nucleic acid separation by selective 2'-hydroxyl acylation of RNA.

    PubMed

    Ursuegui, S; Chivot, N; Moutin, S; Burr, A; Fossey, C; Cailly, T; Laayoun, A; Fabis, F; Laurent, A

    2014-06-01

    An isatoic anhydride derivative conjugated to a biotin and a disulfide linker was specifically designed for the separation of nucleic acids. Starting from a DNA-RNA mixture, a selective 2'-hydroxyl acylation of RNAs followed by capture with streptavidin-coated magnetic beads and cleavage of the disulfide led to elution of RNAs. PMID:24752374

  15. Isotope Separation and Advanced Manufacturing Technology. ISAM semiannual report, Volume 3, Number 1, October 1993--March 1994

    SciTech Connect

    Carpenter, J.; Kan, T.

    1994-10-01

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (I) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (II) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  16. Combination of three-stage sink-float method and selective flotation technique for separation of mixed post-consumer plastic waste.

    PubMed

    Pongstabodee, Sangobtip; Kunachitpimol, Napatr; Damronglerd, Somsak

    2008-01-01

    The aim of this research was to separate the different plastics of a mixed post-consumer plastic waste by the combination of a three-stage sink-float method and selective flotation. By using the three-stage sink-float method, six mixed-plastic wastes, belonging to the 0.3-0.5 cm size class and including high density polyethylene (HDPE), polypropylene (PP), polyvinylchloride (PVC), polystyrene (PS), polyethylene terephthalate (PET) and acrylonitrile-butadiene-styrene copolymers (ABS) were separated into two groups, i.e., a low density plastic group (HDPE and PP) and a high density plastic group (PET, PVC, PS and ABS) by tap water. Plastic whose density is less than that of the medium solution floats to the surface, while the one whose density is greater than that of the medium solution sinks to the bottom. The experimental results elucidated that complete separation of HDPE from PP was achieved by the three-stage sink-float method with 50% v/v ethyl alcohol. To succeed in the separation of a PS/ABS mixture from a PET/PVC mixture by the three-stage sink-float method, a 30% w/v calcium chloride solution was employed. To further separate post-consumer PET/PVC and PS/ABS based on plastic type, selective flotation was carried out. In order to succeed in selective flotation separation, it is necessary to render hydrophilic the surface of one or more species while the others are kept in a hydrophobic state. In flotation studies, the effects of wetting agent, frother, pH of solution and electrolyte on separation were determined. The selective flotation results showed that when using 500 mg l(-1) calcium lignosulfonate, 0.01 ppm MIBC, and 0.1 mg l(-1) CaCl2 at pH 11, PET could be separated from PVC. To separate ABS from PS, 200 mg l(-1) calcium lignosulfonate and 0.1 mg l(-1) CaCl2 at pH 7 were used as a flotation solution. Wettability of plastic increases when adding CaCl2 and corresponds to a decrease in its contact angles and to a reduction in the recovery of plastic in the floated product. PMID:17493796

  17. Uranium in Soils Integrated Demonstration: Technology summary, March 1994

    SciTech Connect

    Not Available

    1994-03-01

    A recent Pacific Northwest Laboratory (PNL) study identified 59 waste sites at 14 DOE facilities across the nation that exhibit radionuclide contamination in excess of established limits. The rapid and efficient characterization of these sites, and the potentially contaminated regions that surround them represents a technological challenge with no existing solution. In particular, the past operations of uranium production and support facilities at several DOE sites have occasionally resulted in the local contamination of surface and subsurface soils. Such contamination commonly occurs within waste burial sites, cribs, pond bottom sediments and soils surrounding waste tanks or uranium scrap, ore, tailings, and slag heaps. The objective of the Uranium In Soils Integrated Demonstration is to develop optimal remediation methods for soils contaminated with radionuclides, principally uranium (U), at DOE sites. It is examining all phases involved in an actual cleanup, including all regulatory and permitting requirements, to expedite selection and implementation of the best technologies that show immediate and long-term effectiveness specific to the Fernald Environmental Management Project (FEMP) and applicable to other radionuclide contaminated DOE sites. The demonstration provides for technical performance evaluations and comparisons of different developmental technologies at FEMP sites, based on cost-effectiveness, risk-reduction effectiveness, technology effectiveness, and regulatory and public acceptability. Technology groups being evaluated include physical and chemical contaminant separations, in situ remediation, real-time characterization and monitoring, precise excavation, site restoration, secondary waste treatment, and soil waste stabilization.

  18. Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations

    E-print Network

    Nair, Sankar

    hfipbb)0.5 is strongly hindered by large energy barriers created by narrow windows in the MOF's pores. Be other MOFs with attractive properties for kinetic separations. Efficient separation of CO2 from CH4 diffusion of CO2 is far more rapid than CH4 in DDR because diffusion is controlled by narrow windows

  19. Packed-column supercritical fluid chromatography: Quantitative determination of uranium without liquid waste generation

    SciTech Connect

    Martin-Daguet, V.; Gasnier, P.; Caude, M.

    1997-02-01

    A new procedure for the determination of uranium by packed-column supercritical fluid chromatography is proposed. A nonfluorinated chelating agent selective for copper and uranium, the 2,6-diacetylpyridine bis(benzoylhydrazone), has been chosen. We have studied its chromatographic properties on different stationary phases and the influence of the methanol content in the carbon dioxide mobile phase. The separation of the metal compounds was conducted with and without solvent injection. A calibration curve was obtained for uranium in the range of 52-323 ng injected. The accuracy of the method is 0.5%, the repeatability 4%. The same studies were performed with a new compound, diacetyl-2,6 pyridine bis(4-tert-butyl benzoylhydrazone). An increase in retention and efficiency was then observed. 30 refs., 5 figs., 3 tabs.

  20. Uranium, natural

    Integrated Risk Information System (IRIS)

    Uranium , natural ; CASRN 7440 - 61 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  1. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial Action Selection Report, Appendix B of Attachment 2: Geology report, Final

    SciTech Connect

    Not Available

    1994-03-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which describes the proposed remedial action for the Naturita site. An extensive amount of data and supporting information has been generated and evaluated for this remedial action. These data and supporting information are not incorporated into this single document but are included or referenced in the supporting documents. The RAP consists of this RAS and four supporting documents or attachments. This Attachment 2, Geology Report describes the details of geologic, geomorphic, and seismic conditions at the Dry Flats disposal site.

  2. Uranium industry annual 1996

    SciTech Connect

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  3. Actinide Lanthanide Separation Process – ALSEP

    SciTech Connect

    Gelis, Artem V.; Lumetta, Gregg J.

    2014-01-29

    Separation of the minor actinides (Am, Cm) from the lanthanides at an industrial scale remains a significant technical challenge for closing the nuclear fuel cycle. To increase the safety of used nuclear fuel (UNF) reprocessing, as well as reduce associated costs, a novel solvent extraction process has been developed. The process allows for partitioning minor actinides, lanthanides and fission products following uranium/plutonium/neptunium removal; minimizing the number of separation steps, flowsheets, chemical consumption, and waste. This new process, Actinide Lanthanide SEParation (ALSEP), uses an organic solvent consisting of a neutral diglycolamide extractant, either N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) or N,N,N',N'-tetraoctyldiglycolamide (TODGA), and an acidic extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]), dissolved in an aliphatic diluent (e.g. n-dodecane). The An/Ln co-extraction is conducted from moderate-to-strong nitric acid, while the selective stripping of the minor actinides from the lanthanides is carried out using a polyaminocarboxylic acid/citrate buffered solution at pH anywhere between 3 and 4.5. The extraction and separation of the actinides from the fission products is very effective in a wide range of HNO3 concentrations and the minimum separation factors for lanthanide/Am exceed 30 for Nd/Am, reaching > 60 for Eu/Am under some conditions. The experimental results presented here demonstrate the great potential for a combined system, consisting of a neutral extractant such as T2EHDGA or TODGA, and an acidic extractant such as HEH[EHP], for separating the minor actinides from the lanthanides.

  4. Enhanced Control of PWR Primary Coolant Water Chemistry Using Selective Separation Systems for Recovery and Recycle of Enriched Boric Acid

    SciTech Connect

    Ken Czerwinski; Charels Yeamans; Don Olander; Kenneth Raymond; Norman Schroeder; Thomas Robison; Bryan Carlson; Barbara Smit; Pat Robinson

    2006-02-28

    The objective of this project is to develop systems that will allow for increased nuclear energy production through the use of enriched fuels. The developed systems will allow for the efficient and selective recover of selected isotopes that are additives to power water reactors' primary coolant chemistry for suppression of corrosion attack on reactor materials.

  5. Reliability of selected procedures of stress inversion and data separation for inhomogeneous populations of calcite twins and striated faults: insights from numerical experiments

    NASA Astrophysics Data System (ADS)

    G?ga?a, ?ukasz

    2009-03-01

    In the course of numerical experiments selected algorithms for stress tensor inversion and separation of heterogeneous populations of calcite twins and striated faults were tested. Artificial data sets were created in a manner simulating natural processes. They were composed of data, dynamically compatible with one or two stress tensors and chaotic “noise” imitating natural imperfections. For calcite twins the classical inversion procedure is considered valid, with restrictions regarding a high proportion of chaotic data, when shape ratio of the stress tensor ? is poorly constrained. The algorithm of Etchecopar (1984 fide Tourneret and Laurent in Tectonophysics 180:287-302, 1990) devised originally for calcite twins has been modified and applied to fault/slip data, facilitating a rejection of incompatible outliers. Two main classes of data separation procedures were tested: separation contemporary with inversion and separation prior to inversion, utilising hierarchical clustering. The separation contemporary with inversion performs moderately but often fails with complex calcite twin sets. The performance of hierarchical clustering is high, but only with a ? 1 orientation as a similarity criterion—the new strategy introduced in this contribution. For fault/slip data the hierarchical clustering with the right-dihedra construction as the similarity criterion (Nemcok et al. 1999) is satisfactory. Additionally, a new approach is proposed for fault/slip data, utilising principles of the classical algorithm for heterogeneous populations of calcite twins. Validated algorithms for striated faults were successfully applied to a natural data set from the Holy Cross Mts (central Poland).

  6. Extraction of uranium(VI) by N,N-di-(2-ethylhexyl)isobutyramide (DEHIBA): from the batch experimental data to the countercurrent process

    SciTech Connect

    Miguirditchian, M.; Sorel, C.; Cames, B.; Bisel, I.; Baron, P.

    2008-07-01

    The selective separation of uranium(VI) in the first cycle of the GANEX process is operated by a hydrometallurgical process using a monoamide extractant DEHiBA (N,N-di-(2-ethylhexyl)isobutyramide). Distribution ratios of uranium(VI) and nitric acid in 1 M DEHiBA/HTP were determined with macro-concentrations of uranium, and the experimental data were modelled by taking into account the activity coefficients of the constituents in aqueous phases. A flowsheet was designed and tested in a countercurrent process in laboratory-scale mixer-settlers on a surrogate U(VI)/HNO 3 feed. More than 99.999% of the uranium was recovered. (authors)

  7. Mortality among uranium enrichment workers

    SciTech Connect

    Brown, D.P.; Bloom, T.

    1987-01-01

    A retrospective cohort mortality study was conducted on workers at the Portsmouth Uranium Enrichment facility in Pike County, Ohio, in response to a request from the Oil, Chemical and Atomic Workers International Local 3-689 for information on long-term health effects. Primary hazards included inhalation exposure to uranyl fluoride containing uranium-235 and uranium-234, technetium-99 compounds, and hydrogen-fluoride. Uranium-238 presented a nephrotoxic hazard. Statistically significant mortality deficits based on U.S. death rates were found for all causes, accidents, violence, and diseases of nervous, circulatory, respiratory, and digestive systems. Standardized mortality rates were 85 and 54 for all malignant neoplasms and for other genitourinary diseases, respectively. Deaths from stomach cancer and lymphatic/hematopoietic cancers were insignificantly increased. A subcohort selected for greatest potential uranium exposure has reduced deaths from these malignancies. Insignificantly increased stomach cancer mortality was found after 15 years employment and after 15 years latency. Routine urinalysis data suggested low internal uranium exposures.

  8. A new MOF-5 homologue for selective separation of methane from C2 hydrocarbons at room temperature

    NASA Astrophysics Data System (ADS)

    He, Yabing; Song, Chengling; Ling, Yajing; Wu, Chuande; Krishna, Rajamani; Chen, Banglin

    2014-12-01

    A new MOF-5 homologue compound UTSA-10 has been obtained under solvothermal conditions from a mixture of Zn(NO3)2?6H2O and commercially available linker, 2-methylfumaric acid, in N,N-dimethylformamide. The moderate surface area and suitable pore sizes enable the activated UTSA-10a to separate methane from C2 hydrocarbons at room temperature.

  9. Effect of anionic ion-pairing reagent hydrophobicity on selectivity of peptide separations by reversed-phase liquid chromatography

    PubMed Central

    Shibue, M.; Mant, C.T.; Hodges, R.S.

    2009-01-01

    Despite the continuing dominance of trifluoroacetic acid (TFA) as the anionic ion-pairing reagent of choice for peptide separations by reversed-phase high-performance liquid chromatography (RP-HPLC), we believe that a step-by-step approach to re-examining the relative efficacy of TFA compared to other ion-pairing reagents is worthwhile, particularly for the design of separation protocols for complex peptide mixtures, e.g., in proteomics applications. Thus, we applied RP-HPLC in the presence of different concentrations of anionic ion-pairing reagents – phosphoric acid, TFA, pentafluoropropionic acid (PFPA) and heptafluorobutyric acid (HFBA) – to a mixture of three groups of four 10-residue peptides, these groups containing peptides of +1, +3 or +5 net charge. Overall separation of the 12-peptide mixture improved with increasing reagent hydrophobicity (phosphate? < TFA? < PFPA? < HFBA?) and/or concentration of the anion, with reagent hydrophobicity having a considerably more pronounced effect than reagent concentration. HFBA, in particular, achieved an excellent separation at a concentration of just 10 mM, whereby the peptides were separated by charged groups (+1 < +3 < +5) and hydrophobicity within these groups. There was an essentially equal effect of reagent hydrophobicity and concentration on each positive charge of the peptides, a useful observation for prediction of the effect of varying counterion concentration hydrophobicity and/or concentration during optimization of peptide purification protocols. Peak widths were greater for the more highly charged peptides, although these could be decreased significantly by raising the acid concentration; concomitantly, peptide resolution increased with increasing concentration of ion-pairing reagent. PMID:16013616

  10. Derived enriched uranium market

    SciTech Connect

    Rutkowski, E.

    1996-12-01

    The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market.

  11. Multiyear measurements of Position Angle and Separation of selected binary stars from the Washington Double Star Catalog

    NASA Astrophysics Data System (ADS)

    Muller, Rafael J.; Cersosimo, Juan C.; Lopez, Andy J.; Vergara, Nelson; Torres, Brian; Mendoza, Lizyan; Ortiz, Deliris; Del Valle, Yashira; Espinosa, Gabriela; Reyes, Marjory

    2016-01-01

    We present here the multiyear data sets on separation and position angle of binary stars obtained at the NURO telescope, located east of Flagstaff Arizona at an elevation of 7200 feet. The data was analyzed at the Humacao University Observatory of the University of Puerto Rico and will be submitted for publication at the Journal of Double Star Observations. We describe the methodology for the analysis of the images we obtained.

  12. Importance of MS selectivity and chromatographic separation in LC-MS/MS-based methods when investigating pharmaceutical metabolites in water. Dipyrone as a case of study.

    PubMed

    Ibáñez, M; Gracia-Lor, E; Sancho, J V; Hernández, F

    2012-08-01

    Pharmaceuticals are emerging contaminants of increasing concern because of their presence in the aquatic environment and potential to reach drinking-water sources. After human and/or veterinary consumption, pharmaceuticals can be excreted in unchanged form, as the parent compound, and/or as free or conjugated metabolites. Determination of most pharmaceuticals and metabolites in the environment is commonly made by liquid chromatography (LC) coupled to mass spectrometry (MS). LC coupled to tandem MS is the technique of choice nowadays in this field. The acquisition of two selected reaction monitoring (SRM) transitions together with the retention time is the most widely accepted criterion for a safe quantification and confirmation assay. However, scarce attention is normally paid to the selectivity of the selected transitions as well as to the chromatographic separation. In this work, the importance of full spectrum acquisition high-resolution MS data using a hybrid quadrupole time-of-flight analyser and/or a suitable chromatographic separation (to reduce the possibility of co-eluting interferences) is highlighted when investigating pharmaceutical metabolites that share common fragment ions. For this purpose, the analytical challenge associated to the determination of metabolites of the widely used analgesic dipyrone (also known as metamizol) in urban wastewater is discussed. Examples are given on the possibilities of reporting false positives of dypirone metabolites by LC-MS/MS under SRM mode due to a wrong assignment of identity of the compounds detected. PMID:22899513

  13. Purification of thorium from uranium-233 process residue

    SciTech Connect

    Webb, O.F.; Boll, R.A.; Lucero, A.J.; DePaoli, D.W.

    1999-04-01

    Thorium-229 can be used to produce {sup 213}Bi. Researchers in phase 1 human trials are investigating the use of antibodies labeled with {sup 213}Bi for selectively destroying leukemia cells. Other types of cancer may potentially be treated using similar approaches. Crude {sup 229}Th was liberated from Rachig rings by sonication in 7.5 M HNO{sub 3} followed by filtration. Contaminants included significant levels of uranium, a number of other metals, and radiolytic by-products of di-(2-butyl) phosphoric acid extractant (which was used i the original separation of {sup 233}U from thorium). Thorium was selectively retained on Reillex HPQ anion-exchange resin from 7.5 M HNO{sub 3} at 65%, where U(VI), Ac(III), Fe(III), Al(III), Ra(II), and Pb(II) were eluted. Thorium and uranium isotherms on Reillex HPQ are reported. The thorium was then easily eluted form the bed with 0.1 M HNO{sub 3}. To overcome mass transfer limitations of the resin, the separation was conducted at 65 C. The resin stood up well to use over several campaigns. Other researchers have reported that HPQ has excellent radiological and chemical stability. The eluted thorium was further purified by hydroxide precipitation from the organic contaminants. This process yielded 65 mCi of {sup 229}Th.

  14. Long-Gradient Separations Coupled with Selected Reaction Monitoring for Highly Sensitive, Large Scale Targeted Protein Quantification in a Single Analysis

    SciTech Connect

    Shi, Tujin; Fillmore, Thomas L.; Gao, Yuqian; Zhao, Rui; He, Jintang; Schepmoes, Athena A.; Nicora, Carrie D.; Wu, Chaochao; Chambers, Justin L.; Moore, Ronald J.; Kagan, Jacob; Srivastava, Sudhir; Liu, Alvin Y.; Rodland, Karin D.; Liu, Tao; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2013-10-01

    Long-gradient separations coupled to tandem MS were recently demonstrated to provide a deep proteome coverage for global proteomics; however, such long-gradient separations have not been explored for targeted proteomics. Herein, we investigate the potential performance of the long-gradient separations coupled with selected reaction monitoring (LG-SRM) for targeted protein quantification. Direct comparison of LG-SRM (5 h gradient) and conventional LC-SRM (45 min gradient) showed that the long-gradient separations significantly reduced background interference levels and provided an 8- to 100-fold improvement in LOQ for target proteins in human female serum. Based on at least one surrogate peptide per protein, an LOQ of 10 ng/mL was achieved for the two spiked proteins in non-depleted human serum. The LG-SRM detection of seven out of eight endogenous plasma proteins expressed at ng/mL or sub-ng/mL levels in clinical patient sera was also demonstrated. A correlation coefficient of >0.99 was observed for the results of LG-SRM and ELISA measurements for prostate-specific antigen (PSA) in selected patient sera. Further enhancement of LG-SRM sensitivity was achieved by applying front-end IgY14 immunoaffinity depletion. Besides improved sensitivity, LG-SRM offers at least 3 times higher multiplexing capacity than conventional LC-SRM due to ~3-fold increase in average peak widths for a 300-min gradient compared to a 45-min gradient. Therefore, LG-SRM holds great potential for bridging the gap between global and targeted proteomics due to its advantages in both sensitivity and multiplexing capacity.

  15. Uranium Industry Annual, 1992

    SciTech Connect

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  16. A generic analysis of energy use and solvent selection for CO2 separation from post-combustion flue gases

    USGS Publications Warehouse

    Lu, Y.; Chen, S.; Rostam-Abadi, M.

    2008-01-01

    A thermodynamic calculation was performed to determine the theoretical minimum energy used to separate CO2 from a coal combustion flue gas in a typical adsorption-desorption system. Under ideal conditions, the minimum energy required to separate CO2 from post-combustion flue gas and produce pure CO2 at 1 atmospheric pressure was only about 1183 kJ/kg CO2. This amount could double with the addition of the driving forces of mass and heat transfer and the adverse impacts of absorption heat release on adsorption capacity. Thermodynamic analyses were also performed for the aqueous amine-based absorption process. Two CO2 reaction mechanisms, the carbamate formation reaction with primary/secondary amines and the CO2 hydration reaction with tertiary amines, were included in the absorption reaction. The reaction heat, sensible heat, and stripping heat were all important to the total heat requirement. The heat use of an ideal tertiary amine amounted to 2786 kJ/kg, compared to 3211 kJ/kg for an ideal primary amine. The heat usage of an ideal amine was about 20% lower than that of commercially available amines. Optimizing the absorption process configuration could further reduce energy use. This is an abstract of a paper presented at the 2008 AIChE Spring National Meeting (New Orleans, LA 4/6-10/2008).

  17. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  18. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, John P. (Downers Grove, IL)

    1992-01-01

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  19. Achieving Diameter-Selective Separation of Single-Walled Carbon Nanobutes by Using Polymer Conformation-Confined Helical Cavity.

    SciTech Connect

    Chen, Yusheng; Xu, Yongqian; Perry, Kelly A; Sokolov, Alexei P; More, Karren Leslie; Pang, Yi

    2012-01-01

    A water-soluble poly[(m-phenylenevinylene)-alt-(p-phenylenevinylene)] (PmPV) 2 has been synthesized, which exhibits an unsymmetrical substitution pattern on the para-phenylene unit. With one substituent being hydrophilic while the other being hydrophobic, the polymer chain has a higher tendency to fold in aqueous solution, thereby promoting the helical conformation. The polymer is found to selectively disperse the SWNTs of small diameters (d=0.75-0.84 nm), in sharp contrast to PmPV 1 with a symmetrical substitution pattern. The intriguing diameter-based selectivity is believed to be associated with the confined helical conformation, which provides a suitable cavity to host the SWNT of proper sizes. The study thus provides a useful demonstration that the polymer conformation can have a profound impact on the SWNT sorting.

  20. Phenomenological predictions for uranium + uranium collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Nepali, Chandra Shekhar

    One of the main goals of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is to produce very hot, dense nuclear matter by colliding two heavy ions at relativistic energy. The matter produced under these extreme conditions is supposed to be in a deconfined phase, commonly known as Quark Gluon Plasma (QGP), which is believed to have existed for a very short time after the Big Bang. RHIC is devoted to the study of the QGP phase. One of the probes that carry information of this hot matter is the elliptic flow (azimuthal asymmetry in particle production). The elliptic flow occurs due to the spatial asymmetry of the overlap region of the two colliding nuclei at non-zero impact parameter. Particle production is azimuthally asymmetric due to asymmetry in the pressure gradient. The matter formed in central collisions of Au+Au at 200 GeV at RHIC seems to behave like a perfect fluid. This conclusion is based in part on approximate agreement between non-viscous hydrodynamic calculations and the experimental data on elliptic flow. The hydrodynamic calculations predict the saturation of the strength of the elliptic flow, v2, with increase in transverse particle density, (1/ S)(dNch/dy), at fixed impact parameter. The transverse particle density in central Au+Au is not enough to confirm this. Uranium + uranium (U+U) collisions have the potential to produce more extreme conditions of excited matter then is possible using spherical nuclei like gold or lead at the same incident energy. Uranium has quadrupole deformed shape. The collisions of special interest are the "ideal tip-tip" orientation in which the long axes of both deformed nuclei are aligned with the beam axis at zero impact parameter, and the "ideal body-body" orientation in which the long axes are both perpendicular to the beam axis and parallel to each other at zero impact parameter. The "ideal tip-tip" and "ideal body-body" collision events allow to test the hydro prediction by varying the transverse particle density at spatial eccentricity similar to central Au+Au, and spatial eccentricity at transverse particle density similar to central Au+Au, respectively. However, this potential of U+U collisions will be lost unless these desired collision events are selected. Configurations close to the "ideal tip-tip" and "ideal body-body" are referred as "tip-tip" and "body-body" for selection purposes, as the probability of ideal cases is negligible. I have studied U+U collisions at 200 GeV using different model simulations: Monte-Carlo Glauber, Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and A Multi-Phase Transport Model (AMPT). I have compared the advantages from U+U collisions at 200 GeV including the effect due to the STAR detector's resolution, and also shown a way to separate the desired collision configurations based on experimental observables. U+U collisions are planned at RHIC when the new ion source (the EBIS ion source) will be operational, around 2010.

  1. Affinity dialysis - a method of continuous, rapid metal ion separation using dialysis membranes and selective, water-soluble polymers as extractants

    SciTech Connect

    Davis, J.C.; Valus, R.J.; Lawrence, E.G.

    1988-08-01

    A membrane process utilizing dialysis and selective complexation by water-soluble polymers has been developed. This process, termed affinity dialysis, has been shown to be selectively extract and concentrate both cations and anions in a manner similar to ion exchange or solvent extraction. The selective removal of calcium from sodium with selectivity of about 30, removal of chromate ion from dilute streams, and separation of transition metal ions such as Cu/Fe and Cu/Zn have all been successfully demonstrated. Effects of different polymers, polymer concentration, temperature, and flow rates have been studied. The effect of increased polymer concentration is to increase product concentration if appropriate changes in feed, polymer solution, and strip flow rates are made. A continuous polymer solution recycle and regeneration system has been constructed and operated with Cu/Zn and chromate/chloride feed streams. Removal of over 95% of the desired ion in one pass and concentration factors of product over effluent in excess of 100 have been achieved at feed flow rates of 24 gal/d. Product concentrations of greater than 3% from as little as 400 ppm feed have been demonstrated in a continuous process. In addition, the degree of polymer loss to the effluent stream has been shown to be less than 0.01%/d for a typical system. Metal removal from typical feeds is about 0.9 g/m/sup 2/ per 1000 ppm metal in the feed. It is expected that this technique may be useful in the separation of organic and biological materials, as well as for ionic species.

  2. Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples.

    PubMed

    Fasih Ramandi, Negin; Shemirani, Farzaneh

    2015-01-01

    For the first time, a selective ionic liquid ferrofluid has been used in dispersive solid phase extraction (IL-FF-D-SPE) for simultaneous preconcentration and separation of lead and cadmium in milk and biological samples combined with flame atomic absorption spectrometry. To improve the selectivity of the ionic liquid ferrofluid, the surface of TiO2 nanoparticles with a magnetic core as sorbent was modified by loading 1-(2-pyridylazo)-2-naphtol. Due to the rapid injection of an appropriate amount of ionic liquid ferrofluid into the aqueous sample by a syringe, extraction can be achieved within a few seconds. In addition, based on the attraction of the ionic liquid ferrofluid to a magnet, no centrifugation step is needed for phase separation. The experimental parameters of IL-FF-D-SPE were optimized using a Box-Behnken design (BBD) after a Plackett-Burman screening design. Under the optimum conditions, the relative standard deviations of 2.2% and 2.4% were obtained for lead and cadmium, respectively (n=7). The limit of detections were 1.21 µg L(-1) for Pb(II) and 0.21 µg L(-1) for Cd(II). The preconcentration factors were 250 for lead and 200 for cadmium and the maximum adsorption capacities of the sorbent were 11.18 and 9.34 mg g(-1) for lead and cadmium, respectively. PMID:25281121

  3. Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix.

