Sample records for self-tuning pid controller

  1. Comparative study of a learning fuzzy PID controller and a self-tuning controller.

    PubMed

    Kazemian, H B

    2001-01-01

    The self-organising fuzzy controller is an extension of the rule-based fuzzy controller with an additional learning capability. The self-organising fuzzy (SOF) is used as a master controller to readjust conventional PID gains at the actuator level during the system operation, copying the experience of a human operator. The application of the self-organising fuzzy PID (SOF-PID) controller to a 2-link non-linear revolute-joint robot-arm is studied using path tracking trajectories at the setpoint. For the purpose of comparison, the same experiments are repeated by using the self-tuning controller subject to the same data supplied at the setpoint. For the path tracking experiments, the output trajectories of the SOF-PID controller followed the specified path closer and smoother than the self-tuning controller.

  2. Inverse optimal self-tuning PID control design for an autonomous underwater vehicle

    NASA Astrophysics Data System (ADS)

    Rout, Raja; Subudhi, Bidyadhar

    2017-01-01

    This paper presents a new approach to path following control design for an autonomous underwater vehicle (AUV). A NARMAX model of the AUV is derived first and then its parameters are adapted online using the recursive extended least square algorithm. An adaptive Propotional-Integral-Derivative (PID) controller is developed using the derived parameters to accomplish the path following task of an AUV. The gain parameters of the PID controller are tuned using an inverse optimal control technique, which alleviates the problem of solving Hamilton-Jacobian equation and also satisfies an error cost function. Simulation studies were pursued to verify the efficacy of the proposed control algorithm. From the obtained results, it is envisaged that the proposed NARMAX model-based self-tuning adaptive PID control provides good path following performance even in the presence of uncertainty arising due to ocean current or hydrodynamic parameter.

  3. Neural Network-Based Self-Tuning PID Control for Underwater Vehicles

    PubMed Central

    Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando

    2016-01-01

    For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme. PMID:27608018

  4. Neural Network-Based Self-Tuning PID Control for Underwater Vehicles.

    PubMed

    Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando

    2016-09-05

    For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme.

  5. Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System.

    PubMed

    Lee, Chengming; Chen, Rongshun

    2015-05-20

    Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server's fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.

  6. Simultaneous gains tuning in boiler/turbine PID-based controller clusters using iterative feedback tuning methodology.

    PubMed

    Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan

    2012-09-01

    Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Fault tolerant control of multivariable processes using auto-tuning PID controller.

    PubMed

    Yu, Ding-Li; Chang, T K; Yu, Ding-Wen

    2005-02-01

    Fault tolerant control of dynamic processes is investigated in this paper using an auto-tuning PID controller. A fault tolerant control scheme is proposed composing an auto-tuning PID controller based on an adaptive neural network model. The model is trained online using the extended Kalman filter (EKF) algorithm to learn system post-fault dynamics. Based on this model, the PID controller adjusts its parameters to compensate the effects of the faults, so that the control performance is recovered from degradation. The auto-tuning algorithm for the PID controller is derived with the Lyapunov method and therefore, the model predicted tracking error is guaranteed to converge asymptotically. The method is applied to a simulated two-input two-output continuous stirred tank reactor (CSTR) with various faults, which demonstrate the applicability of the developed scheme to industrial processes.

  8. A novel auto-tuning PID control mechanism for nonlinear systems.

    PubMed

    Cetin, Meric; Iplikci, Serdar

    2015-09-01

    In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. PID Tuning Using Extremum Seeking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killingsworth, N; Krstic, M

    2005-11-15

    Although proportional-integral-derivative (PID) controllers are widely used in the process industry, their effectiveness is often limited due to poor tuning. Manual tuning of PID controllers, which requires optimization of three parameters, is a time-consuming task. To remedy this difficulty, much effort has been invested in developing systematic tuning methods. Many of these methods rely on knowledge of the plant model or require special experiments to identify a suitable plant model. Reviews of these methods are given in [1] and the survey paper [2]. However, in many situations a plant model is not known, and it is not desirable to openmore » the process loop for system identification. Thus a method for tuning PID parameters within a closed-loop setting is advantageous. In relay feedback tuning [3]-[5], the feedback controller is temporarily replaced by a relay. Relay feedback causes most systems to oscillate, thus determining one point on the Nyquist diagram. Based on the location of this point, PID parameters can be chosen to give the closed-loop system a desired phase and gain margin. An alternative tuning method, which does not require either a modification of the system or a system model, is unfalsified control [6], [7]. This method uses input-output data to determine whether a set of PID parameters meets performance specifications. An adaptive algorithm is used to update the PID controller based on whether or not the controller falsifies a given criterion. The method requires a finite set of candidate PID controllers that must be initially specified [6]. Unfalsified control for an infinite set of PID controllers has been developed in [7]; this approach requires a carefully chosen input signal [8]. Yet another model-free PID tuning method that does not require opening of the loop is iterative feedback tuning (IFT). IFT iteratively optimizes the controller parameters with respect to a cost function derived from the output signal of the closed-loop system

  10. Intelligent tuning method of PID parameters based on iterative learning control for atomic force microscopy.

    PubMed

    Liu, Hui; Li, Yingzi; Zhang, Yingxu; Chen, Yifu; Song, Zihang; Wang, Zhenyu; Zhang, Suoxin; Qian, Jianqiang

    2018-01-01

    Proportional-integral-derivative (PID) parameters play a vital role in the imaging process of an atomic force microscope (AFM). Traditional parameter tuning methods require a lot of manpower and it is difficult to set PID parameters in unattended working environments. In this manuscript, an intelligent tuning method of PID parameters based on iterative learning control is proposed to self-adjust PID parameters of the AFM according to the sample topography. This method gets enough information about the output signals of PID controller and tracking error, which will be used to calculate the proper PID parameters, by repeated line scanning until convergence before normal scanning to learn the topography. Subsequently, the appropriate PID parameters are obtained by fitting method and then applied to the normal scanning process. The feasibility of the method is demonstrated by the convergence analysis. Simulations and experimental results indicate that the proposed method can intelligently tune PID parameters of the AFM for imaging different topographies and thus achieve good tracking performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priyambodo, Tri Kuntoro, E-mail: mastri@ugm.ac.id; Putra, Agfianto Eko; Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta

    Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constantsmore » are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system.« less

  12. Parameters-tuning of PID controller for automatic voltage regulators using the African buffalo optimization.

    PubMed

    Odili, Julius Beneoluchi; Mohmad Kahar, Mohd Nizam; Noraziah, A

    2017-01-01

    In this paper, an attempt is made to apply the African Buffalo Optimization (ABO) to tune the parameters of a PID controller for an effective Automatic Voltage Regulator (AVR). Existing metaheuristic tuning methods have been proven to be quite successful but there were observable areas that need improvements especially in terms of the system's gain overshoot and steady steady state errors. Using the ABO algorithm where each buffalo location in the herd is a candidate solution to the Proportional-Integral-Derivative parameters was very helpful in addressing these two areas of concern. The encouraging results obtained from the simulation of the PID Controller parameters-tuning using the ABO when compared with the performance of Genetic Algorithm PID (GA-PID), Particle-Swarm Optimization PID (PSO-PID), Ant Colony Optimization PID (ACO-PID), PID, Bacteria-Foraging Optimization PID (BFO-PID) etc makes ABO-PID a good addition to solving PID Controller tuning problems using metaheuristics.

  13. PID controller tuning using metaheuristic optimization algorithms for benchmark problems

    NASA Astrophysics Data System (ADS)

    Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.

    2017-11-01

    This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.

  14. Trajectory following and stabilization control of fully actuated AUV using inverse kinematics and self-tuning fuzzy PID.

    PubMed

    Hammad, Mohanad M; Elshenawy, Ahmed K; El Singaby, M I

    2017-01-01

    In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment.

  15. Trajectory following and stabilization control of fully actuated AUV using inverse kinematics and self-tuning fuzzy PID

    PubMed Central

    Elshenawy, Ahmed K.; El Singaby, M.I.

    2017-01-01

    In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment. PMID:28683071

  16. Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules.

    PubMed

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2016-10-14

    High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.

  17. Multivariable PID controller design tuning using bat algorithm for activated sludge process

    NASA Astrophysics Data System (ADS)

    Atikah Nor’Azlan, Nur; Asmiza Selamat, Nur; Mat Yahya, Nafrizuan

    2018-04-01

    The designing of a multivariable PID control for multi input multi output is being concerned with this project by applying four multivariable PID control tuning which is Davison, Penttinen-Koivo, Maciejowski and Proposed Combined method. The determination of this study is to investigate the performance of selected optimization technique to tune the parameter of MPID controller. The selected optimization technique is Bat Algorithm (BA). All the MPID-BA tuning result will be compared and analyzed. Later, the best MPID-BA will be chosen in order to determine which techniques are better based on the system performances in terms of transient response.

  18. Continuous Firefly Algorithm for Optimal Tuning of Pid Controller in Avr System

    NASA Astrophysics Data System (ADS)

    Bendjeghaba, Omar

    2014-01-01

    This paper presents a tuning approach based on Continuous firefly algorithm (CFA) to obtain the proportional-integral- derivative (PID) controller parameters in Automatic Voltage Regulator system (AVR). In the tuning processes the CFA is iterated to reach the optimal or the near optimal of PID controller parameters when the main goal is to improve the AVR step response characteristics. Conducted simulations show the effectiveness and the efficiency of the proposed approach. Furthermore the proposed approach can improve the dynamic of the AVR system. Compared with particle swarm optimization (PSO), the new CFA tuning method has better control system performance in terms of time domain specifications and set-point tracking.

  19. Tuning of PID controllers for boiler-turbine units.

    PubMed

    Tan, Wen; Liu, Jizhen; Fang, Fang; Chen, Yanqiao

    2004-10-01

    A simple two-by-two model for a boiler-turbine unit is demonstrated in this paper. The model can capture the essential dynamics of a unit. The design of a coordinated controller is discussed based on this model. A PID control structure is derived, and a tuning procedure is proposed. The examples show that the method is easy to apply and can achieve acceptable performance.

  20. The hierarchical expert tuning of PID controllers using tools of soft computing.

    PubMed

    Karray, F; Gueaieb, W; Al-Sharhan, S

    2002-01-01

    We present soft computing-based results pertaining to the hierarchical tuning process of PID controllers located within the control loop of a class of nonlinear systems. The results are compared with PID controllers implemented either in a stand alone scheme or as a part of conventional gain scheduling structure. This work is motivated by the increasing need in the industry to design highly reliable and efficient controllers for dealing with regulation and tracking capabilities of complex processes characterized by nonlinearities and possibly time varying parameters. The soft computing-based controllers proposed are hybrid in nature in that they integrate within a well-defined hierarchical structure the benefits of hard algorithmic controllers with those having supervisory capabilities. The controllers proposed also have the distinct features of learning and auto-tuning without the need for tedious and computationally extensive online systems identification schemes.

  1. A conformal mapping based fractional order approach for sub-optimal tuning of PID controllers with guaranteed dominant pole placement

    NASA Astrophysics Data System (ADS)

    Saha, Suman; Das, Saptarshi; Das, Shantanu; Gupta, Amitava

    2012-09-01

    A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.

  2. The application of neural network PID controller to control the light gasoline etherification

    NASA Astrophysics Data System (ADS)

    Cheng, Huanxin; Zhang, Yimin; Kong, Lingling; Meng, Xiangyong

    2017-06-01

    Light gasoline etherification technology can effectively improve the quality of gasoline, which is environmental- friendly and economical. By combining BP neural network and PID control and using BP neural network self-learning ability for online parameter tuning, this method optimizes the parameters of PID controller and applies this to the Fcc gas flow control to achieve the control of the final product- heavy oil concentration. Finally, through MATLAB simulation, it is found that the PID control based on BP neural network has better controlling effect than traditional PID control.

  3. Explicit analytical tuning rules for digital PID controllers via the magnitude optimum criterion.

    PubMed

    Papadopoulos, Konstantinos G; Yadav, Praveen K; Margaris, Nikolaos I

    2017-09-01

    Analytical tuning rules for digital PID type-I controllers are presented regardless of the process complexity. This explicit solution allows control engineers 1) to make an accurate examination of the effect of the controller's sampling time to the control loop's performance both in the time and frequency domain 2) to decide when the control has to be I, PI and when the derivative, D, term has to be added or omitted 3) apply this control action to a series of stable benchmark processes regardless of their complexity. The former advantages are considered critical in industry applications, since 1) most of the times the choice of the digital controller's sampling time is based on heuristics and past criteria, 2) there is little a-priori knowledge of the controlled process making the choice of the type of the controller a trial and error exercise 3) model parameters change often depending on the control loop's operating point making in this way, the problem of retuning the controller's parameter a much challenging issue. Basis of the proposed control law is the principle of the PID tuning via the Magnitude Optimum criterion. The final control law involves the controller's sampling time T s within the explicit solution of the controller's parameters. Finally, the potential of the proposed method is justified by comparing its performance with the conventional PID tuning when controlling the same process. Further investigation regarding the choice of the controller's sampling time T s is also presented and useful conclusions for control engineers are derived. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Exploiting Fractional Order PID Controller Methods in Improving the Performance of Integer Order PID Controllers: A GA Based Approach

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bijoy K.; Metia, Santanu

    2009-10-01

    The paper is divided into three parts. The first part gives a brief introduction to the overall paper, to fractional order PID (PIλDμ) controllers and to Genetic Algorithm (GA). In the second part, first it has been studied how the performance of an integer order PID controller deteriorates when implemented with lossy capacitors in its analog realization. Thereafter it has been shown that the lossy capacitors can be effectively modeled by fractional order terms. Then, a novel GA based method has been proposed to tune the controller parameters such that the original performance is retained even though realized with the same lossy capacitors. Simulation results have been presented to validate the usefulness of the method. Some Ziegler-Nichols type tuning rules for design of fractional order PID controllers have been proposed in the literature [11]. In the third part, a novel GA based method has been proposed which shows how equivalent integer order PID controllers can be obtained which will give performance level similar to those of the fractional order PID controllers thereby removing the complexity involved in the implementation of the latter. It has been shown with extensive simulation results that the equivalent integer order PID controllers more or less retain the robustness and iso-damping properties of the original fractional order PID controllers. Simulation results also show that the equivalent integer order PID controllers are more robust than the normal Ziegler-Nichols tuned PID controllers.

  5. PID tuning rules for SOPDT systems: review and some new results.

    PubMed

    Panda, Rames C; Yu, Cheng-Ching; Huang, Hsiao-Ping

    2004-04-01

    PID controllers are widely used in industries and so many tuning rules have been proposed over the past 50 years that users are often lost in the jungle of tuning formulas. Moreover, unlike PI control, different control laws and structures of implementation further complicate the use of the PID controller. In this work, five different tuning rules are taken for study to control second-order plus dead time systems with wide ranges of damping coefficients and dead time to time constant ratios (D/tau). Four of them are based on IMC design with different types of approximations on dead time and the other on desired closed-loop specifications (i.e., specified forward transfer function). The method of handling dead time in the IMC type of design is important especially for systems with large D/tau ratios. A systematic approach was followed to evaluate the performance of controllers. The regions of applicability of suitable tuning rules are highlighted and recommendations are also given. It turns out that IMC designed with the Maclaurin series expansion type PID is a better choice for both set point and load changes for systems with D/tau greater than 1. For systems with D/tau less than 1, the desired closed-loop specification approach is favored.

  6. Longitudinal control of aircraft dynamics based on optimization of PID parameters

    NASA Astrophysics Data System (ADS)

    Deepa, S. N.; Sudha, G.

    2016-03-01

    Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.

  7. Design of an iterative auto-tuning algorithm for a fuzzy PID controller

    NASA Astrophysics Data System (ADS)

    Saeed, Bakhtiar I.; Mehrdadi, B.

    2012-05-01

    Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.

  8. Adaptive control with self-tuning for non-invasive beat-by-beat blood pressure measurement.

    PubMed

    Nogawa, Masamichi; Ogawa, Mitsuhiro; Yamakoshi, Takehiro; Tanaka, Shinobu; Yamakoshi, Ken-ichi

    2011-01-01

    Up to now, we have successfully carried out the non-invasive beat-by-beat measurement of blood pressure (BP) in the root of finger, superficial temporal and radial artery based on the volume-compensation technique with reasonable accuracy. The present study concerns with improvement of control method for this beat-by-beat BP measurement. The measurement system mainly consists of a partial pressurization cuff with a pair of LED and photo-diode for the detection of arterial blood volume, and a digital self-tuning control method. Using healthy subjects, the performance and accuracy of this system were evaluated through comparison experiments with the system using a conventional empirically tuned PID controller. The significant differences of BP measured in finger artery were not showed in systolic (SBP), p=0.52, and diastolic BP (DBP), p=0.35. With the advantage of the adaptive control with self-tuning method, which can tune the control parameters without disturbing the control system, the application area of the non-invasive beat-by-beat measurement method will be broadened.

  9. Robotic excavator trajectory control using an improved GA based PID controller

    NASA Astrophysics Data System (ADS)

    Feng, Hao; Yin, Chen-Bo; Weng, Wen-wen; Ma, Wei; Zhou, Jun-jing; Jia, Wen-hua; Zhang, Zi-li

    2018-05-01

    In order to achieve excellent trajectory tracking performances, an improved genetic algorithm (IGA) is presented to search for the optimal proportional-integral-derivative (PID) controller parameters for the robotic excavator. Firstly, the mathematical model of kinematic and electro-hydraulic proportional control system of the excavator are analyzed based on the mechanism modeling method. On this basis, the actual model of the electro-hydraulic proportional system are established by the identification experiment. Furthermore, the population, the fitness function, the crossover probability and mutation probability of the SGA are improved: the initial PID parameters are calculated by the Ziegler-Nichols (Z-N) tuning method and the initial population is generated near it; the fitness function is transformed to maintain the diversity of the population; the probability of crossover and mutation are adjusted automatically to avoid premature convergence. Moreover, a simulation study is carried out to evaluate the time response performance of the proposed controller, i.e., IGA based PID against the SGA and Z-N based PID controllers with a step signal. It was shown from the simulation study that the proposed controller provides the least rise time and settling time of 1.23 s and 1.81 s, respectively against the other tested controllers. Finally, two types of trajectories are designed to validate the performances of the control algorithms, and experiments are performed on the excavator trajectory control experimental platform. It was demonstrated from the experimental work that the proposed IGA based PID controller improves the trajectory accuracy of the horizontal line and slope line trajectories by 23.98% and 23.64%, respectively in comparison to the SGA tuned PID controller. The results further indicate that the proposed IGA tuning based PID controller is effective for improving the tracking accuracy, which may be employed in the trajectory control of an actual excavator.

  10. Tuning and performance evaluation of PID controller for superheater steam temperature control of 200 MW boiler using gain phase assignment algorithm

    NASA Astrophysics Data System (ADS)

    Begum, A. Yasmine; Gireesh, N.

    2018-04-01

    In superheater, steam temperature is controlled in a cascade control loop. The cascade control loop consists of PI and PID controllers. To improve the superheater steam temperature control the controller's gains in a cascade control loop has to be tuned efficiently. The mathematical model of the superheater is derived by sets of nonlinear partial differential equations. The tuning methods taken for study here are designed for delay plus first order transfer function model. Hence from the dynamical model of the superheater, a FOPTD model is derived using frequency response method. Then by using Chien-Hrones-Reswick Tuning Algorithm and Gain-Phase Assignment Algorithm optimum controller gains has been found out based on the least value of integral time weighted absolute error.

  11. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    NASA Astrophysics Data System (ADS)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    2014-12-01

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  12. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loopmore » of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.« less

  13. Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network

    PubMed Central

    Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production. PMID:22778587

  14. PSO-based PID Speed Control of Traveling Wave Ultrasonic Motor under Temperature Disturbance

    NASA Astrophysics Data System (ADS)

    Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Azmi, Nur Iffah Mohamed; Romlay, Fadhlur Rahman Mohd

    2018-03-01

    Traveling wave ultrasonic motors (TWUSMs) have a time varying dynamics characteristics. Temperature rise in TWUSMs remains a problem particularly in sustaining optimum speed performance. In this study, a PID controller is used to control the speed of TWUSM under temperature disturbance. Prior to developing the controller, a linear approximation model which relates the speed to the temperature is developed based on the experimental data. Two tuning methods are used to determine PID parameters: conventional Ziegler-Nichols(ZN) and particle swarm optimization (PSO). The comparison of speed control performance between PSO-PID and ZN-PID is presented. Modelling, simulation and experimental work is carried out utilizing Fukoku-Shinsei USR60 as the chosen TWUSM. The results of the analyses and experimental work reveal that PID tuning using PSO-based optimization has the advantage over the conventional Ziegler-Nichols method.

  15. PID-controller with predictor and auto-tuning algorithm: study of efficiency for thermal plants

    NASA Astrophysics Data System (ADS)

    Kuzishchin, V. F.; Merzlikina, E. I.; Hoang, Van Va

    2017-09-01

    The problem of efficiency estimation of an automatic control system (ACS) with a Smith predictor and PID-algorithm for thermal plants is considered. In order to use the predictor, it is proposed to include an auto-tuning module (ATC) into the controller; the module calculates parameters for a second-order plant module with a time delay. The study was conducted using programmable logical controllers (PLC), one of which performed control, ATC, and predictor functions. A simulation model was used as a control plant, and there were two variants of the model: one of them was built on the basis of a separate PLC, and the other was a physical model of a thermal plant in the form of an electrical heater. Analysis of the efficiency of the ACS with the predictor was carried out for several variants of the second order plant model with time delay, and the analysis was performed on the basis of the comparison of transient processes in the system when the set point was changed and when a disturbance influenced the control plant. The recommendations are given on correction of the PID-algorithm parameters when the predictor is used by means of using the correcting coefficient k for the PID parameters. It is shown that, when the set point is changed, the use of the predictor is effective taking into account the parameters correction with k = 2. When the disturbances influence the plant, the use of the predictor is doubtful, because the transient process is too long. The reason for this is that, in the neighborhood of the zero frequency, the amplitude-frequency characteristic (AFC) of the system with the predictor has an ascent in comparison with the AFC of the system without the predictor.

  16. Design of a self-adaptive fuzzy PID controller for piezoelectric ceramics micro-displacement system

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Zhong, Yuning; Xu, Zhongbao

    2008-12-01

    In order to improve control precision of the piezoelectric ceramics (PZT) micro-displacement system, a self-adaptive fuzzy Proportional Integration Differential (PID) controller is designed based on the traditional digital PID controller combining with fuzzy control. The arithmetic gives a fuzzy control rule table with the fuzzy control rule and fuzzy reasoning, through this table, the PID parameters can be adjusted online in real time control. Furthermore, the automatic selective control is achieved according to the change of the error. The controller combines the good dynamic capability of the fuzzy control and the high stable precision of the PID control, adopts the method of using fuzzy control and PID control in different segments of time. In the initial and middle stage of the transition process of system, that is, when the error is larger than the value, fuzzy control is used to adjust control variable. It makes full use of the fast response of the fuzzy control. And when the error is smaller than the value, the system is about to be in the steady state, PID control is adopted to eliminate static error. The problems of PZT existing in the field of precise positioning are overcome. The results of the experiments prove that the project is correct and practicable.

  17. Improved fuzzy PID controller design using predictive functional control structure.

    PubMed

    Wang, Yuzhong; Jin, Qibing; Zhang, Ridong

    2017-11-01

    In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Design of sewage treatment system by applying fuzzy adaptive PID controller

    NASA Astrophysics Data System (ADS)

    Jin, Liang-Ping; Li, Hong-Chan

    2013-03-01

    In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

  19. Enhanced pid vs model predictive control applied to bldc motor

    NASA Astrophysics Data System (ADS)

    Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.

    2018-01-01

    BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.

  20. Dynamic PID loop control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, L.; Klebaner, A.; Theilacker, J.

    2011-06-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  1. Self tuning control of wind-diesel power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mufti, M.D.; Balasubramanian, R.; Tripathy, S.C.

    1995-12-31

    This paper proposes some effective self-tuning control strategies for isolated Wind-Diesel power generation systems. Detailed modeling and studies on both single-input single-output (SISO) as well as multi-input multi-output (MIMO) self tuning regulators, applied to a typical system, are reported. Further, the effect of introducing a Super-conducting Magnetic Energy Storage (SMES) unit on the system performance has been investigated. The MIMO self-tuning regulator controlling the hybrid system and the SMES in a coordinated manner exhibits the best performance.

  2. Application of multi-objective controller to optimal tuning of PID gains for a hydraulic turbine regulating system using adaptive grid particle swam optimization.

    PubMed

    Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu

    2015-05-01

    A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Design of a PID Controller for a PCR Micro Reactor

    ERIC Educational Resources Information Center

    Dinca, M. P.; Gheorghe, M.; Galvin, P.

    2009-01-01

    Proportional-integral-derivative (PID) controllers are widely used in process control, and consequently they are described in most of the textbooks on automatic control. However, rather than presenting the overall design process, the examples given in such textbooks are intended to illuminate specific focused aspects of selection, tuning and…

  4. Optimization of PID Parameters Utilizing Variable Weight Grey-Taguchi Method and Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Azmi, Nur Iffah Mohamed; Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Romlay, Fadhlur Rahman Mohd

    2018-03-01

    Controller that uses PID parameters requires a good tuning method in order to improve the control system performance. Tuning PID control method is divided into two namely the classical methods and the methods of artificial intelligence. Particle swarm optimization algorithm (PSO) is one of the artificial intelligence methods. Previously, researchers had integrated PSO algorithms in the PID parameter tuning process. This research aims to improve the PSO-PID tuning algorithms by integrating the tuning process with the Variable Weight Grey- Taguchi Design of Experiment (DOE) method. This is done by conducting the DOE on the two PSO optimizing parameters: the particle velocity limit and the weight distribution factor. Computer simulations and physical experiments were conducted by using the proposed PSO- PID with the Variable Weight Grey-Taguchi DOE and the classical Ziegler-Nichols methods. They are implemented on the hydraulic positioning system. Simulation results show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE has reduced the rise time by 48.13% and settling time by 48.57% compared to the Ziegler-Nichols method. Furthermore, the physical experiment results also show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE tuning method responds better than Ziegler-Nichols tuning. In conclusion, this research has improved the PSO-PID parameter by applying the PSO-PID algorithm together with the Variable Weight Grey-Taguchi DOE method as a tuning method in the hydraulic positioning system.

  5. Regulation of flow through a T-Shaped open cavity by temperature dependent P, PI, and PID controllers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit, E-mail: satyajit@me.buet.ac.bd; Saha, Sumon, E-mail: sumonsaha@me.buet.ac.bd

    P (proportional), PI (proportional-integral), and PID (proportional-integral-derivative) controllers are popular means of controlling industrial processes. Due to superior response, accuracy, and stable performance, PID controllers are mostly used in control systems. This paper presents a mathematical model and subsequent response analysis regarding regulation of flow in mixed convection through a T-shaped open cavity by temperature dependent controllers. The T-shaped cavity has cold top and hot bottom walls, while air is flowing through the inlet at surrounding temperature. The inflow is regulated by a controlled gate which operates according to the signal received from the controller. Values of proportional gain (k{submore » p}), integral gain (k{sub i}), and derivative gain (k{sub d}) are varied to obtain the desired system response and to ensure a stable system with fastest response. At first, only P controller is used and eventually PI and finally PID control scheme is applied for controller tuning. Tuning of different controllers (P, PI, and PID) are carried out systematically based on the reference temperature which is continuously monitored at a certain location inside the cavity. It is found that PID controller performs better than P or PI controller.« less

  6. Anti-windup adaptive PID control design for a class of uncertain chaotic systems with input saturation.

    PubMed

    Tahoun, A H

    2017-01-01

    In this paper, the stabilization problem of actuators saturation in uncertain chaotic systems is investigated via an adaptive PID control method. The PID control parameters are auto-tuned adaptively via adaptive control laws. A multi-level augmented error is designed to account for the extra terms appearing due to the use of PID and saturation. The proposed control technique uses both the state-feedback and the output-feedback methodologies. Based on Lyapunov׳s stability theory, new anti-windup adaptive controllers are proposed. Demonstrative examples with MATLAB simulations are studied. The simulation results show the efficiency of the proposed adaptive PID controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Model-Based Self-Tuning Multiscale Method for Combustion Control

    NASA Technical Reports Server (NTRS)

    Le, Dzu, K.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2006-01-01

    A multi-scale representation of the combustor dynamics was used to create a self-tuning, scalable controller to suppress multiple instability modes in a liquid-fueled aero engine-derived combustor operating at engine-like conditions. Its self-tuning features designed to handle the uncertainties in the combustor dynamics and time-delays are essential for control performance and robustness. The controller was implemented to modulate a high-frequency fuel valve with feedback from dynamic pressure sensors. This scalable algorithm suppressed pressure oscillations of different instability modes by as much as 90 percent without the peak-splitting effect. The self-tuning logic guided the adjustment of controller parameters and converged quickly toward phase-lock for optimal suppression of the instabilities. The forced-response characteristics of the control model compare well with those of the test rig on both the frequency-domain and the time-domain.

  8. An improved PID switching control strategy for type 1 diabetes.

    PubMed

    Marchetti, Gianni; Barolo, Massimiliano; Jovanovic, Lois; Zisser, Howard; Seborg, Dale E

    2006-01-01

    In order for an "artificial pancreas" to become a reality for ambulatory use, a practical closed-loop control strategy must be developed and critically evaluated. In this paper, an improved PID control strategy for blood glucose control is proposed and evaluated in silico using a physiologic model of Hovorka et al. The key features of the proposed control strategy are: (i) a switching strategy for initiating PID control after a meal and insulin bolus; (ii) a novel time-varying setpoint trajectory, (iii) noise and derivative filters to reduce sensitivity to sensor noise, and (iv) a systematic controller tuning strategy. Simulation results demonstrate that the proposed control strategy compares favorably to alternatives for realistic conditions that include meal challenges, incorrect carbohydrate meal estimates, changes in insulin sensitivity, and measurement noise.

  9. Simulation of process identification and controller tuning for flow control system

    NASA Astrophysics Data System (ADS)

    Chew, I. M.; Wong, F.; Bono, A.; Wong, K. I.

    2017-06-01

    PID controller is undeniably the most popular method used in controlling various industrial processes. The feature to tune the three elements in PID has allowed the controller to deal with specific needs of the industrial processes. This paper discusses the three elements of control actions and improving robustness of controllers through combination of these control actions in various forms. A plant model is simulated using the Process Control Simulator in order to evaluate the controller performance. At first, the open loop response of the plant is studied by applying a step input to the plant and collecting the output data from the plant. Then, FOPDT of physical model is formed by using both Matlab-Simulink and PRC method. Then, calculation of controller’s setting is performed to find the values of Kc and τi that will give satisfactory control in closed loop system. Then, the performance analysis of closed loop system is obtained by set point tracking analysis and disturbance rejection performance. To optimize the overall physical system performance, a refined tuning of PID or detuning is further conducted to ensure a consistent resultant output of closed loop system reaction to the set point changes and disturbances to the physical model. As a result, the PB = 100 (%) and τi = 2.0 (s) is preferably chosen for setpoint tracking while PB = 100 (%) and τi = 2.5 (s) is selected for rejecting the imposed disturbance to the model. In a nutshell, selecting correlation tuning values is likewise depended on the required control’s objective for the stability performance of overall physical model.

  10. Simulated Annealing-based Optimal Proportional-Integral-Derivative (PID) Controller Design: A Case Study on Nonlinear Quadcopter Dynamics

    NASA Astrophysics Data System (ADS)

    Nemirsky, Kristofer Kevin

    In this thesis, the history and evolution of rotor aircraft with simulated annealing-based PID application were reviewed and quadcopter dynamics are presented. The dynamics of a quadcopter were then modeled, analyzed, and linearized. A cascaded loop architecture with PID controllers was used to stabilize the plant dynamics, which was improved upon through the application of simulated annealing (SA). A Simulink model was developed to test the controllers and verify the functionality of the proposed control system design. In addition, the data that the Simulink model provided were compared with flight data to present the validity of derived dynamics as a proper mathematical model representing the true dynamics of the quadcopter system. Then, the SA-based global optimization procedure was applied to obtain optimized PID parameters. It was observed that the tuned gains through the SA algorithm produced a better performing PID controller than the original manually tuned one. Next, we investigated the uncertain dynamics of the quadcopter setup. After adding uncertainty to the gyroscopic effects associated with pitch-and-roll rate dynamics, the controllers were shown to be robust against the added uncertainty. A discussion follows to summarize SA-based algorithm PID controller design and performance outcomes. Lastly, future work on SA application on multi-input-multi-output (MIMO) systems is briefly discussed.

  11. Stabilization and analytical tuning rule of double-loop control scheme for unstable dead-time process

    NASA Astrophysics Data System (ADS)

    Ugon, B.; Nandong, J.; Zang, Z.

    2017-06-01

    The presence of unstable dead-time systems in process plants often leads to a daunting challenge in the design of standard PID controllers, which are not only intended to provide close-loop stability but also to give good performance-robustness overall. In this paper, we conduct stability analysis on a double-loop control scheme based on the Routh-Hurwitz stability criteria. We propose to use this unstable double-loop control scheme which employs two P/PID controllers to control first-order or second-order unstable dead-time processes typically found in process industries. Based on the Routh-Hurwitz stability necessary and sufficient criteria, we establish several stability regions which enclose within them the P/PID parameter values that guarantee close-loop stability of the double-loop control scheme. A systematic tuning rule is developed for the purpose of obtaining the optimal P/PID parameter values within the established regions. The effectiveness of the proposed tuning rule is demonstrated using several numerical examples and the result are compared with some well-established tuning methods reported in the literature.

  12. Design And Implementation Of PID Controller Using Relay Feedback On TRMS (Twin Rotor MIMO System)

    NASA Astrophysics Data System (ADS)

    Shah, Dipesh H.

    2011-12-01

    Today, many process control problems can be adequately and routinely solved by conventional PID control strategies. The overriding reason that the PID controller is so widely accepted is its simple structure which has proved to be very robust with regard to many commonly met process control problems as for instance disturbances and nonlinearities. Relay feedback methods have been widely used in tuning proportional-integral-derivative controllers due to its closed loop nature. In this work, Relay based PID controller is designed and successfully implemented on TRMS (Twin Rotor MIMO System) in SISO and MIMO configurations. The performance of a Relay based PID controller for control of TRMS is investigated and performed satisfactorily. The system shares some features with a helicopter, such as important interactions between the vertical and horizontal motions. The RTWT toolbox in the MATLAB environment is used to perform real-time experiments.

  13. Robot trajectory tracking with self-tuning predicted control

    NASA Technical Reports Server (NTRS)

    Cui, Xianzhong; Shin, Kang G.