    PubMed

    Guo, Pei-Lin; Tang, Man; Hong, Shao-Li; Yu, Xu; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-12-15

    Foodborne illnesses have always been a serious problem that threats public health, so it is necessary to develop a method that can detect the pathogens rapidly and sensitively. In this study, we designed a magnetic controlled microfluidic device which integrated the dynamic magnetophoretic separation and stationary magnetic trap together for sensitive and selective detection of Salmonella typhimurium (S. typhimurium). Coupled with immunomagnetic nanospheres (IMNs), this device could separate and enrich the target pathogens and realize the sensitive detection of target pathogens on chip. Based on the principle of sandwich immunoassays, the trapped target pathogens identified by streptavidin modified QDs (SA-QDs) were detected under an inverted fluorescence microscopy. A linear range was exhibited at the concentration from 1.0×10(4) to 1.0×10(6) colony-forming units/mL (CFU/mL), the limit of detection (LOD) was as low as 5.4×10(3) CFU/mL in milk (considering the sample volume, the absolute detection limit corresponded to 540C FU). Compared with the device with stationary magnetic trap alone, the integrated device enhanced anti-interference ability and increased detection sensitivity through dynamic magnetophoretic separation, and made the detection in complex samples more accurate. In addition, it had excellent specificity and good reproducibility. The developed system provides a rapid, sensitive and accurate approach to detect pathogens in practice samples. PMID:26201979

  4. Magnetic affinity microspheres with meso-/macroporous shells for selective enrichment and fast separation of phosphorylated biomolecules.

    PubMed

    Cheng, Gong; Wang, Zhi-Gang; Liu, Yan-Lin; Zhang, Ji-Lin; Sun, De-Hui; Ni, Jia-Zuan

    2013-04-24

    The flowerlike multifunctional affinity microspheres prepared by a facile solvothermal synthesis and subsequent calcination process consist of magnetic cores and hierarchical meso-/macroporous TiO2 shells. The hierarchical porous structure of the flowerlike affinity microspheres is constructed by the macroporous shell from the stacked mesoporous nanopetals which are assembled by small crystallites. The affinity microspheres have a relatively large specific surface area of 50.45 m(2) g(-1) and superparamagnetism with a saturation magnetization (Ms) value of 30.1 emu g(-1). We further demonstrate that they can be applied for rapid and effective purification of phosphoproteins, in virtue of their selective affinity, porous structure, and strong magnetism. In addition, the affinity microspheres can also be used for enrichment of phosphopeptides, and the selectivity is greatly improved due to the increase of mass transport and prevention of the possible "shadow effect" resulting from the smaller and deeper pores by taking advantage of the unique porous structure. Overall, this work will be highly beneficial for future applications in the isolation and identification of phosphorylated biomolecules. PMID:23514605

  5. Diffusion and Leaching of Selected Radionuclides (Iodine-129, Technetium-99, and Uranium) Through Category 3 Waste Encasement Concrete and Soil Fill Material

    SciTech Connect

    Mattigod, Shas V.; Whyatt, Greg A.; Serne, R. Jeffrey; Martin, P. F.; Schwab, Kristen E.; Wood, Marcus I.

    2001-09-24

    An assessment of long-term performance of Category 3 waste-enclosing cement grouts requires data about the leachability/diffusion of radionuclide species (iodine-129, technetium-99, and uranium) when the waste forms come in contact with groundwater. Leachability data were collected by conducting dynamic (ANS-16.1) and static leach tests on radionuclide-containing cement specimens. The diffusivity of radionuclides in soil and concrete media was collected by conducting soil-soil and concrete-soil half-cell experiments.

  6. Modified superparamagnetic nanocomposite microparticles for highly selective Hg(II) or Cu(II) separation and recovery from aqueous solutions.

    PubMed

    Mandel, Karl; Hutter, Frank; Gellermann, Carsten; Sextl, Gerhard

    2012-10-24

    The synthesis of a reusable, magnetically switchable nanocomposite microparticle, which can be modified to selectively extract and recover Hg(II) or Cu(II) from water, is reported. Superparamagnetic iron oxide (magnetite) nanoparticles act as the magnetic component in this system, and these nanoparticles were synthesized in a continuous way, allowing their large-scale production. A new process was used to create a silica matrix, confining the magnetite nanoparticles using a cheap silica source [sodium silicate (water glass)]. This results in a well-defined, filigree micrometer-sized nanocomposite via a fast, simple, inexpensive, and upscalable process. Hence, because of the ideal size of the resulting microparticles and their comparably large magnetization, particle extraction from fluids by low-cost magnets is achieved. PMID:22970866

  7. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, Steven A. (Knoxville, TN); Creech, Edward T. (Oak Ridge, TN); Northcutt, Walter G. (Oak Ridge, TN)

    1983-01-01

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  8. Whole-rock uranium analysis by fission track activation

    NASA Technical Reports Server (NTRS)

    Weiss, J. R.; Haines, E. L.

    1974-01-01

    We report a whole-rock uranium method in which the polished sample and track detector are separated in a vacuum chamber. Irradiation with thermal neutrons induces uranium fission in the sample, and the detector records the integrated fission track density. Detection efficiency and geometric factors are calculated and compared with calibration experiments.

  9. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1982-09-27

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.

  10. Organic Separation Test Results

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations, could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.

  11. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.

    PubMed

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-04-01

    In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid-liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions. PMID:25576783

  12. Isotope separation and advanced manufacturing technology

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  13. Uranium industry annual 1994

    SciTech Connect

    1995-07-05

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  14. Uranium mineralization in southern Victoria Land, Antarctica

    SciTech Connect

    Dreschhoff, G.A.M.; Zeller, E.J.

    1986-01-01

    For the past 10 antarctic field seasons, an airborne gamma-ray spectrometric survey has been conducted over widely separated parts of the continent. Localized accumulations of both primary and secondary uranium minerals have been discovered at several localities scattered along the Transantarctic Mountains from the Scott Glacier to northern Victoria Land. A number of highly significant radiation anomalies have been discovered in the area between the Koettlitz Glacier and the Pyramid Trough. The occurrences consist of pegmatite vein complexes which contain an association of primary uranium and thorium minerals. Of still greater significance is the fact that abundant secondary uranium minerals were found in association with the primary deposits, and they indicate clearly that uranium is geochemically mobile under the conditions imposed by the arid polar climate that now exists in southern Victoria Land. Preliminary results of a uranium analysis performed by neutron activation indicate a concentration of 0.12% uranium in a composite sample from the two veins. Even higher levels of thorium are present. The nature of the primary uranium mineralization is currently under investigation. Preliminary results are discussed.

  15. Towards a selective adsorbent for arsenate and selenite in the presence of phosphate: Assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex.

    PubMed

    Yamani, Jamila S; Lounsbury, Amanda W; Zimmerman, Julie B

    2016-01-01

    The potential for a chitosan-copper polymer complex to select for the target contaminants in the presence of their respective competitive ions was evaluated by synthesizing chitosan-copper beads (CCB) for the treatment of (arsenate:phosphate), (selenite:phosphate), and (selenate:sulfate). Based on work by Rhazi et al., copper (II) binds to the amine moiety on the chitosan backbone as a monodentate complex (Type I) and as a bidentate complex crosslinking two polymer chains (Type II), depending on pH and copper loading. In general, the Type I complex exists alone; however, beyond threshold conditions of pH 5.5 during synthesis and a copper loading of 0.25 mol Cu(II)/mol chitosan monomer, the Type I and Type II complexes coexist. Subsequent chelation of this chitosan-copper ligand to oxyanions results in enhanced and selective adsorption of the target contaminants in complex matrices with high background ion concentrations. With differing affinities for arsenate, selenite, and phosphate, the Type I complex favors phosphate chelation while the Type II complex favors arsenate chelation due to electrostatic considerations and selenite chelation due to steric effects. No trend was exhibited for the selenate:sulfate system possibly due to the high Ksp of the corresponding copper salts. Binary separation factors, ?12, were calculated for the arsenate-phosphate and selenite-phosphate systems, supporting the mechanistic hypothesis. While, further research is needed to develop a synthesis method for the independent formation of the Type II complexes to select for target contaminants in complex matrices, this work can provide initial steps in the development of a selective adsorbent. PMID:26613182

  16. Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry.

    PubMed

    Varga, Zsolt; Katona, Róbert; Stefánka, Zsolt; Wallenius, Maria; Mayer, Klaus; Nicholl, Adrian

    2010-03-15

    A novel and simple analytical procedure has been developed for the trace-level determination of lanthanides (rare-earth elements) in uranium-bearing materials by inductively coupled plasma sector-field mass spectrometry (ICP-SFMS). The method involves a selective extraction chromatographic separation of lanthanides using TRU resin followed by ICP-SFMS analysis. The limits of detection of the method proposed is in the low pg g(-1) range, which are approximately two orders of magnitude better than that of without chemical separation. The method was validated by the measurement of reference material and applied for the analysis of uranium ore concentrates (yellow cakes) for nuclear forensic purposes, as a potential application of the methodology. PMID:20152406

  17. New reversed phase-high performance liquid chromatographic method for selective separation of yttrium from all rare earth elements employing nitrilotriacetate complexes in anion exchange mode.

    PubMed

    Dybczy?ski, Rajmund S; Kulisa, Krzysztof; Pyszynska, Marta; Bojanowska-Czajka, Anna

    2015-03-20

    Separation of Y from other rare earth elements (REE) is difficult because of similarity of its ionic radius to ionic radii of Tb, Dy and Ho. In the new RP-HPLC system with C18 column, tetra-n-butyl ammonium hydroxide (TBAOH) as an ion interaction reagent (IIR), nitrilotriacetic acid (NTA) as a complexing agent at pH=2.8-3.5, and post column derivatization with Arsenazo III, yttrium is eluted in the region of light REE, between Nd and Sm and is base line separated from Nd and Sm and even from promethium. Simple model employing literature data on complex formation of REE with NTA and based on anion exchange mechanism was developed to foresee the order of elution of individual REE. The model correctly predicted that lanthanides up to Tb will be eluted in the order of increasing Atomic Number (At.No.) but all heavier REE will show smaller retention factors than Tb. Concurrent UV/VIS detection at 658nm and the use of radioactive tracers together with ?-ray spectrometric measurements made possible to establish an unique elution order of elution of REE: La, Ce, Pr, Nd, Pm, Y, Sm, Er, Ho, Tm, Yb, Eu, Lu, Dy+Gd, Tb, Sc. The real place of Y however, in this elution series differs from that predicted by the model (Y between Sm and Eu). The method described in this work enables selective separation of Y from La, Ce, Pr, Nd, Pm, Sm and all heavier REE treated as a group. PMID:25700726

  18. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary final

    SciTech Connect

    Not Available

    1994-03-01

    This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.

  19. Yolk-shell nanostructured Fe3O4@NiSiO3 for selective affinity and magnetic separation of His-tagged proteins.

    PubMed

    Wang, Yang; Wang, Guangchuan; Xiao, Yun; Yang, Yuling; Tang, Ruikang

    2014-01-01

    Recent developments of nanotechnology encourage novel materials for facile separations and purifications of recombinant proteins, which are of great importance in disease diagnoses and treatments. We find that Fe3O4@NiSiO3 with yolk-shell nanostructure can be used to specifically purify histidine-tagged (His-tagged) proteins from mixtures of lysed cells with a recyclable process. Each individual nanoparticle composes by a mesoporous nickel silicate shell and a magnetic Fe3O4 core in the hollow inner, which is featured by its great loading efficiency and rapid response toward magnetic fields. The abundant Ni(2+) cations on the shell provide docking sites for selective coordination of histidine and the reversible release is induced by excess imidazole solution. Because of the Fe3O4 cores, the separation, concentration, and recycling of the nanocomposites become feasible under the controls of magnets. These characteristics would be highly beneficial in nanoparticle-based biomedical applications for targeted-drug delivery and biosensors. PMID:25303145

  20. Evolution of isotopic composition of reprocessed uranium during the multiple recycling in light water reactors with natural uranium feed

    SciTech Connect

    Smirnov, A. Yu. Sulaberidze, G. A.; Alekseev, P. N.; Dudnikov, A. A.; Nevinitsa, V. A. Proselkov, V. N.; Chibinyaev, A. V.

    2012-12-15

    A complex approach based on the consistent modeling of neutron-physics processes and processes of cascade separation of isotopes is applied for analyzing physical problems of the multiple usage of reprocessed uranium in the fuel cycle of light water reactors. A number of scenarios of multiple recycling of reprocessed uranium in light water reactors are considered. In the process, an excess absorption of neutrons by the {sup 236}U isotope is compensated by re-enrichment in the {sup 235}U isotope. Specific consumptions of natural uranium for re-enrichment of the reprocessed uranium depending on the content of the {sup 232}U isotope are obtained.

  1. Uranium from phosphate ores

    SciTech Connect

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant.

  2. DEPLETED URANIUM TECHNICAL WORK

    EPA Science Inventory

    The Depleted Uranium Technical Work is designed to convey available information and knowledge about depleted uranium to EPA Remedial Project Managers, On-Scene Coordinators, contractors, and other Agency managers involved with the remediation of sites contaminated with this mater...

  3. Novel microorganism for selective separation of coal from ash and pyrite; First quarterly technical progress report, September 1, 1993--November 30, 1993

    SciTech Connect

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1993-12-31

    This report summarizes the progress made during the first quarter of the research project entitled ``A Novel Microorganism for Selective Separation of Coal from Ash and Pyrite,`` DOE Grant No. DE-FG22-93PC93215. The objective of this project is to study the effectiveness of a novel hydrophobic microorganism, Mycobacterium phlei (M. phlei), for the selective flocculation of coal from pyrite and ash-forming minerals. During the reporting period, three different coal samples: Illinois No. 6 coal, Kentucky No. 9 coal and Pittsburgh No. 8 coal, were collected to be used in the investigation. The microorganism, M. phlei, was obtained as freeze-dried cultures and the growth characteristics of the bacteria were studied. Scanning electron microphotographs revealed that M. phlei cells are coccal in shape and are approximately 1 {mu}m in diameter. Electrokinetic measurements showed that the Illinois No. 6 and Pittsburgh No. 8 coal samples had an isoelectric point (IEP) around pH 6 whereas M. phlei had an IEP around pH 1.5. Electrokinetic measurements of the ruptured microorganisms exhibited an increase in IEP. The increase in IEP of the ruputured cells was due to the release of fatty acids and polar groups from the cell membrane.

  4. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles.

    PubMed

    Fan, Fang-Li; Qin, Zhi; Bai, Jing; Rong, Wei-Dong; Fan, Fu-You; Tian, Wei; Wu, Xiao-Lei; Wang, Yang; Zhao, Liang

    2012-04-01

    Rapid removal of U(VI) from aqueous solutions was investigated using magnetic Fe(3)O(4)@SiO(2) composite particles as the novel adsorbent. Batch experiments were conducted to study the effects of initial pH, amount of adsorbent, shaking time and initial U(VI) concentrations on uranium sorption efficiency as well as the desorbing of U(VI). The sorption of uranium on Fe(3)O(4)@SiO(2) composite particles was pH-dependent, and the optimal pH was 6.0. In kinetics studies, the sorption equilibrium can be reached within 180 min, and the experimental data were well fitted by the pseudo-second-order model, and the equilibrium sorption capacities calculated by the model were almost the same as those determined by experiments. The Langmuir sorption isotherm model correlates well with the uranium sorption equilibrium data for the concentration range of 20-200 mg/L. The maximum uranium sorption capacity onto magnetic Fe(3)O(4)@SiO(2) composite particles was estimated to be about 52 mg/g at 25 °C. The highest values of uranium desorption (98%) was achieved using 0.01 M HCl as the desorbing agent. Fe(3)O(4)@SiO(2) composite particles showed a good selectivity for uranium from aqueous solution with other interfering cation ions. Present study suggested that magnetic Fe(3)O(4)@SiO(2) composite particles can be used as a potential adsorbent for sorption uranium and also provided a simple, fast separation method for removal of heavy metal ion from aqueous solution. PMID:22304999

  5. Bicarbonate leaching of uranium

    SciTech Connect

    Mason, C.

    1998-12-31

    The alkaline leach process for extracting uranium from uranium ores is reviewed. This process is dependent on the chemistry of uranium and so is independent on the type of mining system (conventional, heap or in-situ) used. Particular reference is made to the geochemical conditions at Crownpoint. Some supporting data from studies using alkaline leach for remediation of uranium-contaminated sites is presented.

  6. Plant-uptake of uranium: Hydroponic and soil system studies

    USGS Publications Warehouse

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  7. Synthesis and characterization of a surface-grafted Cd(II) ion-imprinted polymer for selective separation of Cd(II) ion from aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Min; Feng, Changgen; Li, Mingyu; Zeng, Qingxuan; Gan, Qiang; Yang, Haiyan

    2015-03-01

    A novel Cd(II) ion-imprinted polymer (Cd(II)-IIP) was prepared with surface imprinting technology by using cadmium chloride as a template and allyl thiourea (ATU) as a functional monomer for on-line solid-phase extraction of trace Cd(II) ion and selective separation Cd(II) ion in water samples. The Cd(II)-IIP exhibited good chemical performance and thermal stability. Kinetics studies showed that the equilibrium adsorption was achieved within 8.0 min and the adsorption process can be described by pseudo-second-order kinetic model. Compared to the Cd(II) non-imprinted polymer (Cd(II)-NIP), the Cd(II)-IIP had a higher adsorption capacity and selectivity for Cd(II) ion. The maximum adsorption capacities of the Cd(II)-IIP and Cd(II)-NIP for Cd(II) were 38.30 and 13.21 mg g-1, respectively. The relative selectivity coefficients of the adsorbent for Cd(II) in the presence of Cu2+, Ni2+, Co2+, Pb2+ and Zn2+ were 2.86, 6.42, 11.50, 9.46 and 3.73, respectively. In addition, the Cd(II) ion adsorbed was easy to remove from sorbent and the Cd(II)-IIP exhibited good stability and reusability. The adsorption capacity had no obvious decrease after being used six times. The accuracy of this method was verified by the standard reference material, it was then applied for cadmium ion determination in different types of water samples.

  8. Ecotechnological approach for consolidation of uranium tailings.

    PubMed

    Soni, Prafulla; Singh, Lal

    2011-07-01

    Present study has been undertaken to consolidate radioactivity in uranium mill tailings at Jaduguda, Jharkhand, India.Tailings that remain after processing of ore are released in tailing ponds specially designed for the purpose. The degraded tailing ponds have been capped with 30 cm. thick soil cover. For cosolidation of radioactivity in the tailings firstly the selected plant species should not have any socioeconomic relevance in that area and secondly, uptake of uranium by selected plants has to be low to avoid its dissemination in any form in environment. Seven native plant species of forestry origin were used for experimental trials. Above ground growth has been measured for two years under ex- situ and in- situ conditions. Distribution and concentration of uranium have been evaluated in tailing pond soil as well as tailings. Uranium uptake by plants has been evaluated and discussed in this paper. The highest concentration of uranium has been found in the order as: in tailings > soil cover on tailings > roots of selected plant species > shoots of all the selected species. These results show that among seven species tried Jatropha gossypifolia and Furcraea foetida have lowest uptake (below detectable limit), while Saccharum spontaneum and Pogostemon benghalense have comparatively higher uptake among the studied species. PMID:23029938

  9. MICRONUCLEI IN EPITHELIAL CELLS FROM SPUTUM OF URANIUM WORKERS

    EPA Science Inventory

    The exfoliated-cell micronucleus (MN) assay was used to assess cytogenetic effects of exposure to radon progeny and cigarette smoke among 99 Colorado plateau uranium workers. ubjects were selected at random from employees in underground and open-pit uranium mines, ore mills, labo...

  10. High loading uranium plate

    SciTech Connect

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-10-16

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  11. Innovative Separations Technologies

    SciTech Connect

    J. Tripp; N. Soelberg; R. Wigeland

    2011-05-01

    Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

  12. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed....

  13. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed....

  14. BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.

    SciTech Connect

    FRANCIS,A.J.

    1998-09-17

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  15. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    SciTech Connect

    Not Available

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

  16. Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(VI)

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Gu, Zexing; Yang, Jijun; Liao, Jiali; Yang, Yuanyou; Liu, Ning; Tang, Jun

    2014-11-01

    A novel solid-phase extractant, amidoxime-grafted multiwalled carbon nanotubes (AO-g-MWCNTs), has been synthesized using plasma techniques to selectively separate uranium from nuclear industrial effluents. The adsorbent was characterized by Fourier transform infrared spectra (FT-IR), elemental analysis, Raman, scanning electron microscopy (SEM), and thermal gravity analysis (TGA). Sorption behaviors of uranium(VI) on AO-g-MWCNTs were investigated by varying pH, contact time, initial uranium concentration, and temperature. An optimum sorption capacity of 145 mg g-1 (0.61 mmol g-1) for U(VI) was obtained at pH 4.5. X-ray photoelectron spectroscopy (XPS) has been used to explore the sorption mechanism of U(VI) on AO-g-MWCNTs. Furthermore, AO-g-MWCNTs could selectively adsorb U(VI) in aqueous solution containing co-existing ions (Mn2+, Co2+, Ni2+, Zn2+, Sr2+, Ba2+ and Cs+). This study shows that AO-g-MWCNTs are potential adsorbent for effective removal of U(VI) from aqueous solution.

  17. Welding of uranium and uranium alloys

    SciTech Connect

    Mara, G.L.; Murphy, J.L.

    1982-03-26

    The major reported work on joining uranium comes from the USA, Great Britain, France and the USSR. The driving force for producing this technology base stems from the uses of uranium as a nuclear fuel for energy production, compact structures requiring high density, projectiles, radiation shielding, and nuclear weapons. This review examines the state-of-the-art of this technology and presents current welding process and parameter information. The welding metallurgy of uranium and the influence of microstructure on mechanical properties is developed for a number of the more commonly used welding processes.

  18. Particle separation

    DOEpatents

    Moosmuller, Hans (Reno, NV); Chakrabarty, Rajan K. (Reno, NV); Arnott, W. Patrick (Reno, NV)

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  19. Particle separation

    NASA Technical Reports Server (NTRS)

    Moosmuller, Hans (Inventor); Chakrabarty, Rajan K. (Inventor); Arnott, W. Patrick (Inventor)

    2011-01-01

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  20. Magnetic separation for soil decontamination

    SciTech Connect

    Avens, L.R.; Worl, L.A.; deAguero, K.J.; Padilla, D.D.; Prenger, F.C.; Stewart, W.F.; Hill, D.D.; Tolt, T.L.

    1993-02-01

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology.

  1. Magnetic separation for soil decontamination

    SciTech Connect

    Avens, L.R.; Worl, L.A.; deAguero, K.J.; Padilla, D.D.; Prenger, F.C.; Stewart, W.F.; Hill, D.D. ); Tolt, T.L. )

    1993-01-01

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology.

  2. N,N'-Dialkyl-N,N'-diaryl-1,10-phenanthroline-2,9-dicarboxamides as donor ligands for separation of rare earth elements with a high and unusual selectivity. DFT computational and experimental studies.

    PubMed

    Ustynyuk, Yu A; Borisova, N E; Babain, V A; Gloriozov, I P; Manuilov, A Y; Kalmykov, S N; Alyapyshev, M Yu; Tkachenko, L I; Kenf, E V; Ustynyuk, N A

    2015-05-01

    N,N'-Dialkyl-N,N'-diaryl-1,10-phenanthroline-2,9-dicarboxamides (IV) were predicted (DFT simulation) and then were proved experimentally to be efficient donor ligands with high and unusual selectivity for the extraction separation of lanthanides. Distribution coefficients D of lanthanide cations in two-phase aqueous solution-polar organic solvent decrease with increasing Ln(3+) atomic number. The selectivity factors SFLn1/Ln2 for adjacent lanthanide ions were found to be about 3. PMID:25828700

  3. Evaporation of Enriched Uranium Solutions Containing Organophosphates

    SciTech Connect

    Pierce, R.A.

    1999-03-18

    The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The preliminary SRTC data, in conjunction with information in the literature, is promising. However, very few experiments have been run, and none of the results have been confirmed with repeat tests. As a result, it is believed that insufficient data exists at this time to warrant Separations making any process or program changes based on the information contained in this report. When this data is confirmed in future testing, recommendations will be presented.

  4. Synthesis of Uranium Trichloride for the Pyrometallurgical Processing of Used Nuclear Fuel

    SciTech Connect

    B.R. Westphal; J.C. Price; R.D. Mariani

    2011-11-01

    The pyroprocessing of used nuclear fuel via electrorefining requires the continued addition of uranium trichloride to sustain operations. Uranium trichloride is utilized as an oxidant in the system to allow separation of uranium metal from the minor actinides and fission products. The inventory of uranium trichloride had diminished to a point that production was necessary to continue electrorefiner operations. Following initial experimentation, cupric chloride was chosen as a reactant with uranium metal to synthesize uranium trichloride. Despite the variability in equipment and charge characteristics, uranium trichloride was produced in sufficient quantities to maintain operations in the electrorefiner. The results and conclusions from several experiments are presented along with a set of optimized operating conditions for the synthesis of uranium trichloride.

  5. Uranium hexafluoride public risk

    SciTech Connect

    Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

    1994-08-01

    The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

  6. Development of Novel Sorbents for Uranium Extraction from Seawater

    SciTech Connect

    Lin, Wenbin; Taylor-Pashow, Kathryn

    2014-01-08

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOE’s efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.

  7. Microbial transformation of uranium in wastes

    SciTech Connect

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.; Cline, J.E.; Oak Ridge Y-12 Plant, TN )

    1989-01-01

    Contamination of soils, water, and sediments by radionuclides and toxic metals from the disposal of uranium processing wastes is a major national concern. Although much is known about the physico- chemical aspects of U, we have little information on the effects of aerobic and anaerobic microbial activities on the mobilization or immobilization of U and other toxic metals in mixed wastes. In order to understand the mechanisms of microbial transformations of uranium, we examined a contaminated pond sediment and a sludge sample from the uranium processing facility at Y-12 Plant, Oak Ridge, TN. The uranium concentration in the sediment and sludge samples was 923 and 3080 ug/g dry wt, respectively. In addition to U, the sediment and sludge samples contained high levels of toxic metals such as Cd, Cr, Cu, Hg, Pb, Ni, and Zn. The association of uranium with the various mineral fractions of the sediment and sludge was determined by selective chemical extraction techniques. Uranium was associated to varying degrees with the exchangeable carbonate, iron oxide, organic, and inert fractions in both samples. Initial results in samples amended with carbon and nitrogen indicate immobilization of U due to enhanced indigenous microbial activity under anaerobic conditions. 23 refs., 4 figs., 5 tabs.

  8. Accumulation of uranium by immobilized persimmon tannin

    SciTech Connect

    Sakaguchi, Takashi; Nakajima, Akira )

    1994-01-01

    We have discovered that the extracted juice of unripe astringent persimmon fruit, designated as kakishibu or shibuol, has an extremely high affinity for uranium. To develop efficient adsorbents for uranium, we tried to immobilize kakishibu (persimmon tannin) with various aldehydes and mineral acids. Persimmon tannin immobilized with glutaraldehyde can accumulate 1.71 g (14 mEq U) of uranium per gram of the adsorbent. The uranium accumulating capacity of this adsorbent is several times greater than that of commercially available chelating resins (2-3 mEq/g). Immobilized persimmon tannin has the most favorable features for uranium recovery; high selective adsorption ability, rapid adsorption rate, and applicability in both column and batch systems. The uranium retained on immobilized persimmon tannin can be quantitatively and easily eluted with a very dilute acid, and the adsorbent can thus be easily recycled in the adsorption-desorption process. Immobilized persimmon tannin also has a high affinity for thorium. 23 refs., 13 figs., 7 tabs.

  9. Thermodynamic properties of selected uranium compounds and aqueous species at 298.15 K and 1 bar and at higher temperatures; preliminary models for the origin of coffinite deposits

    USGS Publications Warehouse

    Hemingway, B.S.

    1982-01-01

    Thermodynamic values for 110 uranium-bearing phases and 28 aqueous uranium solution species (298.15 K and l bar) are tabulated based upon evaluated experimental data (largely from calorimetric experiments) and estimated values. Molar volume data are given for most of the solid phases. Thermodynamic values for 16 uranium-bearing phases are presented for higher temperatures in the form of and as a supplement to U.S. Geological Survey Bulletin 1452 (Robie et al., 1979). The internal consistency of the thermodynamic values reported herein is dependent upon the reliability of the experimental results for several uranium phases that have been used as secondary calorimetric reference phases. The data for the reference phases and for those phases evaluated with respect to the secondary reference phases are discussed. A preliminary model for coffinite formation has been proposed together with an estimate of the free energy of formation of coffinite. Free energy values are estimated for several other uranium-bearing silicate phases that have been reported as secondary uranium phases associated with uranium ore deposits and that could be expected to develop wherever uranium is leached by groundwaters.

  10. ELECTROCHEMICALLY MODULATED SEPARATIONS FOR MATERIAL ACCOUNTABILITY MEASUREMENTS

    SciTech Connect

    Hazelton, Sandra G.; Liezers, Martin; Naes, Benjamin E.; Arrigo, Leah M.; Duckworth, Douglas C.

    2012-07-08

    A method for the accurate and timely analysis of accountable materials is critical for safeguards measurements in nuclear fuel reprocessing plants. Non-destructive analysis (NDA) methods, such as gamma spectroscopy, are desirable for their ability to produce near real-time data. However, the high gamma background of the actinides and fission products in spent nuclear fuel limits the use of NDA for real-time online measurements. A simple approach for at-line separation of materials would facilitate the use of at-line detection methods. A promising at-line separation method for plutonium and uranium is electrochemically modulated separations (EMS). Using an electrochemical cell with an anodized glassy carbon electrode, Pu and U oxidation states can be altered by applying an appropriate voltage. Because the affinity of the actinides for the electrode depends on their oxidation states, selective deposition can be turned “on” and “off” with changes in the applied target electrode voltage. A high surface-area cell was designed in house for the separation of Pu from spent nuclear fuel. The cell is shown to capture over 1 µg of material, increasing the likelihood for gamma spectroscopic detection of Pu extracted from dissolver solutions. The large surface area of the electrode also reduces the impact of competitive interferences from some fission products. Flow rates of up to 1 mL min?1 with >50% analyte deposition efficiency are possible, allowing for rapid separations to be effected. Results from the increased surface-area EMS cell are presented, including dilute dissolver solution simulant data.

  11. Characterization of streamflow, water quality, and instantaneous dissolved solids, selenium, and uranium loads in selected reaches of the Arkansas River, southeastern Colorado, 2009-2010

    USGS Publications Warehouse

    Ivahnenko, Tamara; Ortiz, Roderick F.; Stogner, Robert W.

    2013-01-01

    As a result of continued water-quality concerns in the Arkansas River, including metal contamination from historical mining practices, potential effects associated with storage and movement of water, point- and nonpoint-source contamination, population growth, storm-water flows, and future changes in land and water use, the Arkansas River Basin Regional Resource Planning Group (RRPG) developed a strategy to address these issues. As such, a cooperative strategic approach to address the multiple water-quality concerns within selected reaches of the Arkansas River was developed to (1) identify stream reaches where stream-aquifer interactions have a pronounced effect on water quality and (or) where reactive transport, and physical and (or) chemical alteration of flow during conveyance, is occurring, (2) quantify loading from point sources, and (3) determine source areas and mass loading for selected constituents. (To see the complete abstract, open Report PDF.)

  12. Thermal conductivity and emissivity measurements of uranium carbides

    NASA Astrophysics Data System (ADS)

    Corradetti, S.; Manzolaro, M.; Andrighetto, A.; Zanonato, P.; Tusseau-Nenez, S.

    2015-10-01

    Thermal conductivity and emissivity measurements on different types of uranium carbide are presented, in the context of the ActiLab Work Package in ENSAR, a project within the 7th Framework Program of the European Commission. Two specific techniques were used to carry out the measurements, both taking place in a laboratory dedicated to the research and development of materials for the SPES (Selective Production of Exotic Species) target. In the case of thermal conductivity, estimation of the dependence of this property on temperature was obtained using the inverse parameter estimation method, taking as a reference temperature and emissivity measurements. Emissivity at different temperatures was obtained for several types of uranium carbide using a dual frequency infrared pyrometer. Differences between the analyzed materials are discussed according to their compositional and microstructural properties. The obtainment of this type of information can help to carefully design materials to be capable of working under extreme conditions in next-generation ISOL (Isotope Separation On-Line) facilities for the generation of radioactive ion beams.

  13. Uranium mobility during interaction of rhyolitic glass with alkaline solutions: dissolution of glass

    USGS Publications Warehouse

    Zielinski, Robert A.

    1977-01-01

    This report concerns investigations designed to identify the important physical and chemical parameters influencing the rate of release of uranium from glass shards of rhyolitic air-fall ash. Oxidizing, silica undersaturated, alkaline solutions are eluted through a column of rhyolitic glass shards at a carefully controlled temperature, pressure, and flow rate. The solutions are monitored for the concentration of uranium and selected additional elements (Si, K, Li, F), and the glass is recovered and examined for physical and/or chemical evidence of attack. The flushing mode is designed to mimic leaching of glass shards by intermittent, near-surface waters with which the glass is not in equilibrium. Reported rates are applicable only to the experimental conditions (120?C, 7,000 psi), but it is assumed that the reaction mechanisms and the relative importance of rate-influencing parameters remain unchanged, at reduced temperature and pressure. Results of the above experiment indicate that silica and uranium are released from glass shards at comparable rates, while lithium and potassium are released faster and fluorine slower than either Si or U. Rates of release of silica and uranium correlate positively with the surface area of the shards. Rhyolitic shards release uranium at faster rates than rhyodacitic shards of comparable surface area. Changes in the shards resulting from experimental treatment and observed in the original glass separates from an Oligocene ash (compared to a Pleistocene ash) include; surface pitting, increased surface area, devitrification rinds (<1l micron wide) and reduced lithium contents. Future investigations will study the effect of temperature, pressure, solution composition, and flow rate on the relative mobility of U, Si, Li, F, and K.

  14. pH Triggered superior selective adsorption and separation of both cationic and anionic dyes and photocatalytic activity on a fully exfoliated titanate layer-natural polymer based nanocomposite.

    PubMed

    Sarkar, Amit Kumar; Saha, Arka; Panda, Asit Baran; Pal, Sagar

    2015-10-27

    A fully exfoliated titanate layer-natural polymer amylopectin based nanocomposite, with pH responsive superior selective adsorption, separation of both cationic (MB: 599 mg g(-1) at pH 9) and anionic (MO: 558 mg g(-1) at pH 3) dyes and photodegradation properties, has been realized through simultaneous in situ layered titanate formation, exfoliation and polymerization. PMID:26390341

  15. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, Jr., Howard W. (Oakridge, TN); Horton, James A. (Livermore, CA); Elliott, Guy R. B. (Los Alamos, NM)

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  16. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  17. Metals fact sheet - uranium

    SciTech Connect

    1996-04-01

    About 147 million pounds of this radioactive element are consumed annually by the worldwide nuclear power and weapons industries, as well as in the manufacture of ceramics and metal products. The heaviest naturally occurring element, uranium is typically found in intrusive granites, igneous and metamorphic veins, tabular sedimentary deposits, and unconformity-related structures. This article discusses the geology, exploitation, market, and applications of uranium and uranium ores.

  18. Preparation of uranium compounds

    DOEpatents

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  19. Ultracapacitor separator

    DOEpatents

    Wei, Chang (Niskayuna, NY); Jerabek, Elihu Calvin (Glenmont, NY); LeBlanc, Jr., Oliver Harris (Schenectady, NY)

    2001-03-06

    An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.

  20. Production of Mo-99 using low-enriched uranium silicide

    SciTech Connect

    Hutter, J. C.; Srinivasan, B.; Vicek, M.; Vandegrift, G. F.

    1994-09-01

    Over the last several years, uranium silicide fuels have been under development as low-enriched uranium (LEU) targets for Mo-99. The use of LEU silicide is aimed at replacing the UAl{sub x} alloy in the highly-enriched uranium dissolution process. A process to recover Mo-99 from low-enriched uranium silicide is being developed at Argonne National Laboratory. The uranium silicide is dissolved in alkaline hydrogen peroxide. Experiments performed to determine the optimum dissolution procedure are discussed, and the results of dissolving a portion of a high-burnup (>40%) U{sub 3}Si{sub 2} miniplate are presented. Future work related to Mo-99 separation and waste disposal are also discussed.

  1. Anomalous occurrence of uranium in alpine peats, Summit County, Colorado, and results of a simple sample fractionation procedure

    USGS Publications Warehouse

    Leventhal, Joel S.; Jennings, Joan K.; Lemke, Alan J.

    1978-01-01

    Samples from Summit County, Colo., were fractionated for analyses of organic content and uranium. The uranium is related to organic content but not to type of organic matter. In one area uranium values are around 100 ppm in bulk samples and as much as 200 ppm in certain separated fractions of the samples; this is much higher than the 1-10 ppm normal uranium values for peat.

  2. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report

    SciTech Connect

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  3. Predicting 232U Content in Uranium

    SciTech Connect

    AJ Peurrung

    1999-01-07

    The minor isotope 232U may ultimately be used for detection or confirmation of uranium in a variety of applications. The primary advantage of 232 U as an indicator of the presence of enriched uranium is the plentiful and penetrating nature of the radiation emitted by its daughter radionuclide 208Tl. A possible drawback to measuring uranium via 232U is the relatively high uncertainty in 232U abundance both within and between material populations. An important step in assessing this problem is to ascertain what determines the 232U concentration within any particular sample of uranium. To this end, we here analyze the production and eventual enrichment of 232 U during fuel-cycle operations. The goal of this analysis is to allow approximate prediction of 232 U quantities, or at least some interpretation of the results of 232U measurements. We have found that 232U is produced via a number of pathways during reactor irradiation of uranium and is subsequently concentrated during the later enrichment of the uranium' s 235U Content. While exact calculations are nearly impossible for both the reactor-production and cascade-enrichment parts of the prediction problem, estimates and physical bounds can be provided as listed below and detailed within the body of the report. Even if precise calculations for the irradiation and enrichment were possible, the ultimate 212U concentration would still depend upon the detailed fuel-cycle history. Assuming that a thennal-diffusion cascade is used to produce highly enriched uranium (HEU), dilution of reactor-processed fuel at the cascade input and the long-term holdup of 232U within the cascade both affect the 232U concentration in the product. Similar issues could be expected to apply for the other isotope-separation technologies that are used in other countries. Results of this analysis are listed below: 0 The 232U concentration depends strongly on the uranium enrichment, with depleted uranium (DU) containing between 1600 and 8000 times less 232U than HEU does. * The 236U/232U concentration ratio in HEU is likely to be between 10{sup 6} and 2 x 10{sup 7}. 0 Plutonium-production reactors yield uranium with between I and 10 ppt of 232u. 0 Much higher 132U concentrations can be obtained in some situations. * Significant variation in the 232U concentration is inevitable. * Cascade enrichment increases the 232U concentration by a factor of at least 200, and possibly as much as 1000. 0 The actual 232U concentration depends upon the dilution at the cascade input.

  4. Biotransformation of uranium complexed to organic ligands by Desulfovibrio desulfuricans

    SciTech Connect

    Ganesh, R.; Robinson, K.G.; Reed, G.D.

    1996-11-01

    Microbially mediated reduction of soluble hexavalent uranium to insoluble tetravalent uranium has recently been proposed as a possible mechanism for removing dissolved uranium from waste streams via precipitation (as UO{sub 2}). Such reductive precipitation has been demonstrated using anaerobic microorganisms in synthetic bicarbonate buffer solutions and in bicarbonate amended ground waters. However, the chemical composition of process wastewaters and soil decontaminated leachates containing uranium may be much more complex than those previously evaluated. For example, the presence of organic solvents used at radioactive material processing facilities and organic chelating materials used to restore uranium contaminated soils can alter uranium speciation thereby impacting bioavailability. Although researchers have addressed degradation of ligands in organic-metal complexes, little work has been done to evaluate biotransformation of metals in such complexes. Successful implementation of this novel treatment approach requires information regarding the capability of anaerobic microorganisms to initiate uranium precipitation in the presence of various organic chelating agents. The purpose of this research was to investigate the feasibility of an alternative, biologically mediated method for selective removal of dissolved uranium from a complex waste stream. In particular, the impact of organic chelating agents on uranium bioreduction and subsequent precipitation was evaluated.

  5. Uranium in groundwater--Fertilizers versus geogenic sources.

    PubMed

    Liesch, Tanja; Hinrichsen, Sören; Goldscheider, Nico

    2015-12-01

    Due to its radiological and toxicological properties even at low concentration levels, uranium is increasingly recognized as relevant contaminant in drinking water from aquifers. Uranium originates from different sources, including natural or geogenic, mining and industrial activities, and fertilizers in agriculture. The goal of this study was to obtain insights into the origin of uranium in groundwater while differentiating between geogenic sources and fertilizers. A literature review concerning the sources and geochemical processes affecting the occurrence and distribution of uranium in the lithosphere, pedosphere and hydrosphere provided the background for the evaluation of data on uranium in groundwater at regional scale. The state of Baden-Württemberg, Germany, was selected for this study, because of its hydrogeological and land-use diversity, and for reasons of data availability. Uranium and other parameters from N=1935 groundwater monitoring sites were analyzed statistically and geospatially. Results show that (i) 1.6% of all water samples exceed the German legal limit for drinking water (10 ?g/L); (ii) The range and spatial distribution of uranium and occasional peak values seem to be related to geogenic sources; (iii) There is a clear relation between agricultural land-use and low-level uranium concentrations, indicating that fertilizers generate a measurable but low background of uranium in groundwater. PMID:26170113

  6. Uranium industry annual 1993

    SciTech Connect

    Not Available

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  7. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    SciTech Connect

    Isselhardt, B H

    2011-09-06

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  8. Removal of uranium(VI) from aqueous solution using iminodiacetic acid derivative functionalized SBA-15 as adsorbents.

    PubMed

    Wang, Yu-Long; Song, Li-Juan; Zhu, Lu; Guo, Bo-Long; Chen, Su-Wen; Wu, Wang-Suo

    2014-03-01

    Three different functional SBA-15 were prepared by a post-grafting method using three iminodiacetic acid derivatives of ethylenediaminetriacetic acid (ED3A), diethylenetriaminetetraacetic acid (DT4A), and 1,2-cyclohexylenedinitrilotriacetic acid (CyD3A), which were used as adsorbents for removal of uranium(vi) from aqueous solution. These materials were characterized by FT-IR, NMR, TEM, nitrogen adsorption/desorption experiments, and elemental analysis. The effect of pH, ionic strength, contact time, solid-liquid ratio, initial metal ion concentration, temperature, and coexisting ions on uranium(vi) sorption behaviors of the functionalized SBA-15 was studied. Typical sorption isotherms (Langmuir and Freundlich) were determined for the sorption process, and the maximum sorption capacity was calculated. The influence of functional groups on uranium(vi) sorption was also discussed. As a result, compared with other current U(vi) sorbents (granite, kaolin, attapulgite), SBA-15-1,2-cyclohexylenedinitrilotriacetic acid (SBA-15-CyD3A) possessed good selective sorption properties, which had potential application in separation of uranium(vi). PMID:24435450

  9. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    SciTech Connect

    Arnold, John

    2015-01-21

    The uranyl cation (UO?²?) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration.

  10. Uranium: A Dentist's perspective

    PubMed Central

    Toor, R. S. S.; Brar, G. S.

    2012-01-01

    Uranium is a naturally occurring radionuclide found in granite and other mineral deposits. In its natural state, it consists of three isotopes (U-234, U-235 and U-238). On an average, 1% – 2% of ingested uranium is absorbed in the gastrointestinal tract in adults. The absorbed uranium rapidly enters the bloodstream and forms a diffusible ionic uranyl hydrogen carbonate complex (UO2HCO3+) which is in equilibrium with a nondiffusible uranyl albumin complex. In the skeleton, the uranyl ion replaces calcium in the hydroxyapatite complex of the bone crystal. Although in North India, there is a risk of radiological toxicity from orally ingested natural uranium, the principal health effects are chemical toxicity. The skeleton and kidney are the primary sites of uranium accumulation. Acute high dose of uranyl nitrate delays tooth eruption, and mandibular growth and development, probably due to its effect on target cells. Based on all previous research and recommendations, the role of a dentist is to educate the masses about the adverse effects of uranium on the overall as well as the dental health. The authors recommended that apart from the discontinuation of the addition of uranium to porcelain, the Public community water supplies must also comply with the Environmental Protection Agency (EPA) standards of uranium levels being not more than 30 ppb (parts per billion). PMID:24478959

  11. Uranium and Thorium

    ERIC Educational Resources Information Center

    Finch, Warren I.

    1978-01-01

    The results of President Carter's policy on non-proliferation of nuclear weapons are expected to slow the growth rate in energy consumption, put the development of the breeder reactor in question, halt plans to reprocess and recycle uranium and plutonium, and expand facilities to supply enriched uranium. (Author/MA)

  12. Hybrid Membranes for Light Gas Separations 

    E-print Network

    Liu, Ting

    2012-07-16

    separations, especially olefin/paraffin separations. This thesis focuses on the designing dendrimer-based hybrid membranes on mesoporous alumina for reverse-selective separations, synthesizing Cu(I)-dendrimer hybrid membrane to facilitate olefin...

  13. 16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM RECOVERY PROCESSED RELATIVELY PURE MATERIALS AND SOLUTIONS AND SOLID RESIDUES WITH RELATIVELY LOW URANIUM CONTENT. URANIUM RECOVERY INVOLVED BOTH SLOW AND FAST PROCESSES. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  14. Uranium dioxide electrolysis

    DOEpatents

    Willit, James L. (Batavia, IL); Ackerman, John P. (Prescott, AZ); Williamson, Mark A. (Naperville, IL)

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  15. Alteration and arenization processes of granitic waste rock piles from former uranium Mines in Limousin, France.

    NASA Astrophysics Data System (ADS)

    Kanzari, Aisha; Boekhout, Flora; Gérard, Martine; Galoisy, Laurence; Phrommavanh, Vannapha; Descostes, Michael

    2014-05-01

    France counts approximately 200 former uranium mines, 50 of which are located in the Limousin region. Mining activities between 1945 and 2001 have generated close to 200 000 tons of waste rocks in the Limousin, with uranium levels corresponding essentially to the geological background. Waste rock piles from three former mining sites in this region, were selected according to their age, uranium content and petrological signature. These sites are part of the two-mica granitic complex of St Sylvestre massif, formed 324 million years ago. Granitic blocks that build up the waste rock piles have experienced different processes and intensities of alteration before their emplacement at the surface. These processes are responsible for the petrological heterogeneity throughout the waste rock pile at the time of construction. It is important to make a distinction within waste rocks between natural-cut-off waste rocks and economic-cut-off waste rocks. The latter represents a minority and is linked to stock prices. Natural-cut-off waste rocks contain about 20 ppm of uranium; economic-cut-off waste rocks contain about 100 to 300 ppm of uranium. The aims of this study are to 1) assess the neo-formation of U-bearing minerals hosted by these rocks, and 2) to characterize the weathering processes since the construction of the rock piles, including both mechanical and chemical processes. The structure of the waste rocks piles, from metric blocks to boulders of tens centimeters, induces an enhanced weathering rate, compared to a granitic massif. Mechanical fracturing and chemical leaching by rainwater (arenization) of the waste rocks produce a sandy-silty alteration phase. Silty-clay weathering aureoles of submetric-granitic blocks evolving into technic soil are mainly located below growing birch trees. Sampling on the rock piles was restricted to surface rocks. Samples collected consist mainly of granites, and rare lamprophyres with a high radiometric signal, thereby especially concentrated in uranium compared to the 200 000 tons of waste rock piles in the Limousin. The composition of clay minerals and the uranium content of the samples were investigated by XRD, ICP-MS, Optical microscopy, EDS and WDS punctual measurements or element mapping and SEM on both thin sections and on rock chips. The initial granite paragenesis (quartz, albite, sanidine, microcline, biotite, muscovite, apatite, rutile, zircon and monazite) was identified. Chlorite, smectite, kaolinite and secondary phosphates and sulfates are the main secondary minerals of the different stage of hydrothermal alteration and weathering. In the clay fraction, smectites are the main mineral phases. U-bearing minerals are different according to the alteration state of mine tailings. The mean content in uranium for selected samples is about 800 ppm and rises up to 5000 ppm for the separated clay fraction of the same samples. Initially and mainly hosted by monazite, uranium is found in phosphates such as autunite, or associated with smectites. Micromorphological studies reveal: • The formation of protosoils from weathering processes. • Different degrees of alteration in the rocks, smectite or kaolinite alteromorphose. • U oxy-hydroxides, nanometric minerals or coatings associated with smectite. • A complex paregenesis of submicrometric - nanometric U phosphates, suggesting uranium stabilization.

  16. Method for fluorination of uranium oxide

    DOEpatents

    Petit, George S. (Oak Ridge, TN)

    1987-01-01

    Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

  17. EPA Update: NESHAP Uranium Activities

    E-print Network

    for underground uranium mining operations (Subpart B) EPA regulatory requirements for operating uranium mill uranium mines include: · Applies to 10,000 tons/yr ore production, or 100,000 tons/mine lifetime · Ambient Regulatory Requirements for Operating Uranium Mill Tailings (Subpart W) #12;7 EPA Regulatory Requirements

  18. National uranium resource evaluation, Marble Canyon Quadrangle, Arizona and Utah

    SciTech Connect

    Field, M T; Blauvelt, R P

    1982-05-01

    The Marble Canyon Quadrangle (2/sup 0/), northeast Arizona, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Known mines and prospects were examined; field reconnaissance was done in selected areas of the quadrangle; and a ground-water geochemical survey was made in the southeast third of the quadrangle. The Shinarump and Petrified Forest Members of the Triassic Chinle Formation, which is exposed in the western and northeastern parts of the quadrangle and is present beneath the surface of much of the quadrangle, were found favorable for channel-sandstone uranium deposits. A portion of the Cretaceous Toreva Formation in the southeast part of the quadrangle was found favorable for peneconcordant-sandstone uranium deposits. The western part of the quadrangle was found favorable for uranium concentrations in breccia pipes.

  19. Spallation studies on shock loaded uranium

    SciTech Connect

    Tonks, D.L.; Hixson, R.; Gustavsen, R.L.; Vorthman, J.E.; Kelly, A.; Zurek, A.K.; Thissell, W.R.

    1997-12-01

    Several spallation experiments have been performed on uranium using gas gun driven normal plate impacts with, VISAR instrumentation and soft recovery. The shock pressures achieved were 81, 53, and 37 kbar. This paper will focus on modeling the free surface particle velocity trace U with of 300 ppm carbon using the 1 d characteristics code CHARADE. The spallation model involves the growth and coalescence of brittle cracks. Metallographical examination of recovered samples and details of the experimental apparatus are discussed in separate papers.

  20. Uranium soils integrated demonstration, 1993 status

    SciTech Connect

    Nuhfer, K.

    1994-08-01

    The Fernald Environmental Management Project (FEMP), operated by the Fernald Environmental Restoration Management Corporation (FERMCO) for the DOE, was selected as the host site for the Uranium Soils Integrated Demonstration. The Uranium Soils ID was established to develop and demonstrate innovative remediation methods which address the cradle to grave elements involved in the remediation of soils contaminated with radionuclides, principally uranium. The participants in the ID are from FERMCO as well as over 15 other organizations from DOE, private industry and universities. Some of the organizations are technology providers while others are members of the technical support groups which were formed to provide technical reviews, recommendations and labor. The following six Technical Support Groups (TSGs) were formed to focus on the objective of the ID: Characterization, Excavation, Decontamination, Waste Treatment/Disposal, Regulatory, and Performance Assessment. This paper will discuss the technical achievements made to date in the program as well as the future program plans. The focus will be on the realtime analysis devices being developed and demonstrated, the approach used to characterize the physical/chemical properties of the uranium waste form in the soil and lab scale studies on methods to remove the uranium from the soil.

  1. An equilibrium model for ligand-modified micellar-enhanced ultrafiltration, selective separation of metal ions using iminoacetic substituted polyamines and a theoretical model for the titration behavior of polyamines

    SciTech Connect

    Dharmawardana, U.R.

    1992-12-31

    This thesis consists of three chapters. Chapter 1, An equilibrium model for ligand-modified micellar-enhanced ultrafiltration, describes a theoretical model and experimental investigations which used the semi-equilibrium-dialysis method with N-n-dodecyl iminodiacetic acid as the ligand. In Chapter 2, Selective separation of metal ions using iminoacetic substituted polyamines, polyamines with a substituted ligand group are synthesized and used in investigating selective separation of copper ions from aqueous solution. In Chapter 3, A theoretical model for the titration behavior of polyamines, a novel approach to explain the titration behavior of polymeric amines based on the binding behavior of counterions is described. The application of this study is to the investigation of inexpensive and efficient methods of industrial waste water treatment.

  2. Inorganic separator technology program

    NASA Technical Reports Server (NTRS)

    Smatko, J. S.; Weaver, R. D.; Kalhammer, F. R.

    1973-01-01

    Testing and failure analyses of silver zinc cells with largely inorganic separators were performed. The results showed that the wet stand and cycle life objective of the silver-zinc cell development program were essentially accomplished and led to recommendations for cell composition, design, and operation that should yield further improvement in wet and cycle life. A series of advanced inorganic materials was successfully developed and formulated into rigid and semiflexible separator samples. Suitable screening tests for evaluation of largely inorganic separators were selected and modified for application to the separator materials. The results showed that many of these formulations are potentially superior to previously used materials and permitted selection of three promising materials for further evaluation in silver-zinc cells.

  3. India's Worsening Uranium Shortage

    SciTech Connect

    Curtis, Michael M.

    2007-01-15

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  4. Coulometric determination of uranium with a platinum working electrode.

    PubMed

    Davies, W; Gray, W; McLeod, K C

    1970-10-01

    Experimental conditions have been established which enable uranium to be determined coulometrically by the reduction of uranium(VI) to uranium(IV) at a platinum working electrode, by controlled-potential or controlled-potential-limit techniques. The procedure has been used successfully as a subsidiary method in the routine determination of uranium in pure uranyl nitrate solutions. The platinum electrode has several important practical advantages over the well established mercury-pool electrode for the coulometric determination of uranium. The consecutive determination of iron(III) and uranium(VI), or plutonium(IV) and uranium(VI) can be carried out with the same working electrode in the same solution and the coulometric oxidation of uranium(IV) to uranium(VT) is practicable. The rate of stirring of the cell liquor is much less critical in the case of the platinum electrode. Two main problems had to be overcome before a practical procedure could be achieved; hydrogen evolution during the uranium(VI)-(IV) reduction had to be eliminated so that 100% current efficiency could be obtained for the desired reaction and electrode-surface poisoning phenomena had to be controlled so that reaction times could be kept reasonably short. It was found that selection of a hydrochloric acid base solution containing a small amount of bismuth(III) enabled hydrogen evolution to be avoided: also electrode-surface poisoning with this base solution was not particularly serious and could be maintained at a satisfactorily low level by occasionally anodizing the electrode in dilute sulphuric acid. Bismuth(III) forms a complex with chloride ions and its presence increases the hydrogen overvoltage at the working electrode: no visible deposit of bismuth metal forms on the electrode during the uranium reduction. Samples containing nitrate can be analysed provided sulphamic acid is added to this hydrochoric acid base solution. PMID:18960821

  5. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 ?g·g (dry weight)?soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination. PMID:26122566

  6. Depleted uranium management alternatives

    SciTech Connect

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  7. Controlling intake of uranium in the workplace: Applications of biokinetic modeling and occupational monitoring data

    SciTech Connect

    Leggett, Richard Wayne; Eckerman, Keith F; McGinn, Wilson; Meck, Dr. Robert A.

    2012-01-01

    This report provides methods for interpreting and applying occupational uranium monitoring data. The methods are based on current international radiation protection guidance, current information on the chemical toxicity of uranium, and best available biokinetic models for uranium. Emphasis is on air monitoring data and three types of bioassay data: the concentration of uranium in urine; the concentration of uranium in feces; and the externally measured content of uranium in the chest. Primary Reference guidance levels for prevention of chemical effects and limitation of radiation effects are selected based on a review of current scientific data and regulatory principles for setting standards. Generic investigation levels and immediate action levels are then defined in terms of these primary guidance levels. The generic investigation and immediate actions levels are stated in terms of radiation dose and concentration of uranium in the kidneys. These are not directly measurable quantities, but models can be used to relate the generic levels to the concentration of uranium in air, urine, or feces, or the total uranium activity in the chest. Default investigation and immediate action levels for uranium in air, urine, feces, and chest are recommended for situations in which there is little information on the form of uranium taken into the body. Methods are prescribed also for deriving case-specific investigation and immediate action levels for uranium in air, urine, feces, and chest when there is sufficient information on the form of uranium to narrow the range of predictions of accumulation of uranium in the main target organs for uranium: kidneys for chemical effects and lungs for radiological effects. In addition, methods for using the information herein for alternative guidance levels, different from the ones selected for this report, are described.