    1988-01-01

    A controller that combines self-tuning prediction and control is proposed for robot trajectory tracking. The controller has two feedback loops: one is used to minimize the prediction error, and the other is designed to make the system output track the set point input. Because the velocity and position along the desired trajectory are given and the future output of the system is predictable, a feedforward loop can be designed for robot trajectory tracking with self-tuning predicted control (STPC). Parameters are estimated online to account for the model uncertainty and the time-varying property of the system. The authors describe the principle of STPC, analyze the system performance, and discuss the simplification of the robot dynamic equations. To demonstrate its utility and power, the controller is simulated for a Stanford arm.

  14. System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction.

    PubMed

    Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit

    2013-11-01

    The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Mutation particle swarm optimization of the BP-PID controller for piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Zheng, Huaqing; Jiang, Minlan

    2016-01-01

    PID control is the most common used method in industrial control because its structure is simple and it is easy to implement. PID controller has good control effect, now it has been widely used. However, PID method has a few limitations. The overshoot of the PID controller is very big. The adjustment time is long. When the parameters of controlled plant are changing over time, the parameters of controller could hardly change automatically to adjust to changing environment. Thus, it can't meet the demand of control quality in the process of controlling piezoelectric ceramic. In order to effectively control the piezoelectric ceramic and improve the control accuracy, this paper replaced the learning algorithm of the BP with the mutation particle swarm optimization algorithm(MPSO) on the process of the parameters setting of BP-PID. That designed a better self-adaptive controller which is combing the BP neural network based on mutation particle swarm optimization with the conventional PID control theory. This combination is called the MPSO-BP-PID. In the mechanism of the MPSO, the mutation operation is carried out with the fitness variance and the global best fitness value as the standard. That can overcome the precocious of the PSO and strengthen its global search ability. As a result, the MPSO-BP-PID can complete controlling the controlled plant with higher speed and accuracy. Therefore, the MPSO-BP-PID is applied to the piezoelectric ceramic. It can effectively overcome the hysteresis, nonlinearity of the piezoelectric ceramic. In the experiment, compared with BP-PID and PSO-BP-PID, it proved that MPSO is effective and the MPSO-BP-PID has stronger adaptability and robustness.

  16. Evaluation of PD/PID controller for insulin control on blood glucose regulation in a Type-I diabetes

    NASA Astrophysics Data System (ADS)

    Mahmud, Farhanahani; Isse, Nadir Hussien; Daud, Nur Atikah Mohd; Morsin, Marlia

    2017-01-01

    This project introduces a simulation of Proportional-Derivative (PD) and Proportional-Integral-Derivative (PID) controller based on a virtual Type 1 Diabetes Mellitus (T1DM) patient: Hovorka diabetic model using MATLAB-Simulink software. The results of these simulations are based on three tuning responses for each controller which are fast, slow and oscillation responses. The main purpose of this simulation is to achieve an acceptable stability and fastness response towards the regulation of glucose concentration using PD and PID controller response with insulin infusion rate. Therefore, in order to analyze and compare the responses of both controller performances, one-day simulations of the insulin-glucose dynamic have been conducted using a typical day meal plan that contains five meals of different bolus size. It is found that the PID closed-loop control with a short rise time is required to retrieve a satisfactory glucose regulation.

  17. PSO-tuned PID controller for coupled tank system via priority-based fitness scheme

    NASA Astrophysics Data System (ADS)

    Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal

    2015-05-01

    The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.

  18. Multiple model self-tuning control for a class of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Huang, Miao; Wang, Xin; Wang, Zhenlei

    2015-10-01

    This study develops a novel nonlinear multiple model self-tuning control method for a class of nonlinear discrete-time systems. An increment system model and a modified robust adaptive law are proposed to expand the application range, thus eliminating the assumption that either the nonlinear term of the nonlinear system or its differential term is global-bounded. The nonlinear self-tuning control method can address the situation wherein the nonlinear system is not subject to a globally uniformly asymptotically stable zero dynamics by incorporating the pole-placement scheme. A novel, nonlinear control structure based on this scheme is presented to improve control precision. Stability and convergence can be confirmed when the proposed multiple model self-tuning control method is applied. Furthermore, simulation results demonstrate the effectiveness of the proposed method.

  19. PID feedback controller used as a tactical asset allocation technique: The G.A.M. model

    NASA Astrophysics Data System (ADS)

    Gandolfi, G.; Sabatini, A.; Rossolini, M.

    2007-09-01

    The objective of this paper is to illustrate a tactical asset allocation technique utilizing the PID controller. The proportional-integral-derivative (PID) controller is widely applied in most industrial processes; it has been successfully used for over 50 years and it is used by more than 95% of the plants processes. It is a robust and easily understood algorithm that can provide excellent control performance in spite of the diverse dynamic characteristics of the process plant. In finance, the process plant, controlled by the PID controller, can be represented by financial market assets forming a portfolio. More specifically, in the present work, the plant is represented by a risk-adjusted return variable. Money and portfolio managers’ main target is to achieve a relevant risk-adjusted return in their managing activities. In literature and in the financial industry business, numerous kinds of return/risk ratios are commonly studied and used. The aim of this work is to perform a tactical asset allocation technique consisting in the optimization of risk adjusted return by means of asset allocation methodologies based on the PID model-free feedback control modeling procedure. The process plant does not need to be mathematically modeled: the PID control action lies in altering the portfolio asset weights, according to the PID algorithm and its parameters, Ziegler-and-Nichols-tuned, in order to approach the desired portfolio risk-adjusted return efficiently.

  20. Design issues of a reinforcement-based self-learning fuzzy controller for petrochemical process control

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Daugherity, Walter C.

    1992-01-01

    Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.

  1. Educational Tool for Optimal Controller Tuning Using Evolutionary Strategies

    ERIC Educational Resources Information Center

    Carmona Morales, D.; Jimenez-Hornero, J. E.; Vazquez, F.; Morilla, F.

    2012-01-01

    In this paper, an optimal tuning tool is presented for control structures based on multivariable proportional-integral-derivative (PID) control, using genetic algorithms as an alternative to traditional optimization algorithms. From an educational point of view, this tool provides students with the necessary means to consolidate their knowledge on…

  2. Coordinating IMC-PID and adaptive SMC controllers for a PEMFC.

    PubMed

    Wang, Guo-Liang; Wang, Yong; Shi, Jun-Hai; Shao, Hui-He

    2010-01-01

    For a Proton Exchange Membrane Fuel Cell (PEMFC) power plant with a methanol reformer, the process parameters and power output are considered simultaneously to avoid violation of the constraints and to keep the fuel cell power plant safe and effective. In this paper, a novel coordinating scheme is proposed by combining an Internal Model Control (IMC) based PID Control and adaptive Sliding Mode Control (SMC). The IMC-PID controller is designed for the reformer of the fuel flow rate according to the expected first-order dynamic properties. The adaptive SMC controller of the fuel cell current has been designed using the constant plus proportional rate reaching law. The parameters of the SMC controller are adaptively tuned according to the response of the fuel flow rate control system. When the power output controller feeds back the current references to these two controllers, the coordinating controllers system works in a system-wide way. The simulation results of the PEMFC power plant demonstrate the effectiveness of the proposed method. 2009 ISA. Published by Elsevier Ltd. All rights reserved.

  3. A novel interval type-2 fractional order fuzzy PID controller: Design, performance evaluation, and its optimal time domain tuning.

    PubMed

    Kumar, Anupam; Kumar, Vijay

    2017-05-01

    In this paper, a novel concept of an interval type-2 fractional order fuzzy PID (IT2FO-FPID) controller, which requires fractional order integrator and fractional order differentiator, is proposed. The incorporation of Takagi-Sugeno-Kang (TSK) type interval type-2 fuzzy logic controller (IT2FLC) with fractional controller of PID-type is investigated for time response measure due to both unit step response and unit load disturbance. The resulting IT2FO-FPID controller is examined on different delayed linear and nonlinear benchmark plants followed by robustness analysis. In order to design this controller, fractional order integrator-differentiator operators are considered as design variables including input-output scaling factors. A new hybridized algorithm named as artificial bee colony-genetic algorithm (ABC-GA) is used to optimize the parameters of the controller while minimizing weighted sum of integral of time absolute error (ITAE) and integral of square of control output (ISCO). To assess the comparative performance of the IT2FO-FPID, authors compared it against existing controllers, i.e., interval type-2 fuzzy PID (IT2-FPID), type-1 fractional order fuzzy PID (T1FO-FPID), type-1 fuzzy PID (T1-FPID), and conventional PID controllers. Furthermore, to show the effectiveness of the proposed controller, the perturbed processes along with the larger dead time are tested. Moreover, the proposed controllers are also implemented on multi input multi output (MIMO), coupled, and highly complex nonlinear two-link robot manipulator system in presence of un-modeled dynamics. Finally, the simulation results explicitly indicate that the performance of the proposed IT2FO-FPID controller is superior to its conventional counterparts in most of the cases. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. A composite self tuning strategy for fuzzy control of dynamic systems

    NASA Technical Reports Server (NTRS)

    Shieh, C.-Y.; Nair, Satish S.

    1992-01-01

    The feature of self learning makes fuzzy logic controllers attractive in control applications. This paper proposes a strategy to tune the fuzzy logic controller on-line by tuning the data base as well as the rule base. The structure of the controller is outlined and preliminary results are presented using simulation studies.

  5. Improved model reduction and tuning of fractional-order PI(λ)D(μ) controllers for analytical rule extraction with genetic programming.

    PubMed

    Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava

    2012-03-01

    Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  6. An adaptive PID like controller using mix locally recurrent neural network for robotic manipulator with variable payload.

    PubMed

    Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P

    2016-05-01

    Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Design issues for a reinforcement-based self-learning fuzzy controller

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Dauherity, Walter

    1993-01-01

    Fuzzy logic controllers have some often cited advantages over conventional techniques such as PID control: easy implementation, its accommodation to natural language, the ability to cover wider range of operating conditions and others. One major obstacle that hinders its broader application is the lack of a systematic way to develop and modify its rules and as result the creation and modification of fuzzy rules often depends on try-error or pure experimentation. One of the proposed approaches to address this issue is self-learning fuzzy logic controllers (SFLC) that use reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of self-learning fuzzy controller is highly contingent on the design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for the application to chemical process are discussed and its performance is compared with that of PID and self-tuning fuzzy logic controller.

  8. Neural self-tuning adaptive control of non-minimum phase system

    NASA Technical Reports Server (NTRS)

    Ho, Long T.; Bialasiewicz, Jan T.; Ho, Hai T.

    1993-01-01

    The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity, if not unstable, closed-loop behavior. Therefore, a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.

  9. Tuning of PID controller using optimization techniques for a MIMO process

    NASA Astrophysics Data System (ADS)

    Thulasi dharan, S.; Kavyarasan, K.; Bagyaveereswaran, V.

    2017-11-01

    In this paper, two processes were considered one is Quadruple tank process and the other is CSTR (Continuous Stirred Tank Reactor) process. These are majorly used in many industrial applications for various domains, especially, CSTR in chemical plants.At first mathematical model of both the process is to be done followed by linearization of the system due to MIMO process and controllers are the major part to control the whole process to our desired point as per the applications so the tuning of the controller plays a major role among the whole process. For tuning of parameters we use two optimizations techniques like Particle Swarm Optimization, Genetic Algorithm. The above techniques are majorly used in different applications to obtain which gives the best among all, we use these techniques to obtain the best tuned values among many. Finally, we will compare the performance of the each process with both the techniques.

  10. Cascade control of superheated steam temperature with neuro-PID controller.

    PubMed

    Zhang, Jianhua; Zhang, Fenfang; Ren, Mifeng; Hou, Guolian; Fang, Fang

    2012-11-01

    In this paper, an improved cascade control methodology for superheated processes is developed, in which the primary PID controller is implemented by neural networks trained by minimizing error entropy criterion. The entropy of the tracking error can be estimated recursively by utilizing receding horizon window technique. The measurable disturbances in superheated processes are input to the neuro-PID controller besides the sequences of tracking error in outer loop control system, hence, feedback control is combined with feedforward control in the proposed neuro-PID controller. The convergent condition of the neural networks is analyzed. The implementation procedures of the proposed cascade control approach are summarized. Compared with the neuro-PID controller using minimizing squared error criterion, the proposed neuro-PID controller using minimizing error entropy criterion may decrease fluctuations of the superheated steam temperature. A simulation example shows the advantages of the proposed method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Deep learning and model predictive control for self-tuning mode-locked lasers

    NASA Astrophysics Data System (ADS)

    Baumeister, Thomas; Brunton, Steven L.; Nathan Kutz, J.

    2018-03-01

    Self-tuning optical systems are of growing importance in technological applications such as mode-locked fiber lasers. Such self-tuning paradigms require {\\em intelligent} algorithms capable of inferring approximate models of the underlying physics and discovering appropriate control laws in order to maintain robust performance for a given objective. In this work, we demonstrate the first integration of a {\\em deep learning} (DL) architecture with {\\em model predictive control} (MPC) in order to self-tune a mode-locked fiber laser. Not only can our DL-MPC algorithmic architecture approximate the unknown fiber birefringence, it also builds a dynamical model of the laser and appropriate control law for maintaining robust, high-energy pulses despite a stochastically drifting birefringence. We demonstrate the effectiveness of this method on a fiber laser which is mode-locked by nonlinear polarization rotation. The method advocated can be broadly applied to a variety of optical systems that require robust controllers.

  12. Induction motor speed drive improvement using fuzzy IP-self-tuning controller. A real time implementation.

    PubMed

    Lokriti, Abdesslam; Salhi, Issam; Doubabi, Said; Zidani, Youssef

    2013-05-01

    An IP-self-tuning controller tuned by a fuzzy adjustor, is proposed to improve induction machine speed control. The interest of such controller is the possibility to adjust only one gain, instead of two gains for the case of the PI-self-tuning controllers commonly used in the literature. This paper presents simulation and experimental results. These latter were obtained by practical implementation on a DSPace 1104 board of three different speed controllers (the classical IP, the fuzzy-like-PI and the IP-self-tuning), for a 1.5KW induction machine. The paper presents different tests used to compare the performances of the proposed controller to the two others in terms of computation time, tracking performances and disturbances rejection. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Wireless Sensor Network Congestion Control Based on Standard Particle Swarm Optimization and Single Neuron PID

    PubMed Central

    Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong

    2018-01-01

    Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm–neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS. PMID:29671822

  14. Wireless Sensor Network Congestion Control Based on Standard Particle Swarm Optimization and Single Neuron PID.

    PubMed

    Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong

    2018-04-19

    Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm⁻neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS.

  15. A uniform LMI formulation for tuning PID, multi-term fractional-order PID, and Tilt-Integral-Derivative (TID) for integer and fractional-order processes.

    PubMed

    Merrikh-Bayat, Farshad

    2017-05-01

    In this paper first the Multi-term Fractional-Order PID (MFOPID) whose transfer function is equal to [Formula: see text] , where k j and α j are unknown and known real parameters respectively, is introduced. Without any loss of generality, a special form of MFOPID with transfer function k p +k i /s+k d1 s+k d2 s μ where k p , k i , k d1 , and k d2 are unknown real and μ is a known positive real parameter, is considered. Similar to PID and TID, MFOPID is also linear in its parameters which makes it possible to study all of them in a same framework. Tuning the parameters of PID, TID, and MFOPID based on loop shaping using Linear Matrix Inequalities (LMIs) is discussed. For this purpose separate LMIs for closed-loop stability (of sufficient type) and adjusting different aspects of the open-loop frequency response are developed. The proposed LMIs for stability are obtained based on the Nyquist stability theorem and can be applied to both integer and fractional-order (not necessarily commensurate) processes which are either stable or have one unstable pole. Numerical simulations show that the performance of the four-variable MFOPID can compete the trivial five-variable FOPID and often excels PID and TID. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. A simple attitude control of quadrotor helicopter based on Ziegler-Nichols rules for tuning PD parameters.

    PubMed

    He, ZeFang; Zhao, Long

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement.

  17. Fuzzy logic controllers for electrotechnical devices - On-site tuning approach

    NASA Astrophysics Data System (ADS)

    Hissel, D.; Maussion, P.; Faucher, J.

    2001-12-01

    Fuzzy logic offers nowadays an interesting alternative to the designers of non linear control laws for electrical or electromechanical systems. However, due to the huge number of tuning parameters, this kind of control is only used in a few industrial applications. This paper proposes a new, very simple, on-site tuning strategy for a PID-like fuzzy logic controller. Thanks to the experimental designs methodology, we will propose sets of optimized pre-established settings for this kind of fuzzy controllers. The proposed parameters are only depending on one on-site open-loop identification test. In this way, this on-site tuning methodology has to be compared to the Ziegler-Nichols one's for conventional controllers. Experimental results (on a permanent magnets synchronous motor and on a DC/DC converter) will underline all the efficiency of this tuning methodology. Finally, the field of validity of the proposed pre-established settings will be given.

  18. Robustness of reduced-order multivariable state-space self-tuning controller

    NASA Technical Reports Server (NTRS)

    Yuan, Zhuzhi; Chen, Zengqiang

    1994-01-01

    In this paper, we present a quantitative analysis of the robustness of a reduced-order pole-assignment state-space self-tuning controller for a multivariable adaptive control system whose order of the real process is higher than that of the model used in the controller design. The result of stability analysis shows that, under a specific bounded modelling error, the adaptively controlled closed-loop real system via the reduced-order state-space self-tuner is BIBO stable in the presence of unmodelled dynamics.

  19. Design of a self-tuning regulator for temperature control of a polymerization reactor.

    PubMed

    Vasanthi, D; Pranavamoorthy, B; Pappa, N

    2012-01-01

    The temperature control of a polymerization reactor described by Chylla and Haase, a control engineering benchmark problem, is used to illustrate the potential of adaptive control design by employing a self-tuning regulator concept. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. The conventional cascade control provides a robust operation, but often lacks in control performance concerning the required strict temperature tolerances. The self-tuning control concept presented in this contribution solves the problem. This design calculates a trajectory for the cooling jacket temperature in order to follow a predefined trajectory of the reactor temperature. The reaction heat and the heat transfer coefficient in the energy balance are estimated online by using an unscented Kalman filter (UKF). Two simple physically motivated relations are employed, which allow the non-delayed estimation of both quantities. Simulation results under model uncertainties show the effectiveness of the self-tuning control concept. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Self-tuning multivariable pole placement control of a multizone crystal growth furnace

    NASA Technical Reports Server (NTRS)

    Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.

    1992-01-01

    This paper presents the design and implementation of a multivariable self-tuning temperature controller for the control of lead bromide crystal growth. The crystal grows inside a multizone transparent furnace. There are eight interacting heating zones shaping the axial temperature distribution inside the furnace. A multi-input, multi-output furnace model is identified on-line by a recursive least squares estimation algorithm. A multivariable pole placement controller based on this model is derived and implemented. Comparison between single-input, single-output and multi-input, multi-output self-tuning controllers demonstrates that the zone-to-zone interactions can be minimized better by a multi-input, multi-output controller design. This directly affects the quality of crystal grown.

  1. Soft Real-Time PID Control on a VME Computer

    NASA Technical Reports Server (NTRS)

    Karayan, Vahag; Sander, Stanley; Cageao, Richard

    2007-01-01

    microPID (uPID) is a computer program for real-time proportional + integral + derivative (PID) control of a translation stage in a Fourier-transform ultraviolet spectrometer. microPID implements a PID control loop over a position profile at sampling rate of 8 kHz (sampling period 125microseconds). The software runs in a strippeddown Linux operating system on a VersaModule Eurocard (VME) computer operating in real-time priority queue using an embedded controller, a 16-bit digital-to-analog converter (D/A) board, and a laser-positioning board (LPB). microPID consists of three main parts: (1) VME device-driver routines, (2) software that administers a custom protocol for serial communication with a control computer, and (3) a loop section that obtains the current position from an LPB-driver routine, calculates the ideal position from the profile, and calculates a new voltage command by use of an embedded PID routine all within each sampling period. The voltage command is sent to the D/A board to control the stage. microPID uses special kernel headers to obtain microsecond timing resolution. Inasmuch as microPID implements a single-threaded process and all other processes are disabled, the Linux operating system acts as a soft real-time system.

  2. A Simple Attitude Control of Quadrotor Helicopter Based on Ziegler-Nichols Rules for Tuning PD Parameters

    PubMed Central

    He, ZeFang

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement. PMID:25614879

  3. Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload.

    PubMed

    Sharma, Richa; Gaur, Prerna; Mittal, A P

    2015-09-01

    The robotic manipulators are multi-input multi-output (MIMO), coupled and highly nonlinear systems. The presence of external disturbances and time-varying parameters adversely affects the performance of these systems. Therefore, the controller designed for these systems should effectively deal with such complexities, and it is an intriguing task for control engineers. This paper presents two-degree of freedom fractional order proportional-integral-derivative (2-DOF FOPID) controller scheme for a two-link planar rigid robotic manipulator with payload for trajectory tracking task. The tuning of all controller parameters is done using cuckoo search algorithm (CSA). The performance of proposed 2-DOF FOPID controllers is compared with those of their integer order designs, i.e., 2-DOF PID controllers, and with the traditional PID controllers. In order to show effectiveness of proposed scheme, the robustness testing is carried out for model uncertainties, payload variations with time, external disturbance and random noise. Numerical simulation results indicate that the 2-DOF FOPID controllers are superior to their integer order counterparts and the traditional PID controllers. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in Type-1 Diabetic Patients.

    PubMed

    Yadav, Jyoti; Rani, Asha; Singh, Vijander

    2016-12-01

    This paper presents Fuzzy-PID (FPID) control scheme for a blood glucose control of type 1 diabetic subjects. A new metaheuristic Cuckoo Search Algorithm (CSA) is utilized to optimize the gains of FPID controller. CSA provides fast convergence and is capable of handling global optimization of continuous nonlinear systems. The proposed controller is an amalgamation of fuzzy logic and optimization which may provide an efficient solution for complex problems like blood glucose control. The task is to maintain normal glucose levels in the shortest possible time with minimum insulin dose. The glucose control is achieved by tuning the PID (Proportional Integral Derivative) and FPID controller with the help of Genetic Algorithm and CSA for comparative analysis. The designed controllers are tested on Bergman minimal model to control the blood glucose level in the facets of parameter uncertainties, meal disturbances and sensor noise. The results reveal that the performance of CSA-FPID controller is superior as compared to other designed controllers.

  5. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    PubMed

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  6. Two-degree-of-freedom fractional order-PID controllers design for fractional order processes with dead-time.

    PubMed

    Li, Mingjie; Zhou, Ping; Zhao, Zhicheng; Zhang, Jinggang

    2016-03-01

    Recently, fractional order (FO) processes with dead-time have attracted more and more attention of many researchers in control field, but FO-PID controllers design techniques available for the FO processes with dead-time suffer from lack of direct systematic approaches. In this paper, a simple design and parameters tuning approach of two-degree-of-freedom (2-DOF) FO-PID controller based on internal model control (IMC) is proposed for FO processes with dead-time, conventional one-degree-of-freedom control exhibited the shortcoming of coupling of robustness and dynamic response performance. 2-DOF control can overcome the above weakness which means it realizes decoupling of robustness and dynamic performance from each other. The adjustable parameter η2 of FO-PID controller is directly related to the robustness of closed-loop system, and the analytical expression is given between the maximum sensitivity specification Ms and parameters η2. In addition, according to the dynamic performance requirement of the practical system, the parameters η1 can also be selected easily. By approximating the dead-time term of the process model with the first-order Padé or Taylor series, the expressions for 2-DOF FO-PID controller parameters are derived for three classes of FO processes with dead-time. Moreover, compared with other methods, the proposed method is simple and easy to implement. Finally, the simulation results are given to illustrate the effectiveness of this method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Research on fuzzy PID control to electronic speed regulator

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo

    2007-12-01

    As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.

  8. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    NASA Technical Reports Server (NTRS)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear

  9. Optimized PID control of depth of hypnosis in anesthesia.

    PubMed

    Padula, Fabrizio; Ionescu, Clara; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio; Vivacqua, Giulio

    2017-06-01

    This paper addresses the use of proportional-integral-derivative controllers for regulating the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. In fact, introducing an automatic control system might provide significant benefits for the patient in reducing the risk for under- and over-dosing. In this study, the controller parameters are obtained through genetic algorithms by solving a min-max optimization problem. A set of 12 patient models representative of a large population variance is used to test controller robustness. The worst-case performance in the considered population is minimized considering two different scenarios: the induction case and the maintenance case. Our results indicate that including a gain scheduling strategy enables optimal performance for induction and maintenance phases, separately. Using a single tuning to address both tasks may results in a loss of performance up to 102% in the induction phase and up to 31% in the maintenance phase. Further on, it is shown that a suitably designed low-pass filter on the controller output can handle the trade-off between the performance and the noise effect in the control variable. Optimally tuned PID controllers provide a fast induction time with an acceptable overshoot and a satisfactory disturbance rejection performance during maintenance. These features make them a very good tool for comparison when other control algorithms are developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Design and Evaluation of a Robust PID Controller for a Fully Implantable Artificial Pancreas

    PubMed Central

    2015-01-01

    Treatment of type 1 diabetes mellitus could be greatly improved by applying a closed-loop control strategy to insulin delivery, also known as an artificial pancreas (AP). In this work, we outline the design of a fully implantable AP using intraperitoneal (IP) insulin delivery and glucose sensing. The design process utilizes the rapid glucose sensing and insulin action offered by the IP space to tune a PID controller with insulin feedback to provide safe and effective insulin delivery. The controller was tuned to meet robust performance and stability specifications. An anti-reset windup strategy was introduced to prevent dangerous undershoot toward hypoglycemia after a large meal disturbance. The final controller design achieved 78% of time within the tight glycemic range of 80–140 mg/dL, with no time spent in hypoglycemia. The next step is to test this controller design in an animal model to evaluate the in vivo performance. PMID:26538805

  11. ? PID output-feedback control under event-triggered protocol

    NASA Astrophysics Data System (ADS)

    Zhao, Di; Wang, Zidong; Ding, Derui; Wei, Guoliang; Alsaadi, Fuad E.

    2018-07-01

    This paper is concerned with the ? proportional-integral-derivative (PID) output-feedback control problem for a class of linear discrete-time systems under event-triggered protocols. The controller and the actuators are connected through a communication network of limited bandwidth, and an event-triggered communication mechanism is adopted to decide when a certain control signal should be transmitted to the respective actuator. Furthermore, a novel PID output-feedback controller is designed where the accumulative sum-loop (the counterpart to the integral-loop in the continues-time setting) operates on a limited time-window with hope to mitigate the effect from the past measurement data. The main objective of the problem under consideration is to design a desired PID controller such that the closed-loop system is exponentially stable and the prescribed ? disturbance rejection attenuation level is guaranteed under event-triggered protocols. By means of the Lyapunov stability theory combined with the orthogonal decomposition, sufficient conditions are established under which the addressed PID controller design problem is recast into a linear convex optimization one that can be easily solved via available software packages. Finally, a simulation example is exploited to illustrate the usefulness and effectiveness of the established control scheme.

  12. Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system.

    PubMed

    El-Bardini, Mohammad; El-Nagar, Ahmad M

    2014-05-01

    In this paper, the interval type-2 fuzzy proportional-integral-derivative controller (IT2F-PID) is proposed for controlling an inverted pendulum on a cart system with an uncertain model. The proposed controller is designed using a new method of type-reduction that we have proposed, which is called the simplified type-reduction method. The proposed IT2F-PID controller is able to handle the effect of structure uncertainties due to the structure of the interval type-2 fuzzy logic system (IT2-FLS). The results of the proposed IT2F-PID controller using a new method of type-reduction are compared with the other proposed IT2F-PID controller using the uncertainty bound method and the type-1 fuzzy PID controller (T1F-PID). The simulation and practical results show that the performance of the proposed controller is significantly improved compared with the T1F-PID controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Non-fragile multivariable PID controller design via system augmentation

    NASA Astrophysics Data System (ADS)

    Liu, Jinrong; Lam, James; Shen, Mouquan; Shu, Zhan

    2017-07-01

    In this paper, the issue of designing non-fragile H∞ multivariable proportional-integral-derivative (PID) controllers with derivative filters is investigated. In order to obtain the controller gains, the original system is associated with an extended system such that the PID controller design can be formulated as a static output-feedback control problem. By taking the system augmentation approach, the conditions with slack matrices for solving the non-fragile H∞ multivariable PID controller gains are established. Based on the results, linear matrix inequality -based iterative algorithms are provided to compute the controller gains. Simulations are conducted to verify the effectiveness of the proposed approaches.

  14. Variable Structure PID Control to Prevent Integrator Windup

    NASA Technical Reports Server (NTRS)

    Hall, C. E.; Hodel, A. S.; Hung, J. Y.

    1999-01-01

    PID controllers are frequently used to control systems requiring zero steady-state error while maintaining requirements for settling time and robustness (gain/phase margins). PID controllers suffer significant loss of performance due to short-term integrator wind-up when used in systems with actuator saturation. We examine several existing and proposed methods for the prevention of integrator wind-up in both continuous and discrete time implementations.

  15. Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time.

    PubMed

    Das, Saptarshi; Pan, Indranil; Das, Shantanu

    2013-07-01

    Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Simulation and analysis of vertical displacement characteristics of three wheels reverse trike vehicle with PID controller application

    NASA Astrophysics Data System (ADS)

    Wibowo, Lambang, Lullus; Erick Chandra, N.; Muhayat, Nurul; Jaka S., B.

    2017-08-01

    The purpose of this research is to obtain a mathematical model (Full Vehicle Model) and compare the performance of passive and active suspension systems of a Three-Wheels Reverse Trike vehicle. Vehicle suspension system should able to provide good steering handling and passenger comfort. Vehicle suspension system generally only uses passive suspension components with fix spring and damper coefficients. An active suspension developed from the traditional (passive) suspension design can directly control the actuator force in the suspension system. In this paper, modeling and simulation of passive and active suspension system for a Full Vehicle Model is performed using Simulink-MATLAB software. Ziegler & Nichols tuning method is used to obtain controller parameters of Proportional Integral Derivative (PID) controller. Comparison between passive and active suspension with PID controller is conducted for disturbances input of single bump road surface profile 0.1 meters. The results are the displacement and acceleration of the vehicle body in the vertical direction of active suspension system with PID control is better in providing handling capabilities and comfort for the driver than of passive suspension system. The acceleration of 1,8G with the down time of 2.5 seconds is smaller than the acceleration of 2.5G with down time of 5.5 seconds.

  17. Programmable logic controller implementation of an auto-tuned predictive control based on minimal plant information.

    PubMed

    Valencia-Palomo, G; Rossiter, J A

    2011-01-01

    This paper makes two key contributions. First, it tackles the issue of the availability of constrained predictive control for low-level control loops. Hence, it describes how the constrained control algorithm is embedded in an industrial programmable logic controller (PLC) using the IEC 61131-3 programming standard. Second, there is a definition and implementation of a novel auto-tuned predictive controller; the key novelty is that the modelling is based on relatively crude but pragmatic plant information. Laboratory experiment tests were carried out in two bench-scale laboratory systems to prove the effectiveness of the combined algorithm and hardware solution. For completeness, the results are compared with a commercial proportional-integral-derivative (PID) controller (also embedded in the PLC) using the most up to date auto-tuning rules. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Bidirectional active control of structures with type-2 fuzzy PD and PID

    NASA Astrophysics Data System (ADS)

    Paul, Satyam; Yu, Wen; Li, Xiaoou

    2018-03-01

    Proportional-derivative and proportional-integral-derivative (PD/PID) controllers are popular algorithms in structure vibration control. In order to maintain minimum regulation error, the PD/PID control require big proportional and derivative gains. The control performances are not satisfied because of the big uncertainties in the buildings. In this paper, type-2 fuzzy system is applied to compensate the unknown uncertainties, and is combined with the PD/PID control. We prove the stability of these fuzzy PD and PID controllers. The sufficient conditions can be used for choosing the gains of PD/PID. The theory results are verified by a two-storey building prototype. The experimental results validate our analysis.

  19. Model Free iPID Control for Glycemia Regulation of Type-1 Diabetes.

    PubMed

    MohammadRidha, Taghreed; Ait-Ahmed, Mourad; Chaillous, Lucy; Krempf, Michel; Guilhem, Isabelle; Poirier, Jean-Yves; Moog, Claude H

    2018-01-01

    The objective is to design a fully automated glycemia controller of Type-1 Diabetes (T1D) in both fasting and postprandial phases on a large number of virtual patients. A model-free intelligent proportional-integral-derivative (iPID) is used to infuse insulin. The feasibility of iPID is tested in silico on two simulators with and without measurement noise. The first simulator is derived from a long-term linear time-invariant model. The controller is also validated on the UVa/Padova metabolic simulator on 10 adults under 25 runs/subject for noise robustness test. It was shown that without measurement noise, iPID mimicked the normal pancreatic secretion with a relatively fast reaction to meals as compared to a standard PID. With the UVa/Padova simulator, the robustness against CGM noise was tested. A higher percentage of time in target was obtained with iPID as compared to standard PID with reduced time spent in hyperglycemia. Two different T1D simulators tests showed that iPID detects meals and reacts faster to meal perturbations as compared to a classic PID. The intelligent part turns the controller to be more aggressive immediately after meals without neglecting safety. Further research is suggested to improve the computation of the intelligent part of iPID for such systems under actuator constraints. Any improvement can impact the overall performance of the model-free controller. The simple structure iPID is a step for PID-like controllers since it combines the classic PID nice properties with new adaptive features.

  20. LMI designmethod for networked-based PID control

    NASA Astrophysics Data System (ADS)

    Souza, Fernando de Oliveira; Mozelli, Leonardo Amaral; de Oliveira, Maurício Carvalho; Palhares, Reinaldo Martinez

    2016-10-01

    In this paper, we propose a methodology for the design of networked PID controllers for second-order delayed processes using linear matrix inequalities. The proposed procedure takes into account time-varying delay on the plant, time-varying delays induced by the network and packed dropouts. The design is carried on entirely using a continuous-time model of the closed-loop system where time-varying delays are used to represent sampling and holding occurring in a discrete-time digital PID controller.

  1. Fuzzy PID control algorithm based on PSO and application in BLDC motor

    NASA Astrophysics Data System (ADS)

    Lin, Sen; Wang, Guanglong

    2017-06-01

    A fuzzy PID control algorithm is studied based on improved particle swarm optimization (PSO) to perform Brushless DC (BLDC) motor control which has high accuracy, good anti-jamming capability and steady state accuracy compared with traditional PID control. The mathematical and simulation model is established for BLDC motor by simulink software, and the speed loop of the fuzzy PID controller is designed. The simulation results show that the fuzzy PID control algorithm based on PSO has higher stability, high control precision and faster dynamic response speed.

  2. PID Controller Design for FES Applied to Ankle Muscles in Neuroprosthesis for Standing Balance

    PubMed Central

    Rouhani, Hossein; Same, Michael; Masani, Kei; Li, Ya Qi; Popovic, Milos R.