  8. Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal Organic Frameworks (M MOFs) for Their Highly Selective Separation of Chiral and Achiral Small Molecules

    SciTech Connect

    Madhab, Das; He, Yabing; Kim, Jaheon; Guo, Qunsheng; Zhao, Cong-Gui; Hong, Kunlun; Xiang, Sheng-Chang; Zhang, Zhangjing; Thomas, K Mark; Krishna, Rajamani; Chen, Banglin

    2012-01-01

    Four porous isostructural mixed-metal-organic frameworks (M'MOFs) have been synthesized and structurally characterized. The pores within these M'MOFs are systematically tuned by the interplay of both the metalloligands and organic ligands which have enabled us not only to direct their highly selective separation of chiral alcohols 1-phenylethanol (PEA), 2-butanol (BUT), and 2-pentanol (2-PEN) with the highest ee up to 82.4% but also to lead highly selective separation of achiral C{sub 2}H{sub 2}/C{sub 2}H{sub 4} separation. The potential application of these M'MOFs for the fixed bed pressure swing adsorption (PSA) separation of C{sub 2}H{sub 2}/C{sub 2}H{sub 4} has been further examined and compared by the transient breakthrough simulations in which the purity requirement of 40 ppm in the outlet gas can be readily fulfilled by the fixed bed M'MOF-4a adsorber at ambient conditions.

  9. Properties of radio-frequency heated argon confined uranium plasmas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.

  10. Uranium concentrations in asparagus

    SciTech Connect

    Tiller, B.L.; Poston, T.M.

    1992-05-01

    Concentrations of uranium were determined in asparagus collected from eight locations near and ten locations on the Hanford Site southcentral Washington State. Only one location (Sagemoor) had samples with elevated concentrations. The presence of elevated uranium in asparagus at Sagemoor may be explained by the elevated levels in irrigation water. These levels of uranium are comparable to levels previously reported upstream and downstream of the 300-FF-1 Operable Unit on the Hanford Site (0.0008 {mu}g/g), but were below the 0.020-{mu}g/g level reported for brush collected at Sagemoor in a 1982 study. Concentrations at all other onsite and offsite sample locations were considerably lower than concentrations reported immediately upstream and downstream of the 300-FF-1 Operable Unit. Using an earlier analysis of the uranium concentrations in asparagus collected from the Hanford Site constitutes a very small fraction of the US Department of Energy effective dose equivalent limit of 100 mrem.

  11. Selective Single-Step Separation of a Mixture of Three Metal Ions by a Triphasic Ionic-Liquid-Water-Ionic-Liquid Solvent Extraction System.

    PubMed

    Vander Hoogerstraete, Tom; Blockx, Jonas; De Coster, Hendrik; Binnemans, Koen

    2015-08-10

    In a conventional solvent extraction system, metal ions are distributed between two immiscible phases, typically an aqueous and an organic phase. In this paper, the proof-of-principle is given for the distribution of metal ions between three immiscible phases, two ionic liquid phases with an aqueous phase in between them. Three-liquid-phase solvent extraction allows separation of a mixture of three metal ions in a single step, whereas at least two steps are required to separate three metals in the case of two-liquid-phase solvent extraction. In the triphasic system, the lower organic phase is comprised of the ionic liquid betainium- or choline bis(trifluoromethylsulfonyl)imide, whereas the upper organic phase is comprised of the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide. The triphasic system was used for the separation of a mixture of tin(II), yttrium(III), and scandium(III) ions. PMID:26178665

  12. Uranium purchases report 1994

    SciTech Connect

    1995-07-01

    US utilities are required to report to the Secretary of Energy annually the country of origin and the seller of any uranium or enriched uranium purchased or imported into the US, as well as the country of origin and seller of any enrichment services purchased by the utility. This report compiles these data and also contains a glossary of terms and additional purchase information covering average price and contract duration. 3 tabs.

  13. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, A.B.

    1982-10-27

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  14. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, Alvin B. (Cincinnati, OH)

    1983-01-01

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  15. The effects of solid rocket motor effluents on selected surfaces and solid particle size, distribution, and composition for simulated shuttle booster separation motors

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Linton, R. C.; Russell, W. M.; Trenkle, J. J.; Wilkes, D. R.

    1976-01-01

    A series of three tests was conducted using solid rocket propellants to determine the effects a solid rocket plume would have on thermal protective surfaces (TPS). The surfaces tested were those which are baselined for the shuttle vehicle. The propellants used were to simulate the separation solid rocket motors (SSRM) that separate the solid rocket boosters (SRB) from the shuttle launch vehicle. Data cover: (1) the optical effects of the plume environment on spacecraft related surfaces, and (2) the solid particle size, distribution, and composition at TPS sample locations.

  16. Pentavalent Uranium Chemistry - Synthetic Pursuit Of A Rare Oxidation State

    SciTech Connect

    Graves, Christopher R; Kiplinger, Jaqueline L

    2009-01-01

    This feature article presents a comprehensive overview of pentavalent uranium systems in non-aqueous solution with a focus on the various synthetic avenues employed to access this unusual and very important oxidation state. Selected characterization data and theoretical aspects are also included. The purpose is to provide a perspective on this rapidly evolving field and identify new possibilities for future developments in pentavalent uranium chemistry.

  17. Hydrogen separation process

    DOEpatents

    Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  18. Preliminary survey of separations technology applicable to the pretreatment of Hanford tank waste (1992--1993)

    SciTech Connect

    Lawrence, W.E.; Kurath, D.E.

    1994-04-01

    The US Department of Energy has established the Tank Waste Remediation System (TWRS) to manage and dispose of radioactive wastes stored at the Hanford Site. Within this program are evaluations of pretreatment system alternatives through literature reviews. The information in this report was collected as part of this project at Pacific Northwest Laboratory. A preliminary survey of literature on separations recently entered into the Hanford electronic databases (1992--1993) that have the potential for pretreatment of Hanford tank waste was conducted. Separation processes that can assist in the removal of actinides (uranium, plutonium, americium), lanthanides, barium, {sup 137}Cs, {sup 90}Sr,{sup 129 }I, {sup 63}Ni, and {sup 99}Tc were evaluated. Separation processes of interest were identified through literature searches, journal reviews, and participation in separation technology conferences. This report contains brief descriptions of the potential separation processes, the extent and/or selectivity of the separation, the experimental conditions, and observations. Information was collected on both national and international separation studies to provide a global perspective on recent research efforts.

  19. Selected measurement data for plutonium and uranium

    SciTech Connect

    Anderson, M E; Lemming, J F

    1982-11-01

    This handbook is designed primarily for use by inspectors when verifying the nuclear material contents of samples by nondestructive means. It contains discussions of various properties and the applicability of the measurement of these properties toward verification of specific samples. Because the thrust of this handbook is with properties rather than techniques or instruments, portions of it may be useful to other analysts as a reference.

  20. Multiple recycle of REMIX fuel based on reprocessed uranium and plutonium mixture in thermal reactors

    SciTech Connect

    Fedorov, Y.S.; Bibichev, B.A.; Zilberman, B.Y.; Baryshnikov, M.V.; Kryukov, O.V.; Khaperskaya, A.V.

    2013-07-01

    REMIX fuel consumption in WWER-1000 is considered. REMIX fuel is fabricated from non-separated mixture of uranium and plutonium obtained during NPP spent fuel reprocessing with further makeup by enriched natural uranium. It makes possible to recycle several times the total amount of uranium and plutonium obtained from spent fuel with 100% loading of the WWER-1000 core. The stored SNF could be also involved in REMIX fuel cycle by enrichment of regenerated uranium. The same approach could be applied to closing the fuel cycle of CANDU reactors. (authors)

  1. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A. (Knoxville, TN)

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  2. Chemical Equilibrium of the Dissolved Uranium in Groundwaters From a Spanish Uranium-Ore Deposit

    SciTech Connect

    Garralon, Antonio; Gomez, Paloma; Turrero, Maria Jesus; Buil, Belen; Sanchez, Lorenzo

    2007-07-01

    The main objectives of this work are to determine the hydrogeochemical evolution of an uranium ore and identify the main water/rock interaction processes that control the dissolved uranium content. The Mina Fe uranium-ore deposit is the most important and biggest mine worked in Spain. Sageras area is located at the north part of the Mina Fe, over the same ore deposit. The uranium deposit was not mined in Sageras and was only perturbed by the exploration activities performed 20 years ago. The studied area is located 10 Km northeast of Ciudad Rodrigo (Salamanca) at an altitude over 650 m.a.s.l. The uranium mineralization is related to faults affecting the metasediments of the Upper Proterozoic to Lower Cambrian schist-graywacke complex (CEG), located in the Centro-Iberian Zone of the Hesperian Massif . The primary uranium minerals are uraninite and coffinite but numerous secondary uranium minerals have been formed as a result of the weathering processes: yellow gummite, autunite, meta-autunite, torbernite, saleeite, uranotile, ianthinite and uranopilite. The water flow at regional scale is controlled by the topography. Recharge takes place mainly in the surrounding mountains (Sierra Pena de Francia) and discharge at fluvial courses, mainly Agueda and Yeltes rivers, boundaries S-NW and NE of the area, respectively. Deep flows (lower than 100 m depth) should be upwards due to the river vicinity, with flow directions towards the W, NW or N. In Sageras-Mina Fe there are more than 100 boreholes drilled to investigate the mineral resources of the deposit. 35 boreholes were selected in order to analyze the chemical composition of groundwaters based on their depth and situation around the uranium ore. Groundwater samples come from 50 to 150 m depth. The waters are classified as calcium-bicarbonate type waters, with a redox potential that indicates they are slightly reduced (values vary between 50 to -350 mV). The TOC varies between <0.1 and 4.0 mgC/L and the dissolved uranium has a maximum value of 7.7 mg/L. According the analytical data of dissolved uranium, the mineral closest to equilibrium seems to be UO{sub 2}(am). The tritium contents in the groundwaters vary between 1.5 and 7.3 T.U. Considering that the mean value of tritium in rainwater from the studied area has a value of 4 T.U., it can be concluded that the residence times of the groundwaters are relatively short, not longer than 50 years in the oldest case. (authors)

  3. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  4. Remedial action plan for the inactive uranium processing site at Naturita, Colorado. Remedial action selection report: Attachment 2, geology report; Attachment 3, ground water hydrology report; Attachment 4, supplemental information

    SciTech Connect

    1998-03-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the U.S. Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, becomes Appendix B of the cooperative agreement between the DOE and the state of Colorado.

  5. Separation science and technology

    SciTech Connect

    Smith, B.F.; Sauer, N.; Chamberlin, R.M.; Gottesfeld, S.; Mattes, B.R.; Li, D.Q.; Swanson, B.

    1998-12-31

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO{sub 2} thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO{sub 2} films in reaction with chlorophenol.

  6. Boiling water reactor uranium utilization improvement potential

    SciTech Connect

    Wei, P.; Crowther, R.L.; Fennern, L.E.; Savoia, P.J.; Specker, S.R.; Tilley, R.M.; Townsend, D.B.; Wolters, R.A.

    1980-06-01

    This report documents the results of design and operational simulation studies to assess the potential for reduction of BWR uranium requirements. The impact of the improvements on separative work requirements and other fuel cycle requirements also were evaluated. The emphasis was on analysis of the improvement potential for once-through cycles, although plutonium recycle also was evaluated. The improvement potential was analyzed for several design alternatives including axial and radial natural uranium blankets, low-leakage refueling patterns, initial core enrichment distribution optimization, reinsert of initial core discharge fuel, preplanned end-of-cycle power coastdown and feedwater temperature reduction, increased discharge burnup, high enrichment discharge fuel rod reassembly and reinsert, lattice and fuel bundle design optimization, coolant density spectral shift with flow control, reduced burnable absorber residual, boric acid for cold shutdown, six-month subcycle refueling, and applications of a once-through thorium cycle design and plutonium recycle.

  7. Cyclone separator having boundary layer turbulence control

    DOEpatents

    Krishna, Coimbatore R. (Mt. Sinai, NY); Milau, Julius S. (Port Jefferson, NY)

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  8. Fine tuning of the PCDTBT-OR:PC71BM blend nanoscale phase separation via selective solvent annealing toward high-performance polymer photovoltaics.

    PubMed

    Meng, Bin; Fang, Gang; Fu, Yingying; Xie, Zhiyuan; Wang, Lixiang

    2013-12-01

    Solution-processable polymer solar cells show great promise for providing a cost-effective route to create lightweight and flexible solar energy conversion devices. The photoactive layer comprising the conjugated polymer donor and fullerene derivative acceptor must be optimized to form bicontinuous nanoscale phase separation in order for efficient exciton dissociation and charge collection due to the short exciton diffusion length of organic semiconductors. The donor polymer poly[9-(heptadecan-9-yl)-9H-carbazole- 2,7-diyl-alt-(5,6-bis(hexyloxy)-4,7-di(thiophen-2- yl)benzo[c][1,2,5]thiadiazole)-5,5-diyl] (PCDTBT-OR) has a deeper highest occupied molecular orbital level compared to its counterpart PCDTBT, and shows promise in increasing the open-circuit voltage and power conversion efficiency (PCE) of polymer solar cells. The phase separation evolution of the PCDTBT-OR:PC71BM blend with various weight ratios under tetrahydrofuran (THF) vapor annealing and its influence on the photovoltaic performance is investigated in detail. It is found that THF vapor annealing can promote the acceptor PC71BM aggregation from the donor PCDTBT-OR matrix to form nanoscale donor/acceptor phase separation for efficient exciton dissociation and charge collection depending on the donor/acceptor weight ratio and the annealing time. The THF vapor-annealed PCDTBT-OR:PC71BM solar cells exhibit remarkable enhancement, with a PCE of 7.01% compared to 3.25% of the as-cast solar cells with the same active layer thickness. This work provides a general methodology to construct nano-interpenetrating networks for homogeneous polymer/fullerene blends and is potentially applicable to the roll-to-roll manufacturing of polymer solar cells. PMID:24196394

  9. Fine tuning of the PCDTBT-OR:PC71BM blend nanoscale phase separation via selective solvent annealing toward high-performance polymer photovoltaics

    NASA Astrophysics Data System (ADS)

    Meng, Bin; Fang, Gang; Fu, Yingying; Xie, Zhiyuan; Wang, Lixiang

    2013-12-01

    Solution-processable polymer solar cells show great promise for providing a cost-effective route to create lightweight and flexible solar energy conversion devices. The photoactive layer comprising the conjugated polymer donor and fullerene derivative acceptor must be optimized to form bicontinuous nanoscale phase separation in order for efficient exciton dissociation and charge collection due to the short exciton diffusion length of organic semiconductors. The donor polymer poly[9-(heptadecan-9-yl)-9H-carbazole- 2,7-diyl-alt-(5,6-bis(hexyloxy)-4,7-di(thiophen-2- yl)benzo[c][1,2,5]thiadiazole)-5,5-diyl] (PCDTBT-OR) has a deeper highest occupied molecular orbital level compared to its counterpart PCDTBT, and shows promise in increasing the open-circuit voltage and power conversion efficiency (PCE) of polymer solar cells. The phase separation evolution of the PCDTBT-OR:PC71BM blend with various weight ratios under tetrahydrofuran (THF) vapor annealing and its influence on the photovoltaic performance is investigated in detail. It is found that THF vapor annealing can promote the acceptor PC71BM aggregation from the donor PCDTBT-OR matrix to form nanoscale donor/acceptor phase separation for efficient exciton dissociation and charge collection depending on the donor/acceptor weight ratio and the annealing time. The THF vapor-annealed PCDTBT-OR:PC71BM solar cells exhibit remarkable enhancement, with a PCE of 7.01% compared to 3.25% of the as-cast solar cells with the same active layer thickness. This work provides a general methodology to construct nano-interpenetrating networks for homogeneous polymer/fullerene blends and is potentially applicable to the roll-to-roll manufacturing of polymer solar cells.

  10. Pseudo-stationary separation materials for highly parallel separations.

    SciTech Connect

    Singh, Anup K.; Palmer, Christopher

    2005-05-01

    Goal of this study was to develop and characterize novel polymeric materials as pseudostationary phases in electrokinetic chromatography. Fundamental studies have characterized the chromatographic selectivity of the materials as a function of chemical structure and molecular conformation. The selectivities of the polymers has been studied extensively, resulting in a large body of fundamental knowledge regarding the performance and selectivity of polymeric pseudostationary phases. Two polymers have also been used for amino acid and peptide separations, and with laser induced fluorescence detection. The polymers performed well for the separation of derivatized amino acids, and provided some significant differences in selectivity relative to a commonly used micellar pseudostationary phase. The polymers did not perform well for peptide separations. The polymers were compatible with laser induced fluorescence detection, indicating that they should also be compatible with chip-based separations.

  11. Investigation of Great Basin big sagebrush and black greasewood as biogeochemical indicators of uranium mineralization. Final report. National Uranium Resource Evaluation

    SciTech Connect

    Diebold, F.E.; McGrath, S.

    1982-11-01

    The effects of varying phosphate concentrations in natural aqueous systems upon the uptake of uranium by big sagebrush (Artemesia tridentata subsp. tridentata) and black greasewood (Sarcobatus vermiculatus (Hook) Torr.) were investigated. Two separate growth experiments with five drip-flow hyroponic units were used and plant seedlings were grown for 60 days in solutions of varying phosphate and uranium concentrations. Successful growth experiments were obtained only for big sagebrush; black greasewood did not sustain sufficient growth. The phosphate concentration of the water did affect the uptake of uranium by the big sagebrush, and this effect is most pronounced in the region of higher concentrations of uranium in the water. The ratio of the concentration of uranium in the plant to that in the water was observed to decrease with increasing uranium concentration in solution. This is indicative of an absorption barrier in the plants. The field data shows that big sagebrush responds to uranium concentrations in the soil water and not the groundwater. The manifestation of these results is that the use of big sagebrush as a biogeochemical indicator of uranium is not recommended. Since the concentration of phosphate must also be knwon in the water supplying the uranium to the plant, one should analyze this natural aqueous phase as a hydrochemical indicator rather than the big sagebrush.

  12. The utilization of uranium industry technology and relevant chemistry to leach uranium from mixed-waste solids

    SciTech Connect

    Mattus, A.J.; Farr, L.L.

    1991-01-01

    Methods for the chemical extraction of uranium from a number of refractory uranium-containing minerals found in nature have been in place and employed by the uranium mining and milling industry for nearly half a century. These same methods, in conjunction with the principles of relevant uranium chemistry, have been employed at the Oak Ridge National Laboratory (ORNL) to chemically leach depleted uranium from mixed-waste sludge and soil. The removal of uranium from what is now classified as mixed waste may result in the reclassification of the waste as hazardous, which may then be delisted. The delisted waste might eventually be disposed of in commercial landfill sites. This paper generally discusses the application of chemical extractive methods to remove depleted uranium from a biodenitrification sludge and a storm sewer soil sediment from the Y-12 weapons plant in Oak Ridge. Some select data obtained from scoping leach tests on these materials are presented along with associated limitations and observations which might be useful to others performing such test work. 6 refs., 2 tabs.

  13. Plasma core reactor simulations using RF uranium seeded argon discharges

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1975-01-01

    An experimental investigation was conducted using the United Technologies Research Center (UTRC) 80 kW and 1.2 MW RF induction heater systems to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor (PCR). A nonfissioning, steady-state RF-heated argon plasma seeded with pure uranium hexafluoride (UF6) was used. An overall objective was to achieve maximum confinement of uranium vapor within the plasma while simultaneously minimizing the uranium compound wall deposition. Exploratory tests were conducted using the 80 kW RF induction heater with the test chamber at approximately atmospheric pressure and discharge power levels on the order of 10 kW. Four different test chamber flow configurations were tested to permit selection of the configuration offering the best confinement characteristics for subsequent tests at higher pressure and power in the 1.2 MW RF induction heater facility.

  14. Extraction of uranium(VI), transuranium elements, and europium by bidentate neutral phosphorus- and phosphorus-nitrogen containing reagents with a substituent in the methylene bridge

    SciTech Connect

    Kochetkova, N.E.; Koiro, O.E.; Nesterova, N.P.; Medved, T.Ya.; Chmutova, M.K.; Myasoedov, B.F.; Kabachnik, M.I.

    1987-01-01

    It was established that the replacement of hydrogen in the bridge of tetraphenyl-methylenediphosphine dioxide induces a decrease in the extraction capacity of the reagent with respect to transplutonium elements, uranium(VI), and europium. There is no apparent regular correlation between the basicity and the extraction capacity of the reagent with respect to transplutonium elements, uranium(VI), and europium. There is no apparent regular correlation between the basicity and the extraction capacity of the substituted reagents. The replacement of hydrogen in the bridge of diphenyl(diethylcarbamoylmethyl)phosphine oxide causes a decrease in the extraction capacity of the reagent with respect to transplutonium elements, uranium(VI), and europium. In contrast to monodentate neutral reagents, when bidentate reagents are used, an increase in the extraction capacity of the reagents with increasing basicity is not always observed. The incorporation of fragments limiting its conformational mobility into the molecule of a bidentate reagent (in this case substituents in the methylene bridge) may lead to a violation of this law, since of all the factors influencing the extraction capacity of the reagent, the steric factor may predominate. When hydrogen is replaced in the bridge of tetraphenylmethylene-diphosphine dioxide, the separation factors of virtually all (with few exceptions) of the pairs of elements that the authors investigated are increased. Replacement of hydrogen in the bridge of diphenyl(diethylcarbamoylmethyl)phosphine oxide causes an increase in the separation factor of the pair U(VI)Am and has no effect on the separation factor of the pair Am/Eu. Replacement of hydrogen in the bridge does not lead to the production of more effective and substantially more selective reagents for extraction and separation of the elements, but some of the substituted reagents may prove useful in the separation of the elements.

  15. High loading uranium fuel plate

    SciTech Connect

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  16. Diffusion model of the non-stoichiometric uranium dioxide

    SciTech Connect

    Moore, Emily; Guéneau, Christine; Crocombette, Jean-Paul

    2013-07-15

    Uranium dioxide (UO{sub 2}), which is used in light water reactors, exhibits a large range of non-stoichiometry over a wide temperature scale up to 2000 K. Understanding diffusion behavior of uranium oxides under such conditions is essential to ensure safe reactor operation. The current understanding of diffusion properties is largely limited by the stoichiometric deviations inherent to the fuel. The present DICTRA-based model considers diffusion across non-stoichiometric ranges described by experimentally available data. A vacancy and interstitial model of diffusion is applied to the U–O system as a function of its defect structure derived from CALPHAD-type thermodynamic descriptions. Oxygen and uranium self and tracer diffusion coefficients are assessed for the construction of a mobility database. Chemical diffusion coefficients of oxygen are derived with respect to the Darken relation and migration energies of defects are evaluated as a function of stoichiometric deviation. - Graphical abstract: Complete description of Oxygen–Uranium diffusion as a function of composition at various temperatures according to the developed Dictra model. - Highlights: • Assessment of a uranium–oxygen diffusion model with Dictra. • Complete description of U–O diffusion over wide temperature and composition range. • Oxygen model includes terms for interstitial and vacancy migration. • Interaction terms between defects help describe non-stoichiometric domain of UO{sub 2±x}. • Uranium model is separated into mobility terms for the cationic species.

  17. Helium soil-gas survey of the aurora uranium deposit, McDermitt Caldera Complex, Oregon

    SciTech Connect

    Reimer, G.M.

    1986-11-10

    Two soil gas helium surveys were carried out in a section of the McDermitt caldera complex of mineralized volcanic rocks in Oregon. A regional helium anomaly was found and is thought to be associated with uranium-rich tuffaceous fill of the caldera and the Aurora uranium deposit, which occurs near the northeastern rim of the Caldera. Local hydrology may have an effect on the displacement of the helium anomaly from the uranium deposit and be a carrier of helium from sources at depth. This study suggests that helium surveys may be useful in a volcanic environment by helping to select areas for exploratory drilling for uranium deposits.

  18. Progress in alkaline peroxide dissolution of low-enriched uranium metal and silicide targets

    SciTech Connect

    Chen, L.; Dong, D.; Buchholz, B.A.; Vandegrift, G.F.; Wu, D.

    1996-12-31

    This paper reports recent progress on two alkaline peroxide dissolution processes: the dissolution of low-enriched uranium metal and silicide (U{sub 3}Si{sub 2}) targets. These processes are being developed to substitute low-enriched for high-enriched uranium in targets used for production of fission-product {sup 99}Mo. Issues that are addressed include (1) dissolution kinetics of silicide targets, (2) {sup 99}Mo lost during aluminum dissolution, (3) modeling of hydrogen peroxide consumption, (4) optimization of the uranium foil dissolution process, and (5) selection of uranium foil barrier materials. Future work associated with these two processes is also briefly discussed.

  19. Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy

    SciTech Connect

    2013-07-01

    For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding the rate-limiting step of uranium uptake from seawater is also essential in designing an effective uranium recovery system. Finally, economic analyses have been used to guide these studies and highlight what parameters, such as capacity, recyclability, and stability, have the largest impact on the cost of extraction of uranium from seawater. Initially, the cost estimates by the JAEA for extraction of uranium from seawater with braided polymeric fibers functionalized with amidoxime ligands were evaluated and updated. The economic analyses were subsequently updated to reflect the results of this project while providing insight for cost reductions in the adsorbent development through “cradle-to-grave” case studies for the extraction process. This report highlights the progress made over the last three years on the design, synthesis, and testing of new materials to extract uranium for seawater. This report is organized into sections that highlight the major research activities in this project: (1) Chelate Design and Modeling, (2) Thermodynamics, Kinetics and Structure, (3) Advanced Polymeric Adsorbents by Radiation Induced Grafting, (4) Advanced Nanomaterial Adsorbents, (5) Adsorbent Screening and Modeling, (6) Marine Testing, and (7) Cost and Energy Assessment. At the end of each section, future research directions are briefly discussed to highlight the challenges that still remain to reduce the cost of extractions of uranium for seawater. Finally, contributions from the Nuclear Energy University Programs (NEUP), which complement this research program, are included at the end of this report.

  20. Maintaining the Uranium Resource Assessment Data System and assessing the 1992 US uranium potential resources. Final report

    SciTech Connect

    Finch, W.I.; Grundy, W.D.; Pierson, C.T.; Kork, J.O.

    1993-12-31

    For 1992, estimates of US undiscovered uranium resources were generated using revised economic index values (current to December 1992) in the Uranium Resources Assessment Data (URAD) System`s cost model. The endowments associated with the Estimated Additional Resources (EAR) and Speculative Resources (SR) values for all regions are unchanged from the 1991 values. Although higher 1992 indexes resulted in increased costs, the mean values for the $30-, $50-, and $ 100-per pound U308 forward-cost EAR category resources for 1992 show no significant changes when compared to the values in 1991. The mean values for the $30-, $50-, and $100-per pound U{sub 3}O{sub 8} forward-cost SR forward-cost category show decreases of 4, 3, and 1 percent, in the three categories respectively. Under the Memorandum of Understanding (MOU) between the Energy Information Administration (EIA), US Department of Energy, and the US Geological Survey (USGS), US Department of the Interior, the USGS develops estimates of uranium endowment for selected geological environments in the United States. New estimates of endowment are used to update the URAD System that is maintained for the EIA by the USGS. Endowment estimates were added for the solution-collapse breccia pipe uranium deposits in the Grand Canyon region in 1989 and for young surficial uranium deposits in the Flodelle Creek area in Washington in 1991. Estimates of uranium endowment for roll-front uranium deposits in northwestern Nebraska and adjacent states are nearly completed and will be added in 1994. Assessment of undiscovered uranium endowment in new areas by the USGS will be discontinued in FY 1995 due to phasing out of the uranium resources program in FY 1994. Improvements to the URAD System included automating the procedures necessary to generate the assessment reports. Data retrieval from the URAD System can now be performed using dBase IV version 1.5 data base management system.

  1. Multiphase Uranium EOS

    NASA Astrophysics Data System (ADS)

    Crockett, Scott; Greeff, Carl; Wills, John; Boettger, Jonathan

    2011-06-01

    We present the results of an empirically derived multiphase Uranium equation of state. The equation of state includes the orthorhombic, bcc and fluid phases. The effects of phase transitions (Clausius-Claperon, volume changes, specific heats) are treated self-consistently. We will also present comparisons of the equation of state to electronic structure results.

  2. Depleted Uranium Technical Brief

    E-print Network

    Depleted Uranium Technical Brief United States Environmental Protection Agency Office of Air 402-R-06-011 December 2006 Project Officer Brian Littleton U.S. Environmental Protection Agency Office that was prepared by the U.S. Environmental Protection Agency, Office of Radiation and Indoor Air (ORIA

  3. Uranium, soluble salts

    Integrated Risk Information System (IRIS)

    Uranium , soluble salts ; no CASRN Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  4. Roessing Uranium Limited

    SciTech Connect

    1991-04-01

    The government of Namibia, celebrating the first anniversary (Marsh 21) of the country`s independence from South African rule, is looking to Roessing Uranium Limited (RUL) to improve the economic health of the country. RUL is Namibia`s largest employer, producer of one third of the country`s exports and 13 percent of its domestic product. The Roessing mine is the second largest uranium mine in the world, producing over 108 million pounds U{sub 3}O{sub 8} from 1976 through 1989, and still holding an estimated 322 million pounds in reserves. Yet Roessing is one of the lowest grade uranium deposits ever commercially exploited, with an average grade of only 0.035 w/o U{sub 3}O{sub 8}. To efficiently develop such a low-grade deposit, RUL uses extensive real-time cost analysis systems and has the highest rock production rate (ore plus waste) of any uranium mine in the world, over 300 thousand tons per day.

  5. The neurotoxicology of uranium.

    PubMed

    Dinocourt, Céline; Legrand, Marie; Dublineau, Isabelle; Lestaevel, Philippe

    2015-11-01

    The brain is a target of environmental toxic pollutants that impair cerebral functions. Uranium is present in the environment as a result of natural deposits and release by human applications. The first part of this review describes the passage of uranium into the brain, and its effects on neurological functions and cognitive abilities. Very few human studies have looked at its cognitive effects. Experimental studies show that after exposure, uranium can reach the brain and lead to neurobehavioral impairments, including increased locomotor activity, perturbation of the sleep-wake cycle, decreased memory, and increased anxiety. The mechanisms underlying these neurobehavioral disturbances are not clearly understood. It is evident that there must be more than one toxic mechanism and that it might include different targets in the brain. In the second part, we therefore review the principal mechanisms that have been investigated in experimental models: imbalance of the anti/pro-oxidant system and neurochemical and neurophysiological pathways. Uranium effects are clearly specific according to brain area, dose, and time. Nonetheless, this review demonstrates the paucity of data about its effects on developmental processes and the need for more attention to the consequences of exposure during development. PMID:26277741

  6. Uranium Reduction by Clostridia

    SciTech Connect

    Francis, A.J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    2006-04-05

    The FRC groundwater and sediment contain significant concentrations of U and Tc and are dominated by low pH, and high nitrate and Al concentrations where dissimilatory metal reducing bacterial activity may be limited. The presence of Clostridia in Area 3 at the FRC site has been confirmed and their ability to reduce uranium under site conditions will be determined. Although the phenomenon of uranium reduction by Clostridia has been firmly established, the molecular mechanisms underlying such a reaction are not very clear. The authors are exploring the hypothesis that U(VI) reduction occurs through hydrogenases and other enzymes (Matin and Francis). Fundamental knowledge of metal reduction using Clostridia will allow us to exploit naturally occurring processes to attenuate radionuclide and metal contaminants in situ in the subsurface. The outline for this report are as follows: (1) Growth of Clostridium sp. under normal culture conditions; (2) Fate of metals and radionuclides in the presence of Clostridia; (3) Bioreduction of uranium associated with nitrate, citrate, and lepidocrocite; and (4) Utilization of Clostridium sp. for immobilization of uranium at the FRC Area 3 site.

  7. Fluid-bed fluoride volatility process recovers uranium from spent uranium alloy fuels

    NASA Technical Reports Server (NTRS)

    Barghusen, J. J.; Chilenskas, A. A.; Gunderson, G. E.; Holmes, J. T.; Jonke, A. A.; Kincinas, J. E.; Levitz, N. M.; Potts, G. L.; Ramaswami, D.; Stethers, H.; Turner, K. S.

    1967-01-01

    Fluid-bed fluoride volatility process recovers uranium from uranium fuels containing either zirconium or aluminum. The uranium is recovered as uranium hexafluoride. The process requires few operations in simple, compact equipment, and eliminates aqueous radioactive wastes.

  8. Uranium from seawater

    SciTech Connect

    Gregg, D.; Folkendt, M.

    1982-09-21

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10/sup 5/, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10/sup 3/ in seawater instead of the reported values of 10/sup 5/. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10/sup 5/ in fresh water. However, the system was not tested in seawater.

  9. Elemental imaging of kidneys of adult rats exposed to uranium acetate

    NASA Astrophysics Data System (ADS)

    Homma-Takeda, S.; Terada, Y.; Nakata, A.; Sahoo, S. K.; Yoshida, S.; Ueno, S.; Inoue, M.; Iso, H.; Ishikawa, T.; Konishi, T.; Imaseki, H.; Shimada, Y.

    2009-06-01

    Concern about the toxicity of depleted uranium for military use has increased recently. Renal toxicity is the hallmark effect of uranium exposure. However, the dynamics and distribution of uranium in the kidney are not well understood. Here, we determined the precise distribution of uranium and essential elements in the rat kidney using microbeam scanning particle-induced X-ray emission (micro-PIXE) and synchrotron radiation X-ray fluorescence (SR-XRF). Uranium accumulation in the rat kidney reached a maximum at 1 day after the subcutaneous (s.c.) administration of 2 mg U/kg of uranium acetate and then gradually decreased. At 3 h after administration, uranium was distributed mainly in the proximal tubules of the inner zone of the cortex and in the outer stripe of the outer medulla, and absorbed by the proximal tubule epithelium. Iron was localized more in the inside of the outer medulla than uranium, while phosphorus, potassium, sulfur and zinc were equally distributed in the cortex and the outer stripe of the outer medulla. At 3 days after administration, the number of apoptotic cells increased and cells were lost from the proximal tubules. Uranium was detectable mainly in the outer stripe of the outer medulla at 15 days, suggesting that the renal distribution of uranium is site-selective and causes site-specific renal lesions.

  10. Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

    SciTech Connect

    Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

    2007-06-01

    The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

  11. Determination of ¹³?Cs and ¹³?Cs/¹³?Cs atomic ratio in environmental samples by combining ammonium molybdophosphate (AMP)-selective Cs adsorption and ion-exchange chromatographic separation to triple-quadrupole inductively coupled plasma-mass spectrometry.

    PubMed

    Zheng, Jian; Bu, Wenting; Tagami, Keiko; Shikamori, Yasuyuki; Nakano, Kazumi; Uchida, Shigeo; Ishii, Nobuyoshi

    2014-07-15

    Since the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011, the activity ratio of (134)Cs/(137)Cs has been widely used as a tracer for contamination source identification. However, because of the short half-life of (134)Cs (2.06 y), this tracer will become unavailable in the near future. This article presents an analytical method for the determination of the long-lived (135)Cs (t(2/1) = 2 × 10(6) y) and the atomic ratio of (135)Cs/(137)Cs, as a promising geochemical tracer, in environmental samples. The analytical method involves ammonium molybdophosphate (AMP)-selective adsorption of Cs and subsequent two-stage ion-exchange chromatographic separation, followed by detection of isolated radiocesium isotopes via triple-quadrupole inductively coupled plasma-mass spectrometry (ICP-MS/MS). The AMP-selective adsorption of Cs and the chromatographic separation system showed high decontamination factors (10(4)-10(5)) for interfering elements, such as Ba, Mo, Sb, and Sn. Using ICP-MS/MS, only selected ions enter the collision/reaction cell to react with N2O, reducing the isobaric interferences ((135)Ba(+) and (137)Ba(+)) and polyatomic interferences ((95) Mo(40)Ar(+), (97) Mo(40)Ar(+), (119)Sn(16)O(+), and (121)Sb(16)O(+)) produced by sample matrix ions. The high abundance sensitivity (10(-9) for the (135)Cs/(133)Cs ratio) provided by ICP-MS/MS allowed reliable analysis of (135)Cs and (137)Cs isotopes with the lowest detection limits ever reported by mass counting methods (0.01 pg mL(-1) and 0.006 pg mL(-1), respectively). The developed analytical method was successfully applied to the determination of (135)Cs and (137)Cs isotopes in environmental samples (soil, litter, and lichen) collected after the FDNPP accident for contamination source identification. PMID:24931104

  12. United States Transuranium and Uranium Registries

    SciTech Connect

    Kathren, R.

    1993-02-28

    The United States Transuranium and Uranium Registries are unique human tissue research programs studying the distribution, dose, and possible biological effects of the actinide elements in man, with the primary goal of assuring the adequacy of radiation protection standards for these radionuclides. The Registries research is based on radiochemical analysis of tissues collected at autopsy from voluntary donors who have documented occupational exposure to the actinides. To date, tissues, or in some cases radioanalytical results only, have been obtained from approximately 300 individuals; another 464 living individuals have volunteered to participate in the Registries research programs and have signed premortem informed consent and autopsy permissions. The Registries originated at the National Plutonium Registry which was started in 1968 as a then Atomic Energy Commission project under the aegis of a prime contractor at the Hanford site. In 1970, the name was changed to the United States Transuranium Registry to reflect a broader involvement with the higher actinides. In 1978, an administratively separate parallel registry, the United States Uranium Registry, was formed to carry out similar studies among uranium fuel cycle workers.

  13. 31 CFR 540.309 - Natural uranium.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found...

  14. 31 CFR 540.309 - Natural uranium.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found...

  15. Method of preparation of uranium nitride

    DOEpatents

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  16. Methane/nitrogen separation process

    DOEpatents

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  17. Methane/nitrogen separation process

    DOEpatents

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  18. Uranium Oxide Rate Summary for the Spent Nuclear Fuel (SNF) Project (OCRWM)

    SciTech Connect

    PAJUNEN, A.L.

    2000-09-20

    The purpose of this document is to summarize the uranium oxidation reaction rate information developed by the Hanford Spent Nuclear Fuel (SNF) Project and describe the basis for selecting reaction rate correlations used in system design. The selection basis considers the conditions of practical interest to the fuel removal processes and the reaction rate application during design studies. Since the reaction rate correlations are potentially used over a range of conditions, depending of the type of evaluation being performed, a method for transitioning between oxidation reactions is also documented. The document scope is limited to uranium oxidation reactions of primary interest to the SNF Project processes. The reactions influencing fuel removal processes, and supporting accident analyses, are: uranium-water vapor, uranium-liquid water, uranium-moist air, and uranium-dry air. The correlation selection basis will consider input from all available sources that indicate the oxidation rate of uranium fuel, including the literature data, confirmatory experimental studies, and fuel element observations. Trimble (2000) summarizes literature data and the results of laboratory scale experimental studies. This document combines the information in Trimble (2000) with larger scale reaction observations to describe uranium oxidation rate correlations applicable to conditions of interest to the SNF Project.

  19. Selection of Isotopes and Elements for Fuel Cycle Analysis

    SciTech Connect

    Steven J. Piet

    2009-04-01

    Fuel cycle system analysis simulations examine how the selection among fuel cycle options for reactors, fuel, separation, and waste management impact uranium ore utilization, waste masses and volumes, radiotoxicity, heat to geologic repositories, isotope-dependent proliferation resistance measures, and so forth. Previously, such simulations have tended to track only a few actinide and fission product isotopes, those that have been identified as important to a few criteria from the standpoint of recycled material or waste, taken as a whole. After accounting for such isotopes, the residual mass is often characterized as “fission product other” or “actinide other”. However, detailed assessment of separation and waste management options now require identification of key isotopes and residual mass for Group 1A/2A elements (Rb, Cs, Sr, Ba), inert gases (Kr, Xe), halogens (Br, I), lanthanides, transition metals, transuranic (TRU), uranium, actinide decay products. The paper explains the rationale for a list of 81 isotopes and chemical elements to better support separation and waste management assessment in dynamic system analysis models such as Verifiable Fuel Cycle Simulation (VISION)

  20. The importance of colloids and mires for the transport of uranium isotopes through the Kalix River watershed and Baltic Sea

    SciTech Connect

    Porcelli, D.; Wasserburg, G.J.; Andersson, P.S.

    1997-10-01

    The importance of colloids and organic deposits for the transport of uranium isotopes from continental source regions and through the estuarine environment was investigated in the mire-rich Kalix River drainage basin in northern Sweden and the Baltic Sea. Ultrafiltration techniques were used to separate uranium and other elements associated with colloids > 10 kD and >3 kD from {open_quotes}solute{close_quotes} uranium and provided consistent results and high recovery rates for uranium as well as for other elements from large volume samples. Uranium concentrations in 0.45 {mu}m-filtered Kalix River water samples increased by a factor of 3 from near the headwaters in the Caledonides to the river mouth while major cation concentrations were relatively constant. {sup 234}U {sup 238}U ratios were high ({delta}{sup 234}U = 770-1500) throughout the basin, without showing any simple pattern, and required a supply of {sup 234}U-rich water. Throughout the Kalix River, a large fraction (30-90%) of the uranium is carried by >10 kD colloids, which is compatible with uranium complexation with humic acids. No isotopic differences were found between colloid-associated and solute uranium. Within the Baltic Sea, about half of the uranium is removed at low salinities. The proportion that is lost is equivalent to that of river-derived colloid-bound uranium, suggesting that while solute uranium behaves conservatively during estuarine mixing, colloid-bound uranium is lost due to rapid flocculation of colloidal material. The association of uranium with colloids therefore may be an important parameter in determining uranium estuarine behavior. Mire peats in the Kalix River highly concentrate uranium and are potentially a significant source of recoil {sup 234}U to the mirewaters and river waters. However, mirewater data clearly demonstrate that only small {sup 234}U/{sup 238}U shifts are generated relative to inflowing groundwater. 63 refs., 8 figs., 3 tabs.

  1. Gas separating

    DOEpatents

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  2. Gas separating

    DOEpatents

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  3. Separation of sodium-22 from irradiated targets

    DOEpatents

    Taylor, Wayne A. (Los Alamos, NM); Jamriska, David (Los Alamos, NM)

    1996-01-01

    A process for selective separation of sodium-22 from an irradiated target including dissolving an irradiated target to form a first solution, contacting the first solution with hydrated antimony pentoxide to selectively separate sodium-22 from the first solution, separating the hydrated antimony pentoxide including the separated sodium-22 from the first solution, dissolving the hydrated antimony pentoxide including the separated sodium-22 in a mineral acid to form a second solution, and, separating the antimony from the sodium-22 in the second solution.

  4. Separation system

    DOEpatents

    Rubin, Leslie S. (Newton, MA)

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  5. Sampling Plan for Assaying Plates Containing Depleted or Normal Uranium

    SciTech Connect

    Ivan R. Thomas

    2011-11-01

    This paper describes the rationale behind the proposed method for selecting a 'representative' sample of uranium metal plates, portions of which will be destructively assayed at the Y-12 Security Complex. The total inventory of plates is segregated into two populations, one for Material Type 10 (depleted uranium (DU)) and one for Material Type 81 (normal [or natural] uranium (NU)). The plates within each population are further stratified by common dimensions. A spreadsheet gives the collective mass of uranium element (and isotope for DU) and the piece count of all plates within each stratum. These data are summarized in Table 1. All plates are 100% uranium metal, and all but approximately 60% of the NU plates have Kel-F{reg_sign} coating. The book inventory gives an overall U-235 isotopic percentage of 0.22% for the DU plates, ranging from 0.19% to 0.22%. The U-235 ratio of the NU plates is assumed to be 0.71%. As shown in Table 1, the vast majority of the plates are comprised of depleted uranium, so most of the plates will be sampled from the DU population.

  6. Method for fabricating uranium foils and uranium alloy foils

    DOEpatents

    Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  7. Selective separation and characterization of the stress degradation products of ondansetron hydrochloride by liquid chromatography with quadrupole time-of-flight mass spectrometry.

    PubMed

    Talluri, Murali V N Kumar; Keshari, Kundan Kumar; Kalariya, Pradipbhai D; Srinivas, Ragampeta

    2015-05-01

    Ondansetron hydrochloride was subjected to forced degradation studies under various conditions of hydrolysis (acidic, basic, and neutral), oxidation, photolysis, and thermal as prescribed by International Conference on Harmonisation guideline Q1A (R2). A simple, selective, precise, and accurate high-performance liquid chromatography method was developed on a Waters Xterra C18 (150 × 4.6 mm id, 3.5 ?m) column using 10 mM ammonium formate (pH 3.0)/methanol as a mobile phase in gradient elution mode at a flow rate of 0.6 mL/min. The method was extended to liquid chromatography quadrupole time-of-flight tandem mass spectrometry for identification and structural characterization of stress degradation products of ondansetron. The drug showed significant degradation in base hydrolytic and photolytic stress conditions in the liquid state, while it was found to be stable in neutral, acidic, thermal, and oxidative stress conditions. A total of five degradation products were characterized and most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation of the [M + H](+) ions of the drug and its degradation products. Finally, the developed method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonisation guideline Q2 (R1). PMID:25727389

  8. Novel Sensor for the In Situ Measurement of Uranium Fluxes

    SciTech Connect

    Hatfield, Kirk

    2015-02-10

    The goal of this project was to develop a sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of flux for uranium and groundwater in porous media. Measurable contaminant fluxes [J] are essentially the product of concentration [C] and groundwater flux or specific discharge [q ]. The sensor measures [J] and [q] by changes in contaminant and tracer amounts respectively on a sorbent. By using measurement rather than inference from static parameters, the sensor can directly advance conceptual and computational models for field scale simulations. The sensor was deployed in conjunction with DOE in obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) at the Rifle IFRC Site in Rifle, Colorado. Project results have expanded our current understanding of how field-scale spatial variations in fluxes of uranium, groundwater and salient electron donor/acceptors are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The coupling between uranium, various nutrients and micro flora can be used to estimate field-scale rates of uranium attenuation and field-scale transitions in microbial communities. This research focuses on uranium (VI), but the sensor principles and design are applicable to field-scale fate and transport of other radionuclides. Laboratory studies focused on sorbent selection and calibration, along with sensor development and validation under controlled conditions. Field studies were conducted at the Rifle IFRC Site in Rifle, Colorado. These studies were closely coordinated with existing SBR (formerly ERSP) projects to complement data collection. Small field tests were conducted during the first two years that focused on evaluating field-scale deployment procedures and validating sensor performance under controlled field conditions. In the third and fourth year a suite of larger field studies were conducted. For these studies, the uranium flux sensor was used with uranium speciation measurements and molecular-biological tools to characterize microbial community and active biomass at synonymous wells distributed in a large grid. These field efforts quantified spatial changes in uranium flux and field-scale rates of uranium attenuation (ambient and stimulated), uranium stability, and quantitatively assessed how fluxes and effective reaction rates were coupled to spatial variations in microbial community and active biomass. Analyses of data from these field experiments were used to generate estimates of Monod kinetic parameters that are ‘effective’ in nature and optimal for modeling uranium fate and transport at the field-scale. This project provided the opportunity to develop the first sensor that provides direct measures of both uranium (VI) and groundwater flux. A multidisciplinary team was assembled to include two geochemists, a microbiologist, and two quantitative contaminant hydrologists. Now that the project is complete, the sensor can be deployed at DOE sites to evaluate field-scale uranium attenuation, source behavior, the efficacy of remediation, and off-site risk. Because the sensor requires no power, it can be deployed at remote sites for periods of days to months. The fundamental science derived from this project can be used to advance the development of predictive models for various transport and attenuation processes in aquifers. Proper development of these models is critical for long-term stewardship of contaminated sites in the context of predicting uranium source behavior, remediation performance, and off-site risk.

  9. Salt marshes: An important coastal sink for dissolved uranium

    SciTech Connect

    Church, T.M.; Sarin, M.M.; Fleisher, M.Q.; Ferdelman, T.G.

    1996-10-01

    The global budget for marine uranium demands another geochemical sink other than deep-sea systems, and the coastal environment may host some or all of this missing sink. In a previous paper, we have shown that some large subtidal estuaries are seasonal summer sinks at low salinities. In this paper, we show that intertidal salt marshes are even stronger sinks at all salinities, if for somewhat different reasons. Uranium was sampled in dissolved and particulate fractions over several tidal cycles and seasons for a lower Delaware Bay salt marsh (Canary Creek, Lewes, Delaware, USA), and uniquely, during summer months, the dissolved uranium is nonconservative. Moreover, because uranium extraction is greater on higher tides and occurs over the entire salinity gradient, this processing appears associated with surface of vegetated high marsh, We hypothesize that either (1) uranium scavenging occurs during the process of tidal mixing and attendant flocculation of humic acids and iron oxides-favoring this process is the presence of sulfonate complexes in salt marsh humic substances, and iron coprecipitation during its extensive redox cycling in the salt marsh-or (2) uranium extraction occurs at the marsh surface during extensive flooding of the salt marsh surface sediments-favoring this process is the increase in sulfuric acidity at the summer salt marsh surface that could destabilize the tetracarbonate species of U(VI). The latter option is favored by both field observations of maximum removal at the surface during the spring and summer tide conditions, and selective extraction of sediment phases where uranium is found as adsorbed and complexed forms in the ascorbate-citrate and humic acid fractions, respectively. Mass balance calculations show that under steady-state conditions, nearly two-thirds of the uranium extracted from tidal waters is retained in the sediments, while one-third is exported as U-enriched particles during ebbing tides. 41 refs., 7 figs., 3 tabs.

  10. Phosphosilicates of tetravalent uranium

    NASA Astrophysics Data System (ADS)

    Doynikova, O. A.; Sidorenko, G. A.; Sivtsov, A. V.

    2014-06-01

    A new variety of P-coffinite of (U,Ca,Fe)[(Si,P,S)O4] idealized formula where P and C are the mineral-forming elements equally to U and Si has been discovered. This allows one to enlarge the list of the known minerals of tetravalent uranium with a new mineral taxon of U4+ phosphosilicates. The crystalline structure of phosphosilicates is difficult to solve because of the dispersity of ?m-sized crystals; therefore, crystallochemical analysis of probable transformations of mineral structures in polyhedrons was carried out. The consideration of the structures from coffinite (U4+-silicate) to ningyoite (Ca-U4+-phosphate) resulted in the conclusion on the possible existence of a series of U4+ minerals of mixed anionic and, hence, cationic composition, i.e., of phosphosilicates and silicophosphates of tetravalent uranium, with the indispensable presence of calcium in the crystalline structure.

  11. Uranium prospecting method

    SciTech Connect

    Cabbiness, D.K.; Carel, A.B.; Leslie, W.D.

    1981-05-12

    A technique of applying the thermoluminescence phenomenon to uranium prospecting. The thermoluminescence of specimens of quartz isolated from field samples is measured. The samples are then irradiated at several levels, and the thermoluminescence of the samples is measured at the various levels. This enables a determination of the natural radiation received by the samples the current radiation from the samples is measured with a dosimeter, and by using both shielded and unshielded dosimeters the type of radiation from the samples can be determined. Knowledge of the total natural radiation received by a sample and the current rate of radioactivity allows the determination of the present position of uranium or other radioactive source and its geological ''migration'' path.

  12. Determination of uranium, thorium, and 18 other elements in high-purity molybdenum by radiochemical neutron activation analysis

    SciTech Connect

    Theimer, K.H.; Krivan, V. )

    1990-12-15

    A radiochemical neutron activation analysis technique for the determination of uranium and thorium in high-purity molybdenum via the indicator radionuclides {sup 239}Np for U and {sup 233}Pa for Th has been developed. Simultaneously, the elements Ag, Co, Cr, Cs, Cu, Fe, Ga, In, Ir, K, Mn, Na, Ni, Rb, Ru, Sc, Se, and Zn can be determined, too. The elements Hf, Sb, Ta, Sn, and W were determined by instrumental neutron activation analysis. The radiochemical separation is performed by anion exchange on a Dowex 1 {times} 8 column from a 20 M HF/3% H{sub 2}O{sub 2} medium. A limit of detection of 4 ng/g for uranium and 40 pg/g for thorium can be achieved. For the other elements, the limits of detection are between 1 pg/g and 100 ng/g. A modified more selective separation of the indicator radionuclide of Th, {sup 233}Pa, allows improvement of the limit of detection for Th by a factor up to 5. This technique was applied to the analysis of high-purity molybdenum, and the results of a number of elements were compared with those of other techniques.

  13. Separating natural responses from experimental artefacts: habitat selection by a diadromous fish species using odours from conspecifics and natural stream water.

    PubMed

    Hale, Robin; Swearer, Stephen E; Downes, Barbara J

    2009-03-01

    Animals use sensory stimuli to assess and select habitats, mates and food as well as to communicate with other individuals. One way they do this is to use olfaction, whereby they identify and respond to chemical cues. All organisms release odours, which mix with other chemical substances and ambient environmental conditions. The result is that animals are frequently immersed in a complex, highly dynamic sensory environment where they must identify and respond to only some of the potential stimuli they encounter in the face of significant levels of background noise. Understanding how organisms respond to different chemical cues is therefore dependent on knowing how these responses might be influenced by potential interactions with other stimuli. To test this, we examined whether the diadromous fish Galaxias maculatus was attracted to conspecific odours and whether this response differed when cues were offered in an artificial environment lacking other potential chemical stimuli (tap water) or a more natural background environment (stream water). We found that (1) fish responded to both natural stream water odours and those from conspecifics but the response to the latter was stronger; (2) the attraction to conspecific odours was stronger in tap water than in stream water, which indicates the importance of these odours may be overestimated when they are offered in artificial media. We also conducted a brief literature review, which confirmed that artificial media are commonly used in experiments and that the background environment is often not considered. Our results show that future research testing the responses of organisms to auditory, olfactory and visual cues should carefully consider the context in which cues are presented. Without doing so, such studies may inaccurately assess the importance of sensory cues in natural situations in the wild. PMID:19139923

  14. 77 FR 12880 - Uranium From Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ...731-TA-539-C (Third Review)] Uranium From Russia Determination On the basis of the record...suspended investigation on uranium from Russia would be likely to lead to continuation...February 2012), entitled Uranium from Russia: Investigation No....

  15. 31 CFR 540.309 - Natural uranium.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in nature, with an average concentration of 0.711 percent by weight of the isotope...

  16. Sputtering of uranium

    NASA Technical Reports Server (NTRS)

    Gregg, R.; Tombrello, T. A.

    1978-01-01

    Results are presented for an experimental study of the sputtering of U-235 atoms from foil targets by hydrogen, helium, and argon ions, which was performed by observing tracks produced in mica by fission fragments following thermal-neutron-induced fission. The technique used allowed measurements of uranium sputtering yields of less than 0.0001 atom/ion as well as yields involving the removal of less than 0.01 monolayer of the uranium target surface. The results reported include measurements of the sputtering yields for 40-120-keV protons, 40-120-keV He-4(+) ions, and 40- and 80-keV Ar-40(+) ions, the mass distribution of chunks emitted during sputtering by the protons and 80-keV Ar-40(+) ions, the total chunk yield during He-4(+) sputtering, and some limited data on molecular sputtering by H2(+) and H3(+). The angular distribution of the sputtered uranium is discussed, and the yields obtained are compared with the predictions of collision cascade theory.

  17. Recovery of uranium from seawater

    SciTech Connect

    Best, F.R.; Driscoll, M.J.

    1980-12-01

    This report is the proceedings of a topical meeting on the recovery of uranium from seawater, held at the Massachusetts Institute of Technology on December 1-2, 1980. The meeting was sponsored by the United States Department of Energy and hosted by the MIT Energy Laboratory and Nuclear Engineering Department. Workers from six different countries presented a total of sixteen papers in three major categories: the state-of-the-art resulting from past efforts; detailed results from sorber preparation and performance experiments; and overall system design aspects. Sorbers discussed include hydrous titanium oxide, ion exchange resins, chitosan, humic acids and activated carbon. Systems for contacting seawater with the sorber include actively pumped, current and wave-powered concepts. Filter configurations include thin multilayer stacks, fluidized beds and free falling particles. Several of the researchers estimated eventual production costs in the 200 to 400 $/lb U/sub 3/O/sub 8/ range, although values as high as 2000 $/lb were also quoted. The bulk of the proceedings is comprised of the unedited papers, as provided by the authors. The proceedings also include edited transcripts of the discussions on all papers and the panel and concluding discussions. All papers have been abstracted separately.