    2017-01-01

    balance. At the same time, the FES-controlled balance required similar torque levels (no significant difference) as voluntarily-controlled balance. The implemented PID parameters were to some extent consistent among subjects for standard weight conditions and did not require prolonged individual-specific tuning. The proposed methodology can be used to design FES controllers for closed-loop controlled neuroprostheses for standing balance. Further investigation of the clinical implementation of this approach for neurologically impaired individuals is needed. PMID:28676739

  3. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    NASA Astrophysics Data System (ADS)

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-03-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.

  4. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    PubMed Central

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-01-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework. PMID:26987587

  5. Quadrotor trajectory tracking using PID cascade control

    NASA Astrophysics Data System (ADS)

    Idres, M.; Mustapha, O.; Okasha, M.

    2017-12-01

    Quadrotors have been applied to collect information for traffic, weather monitoring, surveillance and aerial photography. In order to accomplish their mission, quadrotors have to follow specific trajectories. This paper presents proportional-integral-derivative (PID) cascade control of a quadrotor for path tracking problem when velocity and acceleration are small. It is based on near hover controller for small attitude angles. The integral of time-weighted absolute error (ITAE) criterion is used to determine the PID gains as a function of quadrotor modeling parameters. The controller is evaluated in three-dimensional environment in Simulink. Overall, the tracking performance is found to be excellent for small velocity condition.

  6. A design of LED adaptive dimming lighting system based on incremental PID controller

    NASA Astrophysics Data System (ADS)

    He, Xiangyan; Xiao, Zexin; He, Shaojia

    2010-11-01

    As a new generation energy-saving lighting source, LED is applied widely in various technology and industry fields. The requirement of its adaptive lighting technology is more and more rigorous, especially in the automatic on-line detecting system. In this paper, a closed loop feedback LED adaptive dimming lighting system based on incremental PID controller is designed, which consists of MEGA16 chip as a Micro-controller Unit (MCU), the ambient light sensor BH1750 chip with Inter-Integrated Circuit (I2C), and constant-current driving circuit. A given value of light intensity required for the on-line detecting environment need to be saved to the register of MCU. The optical intensity, detected by BH1750 chip in real time, is converted to digital signal by AD converter of the BH1750 chip, and then transmitted to MEGA16 chip through I2C serial bus. Since the variation law of light intensity in the on-line detecting environment is usually not easy to be established, incremental Proportional-Integral-Differential (PID) algorithm is applied in this system. Control variable obtained by the incremental PID determines duty cycle of Pulse-Width Modulation (PWM). Consequently, LED's forward current is adjusted by PWM, and the luminous intensity of the detection environment is stabilized by self-adaptation. The coefficients of incremental PID are obtained respectively after experiments. Compared with the traditional LED dimming system, it has advantages of anti-interference, simple construction, fast response, and high stability by the use of incremental PID algorithm and BH1750 chip with I2C serial bus. Therefore, it is suitable for the adaptive on-line detecting applications.

  7. Model transformations for state-space self-tuning control of multivariable stochastic systems

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Bao, Yuan L.; Coleman, Norman P.

    1988-01-01

    The design of self-tuning controllers for multivariable stochastic systems is considered analytically. A long-division technique for finding the similarity transformation matrix and transforming the estimated left MFD to the right MFD is developed; the derivation is given in detail, and the procedures involved are briefly characterized.

  8. A self-tuning automatic voltage regulator designed for an industrial environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, D.; Hogg, B.W.; Swidenbank, E.

    Examination of the performance of fixed parameter controllers has resulted in the development of self-tuning strategies for excitation control of turbogenerator systems. In conjunction with the advanced control algorithms, sophisticated measurement techniques have previously been adopted on micromachine systems to provide generator terminal quantities. In power stations, however, a minimalist hardware arrangement would be selected leading to relatively simple measurement techniques. The performance of a range of self-tuning schemes is investigated on an industrial test-bed, employing a typical industrial hardware measurement system. Individual controllers are implemented on a standard digital automatic voltage regulator, as installed in power stations. This employsmore » a VME platform, and the self-tuning algorithms are introduced by linking to a transputer network. The AVR includes all normal features, such as field forcing, VAR limiting and overflux protection. Self-tuning controller performance is compared with that of a fixed gain digital AVR.« less

  9. Method study on fuzzy-PID adaptive control of electric-hydraulic hitch system

    NASA Astrophysics Data System (ADS)

    Li, Mingsheng; Wang, Liubu; Liu, Jian; Ye, Jin

    2017-03-01

    In this paper, fuzzy-PID adaptive control method is applied to the control of tractor electric-hydraulic hitch system. According to the characteristics of the system, a fuzzy-PID adaptive controller is designed and the electric-hydraulic hitch system model is established. Traction control and position control performance simulation are carried out with the common PID control method. A field test rig was set up to test the electric-hydraulic hitch system. The test results showed that, after the fuzzy-PID adaptive control is adopted, when the tillage depth steps from 0.1m to 0.3m, the system transition process time is 4s, without overshoot, and when the tractive force steps from 3000N to 7000N, the system transition process time is 5s, the system overshoot is 25%.

  10. Self-tuning regulator for an interacting CSTR process

    NASA Astrophysics Data System (ADS)

    Rajendra Mungale, Niraj; Upadhyay, Akshay; Jaganatha Pandian, B.

    2017-11-01

    In the paper we have laid emphasis on STR that is Self Tuning Regulator and its application for an interacting process. CSTR has a great importance in Chemical Process when we deal with controlling different parameters of a process using CSTR. Basically CSTR is used to maintain a constant liquid temperature in the process. The proposed method called self-tuning regulator, is a different scheme where process parameters are updated and the controller parameters are obtained from the solution of a design problem. The paper deals with STR and methods associated with it.

  11. Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor.

    PubMed

    Prakash, J; Srinivasan, K

    2009-07-01

    In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.

  12. A Method for Precision Closed-Loop Irrigation Using a Modified PID Control Algorithm

    NASA Astrophysics Data System (ADS)

    Goodchild, Martin; Kühn, Karl; Jenkins, Malcolm; Burek, Kazimierz; Dutton, Andrew

    2016-04-01

    The benefits of closed-loop irrigation control have been demonstrated in grower trials which show the potential for improved crop yields and resource usage. Managing water use by controlling irrigation in response to soil moisture changes to meet crop water demands is a popular approach but requires knowledge of closed-loop control practice. In theory, to obtain precise closed-loop control of a system it is necessary to characterise every component in the control loop to derive the appropriate controller parameters, i.e. proportional, integral & derivative (PID) parameters in a classic PID controller. In practice this is often difficult to achieve. Empirical methods are employed to estimate the PID parameters by observing how the system performs under open-loop conditions. In this paper we present a modified PID controller, with a constrained integral function, that delivers excellent regulation of soil moisture by supplying the appropriate amount of water to meet the needs of the plant during the diurnal cycle. Furthermore, the modified PID controller responds quickly to changes in environmental conditions, including rainfall events which can result in: controller windup, under-watering and plant stress conditions. The experimental work successfully demonstrates the functionality of a constrained integral PID controller that delivers robust and precise irrigation control. Coir substrate strawberry growing trial data is also presented illustrating soil moisture control and the ability to match water deliver to solar radiation.

  13. Monitoring System and Temperature Controlling on PID Based Poultry Hatching Incubator

    NASA Astrophysics Data System (ADS)

    Shafiudin, S.; Kholis, N.

    2018-04-01

    Poultry hatching cultivation is essential to be observed in terms of temperature stability by using artificial penetration incubator which applies On/Off control. The On/Off control produces relatively long response time to reach steady-state conditions. Moreover, how the system works makes the component worn out because the lamp is on-off periodically. Besides, the cultivation in the market is less suitable to be used in an environment which has fluctuating temperature because it may influence plant’s temperature stability. The study aims to design automatic poultry hatching cultivation that can repair the temperature’s response of plant incubator to keep stable and in line with the intended set-point temperature value by using PID controller. The method used in PID controlling is designed to identify plant using ARX (Auto Regressive eXogenous) MATLAB which is dynamic/non-linear to obtain mathematical model and PID constants value that is appropriate to system. The hardware design for PID-based egg incubator uses Arduino Uno R3, as the main controller that includes PID source, and PWM, to keep plant temperature stability, which is integrated with incandescent light actuators and sensors where DHTI 1 sensor as the reader as temperature condition and plant humidity. The result of the study showed that PID constants value of each plant is different. For parallel 15 Watt plant, Kp = 3.9956, Ki = 0.361, Kd = 0, while for parallel 25 Watt plant, the value of Kp = 5.714, Ki = 0.351, Kd = 0. The PID constants value were capable to produce stable system response which is based on set-point with steady state error’s value is around 5%, that is 2.7%. With hatching percentage of 70-80%, the hatching process is successful in air-conditioned environment (changeable).

  14. Self-tuning bandpass filter

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Hedlund, R. C. (Inventor)

    1973-01-01

    An electronic filter is described which simultaneously maintains a constant bandwidth and a constant center frequency gain as the input signal frequency varies, and remains self-tuning to that center frequency over a decade range. The filter utilizes a field effect transistor (FET) as a voltage variable resistance in the bandpass frequency determining circuit. The FET is responsive to a phase detector to achieve self-tuning.

  15. Adaptive Self-Tuning Networks

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.

    2015-12-01

    The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.

  16. Self-tuning control algorithm design for vehicle adaptive cruise control system through real-time estimation of vehicle parameters and road grade

    NASA Astrophysics Data System (ADS)

    Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman

    2016-09-01

    The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.

  17. A robust hybrid fuzzy-simulated annealing-intelligent water drops approach for tuning a distribution static compensator nonlinear controller in a distribution system

    NASA Astrophysics Data System (ADS)

    Bagheri Tolabi, Hajar; Hosseini, Rahil; Shakarami, Mahmoud Reza

    2016-06-01

    This article presents a novel hybrid optimization approach for a nonlinear controller of a distribution static compensator (DSTATCOM). The DSTATCOM is connected to a distribution system with the distributed generation units. The nonlinear control is based on partial feedback linearization. Two proportional-integral-derivative (PID) controllers regulate the voltage and track the output in this control system. In the conventional scheme, the trial-and-error method is used to determine the PID controller coefficients. This article uses a combination of a fuzzy system, simulated annealing (SA) and intelligent water drops (IWD) algorithms to optimize the parameters of the controllers. The obtained results reveal that the response of the optimized controlled system is effectively improved by finding a high-quality solution. The results confirm that using the tuning method based on the fuzzy-SA-IWD can significantly decrease the settling and rising times, the maximum overshoot and the steady-state error of the voltage step response of the DSTATCOM. The proposed hybrid tuning method for the partial feedback linearizing (PFL) controller achieved better regulation of the direct current voltage for the capacitor within the DSTATCOM. Furthermore, in the event of a fault the proposed controller tuned by the fuzzy-SA-IWD method showed better performance than the conventional controller or the PFL controller without optimization by the fuzzy-SA-IWD method with regard to both fault duration and clearing times.

  18. Robust design of a 2-DOF GMV controller: a direct self-tuning and fuzzy scheduling approach.

    PubMed

    Silveira, Antonio S; Rodríguez, Jaime E N; Coelho, Antonio A R

    2012-01-01

    This paper presents a study on self-tuning control strategies with generalized minimum variance control in a fixed two degree of freedom structure-or simply GMV2DOF-within two adaptive perspectives. One, from the process model point of view, using a recursive least squares estimator algorithm for direct self-tuning design, and another, using a Mamdani fuzzy GMV2DOF parameters scheduling technique based on analytical and physical interpretations from robustness analysis of the system. Both strategies are assessed by simulation and real plants experimentation environments composed of a damped pendulum and an under development wind tunnel from the Department of Automation and Systems of the Federal University of Santa Catarina. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Self-Tuning Impact Damper for Rotating Blades

    NASA Technical Reports Server (NTRS)

    Pufy, Kirsten P. (Inventor); Brown, Gerald V. (Inventor); Bagley, Ronald L. (Inventor)

    2004-01-01

    A self-tuning impact damper is disclosed that absorbs and dissipates vibration energy in the blades of rotors in compressors and/or turbines thereby dramatically extending their service life and operational readiness. The self-tuning impact damper uses the rotor speed to tune the resonant frequency of a rattling mass to an engine order excitation frequency. The rating mass dissipates energy through collisions between the rattling mass and the walls of a cavity of the self-tuning impact damper, as well as though friction between the rattling mass and the base of the cavity. In one embodiment, the self-tuning impact damper has a ball-in-trough configuration with tire ball serving as the rattling mass.

  20. Self-tuning control of attitude and momentum management for the Space Station

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Yuan, Z. Z.; Zhao, X. M.

    1992-01-01

    This paper presents a hybrid state-space self-tuning design methodology using dual-rate sampling for suboptimal digital adaptive control of attitude and momentum management for the Space Station. This new hybrid adaptive control scheme combines an on-line recursive estimation algorithm for indirectly identifying the parameters of a continuous-time system from the available fast-rate sampled data of the inputs and states and a controller synthesis algorithm for indirectly finding the slow-rate suboptimal digital controller from the designed optimal analog controller. The proposed method enables the development of digitally implementable control algorithms for the robust control of Space Station Freedom with unknown environmental disturbances and slowly time-varying dynamics.

  1. Tunning PID controller using particle swarm optimization algorithm on automatic voltage regulator system

    NASA Astrophysics Data System (ADS)

    Aranza, M. F.; Kustija, J.; Trisno, B.; Hakim, D. L.

    2016-04-01

    PID Controller (Proportional Integral Derivative) was invented since 1910, but till today still is used in industries, even though there are many kind of modern controllers like fuzz controller and neural network controller are being developed. Performance of PID controller is depend on on Proportional Gain (Kp), Integral Gain (Ki) and Derivative Gain (Kd). These gains can be got by using method Ziegler-Nichols (ZN), gain-phase margin, Root Locus, Minimum Variance dan Gain Scheduling however these methods are not optimal to control systems that nonlinear and have high-orde, in addition, some methods relative hard. To solve those obstacles, particle swarm optimization (PSO) algorithm is proposed to get optimal Kp, Ki and Kd. PSO is proposed because PSO has convergent result and not require many iterations. On this research, PID controller is applied on AVR (Automatic Voltage Regulator). Based on result of analyzing transient, stability Root Locus and frequency response, performance of PID controller is better than Ziegler-Nichols.

  2. Design and Simulation of a PID Controller for Motion Control Systems

    NASA Astrophysics Data System (ADS)

    Hassan Abdullahi, Zakariyya; Danzomo, Bashir Ahmed; Suleiman Abdullahi, Zainab

    2018-04-01

    Motion control system plays important role in many industrial applications among which are in robot system, missile launching, positioning systems etc. However, the performance requirement for these applications in terms of high accuracy, high speed, insignificant or no overshoot and robustness have generated continuous challenges in the field of motion control system design and implementation. To compensate this challenge, a PID controller was design using mathematical model of a DC motor based on classical root-locus approach. The reason for adopting root locus design is to remodel the closed-loop response by putting the closed-loop poles of the system at desired points. Adding poles and zeros to the initial open-loop transfer function through the controller provide a way to transform the root locus in order to place the closed-loop poles at the required points. This process can also be used for discrete-time models. The Advantages of root locus over other methods is that, it gives the better way of pinpointing the parameters and can easily predict the fulfilment of the whole system. The controller performance was simulated using MATLAB code and a reasonable degree of accuracy was obtained. Implementation of the proposed model was conducted using-Simulink and the result obtained shows that the PID controller met the transient performance specifications with both settling time and overshoot less than 0.1s and 5% respectively. In terms of steady state error, the PID controller gave good response for both step input and ramp.

  3. Adaptive PID formation control of nonholonomic robots without leader's velocity information.

    PubMed

    Shen, Dongbin; Sun, Weijie; Sun, Zhendong

    2014-03-01

    This paper proposes an adaptive proportional integral derivative (PID) algorithm to solve a formation control problem in the leader-follower framework where the leader robot's velocities are unknown for the follower robots. The main idea is first to design some proper ideal control law for the formation system to obtain a required performance, and then to propose the adaptive PID methodology to approach the ideal controller. As a result, the formation is achieved with much more enhanced robust formation performance. The stability of the closed-loop system is theoretically proved by Lyapunov method. Both numerical simulations and physical vehicle experiments are presented to verify the effectiveness of the proposed adaptive PID algorithm. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    NASA Astrophysics Data System (ADS)

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  5. Active vibration and noise control of vibro-acoustic system by using PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping

    2015-07-01

    Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.

  6. Research on Environmental Adjustment of Cloud Ranch Based on BP Neural Network PID Control

    NASA Astrophysics Data System (ADS)

    Ren, Jinzhi; Xiang, Wei; Zhao, Lin; Wu, Jianbo; Huang, Lianzhen; Tu, Qinggang; Zhao, Heming

    2018-01-01

    In order to make the intelligent ranch management mode replace the traditional artificial one gradually, this paper proposes a pasture environment control system based on cloud server, and puts forward the PID control algorithm based on BP neural network to control temperature and humidity better in the pasture environment. First, to model the temperature and humidity (controlled object) of the pasture, we can get the transfer function. Then the traditional PID control algorithm and the PID one based on BP neural network are applied to the transfer function. The obtained step tracking curves can be seen that the PID controller based on BP neural network has obvious superiority in adjusting time and error, etc. This algorithm, calculating reasonable control parameters of the temperature and humidity to control environment, can be better used in the cloud service platform.

  7. [Research on magnetic coupling centrifugal blood pump control based on a self-tuning fuzzy PI algorithm].

    PubMed

    Yang, Lei; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Wang, Wei; Zhang, Haibo; Han, Lu; Xu, Liang

    2014-10-01

    The purpose of this paper is to report the research and design of control system of magnetic coupling centrifugal blood pump in our laboratory, and to briefly describe the structure of the magnetic coupling centrifugal blood pump and principles of the body circulation model. The performance of blood pump is not only related to materials and structure, but also depends on the control algorithm. We studied the algorithm about motor current double-loop control for brushless DC motor. In order to make the algorithm adjust parameter change in different situations, we used the self-tuning fuzzy PI control algorithm and gave the details about how to design fuzzy rules. We mainly used Matlab Simulink to simulate the motor control system to test the performance of algorithm, and briefly introduced how to implement these algorithms in hardware system. Finally, by building the platform and conducting experiments, we proved that self-tuning fuzzy PI control algorithm could greatly improve both dynamic and static performance of blood pump and make the motor speed and the blood pump flow stable and adjustable.

  8. Autonomous Performance Monitoring System: Monitoring and Self-Tuning (MAST)

    NASA Technical Reports Server (NTRS)

    Peterson, Chariya; Ziyad, Nigel A.

    2000-01-01

    Maintaining the long-term performance of software onboard a spacecraft can be a major factor in the cost of operations. In particular, the task of controlling and maintaining a future mission of distributed spacecraft will undoubtedly pose a great challenge, since the complexity of multiple spacecraft flying in formation grows rapidly as the number of spacecraft in the formation increases. Eventually, new approaches will be required in developing viable control systems that can handle the complexity of the data and that are flexible, reliable and efficient. In this paper we propose a methodology that aims to maintain the accuracy of flight software, while reducing the computational complexity of software tuning tasks. The proposed Monitoring and Self-Tuning (MAST) method consists of two parts: a flight software monitoring algorithm and a tuning algorithm. The dependency on the software being monitored is mostly contained in the monitoring process, while the tuning process is a generic algorithm independent of the detailed knowledge on the software. This architecture will enable MAST to be applicable to different onboard software controlling various dynamics of the spacecraft, such as attitude self-calibration, and formation control. An advantage of MAST over conventional techniques such as filter or batch least square is that the tuning algorithm uses machine learning approach to handle uncertainty in the problem domain, resulting in reducing over all computational complexity. The underlying concept of this technique is a reinforcement learning scheme based on cumulative probability generated by the historical performance of the system. The success of MAST will depend heavily on the reinforcement scheme used in the tuning algorithm, which guarantees the tuning solutions exist.

  9. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P.; Yang, Chen; Hosseini, Nahid; Fantner, Georg E.

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  10. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy.

    PubMed

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P; Yang, Chen; Hosseini, Nahid; Fantner, Georg E

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  11. An express method for optimally tuning an analog controller with respect to integral quality criteria

    NASA Astrophysics Data System (ADS)

    Golinko, I. M.; Kovrigo, Yu. M.; Kubrak, A. I.

    2014-03-01

    An express method for optimally tuning analog PI and PID controllers is considered. An integral quality criterion with minimizing the control output is proposed for optimizing control systems. The suggested criterion differs from existing ones in that the control output applied to the technological process is taken into account in a correct manner, due to which it becomes possible to maximally reduce the expenditure of material and/or energy resources in performing control of industrial equipment sets. With control organized in such manner, smaller wear and longer service life of control devices are achieved. A unimodal nature of the proposed criterion for optimally tuning a controller is numerically demonstrated using the methods of optimization theory. A functional interrelation between the optimal controller parameters and dynamic properties of a controlled plant is numerically determined for a single-loop control system. The results obtained from simulation of transients in a control system carried out using the proposed and existing functional dependences are compared with each other. The proposed calculation formulas differ from the existing ones by a simple structure and highly accurate search for the optimal controller tuning parameters. The obtained calculation formulas are recommended for being used by specialists in automation for design and optimization of control systems.

  12. Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms.

    PubMed

    Asgharnia, Amirhossein; Shahnazi, Reza; Jamali, Ali

    2018-05-11

    The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Effects of computing time delay on real-time control systems

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Cui, Xianzhong

    1988-01-01

    The reliability of a real-time digital control system depends not only on the reliability of the hardware and software used, but also on the speed in executing control algorithms. The latter is due to the negative effects of computing time delay on control system performance. For a given sampling interval, the effects of computing time delay are classified into the delay problem and the loss problem. Analysis of these two problems is presented as a means of evaluating real-time control systems. As an example, both the self-tuning predicted (STP) control and Proportional-Integral-Derivative (PID) control are applied to the problem of tracking robot trajectories, and their respective effects of computing time delay on control performance are comparatively evaluated. For this example, the STP (PID) controller is shown to outperform the PID (STP) controller in coping with the delay (loss) problem.

  14. Control of force during rapid visuomotor force-matching tasks can be described by discrete time PID control algorithms.

    PubMed

    Dideriksen, Jakob Lund; Feeney, Daniel F; Almuklass, Awad M; Enoka, Roger M

    2017-08-01

    Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.

  15. Analytical design equations for self-tuned Class-E power amplifier.

    PubMed

    Hu, Zhe; Troyk, Philip

    2011-01-01

    For many emerging neural prosthesis designs that are powered by inductive coupling, their small physical size requires large current in the extracorporeal transmitter coil, and the Class-E power amplifier topology is often used for the transmitter design. Tuning of Class-E circuits for efficient operation is difficult and a self-tuned circuit can facilitate the tuning. The coil current is sensed and used to tune the switching of the transistor switch in the Class-E circuit in order to maintain its high-efficiency operation. Although mathematically complex, the analysis and design procedure for the self-tuned Class-E circuit can be simplified due to the current feedback control, which makes the phase angle between the switching pulse and the coil current predetermined. In this paper explicit analytical design equations are derived and a detailed design procedure is presented and compared with the conventional Class-E design approaches.

  16. PI controller design of a wind turbine: evaluation of the pole-placement method and tuning using constrained optimization

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmood; Tibaldi, Carlo; Hansen, Morten H.

    2016-09-01

    PI/PID controllers are the most common wind turbine controllers. Normally a first tuning is obtained using methods such as pole-placement or Ziegler-Nichols and then extensive aeroelastic simulations are used to obtain the best tuning in terms of regulation of the outputs and reduction of the loads. In the traditional tuning approaches, the properties of different open loop and closed loop transfer functions of the system are not normally considered. In this paper, an assessment of the pole-placement tuning method is presented based on robustness measures. Then a constrained optimization setup is suggested to automatically tune the wind turbine controller subject to robustness constraints. The properties of the system such as the maximum sensitivity and complementary sensitivity functions (Ms and Mt ), along with some of the responses of the system, are used to investigate the controller performance and formulate the optimization problem. The cost function is the integral absolute error (IAE) of the rotational speed from a disturbance modeled as a step in wind speed. Linearized model of the DTU 10-MW reference wind turbine is obtained using HAWCStab2. Thereafter, the model is reduced with model order reduction. The trade-off curves are given to assess the tunings of the poles- placement method and a constrained optimization problem is solved to find the best tuning.

  17. A comparative study of stabilizing control of a planer electromagnetic levitation using PID and LQR controllers

    NASA Astrophysics Data System (ADS)

    Yaseen, Mundher H. A.

    Magnetic levitation is a technique to suspend an object without any mechanical support. The main objective of this study is to demonstrate stabilized closed loop control of 1-DOF Maglev experimentally using real-time control simulink feature of (SIMLAB) microcontroller. Proportional Integral Derivative (PID) and Linear Quadratic Regulator (LQR) controllers are employed to examine the stability performance of the Maglev control system under effect of unbalanced change of load and wave signal on Maglev plane. The effect of unbalanced change of applied load on single point, line and plane are presented. Furthermore, in order to study the effect of sudden change in input signal, the input of wave signal has been applied on all points of the prototype maglev plate simultaneously. The results of pulse width modulation (PWM) reveal that the control system using LQR controller provides faster response to adjust the levitated plane comparing to PID controller. Moreover, the air gap distance that controlled using PID controller is rather stable with little oscillation. Meanwhile, LQR controller provided more stability and homogeneous response.

  18. Disformally self-tuning gravity

    NASA Astrophysics Data System (ADS)

    Emond, William T.; Saffin, Paul M.

    2016-03-01

    We extend a previous self-tuning analysis of the most general scalar-tensor theory of gravity in four dimensions with second order field equations by considering a generalized coupling to the matter sector. Through allowing a disformal coupling to matter we are able to extend the Fab Four model and construct a new class of theories that are able to tune away the cosmological constant on Friedmann-Lemaitre-Robertson-Walker backgrounds.

  19. Backstepping sliding mode control with functional tuning based on an instantaneous power approach applied to an underwater vehicle

    NASA Astrophysics Data System (ADS)

    Santos, Carlos Henrique Farias dos; Cildoz, Mariana Uzeda; Terra, Marco Henrique; De Pieri, Edson Roberto

    2018-03-01

    In this paper, we present a modified backstepping sliding mode control to deal with Euler-Lagrange systems. The controller is applied in an underwater vehicle in order to show the effectiveness of the approach proposed. Instantaneous power data provided by the propulsion system are used to tune the controller in order to guarantee robust performance and energy saving. Thanks to the combination of an internal Proportional Integral and Derivative (PID) controller, it is possible implement high gains to deal with the influence of disturbances and uncertainties. A comparative study among this backstepping sliding mode controller and standard sliding mode controls is presented.

  20. Trait Variance and Response Style Variance in the Scales of the Personality Inventory for DSM-5 (PID-5).

    PubMed

    Ashton, Michael C; de Vries, Reinout E; Lee, Kibeom

    2017-01-01

    Using self- and observer reports on the Personality Inventory for DSM-5 (PID-5) and the HEXACO Personality Inventory-Revised (HEXACO-PI-R), we identified for each inventory several trait dimensions (each defined by both self- and observer reports on the facet-level scales belonging to the same domain) and 2 source dimensions (each defined by self-reports or by observer reports, respectively, on all facet-level scales). Results (N = 217) showed that the source dimensions of the PID-5 were very large (much larger than those of the HEXACO-PI-R), and suggest that self-report (or observer report) response styles substantially inflate the intercorrelations and the alpha reliabilities of the PID-5 scales. We discuss the meaning and the implications of the large PID-5 source components, and we suggest some methods of controlling their influence.

  1. The application of immune genetic algorithm in main steam temperature of PID control of BP network

    NASA Astrophysics Data System (ADS)

    Li, Han; Zhen-yu, Zhang

    In order to overcome the uncertainties, large delay, large inertia and nonlinear property of the main steam temperature controlled object in the power plant, a neural network intelligent PID control system based on immune genetic algorithm and BP neural network is designed. Using the immune genetic algorithm global search optimization ability and good convergence, optimize the weights of the neural network, meanwhile adjusting PID parameters using BP network. The simulation result shows that the system is superior to conventional PID control system in the control of quality and robustness.

  2. Self-tuning bistable parametric feedback oscillator: Near-optimal amplitude maximization without model information

    NASA Astrophysics Data System (ADS)

    Braun, David J.; Sutas, Andrius; Vijayakumar, Sethu

    2017-01-01

    Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication, and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to model uncertainty, and limited sensitivity to parameter modulation, these oscillators require fine-tuning and strong modulation to generate robust large-amplitude oscillation. Here we present a principle of self-tuning parametric feedback excitation that alleviates the above-mentioned limitations. This is achieved using a minimalistic control implementation that performs (i) self-tuning (slow parameter adaptation) and (ii) feedback pumping (fast parameter modulation), without sophisticated signal processing past observations. The proposed approach provides near-optimal amplitude maximization without requiring model-based control computation, previously perceived inevitable to implement optimal control principles in practical application. Experimental implementation of the theory shows that the oscillator self-tunes itself near to the onset of dynamic bifurcation to achieve extreme sensitivity to small resonant parametric perturbations. As a result, it achieves large-amplitude oscillations by capitalizing on the effect of nonlinearity, despite substantial model uncertainties and strong unforeseen external perturbations. We envision the present finding to provide an effective and robust approach to parametric excitation when it comes to real-world application.

  3. Design of distributed PID-type dynamic matrix controller for fractional-order systems

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Zhang, Ridong

    2018-01-01

    With the continuous requirements for product quality and safety operation in industrial production, it is difficult to describe the complex large-scale processes with integer-order differential equations. However, the fractional differential equations may precisely represent the intrinsic characteristics of such systems. In this paper, a distributed PID-type dynamic matrix control method based on fractional-order systems is proposed. First, the high-order approximate model of integer order is obtained by utilising the Oustaloup method. Then, the step response model vectors of the plant is obtained on the basis of the high-order model, and the online optimisation for multivariable processes is transformed into the optimisation of each small-scale subsystem that is regarded as a sub-plant controlled in the distributed framework. Furthermore, the PID operator is introduced into the performance index of each subsystem and the fractional-order PID-type dynamic matrix controller is designed based on Nash optimisation strategy. The information exchange among the subsystems is realised through the distributed control structure so as to complete the optimisation task of the whole large-scale system. Finally, the control performance of the designed controller in this paper is verified by an example.

  4. Designing of new structure PID controller of boost converter for solar photovoltaic stability

    NASA Astrophysics Data System (ADS)

    Shabrina, Hanifati Nur; Setiawan, Eko Adhi; Sabirin, Chip Rinaldi

    2017-03-01

    Nowadays, the utilization of renewable energy as the source on distributed generation system is increasing. It aims to reduce reliance and power losses from utility grid and improve power stability in near loads. One example of renewable energy technology that have been highly proven on the market is solar photovoltaic (PV). This technology converts photon from sunlight into electricity. However, the fluctuation of solar radiation that often occurs become the main problem for this system. Due to this condition, the power conversion is needed to convert the change frequently in photovoltaic panel into a stable voltage to the system. Developing control of boost converter has important role to keep ability of system stabilization. A conventional PID (Proportional, Integral, Derivative) control is mostly used to achieve this goal. In this research, a design of new structure PID controller of boost converter is offered to better optimize system stability comparing to the conventional PID. Parameters obtained from this PID structure have been successfully yield a stable boost converter output at 200 V with 10% overshoot, 1.5 seconds of settling time, and 1.5% of steady-state error.

  5. Design and implementation of EP-based PID controller for chaos synchronization of Rikitake circuit systems.

    PubMed

    Hou, Yi-You

    2017-09-01

    This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters k p , k i , k d by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.

  6. Randomized Crossover Comparison of Personalized MPC and PID Control Algorithms for the Artificial Pancreas

    PubMed Central

    Pinsker, Jordan E.; Lee, Joon Bok; Dassau, Eyal; Seborg, Dale E.; Bradley, Paige K.; Gondhalekar, Ravi; Bevier, Wendy C.; Huyett, Lauren; Zisser, Howard C.; Doyle, Francis J.

    2016-01-01

    OBJECTIVE To evaluate two widely used control algorithms for an artificial pancreas (AP) under nonideal but comparable clinical conditions. RESEARCH DESIGN AND METHODS After a pilot safety and feasibility study (n = 10), closed-loop control (CLC) was evaluated in a randomized, crossover trial of 20 additional adults with type 1 diabetes. Personalized model predictive control (MPC) and proportional integral derivative (PID) algorithms were compared in supervised 27.5-h CLC sessions. Challenges included overnight control after a 65-g dinner, response to a 50-g breakfast, and response to an unannounced 65-g lunch. Boluses of announced dinner and breakfast meals were given at mealtime. The primary outcome was time in glucose range 70–180 mg/dL. RESULTS Mean time in range 70–180 mg/dL was greater for MPC than for PID (74.4 vs. 63.7%, P = 0.020). Mean glucose was also lower for MPC than PID during the entire trial duration (138 vs. 160 mg/dL, P = 0.012) and 5 h after the unannounced 65-g meal (181 vs. 220 mg/dL, P = 0.019). There was no significant difference in time with glucose <70 mg/dL throughout the trial period. CONCLUSIONS This first comprehensive study to compare MPC and PID control for the AP indicates that MPC performed particularly well, achieving nearly 75% time in the target range, including the unannounced meal. Although both forms of CLC provided safe and effective glucose management, MPC performed as well or better than PID in all metrics. PMID:27289127

  7. Research on frequency control strategy of interconnected region based on fuzzy PID

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Li, Chunlan

    2018-05-01

    In order to improve the frequency control performance of the interconnected power grid, overcome the problems of poor robustness and slow adjustment of traditional regulation, the paper puts forward a frequency control method based on fuzzy PID. The method takes the frequency deviation and tie-line deviation of each area as the control objective, takes the regional frequency deviation and its deviation as input, and uses fuzzy mathematics theory, adjusts PID control parameters online. By establishing the regional frequency control model of water-fire complementary power generation in MATLAB, the regional frequency control strategy is given, and three control modes (TBC-FTC, FTC-FTC, FFC-FTC) are simulated and analyzed. The simulation and experimental results show that, this method has better control performance compared with the traditional regional frequency regulation.

  8. An Implementation Method of the Fractional-Order PID Control System Considering the Memory Constraint and its Application to the Temperature Control of Heat Plate

    NASA Astrophysics Data System (ADS)

    Sasano, Koji; Okajima, Hiroshi; Matsunaga, Nobutomo

    Recently, the fractional order PID (FO-PID) control, which is the extension of the PID control, has been focused on. Even though the FO-PID requires the high-order filter, it is difficult to realize the high-order filter due to the memory limitation of digital computer. For implementation of FO-PID, approximation of the fractional integrator and differentiator are required. Short memory principle (SMP) is one of the effective approximation methods. However, there is a disadvantage that the approximated filter with SMP cannot eliminate the steady-state error. For this problem, we introduce the distributed implementation of the integrator and the dynamic quantizer to make the efficient use of permissible memory. The objective of this study is to clarify how to implement the accurate FO-PID with limited memories. In this paper, we propose the implementation method of FO-PID with memory constraint using dynamic quantizer. And the trade off between approximation of fractional elements and quantized data size are examined so as to close to the ideal FO-PID responses. The effectiveness of proposed method is evaluated by numerical example and experiment in the temperature control of heat plate.