  18. Gas separating

    DOEpatents

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  19. Gas separating

    DOEpatents

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  20. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    DOEpatents

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  1. Remediation of Hanford tank waste using magnetic separation

    SciTech Connect

    Worl, L.A.; Avens, L.R.; de Aguero, K.J.; Coyne Prenger, F.; Stewart, W.F.; Hill, D.D.

    1992-12-31

    Large volumes of high-level radioactive waste are stored at the Department of Energy`s Hanford site. Magnetic separation, a physical separation, process, can be used to segregate actinides and certain fission products from the waste. High gradient magnetic separation (HGMS) tests have been performed successfully using a simulated, nonradioactive underground storage tank (UST) waste. Variations in HGMS test parameters included separator matrix material, magnetic field strength, slurry surfactant, and slurry solids loading. Cerium was added to the simulated tank waste to act as a uranium surrogate. Results show that over 77% of the uranium surrogate can be captured and concentrated from the original bulk with a simple procedure. The results of these tests and the feasibility of magnetic separation for pretreatment of UST waste are discussed.

  2. Remediation of Hanford tank waste using magnetic separation

    SciTech Connect

    Worl, L.A.; Avens, L.R.; de Aguero, K.J.; Coyne Prenger, F.; Stewart, W.F.; Hill, D.D.

    1992-01-01

    Large volumes of high-level radioactive waste are stored at the Department of Energy's Hanford site. Magnetic separation, a physical separation, process, can be used to segregate actinides and certain fission products from the waste. High gradient magnetic separation (HGMS) tests have been performed successfully using a simulated, nonradioactive underground storage tank (UST) waste. Variations in HGMS test parameters included separator matrix material, magnetic field strength, slurry surfactant, and slurry solids loading. Cerium was added to the simulated tank waste to act as a uranium surrogate. Results show that over 77% of the uranium surrogate can be captured and concentrated from the original bulk with a simple procedure. The results of these tests and the feasibility of magnetic separation for pretreatment of UST waste are discussed.

  3. Comparison of the chemical characteristics of the uranium deposits of the Morrison Formation in the Grants uranium region, New Mexico

    USGS Publications Warehouse

    Spirakis, C.S.; Pierson, C.T.

    1983-01-01

    Statistical treatment of the chemical data of samples from the northeast Church Rock area, Ruby deposit, Mariano Lake deposit, and the Ambrosia Lake district indicates that primary ore-forming processes concentrated copper, iron, magnesium, manganese, molybdenum, selenium, vanadium, yttrium, arsenic, organic carbon, and sulfur, along with uranium. A barium halo that is associated with all of these deposits formed from secondary processes. Calcium and strontium were also enriched in the ores by secondary processes. Comparison of the chemical characteristics of the redistributed deposits in the Church Rock district to the primary deposits in the Grants uranium region indicates that calcium, manganese, strontium, yttrium, copper, iron, magnesium, molybdenum, lead, selenium, and vanadium are separated from uranium during redistribution of the deposits in the Church Rock area. Comparisons of the chemical characteristics of the Church Rock deposits and the secondary deposits at Ambrosia Lake suggest some differences in the processes that were involved in the genesis of the redistributed deposits in these two areas.

  4. 12. VIEW OF DEPLETED URANIUM INGOT AND MOLDS. DEPLETED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF DEPLETED URANIUM INGOT AND MOLDS. DEPLETED URANIUM CASTING OPERATIONS CEASED IN 1988. (11/14/57) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  5. The terrestrial uranium isotope cycle.

    PubMed

    Andersen, Morten B; Elliott, Tim; Freymuth, Heye; Sims, Kenneth W W; Niu, Yaoling; Kelley, Katherine A

    2015-01-15

    Changing conditions on the Earth's surface can have a remarkable influence on the composition of its overwhelmingly more massive interior. The global distribution of uranium is a notable example. In early Earth history, the continental crust was enriched in uranium. Yet after the initial rise in atmospheric oxygen, about 2.4 billion years ago, the aqueous mobility of oxidized uranium resulted in its significant transport to the oceans and, ultimately, by means of subduction, back to the mantle. Here we explore the isotopic characteristics of this global uranium cycle. We show that the subducted flux of uranium is isotopically distinct, with high (238)U/(235)U ratios, as a result of alteration processes at the bottom of an oxic ocean. We also find that mid-ocean-ridge basalts (MORBs) have (238)U/(235)U ratios higher than does the bulk Earth, confirming the widespread pollution of the upper mantle with this recycled uranium. Although many ocean island basalts (OIBs) are argued to contain a recycled component, their uranium isotopic compositions do not differ from those of the bulk Earth. Because subducted uranium was probably isotopically unfractionated before full oceanic oxidation, about 600 million years ago, this observation reflects the greater antiquity of OIB sources. Elemental and isotope systematics of uranium in OIBs are strikingly consistent with previous OIB lead model ages, indicating that these mantle reservoirs formed between 2.4 and 1.8 billion years ago. In contrast, the uranium isotopic composition of MORB requires the convective stirring of recycled uranium throughout the upper mantle within the past 600 million years. PMID:25592542

  6. Particle separator

    DOEpatents

    Hendricks, Charles D. (Livermore, CA)

    1990-01-01

    Method and apparatus (10) are provided for separating and classifying particles (48,50,56) by dispersing the particles within a fluid (52) that is upwardly flowing within a cone-shaped pipe (12) that has its large end (20) above its small end (18). Particles of similar size and shape (48,50) migrate to individual levels (A,B) within the flowing fluid. As the fluid is deflected by a plate (42) at the top end of the pipe (12), the smallest particles are collected on a shelf-like flange (40). Ever larger particles are collected as the flow rate of the fluid is increased. To prevent particle sticking on the walls (14) of the pipe (12), additional fluid is caused to flow into the pipe (12) through holes (68) that are specifically provided for that purpose. Sticking is further prevented by high frequency vibrators (70) that are positioned on the apparatus (10).

  7. Maintaining the uranium resources data system and assessing the 1989 US uranium potential resources

    SciTech Connect

    McCammon, R.B. ); Finch, W.I.; Grundy, W.D.; Pierson, C.T. )

    1990-12-31

    Under the Memorandum of Understanding (MOU) between the EIA, US Department of Energy, and the US Geological Survey (USGS), US Department of the Interior, the USGS develops estimates of uranium endowment for selected geological environments in the United States. New estimates of endowment are used to update the Uranium Resources Assessment Data (URAD) System which, beginning in 1990, is maintained for EIA by the USGS. For 1989, estimates of US undiscovered resources were generated using revised economic index values (current to December 1989) in the URAD system's cost model. The increase in the estimates for the Estimated Additional Resources (EAR) and Speculative Resources (SR) classes resulted primarily from increases in the estimates of uranium endowment for the solution-collapse, breccia-pipe uranium deposit environment in the Colorado Plateau resource region. The mean values for $30-, $50-, and $100-per-pound U{sub 3}O{sub 8} forward-cost categories of EAR increased by about 8, 48, and 32 percent, respectively, as compared to 1988. Estimates of the 1989 undiscovered resources in the SR class also increased in all three forward-cost categories by 10, 5, and 9 percent, respectively. The original cost equations in the URAD System were designed to cover drilling costs related to extensive flat-lying tabular ore bodies. The equations do not adequately treat drilling costs for the smaller areas of vertical breccia pipe uranium deposits in the Colorado Plateau resource region. The development of appropriate cost equations for describing the economics of mining this type of deposit represents a major new task. 12 refs., 4 figs., 5 tabs.

  8. Selective extraction and analysis of catecholamines in rat blood microdialysate by polymeric ionic liquid-diphenylboric acid-packed capillary column and fast separation in high-performance liquid chromatography-electrochemical detector.

    PubMed

    Zhou, Xinguang; Zhu, Anwei; Shi, Guoyue

    2015-08-28

    Concentration of blood catecholamines (CAs) is linked to a host of cardiovascular diseases, including hypertension and stenocardia. The matrix interferences and low concentration require tedious sample pretreatment methods before quantitative analysis by the gold standard method of high-performance liquid chromatography-electrochemical detector (HPLC-ECD). Solid phase extraction (SPE) has been widely used as the pretreatment technique. Here, a facile polymeric ionic liquid (PIL)-diphenylboric acid (DPBA)-packed capillary column was prepared to selectively extract dopamine (DA), noradrenaline (NE) and epinephrine (E) prior to their quantitative analysis by a fast separation in HPLC-ECD method, while microdialysis sampling method was applied to get the analysis sample. Parameters that influenced desorption efficiency, such as pH, salt concentration, acetonitrile content and wash time, were examined and optimized. The proposed method, combining microdialysis sampling technique, SPE and HPLC-ECD system, was successfully applied to detect CAs in rat blood microdialysate with high sensitivity and selectivity in small sample volumes (5-40?l) and a short analysis time (8min), yielding good reproducibility (RSD 6.5-7.7%) and spiked recovery (91-104.4%). PMID:26206631

  9. Solubility measurement of uranium in uranium-contaminated soils

    SciTech Connect

    Lee, S.Y.; Elless, M.; Hoffman, F.

    1993-08-01

    A short-term equilibration study involving two uranium-contaminated soils at the Fernald site was conducted as part of the In Situ Remediation Integrated Program. The goal of this study is to predict the behavior of uranium during on-site remediation of these soils. Geochemical modeling was performed on the aqueous species dissolved from these soils following the equilibration study to predict the on-site uranium leaching and transport processes. The soluble levels of total uranium, calcium, magnesium, and carbonate increased continually for the first four weeks. After the first four weeks, these components either reached a steady-state equilibrium or continued linearity throughout the study. Aluminum, potassium, and iron, reached a steady-state concentration within three days. Silica levels approximated the predicted solubility of quartz throughout the study. A much higher level of dissolved uranium was observed in the soil contaminated from spillage of uranium-laden solvents and process effluents than in the soil contaminated from settling of airborne uranium particles ejected from the nearby incinerator. The high levels observed for soluble calcium, magnesium, and bicarbonate are probably the result of magnesium and/or calcium carbonate minerals dissolving in these soils. Geochemical modeling confirms that the uranyl-carbonate complexes are the most stable and dominant in these solutions. The use of carbonate minerals on these soils for erosion control and road construction activities contributes to the leaching of uranium from contaminated soil particles. Dissolved carbonates promote uranium solubility, forming highly mobile anionic species. Mobile uranium species are contaminating the groundwater underlying these soils. The development of a site-specific remediation technology is urgently needed for the FEMP site.

  10. Method for the production of uranium chloride salt

    DOEpatents

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  11. Dupoly process for treatment of depleted uranium and production of beneficial end products

    DOEpatents

    Kalb, Paul D. (Wading River, NY); Adams, Jay W. (Stony Brook, NY); Lageraaen, Paul R. (Seaford, NY); Cooley, Carl R. (Gaithersburg, MD)

    2000-02-29

    The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.

  12. RECENT STUDIES OF URANIUM AND PLUTONIUM CHEMISTRY IN ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    King, W; Bill Wilmarth, B; David Hobbs, D; Tommy Edwards, T

    2006-06-13

    Solubility studies of uranium and plutonium in a caustic, radioactive Savannah River Site tank waste solution revealed the existence of uranium supersaturation in the as-received sample. Comparison of the results to predictions generated from previously published models for solubility in these waste types revealed that the U model poorly predicts solubility while Pu model predictions are quite consistent with experimental observations. Separate studies using simulated Savannah River Site evaporator feed solution revealed that the known formation of sodium aluminosilicate solids in waste evaporators can promote rapid precipitation of uranium from supersaturated solutions.

  13. Aluminosilicate Precipitation Impact on Uranium

    SciTech Connect

    WILMARTH, WILLIAM

    2006-03-10

    Experiments have been conducted to examine the fate of uranium during the formation of sodium aluminosilicate (NAS) when wastes containing high aluminate concentrations are mixed with wastes of high silicate concentration. Testing was conducted at varying degrees of uranium saturation. Testing examined typical tank conditions, e.g., stagnant, slightly elevated temperature (50 C). The results showed that under sub-saturated conditions uranium is not removed from solution to any large extent in both simulant testing and actual tank waste testing. This aspect was not thoroughly understood prior to this work and was necessary to avoid criticality issues when actual tank wastes were aggregated. There are data supporting a small removal due to sorption of uranium on sites in the NAS. Above the solubility limit the data are clear that a reduction in uranium concentration occurs concomitant with the formation of aluminosilicate. This uranium precipitation is fairly rapid and ceases when uranium reaches its solubility limit. At the solubility limit, it appears that uranium is not affected, but further testing might be warranted.

  14. EPA's REGULATORY RESPONSIBILITIES for URANIUM

    E-print Network

    EPA's REGULATORY RESPONSIBILITIES for URANIUM MINING and MILLING NAS/NRC Committee on Uranium Mining in Virginia Washington, DC October 26, 2010 Loren Setlow, CPG U.S Environmental Protection Agency Comprehensive Environmental Response, Compensation and Liability Act Ongoing EPA Regulatory Reviews #12

  15. Method of precipitating uranium peroxide

    SciTech Connect

    Hardwicke, T.J.

    1984-01-31

    Uranium peroxide is precipitated from an acidified carbonate strip solution by the addition of hydrogen peroxide and a sufficient quantity of the alkaline carbonate strip solution to maintain the pH at an acid level which is suitable for the precipitation of uranium peroxide.

  16. Uranium levels in Cypriot groundwater samples determined by ICP-MS and ?-spectroscopy.

    PubMed

    Charalambous, Chrystalla; Aletrari, Maria; Piera, Panagiota; Nicolaidou-Kanari, Popi; Efstathiou, Maria; Pashalidis, Ioannis

    2013-02-01

    The uranium concentration and the isotopic ratio (238)U/(234)U have been determined in Cypriot groundwater samples by ICP-MS after ultrafiltration and acidification of the samples and ?-spectroscopy after pre-concentration and separation of uranium by cation-exchange (Chelex 100 resin) and electro-deposition on stainless steel discs. The uranium concentration in the groundwater samples varies strongly between 0.1 and 40 ?g l(-1). The highest uranium concentrations are found in groundwater samples associated with sedimentary rock formations and the obtained isotopic ratio (238)U/(234)U varies between 0.95 and 1.2 indicating basically the presence of natural uranium in the studied samples. The pH of the groundwater samples is neutral to weak alkaline (7 < pH < 8) and this is attributed to the carbonaceous content of the sedimentary rocks and the ophiolitic origin of the igneous rocks, which form the background geology in Cyprus. Generally, in groundwaters uranium concentration in solution increases with decreasing pH (7 < pH < 8) and this is attributed to the fact that at lower pH dissolution of soil minerals occurs, and uranium, which is adsorbed or forms solid solution with the geological matrix enters the aqueous phase. This is also corroborated by the strong correlation between the uranium concentration and the electrical conductivity (e.g. dissolved solids) measured in the groundwaters under investigation. PMID:23195433

  17. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOEpatents

    Travelli, Armando (Hinsdale, IL)

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  18. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOEpatents

    Travelli, A.

    1985-10-25

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  19. Determination of trace lanthanide impurities in nuclear grade uranium by coupled-column liquid chromatography

    SciTech Connect

    Lucy, C.A.; Gureli, L.; Elchuk, S. )

    1993-11-15

    Impurities such as Sm, Gd, Eu, and Dy will degrade the neutron economy of a nuclear reactor when present even at sub-parts-per-million levels, as a result of their high neutron absorption cross sections. Conventional determinations of lanthanide impurities in uranium require 0.5-100 g of uranium. A coupled-column chromatographic procedure has been developed which dramatically reduces the quantity of uranium required. The first column, a semipreparative reversed-phase column, removes the uranium matrix, while the second column, an analytical-scale cation exchange column, concentrates and separates the lanthanides prior to their postcolumn reaction detection with arsenazo III. The maximum loading of uranium onto the reversed-phase column is determined by the volume overload of the lanthanides rather than the concentration overload of the uranium. Using 20 mg of uranium, a detection limit of 0.02 [mu]g/g of U is achieved for Sm, Gd, Eu, and Dy with no interference from transition or alkaline earth metals present in the uranium. 39 refs., 5 figs., 2 tabs.

  20. Steam separator latch assembly

    DOEpatents

    Challberg, Roy C. (Livermore, CA); Kobsa, Irvin R. (San Jose, CA)

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  1. Oil separator

    SciTech Connect

    Calupca, G.A.; Crone, L.L.; Maxey, W. III; Rubenic, E.K.

    1988-12-06

    This patent describes an oil separator for a horizontal screw compressor: a generally cylindrical member having a closed first end and having a second end having an opening therein for receiving the rotor assembly of a screw compressor; baffle seal means spaced from the closed first end and defining therewith a first chamber; generally horizontal divider plate means extending between the baffle seal means and the second end so as to divide the generally cylindrical member to thereby define second and third chambers with the second chamber being beneath and larger than the third chamber; the opening in the second end communicates with the second chamber whereby the second chamber is adapted to receive the rotor assembly; discharge deflector means in the second chamber for directing compressor discharge upwardly so as to impinge upon the divider plate means and deposit entrained oil thereon; demister means in the second chamber and coacting with the baffle seal means whereby compressor discharge must pass through the demister means to reach the first chamber.

  2. Uranium removal from contaminated groundwater by synthetic resins.

    PubMed

    Phillips, D H; Gu, B; Watson, D B; Parmele, C S

    2008-01-01

    Synthetic resins are shown to be effective in removing uranium from contaminated groundwater. Batch and field column tests showed that strong-base anion-exchange resins were more effective in removing uranium from both near-neutral-pH (6.5)- and high-pH (8)-low-nitrate-containing groundwaters, than metal-chelating resins, which removed more uranium from acidic-pH (5)-high-nitrate-containing groundwater from the Oak Ridge Reservation (ORR) Y-12 S-3 Ponds area in Tennessee, USA. Dowex 1-X8 and Purolite A-520E anion-exchange resins removed more uranium from high-pH (8)-low-nitrate-containing synthetic groundwater in batch tests than metal-chelating resins. The Dowex 21K anion-exchange resin achieved a cumulative loading capacity of 49.8 mg g(-1) before breakthrough in a field column test using near-neutral-pH (6.5)-low-nitrate-containing groundwater. However, in an acidic-pH (5)-high-nitrate-containing groundwater, metal-chelating resins Diphonix and Chelex-100 removed more uranium than anion-exchange resins. In 15 m L of acidic-pH (5)-high-nitrate-containing groundwater spiked with 20 mg L(-1) uranium, the uranium concentrations ranged from 0.95 mg L(-1) at 1-h equilibrium to 0.08 mg L(-1) at 24-h equilibrium for Diphonix and 0.17 mg L(-1) at 1-h equilibrium to 0.03 mg L(-1) at 24-h equilibrium for Chelex-100. Chelex-100 removed more uranium in the first 10 min in the 100mL of acidic-(pH 5)-high-nitrate-containing groundwater ( approximately 5 mg L(-1) uranium); however, after 10 min, Diphonix equaled or out-performed Chelex-100. This study presents an improved understanding of the selectivity and sorption kenetics of a range of ion-exchange resins that remove uranium from both low- and high-nitrate-containing groundwaters with varying pHs. PMID:17697694

  3. Validation of the WATEQ4 geochemical model for uranium

    SciTech Connect

    Krupka, K.M.; Jenne, E.A.; Deutsch, W.J.

    1983-09-01

    As part of the Geochemical Modeling and Nuclide/Rock/Groundwater Interactions Studies Program, a study was conducted to partially validate the WATEQ4 aqueous speciation-solubility geochemical model for uranium. The solubility controls determined with the WATEQ4 geochemical model were in excellent agreement with those laboratory studies in which the solids schoepite (UO/sub 2/(OH)/sub 2/ . H/sub 2/O), UO/sub 2/(OH)/sub 2/, and rutherfordine ((UO/sub 2/CO/sub 3/) were identified as actual solubility controls for uranium. The results of modeling solution analyses from laboratory studies of uranyl phosphate solids, however, identified possible errors in the characterization of solids in the original solubility experiments. As part of this study, significant deficiencies in the WATEQ4 thermodynamic data base for uranium solutes and solids were corrected. Revisions included recalculation of selected uranium reactions. Additionally, thermodynamic data for the hydroxyl complexes of U(VI), including anionic (VI) species, were evaluated (to the extent permitted by the available data). Vanadium reactions were also added to the thermodynamic data base because uranium-vanadium solids can exist in natural ground-water systems. This study is only a partial validation of the WATEQ4 geochemical model because the available laboratory solubility studies do not cover the range of solid phases, alkaline pH values, and concentrations of inorganic complexing ligands needed to evaluate the potential solubility of uranium in ground waters associated with various proposed nuclear waste repositories. Further validation of this or other geochemical models for uranium will require careful determinations of uraninite solubility over the pH range of 7 to 10 under highly reducing conditions and of uranyl hydroxide and phosphate solubilities over the pH range of 7 to 10 under oxygenated conditions.

  4. National Uranium Resource Evaluation. Bibliographic index of Grand Junction office uranium reports

    SciTech Connect

    Johnson, J.B.

    1981-05-01

    In October 1978, Mesa College entered into subcontract with Bendix Field Engineering Corporation (BFEC) to prepare a bibliographic index of the uranium raw materials reports issued by the Grand Junction Office of the US Department of Energy (DOE). Bendix, prime contractor to the Grand Junction Office, operates the Technical Library at the DOE facility. Since the early 1950s, approximately 2700 reports have been issued by the Grand Junction Office. These reports were the results of uranium investigations conducted by federal agencies and their subcontractors. The majority of the reports cover geology, mineralogy, and metallurgy of uranium and/or thorium. No single, complete list of these reports existed. The purpose of this subcontract was to compile a comprehensive index to these reports. The Mesa College geology faculty worked with the BFEC and DOE staffs to develop the format for the index. Undergraduate geology students from Mesa compiled a master record sheet for each report. All reports issued up to January 1, 1979 were included in the bibliography. The bibliography is in preliminary, unedited form. It is being open-filed at this time, on microfiche, to make the information available to the public on a timely basis. The bibliography is divided into a master record list arranged in alpha-numeric order by report identification number, with separate indices arranged by title, author, state and county, 1/sup 0/ x 2/sup 0/ NTMS quadrangle, key words, and exploration area.

  5. A literature review of interaction of oxidized uranium species and uranium complexes with soluble organic matter

    USGS Publications Warehouse

    Jennings, Joan K.; Leventhal, J.S.

    1978-01-01

    Organic material is commonly found associated with uranium ores in sandstone-type deposits. This review of the literature summarizes the classes and separations of naturally occurring organic material but the emphasis is on soluble organic species. The main class of materials of interest is humic substances which are high-molecular-weight complex molecules that are soluble in alkaline solution. These humic substances are able to solubilize (make soluble) minerals and also to complex [by ion exchange and (or) chelation] many cations. The natural process of soil formation results in both mineral decomposition and element complexing by organic species. Uranium in solution, such as ground water, can form many species with other elements or complexes present depending on Eh and pH. In natural systems (oxidizing Eh, pH 5-9) the uranium is usually present as a complex with hydroxide or carbonate. Thermodynamic data for these species are presented. Interacting metals and organic materials have been observed in nature and studied in the laboratory by many workers in diverse scientific disciplines. The results are not easily compared. Measurements of the degree of complexation are reported as equilibrium stability constant determinations. This type of research has been done for Mn, Fe, Cu, Zn, Pb, Ni, Co, Mg, Ca, Al, and to a limited degree for U. The use of Conditional Stability Constants has given quantitative results in some cases. The methods utilized in experiments and calculations are reviewed.

  6. Speciation of uranium(VI) sorption complexes on montmorillonite

    SciTech Connect

    Chisholm-Brause, C.J.; Morris, D.E.; Richard, R.E.

    1992-05-01

    Environmental contaminant releases that contain uranium are among the most serious problems that must be confronted by restoration programs. To facilitate restoration, information concerning the speciation of uranium is needed. Under oxidizing conditions, dissolved uranium is predominantly in the U(VI) (uranyl) form and is quite mobile in the environment, however sorption onto soils may retard its movement. In this study, we have investigated the effects of changes in solution speciation on the nature of uranyl sorption complexes on montmorillonite, a common soil constituent. Aqueous U(VI) solutions between pH 3 to 7 were batch-equilibrated with montmorillonite for several days; specific pH values were selected such that the solutions consisted of dominantly monomeric, oligomeric, or a mix of monomeric and oligomeric aqueous uranyl species. Emission spectroscopy was used to investigate the nature of U(VI) sorbed to montmorillonite.

  7. Uranium in Hanford Site 300 Area: Extraction Data on Borehole Sediments

    SciTech Connect

    Wang, Guohui; Serne, R. Jeffrey; Lindberg, Michael J.; Um, Wooyong; Bjornstad, Bruce N.; Williams, Benjamin D.; Kutynakov, I. V.; Wang, Zheming; Qafoku, Nikolla

    2012-11-26

    In this study, sediments collected from boreholes drilled in 2010 and 2011 as part of a remedial investigation/feasibility study were characterized. The wells, located within or around two process ponds and one process trench waste site, were characterized in terms of total uranium concentration, mobile fraction of uranium, particle size, and moisture content along the borehole depth. In general, the gravel-dominated sediments of the vadose zone Hanford formation in all investigated boreholes had low moisture contents. Based on total uranium content, a total of 48 vadose zone and periodically rewetted zone sediment samples were selected for more detailed characterization, including measuring the concentration of uranium extracted with 8 M nitric acid, and leached using bicarbonate mixed solutions to determine the liable uranium (U(VI)) contents. In addition, water extraction was conducted on 17 selected sediments. Results from the sediment acid and bicarbonate extractions indicated the total concentrations of anthropogenic labile uranium in the sediments varied among the investigated boreholes. The peak uranium concentration (114.84 µg/g, acid extract) in <2-mm size fractions was found in borehole 399 1-55, which was drilled directly in the southwest corner of the North Process Pond. Lower uranium concentrations (~0.3–2.5 µg/g, acid extract) in <2-mm size fractions were found in boreholes 399-1-57, 399-1-58, and 399-1-59, which were drilled either near the Columbia River or inland and upgradient of any waste process ponds or trenches. A general trend of “total” uranium concentrations was observed that increased as the particle size decreased when relating the sediment particle size and acid extractable uranium concentrations in two selected sediment samples. The labile uranium bicarbonate leaching kinetic experiments on three selected sediments indicated a two-step leaching rate: an initial rapid release, followed by a slow continual release of uranium from the sediment. Based on the uranium leaching kinetic results, quasi equilibrium can be assumed after 1000-h batch reaction time in this study.

  8. Variations in the uranium isotopic compositions of uranium ores from different types of uranium deposits

    NASA Astrophysics Data System (ADS)

    Uvarova, Yulia A.; Kyser, T. Kurt; Geagea, Majdi Lahd; Chipley, Don

    2014-12-01

    Variations in 238U/235U and 234U/238U ratios were measured in uranium minerals from a spectrum of uranium deposit types, as well as diagenetic phosphates in uranium-rich basins and peraluminous rhyolites and associated autunite mineralisation from Macusani Meseta, Peru. Mean ?238U values of uranium minerals relative to NBL CRM 112-A are 0.02‰ for metasomatic deposits, 0.16‰ for intrusive, 0.18‰ for calcrete, 0.18‰ for volcanic, 0.29‰ for quartz-pebble conglomerate, 0.29‰ for sandstone-hosted, 0.44‰ for unconformity-type, and 0.56‰ for vein, with a total range in ?238U values from -0.30‰ to 1.52‰. Uranium mineralisation associated with igneous systems, including low-temperature calcretes that are sourced from U-rich minerals in igneous systems, have low ?238U values of ca. 0.1‰, near those of their igneous sources, whereas uranium minerals in basin-hosted deposits have higher and more variable values. High-grade unconformity-related deposits have ?238U values around 0.2‰, whereas lower grade unconformity-type deposits in the Athabasca, Kombolgie and Otish basins have higher ?238U values. The ?234U values for most samples are around 0‰, in secular equilibrium, but some samples have ?234U values much lower or higher than 0‰ associated with addition or removal of 234U during the past 2.5 Ma. These ?238U and ?234U values suggest that there are at least two different mechanisms responsible for 238U/235U and 234U/238U variations. The 234U/238U disequilibria ratios indicate recent fluid interaction with the uranium minerals and preferential migration of 234U. Fractionation between 235U and 238U is a result of nuclear-field effects with enrichment of 238U in the reduced insoluble species (mostly UO2) and 235U in oxidised mobile species as uranyl ion, UO22+, and its complexes. Therefore, isotopic fractionation effects should be reflected in 238U/235U ratios in uranium ore minerals formed either by reduction of uranium to UO2 or chemical precipitation in the form of U6+ minerals. The ?238U values of uranium ore minerals from a variety of deposits are controlled by the isotopic signature of the uranium source, the efficiency of uranium reduction in the case of UO2 systems, and the degree to which uranium was previously removed from the fluid, with less influence from temperature of ore formation and later alteration of the ore. Uranium isotopes are potentially superb tracers of redox in natural systems.