  9. Closed-Loop Control and Advisory Mode Evaluation of an Artificial Pancreatic β Cell: Use of Proportional–Integral–Derivative Equivalent Model-Based Controllers

    PubMed Central

    Percival, Matthew W.; Zisser, Howard; Jovanovič, Lois; Doyle, Francis J.

    2008-01-01

    Background Using currently available technology, it is possible to apply modern control theory to produce a closed-loop artificial β cell. Novel use of established control techniques would improve glycemic control, thereby reducing the complications of diabetes. Two popular controller structures, proportional–integral–derivative (PID) and model predictive control (MPC), are compared first in a theoretical sense and then in two applications. Methods The Bergman model is transformed for use in a PID equivalent model-based controller. The internal model control (IMC) structure, which makes explicit use of the model, is compared with the PID controller structure in the transfer function domain. An MPC controller is then developed as an optimization problem with restrictions on its tuning parameters and is shown to be equivalent to an IMC controller. The controllers are tuned for equivalent performance and evaluated in a simulation study as a closed-loop controller and in an advisory mode scenario on retrospective clinical data. Results Theoretical development shows conditions under which PID and MPC controllers produce equivalent output via IMC. The simulation study showed that the single tuning parameter for the equivalent controllers relates directly to the closed-loop speed of response and robustness, an important result considering system uncertainty. The risk metric allowed easy identification of instances of inadequate control. Results of the advisory mode simulation showed that suitable tuning produces consistently appropriate delivery recommendations. Conclusion The conditions under which PID and MPC are equivalent have been derived. The MPC framework is more suitable given the extensions necessary for a fully closed-loop artificial β cell, such as consideration of controller constraints. Formulation of the control problem in risk space is attractive, as it explicitly addresses the asymmetry of the problem; this is done easily with MPC. PMID:19885240

  10. Adaptive Self Tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Matthew; Draelos, Timothy; Knox, Hunter

    2017-05-02

    The AST software includes numeric methods to 1) adjust STA/LTA signal detector trigger level (TL) values and 2) filter detections for a network of sensors. AST adapts TL values to the current state of the environment by leveraging cooperation within a neighborhood of sensors. The key metric that guides the dynamic tuning is consistency of each sensor with its nearest neighbors: TL values are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The AST algorithm adapts in near real-time to changing conditions in an attempt tomore » automatically self-tune a signal detector to identify (detect) only signals from events of interest.« less

  11. Thermostatic system of sensor in NIR spectrometer based on PID control

    NASA Astrophysics Data System (ADS)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  12. Design of PID temperature control system based on STM32

    NASA Astrophysics Data System (ADS)

    Zhang, Jianxin; Li, Hailin; Ma, Kai; Xue, Liang; Han, Bianhua; Dong, Yuemeng; Tan, Yue; Gu, Chengru

    2018-03-01

    A rapid and high-accuracy temperature control system was designed using proportional-integral-derivative (PID) control algorithm with STM32 as micro-controller unit (MCU). The temperature control system can be applied in the fields which have high requirements on the response speed and accuracy of temperature control. The temperature acquisition circuit in system adopted Pt1000 resistance thermometer as temperature sensor. Through this acquisition circuit, the monitoring actual temperature signal could be converted into voltage signal and transmitted into MCU. A TLP521-1 photoelectric coupler was matched with BD237 power transistor to drive the thermoelectric cooler (TEC) in FTA951 module. The effective electric power of TEC was controlled by the pulse width modulation (PWM) signals which generated by MCU. The PWM signal parameters could be adjusted timely by PID algorithm according to the difference between monitoring actual temperature and set temperature. The upper computer was used to input the set temperature and monitor the system running state via serial port. The application experiment results show that the temperature control system is featured by simple structure, rapid response speed, good stability and high temperature control accuracy with the error less than ±0.5°C.

  13. Design of Intelligent Hydraulic Excavator Control System Based on PID Method

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong

    Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and

  14. Memory feedback PID control for exponential synchronisation of chaotic Lur'e systems

    NASA Astrophysics Data System (ADS)

    Zhang, Ruimei; Zeng, Deqiang; Zhong, Shouming; Shi, Kaibo

    2017-09-01

    This paper studies the problem of exponential synchronisation of chaotic Lur'e systems (CLSs) via memory feedback proportional-integral-derivative (PID) control scheme. First, a novel augmented Lyapunov-Krasovskii functional (LKF) is constructed, which can make full use of the information on time delay and activation function. Second, improved synchronisation criteria are obtained by using new integral inequalities, which can provide much tighter bounds than what the existing integral inequalities can produce. In comparison with existing results, in which only proportional control or proportional derivative (PD) control is used, less conservative results are derived for CLSs by PID control. Third, the desired memory feedback controllers are designed in terms of the solution to linear matrix inequalities. Finally, numerical simulations of Chua's circuit and neural network are provided to show the effectiveness and advantages of the proposed results.

  15. PID temperature controller in pig nursery: spatial characterization of thermal environment

    NASA Astrophysics Data System (ADS)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2018-05-01

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  16. PID temperature controller in pig nursery: spatial characterization of thermal environment

    NASA Astrophysics Data System (ADS)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2017-11-01

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  17. Demonstrative fractional order - PID controller based DC motor drive on digital platform.

    PubMed

    Khubalkar, Swapnil W; Junghare, Anjali S; Aware, Mohan V; Chopade, Amit S; Das, Shantanu

    2017-09-21

    In industrial drives applications, fractional order controllers can exhibit phenomenal impact due to realization through digital implementation. Digital fractional order controllers have created wide scope as it possess the inherent advantages like robustness against the plant parameter variation. This paper provides brief design procedure of fractional order proportional-integral-derivative (FO-PID) controller through the indirect approach of approximation using constant phase technique. The new modified dynamic particle swarm optimization (IdPSO) technique is proposed to find controller parameters. The FO-PID controller is implemented using floating point digital signal processor. The building blocks are designed and assembled with all peripheral components for the 1.5kW industrial DC motor drive. The robust operation for parametric variation is ascertained by testing the controller with two separately excited DC motors with the same rating but different parameters. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Slip control design of electric vehicle using indirect Dahlin Adaptive Pid

    NASA Astrophysics Data System (ADS)

    Fauzi, I. R.; Koko, F.; Kirom, M. R.

    2016-11-01

    In this paper the problem to be solved is to build a slip control on a wheel that may occur in an electric car wheel. Slip is the difference in vehicle velocity and wheel tangential velocity and to be enlarged when the torque given growing. Slip can be reduced by controlling the torque of the wheel so that the wheel tangential speed does not exceed the vehicle speed. The experiment in this paper is a simulation using MATLAB Simulink and using Adaptive control. The response adaptive PID control more quickly 1.5 s than PID control and can controlled wheel tangential speed close to the vehicle velocity on a dry asphalt, wet asphalt, snow and ice surface sequent at time 2s, 4s, 10s, and 50s. The maximum acceleration of the vehicle (V) on the surface of the dry asphalt, wet asphalt, snow, and ice surface sequent at 8.9 m/s2, 6.2 m/s2, 2.75 m/s2, and 0.34 m/s2.

  19. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use.

    PubMed

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina

    2016-08-01

    The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly (P < 0.001) more efficient in terms of electricity use to produce 1 kg of body weight (2.88 kWh kg(-1)), specific cost (0.75 R$ kg(-1)), weight gain (7.3 kg), daily weight gain (0.21 kg day(-1)), and feed conversion (1.71) than the system with thermostat (3.98 kWh kg(-1); 1.03 R$ kg(-1); 5.2 kg; 0.15 kg day(-1), and 2.62, respectively). The results indicate that the PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.

  20. Chicken barn climate and hazardous volatile compounds control using simple linear regression and PID

    NASA Astrophysics Data System (ADS)

    Abdullah, A. H.; Bakar, M. A. A.; Shukor, S. A. A.; Saad, F. S. A.; Kamis, M. S.; Mustafa, M. H.; Khalid, N. S.

    2016-07-01

    The hazardous volatile compounds from chicken manure in chicken barn are potentially to be a health threat to the farm animals and workers. Ammonia (NH3) and hydrogen sulphide (H2S) produced in chicken barn are influenced by climate changes. The Electronic Nose (e-nose) is used for the barn's air, temperature and humidity data sampling. Simple Linear Regression is used to identify the correlation between temperature-humidity, humidity-ammonia and ammonia-hydrogen sulphide. MATLAB Simulink software was used for the sample data analysis using PID controller. Results shows that the performance of PID controller using the Ziegler-Nichols technique can improve the system controller to control climate in chicken barn.

  1. Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability.

    PubMed

    Salomir, Rares; Rata, Mihaela; Cadis, Daniela; Petrusca, Lorena; Auboiroux, Vincent; Cotton, François

    2009-10-01

    Endocavitary high intensity contact ultrasound (HICU) may offer interesting therapeutic potential for fighting localized cancer in esophageal or rectal wall. On-line MR guidance of the thermotherapy permits both excellent targeting of the pathological volume and accurate preoperatory monitoring of the temperature elevation. In this article, the authors address the issue of the automatic temperature control for endocavitary phased-array HICU and propose a tailor-made thermal model for this specific application. The convergence and stability of the feedback loop were investigated against tuning errors in the controller's parameters and against input noise, through ex vivo experimental studies and through numerical simulations in which nonlinear response of tissue was considered as expected in vivo. An MR-compatible, 64-element, cooled-tip, endorectal cylindrical phased-array applicator of contact ultrasound was integrated with fast MR thermometry to provide automatic feedback control of the temperature evolution. An appropriate phase law was applied per set of eight adjacent transducers to generate a quasiplanar wave, or a slightly convergent one (over the circular dimension). A 2D physical model, compatible with on-line numerical implementation, took into account (1) the ultrasound-mediated energy deposition, (2) the heat diffusion in tissue, and (3) the heat sink effect in the tissue adjacent to the tip-cooling balloon. This linear model was coupled to a PID compensation algorithm to obtain a multi-input single-output static-tuning temperature controller. Either the temperature at one static point in space (situated on the symmetry axis of the beam) or the maximum temperature in a user-defined ROI was tracked according to a predefined target curve. The convergence domain in the space of controller's parameters was experimentally explored ex vivo. The behavior of the static-tuning PID controller was numerically simulated based on a discrete-time iterative solution

  2. Two degree of freedom internal model control-PID design for LFC of power systems via logarithmic approximations.

    PubMed

    Singh, Jay; Chattterjee, Kalyan; Vishwakarma, C B

    2018-01-01

    Load frequency controller has been designed for reduced order model of single area and two-area reheat hydro-thermal power system through internal model control - proportional integral derivative (IMC-PID) control techniques. The controller design method is based on two degree of freedom (2DOF) internal model control which combines with model order reduction technique. Here, in spite of taking full order system model a reduced order model has been considered for 2DOF-IMC-PID design and the designed controller is directly applied to full order system model. The Logarithmic based model order reduction technique is proposed to reduce the single and two-area high order power systems for the application of controller design.The proposed IMC-PID design of reduced order model achieves good dynamic response and robustness against load disturbance with the original high order system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Further Characterization of 394-GHz Gyrotron FU CW GII with Additional PID Control System for 600-MHz DNP-SSNMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ueda, Keisuke; Matsuki, Yoh; Fujiwara, Toshimichi; Tatematsu, Yoshinori; Ogawa, Isamu; Idehara, Toshitaka

    2016-09-01

    A 394-GHz gyrotron, FU CW GII, has been designed at the University of Fukui, Japan, for dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) experiments at 600-MHz 1H resonant frequency. After installation at the Institute for Protein Research (IPR), Osaka University, Japan, a PID feedback control system was equipped to regulate the electron gun heater current for stabilization of the electron beam current, which ultimately achieved stabilization of output power when operating in continuous wave (CW) mode. During exploration to further optimize operating conditions, a continuous tuning bandwidth of approximately 1 GHz was observed by varying the operating voltage at a fixed magnetic field. In the frequency range required for positive DNP enhancement, the output power was improved by increasing the magnetic field and the operating voltage from their initial operational settings. In addition, fine tuning of output frequency by varying the cavity cooling water temperature was demonstrated. These operating conditions and ancillary enhancements are expected to contribute to further enhancement of SSNMR signal.

  4. Position control of an industrial robot using fractional order controller

    NASA Astrophysics Data System (ADS)

    Clitan, Iulia; Muresan, Vlad; Abrudean, Mihail; Clitan, Andrei; Miron, Radu

    2017-02-01

    This paper presents the design of a control structure that ensures no overshoot for the movement of an industrial robot, used for the evacuation of round steel blocks from inside a rotary hearth furnace. First, a mathematical model for the positioning system is derived from a set of experimental data, and further, the paper focuses on obtaining a PID type controller, using the relay method as tuning method in order to obtain a stable closed loop system. The controller parameters are further tuned in order to achieve the imposed set of performances for the positioning of the industrial robot through computer simulation, using trial and error method. Further, a fractional - order PID controller is obtained in order to improve the control signal variation, so as to fit within the range of unified current's variation, 4 to 20 mA.

  5. Intelligent Systems for Stabilizing Mode-Locked Lasers and Frequency Combs: Machine Learning and Equation-Free Control Paradigms for Self-Tuning Optics

    NASA Astrophysics Data System (ADS)

    Kutz, J. Nathan; Brunton, Steven L.

    2015-12-01

    We demonstrate that a software architecture using innovations in machine learning and adaptive control provides an ideal integration platform for self-tuning optics. For mode-locked lasers, commercially available optical telecom components can be integrated with servocontrollers to enact a training and execution software module capable of self-tuning the laser cavity even in the presence of mechanical and/or environmental perturbations, thus potentially stabilizing a frequency comb. The algorithm training stage uses an exhaustive search of parameter space to discover best regions of performance for one or more objective functions of interest. The execution stage first uses a sparse sensing procedure to recognize the parameter space before quickly moving to the near optimal solution and maintaining it using the extremum seeking control protocol. The method is robust and equationfree, thus requiring no detailed or quantitatively accurate model of the physics. It can also be executed on a broad range of problems provided only that suitable objective functions can be found and experimentally measured.

  6. Optimized linear motor and digital PID controller setup used in Mössbauer spectrometer

    NASA Astrophysics Data System (ADS)

    Kohout, Pavel; Kouřil, Lukáš; Navařík, Jakub; Novák, Petr; Pechoušek, Jiří

    2014-10-01

    Optimization of a linear motor and digital PID controller setup used in a Mössbauer spectrometer is presented. Velocity driving system with a digital PID feedback subsystem was developed in the LabVIEW graphical environment and deployed on the sbRIO real-time hardware device (National Instruments). The most important data acquisition processes are performed as real-time deterministic tasks on an FPGA chip. Velocity transducer of a double loudspeaker type with a power amplifier circuit is driven by the system. Series of calibration measurements were proceeded to find the optimal setup of the P, I, D parameters together with velocity error signal analysis. The shape and given signal characteristics of the velocity error signal are analyzed in details. Remote applications for controlling and monitoring the PID system from computer or smart phone, respectively, were also developed. The best setup and P, I, D parameters were set and calibration spectrum of α-Fe sample with an average nonlinearity of the velocity scale below 0.08% was collected. Furthermore, the width of the spectral line below 0.30 mm/s was observed. Powerful and complex velocity driving system was designed.

  7. Feedback control system based on a remote operated PID controller implemented using mbed NXP LPC1768 development board

    NASA Astrophysics Data System (ADS)

    Pricop, Emil; Zamfir, Florin; Paraschiv, Nicolae

    2015-11-01

    Process control is a challenging research topic for both academia and industry for a long time. Controllers evolved from the classical SISO approach to modern fuzzy or neuro-fuzzy embedded devices with networking capabilities, however PID algorithms are still used in the most industrial control loops. In this paper, we focus on the implementation of a PID controller using mbed NXP LPC1768 development board. This board integrates a powerful ARM Cortex- M3 core and has networking capabilities. The implemented controller can be remotely operated by using an Internet connection and a standard Web browser. The main advantages of the proposed embedded system are customizability, easy operation and very low power consumption. The experimental results obtained by using a simulated process are analysed and shows that the implementation can be done with success in industrial applications.

  8. An adaptive control scheme for a flexible manipulator

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Yang, J. C. S.; Kudva, P.

    1987-01-01

    The problem of controlling a single link flexible manipulator is considered. A self-tuning adaptive control scheme is proposed which consists of a least squares on-line parameter identification of an equivalent linear model followed by a tuning of the gains of a pole placement controller using the parameter estimates. Since the initial parameter values for this model are assumed unknown, the use of arbitrarily chosen initial parameter estimates in the adaptive controller would result in undesirable transient effects. Hence, the initial stage control is carried out with a PID controller. Once the identified parameters have converged, control is transferred to the adaptive controller. Naturally, the relevant issues in this scheme are tests for parameter convergence and minimization of overshoots during control switch-over. To demonstrate the effectiveness of the proposed scheme, simulation results are presented with an analytical nonlinear dynamic model of a single link flexible manipulator.

  9. Dynamic control and information processing in chemical reaction systems by tuning self-organization behavior

    NASA Astrophysics Data System (ADS)

    Lebiedz, Dirk; Brandt-Pollmann, Ulrich

    2004-09-01

    Specific external control of chemical reaction systems and both dynamic control and signal processing as central functions in biochemical reaction systems are important issues of modern nonlinear science. For example nonlinear input-output behavior and its regulation are crucial for the maintainance of the life process that requires extensive communication between cells and their environment. An important question is how the dynamical behavior of biochemical systems is controlled and how they process information transmitted by incoming signals. But also from a general point of view external forcing of complex chemical reaction processes is important in many application areas ranging from chemical engineering to biomedicine. In order to study such control issues numerically, here, we choose a well characterized chemical system, the CO oxidation on Pt(110), which is interesting per se as an externally forced chemical oscillator model. We show numerically that tuning of temporal self-organization by input signals in this simple nonlinear chemical reaction exhibiting oscillatory behavior can in principle be exploited for both specific external control of dynamical system behavior and processing of complex information.

  10. Self-Tuning of Design Variables for Generalized Predictive Control

    NASA Technical Reports Server (NTRS)

    Lin, Chaung; Juang, Jer-Nan

    2000-01-01

    Three techniques are introduced to determine the order and control weighting for the design of a generalized predictive controller. These techniques are based on the application of fuzzy logic, genetic algorithms, and simulated annealing to conduct an optimal search on specific performance indexes or objective functions. Fuzzy logic is found to be feasible for real-time and on-line implementation due to its smooth and quick convergence. On the other hand, genetic algorithms and simulated annealing are applicable for initial estimation of the model order and control weighting, and final fine-tuning within a small region of the solution space, Several numerical simulations for a multiple-input and multiple-output system are given to illustrate the techniques developed in this paper.

  11. On a Self-Tuning Impact Vibration Damper for Rotating Turbomachinery

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Bagley, Ronald L.; Mehmed, Oral; Choi, Ben (Technical Monitor)

    2000-01-01

    A self-tuning impact damper is investigated analytically and experimentally as a device to inhibit vibration and increase the fatigue life of rotating components in turbomachinery. High centrifugal loads in rotors can inactivate traditional impact dampers because of friction or misalignment of the damper in the g-field. Giving an impact damper characteristics of an acceleration tuned-mass damper enables the resulting device to maintain damper mass motion and effectiveness during high-g loading. Experimental results presented here verify that this self-tuning impact damper can be designed to follow an engine order line. damping rotor component resonance crossings.

  12. Robust PI and PID design for first- and second-order processes with zeros, time-delay and structured uncertainties

    NASA Astrophysics Data System (ADS)

    Parada, M.; Sbarbaro, D.; Borges, R. A.; Peres, P. L. D.

    2017-01-01

    The use of robust design techniques such as the one based on ? and ? for tuning proportional integral (PI) and proportional integral derivative (PID) controllers have been limited to address a small set of processes. This work addresses the problem by considering a wide set of possible plants, both first- and second-order continuous-time systems with time delays and zeros, leading to PI and PID controllers. The use of structured uncertainties to handle neglected dynamics allows to expand the range of processes to be considered. The proposed approach takes into account the robustness of the controller with respect to these structured uncertainties by using the small-gain theorem. In addition, improved performance is sought through the minimisation of an upper bound to the closed-loop system ? norm. A Lyapunov-Krasovskii-type functional is used to obtain delay-dependent design conditions. The controller design is accomplished by means of a convex optimisation procedure formulated using linear matrix inequalities. In order to illustrate the flexibility of the approach, several examples considering recycle compensation, reduced-order controller design and a practical implementation are addressed. Numerical experiments are provided in each case to highlight the main characteristics of the proposed design method.

  13. Design and implementation of a 2-DOF PID compensation for magnetic levitation systems.

    PubMed

    Ghosh, Arun; Rakesh Krishnan, T; Tejaswy, Pailla; Mandal, Abhisek; Pradhan, Jatin K; Ranasingh, Subhakant

    2014-07-01

    This paper employs a 2-DOF (degree of freedom) PID controller for compensating a physical magnetic levitation system. It is shown that because of having a feedforward gain in the proposed 2-DOF PID control, the transient performance of the compensated system can be changed in a desired manner unlike the conventional 1-DOF PID control. It is also shown that for a choice of PID parameters, although the theoretical loop robustness is the same for both the compensated systems, in real-time, 2-DOF PID control may provide superior robustness if a suitable choice of the feedforward parameter is made. The results are verified through simulations and experiments. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Design and development of the Macpherson Proton Preve Magneto rheological damper with PID controller

    NASA Astrophysics Data System (ADS)

    Amiruddin, I. M.; Pauziah, M.; Aminudin, A.; Unuh, M. H.

    2017-10-01

    Since the creation of the first petrol-fuelled vehicle by Karl Benz in the late nineteenth century, car industry has grown considerably to meet the industrial demands. Luxurious looks and agreeable rides are the primary needs of drivers. The Magneto-rheological damper balanced their damping trademark progressively by applying the damping coefficient depending on the control system. In this research, the control calculations are assessed by utilizing the MR damper. The capacity and reliably of the target force for the damper speed is investigated from control algorithm. This is imperative to defeat the damper limitation. In this study, the simulation results of the semi-dynamic MR damper with the PID controller shows better performance in sprung mass acceleration, unsprung mass acceleration and suspension dislodging with permitting over the top tyre acceleration. The altered model of the MR damper is specially designed for Proton Preve specifications and semi-active PID control. The procedure for the advancement incorporates the numerical model to graphically recreate and break down the dynamic framework by utilizing Matlab.

  15. Self-tuning pressure-feedback control by pole placement for vibration reduction of excavator with independent metering fluid power system

    NASA Astrophysics Data System (ADS)

    Ding, Ruqi; Xu, Bing; Zhang, Junhui; Cheng, Min

    2017-08-01

    Independent metering control systems are promising fluid power technologies compared with traditional valve controlled systems. By breaking the mechanical coupling between the inlet and outlet, the meter-out valve can open as large as possible to reduce energy consumptions. However, the lack of damping in outlet causes stronger vibrations. To address the problem, the paper designs a hybrid control method combining dynamic pressure-feedback and active damping control. The innovation resides in the optimization of damping by introducing pressure feedback to make trade-offs between high stability and fast response. To achieve this goal, the dynamic response pertaining to the control parameters consisting of feedback gain and cut-off frequency, are analyzed via pole-zero locations. Accordingly, these parameters are tuned online in terms of guaranteed dominant pole placement such that the optimal damping can be accurately captured under a considerable variation of operating conditions. The experiment is deployed in a mini-excavator. The results pertaining to different control parameters confirm the theoretical expectations via pole-zero locations. By using proposed self-tuning controller, the vibrations are almost eliminated after only one overshoot for different operation conditions. The overshoots are also reduced with less decrease of the response time. In addition, the energy-saving capability of independent metering system is still not affected by the improvement of controllability.

  16. A novel memristive multilayer feedforward small-world neural network with its applications in PID control.

    PubMed

    Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan; Li, Hai

    2014-01-01

    In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.

  17. A Novel Memristive Multilayer Feedforward Small-World Neural Network with Its Applications in PID Control

    PubMed Central

    Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan

    2014-01-01

    In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme. PMID:25202723

  18. Pelvic Inflammatory Disease (PID)

    MedlinePlus

    ... a serious condition, in women. 1 in 8 women with a history of PID experience difficulties getting pregnant. You can prevent PID if you know how to protect yourself. What is PID? Pelvic inflammatory disease is an infection of a woman’s reproductive organs. It is a complication often caused ...

  19. A Low Cost Mobile Robot Based on Proportional Integral Derivative (PID) Control System and Odometer for Education

    NASA Astrophysics Data System (ADS)

    Haq, R.; Prayitno, H.; Dzulkiflih; Sucahyo, I.; Rahmawati, E.

    2018-03-01

    In this article, the development of a low cost mobile robot based on PID controller and odometer for education is presented. PID controller and odometer is applied for controlling mobile robot position. Two-dimensional position vector in cartesian coordinate system have been inserted to robot controller as an initial and final position. Mobile robot has been made based on differential drive and sensor magnetic rotary encoder which measured robot position from a number of wheel rotation. Odometry methode use data from actuator movements for predicting change of position over time. The mobile robot is examined to get final position with three different heading angle 30°, 45° and 60° by applying various value of KP, KD and KI constant.

  20. A new adaptive self-tuning Fourier coefficients algorithm for periodic torque ripple minimization in permanent magnet synchronous motors (PMSM).

    PubMed

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-03-19

    A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.

  1. The development and psychometric properties of an informant-report form of the personality inventory for DSM-5 (PID-5).

    PubMed

    Markon, Kristian E; Quilty, Lena C; Bagby, R Michael; Krueger, Robert F

    2013-06-01

    The current article reports on the development, psychometric properties, and external validity of an informant-report form of the Personality Inventory for DSM-5 (the PID-5-IRF). Using data from two nationally representative samples, as well as an elevated-risk community sample, we report on the PID-5-IRF item characteristics, scale properties, superordinate factor structure, and correlations with other measures. The PID-5-IRF replicates the factor structure of the self-report form and has relationships with other measures (including the PID-5 self-report form and a widely used Big Five measure) that are consistent with previous research and theory. We believe that the PID-5-IRF is a useful measure for a number of scenarios, such as when additional sources of information are desired, where informant measures are expected to provide incremental validity over self-report, where relationships or social perception is a focal interest, or when response bias is a salient concern. Areas for future research are also discussed.

  2. Incremental Adaptive Fuzzy Control for Sensorless Stroke Control of A Halbach-type Linear Oscillatory Motor

    NASA Astrophysics Data System (ADS)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.

  3. The research on visual industrial robot which adopts fuzzy PID control algorithm

    NASA Astrophysics Data System (ADS)

    Feng, Yifei; Lu, Guoping; Yue, Lulin; Jiang, Weifeng; Zhang, Ye

    2017-03-01

    The control system of six degrees of freedom visual industrial robot based on the control mode of multi-axis motion control cards and PC was researched. For the variable, non-linear characteristics of industrial robot`s servo system, adaptive fuzzy PID controller was adopted. It achieved better control effort. In the vision system, a CCD camera was used to acquire signals and send them to video processing card. After processing, PC controls the six joints` motion by motion control cards. By experiment, manipulator can operate with machine tool and vision system to realize the function of grasp, process and verify. It has influence on the manufacturing of the industrial robot.

  4. Application of genetic algorithms to tuning fuzzy control systems

    NASA Technical Reports Server (NTRS)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  5. TOXIRAE PRO PID

    EPA Science Inventory

    The ToxiRAE Pro PID measures total volatile organic compounds (VOCs) using a photoionization detector (PID). This sensor can be programmed to measure concentrations of a specified compound automatically and has a real time reading of VOC concentrations in parts per million (ppm) ...

  6. Dynamic Analysis Method for Electromagnetic Artificial Muscle Actuator under PID Control

    NASA Astrophysics Data System (ADS)

    Nakata, Yoshihiro; Ishiguro, Hiroshi; Hirata, Katsuhiro

    We have been studying an interior permanent magnet linear actuator for an artificial muscle. This actuator mainly consists of a mover and stator. The mover is composed of permanent magnets, magnetic cores and a non-magnetic shaft. The stator is composed of 3-phase coils and a back yoke. In this paper, the dynamic analysis method under PID control is proposed employing the 3-D finite element method (3-D FEM) to compute the dynamic response and current response when the positioning control is active. As a conclusion, computed results show good agreement with measured ones of a prototype.

  7. A robust fractional-order PID controller design based on active queue management for TCP network

    NASA Astrophysics Data System (ADS)

    Hamidian, Hamideh; Beheshti, Mohammad T. H.

    2018-01-01

    In this paper, a robust fractional-order controller is designed to control the congestion in transmission control protocol (TCP) networks with time-varying parameters. Fractional controllers can increase the stability and robustness. Regardless of advantages of fractional controllers, they are still not common in congestion control in TCP networks. The network parameters are time-varying, so the robust stability is important in congestion controller design. Therefore, we focused on the robust controller design. The fractional PID controller is developed based on active queue management (AQM). D-partition technique is used. The most important property of designed controller is the robustness to the time-varying parameters of the TCP network. The vertex quasi-polynomials of the closed-loop characteristic equation are obtained, and the stability boundaries are calculated for each vertex quasi-polynomial. The intersection of all stability regions is insensitive to network parameter variations, and results in robust stability of TCP/AQM system. NS-2 simulations show that the proposed algorithm provides a stable queue length. Moreover, simulations show smaller oscillations of the queue length and less packet drop probability for FPID compared to PI and PID controllers. We can conclude from NS-2 simulations that the average packet loss probability variations are negligible when the network parameters change.

  8. Adaptive Control of Small Outboard-Powered Boats for Survey Applications

    NASA Technical Reports Server (NTRS)

    VanZwieten, T.S.; VanZwieten, J.H.; Fisher, A.D.

    2009-01-01

    Four autopilot controllers have been developed in this work that can both hold a desired heading and follow a straight line. These PID, adaptive PID, neuro-adaptive, and adaptive augmenting control algorithms have all been implemented into a numerical simulation of a 33-foot center console vessel with wind, waves, and current disturbances acting in the perpendicular (across-track) direction of the boat s desired trajectory. Each controller is tested for its ability to follow a desired heading in the presence of these disturbances and then to follow a straight line at two different throttle settings for the same disturbances. These controllers were tuned for an input thrust of 2000 N and all four controllers showed good performance with none of the controllers significantly outperforming the others when holding a constant heading and following a straight line at this engine thrust. Each controller was then tested for a reduced engine thrust of 1200 N per engine where each of the three adaptive controllers reduced heading error and across-track error by approximately 50% after a 300 second tuning period when compared to the fixed gain PID, showing that significant robustness to changes in throttle setting was gained by using an adaptive algorithm.

  9. Gravitational Mechanisms to Self-Tune the Cosmological Constant: Obstructions and Ways Forward

    NASA Astrophysics Data System (ADS)

    Niedermann, Florian; Padilla, Antonio

    2017-12-01

    Gravitational models of self-tuning are those in which vacuum energy has no observable effect on spacetime curvature, even though it is a priori unsuppressed below the cutoff. We complement Weinberg's no-go theorem by studying field-theoretic completions of self-adjustment allowing for broken translations as well as other generalizations, and identify new obstructions. Our analysis uses a very general Källén-Lehmann spectral representation of the exchange amplitude for conserved sources of energy-momentum and exploits unitarity and Lorentz invariance to show that a transition from self-tuning of long wavelength sources to near general relativity (GR) on shorter scales is generically not possible. We search for novel ways around our obstructions and highlight two interesting possibilities. The first is an example of a unitary field configuration on anti-de Sitter space with the desired transition from self-tuning to GR. A second example is motivated by vacuum energy sequestering.

  10. Target Capturing Control for Space Robots with Unknown Mass Properties: A Self-Tuning Method Based on Gyros and Cameras.

    PubMed

    Li, Zhenyu; Wang, Bin; Liu, Hong

    2016-08-30

    Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme.

  11. Target Capturing Control for Space Robots with Unknown Mass Properties: A Self-Tuning Method Based on Gyros and Cameras

    PubMed Central

    Li, Zhenyu; Wang, Bin; Liu, Hong

    2016-01-01

    Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme. PMID:27589748

  12. Pelvic Inflammatory Disease (PID)

    MedlinePlus

    ... Education FAQs Pelvic Inflammatory Disease (PID) Patient Education Pamphlets - Spanish Pelvic Inflammatory Disease (PID) FAQ077, September 2015 ... on Patient Safety For Patients Patient FAQs Spanish Pamphlets Teen Health About ACOG About Us Leadership & Governance ...

  13. Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander

    NASA Astrophysics Data System (ADS)

    Joshi, D. M.; Patel, H. K.; Shah, D. K.

    2015-04-01

    Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the

  14. Experiments on Adaptive Self-Tuning of Seismic Signal Detector Parameters

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Draelos, T.; Young, C. J.; Chael, E. P.; Peterson, M. G.; Lawry, B.; Phillips-Alonge, K. E.; Balch, R. S.; Ziegler, A.

    2016-12-01

    Scientific applications, including underground nuclear test monitoring and microseismic monitoring can benefit enormously from data-driven dynamic algorithms for tuning seismic and infrasound signal detection parameters since continuous streams are producing waveform archives on the order of 1TB per month. Tuning is a challenge because there are a large number of data processing parameters that interact in complex ways, and because the underlying populating of true signal detections is generally unknown. The largely manual process of identifying effective parameters, often performed only over a subset of stations over a short time period, is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. We present improvements to an Adaptive Self-Tuning algorithm for continuously adjusting detection parameters based on consistency with neighboring sensors. Results are shown for 1) data from a very dense network ( 120 stations, 10 km radius) deployed during 2008 on Erebus Volcano, Antarctica, and 2) data from a continuous downhole seismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project. Performance is assessed in terms of missed detections and false detections relative to human analyst detections, simulated waveforms where ground-truth detections exist and visual inspection.

  15. Development of a GA-Fuzzy-Immune PID Controller with Incomplete Derivation for Robot Dexterous Hand

    PubMed Central

    Liu, Xin-hua; Chen, Xiao-hu; Zheng, Xian-hua; Li, Sheng-peng; Wang, Zhong-bin

    2014-01-01

    In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal. PMID:25097881

  16. A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Garg, Devendra P.

    1998-01-01

    This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.

  17. General Second-Order Scalar-Tensor Theory and Self-Tuning

    NASA Astrophysics Data System (ADS)

    Charmousis, Christos; Copeland, Edmund J.; Padilla, Antonio; Saffin, Paul M.

    2012-02-01

    Starting from the most general scalar-tensor theory with second-order field equations in four dimensions, we establish the unique action that will allow for the existence of a consistent self-tuning mechanism on Friedmann-Lemaître-Robertson-Walker backgrounds, and show how it can be understood as a combination of just four base Lagrangians with an intriguing geometric structure dependent on the Ricci scalar, the Einstein tensor, the double dual of the Riemann tensor, and the Gauss-Bonnet combination. Spacetime curvature can be screened from the net cosmological constant at any given moment because we allow the scalar field to break Poincaré invariance on the self-tuning vacua, thereby evading the Weinberg no-go theorem. We show how the four arbitrary functions of the scalar field combine in an elegant way opening up the possibility of obtaining nontrivial cosmological solutions.

  18. Linear control of the flywheel inverted pendulum.

    PubMed

    Olivares, Manuel; Albertos, Pedro

    2014-09-01

    The flywheel inverted pendulum is an underactuated mechanical system with a nonlinear model but admitting a linear approximation around the unstable equilibrium point in the upper position. Although underactuated systems usually require nonlinear controllers, the easy tuning and understanding of linear controllers make them more attractive for designers and final users. In a recent paper, a simple PID controller was proposed by the authors, leading to an internally unstable controlled plant. To achieve global stability, two options are developed here: first by introducing an internal stabilizing controller and second by replacing the PID controller by an observer-based state feedback control. Simulation and experimental results show the effectiveness of the design. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  19. A Self-Tuning Kalman Filter for Autonomous Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Truong, Son H.

    1998-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman Filter and Global Positioning System (GPS) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. Current techniques of Kalman filtering, however, still rely on manual tuning from analysts, and cannot help in optimizing autonomy without compromising accuracy and performance. This paper presents an approach to produce a high accuracy autonomous navigation system fully integrated with the flight system. The resulting system performs real-time state estimation by using an Extended Kalman Filter (EKF) implemented with high-fidelity state dynamics model, as does the GPS Enhanced Orbit Determination Experiment (GEODE) system developed by the NASA Goddard Space Flight Center. Augmented to the EKF is a sophisticated neural-fuzzy system, which combines the explicit knowledge representation of fuzzy logic with the learning power of neural networks. The fuzzy-neural system performs most of the self-tuning capability and helps the navigation system recover from estimation errors. The core requirement is a method of state estimation that handles uncertainties robustly, capable of identifying estimation problems, flexible enough to make decisions and adjustments to recover from these problems, and compact enough to run on flight hardware. The resulting system can be extended to support geosynchronous spacecraft and high-eccentricity orbits. Mathematical methodology, systems and operations concepts, and implementation of a system prototype are presented in this paper. Results from the use of the prototype to evaluate optimal control algorithms implemented are discussed. Test data and major control issues (e.g., how to define specific roles for fuzzy logic to support the self-learning capability) are also

  20. Robust PD Sway Control of a Lifted Load for a Crane Using a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kawada, Kazuo; Sogo, Hiroyuki; Yamamoto, Toru; Mada, Yasuhiro

    PID control schemes still continue to be widely used for most industrial control systems. This is mainly because PID controllers have simple control structures, and are simple to maintain and tune. However, it is difficult to find a set of suitable control parameters in the case of time-varying and/or nonlinear systems. For such a problem, the robust controller has been proposed.Although it is important to choose the suitable nominal model in designing the robust controller, it is not usually easy.In this paper, a new robust PD controller design scheme is proposed, which utilizes a genetic algorithm.

  1. Development of Plant Control Diagnosis Technology and Increasing Its Applications

    NASA Astrophysics Data System (ADS)

    Kugemoto, Hidekazu; Yoshimura, Satoshi; Hashizume, Satoru; Kageyama, Takashi; Yamamoto, Toru

    A plant control diagnosis technology was developed to improve the performance of plant-wide control and maintain high productivity of plants. The control performance diagnosis system containing this technology picks out the poor performance loop, analyzes the cause, and outputs the result on the Web page. Meanwhile, the PID tuning tool is used to tune extracted loops from the control performance diagnosis system. It has an advantage of tuning safely without process changes. These systems are powerful tools to do Kaizen (continuous improvement efforts) step by step, coordinating with the operator. This paper describes a practical technique regarding the diagnosis system and its industrial applications.

  2. Effects of a PID Control System on Electromagnetic Fields in an nEDM Experiment

    NASA Astrophysics Data System (ADS)

    Molina, Daniel

    2017-09-01

    The Kellogg Radiation Laboratory is currently testing a prototype for an experiment that hopes to identify the electric dipole moment of the neutron. As part of this testing, we have developed a PID (proportional, integral, derivative) feedback system that uses large coils to fix the value of local external magnetic fields, up to linear gradients. PID algorithms compare the current value to a set-point and use the integral and derivative of the field with respect to the set-point to maintain constant fields. We have also developed a method for zeroing linear gradients within the experimental apparatus. In order to determine the performance of the PID algorithm, measurements of both the internal and external fields were obtained with and without the algorithm running, and these results were compared for noise and time stability. We have seen that the PID algorithm can reduce the effect of disturbance to the field by a factor of 10.

  3. High-accuracy resolver-to-digital conversion via phase locked loop based on PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yaoling; Wu, Zhong

    2018-03-01

    The problem of resolver-to-digital conversion (RDC) is transformed into the problem of angle tracking control, and a phase locked loop (PLL) method based on PID controller is proposed in this paper. This controller comprises a typical PI controller plus an incomplete differential which can avoid the amplification of higher-frequency noise components by filtering the phase detection error with a low-pass filter. Compared with conventional ones, the proposed PLL method makes the converter a system of type III and thus the conversion accuracy can be improved. Experimental results demonstrate the effectiveness of the proposed method.

  4. Online automatic tuning and control for fed-batch cultivation

    PubMed Central

    van Straten, Gerrit; van der Pol, Leo A.; van Boxtel, Anton J. B.

    2007-01-01

    Performance of controllers applied in biotechnological production is often below expectation. Online automatic tuning has the capability to improve control performance by adjusting control parameters. This work presents automatic tuning approaches for model reference specific growth rate control during fed-batch cultivation. The approaches are direct methods that use the error between observed specific growth rate and its set point; systematic perturbations of the cultivation are not necessary. Two automatic tuning methods proved to be efficient, in which the adaptation rate is based on a combination of the error, squared error and integral error. These methods are relatively simple and robust against disturbances, parameter uncertainties, and initialization errors. Application of the specific growth rate controller yields a stable system. The controller and automatic tuning methods are qualified by simulations and laboratory experiments with Bordetella pertussis. PMID:18157554

  5. Enhanced robust fractional order proportional-plus-integral controller based on neural network for velocity control of permanent magnet synchronous motor.

    PubMed

    Zhang, Bitao; Pi, YouGuo

    2013-07-01

    The traditional integer order proportional-integral-differential (IO-PID) controller is sensitive to the parameter variation or/and external load disturbance of permanent magnet synchronous motor (PMSM). And the fractional order proportional-integral-differential (FO-PID) control scheme based on robustness tuning method is proposed to enhance the robustness. But the robustness focuses on the open-loop gain variation of controlled plant. In this paper, an enhanced robust fractional order proportional-plus-integral (ERFOPI) controller based on neural network is proposed. The control law of the ERFOPI controller is acted on a fractional order implement function (FOIF) of tracking error but not tracking error directly, which, according to theory analysis, can enhance the robust performance of system. Tuning rules and approaches, based on phase margin, crossover frequency specification and robustness rejecting gain variation, are introduced to obtain the parameters of ERFOPI controller. And the neural network algorithm is used to adjust the parameter of FOIF. Simulation and experimental results show that the method proposed in this paper not only achieve favorable tracking performance, but also is robust with regard to external load disturbance and parameter variation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. Neural net controller for inlet pressure control of rocket engine testing

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.

    1994-01-01

    Many dynamic systems operate in select operating regions, each exhibiting characteristic modes of behavior. It is traditional to employ standard adjustable gain proportional-integral-derivative (PID) loops in such systems where no apriori model information is available. However, for controlling inlet pressure for rocket engine testing, problems in fine tuning, disturbance accommodation, and control gains for new profile operating regions (for research and development) are typically encountered. Because of the capability of capturing I/O peculiarities, using NETS, a back propagation trained neural network is specified. For select operating regions, the neural network controller is simulated to be as robust as the PID controller. For a comparative analysis, the higher order moment neural array (HOMNA) method is used to specify a second neural controller by extracting critical exemplars from the I/O data set. Furthermore, using the critical exemplars from the HOMNA method, a third neural controller is developed using NETS back propagation algorithm. All controllers are benchmarked against each other.

  7. A novel optimized hybrid fuzzy logic intelligent PID controller for an interconnected multi-area power system with physical constraints and boiler dynamics.

    PubMed

    Gomaa Haroun, A H; Li, Yin-Ya

    2017-11-01

    In the fast developing world nowadays, load frequency control (LFC) is considered to be a most significant role for providing the power supply with good quality in the power system. To deliver a reliable power, LFC system requires highly competent and intelligent control technique. Hence, in this article, a novel hybrid fuzzy logic intelligent proportional-integral-derivative (FLiPID) controller has been proposed for LFC of interconnected multi-area power systems. A four-area interconnected thermal power system incorporated with physical constraints and boiler dynamics is considered and the adjustable parameters of the FLiPID controller are optimized using particle swarm optimization (PSO) scheme employing an integral square error (ISE) criterion. The proposed method has been established to enhance the power system performances as well as to reduce the oscillations of uncertainties due to variations in the system parameters and load perturbations. The supremacy of the suggested method is demonstrated by comparing the simulation results with some recently reported heuristic methods such as fuzzy logic proportional-integral (FLPI) and intelligent proportional-integral-derivative (PID) controllers for the same electrical power system. the investigations showed that the FLiPID controller provides a better dynamic performance and outperform compared to the other approaches in terms of the settling time, and minimum undershoots of the frequency as well as tie-line power flow deviations following a perturbation, in addition to perform appropriate settlement of integral absolute error (IAE). Finally, the sensitivity analysis of the plant is inspected by varying the system parameters and operating load conditions from their nominal values. It is observed that the suggested controller based optimization algorithm is robust and perform satisfactorily with the variations in operating load condition, system parameters and load pattern. Copyright © 2017 ISA. Published by

  8. Development and application of the modal space self-tuning regulator

    NASA Astrophysics Data System (ADS)

    Schultze, John Francis

    The control and reduction of vibration of flexible structures is currently an area of much research and concern in the aerospace and automotive industries. Often these systems are idealized as discrete systems with a finite number of degrees of freedom. Traditional active control approaches have attempted either to identify the complete system and design an appropriate controller or; use an ad-hoc set of single degree of freedom controllers. Both methods have limitations. The former requires great computational and control design effort. This approach also attempts to reduce the vibration across the complete spectrum as opposed to applying control effort only to the problematic mode(s). The latter method is often limited by its inability to address the structural coupling inherent in these systems. The Modal Space Self Tuning Regulator (MSSTR) method proposed in this research addresses both of these problems as well as changes in the structural properties of a system. The control problem is approached in a two stage effort, decoupling and adaptive control. The structure's motion is decoupled through the Modified Reciprocal Modal Vector method. The control is then implemented in modal space as a new acceleration feedback based, single degree of freedom, form of the Self Tuning Regulator. The range of application of this controller in terms of maximum additive damping, actuator location sensitivity, and discrete and continuous system mass changes are investigated. Also, the behavior of the internal controller parameters are studied for the extension of this method to system monitoring and damage detection. Proof of the numeric stability of the controller in the ideal case is presented as well as its practical implementation issues. This control approach was shown to be effective for the cases of specified damping increases up to 10 dB, several actuator locations, three discrete mass perturbations and several continuous mass change cases. There appears to be little

  9. A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM)

    PubMed Central

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M.; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A.; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-01-01

    Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple. PMID:23519345

  10. Tuning of active vibration controllers for ACTEX by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  11. The Construct Validity of the Dutch Personality Inventory for DSM-5 Personality Disorders (PID-5) in a Clinical Sample.

    PubMed

    Bastiaens, Tim; Claes, Laurence; Smits, Dirk; De Clercq, Barbara; De Fruyt, Filip; Rossi, Gina; Vanwalleghem, Dominique; Vermote, Rudi; Lowyck, Benedicte; Claes, Stephan; De Hert, Marc

    2016-02-01

    The factor structure and the convergent validity of the Personality Inventory for DSM-5 (PID-5), a self-report questionnaire designed to measure personality pathology as advocated in the fifth edition, Section III of Diagnostic and Statistical Manual of Mental Disorders (DSM-5), are already demonstrated in general population samples, but need replication in clinical samples. In 240 Flemish inpatients, we examined the factor structure of the PID-5 by means of exploratory structural equation modeling. Additionally, we investigated differences in PID-5 higher order domain scores according to gender, age and educational level, and explored convergent and discriminant validity by relating the PID-5 with the Dimensional Assessment of Personality Pathology-Basic Questionnaire and by comparing PID-5 scores of inpatients with and without a DSM-IV categorical personality disorder diagnosis. Our results confirmed the original five-factor structure of the PID-5. The reliability and the convergent and discriminant validity of the PID-5 proved to be adequate. Implications for future research are discussed. © The Author(s) 2015.

  12. PIDs, Types and the Semantic Web

    NASA Astrophysics Data System (ADS)

    Schwardmann, Ulrich

    2017-04-01

    PID Information Types are becoming a crucial role in scientific data management because they can provide state (what) and binding (where) information about digital objects as attributes of the PID. This is a similar but much more flexible approach than the well known mime type characterization, because both of these types concepts allow to decide about preconditions for processes in advance and before touching the data. One aspect of this is the need for standards and correctness of the used types to ensure reliability for the processes operating on the digital objects. This requires registries and schemas for PID InfoTypes and suggests an automated schema generation process. Such a process in combination with data type registries will be described in more detail in the intended talk. Another aspect of PID InfoTypes is its intrinsic grammar as subject-predicate-object triple, with the PID as subject, the type as predicate and its value (often again a PID) as object in this relation. Given the registration of types and the proposed syntactical rigidness of the value, guaranteed by the schema, together with the use of PIDs in subject and predicate, the type concept has the ability to overcome the fuzziness and lack of reliability of semantic web categories with its URL references and possibly changing locations and content. The intended talk will also describe this approach in more detail, discusses the differences to linked data and describes some necessary technological developments for the type concept to keep up with the possibilities currently provided by the semantic web.

  13. Testing a simple control law to reduce broadband frequency harmonic vibrations using semi-active tuned mass dampers

    NASA Astrophysics Data System (ADS)

    Moutinho, Carlos

    2015-05-01

    This paper is focused on the control problems related to semi-active tuned mass dampers (TMDs) used to reduce harmonic vibrations, specially involving civil structures. A simplified version of the phase control law is derived and its effectiveness is investigated and evaluated. The objective is to improve the functioning of control systems of this type by simplifying the measurement process and reducing the number of variables involved, making the control system more feasible and reliable. Because the control law is of ON/OFF type, combined with appropriate trigger conditions, the activity of the actuation system may be significantly reduced, which may be of few seconds a day in many practical cases, increasing the durability of the device and reducing its maintenance. Moreover, due to the ability of the control system to command the motion of the inertial mass, the semi-active TMD is relatively insensitive to its initial tuning, resulting in the capability of self-tuning and in the possibility of controlling several vibration modes of a structure over a significant broadband frequency.

  14. Single axis control of ball position in magnetic levitation system using fuzzy logic control

    NASA Astrophysics Data System (ADS)

    Sahoo, Narayan; Tripathy, Ashis; Sharma, Priyaranjan

    2018-03-01

    This paper presents the design and real time implementation of Fuzzy logic control(FLC) for the control of the position of a ferromagnetic ball by manipulating the current flowing in an electromagnet that changes the magnetic field acting on the ball. This system is highly nonlinear and open loop unstable. Many un-measurable disturbances are also acting on the system, making the control of it highly complex but interesting for any researcher in control system domain. First the system is modelled using the fundamental laws, which gives a nonlinear equation. The nonlinear model is then linearized at an operating point. Fuzzy logic controller is designed after studying the system in closed loop under PID control action. The controller is then implemented in real time using Simulink real time environment. The controller is tuned manually to get a stable and robust performance. The set point tracking performance of FLC and PID controllers were compared and analyzed.

  15. PID Controller Settings Based on a Transient Response Experiment

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Lito, Patricia F.; Neves, Patricia S.; Da Silva, Francisco A.

    2008-01-01

    An experimental work on controller tuning for chemical engineering undergraduate students is proposed using a small heat exchange unit. Based upon process reaction curves in open-loop configuration, system gain and time constant are determined for first order model with time delay with excellent accuracy. Afterwards students calculate PID…

  16. A practical iterative PID tuning method for mechanical systems using parameter chart

    NASA Astrophysics Data System (ADS)

    Kang, M.; Cheong, J.; Do, H. M.; Son, Y.; Niculescu, S.-I.

    2017-10-01

    In this paper, we propose a method of iterative proportional-integral-derivative parameter tuning for mechanical systems that possibly possess hidden mechanical resonances, using a parameter chart which visualises the closed-loop characteristics in a 2D parameter space. We employ a hypothetical assumption that the considered mechanical systems have their upper limit of the derivative feedback gain, from which the feasible region in the parameter chart becomes fairly reduced and thus the gain selection can be extremely simplified. Then, a two-directional parameter search is carried out within the feasible region in order to find the best set of parameters. Experimental results show the validity of the assumption used and the proposed parameter tuning method.

  17. A low power flash-FPGA based brain implant micro-system of PID control.

    PubMed

    Lijuan Xia; Fattah, Nabeel; Soltan, Ahmed; Jackson, Andrew; Chester, Graeme; Degenaar, Patrick

    2017-07-01

    In this paper, we demonstrate that a low power flash FPGA based micro-system can provide a low power programmable interface for closed-loop brain implant inter- faces. The proposed micro-system receives recording local field potential (LFP) signals from an implanted probe, performs closed-loop control using a first order control system, then converts the signal into an optogenetic control stimulus pattern. Stimulus can be implemented through optoelectronic probes. The long term target is for both fundamental neuroscience applications and for clinical use in treating epilepsy. Utilizing our device, closed-loop processing consumes only 14nJ of power per PID cycle compared to 1.52μJ per cycle for a micro-controller implementation. Compared to an application specific digital integrated circuit, flash FPGA's are inherently programmable.

  18. GA-optimized feedforward-PID tracking control for a rugged electrohydraulic system design.

    PubMed

    Sarkar, B K; Mandal, P; Saha, R; Mookherjee, S; Sanyal, D

    2013-11-01

    Rugged electrohydraulic systems are preferred for remote and harsh applications. Despite the low bandwidth, large deadband and flow nonlinearities in proportional valves valve and highly nonlinear friction in industry-grade cylinders that comprise rugged systems, their maintenance are much easier than very sophisticated and delicate servocontrol and servocylinder systems. With the target of making the easily maintainable system to perform comparably to a servosystem, a feedforward control has been designed here for compensating the nonlinearities. A PID feedback of the piston displacement has been employed in tandem for absorbing the unmodeled effects. All the controller parameters have been optimized by a real-coded genetic algorithm. The agreement between the achieved real-time responses for step and sinusoidal demands with those achieved by modern servosystems clearly establishes the acceptability of the controller design. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Impact of PID on industrial rooftop PV-installations

    NASA Astrophysics Data System (ADS)

    Buerhop, Claudia; Fecher, Frank W.; Pickel, Tobias; Patel, Tirth; Zetzmann, Cornelia; Camus, Christian; Hauch, Jens; Brabec, Christoph J.

    2017-08-01

    Potential induced degradation (PID) causes severe damage and financial losses even in modern PV-installations. In Germany, approximately 19% of PV-installations suffer from PID and resulting power loss. This paper focuses on the impact of PID in real installations and how different evaluated time intervals influence the performance ratio (PR) and the determined degradation rate. The analysis focuses exemplarily on a 314 kWp PV-system in the Atlantic coastal climate. IR-imaging is used for identifying PID without operation interruption. Historic electric performance data are available from a monitoring system for several years on system level, string level as well as punctually measured module string IV- curves. The data sets are combined for understanding the PID behavior of this PV plant. The number of PID affected cells within a string varies strongly between 1 to 22% with the string position on the building complex. With increasing number of PID-affected cells the performance ratio decreases down to 60% for daily and monthly periods. Local differences in PID evolution rates are identified. An average PR-reduction of -3.65% per year is found for the PV-plant. On the string level the degradation rate varied up to 8.8% per year depending on the string position and the time period. The analysis reveals that PID generation and evolution in roof-top installations on industrial buildings with locally varying operation conditions can be fairly complex. The results yield that local operating conditions, e.g. ambient weather conditions as well as surrounding conditions on an industrial building, seem to have a dominating impact on the PID evolution rate.

  20. Performance analysis for bounded persistent disturbances in PD/PID-controlled robotic systems with its experimental demonstrations

    NASA Astrophysics Data System (ADS)

    Kim, Jung Hoon; Hur, Sung-Moon; Oh, Yonghwan

    2018-03-01

    This paper is concerned with performance analysis of proportional-derivative/proportional-integral-derivative (PD/PID) controller for bounded persistent disturbances in a robotic manipulator. Even though the notion of input-to-state stability (ISS) has been widely used to deal with the effect of disturbances in control of a robotic manipulator, the corresponding studies cannot be directly applied to the treatment of persistent disturbances occurred in robotic manipulators. This is because the conventional studies relevant to ISS consider the H∞ performance for robotic systems, which is confined to the treatment of decaying disturbances, i.e. the disturbances those in the L2 space. To deal with the effect of persistent disturbances in robotic systems, we first provide a new treatment of ISS in the L∞ sense because bounded persistent disturbances should be intrinsically regarded as elements of the L∞ space. We next derive state-space representations of trajectory tracking control in the robotic systems which allow us to define the problem formulations more clearly. We then propose a novel control law that has a PD/PID control form, by which the trajectory tracking system satisfies the reformulated ISS. Furthermore, we can obtain a theoretical argument about the L∞ gain from the disturbance to the regulated output through the proposed control law. Finally, experimental studies for a typical 3-degrees of freedom robotic manipulator are given to demonstrate the effectiveness of the method introduced in this paper.

  1. A global bioheat model with self-tuning optimal regulation of body temperature using Hebbian feedback covariance learning.

    PubMed

    Ong, M L; Ng, E Y K

    2005-12-01

    In the lower brain, body temperature is continually being regulated almost flawlessly despite huge fluctuations in ambient and physiological conditions that constantly threaten the well-being of the body. The underlying control problem defining thermal homeostasis is one of great enormity: Many systems and sub-systems are involved in temperature regulation and physiological processes are intrinsically complex and intertwined. Thus the defining control system has to take into account the complications of nonlinearities, system uncertainties, delayed feedback loops as well as internal and external disturbances. In this paper, we propose a self-tuning adaptive thermal controller based upon Hebbian feedback covariance learning where the system is to be regulated continually to best suit its environment. This hypothesis is supported in part by postulations of the presence of adaptive optimization behavior in biological systems of certain organisms which face limited resources vital for survival. We demonstrate the use of Hebbian feedback covariance learning as a possible self-adaptive controller in body temperature regulation. The model postulates an important role of Hebbian covariance adaptation as a means of reinforcement learning in the thermal controller. The passive system is based on a simplified 2-node core and shell representation of the body, where global responses are captured. Model predictions are consistent with observed thermoregulatory responses to conditions of exercise and rest, and heat and cold stress. An important implication of the model is that optimal physiological behaviors arising from self-tuning adaptive regulation in the thermal controller may be responsible for the departure from homeostasis in abnormal states, e.g., fever. This was previously unexplained using the conventional "set-point" control theory.

  2. Decentralized PID controller for TITO systems using characteristic ratio assignment with an experimental application.

    PubMed

    Hajare, V D; Patre, B M

    2015-11-01

    This paper presents a decentralized PID controller design method for two input two output (TITO) systems with time delay using characteristic ratio assignment (CRA) method. The ability of CRA method to design controller for desired transient response has been explored for TITO systems. The design methodology uses an ideal decoupler to reduce the interaction. Each decoupled subsystem is reduced to first order plus dead time (FOPDT) model to design independent diagonal controllers. Based on specified overshoot and settling time, the controller parameters are computed using CRA method. To verify performance of the proposed controller, two benchmark simulation examples are presented. To demonstrate applicability of the proposed controller, experimentation is performed on real life interacting coupled tank level system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Self-organized magnetic particles to tune the mechanical behavior of a granular system

    NASA Astrophysics Data System (ADS)

    Cox, Meredith; Wang, Dong; Barés, Jonathan; Behringer, Robert P.

    2016-09-01

    Above a certain density a granular material jams. This property can be controlled by either tuning a global property, such as the packing fraction or by applying shear strain, or at the micro-scale by tuning grain shape, inter-particle friction or externally controlled organization. Here, we introduce a novel way to change a local granular property by adding a weak anisotropic magnetic interaction between particles. We measure the evolution of the pressure, P, and coordination number, Z, for a packing of 2D photo-elastic disks, subject to uniaxial compression. A fraction R m of the particles have embedded cuboidal magnets. The strength of the magnetic interactions between particles is too weak to have a strong direct effect on P or Z when the system is jammed. However, the magnetic interactions play an important role in the evolution of latent force networks when systems containing a large enough fraction of the particles with magnets are driven through unjammed to jammed states. In this case, a statistically stable network of magnetic chains self-organizes before jamming and overlaps with force chains once jamming occurs, strengthening the granular medium. This property opens a novel way to control mechanical properties of granular materials.

  4. Investigating the Personality Inventory for DSM-5 using self and spouse reports.

    PubMed

    Jopp, Andrew M; South, Susan C

    2015-04-01

    Two new clinical tools, the Personality Inventory for DSM-5 (PID-5) and its informant report version, the PID-5-IRF, were developed to assess personality pathology as described by the new trait-based model within Section III of DSM-5. The current study used both self and spousal reports to evaluate agreement between the PID-5 and the PID-5-IRF and to determine the extent to which these measures capture personality pathology as conceptualized in Section II of DSM-5. A nonclinical sample (N = 96 individuals) of recently married couples completed the self-report PID-5, the PID-5-IRF, and the SNAP-2 to assess self-reported DSM-IV PD criteria. Analyses found good to excellent agreement between spousal reports on the PID-5 and the PID-5-IRF for facets in the negative affectivity, detachment, and antagonism domains. In addition, both the PID-5 and the PID-5-IRF each individually accounted for a significant proportion of variance in self-reported DSM-IV PD criteria. Implications for the present findings are discussed.

  5. Multi-Objective Control Optimization for Greenhouse Environment Using Evolutionary Algorithms

    PubMed Central

    Hu, Haigen; Xu, Lihong; Wei, Ruihua; Zhu, Bingkun

    2011-01-01

    This paper investigates the issue of tuning the Proportional Integral and Derivative (PID) controller parameters for a greenhouse climate control system using an Evolutionary Algorithm (EA) based on multiple performance measures such as good static-dynamic performance specifications and the smooth process of control. A model of nonlinear thermodynamic laws between numerous system variables affecting the greenhouse climate is formulated. The proposed tuning scheme is tested for greenhouse climate control by minimizing the integrated time square error (ITSE) and the control increment or rate in a simulation experiment. The results show that by tuning the gain parameters the controllers can achieve good control performance through step responses such as small overshoot, fast settling time, and less rise time and steady state error. Besides, it can be applied to tuning the system with different properties, such as strong interactions among variables, nonlinearities and conflicting performance criteria. The results implicate that it is a quite effective and promising tuning method using multi-objective optimization algorithms in the complex greenhouse production. PMID:22163927

  6. Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian

    In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.

  7. Fuzzy attitude control of solar sail via linear matrix inequalities

    NASA Astrophysics Data System (ADS)

    Baculi, Joshua; Ayoubi, Mohammad A.

    2017-09-01

    This study presents a fuzzy tracking controller based on the Takagi-Sugeno (T-S) fuzzy model of the solar sail. First, the T-S fuzzy model is constructed by linearizing the existing nonlinear equations of motion of the solar sail. Then, the T-S fuzzy model is used to derive the state feedback controller gains for the Twin Parallel Distributed Compensation (TPDC) technique. The TPDC tracks and stabilizes the attitude of the solar sail to any desired state in the presence of parameter uncertainties and external disturbances while satisfying actuator constraints. The performance of the TPDC is compared to a PID controller that is tuned using the Ziegler-Nichols method. Numerical simulation shows the TPDC outperforms the PID controller when stabilizing the solar sail to a desired state.

  8. Smith predictor based-sliding mode controller for integrating processes with elevated deadtime.

    PubMed

    Camacho, Oscar; De la Cruz, Francisco

    2004-04-01

    An approach to control integrating processes with elevated deadtime using a Smith predictor sliding mode controller is presented. A PID sliding surface and an integrating first-order plus deadtime model have been used to synthesize the controller. Since the performance of existing controllers with a Smith predictor decrease in the presence of modeling errors, this paper presents a simple approach to combining the Smith predictor with the sliding mode concept, which is a proven, simple, and robust procedure. The proposed scheme has a set of tuning equations as a function of the characteristic parameters of the model. For implementation of our proposed approach, computer based industrial controllers that execute PID algorithms can be used. The performance and robustness of the proposed controller are compared with the Matausek-Micić scheme for linear systems using simulations.

  9. Adaptive fuzzy logic controller with direct action type structures for InnoSAT attitude control system

    NASA Astrophysics Data System (ADS)

    Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.

    2016-10-01

    This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.

  10. Seismic design of passive tuned mass damper parameters using active control algorithm

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ming; Shia, Syuan; Lai, Yong-An

    2018-07-01

    Tuned mass dampers are a widely-accepted control method to effectively reduce the vibrations of tall buildings. A tuned mass damper employs a damped harmonic oscillator with specific dynamic characteristics, thus the response of structures can be regulated by the additive dynamics. The additive dynamics are, however, similar to the feedback control system in active control. Therefore, the objective of this study is to develop a new tuned mass damper design procedure based on the active control algorithm, i.e., the H2/LQG control. This design facilitates the similarity of feedback control in the active control algorithm to determine the spring and damper in a tuned mass damper. Given a mass ratio between the damper and structure, the stiffness and damping coefficient of the tuned mass damper are derived by minimizing the response objective function of the primary structure, where the structural properties are known. Varying a single weighting in this objective function yields the optimal TMD design when the minimum peak in the displacement transfer function of the structure with the TMD is met. This study examines various objective functions as well as derives the associated equations to compute the stiffness and damping coefficient. The relationship between the primary structure and optimal tuned mass damper is parametrically studied. Performance is evaluated by exploring the h2-and h∞-norms of displacements and accelerations of the primary structure. In time-domain analysis, the damping effectiveness of the tune mass damper controlled structures is investigated under impulse excitation. Structures with the optimal tuned mass dampers are also assessed under seismic excitation. As a result, the proposed design procedure produces an effective tuned mass damper to be employed in a structure against earthquakes.

  11. The Effect of Response Bias on the Personality Inventory for DSM-5 (PID-5).

    PubMed

    McGee Ng, Sarah A; Bagby, R Michael; Goodwin, Brandee E; Burchett, Danielle; Sellbom, Martin; Ayearst, Lindsay E; Dhillon, Sonya; Yiu, Shirley; Ben-Porath, Yossef S; Baker, Spencer

    2016-01-01

    Valid self-report assessment of psychopathology relies on accurate and credible responses to test questions. There are some individuals who, in certain assessment contexts, cannot or choose not to answer in a manner typically representative of their traits or symptoms. This is referred to, most broadly, as test response bias. In this investigation, we explore the effect of response bias on the Personality Inventory for DSM-5 (PID-5; Krueger, Derringer, Markon, Watson, & Skodol, 2013 ), a self-report instrument designed to assess the pathological personality traits used to inform diagnosis of the personality disorders in Section III of DSM-5. A set of Minnesota Multiphasic Personality Inventory Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008 / 2011 ) validity scales, which are used to assess and identify response bias, were employed to identify individuals who engaged in either noncredible overreporting (OR) or underreporting (UR), or who were deemed to be reporting or responding to the items in a "credible" manner-credible responding (CR). A total of 2,022 research participants (1,587 students, 435 psychiatric patients) completed the MMPI-2-RF and PID-5; following protocol screening, these participants were classified into OR, UR, or CR response groups based on MMPI-2-RF validity scale scores. Groups of students and patients in the OR group scored significantly higher on the PID-5 than those students and patients in the CR group, whereas those in the UR group scored significantly lower than those in the CR group. Although future research is needed to explore the effects of response bias on the PID-5, results from this investigation provide initial evidence suggesting that response bias influences scale elevations on this instrument.

  12. Quantum Cascade Laser Tuning by Digital Micromirror Array-controlled External Cavity

    DTIC Science & Technology

    2014-01-01

    P. Vujkovic-Cvijin, B. Gregor, A. C. Samuels, E. S. Roese, Quantum cascade laser tuning by digital micromirror array-controlled external cavity...REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Quantum cascade laser tuning by digital micromirror array-controlled...dimensional digital micromirror array (DMA) is described. The laser is tuned by modulating the reflectivity of DMA micromirror pixels under computer

  13. Self-assembly of silica nanoparticles by tuning substrate-adsorbate interaction

    NASA Astrophysics Data System (ADS)

    Utsav, Khanna, Sakshum; Mukhopadhayay, Indrajit; Banerjee, Rupak

    2018-05-01

    We report on self-assembled nanodisc formations of silica nanoparticles on a surface modified silicon substrate using modified Langmuir-Schafer deposition technique (stamping). The size, inter-particle separation as well as the packing of the silica nanoparticles within the nanodiscs formed spontaneously can be tuned by the surface pressure applied on the water surface. We obtain self-assembled nanodiscs of silica nanoparticle arranged in a hexagonal symmetry. We also observe that by varying the surface pressure of deposition at the water-molecule-air interface we obtain such 2D disc-shaped structure with varying sizes and a packing ratio of the silica nanoparticle.

  14. Force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong

    2016-05-01

    Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this

  15. On the fragility of fractional-order PID controllers for FOPDT processes.

    PubMed

    Padula, Fabrizio; Visioli, Antonio

    2016-01-01

    This paper analyzes the fragility issue of fractional-order proportional-integral-derivative controllers applied to integer first-order plus-dead-time processes. In particular, the effects of the variations of the controller parameters on the achieved control system robustness and performance are investigated. Results show that this kind of controllers is more fragile with respect to the standard proportional-integral-derivative controllers and therefore a significant attention should be paid by the user in their tuning. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.

    PubMed

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-05-30

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.

  17. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network

    PubMed Central

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-01-01

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control. PMID:28556817

  18. Modeling and Simulation of Control Actuation System with Fuzzy-PID Logic Controlled Brushless Motor Drives for Missiles Glider Applications

    PubMed Central

    Muniraj, Murali; Arulmozhiyal, Ramaswamy

    2015-01-01

    A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system. PMID:26613102

  19. Modeling and Simulation of Control Actuation System with Fuzzy-PID Logic Controlled Brushless Motor Drives for Missiles Glider Applications.

    PubMed

    Muniraj, Murali; Arulmozhiyal, Ramaswamy

    2015-01-01

    A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.

  20. Learning and tuning fuzzy logic controllers through reinforcements.

    PubMed

    Berenji, H R; Khedkar, P

    1992-01-01

    A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  1. A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.