  9. 31 CFR 540.316 - Uranium enrichment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process...

  10. Uranium Watch REGULATORY CONFUSION: FEDERALAND STATE

    E-print Network

    materials during and following the processing of uranium ores, commonly referred to as uranium mills at the White Mesa Uranium Mill, San Juan County, Utah. 2. The DAQ, a Division of the Utah Department uranium mills and new processing waste impoundments at existing facilities. Subpart W was promulgated

  11. 31 CFR 540.316 - Uranium enrichment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process...

  12. Uranium mill tailings stabilization

    SciTech Connect

    Hartley, J.N.; Koehmstedt, P.L.; Esterl, D.J.; Freeman, H.D.

    1980-02-01

    Uranium mill tailings pose a potential radiation health hazard to the public. Therefore, stabilization or disposal of these tailings in a safe and environmentally sound way is needed to minimize radon exhalation and other environmental hazards. One of the most promising concepts for stabilizing U tailings is the use of asphalt emulsion to contain radon and other hazardous materials within uranium tailings. This approach is being investigated at the Pacific Northwest Laboratory. Results of these studies indicate that a radon flux reduction of greater than 99% can be obtained using either a poured-on/sprayed-on seal (3.0 to 7.0 mm thick) or an admixture seal (2.5 to 12.7 cm thick) containing about 18 wt % residual asphalt. A field test was carried out in June 1979 at the Grand Junction tailings pile in order to demonstrate the sealing process. A reduction in radon flux ranging from 4.5 to greater than 99% (76% average) was achieved using a 15.2-cm (6-in.) admix seal with a sprayed-on top coat. A hydrostatic stabilizer was used to apply the admix. Following compaction, a spray coat seal was applied over the admix as the final step in construction of a radon seal. Overburden was applied to provide a protective soil layer over the seal. Included in part of the overburden was a herbicide to prevent root penetration.

  13. Uranium in river water

    SciTech Connect

    Palmer, M.R. ); Edmond, J.M. )

    1993-10-01

    The concentration of dissolved uranium has been determined in over 250 river waters from the Orinoco, Amazon, and Ganges basins. Uranium concentrations are largely determined by dissolution of limestones, although weathering of black shales represents an important additional source in some basins. In shield terrains the level of dissolved U is transport limited. Data from the Amazon indicate that floodplains do not represent a significant source of U in river waters. In addition, the authors have determined dissolved U levels in forty rivers from around the world and coupled these data with previous measurements to obtain an estimate for the global flux of dissolved U to the oceans. The average concentration of U in river waters is 1.3 nmol/kg, but this value is biased by very high levels observed in the Ganges-Brahmaputra and Yellow rivers. When these river systems are excluded from the budget, the global average falls to 0.78 nmol/kg. The global riverine U flux lies in the range of 3-6 [times] 10[sup 7] mol/yr. The major uncertainty that restricts the accuracy of this estimate (and that of all other dissolved riverine fluxes) is the difficulty in obtaining representative samples from rivers which show large seasonal and annual variations in runoff and dissolved load.

  14. Cyclic membrane separation process

    DOEpatents

    Bowser, John

    2004-04-13

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  15. Cyclic membrane separation process

    DOEpatents

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  16. Process of obtaining uranium and uranium compounds from phosphoric acid

    SciTech Connect

    Beltz, K.; Frankenfeld, K.; Lehmann, R.; Zintl, I.

    1983-05-24

    The invention concerns a method for the liquid/liquid extractio of uranium form phosphoric acid with the aid of alkylamine polyphosphate and/or alkylaine metaphospate compounds, dissolved in organic solvents insoluble in water. The uraniferous phosphoric acid is brought into contact with an organic phase compound of a long-chain alkylamine polyphosphate and/or alkylamine metaphosphate compound ad an organic solvent. The uranium is transferred from the aqueous into the organic phase from the aqueous into the organic phase form which the uranium is re-extracted in the known way.

  17. Process of obtaining uranium and uranium compounds from phosphoric acid

    SciTech Connect

    Beltz, K.; Frankenfeld, K.; Lehmann, R.; Zintl, I.

    1983-05-17

    The invention concerns a method for the liquid/liquid extraction of uranium from pospheric acid with the aid alkylamine polyphosphate and/of alkylamine methaphosphate compounds, dissolved in organic solvents insoluble in water, in the presence of Fe(II) ions. The uraniferous phosphoric acid is brought into contact with an orgainc phase. The organic phase is composed of a long-chain alkylamine polyphosphate and/or alkylamine metaphosphate compound and an organic solvent. The uranium is transferred from the aqueous into the organic phase from which the uranium is reextracted in the known way.

  18. Agriculture in an area impacted by past uranium mining activities

    SciTech Connect

    Carvalho, F. P.; Oliveira, J. M.; Neves, O.; Vicente, E. M.; Abreu, M. M.

    2007-07-01

    The shallow aquifer near the old Cunha Baixa uranium mine (Viseu, Portugal) was contaminated by acid mine drainage. Concentration of radionuclides in water from irrigation wells and in the topsoil layer of the agriculture fields nearby display enhanced concentrations of uranium, radium and polonium. Two types of agriculture land in this area were selected, one with enhanced and another with low uranium concentrations, for controlled growth of lettuce and potatoes. Plants were grown in replicate portions of land (two plots) in each soil type and were periodically irrigated with water from wells. In each soil, one plot was irrigated with water containing low concentration of dissolved uranium and the other plot with water containing enhanced concentration of dissolved uranium. At the end of the growth season, plants were harvested and analysed, along with soil and irrigation water samples. Results show the accumulation of radionuclides in edible parts of plants, specially in the field plots with higher radionuclide concentrations in soil. Radionuclides in irrigation water contributed less to the radioactivity accumulated in plants than radionuclides from soils. (authors)

  19. The End of Cheap Uranium

    E-print Network

    Michael Dittmar

    2011-06-21

    Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

  20. Donor-dependent Extent of Uranium Reduction for Bioremediation of Contaminated Sediment Microcosms

    SciTech Connect

    Palumbo, Anthony Vito; Ravel, Bruce; Phelps, Tommy Joe; Schadt, Christopher Warren; Brandt, Craig C

    2009-01-01

    Bioremediation of uranium was investigated in microcosm experiments containing contaminated sediments from Oak Ridge, Tennessee to explore the importance of electron donor selection for uranium reduction rate and extent. In these experiments, all of the electron donors, including ethanol, glucose, methanol, and methanol with added humic acids, stimulated the reduction and immobilization of aqueous uranium by the indigenous microbial community. Uranium loss from solution began after the completion of nitrate reduction but essentially concurrent with sulfate reduction. When electron donor concentrations were normalized for their equivalent electron donor potential yield, the rates of uranium reduction were nearly equivalent for all treatments (0.55-0.95 {micro}mol L{sup -1} d{sup -1}). Uranium reduction with methanol proceeded after a 15-d longer lag time relative to that of ethanol or glucose. Significant differences were not found with the inclusion of humic acids. The extent of U reduction in sediment slurries measured by XANES at various time periods after the start of the experiment increased in the order of ethanol (5-7% reduced at 77 and 153 d), glucose (49% reduced at 53 d), and methanol (93% reduced at 90 d). The microbial diversity of ethanol- and methanol-amended microcosms in their late stage of U reduction was analyzed with 16S rRNA gene amplification. Members of the Geobacteraceae were found in all microcosms as well as other potential uranium-reducing organisms, such as Clostridium and Desulfosporosinus. The effectiveness of methanol relative to ethanol at reducing aqueous and sediment-hosted uranium suggests that bioremediation strategies that encourage fermentative poising of the subsurface to a lower redox potential may be more effective for long-term uranium immobilization as compared with selecting an electron donor that is efficiently metabolized by known uranium-reducing microorganisms.

  1. Donor-dependent Extent of Uranium Reduction for Bioremediation of Contaminated Sediment Microcosms

    SciTech Connect

    Madden, Andrew S.; Palumbo, Anthony V.; Ravel, Bruce; Vishnivetskaya, Tatiana A.; Phelps, Tommy J.; Schadt, Christopher W.; Brandt, Craig C.

    2009-03-16

    Bioremediation of uranium was investigated in microcosm experiments containing contaminated sediments from Oak Ridge, Tennessee to explore the importance of electron donor selection for uranium reduction rate and extent. In these experiments, all of the electron donors, including ethanol, glucose, methanol, and methanol with added humic acids, stimulated the reduction and immobilization of aqueous uranium by the indigenous microbial community. Uranium loss from solution began after the completion of nitrate reduction but essentially concurrent with sulfate reduction. When electron donor concentrations were normalized for their equivalent electron donor potential yield, the rates of uranium reduction were nearly equivalent for all treatments (0.55-0.95 {micro}mol L{sup -1} d{sup -1}). Uranium reduction with methanol proceeded after a 15-d longer lag time relative to that of ethanol or glucose. Significant differences were not found with the inclusion of humic acids. The extent of U reduction in sediment slurries measured by XANES at various time periods after the start of the experiment increased in the order of ethanol (5-7% reduced at 77 and 153 d), glucose (49% reduced at 53 d), and methanol (93% reduced at 90 d). The microbial diversity of ethanol- and methanol-amended microcosms in their late stage of U reduction was analyzed with 16S rRNA gene amplification. Members of the Geobacteraceae were found in all microcosms as well as other potential uranium-reducing organisms, such as Clostridium and Desulfosporosinus. The effectiveness of methanol relative to ethanol at reducing aqueous and sediment-hosted uranium suggests that bioremediation strategies that encourage fermentative poising of the subsurface to a lower redox potential may be more effective for long-term uranium immobilization as compared with selecting an electron donor that is efficiently metabolized by known uranium-reducing microorganisms.

  2. A Uranium Bioremediation Reactive Transport Benchmark

    SciTech Connect

    Yabusaki, Steven B.; Sengor, Sevinc; Fang, Yilin

    2015-06-01

    A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailings site in Rifle, Colorado, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, microbially-mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introduces acetate and bromide through the upgradient boundary in 14-day and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions, as well as aqueous and surface complexation reactions for UO2++, Fe++, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.

  3. Direct isotope ratio analysis of individual uranium-plutonium mixed particles with various U/Pu ratios by thermal ionization mass spectrometry.

    PubMed

    Suzuki, Daisuke; Esaka, Fumitaka; Miyamoto, Yutaka; Magara, Masaaki

    2015-02-01

    Uranium and plutonium isotope ratios in individual uranium-plutonium (U-Pu) mixed particles with various U/Pu atomic ratios were analyzed without prior chemical separation by thermal ionization mass spectrometry (TIMS). Prior to measurement, micron-sized particles with U/Pu ratios of 1, 5, 10, 18, and 70 were produced from uranium and plutonium certified reference materials. In the TIMS analysis, the peaks of americium, plutonium, and uranium ion signals were successfully separated by continuously increasing the evaporation filament current. Consequently, the uranium and plutonium isotope ratios, except the (238)Pu/(239)Pu ratio, were successfully determined for the particles at all U/Pu ratios. This indicates that TIMS direct analysis allows for the measurement of individual U-Pu mixed particles without prior chemical separation. PMID:25479434

  4. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009

    SciTech Connect

    Chandler, David; Freels, James D; Ilas, Germina; Miller, James Henry; Primm, Trent; Sease, John D; Guida, Tracey; Jolly, Brian C

    2010-02-01

    This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

  5. Magnetic separation for environmental remediation

    SciTech Connect

    Schake, A.R.; Avens, L.R.; Hill, D.D.; Padilla, D.D.; Prenger, F.C.; Romero, D.A.; Worl, L.A.; Tolt, T.L.

    1994-11-01

    High Gradient Magnetic Separation (HGMS) is a form of magnetic separation used to separate solids from other solids, liquids or gases. HGMS uses large magnetic field gradients to separate ferromagnetic and paramagnetic particles from diamagnetic host materials. The technology relies only on physical properties, and therefore separations can be achieved while producing a minimum of secondary waste. Actinide and fission product wastes within the DOE weapons complex pose challenging problems for environmental remediation. Because the majority of actinide complexes and many fission products are paramagnetic, while most host materials are diamagnetic, HGMS can be used to concentrate the contaminants into a low volume waste stream. The authors are currently developing HGMS for applications to soil decontamination, liquid waste treatment, underground storage tank waste treatment, and actinide chemical processing residue concentration. Application of HGMS usually involves passing a slurry of the contaminated mixture through a magnetized volume. Field gradients are produced in the magnetized volume by a ferromagnetic matrix material, such as steel wool, expanded metal, iron shot, or nickel foam. The matrix fibers become trapping sites for ferromagnetic and paramagnetic particles in the host material. The particles with a positive susceptibility are attracted toward an increasing magnetic field gradient and can be extracted from diamagnetic particles, which react in the opposite direction, moving away from the areas of high field gradients. The extracted paramagnetic contaminants are flushed from the matrix fibers when the magnetic field is reduced to zero or when the matrix canister is removed from the magnetic field. Results are discussed for the removal of uranium trioxide from water, PuO{sub 2}, U, and Pu from various soils (Fernald, Nevada Test Site), and the waste water treatment of Pu and Am isotopes using HGMS.

  6. Measurements of /sup 234/U, /sup 238/U and /sup 230/Th in excreta of uranium-mill crushermen

    SciTech Connect

    Fisher, D.R.; Jackson, P.O.; Brodacynski, G.G.; Scherpelz, R.I.

    1982-07-01

    Uranium and thorium levels in excreta of uranium mill crushermen who are routinely exposed to airborne uranium ore dust were measured. The purpose was to determine whether /sup 230/Th was preferentially retained over either /sup 234/U or /sup 238/U in the body. Urine and fecal samples were obtained from fourteen active crushermen with long histories of exposure to uranium ore dust, plus four retired crushermen and three control individuals for comparison. Radiochemical procedures were used to separate out the uranium and thorium fractions, which were then electroplated on stainless steel discs and assayed by alpha spectrometry. Significantly greater activity levels of /sup 234/U and /sup 238/U were measured in both urine and fecal samples obtained from uranium mill crushermen, indicating that uranium in the inhaled ore dust was cleared from the body with a shorter biological half-time than the daughter product /sup 230/Th. The measurements also indicated that uranium and thorium separate in vivo and have distinctly different metabolic pathways and transfer rates in the body. The appropriateness of current ICRP retention and clearance parameters for /sup 230/Th in ore dust is questioned.

  7. Site Characterization Plan: Uranium Stabilization through Polyphosphate Injection

    SciTech Connect

    Vermeul, Vince R.; Fruchter, Jonathan S.; Wellman, Dawn M.; Williams, Bruce A.; Williams, Mark D.

    2006-12-01

    An initial feasibility study of options to treat the uranium plume at the 300-FF-5 Operable Unit considered hydraulic containment, slurry wall containment, and groundwater extraction as potential remedial action technologies. None were selected for interim action, and reduction of contamination levels by natural processes was considered a viable alternative while source removal actions continued. Subsequent planning for a Phase III feasibility study focused on methods that would reduce the concentration of uranium in the aquifer, including multiple methods to immobilize uranium using chemical-based technologies. Based on an initial technology screening, the polyphosphate technology was identified as the best candidate to treat the for further evaluation and selected for treatability testing. The overall objective of the polyphosphate treatability test is to evaluate the efficacy of using polyphosphate injections to treat uranium contaminated groundwater in situ. The objective of the work elements included in this site characterization plan is to collect site-specific characterization data that will be needed to design and implement a field-scale demonstration of the technology.

  8. 300-FF-1 Operable Unit physical separation of soils pilot plant study

    SciTech Connect

    Freeman-Pollard, J.R.

    1994-01-15

    Alternative Remedial Technologies, Inc. (ART) was selected in a competitive selection process to conduct a pilot study for the physical separation of soils in the North Process Pond of the 300 Area at the Hanford Site. In January 1994, ART mobilized its 15 tons-per-hour pilot plant to the site. The plant was initially staged in a commercial area to allow for pretest inspections and minor modifications. The plant was specifically designed for use as a physical separations unit and consisted of a feed hopper, wet screens, hydrocyclones, as well as settling and dewatering equipment. The plant was supported in the field with prescreening equipment, mobile generators, air compressors, and water storage tanks. The plant was moved into the surface contamination area on March 24, 1994. The testing was conducted during the period March 23, 1994 through April 13, 1994. Two soil types were treated during the testing: a natural soil contaminated with low levels of uranium, cesium, cobalt, and heavy metals, and a natural soil contaminated with a uranium carbonate material that was visually recognizable by the presence of a green sludge material in the soil matrix. The ``green`` material contained significantly higher levels of the same contaminants. Both source materials were treated by the plant in a manner that fed the material, produced clean gravel and sand fractions, and concentrated the contaminants in a sludge cake. Process water was recycled during the operations. The testing was extremely successful in that for both source waste streams, it was demonstrated that volume reductions of greater than 90% could be achieved while also meeting the test performance criteria. The volume reduction for the natural soils averaged a 93.8%, while the ``green`` soils showed a 91.4% volume reduction.

  9. Experimental Plan: Uranium Stabilization Through Polyphosphate Injection 300 Area Uranium Plume Treatability Demonstration Project

    SciTech Connect

    Wellman, Dawn M.; Fruchter, Jonathan S.; Vermeul, Vince R.

    2006-09-20

    This Test Plan describes a laboratory-testing program to be performed at Pacific Northwest National Laboratory (PNNL) in support of the 300-FF-5 Feasibility Study (FS). The objective of the proposed treatability test is to evaluate the efficacy of using polyphosphate injections to treat uranium contaminated groundwater in situ. This study will be used to: (1) Develop implementation cost estimates; (2) Identify implementation challenges; and (3) Investigate the technology's ability to meet remedial objectives These activities will be conducted in parallel with a limited field investigation, which is currently underway to more accurately define the vertical extent of uranium in the vadose zone, and in the capillary fringe zone laterally throughout the plume. The treatability test will establish the viability of the method and, along with characterization data from the limited field investigation, will provide the means for determining how best to implement the technology in the field. By conducting the treatability work in parallel with the ongoing Limited Field Investigation, the resulting Feasibility Study (FS) will provide proven, site-specific information for evaluating polyphosphate addition and selecting a suitable remediation strategy for the uranium plume within the FS time frame at an overall cost savings.

  10. Shoulder separation - aftercare

    MedlinePLUS

    Separated shoulder - aftercare; Acromioclavicular joint separation - aftercare; A/C separation - aftercare ... Shoulder separation is not an injury to the main shoulder joint itself. It is an injury to the top ...

  11. Uranium Adsorption on Ion-Exchange Resins - Batch Testing

    SciTech Connect

    Mattigod, Shas V.; Golovich, Elizabeth C.; Wellman, Dawn M.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    The uranium adsorption performance of five resins (Dowex 1, Dowex 21K 16-30 [fresh], Dowex 21K 16-30 [regenerated], Purofine PFA600/4740, and ResinTech SIR-1200) were tested using unspiked, nitrate-spiked, and nitrate-spiked/pH adjusted source water from well 299-W19-36. These batch tests were conducted in support of a resin selection process in which the best resin to use for uranium treatment in the 200-West Area groundwater pump-and-treat system will be identified. The results from these tests are as follows: • The data from the high-nitrate (1331 mg/L) tests indicated that Dowex 1, Dowex 21K 16-30 (fresh), Purofine PFA600/4740, and ResinTech SIR-1200 all adsorbed uranium similarly well with Kd values ranging from ~15,000 to 95,000 ml/g. All four resins would be considered suitable for use in the treatment system based on uranium adsorption characteristics. • Lowering the pH of the high nitrate test conditions from 8.2 to 7.5 did not significantly change the uranium adsorption isotherms for the four tested resins. The Kd values for these four resins under high nitrate (1338 mg/L), lower pH (7.5) ranged from ~15,000 to 80,000 ml/g. • Higher nitrate concentrations greatly reduced the uranium adsorption on all four resins. Tests conducted with unspiked (no amendments; nitrate at 337 mg/L and pH at 8.2) source water yielded Kd values for Dowex 1, Dowex 21K 16-30 (fresh), Purofine PFA600/4740, and ResinTech SIR-1200 resins ranging from ~800,000 to >3,000,000 ml/g. These values are about two orders of magnitude higher than the Kd values noted from tests conducted using amended source water. • Compared to the fresh resin, the regenerated Dowex 21K 16-30 resin exhibited significantly lower uranium-adsorption performance under all test conditions. The calculated Kd values for the regenerated resin were typically an order of magnitude lower than the values calculated for the fresh resin. • Additional testing using laboratory columns is recommended to better resolve differences between the adsorption abilities of the resins and to develop estimates of uranium loading on the resins. By determining the quantity of uranium that each resin can adsorb and the time required to reach various levels of loading, resin lifetime in the treatment system can be estimated.

  12. Method and apparatus for storing hydrogen isotopes. [stored as uranium hydride in a block of copper

    DOEpatents

    McMullen, J.W.; Wheeler, M.G.; Cullingford, H.S.; Sherman, R.H.

    1982-08-10

    An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas is stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forms at a significantly lower temperature).

  13. Uranium chemistry: An actinide milestone

    NASA Astrophysics Data System (ADS)

    Hayton, Trevor W.

    2013-06-01

    A complex featuring a uranium(VI) terminal nitride functional group has been isolated through mild oxidation, and shown to be highly reactive. Under photolysis, it converts into a compound that is capable of C-H bond activation.

  14. Laser induced phosphorescence uranium analysis

    DOEpatents

    Bushaw, B.A.

    1983-06-10

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  15. Laser induced phosphorescence uranium analysis

    DOEpatents

    Bushaw, Bruce A. (Kennewick, WA)

    1986-01-01

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  16. Modified sodium diuranate process for the recovery of uranium from uranium hexafluoride transport cylinder wash solution

    NASA Astrophysics Data System (ADS)

    Meredith, Austin Dean

    Uranium hexafluoride (UF6) containment cylinders must be emptied and washed every five years in order to undergo recertification, according to ANSI standards. During the emptying of the UF6 from the cylinders, a thin residue, or heel, of UF6 is left behind. This heel must be removed in order for recertification to take place. To remove it, the inside of the containment cylinder is washed with acid and the resulting solution generally contains three or four kilograms of uranium. Thus, before the liquid solution can be disposed of, the uranium must be separated. A modified sodium diuranate (SDU) uranium recovery process was studied to support development of a commercial process. This process was sought to ensure complete uranium recovery, at high purity, in order that it might be reused in the nuclear fuel cycle. An experimental procedure was designed and carried out in order to verify the effectiveness of the commercial process in a laboratory setting. The experiments involved a small quantity of dried UO2F2 powder that was dosed with 3wt% FeF3 and was dissolved in water to simulate the cylinder wash solution. Each experiment series started with a measured amount of this powder mixture which was dissolved in enough water to make a solution containing about 120 gmU/liter. The experiments involved validating the modified SDU extraction process. A potassium diuranate (KDU) process was also attempted. Very little information exists regarding such a process, so the task was undertaken to evaluate its efficacy and determine whether a potassium process yields any significant differences or advantages as compared to a sodium process. However, the KDU process ultimately proved ineffective and was abandoned. Each of the experiments was organized into a series of procedures that started with the UO2F2 powder being dissolved in water, and proceeded through the steps needed to first convert the uranium to a diuranate precipitate, then to a carbonate complex solution, and finally to a uranyl peroxide (UO4) precipitate product. Evaluation of operating technique, uranium recovery efficiency, and final product purity were part of each experiment. Evaluation of a technique for removing fluoride from the diuranate precipitation byproduct filtrate using granular calcite was also included at the end of the uranium recovery testing. It was observed that precipitation of sodium diuranate (SDU) was very nearly complete at a pH of 11-12, using room temperature conditions. Uranium residuals in the filtrate ranged from 3.6 - 19.6 ppm, meaning almost complete precipitation as SDU. It was postulated and then verified that a tailing reaction occurs in the SDU precipitation, which necessitates a digestion period of about 2 hours to complete the precipitation. Further, it was shown, during this phase of the process, that a partial precipitation step at pH 5.5 did not adequately separate iron contamination due to an overlap of uranium and iron precipitations at that condition. Carbonate extraction of the SDU required an extended (3-4 hours) digestion at 40°C and pH 7-8 to complete, with sodium bicarbonate found to be the preferred extractant. The carbonate extraction was also proven to successfully separate the iron contamination from the uranium. Potassium-based chemistry did produce a potassium diuranate (KDU) analogue of SDU, but the subsequent carbonate extraction using either potassium bicarbonate or potassium carbonate proved to be too difficult and was incomplete. The potassium testing was terminated at this step. The uranyl peroxide precipitation was found to operate best at pH 3.5 - 4.0, at room temperature, and required an expected, extended digestion period of 8 -10 hours. The reaction was nearly complete at those conditions, with a filtrate residual ranging from 2.4 to 36.8 ppmU. The uranyl peroxide itself was very pure, with impurity averages at a very low 0.8 ppmNa and 0.004 ppmFe. ASTM maximum levels are 20 ppmNa and 150 ppmFe. Fluoride removal from the SDU precipitation filtrate required multiple passes of the solution through a calcite

  17. Phosphazene membranes for gas separations

    DOEpatents

    Stewart, Frederick F.; Harrup, Mason K.; Orme, Christopher J.; Luther, Thomas A.

    2006-07-11

    A polyphosphazene having a glass transition temperature ("T.sub.g") of approximately -20.degree. C. or less. The polyphosphazene has at least one pendant group attached to a backbone of the polyphosphazene, wherein the pendant group has no halogen atoms. In addition, no aromatic groups are attached to an oxygen atom that is bound to a phosphorus atom of the backbone. The polyphosphazene may have a T.sub.g ranging from approximately -100.degree. C. to approximately -20.degree. C. The polyphosphazene may be selected from the group consisting of poly[bis-3-phenyl-1-propoxy)phosphazene], poly[bis-(2-phenyl-1-ethoxy)phosphazene], poly[bis-(dodecanoxypolyethoxy)-phosphazene], and poly[bis-(2-(2-(2-.omega.-undecylenyloxyethoxy)ethoxy)ethoxy)phosphazene]- . The polyphosphazene may be used in a separation membrane to selectively separate individual gases from a gas mixture, such as to separate polar gases from nonpolar gases in the gas mixture.

  18. Segregation of Uranium Metal from K Basin Sludge: Results from Vendor Testing

    SciTech Connect

    Schmidt, Andrew J.; Elmore, Monte R.; Delegard, Calvin H.

    2004-09-21

    Under contract to Fluor Hanford, Pacific Northwest National Laboratory directed laboratory, bench-scale, and pilot-scale vendor testing to evaluate the use of commercial gravity mineral concentration technology to remove and concentrate uranium metal from Hanford K Basin sludge. Uranium metal in the sludge corrodes by reacting with water to generate heat and hydrogen gas, and may constrain shipment and disposal of the sludge to the Waste Isolation Pilot Plant as remote-handled transuranic waste. Separating uranium metal from the K Basin sludge is expected to be similar to some gold recovery operations. Consequently, the capabilities of commercial gravity mineral concentration technologies were assessed for their applicability to K Basin sludge streams. Overall, the vendor testing demonstrated the technical feasibility of using gravity concentration equipment to separate the K Basin sludge into a high-volume uranium metal-depleted stream and a low-volume uranium metal-rich stream. I n test systems, more than 96% of the uranium metal surrogate was concentrated into 10 to 30% of the sludge mass (7 to 24% of the sludge volume). With more prototypical equipment and stream recycle, higher recoveries may be achieved.

  19. Uranium favourability study in Nigeria

    NASA Astrophysics Data System (ADS)

    Oshin, I. O.; Rahaman, M. A.