    PubMed

    Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R

    2018-05-01

    This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Tuning algorithms for fractional order internal model controllers for time delay processes

    NASA Astrophysics Data System (ADS)

    Muresan, Cristina I.; Dutta, Abhishek; Dulf, Eva H.; Pinar, Zehra; Maxim, Anca; Ionescu, Clara M.

    2016-03-01

    This paper presents two tuning algorithms for fractional-order internal model control (IMC) controllers for time delay processes. The two tuning algorithms are based on two specific closed-loop control configurations: the IMC control structure and the Smith predictor structure. In the latter, the equivalency between IMC and Smith predictor control structures is used to tune a fractional-order IMC controller as the primary controller of the Smith predictor structure. Fractional-order IMC controllers are designed in both cases in order to enhance the closed-loop performance and robustness of classical integer order IMC controllers. The tuning procedures are exemplified for both single-input-single-output as well as multivariable processes, described by first-order and second-order transfer functions with time delays. Different numerical examples are provided, including a general multivariable time delay process. Integer order IMC controllers are designed in each case, as well as fractional-order IMC controllers. The simulation results show that the proposed fractional-order IMC controller ensures an increased robustness to modelling uncertainties. Experimental results are also provided, for the design of a multivariable fractional-order IMC controller in a Smith predictor structure for a quadruple-tank system.

  3. Automation of extrusion of porous cable products based on a digital controller

    NASA Astrophysics Data System (ADS)

    Chostkovskii, B. K.; Mitroshin, V. N.

    2017-07-01

    This paper presents a new approach to designing an automated system for monitoring and controlling the process of applying porous insulation material on a conductive cable core, which is based on using structurally and parametrically optimized digital controllers of an arbitrary order instead of calculating typical PID controllers using known methods. The digital controller is clocked by signals from the clock length sensor of a measuring wheel, instead of a timer signal, and this provides the robust properties of the system with respect to the changing insulation speed. Digital controller parameters are tuned to provide the operating parameters of the manufactured cable using a simulation model of stochastic extrusion and are minimized by moving a regular simplex in the parameter space of the tuned controller.

  4. Pelvic inflammatory disease (PID)

    MedlinePlus

    ... Names PID; Oophoritis; Salpingitis; Salpingo - oophoritis; Salpingo - peritonitis Images Pelvic laparoscopy Female reproductive anatomy Endometritis Uterus References McKinzie J. Sexually transmitted diseases. In: Walls RM, Hockberger RS, ...

  5. Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control.

    PubMed

    Liu, Xilin; Zhang, Milin; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan

    2017-08-01

    This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18 μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.

  6. Performance costs when emotion tunes inappropriate cognitive abilities: implications for mental resources and behavior.

    PubMed

    Storbeck, Justin

    2012-08-01

    Emotion tunes cognition, such that approach-motivated positive states promote verbal cognition, whereas withdrawal-motivated negative states promote spatial cognition (Gray, 2001). The current research examined whether self-control resources become depleted and influence subsequent behavior when emotion tunes an inappropriate cognitive tendency. In 2 experiments, either an approach-motivated positive state or a withdrawal-motivated negative state was induced, and then participants completed a verbal or a spatial working memory task creating conditions of emotion-cognition alignment (e.g., approach/verbal) or misalignment (e.g., approach/spatial). A control condition was also included. To examine behavioral costs due to depleted self-control resources, participants completed either a Stroop task (Stroop, 1935; Experiment 1) or a Black/White implicit association test (IAT; Greenwald, McGhee, & Schwartz, 1998; Experiment 2). Participants in the misalignment conditions performed worse on the Stroop task, and they were worse at controlling their implicit attitude biases on the IAT. Thus, when emotion tunes inappropriate cognitive tendencies for one's current environment, self-control resources become depleted, impairing behavioral control. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  7. A tuning algorithm for model predictive controllers based on genetic algorithms and fuzzy decision making.

    PubMed

    van der Lee, J H; Svrcek, W Y; Young, B R

    2008-01-01

    Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.

  8. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  9. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  10. General self-tuning solutions and no-go theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Förste, Stefan; Kim, Jihn E.; Lee, Hyun Min, E-mail: forste@th.physik.uni-bonn.de, E-mail: jihnekim@gmail.com, E-mail: hyun.min.lee@kias.re.kr

    2013-03-01

    We consider brane world models with one extra dimension. In the bulk there is in addition to gravity a three form gauge potential or equivalently a scalar (by generalisation of electric magnetic duality). We find classical solutions for which the 4d effective cosmological constant is adjusted by choice of integration constants. No go theorems for such self-tuning mechanism are circumvented by unorthodox Lagrangians for the three form respectively the scalar. It is argued that the corresponding effective 4d theory always includes tachyonic Kaluza-Klein excitations or ghosts. Known no go theorems are extended to a general class of models with unorthodoxmore » Lagrangians.« less

  11. Tuning a fuzzy controller using quadratic response surfaces

    NASA Technical Reports Server (NTRS)

    Schott, Brian; Whalen, Thomas

    1992-01-01

    Response surface methodology, an alternative method to traditional tuning of a fuzzy controller, is described. An example based on a simulated inverted pendulum 'plant' shows that with (only) 15 trial runs, the controller can be calibrated using a quadratic form to approximate the response surface.

  12. Software feedback for monochromator tuning at UNICAT (abstract)

    NASA Astrophysics Data System (ADS)

    Jemian, Pete R.

    2002-03-01

    Automatic tuning of double-crystal monochromators presents an interesting challenge in software. The goal is to either maximize, or hold constant, the throughput of the monochromator. An additional goal of the software feedback is to disable itself when there is no beam and then, at the user's discretion, re-enable itself when the beam returns. These and other routine goals, such as adherence to limits of travel for positioners, are maintained by software controls. Many solutions exist to lock in and maintain a fixed throughput. Among these include a hardware solution involving a wave form generator, and a lock-in amplifier to autocorrelate the movement of a piezoelectric transducer (PZT) providing fine adjustment of the second crystal Bragg angle. This solution does not work when the positioner is a slow acting device such as a stepping motor. Proportional integral differential (PID) loops have been used to provide feedback through software but additional controls must be provided to maximize the monochromator throughput. Presented here is a software variation of the PID loop which meets the above goals. By using two floating point variables as inputs, representing the intensity of x rays measured before and after the monochromator, it attempts to maximize (or hold constant) the ratio of these two inputs by adjusting an output floating point variable. These floating point variables are connected to hardware channels corresponding to detectors and positioners. When the inputs go out of range, the software will stop making adjustments to the control output. Not limited to monochromator feedback, the software could be used, with beam steering positioners, to maintain a measure of beam position. Advantages of this software feedback are the flexibility of its various components. It has been used with stepping motors and PZTs as positioners. Various devices such as ion chambers, scintillation counters, photodiodes, and photoelectron collectors have been used as

  13. A Self-Tuning Kalman Filter for Autonomous Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS (Global Positioning Systems) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  14. A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  15. TCR tuning of T cell subsets.

    PubMed

    Cho, Jae-Ho; Sprent, Jonathan

    2018-05-01

    After selection in the thymus, the post-thymic T cell compartments comprise heterogenous subsets of naive and memory T cells that make continuous T cell receptor (TCR) contact with self-ligands bound to major histocompatibility complex (MHC) molecules. T cell recognition of self-MHC ligands elicits covert TCR signaling and is particularly important for controlling survival of naive T cells. Such tonic TCR signaling is tightly controlled and maintains the cells in a quiescent state to avoid autoimmunity. Here, we review how naive and memory T cells are differentially tuned and wired for TCR sensitivity to self and foreign ligands. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Stiffness control of magnetorheological gels for adaptive tunable vibration absorber

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Kee; Kim, Hye Shin; Kim, Young-Keun

    2017-01-01

    In this study, a stiffness feedback control system for magnetorheological (MR) gel—a smart material of variable stiffness—is proposed, toward the design of a tunable vibration absorber that can adaptively tune to a time varying disturbance in real time. A PID controller was designed to track the required stiffness of the MR gel by controlling the magnitude of the target external magnetic field pervading the MR gel. This paper proposes a novel magnetic field generator that could produce a variable magnetic field with low energy consumption. The performance of the MR gel stiffness control was validated through experiments that showed the MR gel absorber system could be automatically tuned from 56 Hz to 67 Hz under a field of 100 mT to minimize the vibration of the primary system.

  17. The Personality Inventory for DSM-5 Short Form (PID-5-SF): psychometric properties and association with big five traits and pathological beliefs in a Norwegian population.

    PubMed

    Thimm, Jens C; Jordan, Stian; Bach, Bo

    2016-12-07

    With the publication of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), an alternative model for personality disorders based on personality dysfunction and pathological personality traits was introduced. The Personality Inventory for DSM-5 (PID-5) is a 220-item self-report inventory designed to assess the personality traits of this model. Recently, a short 100-item version of the PID-5 (PID-5-SF) has been developed. The aim of this study was to investigate the score reliability and structure of the Norwegian PID-5-SF. Further, criterion validity with the five factor model of personality (FFM) and pathological personality beliefs was examined. A derivation sample of university students (N = 503) completed the PID-5, the Big Five Inventory (BFI), and the Personality Beliefs Questionnaire - Short Form (PBQ-SF), whereas a replication sample of 127 students completed the PID-5-SF along with the aforementioned measures. The short PID-5 showed overall good score reliability and structural validity. The associations with FFM traits and pathological personality beliefs were conceptually coherent and similar for the two forms of the PID-5. The results suggest that the Norwegian PID-5 short form is a reliable and efficient measure of the trait criterion of the alternative model for personality disorders in DSM-5.

  18. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller.

    PubMed

    Lopez-Franco, Carlos; Gomez-Avila, Javier; Alanis, Alma Y; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-08-12

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results.

  19. Synaptic Plasticity Enables Adaptive Self-Tuning Critical Networks

    PubMed Central

    Stepp, Nigel; Plenz, Dietmar; Srinivasa, Narayan

    2015-01-01

    During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a network poised for optimal information processing, but this view seems to be difficult to reconcile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron, deterministic, plastic network of spiking neurons. We show that a combination of short- and long-term synaptic plasticity enables these networks to exhibit criticality in the face of intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to adaptive, long-term modification of intrinsic network connectivity through long-term excitatory plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network back to a critical state. The critical state is characterized by a branching parameter oscillating around unity, a critical exponent close to -3/2 and a long tail distribution of a self-similarity parameter between 0.5 and 1. PMID:25590427

  20. ADCS controllers comparison for small satellitess in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria

    2016-07-01

    Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In a previous work, a tailored Fuzzy controller was designed for a nanosatellite. Its performance and efficiency were compared with a traditional Proportional Integrative Derivative (PID) controller within the same specific mission. The orbit height varied along the mission from injection at around 380 km down to 200 km height, and the mission required pointing accuracy over the whole time. Due to both, the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, an efficient ADCS is required. Both methodologies, fuzzy and PID, were fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. The simulations showed that the Fuzzy controller is much more efficient (up to 65% less power required) in single manoeuvres, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the Fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. However, the controllers are meant to be used in a vast range of situations and configurations which exceed those used in the calibration process carried out in the previous work. To assess the suitability and performance of both controllers in a wider framework, parametric and statistical methods have been applied using the Monte Carlo technique. Several parameters have been modified randomly at the beginning of each simulation: the moments of inertia of the whole satellite and of the momentum wheel, the residual magnetic dipole and the initial conditions of the test. These parameters have been chosen because they are the main source of uncertainty during the design phase. The variables used for the analysis are the error (critical for science) and the operation cost (which impacts the mission lifetime and

  1. Verification and Tuning of an Adaptive Controller for an Unmanned Air Vehicle

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.

    2010-01-01

    This paper focuses on the analysis and tuning of a controller based on the Adaptive Control Technology for Safe Flight (ACTS) architecture. The ACTS architecture consists of a nominal, non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off-nominal ones. A framework unifying control verification and gain tuning is used to make the controller s ability to satisfy the closed-loop requirements more robust to uncertainty. In this paper we tune the gains of both controllers using this approach. Some advantages and drawbacks of adaptation are identified by performing a global robustness assessment of both the adaptive controller and its non-adaptive counterpart. The analyses used to determine these characteristics are based on evaluating the degradation in closed-loop performance resulting from uncertainties having increasing levels of severity. The specific adverse conditions considered can be grouped into three categories: aerodynamic uncertainties, structural damage, and actuator failures. These failures include partial and total loss of control effectiveness, locked-in-place control surface deflections, and engine out conditions. The requirements considered are the peak structural loading, the ability of the controller to track pilot commands, the ability of the controller to keep the aircraft s state within the reliable flight envelope, and the handling/riding qualities of the aircraft. The nominal controller resulting from these tuning strategies was successfully validated using the NASA GTM Flight Test Vehicle.

  2. Tuning Amphiphilicity of Particles for Controllable Pickering Emulsion

    PubMed Central

    Wang, Zhen; Wang, Yapei

    2016-01-01

    Pickering emulsions with the use of particles as emulsifiers have been extensively used in scientific research and industrial production due to their edge in biocompatibility and stability compared with traditional emulsions. The control over Pickering emulsion stability and type plays a significant role in these applications. Among the present methods to build controllable Pickering emulsions, tuning the amphiphilicity of particles is comparatively effective and has attracted enormous attention. In this review, we highlight some recent advances in tuning the amphiphilicity of particles for controlling the stability and type of Pickering emulsions. The amphiphilicity of three types of particles including rigid particles, soft particles, and Janus particles are tailored by means of different mechanisms and discussed here in detail. The stabilization-destabilization interconversion and phase inversion of Pickering emulsions have been successfully achieved by changing the surface properties of these particles. This article provides a comprehensive review of controllable Pickering emulsions, which is expected to stimulate inspiration for designing and preparing novel Pickering emulsions, and ultimately directing the preparation of functional materials. PMID:28774029

  3. Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Cheng; Tai, Cheng-Chi

    2017-07-01

    The aim of this study involved developing a temperature controller for magnetic induction hyperthermia (MIH). A closed-loop controller was applied to track a reference model to guarantee a desired temperature response. The MIH system generated an alternating magnetic field to heat a high magnetic permeability material. This wireless induction heating had few side effects when it was extensively applied to cancer treatment. The effects of hyperthermia strongly depend on the precise control of temperature. However, during the treatment process, the control performance is degraded due to severe perturbations and parameter variations. In this study, a modified self-learning fuzzy logic controller (SLFLC) with a gain tuning mechanism was implemented to obtain high control performance in a wide range of treatment situations. This implementation was performed by appropriately altering the output scaling factor of a fuzzy inverse model to adjust the control rules. In this study, the proposed SLFLC was compared to the classical self-tuning fuzzy logic controller and fuzzy model reference learning control. Additionally, the proposed SLFLC was verified by conducting in vitro experiments with porcine liver. The experimental results indicated that the proposed controller showed greater robustness and excellent adaptability with respect to the temperature control of the MIH system.

  4. The German national registry for primary immunodeficiencies (PID)

    PubMed Central

    Gathmann, B; Goldacker, S; Klima, M; Belohradsky, B H; Notheis, G; Ehl, S; Ritterbusch, H; Baumann, U; Meyer-Bahlburg, A; Witte, T; Schmidt, R; Borte, M; Borte, S; Linde, R; Schubert, R; Bienemann, K; Laws, H-J; Dueckers, G; Roesler, J; Rothoeft, T; Krüger, R; Scharbatke, E C; Masjosthusmann, K; Wasmuth, J-C; Moser, O; Kaiser, P; Groß-Wieltsch, U; Classen, C F; Horneff, G; Reiser, V; Binder, N; El-Helou, S M; Klein, C; Grimbacher, B; Kindle, G

    2013-01-01

    In 2009, a federally funded clinical and research consortium (PID–NET, http://www.pid-net.org) established the first national registry for primary immunodeficiencies (PID) in Germany. The registry contains clinical and genetic information on PID patients and is set up within the framework of the existing European Database for Primary Immunodeficiencies, run by the European Society for Primary Immunodeficiencies. Following the example of other national registries, a central data entry clerk has been employed to support data entry at the participating centres. Regulations for ethics approvals have presented a major challenge for participation of individual centres and have led to a delay in data entry in some cases. Data on 630 patients, entered into the European registry between 2004 and 2009, were incorporated into the national registry. From April 2009 to March 2012, the number of contributing centres increased from seven to 21 and 738 additional patients were reported, leading to a total number of 1368 patients, of whom 1232 were alive. The age distribution of living patients differs significantly by gender, with twice as many males than females among children, but 15% more women than men in the age group 30 years and older. The diagnostic delay between onset of symptoms and diagnosis has decreased for some PID over the past 20 years, but remains particularly high at a median of 4 years in common variable immunodeficiency (CVID), the most prevalent PID. PMID:23607573

  5. A two-phase control algorithm for gear-shifting in a novel multi-speed transmission for electric vehicles

    NASA Astrophysics Data System (ADS)

    Roozegar, M.; Angeles, J.

    2018-05-01

    In light of the current low energy-storage capacity of electric batteries, multi-speed transmissions (MSTs) are being considered for applications in electric vehicles (EVs), since MSTs decrease the energy consumption of the EV via gear-shifting. Nonetheless, swiftness and seamlessness are the major concerns in gear-shifting. This study focuses on developing a gear-shifting control scheme for a novel MST designed for EVs. The main advantages of the proposed MST are simplicity and modularity. Firstly, the dynamics model of the transmission is formulated. Then, a two-phase algorithm is proposed for shifting between each two gear ratios, which guarantees a smooth and swift shift. In other words, a separate control set is applied for shifting between each gear pair, which includes two independent PID controllers, tuned using trial-and-error and a genetic algorithm (GA), for the two steps of the algorithm and a switch. A supervisory controller is also employed to choose the proper PID gains, called PID gain-scheduling. Simulation results for various controllers and conditions are reported and compared, indicating that the proposed scheme is highly promising for a desired gear-shifting even in the presence of an unknown external disturbance.

  6. Performance Costs when Emotion Tunes Inappropriate Cognitive Abilities: Implications for Mental Resources and Behavior

    ERIC Educational Resources Information Center

    Storbeck, Justin

    2012-01-01

    Emotion tunes cognition, such that approach-motivated positive states promote verbal cognition, whereas withdrawal-motivated negative states promote spatial cognition (Gray, 2001). The current research examined whether self-control resources become depleted and influence subsequent behavior when emotion tunes an inappropriate cognitive tendency.…

  7. Self-Healing Nanocomposite Hydrogel with Well-Controlled Dynamic Mechanics

    NASA Astrophysics Data System (ADS)

    Li, Qiaochu; Mishra, Sumeet; Chen, Pangkuan; Tracy, Joseph; Holten-Andersen, Niels

    Network dynamics is a crucial factor that determines the macroscopic self-healing rate and efficiency in polymeric hydrogel materials, yet its controllability is seldom studied in most reported self-healing hydrogel systems. Inspired by mussel's adhesion chemistry, we developed a novel approach to assemble inorganic nanoparticles and catechol-decorated PEG polymer into a hydrogel network. When utilized as reversible polymer-particle crosslinks, catechol-metal coordination bonds yield a unique gel network with dynamic mechanics controlled directly by interfacial crosslink structure. Taking advantage of this structure-property relationship at polymer-particle interfaces, we next designed a hierarchically structured hybrid gel with two distinct relaxation timescales. By tuning the relative contribution of the two hierarchical relaxation modes, we are able to finely control the gel's dynamic mechanical behavior from a viscoelastic fluid to a stiff solid, yet preserving its fast self-healing property without the need for external stimuli.

  8. Thermal tuning the reversible optical band gap of self-assembled polystyrene photonic crystals

    NASA Astrophysics Data System (ADS)

    Vakili Tahami, S. H.; Pourmahdian, S.; Shirkavand Hadavand, B.; Azizi, Z. S.; Tehranchi, M. M.

    2016-11-01

    Nano-sized polymeric colloidal particles could undergo self-organization into three-dimensional structures to produce desired optical properties. In this research, a facile emulsifier-free emulsion polymerization method was employed to synthesize highly mono-disperse sub-micron polystyrene colloids. A high quality photonic crystal (PhC) structure was prepared by colloidal polystyrene. The reversible thermal tuning effect on photonic band gap position as well as the attenuation of the band gap was investigated in detail. The position of PBG can be tuned from 420 nm to 400 nm by varying the temperature of the PhC structure, reversibly. This reversible effect provides a reconfigurable PhC structure which could be used as thermo-responsive shape memory polymers.

  9. Strain-Tuning Atomic Substitution in Two-Dimensional Atomic Crystals.

    PubMed

    Li, Honglai; Liu, Hongjun; Zhou, Linwei; Wu, Xueping; Pan, Yuhao; Ji, Wei; Zheng, Biyuan; Zhang, Qinglin; Zhuang, Xiujuan; Zhu, Xiaoli; Wang, Xiao; Duan, Xiangfeng; Pan, Anlian

    2018-05-22

    Atomic substitution offers an important route to achieve compositionally engineered two-dimensional nanostructures and their heterostructures. Despite the recent research progress, the fundamental understanding of the reaction mechanism has still remained unclear. Here, we reveal the atomic substitution mechanism of two-dimensional atomic layered materials. We found that the atomic substitution process depends on the varying lattice constant (strain) in monolayer crystals, dominated by two strain-tuning (self-promoted and self-limited) mechanisms using density functional theory calculations. These mechanisms were experimentally confirmed by the controllable realization of a graded substitution ratio in the monolayers by controlling the substitution temperature and time and further theoretically verified by kinetic Monte Carlo simulations. The strain-tuning atomic substitution processes are of general importance to other two-dimensional layered materials, which offers an interesting route for tailoring electronic and optical properties of these materials.

  10. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller

    PubMed Central

    Lopez-Franco, Carlos; Alanis, Alma Y.; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-01-01

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results. PMID:28805689

  11. Mutations in CsPID encoding a Ser/Thr protein kinase are responsible for round leaf shape in cucumber (Cucumis sativus L.).

    PubMed

    Zhang, Chaowen; Chen, Feifan; Zhao, Ziyao; Hu, Liangliang; Liu, Hanqiang; Cheng, Zhihui; Weng, Yiqun; Chen, Peng; Li, Yuhong

    2018-06-01

    Two round-leaf mutants, rl-1 and rl-2, were identified from EMS-induced mutagenesis. High throughput sequencing and map-based cloning suggested CsPID encoding a Ser/Thr protein kinase as the most possible candidate for rl-1. Rl-2 was allelic to Rl-1. Leaf shape is an important plant architecture trait that is affected by plant hormones, especially auxin. In Arabidopsis, PINOID (PID), a regulator for the auxin polar transporter PIN (PIN-FORMED) affects leaf shape formation, but this function of PID in crop plants has not been well studied. From an EMS mutagenesis population, we identified two round-leaf (rl) mutants, C356 and C949. Segregation analysis suggested that both mutations were controlled by single recessive genes, rl-1 and rl-2, respectively. With map-based cloning, we show that CsPID as the candidate gene of rl-1; a non-synonymous SNP in the second exon of CsPID resulted in an amino acid substitution and the round leaf phenotype. As compared in the wild type plant, CsPID had significantly lower expression in the root, leaf and female flowers in C356, which may result in the less developed roots, round leaves and abnormal female flowers, respectively in the rl-1 mutant. Among the three copies of PID genes, CsPID, CsPID2 and CSPID2L (CsPID2-like) in the cucumber genome, CsPID was the only one with significantly differential expression in adult leaves between WT and C356 suggesting CsPID plays a main role in leaf shape formation. The rl-2 mutation in C949 was also cloned, which was due to another SNP in a nearby location of rl-1 in the same CsPID gene. The two round leaf mutants and the work presented herein provide a good foundation for understanding the molecular mechanisms of CsPID in cucumber leaf development.

  12. Achieving increased bandwidth for 4 degree of freedom self-tuning energy harvester

    NASA Astrophysics Data System (ADS)

    Staaf, L. G. H.; Smith, A. D.; Köhler, E.; Lundgren, P.; Folkow, P. D.; Enoksson, P.

    2018-04-01

    The frequency response of a self-tuning energy harvester composed of two piezoelectric cantilevers connected by a middle beam with a sliding mass is investigated. Measurements show that incorporation of a free-sliding mass increases the bandwidth. Using an analytical model, the system is explained through close investigation of the resonance modes. Resonance mode behavior further suggests that, by breaking the symmetry of the system, even broader bandwidths are achievable.

  13. Investigating PID shunting in polycrystalline silicon modules via multiscale, multitechnique characterization

    DOE PAGES

    Harvey, Steven P.; Moseley, John; Norman, Andrew; ...

    2018-02-27

    We investigated the potential-induced degradation (PID) shunting mechanism in multicrystalline-silicon photovoltaic modules by using a multiscale, multitechnique characterization approach. Both field-stressed modules and laboratory-stressed mini modules were studied. We used photoluminescence, electroluminescence, and dark lock-in thermography imaging to identify degraded areas at the module scale. Small samples were then removed from degraded areas, laser marked, and imaged by scanning electron microscopy. We used simultaneous electron-beam induced current imaging and focused ion beam milling to mark around PID shunts for chemical analysis by time-of-flight secondary-ion mass spectrometry or to isolate individual shunt defects for transmission electron microscopy and atom-probe tomography analysis.more » By spanning a range of 10 orders of magnitude in size, this approach enabled us to investigate the root-cause mechanisms for PID shunting. We observed a direct correlation between recombination active shunts and sodium content. The sodium content in shunted areas peaks at the SiNX/Si interface and is consistently observed at a concentration of 0.1% to 2% in shunted areas. Analysis of samples subjected to PID recovery, either activated by electron beam or thermal effects only, reveals that recovery of isolated shunts correlates with diffusion of sodium out of the structural defects to the silicon surface. We observed the role of oxygen and chlorine in PID shunting and found that those species - although sometimes present in structural defects where PID shunting was observed - do not play a consistent role in PID shunting.« less

  14. A Novel Technique for Performing PID Susceptibility Screening during the Solar Cell Fabrication Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jaewon; Dahal, Som; Dauksher, Bill

    2016-11-21

    Various characterization techniques have historically been developed in order to screen potential induced degradation (PID)-susceptible cells, but those techniques require final solar cells. We present a new characterization technique for screening PID-susceptible cells during the cell fabrication process. Illuminated Lock-In Thermography (ILIT) was used to image PID shunting of the cell without metallization and clearly showed PID-affected areas. PID-susceptible cells can be screened by ILIT, and the sample structure can advantageously be simplified as long as the sample has the silicon nitride antireflection coating and an aluminum back surface field.

  15. Development of smart piezoelectric transducer self-sensing, self-diagnosis and tuning schemes for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Lee, Sang Jun

    Autonomous structural health monitoring (SHM) systems using active sensing devices have been studied extensively to diagnose the current state of aerospace, civil infrastructure and mechanical systems in near real-time and aims to eventually reduce life-cycle costs by replacing current schedule-based maintenance with condition-based maintenance. This research develops four schemes for SHM applications: (1) a simple and reliable PZT transducer self-sensing scheme; (2) a smart PZT self-diagnosis scheme; (3) an instantaneous reciprocity-based PZT diagnosis scheme; and (4) an effective PZT transducer tuning scheme. First, this research develops a PZT transducer self-sensing scheme, which is a necessary condition to accomplish a PZT transducer self-diagnosis. Main advantages of the proposed self-sensing approach are its simplicity and adaptability. The necessary hardware is only an additional self-sensing circuit which includes a minimum of electric components. With this circuit, the self-sensing parameters can be calibrated instantaneously in the presence of changing operational and environmental conditions of the system. In particular, this self-sensing scheme focuses on estimating the mechanical response in the time domain for the subsequent applications of the PZT transducer self-diagnosis and tuning with guided wave propagation. The most significant challenge of this self-sensing comes from the fact that the magnitude of the mechanical response is generally several orders of magnitude smaller than that of the input signal. The proposed self-sensing scheme fully takes advantage of the fact that any user-defined input signals can be applied to a host structure and the input waveform is known. The performance of the proposed self-sensing scheme is demonstrated by theoretical analysis, numerical simulations and various experiments. Second, this research proposes a smart PZT transducer self-diagnosis scheme based on the developed self-sensing scheme. Conventionally, the

  16. Neuromechanical tuning of nonlinear postural control dynamics

    NASA Astrophysics Data System (ADS)

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-06-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.

  17. PID-based error signal modeling

    NASA Astrophysics Data System (ADS)

    Yohannes, Tesfay

    1997-10-01

    This paper introduces a PID based signal error modeling. The error modeling is based on the betterment process. The resulting iterative learning algorithm is introduced and a detailed proof is provided for both linear and nonlinear systems.

  18. Dynamic analysis and control PID path of a model type gantry crane

    NASA Astrophysics Data System (ADS)

    Ospina-Henao, P. A.; López-Suspes, Framsol

    2017-06-01

    This paper presents an alternate form for the dynamic modelling of a mechanical system that simulates in real life a gantry crane type, using Euler’s classical mechanics and Lagrange formalism, which allows find the equations of motion that our model describe. Moreover, it has a basic model design system using the SolidWorks software, based on the material and dimensions of the model provides some physical variables necessary for modelling. In order to verify the theoretical results obtained, a contrast was made between solutions obtained by simulation in SimMechanics-Matlab and Euler-Lagrange equations system, has been solved through Matlab libraries for solving equation’s systems of the type and order obtained. The force is determined, but not as exerted by the spring, as this will be the control variable. The objective is to bring the mass of the pendulum from one point to another with a specified distance without the oscillation from it, so that, the answer is overdamped. This article includes an analysis of PID control in which the equations of motion of Euler-Lagrange are rewritten in the state space, once there, they were implemented in Simulink to get the natural response of the system to a step input in F and then draw the desired trajectories.

  19. Frequency-tuning input-shaped manifold-based switching control for underactuated space robot equipped with flexible appendages

    NASA Astrophysics Data System (ADS)

    Kojima, Hirohisa; Ieda, Shoko; Kasai, Shinya

    2014-08-01

    Underactuated control problems, such as the control of a space robot without actuators on the main body, have been widely investigated. However, few studies have examined attitude control problems of underactuated space robots equipped with a flexible appendage, such as solar panels. In order to suppress vibration in flexible appendages, a zero-vibration input-shaping technique was applied to the link motion of an underactuated planar space robot. However, because the vibrational frequency depends on the link angles, simple input-shaping control methods cannot sufficiently suppress the vibration. In this paper, the dependency of the vibrational frequency on the link angles is measured experimentally, and the time-delay interval of the input shaper is then tuned based on the frequency estimated from the link angles. The proposed control method is referred to as frequency-tuning input-shaped manifold-based switching control (frequency-tuning IS-MBSC). The experimental results reveal that frequency-tuning IS-MBSC is capable of controlling the link angles and the main body attitude to maintain the target angles and that the vibration suppression performance of the proposed frequency-tuning IS-MBSC is better than that of a non-tuning IS-MBSC, which does not take the frequency variation into consideration.

  20. Self-tuning wireless power transmission scheme based on on-line scattering parameters measurement and two-side power matching.

    PubMed

    Luo, Yanting; Yang, Yongmin; Chen, Zhongsheng

    2014-04-10

    Sub-resonances often happen in wireless power transmission (WPT) systems using coupled magnetic resonances (CMR) due to environmental changes, coil movements or component degradations, which is a serious challenge for high efficiency power transmission. Thus self-tuning is very significant to keep WPT systems following strongly magnetic resonant conditions in practice. Traditional coupled-mode ways is difficult to solve this problem. In this paper a two-port power wave model is presented, where power matching and the overall systemic power transmission efficiency are firstly defined by scattering (S) parameters. Then we propose a novel self-tuning scheme based on on-line S parameters measurements and two-side power matching. Experimental results testify the feasibility of the proposed method. These findings suggest that the proposed method is much potential to develop strongly self-adaptive WPT systems with CMR.

  1. PID1 (NYGGF4), a new growth-inhibitory gene in embryonal brain tumors and gliomas

    PubMed Central

    Erdreich-Epstein, Anat; Robison, Nathan; Ren, Xiuhai; Zhou, Hong; Xu, Jingying; Davidson, Tom B.; Schur, Mathew; Gilles, Floyd H.; Ji, Lingyun; Malvar, Jemily; Shackleford, Gregory M.; Margol, Ashley S.; Krieger, Mark D.; Judkins, Alexander R.; Jones, David T.W.; Pfister, Stefan; Kool, Marcel; Sposto, Richard; Asgharazadeh, Shahab

    2014-01-01

    Purpose We present here the first report of PID1 (Phosphotyrosine Interaction Domain containing 1; NYGGF4) in cancer. PID1 was identified in 2006 as a gene that modulates insulin signaling and mitochondrial function in adipocytes and muscle cells. Experimental Design and Results Using four independent medulloblastoma datasets, we show that mean PID1 mRNA levels were lower in unfavorable medulloblastomas (Groups 3 and 4, and anaplastic histology) compared with favorable medulloblastomas (SHH and WNT groups, and desmoplastic/nodular histology) and with fetal cerebellum. In two large independent glioma datasets PID1 mRNA was lower in glioblastomas (GBMs), the most malignant gliomas, compared to other astrocytomas, oligodendrogliomas and non-tumor brains. Neural and proneural GBM subtypes had higher PID1 mRNA compared to classical and mesenchymal GBM. Importantly, overall survival and radiation-free progression-free survival were longer in medulloblastoma patients with higher PID1 mRNA (univariate and multivariate analyses). Higher PID1 mRNA also correlated with longer overall survival in glioma and GBM patients. In cell culture, overexpression of PID1 inhibited colony formation in medulloblastoma, atypical teratoid rhabdoid tumor (ATRT) and GBM cell lines. Increasing PID1 also increased cell death and apoptosis, inhibited proliferation, induced mitochondrial depolarization, and decreased serum-mediated phosphorylation of AKT and ERK in medulloblastoma, ATRT and/or GBM cell lines, whereas siRNA to PID1 diminished mitochondrial depolarization. Conclusions These data are the first to link PID1 to cancer and suggest that PID1 may have a tumor inhibitory function in these pediatric and adult brain tumors. PMID:24300787

  2. Research on Potential Induced Degradation (PID) of PV Modules in Different Typical Climate Regions

    NASA Astrophysics Data System (ADS)

    Daoren, Gong; Yingnan, Chen; Gang, Sun; Wenjing, Wang; Zhenshuang, Ji

    2018-03-01

    Potential Induced Degradation (PID) is one of the most important factors effecting the performances of Photovoltaic (PV) modules and PV systems in recent years. In this paper the PID phenomena of the PV power plant in different typical climate regions were studied and some experimental PID simulations were carried out in order to find out the factors effecting the performance by PID. The results show that the typical PID phenomena are easy to occur in cells close to the border of the PV module. PID phenomena can appear in PV power plants under different climate conditions, but the effecting degrees on module performance are different depending on temperature, humidity and other parameters. We also find the maximum power would recover in some degree after positive-bias voltage duration.