    Geological considerations indicate that four types of uranium deposits, three from within the crystalline rocks and the fourth from the sedimentary formations, can be explored for in Nigeria. The Precambrian Basement Complex underwent crustal reactivation in Pan-African times (600 ± 150 Ma) during which migmatites and rocks of the Older Granite suite were emplaced. The occurrences of these rocks in northeastern, north-central and central Nigeria are possible hosts for the granitic type of uranium deposit. Vein-type uranium deposits are often localized in areas of the Basement Complex which have undergone intense brittle deformation. The high-level, anorogenic, peralkaline Younger Granites of Nigeria of Carboniferous to Cretaceous age have geochemical characteristics which are similar to those of the host rocks of non-orogenic type uranium deposit in alkali complexes such as the Bokan mountains of Alaska. The sandstone type of uranium deposit may be found in the Cretaceous-Recent continental sandstone formations in the Sokoto, Niger, Chad and Benue Basins of Nigeria and in the sediments overlying the Oban Massif in Cross Rivers State. Geologically similar sandstone occurrences elsewhere in the world (Gabon, Niger and Colorado, U.S.A.) are known to harbour important uranium mineralization.

  20. Numerical Analysis of a Subsurface Uranium Pollution Problem

    NASA Astrophysics Data System (ADS)

    van Genuchten, M.; Pontedeiro, E.; Batalha, M.; Bezerra, C. R.; Su, J.

    2012-12-01

    An experimental and numerical analysis is provided of the subsurface transport of a uranium contaminant plume released from a uranium mining site in Brazil. Data from several monitoring wells suggest significant preferential transport through both a 5-m thick vadose zone below uranium holding ponds at the site, and into and through granular and fissured aquifers below and downgradient from the site. The data were analyzed in terms of a dual-porosity numerical model for variably-saturated water flow and contaminant transport. The flow formulation was still based on the standard Richards equation, but using composite unsaturated hydraulic conductivity functions to account for the separate effects of the fracture and matrix domains, while uranium transport was simulated using a full dual-porosity formulation. Special focus was on the mass transfer coefficient governing solute exchange between the fracture and matrix regions. An important parameter for systems with strong sorption (large retardation factors) is also the relative amount of sorption taking place in the matrix domain away from the main flow paths. Our presentation serves to honor the tremendous contributions over the years by Paul Witherspoon to hydrogeology and related earth sciences, particularly in the area of nuclear waste disposal.

  1. SULFUR HEXAFLUORIDE TREATMENT OF USED NUCLEAR FUEL TO ENHANCE SEPARATIONS

    SciTech Connect

    Gray, J.; Torres, R.; Korinko, P.; Martinez-Rodriguez, M.; Becnel, J.; Garcia-Diaz, B.; Adams, T.

    2012-09-25

    Reactive Gas Recycling (RGR) technology development has been initiated at Savannah River National Laboratory (SRNL), with a stretch-goal to develop a fully dry recycling technology for Used Nuclear Fuel (UNF). This approach is attractive due to the potential of targeted gas-phase treatment steps to reduce footprint and secondary waste volumes associated with separations relying primarily on traditional technologies, so long as the fluorinators employed in the reaction are recycled for use in the reactors or are optimized for conversion of fluorinator reactant. The developed fluorination via SF{sub 6}, similar to the case for other fluorinators such as NF{sub 3}, can be used to address multiple fuel forms and downstream cycles including continued processing for LWR via fluorination or incorporation into a aqueous process (e.g. modified FLUOREX) or for subsequent pyro treatment to be used in advanced gas reactor designs such metal- or gas-cooled reactors. This report details the most recent experimental results on the reaction of SF{sub 6} with various fission product surrogate materials in the form of oxides and metals, including uranium oxides using a high-temperature DTA apparatus capable of temperatures in excess of 1000{deg}C . The experimental results indicate that the majority of the fission products form stable solid fluorides and sulfides, while a subset of the fission products form volatile fluorides such as molybdenum fluoride and niobium fluoride, as predicted thermodynamically. Additional kinetic analysis has been performed on additional fission products. A key result is the verification that SF{sub 6} requires high temperatures for direct fluorination and subsequent volatilization of uranium oxides to UF{sub 6}, and thus is well positioned as a head-end treatment for other separations technologies, such as the volatilization of uranium oxide by NF{sub 3} as reported by colleagues at PNNL, advanced pyrochemical separations or traditional full recycle approaches. Based on current results of the research at SRNL on SF{sub 6} fluoride volatility for UNF separations, SF{sub 6} treatment renders all anticipated volatile fluorides studied to be volatile, and all non-volatile fluorides studied to be non-volatile, with the notable exception of uranium oxides. This offers an excellent opportunity to use this as a head-end separations treatment process because: 1. SF{sub 6} can be used to remove volatile fluorides from a UNF matrix while leaving behind uranium oxides. Therefore an agent such as NF{sub 3} should be able to very cleanly separate a pure UF{sub 6} stream, leaving compounds in the bottoms such as PuF{sub 4}, SrF{sub 2} and CsF after the UNF matrix has been pre-treated with SF{sub 6}. 2. Due to the fact that the uranium oxide is not separated in the volatilization step upon direct contact with SF{sub 6} at moderately high temperatures (? 1000{deg}C), this fluoride approach may be wellsuited for head-end processing for Gen IV reactor designs where the LWR is treated as a fuel stock, and it is not desired to separate the uranium from plutonium, but it is desired to separate many of the volatile fission products. 3. It is likely that removal of the volatile fission products from the uranium oxide should simplify both traditional and next generation pyroprocessing techniques. 4. SF{sub 6} treatment to remove volatile fission products, with or without treatment with additional fluorinators, could be used to simplify the separations of traditional aqueous processes in similar fashion to the FLUOREX process. Further research should be conducted to determine the separations efficiency of a combined SF{sub 6}/NF{sub 3} separations approach which could be used as a stand-alone separations technology or a head-end process.

  2. 31 CFR 540.318 - Uranium Hexafluoride (UF6).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium hexafluoride or UF6 means a compound of uranium and...

  3. 31 CFR 540.318 - Uranium Hexafluoride (UF6).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium hexafluoride or UF6 means a compound of uranium and...

  4. 31 CFR 540.318 - Uranium Hexafluoride (UF6).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium hexafluoride or UF6 means a compound of uranium and...

  5. 31 CFR 540.318 - Uranium Hexafluoride (UF6).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium hexafluoride or UF6 means a compound of uranium and...

  6. 31 CFR 540.318 - Uranium Hexafluoride (UF6).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium hexafluoride or UF6 means a compound of uranium and...

  7. 10 CFR Appendix G to Part 110 - Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Plasma Separation Enrichment Plant... Appendix G to Part 110—Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export Licensing Authority Note—In the plasma separation process, a plasma of uranium...

  8. 10 CFR Appendix G to Part 110 - Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Plasma Separation Enrichment Plant... Appendix G to Part 110—Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export Licensing Authority Note—In the plasma separation process, a plasma of uranium...

  9. 10 CFR Appendix G to Part 110 - Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Plasma Separation Enrichment Plant... Appendix G to Part 110—Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export Licensing Authority Note—In the plasma separation process, a plasma of uranium...

  10. 10 CFR Appendix G to Part 110 - Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Plasma Separation Enrichment Plant... Appendix G to Part 110—Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export Licensing Authority Note—In the plasma separation process, a plasma of uranium...

  11. 10 CFR Appendix G to Part 110 - Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Plasma Separation Enrichment Plant... Appendix G to Part 110—Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export Licensing Authority Note: In the plasma separation process, a plasma of uranium...

  12. Preserving Ultra-Pure Uranium-233

    SciTech Connect

    Krichinsky, Alan M; Goldberg, Dr. Steven A.; Hutcheon, Dr. Ian D.

    2011-10-01

    Uranium-233 ({sup 233}U) is a synthetic isotope of uranium formed under reactor conditions during neutron capture by natural thorium ({sup 232}Th). At high purities, this synthetic isotope serves as a crucial reference material for accurately quantifying and characterizing uranium-bearing materials assays and isotopic distributions for domestic and international nuclear safeguards. Separated, high purity {sup 233}U is stored in vaults at Oak Ridge National Laboratory (ORNL). These materials represent a broad spectrum of {sup 233}U from the standpoint of isotopic purity - the purest being crucial for precise analyses in safeguarding uranium. All {sup 233}U at ORNL is currently scheduled to be disposed of by down-blending with depleted uranium beginning in 2015. This will reduce safety concerns and security costs associated with storage. Down-blending this material will permanently destroy its potential value as a certified reference material for use in uranium analyses. Furthermore, no credible options exist for replacing {sup 233}U due to the lack of operating production capability and the high cost of restarting currently shut down capabilities. A study was commissioned to determine the need for preserving high-purity {sup 233}U. This study looked at the current supply and the historical and continuing domestic need for this crucial isotope. It examined the gap in supplies and uses to meet domestic needs and extrapolated them in the context of international safeguards and security activities - superimposed on the recognition that existing supplies are being depleted while candidate replacement material is being prepared for disposal. This study found that the total worldwide need by this projection is at least 850 g of certified {sup 233}U reference material over the next 50 years. This amount also includes a strategic reserve. To meet this need, 18 individual items totaling 959 g of {sup 233}U were identified as candidates for establishing a lasting supply of certified reference materials (CRM), all having an isotopic purity of at least 99.4% {sup 233}U and including materials up to 99.996% purity. Current plans include rescuing the purest {sup 233}U materials during a 3-year project beginning in FY 2012 in three phases involving preparations, handling preserved materials, and cleanup. The first year will involve preparations for handling the rescued material for sampling, analysis, distribution, and storage. Such preparations involve modifying or developing work control documents and physical preparations in the laboratory, which include preparing space for new material-handling equipment and procuring and (in some cases) refurbishing equipment needed for handling {sup 233}U or qualifying candidate CRM. Once preparations are complete, an evaluation of readiness will be conducted by independent reviewers to verify that the equipment, work controls, and personnel are ready for operations involving handling radioactive materials with nuclear criticality safety as well as radiological control requirements. The material-handling phase will begin in FY 2013 and be completed early in FY 2014, as currently scheduled. Material handling involves retrieving candidate CRM items from the ORNL storage facility and shipping them to another laboratory at ORNL; receiving and handling rescued items at the laboratory (including any needed initial processing, acquisition and analysis of samples from each item, and preparation for shipment); and shipping bulk material to destination labs or to a yet-to-be-designated storage location. There are seven groups of {sup 233}U identified for handling based on isotopic purity that require the utmost care to prevent cross-contamination. The last phase, cleanup, also will be completed in 2014. It involves cleaning and removing the equipment and material-handling boxes and characterizing, documenting, and disposing of waste. As part of initial planning, the cost of rescuing candidate {sup 233}U items was estimated roughly. The annualized costs were found to be $1,228K in FY 2012, $1,375K in FY 2013,

  13. Russian Experience in the Regulatory Supervision of the Uranium Legacy Sites - 12441

    SciTech Connect

    Kiselev, M.F.; Romanov, V.V.; Shandala, N.K.; Titov, A.V.; Kiselev, S.M.; Seregin, V.A.; Metlyaev, E.G.; Novikova, N.; Khokhlova, E.A.

    2012-07-01

    Management of the uranium legacy is accompanied with environmental impact intensity of which depends on the amount of the waste generated, the extent of that waste localization and environmental spreading. The question is: how hazardous is such impact on the environment and human health? The criterion for safety assurance is adequate regulation of the uranium legacy. Since the establishment of the uranium industry, the well done regulatory system operates in the FMBA of Russia. Such system covers inter alia, the uranium legacy. This system includes the extent laboratory network of independent control and supervision, scientific researches, regulative practices. The current Russian normative and legal basis of the regulation and its application practice has a number of problems relating to the uranium legacy, connected firstly with the environmental remediation. To improve the regulatory system, the urgent tasks are: -To introduce the existing exposure situation into the national laws and standards in compliance with the ICRP system. - To develop criteria for site remediation and return, by stages, to uncontrolled uses. The similar criteria have been developed within the Russian-Norwegian cooperation for the purpose of remediation of the sites for temporary storage of SNF and RW. - To consider possibilities and methods of optimization for the remediation strategies under development. - To separate the special category - RW resulted from uranium ore mining and dressing. The current Russian RW classification is based on the waste subdivision in terms of the specific activities. Having in mind the new RW-specific law, we receive the opportunity to separate some special category - RW originated from the uranium mining and milling. Introduction of such category can simplify significantly the situation with management of waste of uranium mining and milling processes. Such approach is implemented in many countries and approved by IAEA. The category of 'RW originated from uranium mining and milling' is to be introduced as the legal acts and regulatory documents. The recent ICRP recommendations provide the flexible approaches for solving of such tasks. The FMBA of Russia recognizes the problems of radiation safety assurance related to the legacy of the former USSR in the uranium mining industry. Some part of the regulatory problems assumes to be solved within the EurAsEC inter-state target program 'Reclamation of the territories of the EurAsEC member states affected by the uranium mining and milling facilities'. Using the example of the uranium legacy sites in Kyrgyz and Tajikistan which could result in the tran-boundary disasters and require urgent reclamation, the experience will be gained to be used in other states as well. Harmonization of the national legislations and regulative documents on radiation safety assurance is envisaged. (authors)

  14. Volumetric determination of uranium titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, J.S.; Skinner, D.L.; Rader, L.F., Jr.

    1957-01-01

    Need for a more rapid volumetric method for the routine determination of uranium in uranium-rich materials has led to the development of a method that uses titanous sulfate as a reductant before oxidimetric titration. Separation of the hydrogen sulfide group is not necessary. Interfering elements precipitated by cupferron are removed by automatic filtrations made simultaneously rather than by the longer chloroform extraction method. Uranium is reduced from VI to IV by addition of an excess of titanous sulfate solution, cupric ion serving as an indicator by forming red metallic copper when reduction is complete. The copper is reoxidized by addition of mercuric perchlorate. The reduced uranium is then determined by addition of excess ferric sulfate and titration with ceric sulfate. The method has proved to be rapid, accurate, and economical.

  15. Microbial accumulation of uranium, radium, and cesium

    SciTech Connect

    Strandberg, G.W.; Shumate, S.E. II; Parrott, J.R. Jr.; North, S.E.

    1981-05-01

    Diverse microbial species varied considerably in their ability to accumulate uranium, cesium, and radium. Mechanistic differences in uranium uptake by Saccharomyces cerevisiae and Pseudomonas aeruginosa were indicated. S. serevisiae exhibited a slow (hours) surface accumulation of uranium which was subject to environmental factors, while P. aeruginosa accumulated uranium rapidly (minutes) as dense intracellular deposits and did not appear to be affected by environmental parameters. Metabolism was not required for uranium uptake by either organism. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several species tested.

  16. Operating and life-cycle costs for uranium-contaminated soil treatment technologies

    SciTech Connect

    Douthat, D.M.; Armstrong, A.Q.; Stewart, R.N.

    1995-09-01

    The development of a nuclear industry in the US required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the US Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To avoid disposal of these soils in low-level radioactive waste burial sites, increasing emphasis has been placed on the remediating soils contaminated with uranium and other radionuclides. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the DOE Office of Technology Development (OTD) evaluates and compares the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium-contaminated soils. Each technology must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives.

  17. Fixed capital investments for the uranium soils integrated demonstration soil treatment technologies

    SciTech Connect

    Douthat, D.M.; Armstrong, A.Q.; Stewart, R.N.

    1995-05-01

    The development of a nuclear industry in the United States required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the United States Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the Uranium Soils Integrated Demonstration (USID) Program was formed to evaluate and compare the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium contaminated soils. The USID Program has five major tasks in developing and demonstrating these technologies. Each must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies developed by the USID Program. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives.

  18. Accelerated aging tests of liners for uranium mill tailings disposal

    SciTech Connect

    Barnes, S.M.; Buelt, J.L.; Hale, V.Q.

    1981-11-01

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing.

  19. Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications 

    E-print Network

    Helmreich, Grant

    2012-02-14

    /dehydriding process. The size distribution and morphology of the uranium powder produced by this method were determined by digital optical microscopy. Once the characteristics of the source uranium powder were known, uranium and uranium-zirconium pellets were pressed...

  20. Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 3, Groundwater hydrology report

    SciTech Connect

    Not Available

    1993-07-01

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites (EPA, 1987). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 Public Law (PL) 95-604 (PL 95-604), the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that for Slick Rock, this assessment shall include hydrogeologic site characterization for two separate uranium processing sites, the Union Carbide (UC) site and the North Continent (NC) site, and for the proposed Burro Canyon disposal site.

  1. Analysis of IAEA Environmental Samples for Plutonium and Uranium by ICP/MS in Support Of International Safeguards

    SciTech Connect

    Farmer, Orville T.; Olsen, Khris B.; Thomas, May-Lin P.; Garofoli, Stephanie J.

    2008-05-01

    A method for the separation and determination of total and isotopic uranium and plutonium by ICP-MS was developed for IAEA samples on cellulose-based media. Preparation of the IAEA samples involved a series of redox chemistries and separations using TRU® resin (Eichrom). The sample introduction system, an APEX nebulizer (Elemental Scientific, Inc), provided enhanced nebulization for a several-fold increase in sensitivity and reduction in background. Application of mass bias (ALPHA) correction factors greatly improved the precision of the data. By combining the enhancements of chemical separation, instrumentation and data processing, detection levels for uranium and plutonium approached high attogram levels.

  2. Study of the oxidation state of arsenic and uranium in individual particles from uranium mine tailings, Hungary

    SciTech Connect

    Alsecz, A.; Osan, J.; Palfalvi, J.; Torok, Sz.; Sajo, I.; Mathe, Z.; Simon, R.; Falkenberg, G.

    2007-07-01

    Uranium ore mining and milling have been terminated in the Mecsek Mountains (southwest Hungary) in 1997. Mine tailings ponds are located between two important water bases, which are resources of the drinking water of the city of Pecs and the neighbouring villages. The average U concentration of the tailings material is 71.73 {mu}g/g, but it is inhomogeneous. Some microscopic particles contain orders of magnitude more U than the rest of the tailings material. Other potentially toxic elements are As and Pb of which chemical state is important to estimate mobility, because in mobile form they can risk the water basis and the public health. Individual U-rich particles were selected with solid state nuclear track detector (SSNTD) and after localisation the particles were investigated by synchrotron radiation based microanalytical techniques. The distribution of elements over the particles was studied by micro beam X-ray fluorescence ({mu}-XRF) and the oxidation state of uranium and arsenic was determined by micro X-ray absorption near edge structure ({mu}-XANES) spectroscopy. Some of the measured U-rich particles were chosen for studying the heterogeneity with {mu}-XRF tomography. Arsenic was present mainly in As(V) and uranium in U(VI) form in the original uranium ore particles, but in the mine tailings samples uranium was present mainly in the less mobile U(IV) form. Correlation was found between the oxidation state of As and U in the same analyzed particles. These results suggest that dissolution of uranium is not expected in short term period. (authors)

  3. The end of cheap uranium.

    PubMed

    Dittmar, Michael

    2013-09-01

    Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10±2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58±4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54±5 ktons by 2025 and, with the decline steepening, to at most 41±5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse. PMID:23683936

  4. Dynamic chromatographic systems for the determination of rare earths and thorium in samples from uranium ore refining processes

    SciTech Connect

    Barkley, D.J.; Blanchette, M.; Cassidy, R.M.; Elchuk, S.

    1986-09-01

    Dynamic ion exchange has been used for the rapid separation (16 min) and determination of rare earths and Y in samples from hydrometallurgical processes used to recover, U, Th, Y, and the rare earths from uranium ore. Optimization of the effective capacity of the dynamic ion exchanger and the selectivity of postcolumn reaction detection permitted analysis down to 0.1 ..mu..g-mL/sup -1/ of the rare earths and yttrium in the presence of U, Th, and a number of other metal ions. A comparison with X-ray fluorescence results showed good agreement, and the chromatographic procedure offered considerable savings in analysis time. Studies with Th(IV) and U(VI) showed that both metal ions exhibited selective sorption of their ..cap alpha..-hydroxyisobutyric complexes, formed in situ in the eluent, onto reversed phases. The analytical results obtained showed that this dynamic separation process could be used for the determination of Th, and its potential for the determination of U was demonstrated.

  5. Ferrofluid separator for nonferrous scrap separation

    NASA Technical Reports Server (NTRS)

    Kaiser, R.; Mir, L.

    1974-01-01

    Behavior of nonmagnetic objects within separator is essentially function of density, and independent of size or shape of objects. Results show close agreement between density of object and apparent density of ferrofluid required to float it. Results also demonstrate that very high separation rates are achievable by ferrofluid sink-float separation.

  6. Atomistic properties of ? uranium.

    PubMed

    Beeler, Benjamin; Deo, Chaitanya; Baskes, Michael; Okuniewski, Maria

    2012-02-22

    The properties of the body-centered cubic ? phase of uranium (U) are calculated using atomistic simulations. First, a modified embedded-atom method interatomic potential is developed for the high temperature body-centered cubic (?) phase of U. This phase is stable only at high temperatures and is thus relatively inaccessible to first principles calculations and room temperature experiments. Using this potential, equilibrium volume and elastic constants are calculated at 0 K and found to be in close agreement with previous first principles calculations. Further, the melting point, heat capacity, enthalpy of fusion, thermal expansion and volume change upon melting are calculated and found to be in reasonable agreement with experiment. The low temperature mechanical instability of ? U is correctly predicted and investigated as a function of pressure. The mechanical instability is suppressed at pressures greater than 17.2 GPa. The vacancy formation energy is analyzed as a function of pressure and shows a linear trend, allowing for the calculation of the extrapolated zero pressure vacancy formation energy. Finally, the self-defect formation energy is analyzed as a function of temperature. This is the first atomistic calculation of ? U properties above 0 K with interatomic potentials. PMID:22293061

  7. Method of diffusive gradients in thin films (DGT) compared with other soil testing methods to predict uranium phytoavailability.

    PubMed

    Vandenhove, H; Antunes, K; Wannijn, J; Duquène, L; Van Hees, M

    2007-02-15

    The measurement of diffusive gradients in thin films (DGT) has been proposed as a surrogate for metal uptake by plants. A small-scale experiment was performed to test the predictive capacity of the DGT method with respect to uranium availability and uptake by ryegrass. Correlation analyses were performed to compare the results obtained with the DGT device with more conventional bioavailability indices - concentration of uranium in pore water or in selective extracts. Six soils with different uranium contamination history and with distinct soil characteristics were used for the availability tests and the uptake experiment. The four uranium bioavailability indices screened were highly correlated, indicating that at least partially comparable uranium pools were assessed. The uranium concentration in the pore water was a better predictor for uranium uptake by ryegrass than amounts of uranium recovered following extraction with 0.11 M CH3COOH or 0.4 M MgCl2, the fractions considered exchangeable according to, respectively, the BCR or NIST standardized sequential extraction methods. The DGT measured concentration, C(DGT), was also highly correlated with plant uptake but the significance level was sensitive to the value of the diffusion coefficient (pH depend or not) used to calculate C(DGT). From the results obtained it could not be concluded that the DGT method would have an additional value in assessing uranium bioavailability. PMID:17241652

  8. Drinking Water with Uranium below the U.S. EPA Water Standard Causes Estrogen Receptor–Dependent Responses in Female Mice

    PubMed Central

    Raymond-Whish, Stefanie; Mayer, Loretta P.; O’Neal, Tamara; Martinez, Alisyn; Sellers, Marilee A.; Christian, Patricia J.; Marion, Samuel L.; Begay, Carlyle; Propper, Catherine R.; Hoyer, Patricia B.; Dyer, Cheryl A.

    2007-01-01

    Background The deleterious impact of uranium on human health has been linked to its radioactive and heavy metal–chemical properties. Decades of research has defined the causal relationship between uranium mining/milling and onset of kidney and respiratory diseases 25 years later. Objective We investigated the hypothesis that uranium, similar to other heavy metals such as cadmium, acts like estrogen. Methods In several experiments, we exposed intact, ovariectomized, or pregnant mice to depleted uranium in drinking water [ranging from 0.5 ?g/L (0.001 ?M) to 28 mg/L (120 ?M). Results Mice that drank uranium-containing water exhibited estrogenic responses including selective reduction of primary follicles, increased uterine weight, greater uterine luminal epithelial cell height, accelerated vaginal opening, and persistent presence of cornified vaginal cells. Coincident treatment with the antiestrogen ICI 182,780 blocked these responses to uranium or the synthetic estrogen diethylstilbestrol. In addition, mouse dams that drank uranium-containing water delivered grossly normal pups, but they had significantly fewer primordial follicles than pups whose dams drank control tap water. Conclusions Because of the decades of uranium mining/milling in the Colorado plateau in the Four Corners region of the American Southwest, the uranium concentration and the route of exposure used in these studies are environmentally relevant. Our data support the conclusion that uranium is an endocrine-disrupting chemical and populations exposed to environmental uranium should be followed for increased risk of fertility problems and reproductive cancers. PMID:18087588

  9. Uranium geochemistry in soil and groundwater at the F and H seepage basins

    SciTech Connect

    Serkiz, S.M.; Johnson, W.H.

    1994-09-01

    For 33 years, low activity liquid wastes from the chemical separation areas at the U.S. Department of Energy`s Savannah River Site were disposed of in unlined seepage basins. Soil and associated pore water samples of widely varying groundwater chemistries and contaminant concentrations were collected from the region downgradient of these basins using cone penetrometer technology. Analysis of samples using inductively coupled plasma - mass spectrometry has allowed the investigation of uranium partitioning between the aqueous phase and soil surfaces at this site. The distribution of uranium was examined with respect to the solution and soil chemistry (e.g., pH, redox potential, cation and contaminant concentration) and aqueous-phase chemical speciation modeling. The uranium soil source term at the F- and H-Area Seepage Basins (FHSB) is much smaller than has been used in previous modeling efforts. This should result in a much shorter remediation time and a greater effectiveness of a pump-and-treat design than previously predicted. Distribution coefficients at the (FHSB) were found to vary between 1.2 to 34,000 1 kg{sup {minus}1} for uranium. Differences in sorption of these elements can be explained primarily by changes in aqueous pH and the associated change in soil surface charge. Sorption models were fit directly to sorption isotherms from field samples. All models underestimated the fraction of uranium bound at low aqueous uranium concentrations. Linear models overestimated bound uranium at locations where the aqueous concentration was greater than 500 ppb. Mechanistic models provided a much better estimate of the bound uranium concentrations, especially at high aqueous concentrations. Since a large fraction of the uranium at the site is associated with the low-pH portion of the plume, consideration should be given to pumping water from the lowest pH portions of the plume in the F-Area.

  10. 40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities....

  11. 40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities....

  12. POTENTIAL TOXICITY OF URANIUM IN WATER

    EPA Science Inventory

    The nephrotoxic responses of mammalian species, including humans, to injected, inhaled, ingested, and topically applied uranium compounds have been thoroughly investigated. Because there appears to be on unequivocal reports of uranium-induced radiation effects in humans, it is ne...

  13. Inherently safe in situ uranium recovery

    DOEpatents

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  14. 31 CFR 540.316 - Uranium enrichment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of increasing the concentration of the isotope U235 relative to that of the isotope...

  15. 31 CFR 540.316 - Uranium enrichment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of increasing the concentration of the isotope U235 relative to that of the isotope...

  16. 31 CFR 540.316 - Uranium enrichment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of increasing the concentration of the isotope U235 relative to that of the isotope...

  17. 31 CFR 540.316 - Uranium enrichment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of increasing the concentration of the isotope U235 relative to that of the isotope...

  18. 31 CFR 540.316 - Uranium enrichment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of increasing the concentration of the isotope U235 relative to that of the isotope...

  19. The End of Cheap Uranium

    E-print Network

    Dittmar, Michael

    2011-01-01

    Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a world...

  20. [Determination of uranium in spinach].

    PubMed

    Kishi, Eri; Yutani, Aiko; Ozaki, Asako; Shinya, Masanao; Katahira, Kenshi; Ooshima, Tomoko; Shimizu, Mitsuru

    2013-01-01

    After the severe accident at the Fukushima-1 Nuclear Power Plant in March 2011, radioactive contamination of food has become a matter of serious concern in Japan. There is considerable information about radioactive iodine and cesium, but little is known about uranium contamination. We determined uranium content in spinach by the Japanese official method (Manual on Radiation Measurement of Food in Emergency Situations). In the preliminary study, we confirmed that the use of a microwave digestion system for preparing the test solution of spinach could shorten the testing time and give acceptable results. The manual recommends the use of two elements (Tl and Bi) as internal standards for measurement of uranium by ICP-MS. We found that Tl was more suitable than Bi to quantify trace amounts of uranium in spinach. However, it was necessary to determine Tl or Bi concentrations in the sample before analysis, since some samples of spinach contained significant amounts of these elements. The uranium contents of 9 spinach samples bought in April and May 2011 were less than 10 ?g/kg, which are very low compared to the provisional regulatory limit in Japan. PMID:23676689