  3. A Verification-Driven Approach to Control Analysis and Tuning

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2008-01-01

    This paper proposes a methodology for the analysis and tuning of controllers using control verification metrics. These metrics, which are introduced in a companion paper, measure the size of the largest uncertainty set of a given class for which the closed-loop specifications are satisfied. This framework integrates deterministic and probabilistic uncertainty models into a setting that enables the deformation of sets in the parameter space, the control design space, and in the union of these two spaces. In regard to control analysis, we propose strategies that enable bounding regions of the design space where the specifications are satisfied by all the closed-loop systems associated with a prescribed uncertainty set. When this is unfeasible, we bound regions where the probability of satisfying the requirements exceeds a prescribed value. In regard to control tuning, we propose strategies for the improvement of the robust characteristics of a baseline controller. Some of these strategies use multi-point approximations to the control verification metrics in order to alleviate the numerical burden of solving a min-max problem. Since this methodology targets non-linear systems having an arbitrary, possibly implicit, functional dependency on the uncertain parameters and for which high-fidelity simulations are available, they are applicable to realistic engineering problems..

  4. Fuzzy attitude control for a nanosatellite in leo orbit

    NASA Astrophysics Data System (ADS)

    Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir

    Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small

  5. Linear frequency tuning in an LC-resonant system using a C-V response controllable MEMS varactor

    NASA Astrophysics Data System (ADS)

    Han, Chang-Hoon; Yoon, Yong-Hoon; Ko, Seung-Deok; Seo, Min-Ho; Yoon, Jun-Bo

    2017-12-01

    This paper proposes a device level solution to achieve linear frequency tuning with respect to a tuning voltage ( V tune ) sweep in an inductor ( L)-capacitor ( C) resonant system. Since the linearity of the resonant frequency vs. tuning voltage ( f- V) relationship in an LC-resonant system is closely related to the C- V response characteristic of the varactor, we propose a C- V response tunable varactor to realize the linear frequency tuning. The proposed varactor was fabricated using microelectromechanical system (MEMS) surface micromachining. The fabricated MEMS varactor has the ability to dynamically change the C- V response characteristic according to a curve control voltage ( V curve- control ). When V curve- control was increased from zero to 9 V, the C- V response curve was changed from a linear to a concave form (i.e., the capacitance decreased quickly in the low tuning voltage region and slowly in the high tuning voltage region). This change in the C- V response characteristic resulted in a change in the f- V relationship, and we successfully demonstrated almost perfectly linear frequency tuning in the LC-resonant system, with a linearity factor of 99.95%.

  6. The impact of underreporting and overreporting on the validity of the Personality Inventory for DSM-5 (PID-5): A simulation analog design investigation.

    PubMed

    Dhillon, Sonya; Bagby, R Michael; Kushner, Shauna C; Burchett, Danielle

    2017-04-01

    The Personality Inventory for DSM-5 (PID-5) is a 220-item self-report instrument that assesses the alternative model of personality psychopathology in Section III (Emerging Measures and Models) of DSM-5 . Despite its relatively recent introduction, the PID-5 has generated an impressive accumulation of studies examining its psychometric properties, and the instrument is also already widely and frequently used in research studies. Although the PID-5 is psychometrically sound overall, reviews of this instrument express concern that this scale does not possess validity scales to detect invalidating levels of response bias, such as underreporting and overreporting. McGee Ng et al. (2016), using a "known-groups" (partial) criterion design, demonstrated that both underreporting and overreporting grossly affect mean scores on PID-5 scales. In the current investigation, we replicate these findings using an analog simulation design. An important extension to this replication study was the finding that the construct validity of the PID-5 was also significantly compromised by response bias, with statistically significant attenuation noted in validity coefficients of the PID-5 domain scales with scales from other instruments measuring congruent constructs. This attenuation was found for underreporting and overreporting bias. We believe there is a need to develop validity scales to screen for data-distorting response bias in research contexts and in clinical assessments where response bias is likely or otherwise suspected. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Rapid Flow cytometric prenatal diagnosis of primary immunodeficiency (PID) disorders.

    PubMed

    Mishra, Anju; Gupta, Maya; Dalvi, Aparna; Ghosh, Kanjaksha; Madkaikar, Manisha

    2014-04-01

    Primary Immunodeficiency diseases (PID) are a heterogeneous group of inherited disorders of immune system. Immunophenotypic evaluation of PIDs using flowcytometry provides important clues for diagnosis of these disorders, though confirmation requires identification of underlying molecular defects. Prenatal diagnosis (PND) forms an important component of management in families affected with severe PID. However, molecular diagnostic facilities for each of these diseases are not available and may not be possible to perform in all cases. In such scenario we opted for phenotypic prenatal diagnosis by cordocentesis for families with index case having immunophenotypically well characterized PID. Normal reference ranges of lymphocyte subsets, CD 18/CD11 integrins on leukocytes, MHC class II expression and oxidative burst activity of fetal neutrophils at 18 weeks of gestation were previously established on 30 cord blood samples. PND was performed in 13 families with PIDs. Maternal contamination was ruled out by VNTR analysis. Out of 13 fetuses, nine were found to be unaffected (three cases with leukocyte adhesion deficiency (LAD-I), four cases with severe combined immunodeficiency diseases (SCID), one with X-linked agammaglobulinemia (XLA), and one with chronic granulomatous disease (CGD)] and three were found to be affected (one with T-B+NK-SCID, one with MHC class II deficiency and one with LAD-I). Diagnosis was confirmed by testing the cord blood samples after delivery and further follow-up of the children. In one family diagnosis could not be offered due to maternal contamination. No procedure related complications were observed. Flowcytometry offers rapid and sensitive method for prenatal diagnosis and genetic counseling for selected phenotypically well characterized PID in cases where molecular diagnostic facilities are not available.

  8. PID position regulation in one-degree-of-freedom Euler-Lagrange systems actuated by a PMSM

    NASA Astrophysics Data System (ADS)

    Verastegui-Galván, J.; Hernández-Guzmán, V. M.; Orrante-Sakanassi, J.

    2018-02-01

    This paper is concerned with position regulation in one-degree-of-freedom Euler-Lagrange Systems. We consider that the mechanical subsystem is actuated by a permanent magnet synchronous motor (PMSM). Our proposal consists of a Proportional-Integral-Derivative (PID) controller for the mechanical subsystem and a slight variation of field oriented control for the PMSM. We take into account the motor electric dynamics during the stability analysis. We present, for the first time, a global asymptotic stability proof for such a control scheme without requiring the mechanical subsystem to naturally possess viscous friction. Finally, as a corollary of our main result we prove global asymptotic stability for output feedback PID regulation of one-degree-of-freedom Euler-Lagrange systems when generated torque is considered as the system input, i.e. when the electric dynamics of PMSM's is not taken into account.

  9. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.

    PubMed

    Pan, Indranil; Das, Saptarshi

    2016-05-01

    This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Monitoring of piglets' open field activity and choice behaviour during the replay of maternal vocalization: a comparison between Observer and PID technique.

    PubMed

    Puppe, B; Schön, P C; Wendland, K

    1999-07-01

    The paper presents a new system for the automatic monitoring of open field activity and choice behaviour of medium-sized animals. Passive infrared motion detectors (PID) were linked on-line via a digital I/O interface to a personal computer provided with self-developed analysis software based on LabVIEW (PID technique). The set up was used for testing 18 one-week-old piglets (Sus scrofa) for their approach to their mother's nursing vocalization replayed through loudspeakers. The results were validated by comparison with a conventional Observer technique, a computer-aided direct observation. In most of the cases, no differences were seen between the Observer and PID technique regarding the percentage of stay in previously defined open field segments, the locomotor open field activity, and the choice behaviour. The results revealed that piglets are clearly attracted by their mother's nursing vocalization. The monitoring system presented in this study is thus suitable for detailed behavioural investigations of individual acoustic recognition. In general, the PID technique is a useful tool for research into the behaviour of individual animals in a restricted open field which does not rely on subjective analysis by a human observer.

  11. On the convergence between PSY-5 domains and PID-5 domains and facets: implications for assessment of DSM-5 personality traits.

    PubMed

    Anderson, Jaime L; Sellbom, Martin; Bagby, R Michael; Quilty, Lena C; Veltri, Carlo O C; Markon, Kristian E; Krueger, Robert F

    2013-06-01

    The DSM-5 Personality and Personality Disorders workgroup and their consultants have developed the 220-item, self-report Personality Inventory for the DSM-5 (PID-5) for direct assessment of the proposed personality trait system for DSM-5; however, most practicing clinical psychologists will likely continue to rely on separate omnibus measures to index symptoms and traits associated with psychopathology. The Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) is one such measure and assesses the Personality Psychopathology Five (PSY-5) domains, which are conceptual cognates of the DSM-5 trait domains. The current study examined the associations between the MMPI-2-RF PSY-5 scales and the DSM-5 trait domains and facets indexed by the PID-5. A clear pattern of convergence was found indicating that each of the PSY-5 scales was most highly correlated with its conceptually expected PID-5 counterpart (rs = .44-.67; Mdn r = .53) and facet correlations generally showed the same pattern. Similarly, when each of the PSY-5 scales was regressed onto the PID-5 domains, the conceptually expected pattern of associations emerged even more clearly. Finally, a joint exploratory factor analysis with the PSY-5 and PID-5 trait facet scales indicated a five-factor solution that clearly resembled both of the PSY-5/DSM-5 trait domains. These results show clear evidence that the MMPI-2-RF has utility in the assessment of dimensional personality traits proposed for the upcoming DSM-5.

  12. Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness.

    PubMed

    Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan

    2014-11-01

    This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system.

  13. Controllers, observers, and applications thereof

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Zhou, Wankun (Inventor); Miklosovic, Robert (Inventor); Radke, Aaron (Inventor); Zheng, Qing (Inventor)

    2011-01-01

    Controller scaling and parameterization are described. Techniques that can be improved by employing the scaling and parameterization include, but are not limited to, controller design, tuning and optimization. The scaling and parameterization methods described here apply to transfer function based controllers, including PID controllers. The parameterization methods also apply to state feedback and state observer based controllers, as well as linear active disturbance rejection (ADRC) controllers. Parameterization simplifies the use of ADRC. A discrete extended state observer (DESO) and a generalized extended state observer (GESO) are described. They improve the performance of the ESO and therefore ADRC. A tracking control algorithm is also described that improves the performance of the ADRC controller. A general algorithm is described for applying ADRC to multi-input multi-output systems. Several specific applications of the control systems and processes are disclosed.

  14. Fuzzy self-learning control for magnetic servo system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  15. Event-Based control of depth of hypnosis in anesthesia.

    PubMed

    Merigo, Luca; Beschi, Manuel; Padula, Fabrizio; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio

    2017-08-01

    In this paper, we propose the use of an event-based control strategy for the closed-loop control of the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. A new event generator with high noise-filtering properties is employed in addition to a PIDPlus controller. The tuning of the parameters is performed off-line by using genetic algorithms by considering a given data set of patients. The effectiveness and robustness of the method is verified in simulation by implementing a Monte Carlo method to address the intra-patient and inter-patient variability. A comparison with a standard PID control structure shows that the event-based control system achieves a reduction of the total variation of the manipulated variable of 93% in the induction phase and of 95% in the maintenance phase. The use of event based automatic control in anesthesia yields a fast induction phase with bounded overshoot and an acceptable disturbance rejection. A comparison with a standard PID control structure shows that the technique effectively mimics the behavior of the anesthesiologist by providing a significant decrement of the total variation of the manipulated variable. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Electric-Field-Induced Energy Tuning of On-Demand Entangled-Photon Emission from Self-Assembled Quantum Dots.

    PubMed

    Zhang, Jiaxiang; Zallo, Eugenio; Höfer, Bianca; Chen, Yan; Keil, Robert; Zopf, Michael; Böttner, Stefan; Ding, Fei; Schmidt, Oliver G

    2017-01-11

    We explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned. This feature allows experimental realization of a triggered source of energy-tunable entangled-photon emission. Our demonstration represents an important step toward realization of a solid-state quantum repeater using indistinguishable entangled photons in Bell state measurements.

  17. Adaptive synchronized switch damping on an inductor: a self-tuning switching law

    NASA Astrophysics Data System (ADS)

    Kelley, Christopher R.; Kauffman, Jeffrey L.

    2017-03-01

    Synchronized switch damping (SSD) techniques exploit low-power switching between passive circuits connected to piezoelectric material to reduce structural vibration. In the classical implementation of SSD, the piezoelectric material remains in an open circuit for the majority of the vibration cycle and switches briefly to a shunt circuit at every displacement extremum. Recent research indicates that this switch timing is only optimal for excitation exactly at resonance and points to more general optimal switch criteria based on the phase of the displacement and the system parameters. This work proposes a self-tuning approach that implements the more general optimal switch timing for synchronized switch damping on an inductor (SSDI) without needing any knowledge of the system parameters. The law involves a gradient-based search optimization that is robust to noise and uncertainties in the system. Testing of a physical implementation confirms this law successfully adapts to the frequency and parameters of the system. Overall, the adaptive SSDI controller provides better off-resonance steady-state vibration reduction than classical SSDI while matching performance at resonance.

  18. PID techniques: Alternatives to RICH methods

    DOE PAGES

    Va’vra, J.

    2017-07-05

    Here, in this review article we discuss new updates on PID techniques, other than the Cherenkov method. In particular, we discuss recent efforts to develop high resolution timing, placing an emphasis on small scale test results.

  19. Mitigation of PID in commercial PV modules using current interruption method

    NASA Astrophysics Data System (ADS)

    Bora, Birinchi; Oh, Jaewon; Tatapudi, Sai; Sastry, Oruganty S.; Kumar, Rajesh; Prasad, Basudev; Tamizhmani, Govindasamy

    2017-08-01

    Potential-induced degradation (PID) is known to have a very severe effect on the reliability of PV modules. PID is caused due to the leakage of current from the cell circuit to the grounded frame under humid conditions of high voltage photovoltaic (PV) systems. There are multiple paths for the current leakage. The most dominant leakage path is from the cell to the frame through encapsulant, glass bulk and glass surface. This dominant path can be prevented by interrupting the electrical conductivity at the glass surface. In our previous works related to this topic, we demonstrated the effectiveness of glass surface conductivity interruption technique using one-cell PV coupons. In this work, we demonstrate the effectiveness of this technique using a full size commercial module susceptible to PID. The interruption of surface conductivity of the commercial module was achieved by attaching a narrow, thin flexible glass strips, from Corning, called Willow Glass on the glass surface along the inner edges of the frame. The flexible glass strip was attached to the module glass surface by heating the glass strip with an ionomer adhesive underneath using a handheld heat gun. The PID stress test was performed at 60°C and 85% RH for 96 hours at -600 V. Pre- and post-PID characterizations including I-V and electroluminescence were carried out to determine the performance loss and affected cell areas. This work demonstrates that the PID issue can be effectively addressed by using this current interruption technique. An important benefit of this approach is that this interruption technique can be applied after manufacturing the modules and after installing the modules in the field as well.

  20. A Psychometric Review of the Personality Inventory for DSM-5 (PID-5): Current Status and Future Directions.

    PubMed

    Al-Dajani, Nadia; Gralnick, Tara M; Bagby, R Michael

    2016-01-01

    The paradigm of personality psychopathology is shifting from one that is purely categorical in nature to one grounded in dimensional individual differences. Section III (Emerging Measures and Models) of the Diagnostic and Statistical Manual of Mental Disorders (5th ed. [DSM-5]; American Psychiatric Association, 2013), for example, includes a hybrid categorical/dimensional model of personality disorder classification. To inform the hybrid model, the DSM-5 Personality and Personality Disorders Work Group developed a self-report instrument to assess pathological personality traits-the Personality Inventory for the DSM-5 (PID-5). Since its recent introduction, 30 papers (39 samples) have been published examining various aspects of its psychometric properties. In this article, we review the psychometric characteristics of the PID-5 using the Standards for Educational and Psychological Testing as our framework. The PID-5 demonstrates adequate psychometric properties, including a replicable factor structure, convergence with existing personality instruments, and expected associations with broadly conceptualized clinical constructs. More research is needed with specific consideration to clinical utility, additional forms of reliability and validity, relations with psychopathological personality traits using clinical samples, alternative methods of criterion validation, effective employment of cut scores, and the inclusion of validity scales to propel this movement forward.

  1. The comparison respond of braking torque control between PID and SMC controller for electric powered wheelchair descending on slope condition

    NASA Astrophysics Data System (ADS)

    Asyraf, S. M.; Heerwan, P. M.; Izhar, I. M.

    2018-04-01

    During descending on a slope, the speed of Electric Powered Wheelchair (EPW) tends to changed rapidly. Normally, most EPW is provided with mechanical braking system which transfers human pulling force of the lever creating friction at the tire. However, the task is difficult for the users are elderly or paralyses. However, even for normal user with good strength, in fear condition they tend to give sudden braking which leads to tire locking up and skidding, eventually EPW unstable. These problems will cause accident and injuries to the users if speed does not properly control. In this paper, the automated braking torque control method was proposed in EPW as alternative to solve this problem and increase the mobility and stability especially during descending on slope in other to help the user of the EPW as their daily transportation. In this research, Proportional-Integral-Derivative and Sliding Mode Control controller are compared to determine the best response for torque braking control. The rapid change of speed can be controlled by the braking torque using proposed controllers based on the desired constant speed set by the control designer. Moreover, the sudden braking that caused tire to lock up and skid can be avoided. Furthermore, result from SMC shows this controller have good time respond to maintain the speed based on desired value when descending at slope condition by controlling the braking torque compared to the PID controller.

  2. Aerodynamic load control strategy of wind turbine in microgrid

    NASA Astrophysics Data System (ADS)

    Wang, Xiangming; Liu, Heshun; Chen, Yanfei

    2017-12-01

    A control strategy is proposed in the paper to optimize the aerodynamic load of the wind turbine in micro-grid. In grid-connection mode, the wind turbine adopts a new individual variable pitch control strategy. The pitch angle of the blade is rapidly given by the controller, and the pitch angle of each blade is fine tuned by the weight coefficient distributor. In islanding mode, according to the requirements of energy storage system, a given power tracking control method based on fuzzy PID control is proposed. Simulation result shows that this control strategy can effectively improve the axial aerodynamic load of the blade under rated wind speed in grid-connection mode, and ensure the smooth operation of the micro-grid in islanding mode.

  3. Antenna Linear-Quadratic-Gaussian (LQG) Controllers: Properties, Limits of Performance, and Tuning Procedure

    NASA Technical Reports Server (NTRS)

    Gawronski, W.

    2004-01-01

    Wind gusts are the main disturbances that depreciate tracking precision of microwave antennas and radiotelescopes. The linear-quadratic-Gaussian (LQG) controllers - as compared with the proportional-and-integral (PI) controllers significantly improve the tracking precision in wind disturbances. However, their properties have not been satisfactorily understood; consequently, their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller model and the selection of weights of the LQG performance index. This article analyzes properties of an open- and closed-loop antenna. It shows that the proper choice of coordinates of the open-loop model simplifies the shaping of the closed-loop performance. The closed-loop properties are influenced by the LQG weights. The article shows the impact of the weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. The bandwidth and the disturbance rejection characterize the antenna performance, while the acceleration represents the performance limit set by the antenna hardware (motors). The article presents the controller tuning procedure, based on the coordinate selection and the weight properties. The procedure rationally shapes the closed-loop performance, as an alternative to the trial-and-error approach.

  4. IUD users may have higher risk of contracting PID, studies find; pill may have protective effect.

    PubMed

    1980-01-01

    The incidence of pelvic inflammatory disease (PID), which can lead to serious reproductive impairment, infertility, or ectopic pregnancy, is increasing worldwide. About 500,000 women in their childbearing years contract PID for the first time each year in the U.S., and the incidence among young women appears to be increasing. Sexually transmitted diseases are responsible for many PID cases worldwide, while in developing countries postpartum and postabortion sepsis and endemic diseases such as filariasis and schistosomiasis may also be implicated. Some increase of PID is associated with legal abortion and IUD insertion, while pill use appears to protect women from PID. A worldwide review of medical literature indicates that the risk of PID is 3.5 times greater for IUD users than for nonusers, although several variables other than IUD use affect PID risk, such as age, race, socioeconomic status, and sexual activity. The risk for never pregnant IUD users in a Swedish study was 11.8 per 100 woman years, compared to 3.4 for ever-pregnant IUD users. There was no difference in relative risk for users of the pill or barrier methods, or for non-contraceptors. Another study reported a higher relative risk of PID related to duration of IUD use.

  5. Self-Tuning Methods for Multiple-Controller Systems.

    DTIC Science & Technology

    1981-08-01

    the model. The plant is governed by y(t) + Aly (t-l) - B 0u(t-l) + e(t) - where -0.99101 8.80512 x 103 A1 i.. "+-0.80610 -0.77089 -0.89889 -4.59328 x 10...AC-19, No. 5, Oct. 1974, pp. 518-524. [8 Bar- Shalom , Y. and Tse, E., "Dual Effect, Certainty Equivalence and Separation in Stochastic Control," IEEE...Trans. on Automatic Control, Vol. AC-19, No. 5, Oct. 1974, pp. 494-500. [9) Bar- Shalom , Y. and Tse, E., "Concepts and Methods in Stochastic Control

  6. Coexisting synchronous and asynchronous states in locally coupled array of oscillators by partial self-feedback control

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Parmananda, Punit; Osipov, G. V.; Dana, Syamal K.

    2017-07-01

    We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart system and the Kuramoto-Sakaguchi phase model.

  7. Note: Wide band amplifier for quartz tuning fork sensors with digitally controlled stray capacitance compensation.

    PubMed

    Peng, Ping; Hao, Lifeng; Ding, Ning; Jiao, Weicheng; Wang, Qi; Zhang, Jian; Wang, Rongguo

    2015-11-01

    We presented a preamplifier design for quartz tuning fork (QTF) sensors in which the stray capacitance is digitally compensated. In this design, the manually controlled variable capacitor is replaced by a pair of varicap diodes, whose capacitance could be accurately tuned by a bias voltage. A tuning circuit including a single side low power operational amplifier, a digital-to-analog converter, and a microprocessor is also described, and the tuning process can be conveniently carried out on a personal computer. For the design, the noise level was investigated experimentally.

  8. Self-ordered, controlled structure nanoporous membranes using constant current anodization.

    PubMed

    Lee, Kwan; Tang, Yun; Ouyang, Min

    2008-12-01

    We report a constant current (CC) based anodization technique to fabricate and control structure of mechanically stable anodic aluminum oxide (AAO) membranes with a long-range ordered hexagonal nanopore pattern. For the first time we show that interpore distance (Dint) of a self-ordered nanopore feature can be continuously tuned over a broad range with CC anodization and is uniquely defined by the conductivity of sulfuric acid as electrolyte. We further demonstrate that this technique can offer new degrees of freedom for engineering planar nanopore structures by fine tailoring the CC based anodization process. Our results not only facilitate further understanding of self-ordering mechanism of alumina membranes but also provide a fast, simple (without requirement of prepatterning or preoxide layer), and flexible methodology for controlling complex nanoporous structures, thus offering promising practical applications in nanotechnology.

  9. Light-Directed Tuning of Plasmon Resonances via Plasmon-Induced Polymerization Using Hot Electrons

    PubMed Central

    2017-01-01

    The precise morphology of nanoscale gaps between noble-metal nanostructures controls their resonant wavelengths. Here we show photocatalytic plasmon-induced polymerization can locally enlarge the gap size and tune the plasmon resonances. We demonstrate light-directed programmable tuning of plasmons can be self-limiting. Selective control of polymer growth around individual plasmonic nanoparticles is achieved, with simultaneous real-time monitoring of the polymerization process in situ using dark-field spectroscopy. Even without initiators present, we show light-triggered chain growth of various monomers, implying plasmon initiation of free radicals via hot-electron transfer to monomers at the Au surface. This concept not only provides a programmable way to fine-tune plasmons for many applications but also provides a window on polymer chemistry at the sub-nanoscale. PMID:28670601

  10. Data Publication Process for CMIP5 Data and the Role of PIDs within Federated Earth System Science Projects

    NASA Astrophysics Data System (ADS)

    Stockhause, M.; Höck, H.; Toussaint, F.; Weigel, T.; Lautenschlager, M.

    2012-12-01

    We present the publication process for the CMIP5 (Coupled Model Intercomparison Project Phase 5) data with special emphasis on the current role of identifiers and the potential future role of PIDs in such distributed technical infrastructures. The DataCite data publication with DOI assignment finalizes the 3 levels quality control procedure for CMIP5 data (Stockhause et al., 2012). WDCC utilizes the Assistant System Atarrabi to support the publication process. Atarrabi is a web-based workflow system for metadata reviews of data creators and Publication Agents (PAs). Within the quality checks for level 3 all available information in the different infrastructure components is cross-checked for consistency by the DataCite PA. This information includes: metadata on data, metadata in the long-term archive of the Publication Agency, quality information, and external metadata on model and simulation (CIM). For these consistency checks metadata related to the data publication has to be identified. The Data Reference Syntax (DRS) convention functions as global identifier for data. Since the DRS structures the data, hierarchically, it can be used to identify data collections like DataCite publication units, i.e. all data belonging to a CMIP5 simulation. Every technical component of the infrastructure uses DRS or maps to it, but there is no central repository storing DRS_ids. Thus they have to be mapped, occasionally. Additional local identifiers are used within the different technical infrastructure components. Identification of related pieces of information in their repositories is cumbersome and tricky for the PA. How could PIDs improve the situation? To establish a reliable distributed data and metadata infrastructure, PIDs for all objects are needed as well as relations between them. An ideal data publication scenario for federated community projects within Earth System Sciences, e.g. CMIP, would be: 1. Data creators at the modeling centers define their simulation

  11. Precision tuning of InAs quantum dot emission wavelength by iterative laser annealing

    NASA Astrophysics Data System (ADS)

    Dubowski, Jan J.; Stanowski, Radoslaw; Dalacu, Dan; Poole, Philip J.

    2018-07-01

    Controlling the emission wavelength of quantum dots (QDs) over large surface area wafers is challenging to achieve directly through epitaxial growth methods. We have investigated an innovative post growth laser-based tuning procedure of the emission of self-assembled InAs QDs grown epitaxially on InP (001). A targeted blue shift of the emission is achieved with a series of iterative steps, with photoluminescence diagnostics employed between the steps to monitor the result of intermixing. We demonstrate tuning of the emission wavelength of ensembles of QDs to within approximately ±1 nm, while potentially better precision should be achievable for tuning the emission of individual QDs.

  12. Design and Testing of a Dynamically-Tuned Magnetostrictive Spring with Electrically-Controlled Stiffness

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin; Asnani, Vivake M.; Dapino, Marcelo J.

    2015-01-01

    This paper details the development of an electrically-controlled, variable-stiffness spring based on magnetostrictive materials. The device, termed a magnetostrictive Varispring, can be applied as a semi-active vibration isolator or switched stiffness vibration controller for reducing transmitted vibrations. The Varispring is designed using 1D linear models that consider the coupled electrical response, mechanically-induced magnetic diffusion, and the effect of internal mass on dynamic stiffness. Modeling results illustrate that a Terfenol-D-based Varispring has a rise time almost an order of magnitude smaller and a magnetic diffusion cut-off frequency over two orders of magnitude greater than a Galfenol-based Varispring. The results motivate the use of laminated Terfenol-D rods for a greater stiffness tuning range and increased bandwidth. The behavior of a prototype Varispring is examined under vibratory excitation up to 6 MPa and 25 Hz using a dynamic load frame. For this prototype, stiffness is indirectly varied by controlling the excitation current. Preliminary measurements of continuous stiffness tuning via sinusoidal currents up to 1 kHz are presented. The measurements demonstrate that the Young's modulus of the Terfenol-D rod inside the Varispring can be continuously varied by up to 21.9 GPa. The observed stiffness tuning range is relatively constant up to 500 Hz, but significantly decreases thereafter. The stiffness tuning range can be greatly increased by improving the current and force control such that a more consistent current can be applied and the Varispring can be accurately tested at a more optimal bias stress.

  13. State-space self-tuner for on-line adaptive control

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.

    1994-01-01

    Dynamic systems, such as flight vehicles, satellites and space stations, operating in real environments, constantly face parameter and/or structural variations owing to nonlinear behavior of actuators, failure of sensors, changes in operating conditions, disturbances acting on the system, etc. In the past three decades, adaptive control has been shown to be effective in dealing with dynamic systems in the presence of parameter uncertainties, structural perturbations, random disturbances and environmental variations. Among the existing adaptive control methodologies, the state-space self-tuning control methods, initially proposed by us, are shown to be effective in designing advanced adaptive controllers for multivariable systems. In our approaches, we have embedded the standard Kalman state-estimation algorithm into an online parameter estimation algorithm. Thus, the advanced state-feedback controllers can be easily established for digital adaptive control of continuous-time stochastic multivariable systems. A state-space self-tuner for a general multivariable stochastic system has been developed and successfully applied to the space station for on-line adaptive control. Also, a technique for multistage design of an optimal momentum management controller for the space station has been developed and reported in. Moreover, we have successfully developed various digital redesign techniques which can convert a continuous-time controller to an equivalent digital controller. As a result, the expensive and unreliable continuous-time controller can be implemented using low-cost and high performance microprocessors. Recently, we have developed a new hybrid state-space self tuner using a new dual-rate sampling scheme for on-line adaptive control of continuous-time uncertain systems.

  14. Multivariable Control Law Design for the AFTI/F-16 with a Failed Control Surface Using a Parameter-Adaptive Controller.

    DTIC Science & Technology

    1987-12-01

    Appendix D: Macro Listings D-1 Appendix E: MATRIXx Simulation E-1 Bibiliography Vita iv e List of Figures Figure Page 1-1 Self -Tuning Regulator 6 2-1 AFTI...Command 59 4-25 Yaw Rate Command - Three Pulses 60 4-26 Adaptive Yaw Rate Respose - Three Pulses 61 4-27 Adaptive Pitch Angle Response - Three Pulses 62 4...several types of adaptive controllers (regulators). Three of the simplest controllers are gain scheduling, model reference, and self -tuning

  15. Tuning fuzzy PD and PI controllers using reinforcement learning.

    PubMed

    Boubertakh, Hamid; Tadjine, Mohamed; Glorennec, Pierre-Yves; Labiod, Salim

    2010-10-01

    In this paper, we propose a new auto-tuning fuzzy PD and PI controllers using reinforcement Q-learning (QL) algorithm for SISO (single-input single-output) and TITO (two-input two-output) systems. We first, investigate the design parameters and settings of a typical class of Fuzzy PD (FPD) and Fuzzy PI (FPI) controllers: zero-order Takagi-Sugeno controllers with equidistant triangular membership functions for inputs, equidistant singleton membership functions for output, Larsen's implication method, and average sum defuzzification method. Secondly, the analytical structures of these typical fuzzy PD and PI controllers are compared to their classical counterpart PD and PI controllers. Finally, the effectiveness of the proposed method is proven through simulation examples. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Tuning peptide self-assembly by an in-tether chiral center

    PubMed Central

    Hu, Kuan; Xiong, Wei; Li, Hu; Zhang, Pei-Yu; Yin, Feng; Zhang, Qianling; Jiang, Fan; Li, Zigang

    2018-01-01

    The self-assembly of peptides into ordered nanostructures is important for understanding both peptide molecular interactions and nanotechnological applications. However, because of the complexity and various self-assembling pathways of peptide molecules, design of self-assembling helical peptides with high controllability and tunability is challenging. We report a new self-assembling mode that uses in-tether chiral center-induced helical peptides as a platform for tunable peptide self-assembly with good controllability. It was found that self-assembling behavior was governed by in-tether substitutional groups, where chirality determined the formation of helical structures and aromaticity provided the driving force for self-assembly. Both factors were essential for peptide self-assembly to occur. Experiments and theoretical calculations indicate long-range crystal-like packing in the self-assembly, which was stabilized by a synergy of interpeptide π-π and π-sulfur interactions and hydrogen bond networks. In addition, the self-assembled peptide nanomaterials were demonstrated to be promising candidate materials for applications in biocompatible electrochemical supercapacitors.

  17. On spacecraft maneuvers control subject to propellant engine modes.

    PubMed

    Mazinan, A H

    2015-09-01

    The paper attempts to address a new control approach to spacecraft maneuvers based upon the modes of propellant engine. A realization of control strategy is now presented in engine on mode (high thrusts as well as further low thrusts), which is related to small angle maneuvers and engine off mode (specified low thrusts), which is also related to large angle maneuvers. There is currently a coarse-fine tuning in engine on mode. It is shown that the process of handling the angular velocities are finalized via rate feedback system in engine modes, where the angular rotations are controlled through quaternion based control (QBCL)strategy in engine off mode and these ones are also controlled through an optimum PID (OPIDH) strategy in engine on mode. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Development and validation of an Overreporting Scale for the Personality Inventory for DSM-5 (PID-5).

    PubMed

    Sellbom, Martin; Dhillon, Sonya; Bagby, R Michael

    2018-05-01

    Our aim in the current study was to develop a validity scale for the Personality Inventory for DSM-5 (PID-5) to detect noncredible overreported responding. To this end, we used a rare symptoms approach and identified extreme response options on PID-5 items that were infrequently endorsed by students in 3 different university samples (N = 1,370) and in a psychiatric patient sample (N = 194). The resulting 10-item scale (the PID-5-ORS) produced adequate-to-good estimates of internal reliability and was significantly correlated with the Minnesota Multiphasic Personality Inventory-2 Restructued Form (MMPI-2-RF) overreporting validity scales, providing evidence of concurrent validity. The criterion validity of the PID-5-ORS was demonstrated in an analog simulation design study. More specifically, university students instructed to overreport (n = 80) scored substantially higher on the PID-5-ORS relative to both a group of genuine psychiatric patients and students instructed to complete the PID-5 under standard (honest) instructions (n = 161); the effect size magnitudes associated with these differences were large. Classification accuracy analyses further revealed that high scores on the PID-5-ORS were associated with high specificity (and thus, low rates of false positive classifications) in differentiating overreporters from genuine patients, with sensitivity being somewhat weaker. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Self-Tuning Adaptive-Controller Using Online Frequency Identification

    NASA Technical Reports Server (NTRS)

    Chiang, W. W.; Cannon, R. H., Jr.

    1985-01-01

    A real time adaptive controller was designed and tested successfully on a fourth order laboratory dynamic system which features very low structural damping and a noncolocated actuator sensor pair. The controller, implemented in a digital minicomputer, consists of a state estimator, a set of state feedback gains, and a frequency locked loop (FLL) for real time parameter identification. The FLL can detect the closed loop natural frequency of the system being controlled, calculate the mismatch between a plant parameter and its counterpart in the state estimator, and correct the estimator parameter in real time. The adaptation algorithm can correct the controller error and stabilize the system for more than 50% variation in the plant natural frequency, compared with a 10% stability margin in frequency variation for a fixed gain controller having the same performance at the nominal plant condition. After it has locked to the correct plant frequency, the adaptive controller works as well as the fixed gain controller does when there is no parameter mismatch. The very rapid convergence of this adaptive system is demonstrated experimentally, and can also be proven with simple root locus methods.

  20. The COMPASS Tokamak Plasma Control Software Performance

    NASA Astrophysics Data System (ADS)

    Valcarcel, Daniel F.; Neto, André; Carvalho, Ivo S.; Carvalho, Bernardo B.; Fernandes, Horácio; Sousa, Jorge; Janky, Filip; Havlicek, Josef; Beno, Radek; Horacek, Jan; Hron, Martin; Panek, Radomir

    2011-08-01

    The COMPASS tokamak has began operation at the IPP Prague in December 2008. A new control system has been built using an ATCA-based real-time system developed at IST Lisbon. The control software is implemented on top of the MARTe real-time framework attaining control cycles as short as 50 μs, with a jitter of less than 1 μs. The controlled parameters, important for the plasma performance, are the plasma current, position of the plasma current center, boundary shape and horizontal and vertical velocities. These are divided in two control cycles: slow at 500 μs and fast at 50 μs. The project has two phases. First, the software implements a digital controller, similar to the analog one used during the COMPASS-D operation in Culham. In the slow cycle, the plasma current and position are measured and controlled with PID and feedforward controllers, respectively, the shaping magnetic field is preprogrammed. The vertical instability and horizontal equilibrium are controlled with the faster 50-μs cycle PID controllers. The second phase will implement a plasma-shape reconstruction algorithm and controller, aiming at optimized plasma performance. The system was designed to be as modular as possible by breaking the functional requirements of the control system into several independent and specialized modules. This splitting enabled tuning the execution of each system part and to use the modules in a variety of applications with different time constraints. This paper presents the design and overall performance of the COMPASS control software.

  1. Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas.

    PubMed

    Lumdee, Chatdanai; Toroghi, Seyfollah; Kik, Pieter G

    2012-07-24

    Voltage controlled wavelength tuning of the localized surface plasmon resonance of gold nanoparticles on an aluminum film is demonstrated in single particle microscopy and spectroscopy measurements. Anodization of the Al film after nanoparticle deposition forms an aluminum oxide spacer layer between the gold particles and the Al film, modifying the particle-substrate interaction. Darkfield microscopy reveals ring-shaped scattering images from individual Au nanoparticles, indicative of plasmon resonances with a dipole moment normal to the substrate. Single particle scattering spectra show narrow plasmon resonances that can be tuned from ~580 to ~550 nm as the anodization voltage increases to 12 V. All observed experimental trends could be reproduced in numerical simulations. The presented approach could be used as a general postfabrication resonance optimization step of plasmonic nanoantennas and devices.

  2. Accuracy and Tuning of Flow Parsing for Visual Perception of Object Motion During Self-Motion

    PubMed Central

    Niehorster, Diederick C.

    2017-01-01

    How do we perceive object motion during self-motion using visual information alone? Previous studies have reported that the visual system can use optic flow to identify and globally subtract the retinal motion component resulting from self-motion to recover scene-relative object motion, a process called flow parsing. In this article, we developed a retinal motion nulling method to directly measure and quantify the magnitude of flow parsing (i.e., flow parsing gain) in various scenarios to examine the accuracy and tuning of flow parsing for the visual perception of object motion during self-motion. We found that flow parsing gains were below unity for all displays in all experiments; and that increasing self-motion and object motion speed did not alter flow parsing gain. We conclude that visual information alone is not sufficient for the accurate perception of scene-relative motion during self-motion. Although flow parsing performs global subtraction, its accuracy also depends on local motion information in the retinal vicinity of the moving object. Furthermore, the flow parsing gain was constant across common self-motion or object motion speeds. These results can be used to inform and validate computational models of flow parsing. PMID:28567272

  3. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance

    PubMed Central

    Moritake, Y.; Kanamori, Y.; Hane, K.

    2016-01-01

    We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy in the order of 10 nm, resonant wavelengths of Fano resonance were controlled from 1296 to 1416 nm. Fluorescence of QDs embedded in a polymer layer on ADB metamaterials were modified due to coupling to Fano resonance and fine tuning from 1350 to 1376 nm was observed. Wavelength tuning of modified fluorescence was reproduced by analysis using absorption peaks of Fano resonance. Tuning range of modified fluorescence became narrow, which was interpreted by a simple Gaussian model and resulted from comparable FWHM in QD fluorescence and Fano resonant peaks. The results will help the design and fabrication of metamaterial devices with fluorophores such as light sources and biomarkers. PMID:27622503

  4. A satellite digital controller or 'play that PID tune again, Sam'. [Position, Integral, Derivative feedback control algorithm for design strategy

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.

    1976-01-01

    The problem discussed is to design a digital controller for a typical satellite. The controlled plant is considered to be a rigid body acting in a plane. The controller is assumed to be a digital computer which, when combined with the proposed control algorithm, can be represented as a sampled-data system. The objective is to present a design strategy and technique for selecting numerical values for the control gains (assuming position, integral, and derivative feedback) and the sample rate. The technique is based on the parameter plane method and requires that the system be amenable to z-transform analysis.

  5. WITHDRAWN: A novel robust adaptive sliding mode control using fuzzy self-tuning PID controller for 3 DOF planar robot manipulators.

    PubMed

    Amer, Ahmed Foad; Sallam, Elsayed Abdelhameed; Elawady, Wael Mohammed

    2011-02-22

    This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy. Copyright © 2011. Published by Elsevier Ltd.. All rights reserved.

  6. Model-Free control performance improvement using virtual reference feedback tuning and reinforcement Q-learning

    NASA Astrophysics Data System (ADS)

    Radac, Mircea-Bogdan; Precup, Radu-Emil; Roman, Raul-Cristian

    2017-04-01

    This paper proposes the combination of two model-free controller tuning techniques, namely linear virtual reference feedback tuning (VRFT) and nonlinear state-feedback Q-learning, referred to as a new mixed VRFT-Q learning approach. VRFT is first used to find stabilising feedback controller using input-output experimental data from the process in a model reference tracking setting. Reinforcement Q-learning is next applied in the same setting using input-state experimental data collected under perturbed VRFT to ensure good exploration. The Q-learning controller learned with a batch fitted Q iteration algorithm uses two neural networks, one for the Q-function estimator and one for the controller, respectively. The VRFT-Q learning approach is validated on position control of a two-degrees-of-motion open-loop stable multi input-multi output (MIMO) aerodynamic system (AS). Extensive simulations for the two independent control channels of the MIMO AS show that the Q-learning controllers clearly improve performance over the VRFT controllers.

  7. Low trait self-control predicts self-handicapping.

    PubMed

    Uysal, Ahmet; Knee, C Raymond

    2012-02-01

    Past research has shown that self-handicapping stems from uncertainty about one's ability and self-presentational concerns. The present studies suggest that low dispositional self-control is also associated with self-handicapping. In 3 studies (N = 289), the association between self-control and self-handicapping was tested. Self-control was operationalized as trait self-control, whereas self-handicapping was operationalized as trait self-handicapping in Study 1 (N = 160), self-reported self-handicapping in Study 2 (N = 74), and behavioral self-handicapping in Study 3 (N = 55). In all 3 studies, hierarchical regression analyses revealed that low self-control predicts self-handicapping, independent of self-esteem, self-doubt, social desirability, and gender. © 2012 The Authors. Journal of Personality © 2012, Wiley Periodicals, Inc.

  8. MCMAC-cVT: a novel on-line associative memory based CVT transmission control system.

    PubMed

    Ang, K K; Quek, C; Wahab, A

    2002-03-01

    This paper describes a novel application of an associative memory called the Modified Cerebellar Articulation Controller (MCMAC) (Int. J. Artif. Intell. Engng, 10 (1996) 135) in a continuous variable transmission (CVT) control system. It allows the on-line tuning of the associative memory and produces an effective gain-schedule for the automatic selection of the CVT gear ratio. Various control algorithms are investigated to control the CVT gear ratio to maintain the engine speed within a narrow range of efficient operating speed independently of the vehicle velocity. Extensive simulation results are presented to evaluate the control performance of a direct digital PID control algorithm with auto-tuning (Trans. ASME, 64 (1942)) and anti-windup mechanism. In particular, these results are contrasted against the control performance produced using the MCMAC (Int. J. Artif. Intell. Engng, 10 (1996) 135) with momentum, neighborhood learning and Averaged Trapezoidal Output (MCMAC-ATO) as the neural control algorithm for controlling the CVT. Simulation results are presented that show the reduced control fluctuations and improved learning capability of the MCMAC-ATO without incurring greater memory requirement. In particular, MCMAC-ATO is able to learn and control the CVT simultaneously while still maintaining acceptable control performance.

  9. Tuning the electronic properties of gated multilayer phosphorene: A self-consistent tight-binding study

    NASA Astrophysics Data System (ADS)

    Li, L. L.; Partoens, B.; Peeters, F. M.

    2018-04-01

    By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.

  10. A Head-to-Head Comparison of the Personality Inventory for DSM-5 (PID-5) With the Personality Diagnostic Questionnaire-4 (PDQ-4) in Predicting the General Level of Personality Pathology Among Community Dwelling Subjects.

    PubMed

    Fossati, Andrea; Somma, Antonella; Borroni, Serena; Maffei, Cesare; Markon, Kristian E; Krueger, Robert F

    2016-02-01

    In order to evaluate if measures of DSM-5 Alternative PD Model domains predicted interview-based scores of general personality pathology when compared to self-report measures of DSM-IV Axis II/DSM-5 Section II PD criteria, 300 Italian community adults were administered the Iowa Personality Disorder Screen (IPDS) interview, the Personality Inventory for DSM-5 (PID-5), and the Personality Diagnostic Questionnaire-4+ (PDQ-4+). Multiple regression analyses showed that the five PID-5 domain scales collectively explained an adequate rate of the variance of the IPDS interview total score. This result was slightly lower than the amount of variance in the IPDS total score explained by the 10 PDQ-4+ scales. The PID-5 traits scales performed better than the PDQ-4+, although the difference was marginal. Hierarchical regression analyses revealed that the PID-5 domain and trait scales provided a moderate, but significant increase in the prediction of the general level of personality pathology above and beyond the PDQ-4+ scales.

  11. Cherenkov Radiation Control via Self-accelerating Wave-packets.

    PubMed

    Hu, Yi; Li, Zhili; Wetzel, Benjamin; Morandotti, Roberto; Chen, Zhigang; Xu, Jingjun

    2017-08-18

    Cherenkov radiation is a ubiquitous phenomenon in nature. It describes electromagnetic radiation from a charged particle moving in a medium with a uniform velocity larger than the phase velocity of light in the same medium. Such a picture is typically adopted in the investigation of traditional Cherenkov radiation as well as its counterparts in different branches of physics, including nonlinear optics, spintronics and plasmonics. In these cases, the radiation emitted spreads along a "cone", making it impractical for most applications. Here, we employ a self-accelerating optical pump wave-packet to demonstrate controlled shaping of one type of generalized Cherenkov radiation - dispersive waves in optical fibers. We show that, by tuning the parameters of the wave-packet, the emitted waves can be judiciously compressed and focused at desired locations, paving the way to such control in any physical system.

  12. Research on intelligent algorithm of electro - hydraulic servo control system

    NASA Astrophysics Data System (ADS)

    Wang, Yannian; Zhao, Yuhui; Liu, Chengtao

    2017-09-01

    In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.

  13. Model-independent particle accelerator tuning

    DOE PAGES

    Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry

    2013-10-21

    We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme formore » uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.« less

  14. BROJA-2PID: A Robust Estimator for Bivariate Partial Information Decomposition

    NASA Astrophysics Data System (ADS)

    Makkeh, Abdullah; Theis, Dirk; Vicente, Raul

    2018-04-01

    Makkeh, Theis, and Vicente found in [8] that Cone Programming model is the most robust to compute the Bertschinger et al. partial information decompostion (BROJA PID) measure [1]. We developed a production-quality robust software that computes the BROJA PID measure based on the Cone Programming model. In this paper, we prove the important property of strong duality for the Cone Program and prove an equivalence between the Cone Program and the original Convex problem. Then describe in detail our software and how to use it.\

  15. Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots.

    PubMed

    Seo, Min-Kyo; Park, Hong-Gyu; Yang, Jin-Kyu; Kim, Ju-Young; Kim, Se-Heon; Lee, Yong-Hee

    2008-06-23

    We propose and demonstrate a scheme that enables spectral tuning of a photonic crystal high-quality resonant mode, in steps finer than 0.2 nm, via electron beam induced deposition of carbonaceous nano-dots. The position and size of a nano-dot with a diameter of <100 nm are controlled to an accuracy on the order of nanometers. The possibility of selective modal tuning is also demonstrated by placing nano-dots at locations pre-determined by theoretical computation. The lasing threshold of a photonic crystal mode tends to increase when a nano-dot is grown at the point of strong electric field, showing the absorptive nature of the nano-dot.

  16. Frequency tuning allows flow direction control in microfluidic networks with passive features.

    PubMed

    Jain, Rahil; Lutz, Barry

    2017-05-02

    Frequency tuning has emerged as an attractive alternative to conventional pumping techniques in microfluidics. Oscillating (AC) flow driven through a passive valve can be rectified to create steady (DC) flow, and tuning the excitation frequency to the characteristic (resonance) frequency of the underlying microfluidic network allows control of flow magnitude using simple hardware, such as an on-chip piezo buzzer. In this paper, we report that frequency tuning can also be used to control the direction (forward or backward) of the rectified DC flow in a single device. Initially, we observed that certain devices provided DC flow in the "forward" direction expected from previous work with a similar valve geometry, and the maximum DC flow occurred at the same frequency as a prominent peak in the AC flow magnitude, as expected. However, devices of a slightly different geometry provided the DC flow in the opposite direction and at a frequency well below the peak AC flow. Using an equivalent electrical circuit model, we found that the "forward" DC flow occurred at the series resonance frequency (with large AC flow peak), while the "backward" DC flow occurred at a less obvious parallel resonance (a valley in AC flow magnitude). We also observed that the DC flow occurred only when there was a measurable differential in the AC flow magnitude across the valve, and the DC flow direction was from the channel with large AC flow magnitude to that with small AC flow magnitude. Using these observations and the AC flow predictions from the equivalent circuit model, we designed a device with an AC flowrate frequency profile that was expected to allow the DC flow in opposite directions at two distinct frequencies. The fabricated device showed the expected flow reversal at the expected frequencies. This approach expands the flow control toolkit to include both magnitude and direction control in frequency-tuned microfluidic pumps. The work also raises interesting questions about the

  17. Concept for Future Data Services at the Long-Term Archive of WDCC combining DOIs with common PIDs

    NASA Astrophysics Data System (ADS)

    Stockhause, Martina; Weigel, Tobias; Toussaint, Frank; Höck, Heinke; Thiemann, Hannes; Lautenschlager, Michael

    2013-04-01

    The World Data Center for Climate (WDCC) hosted at the German Climate Computing Center (DKRZ) maintains a long-term archive (LTA) of climate model data as well as observational data. WDCC distinguishes between two types of LTA data: Structured data: Data output of an instrument or of a climate model run consists of numerous, highly structured individual datasets in a uniform format. Part of these data is also published on an ESGF (Earth System Grid Federation) data node. Detailed metadata is available allowing for fine-grained user-defined data access. Unstructured data: LTA data of finished scientific projects are in general unstructured and consist of datasets of different formats, different sizes, and different contents. For these data compact metadata is available as content information. The structured data is suitable for WDCC's DataCite DOI process, the project data only in exceptional cases. The DOI process includes a thorough quality control process of technical as well as scientific aspects by the publication agent and the data creator. DOIs are assigned to data collections appropriate to be cited in scientific publications, like a simulation run. The data collection is defined in agreement with the data creator. At the moment there is no possibility to identify and cite individual datasets within this DOI data collection analogous to the citation of chapters in a book. Also missing is a compact citation regulation for a user-specified collection of data. WDCC therefore complements its existing LTA/DOI concept by Persistent Identifier (PID) assignment to datasets using Handles. In addition to data identification for internal and external use, the concept of PIDs allows to define relations among PIDs. Such structural information is stored as key-value pair directly in the handles. Thus, relations provide basic provenance or lineage information, even if part of the data like intermediate results are lost. WDCC intends to use additional PIDs on metadata

  18. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VII, ENGINE TUNE-UP--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TUNE-UP PROCEDURES FOR DIESEL ENGINES. TOPICS ARE SCHEDULING TUNE-UPS, AND TUNE-UP PROCEDURES. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "ENGINE TUNE-UP--DETROIT DIESEL ENGINE" AND OTHER MATERIALS. SEE VT 005 655 FOR FURTHER INFORMATION.…

  19. Modelling and Model-Based-Designed PID Control of the JT-60SA Cryogenic System Using the Simcryogenics Library

    NASA Astrophysics Data System (ADS)

    Bonne, F.; Bonnay, P.; Hoa, C.; Mahoudeau, G.; Rousset, B.

    2017-02-01

    This papers deals with the Japan Torus-60 Super Advanced fusion experiment JT-60SA cryogenic system. A presentation of the JT-60SA cryogenic system model, from 300K to 4.4K -using the Matlab/Simulink/Simscape Simcryogenics library- will be given. As a first validation of our modelling strategy, the obtained operating point will be compared with the one obtained from HYSYS simulations. In the JT60-SA tokamak, pulsed heat loads are expected to be coming from the plasma and must be handled properly, using both appropriate refrigerator architecture and appropriate control model, to smooth the heat load. This paper presents model-based designed PID control schemes to control the helium mass inside the phase separator. The helium mass inside the phase separator as been chosen to be the variable of interest in the phase separator since it is independent of the pressure which can vary from 1 bar to 1.8 bar during load smoothing. Dynamics simulations will be shown to assess the legitimacy of the proposed strategy. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.

  20. Does Self-Control Training Improve Self-Control? A Meta-Analysis.

    PubMed

    Friese, Malte; Frankenbach, Julius; Job, Veronika; Loschelder, David D

    2017-11-01

    Self-control is positively associated with a host of beneficial outcomes. Therefore, psychological interventions that reliably improve self-control are of great societal value. A prominent idea suggests that training self-control by repeatedly overriding dominant responses should lead to broad improvements in self-control over time. Here, we conducted a random-effects meta-analysis based on robust variance estimation of the published and unpublished literature on self-control training effects. Results based on 33 studies and 158 effect sizes revealed a small-to-medium effect of g = 0.30, confidence interval (CI 95 ) [0.17, 0.42]. Moderator analyses found that training effects tended to be larger for (a) self-control stamina rather than strength, (b) studies with inactive compared to active control groups, (c) males than females, and (d) when proponents of the strength model of self-control were (co)authors of a study. Bias-correction techniques suggested the presence of small-study effects and/or publication bias and arrived at smaller effect size estimates (range: g corrected = .13 to .24). The mechanisms underlying the effect are poorly understood. There is not enough evidence to conclude that the repeated control of dominant responses is the critical element driving training effects.

  1. Engine Tune-up Service. Unit 6: Emission Control Systems. Posttests. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Morse, David T.; May, Theodore R.

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 6, Emission Control Systems, available separately as CE 031 220. Focus of the posttests is inspecting, testing, and servicing emission control systems. One multiple choice posttest is provided that covers the seven performance objectives contained in…

  2. Auto-tuning for NMR probe using LabVIEW

    NASA Astrophysics Data System (ADS)

    Quen, Carmen; Pham, Stephanie; Bernal, Oscar

    2014-03-01

    Typical manual NMR-tuning method is not suitable for broadband spectra spanning several megahertz linewidths. Among the main problems encountered during manual tuning are pulse-power reproducibility, baselines, and transmission line reflections, to name a few. We present a design of an auto-tuning system using graphic programming language, LabVIEW, to minimize these problems. The program uses a simplified model of the NMR probe conditions near perfect tuning to mimic the tuning process and predict the position of the capacitor shafts needed to achieve the desirable impedance. The tuning capacitors of the probe are controlled by stepper motors through a LabVIEW/computer interface. Our program calculates the effective capacitance needed to tune the probe and provides controlling parameters to advance the motors in the right direction. The impedance reading of a network analyzer can be used to correct the model parameters in real time for feedback control.

  3. A fast elitism Gaussian estimation of distribution algorithm and application for PID optimization.

    PubMed

    Xu, Qingyang; Zhang, Chengjin; Zhang, Li

    2014-01-01

    Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA.

  4. A Fast Elitism Gaussian Estimation of Distribution Algorithm and Application for PID Optimization

    PubMed Central

    Xu, Qingyang; Zhang, Chengjin; Zhang, Li

    2014-01-01

    Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA. PMID:24892059

  5. Utility of the Personality Inventory for DSM-5-Brief Form (PID-5-BF) in the Measurement of Maladaptive Personality and Psychopathology.

    PubMed

    Anderson, Jaime L; Sellbom, Martin; Salekin, Randall T

    2018-07-01

    The Diagnostic and Statistical Manual of Mental Disorders-Fifth edition ( DSM-5) Personality and Personality Disorders workgroup developed the Personality Inventory for the DSM-5 (PID-5) for the assessment of the alternative trait model for DSM-5. Along with this measure, the American Psychiatric Association published an abbreviated version, the PID-5-Brief form (PID-5-BF). Although this measure is available on the DSM-5 website for use, only two studies have evaluated its psychometric properties and validity and no studies have examined the U.S. version of this measure. The current study evaluated the reliability, factor structure, and construct validity of PID-5-BF scale scores. This included an evaluation of the scales' associations with Section II PDs, a well-validated dimensional measure of personality psychopathology, and broad externalizing and internalizing psychopathology measures. We found support for the reliability of PID-5-BF scales as well as for the factor structure of the measure. Furthermore, a series of correlation and regression analyses showed conceptually expected associations between PID-5-BF and external criterion variables. Finally, we compared the correlations with external criterion measures to those of the full-length PID-5 and PID-5-Short form. Intraclass correlation analyses revealed a comparable pattern of correlations across all three measures, thereby supporting the use of the PID-5-BF as a screening measure of dimensional maladaptive personality traits.

  6. Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models.

    PubMed

    Sánchez, Helem Sabina; Padula, Fabrizio; Visioli, Antonio; Vilanova, Ramon

    2017-01-01

    In this paper a set of optimally balanced tuning rules for fractional-order proportional-integral-derivative controllers is proposed. The control problem of minimizing at once the integrated absolute error for both the set-point and the load disturbance responses is addressed. The control problem is stated as a multi-objective optimization problem where a first-order-plus-dead-time process model subject to a robustness, maximum sensitivity based, constraint has been considered. A set of Pareto optimal solutions is obtained for different normalized dead times and then the optimal balance between the competing objectives is obtained by choosing the Nash solution among the Pareto-optimal ones. A curve fitting procedure has then been applied in order to generate suitable tuning rules. Several simulation results show the effectiveness of the proposed approach. Copyright © 2016. Published by Elsevier Ltd.

  7. Quantum Efficiency Loss after PID Stress: Wavelength Dependence on Cell Surface and Cell Edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jaewon; Bowden, Stuart; TamizhMani, GovindaSamy

    2015-06-14

    It is known that the potential induced degradation (PID) stress of conventional p-base solar cells affects power, shunt resistance, junction recombination, and quantum efficiency (QE). One of the primary solutions to address the PID issue is a modification of chemical and physical properties of antireflection coating (ARC) on the cell surface. Depending on the edge isolation method used during cell processing, the ARC layer near the edges may be uniformly or non-uniformly damaged. Therefore, the pathway for sodium migration from glass to the cell junction could be either through all of the ARC surface if surface and edge ARC havemore » low quality or through the cell edge if surface ARC has high quality but edge ARC is defective due to certain edge isolation process. In this study, two PID susceptible cells from two different manufacturers have been investigated. The QE measurements of these cells before and after PID stress were performed at both surface and edge. We observed the wavelength dependent QE loss only in the first manufacturer's cell but not in the second manufacturer's cell. The first manufacturer's cell appeared to have low quality ARC whereas the second manufacturer's cell appeared to have high quality ARC with defective edge. To rapidly screen a large number of cells for PID stress testing, a new but simple test setup that does not require laminated cell coupon has been developed and is used in this investigation.« less

  8. Identification and Control of Non-Linear Time-Varying Dynamical Systems Using Artificial Neural Networks

    DTIC Science & Technology

    1992-09-01

    finding an inverse plant such as was done by Bertrand [BD91] and by Levin, Gewirtzman and Inbar in a binary type inverse controller [LGI91], to self tuning...gain robust control. 2) Self oscillating adaptive controller. 3) Gain scheduling. 4) Self tuning. 5) Model-reference adaptive systems. Although the...of multidimensional systems (CS881 as well as aircraft [HG90]. The self oscillating method is also a feedback based mechanism, utilizing a relay in the

  9. Novel bio-inspired smart control for hazard mitigation of civil structures

    NASA Astrophysics Data System (ADS)

    Kim, Yeesock; Kim, Changwon; Langari, Reza

    2010-11-01

    In this paper, a new bio-inspired controller is proposed for vibration mitigation of smart structures subjected to ground disturbances (i.e. earthquakes). The control system is developed through the integration of a brain emotional learning (BEL) algorithm with a proportional-integral-derivative (PID) controller and a semiactive inversion (Inv) algorithm. The BEL algorithm is based on the neurologically inspired computational model of the amygdala and the orbitofrontal cortex. To demonstrate the effectiveness of the proposed hybrid BEL-PID-Inv control algorithm, a seismically excited building structure equipped with a magnetorheological (MR) damper is investigated. The performance of the proposed hybrid BEL-PID-Inv control algorithm is compared with that of passive, PID, linear quadratic Gaussian (LQG), and BEL control systems. In the simulation, the robustness of the hybrid BEL-PID-Inv control algorithm in the presence of modeling uncertainties as well as external disturbances is investigated. It is shown that the proposed hybrid BEL-PID-Inv control algorithm is effective in improving the dynamic responses of seismically excited building structure-MR damper systems.

  10. Self-tuning regulators for multicyclic control of helicopter vibration

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1982-01-01

    A class of algorithms for the multicyclic control of helicopter vibration and loads is derived and discussed. This class is characterized by a linear, quasi-static, frequency-domain model of the helicopter response to control; identification of the helicopter model by least-squared-error or Kalman filter methods; and a minimum variance or quadratic performance function controller. Previous research on such controllers is reviewed. The derivations and discussions cover the helicopter model; the identification problem, including both off-line and on-line (recursive) algorithms; the control problem, including both open-loop and closed-loop feedback; and the various regulator configurations possible within this class. Conclusions from analysis and numerical simulations of the regulators provide guidance in the design and selection of algorithms for further development, including wind tunnel and flight tests.

  11. Enhanced control of a flexure-jointed micromanipulation system using a vision-based servoing approach

    NASA Astrophysics Data System (ADS)

    Chuthai, T.; Cole, M. O. T.; Wongratanaphisan, T.; Puangmali, P.

    2018-01-01

    This paper describes a high-precision motion control implementation for a flexure-jointed micromanipulator. A desktop experimental motion platform has been created based on a 3RUU parallel kinematic mechanism, driven by rotary voice coil actuators. The three arms supporting the platform have rigid links with compact flexure joints as integrated parts and are made by single-process 3D printing. The mechanism overall size is approximately 250x250x100 mm. The workspace is relatively large for a flexure-jointed mechanism, being approximately 20x20x6 mm. A servo-control implementation based on pseudo-rigid-body models (PRBM) of kinematic behavior combined with nonlinear-PID control has been developed. This is shown to achieve fast response with good noise-rejection and platform stability. However, large errors in absolute positioning occur due to deficiencies in the PRBM kinematics, which cannot accurately capture flexure compliance behavior. To overcome this problem, visual servoing is employed, where a digital microscopy system is used to directly measure the platform position by image processing. By adopting nonlinear PID feedback of measured angles for the actuated joints as inner control loops, combined with auxiliary feedback of vision-based measurements, the absolute positioning error can be eliminated. With controller gain tuning, fast dynamic response and low residual vibration of the end platform can be achieved with absolute positioning accuracy within ±1 micron.

  12. Design of a temperature control system using incremental PID algorithm for a special homemade shortwave infrared spatial remote sensor based on FPGA

    NASA Astrophysics Data System (ADS)

    Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting

    2010-11-01

    An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.

  13. Feedback and feedforward control of frequency tuning to naturalistic stimuli.

    PubMed

    Chacron, Maurice J; Maler, Leonard; Bastian, Joseph

    2005-06-08

    Sensory neurons must respond to a wide variety of natural stimuli that can have very different spatiotemporal characteristics. Optimal responsiveness to subsets of these stimuli can be achieved by devoting specialized neural circuitry to different stimulus categories, or, alternatively, this circuitry can be modulated or tuned to optimize responsiveness to current stimulus conditions. This study explores the mechanisms that enable neurons within the initial processing station of the electrosensory system of weakly electric fish to shift their tuning properties based on the spatial extent of the stimulus. These neurons are tuned to low frequencies when the stimulus is restricted to a small region within the receptive field center but are tuned to higher frequencies when the stimulus impinges on large regions of the sensory epithelium. Through a combination of modeling and in vivo electrophysiology, we reveal the respective contributions of the filtering characteristics of extended dendritic structures and feedback circuitry to this shift in tuning. Our results show that low-frequency tuning can result from the cable properties of an extended dendrite that conveys receptor-afferent information to the cell body. The shift from low- to high-frequency tuning, seen in response to spatially extensive stimuli, results from increased wide-band input attributable to activation of larger populations of receptor afferents, as well as the activation of parallel fiber feedback from the cerebellum. This feedback provides a cancellation signal with low-pass characteristics that selectively attenuates low-frequency responsiveness. Thus, with spatially extensive stimuli, these cells preferentially respond to the higher-frequency components of the receptor-afferent input.

  14. Quaternion error-based optimal control applied to pinpoint landing

    NASA Astrophysics Data System (ADS)

    Ghiglino, Pablo

    Accurate control techniques for pinpoint planetary landing - i.e., the goal of achieving landing errors in the order of 100m for unmanned missions - is a complex problem that have been tackled in different ways in the available literature. Among other challenges, this kind of control is also affected by the well known trade-off in UAV control that for complex underlying models the control is sub-optimal, while optimal control is applied to simplifed models. The goal of this research has been the development new control algorithms that would be able to tackle these challenges and the result are two novel optimal control algorithms namely: OQTAL and HEX2OQTAL. These controllers share three key properties that are thoroughly proven and shown in this thesis; stability, accuracy and adaptability. Stability is rigorously demonstrated for both controllers. Accuracy is shown in results of comparing these novel controllers with other industry standard algorithms in several different scenarios: there is a gain in accuracy of at least 15% for each controller, and in many cases much more than that. A new tuning algorithm based on swarm heuristics optimisation was developed as well as part of this research in order to tune in an online manner the standard Proportional-Integral-Derivative (PID) controllers used for benchmarking. Finally, adaptability of these controllers can be seen as a combination of four elements: mathematical model extensibility, cost matrices tuning, reduced computation time required and finally no prior knowledge of the navigation or guidance strategies needed. Further simulations in real planetary landing trajectories has shown that these controllers have the capacity of achieving landing errors in the order of pinpoint landing requirements, making them not only very precise UAV controllers, but also potential candidates for pinpoint landing unmanned missions.

  15. Controlled Self-Assembly of Cyclophane Amphiphiles: From 1D Nanofibers to Ultrathin 2D Topological Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Zhengxu; Li, Lianwei; Lo, Wai-Yip

    2016-07-05

    A novel series of amphiphilic TC-PEG molecules were designed and synthesized based on the orthogonal cyclophane unit. These molecules were able to self-assemble from 1D nanofibers and nanobelts to 2D ultrathin nanosheets (3 nm thick) in a controlled way by tuning the length of PEG side chains. The special structure of the cyclophane moiety allowed control in construction of nanostructures through programmed noncovalent interactions (hydrophobic hydrophilic interaction and pi-pi interaction). The self-assembled nanostructures were characterized by combining real space imaging (TEM, SEM, and AFM) and reciprocal space scattering (GIWAXS) techniques. This unique supramolecular system may provide a new strategy formore » the design of materials with tunable nanomorphology and functionality.« less

  16. An approach to control tuning range and speed in 1D ternary photonic band gap material nano-layered optical filter structures electro-optically

    NASA Astrophysics Data System (ADS)

    Zia, Shahneel; Banerjee, Anirudh

    2016-05-01

    This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.

  17. An approach to control tuning range and speed in 1D ternary photonic band gap material nano-layered optical filter structures electro-optically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zia, Shahneel, E-mail: shahneelzia@gmail.com; Banerjee, Anirudh, E-mail: abanerjee@amity.edu

    2016-05-06

    This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.

  18. Development of a smart type motor operated valve for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Hwoi; Park, Joo-Hyun; Lee, Dong-young; Koo, In-Soo

    2005-12-01

    In this paper, the design concept of the smart type motor operator valve for nuclear power plant was described. The development objective of the smart valve is to achieve superior accuracy, long-term reliability, and ease of use. In this reasons, developed smart valve has fieldbus communication such as deviceNet and Profibus-DP, auto-tuning PID controller, self-diagnostics, and on-line calibration capabilities. And also, to achieve pressure, temperature, and flow control with internal PID controller, the pressure sensor and transmitter were included in this valve. And, temperature and flow signal acquisition port was prepared. The developed smart valve will be performed equipment qualification test such as environment, EMI/EMC, and vibration in Korea Test Lab. And, the valve performance is tested in a test loop which is located in Seoul National University Lab. To apply nuclear power plant, the software is being developed according to software life cycle. The developed software is verified by independent software V and V team. It is expected that the smart valve can be applied to an existing NPPs for replacing or to a new nuclear power plants. The design and fabrication of smart valve is now being processed.

  19. Self-Tuning Method for Increased Obstacle Detection Reliability Based on Internet of Things LiDAR Sensor Models

    PubMed Central

    2018-01-01

    On-chip LiDAR sensors for vehicle collision avoidance are a rapidly expanding area of research and development. The assessment of reliable obstacle detection using data collected by LiDAR sensors has become a key issue that the scientific community is actively exploring. The design of a self-tuning methodology and its implementation are presented in this paper, to maximize the reliability of LiDAR sensors network for obstacle detection in the ‘Internet of Things’ (IoT) mobility scenarios. The Webots Automobile 3D simulation tool for emulating sensor interaction in complex driving environments is selected in order to achieve that objective. Furthermore, a model-based framework is defined that employs a point-cloud clustering technique, and an error-based prediction model library that is composed of a multilayer perceptron neural network, and k-nearest neighbors and linear regression models. Finally, a reinforcement learning technique, specifically a Q-learning method, is implemented to determine the number of LiDAR sensors that are required to increase sensor reliability for obstacle localization tasks. In addition, a IoT driving assistance user scenario, connecting a five LiDAR sensor network is designed and implemented to validate the accuracy of the computational intelligence-based framework. The results demonstrated that the self-tuning method is an appropriate strategy to increase the reliability of the sensor network while minimizing detection thresholds. PMID:29748521

  20. Self-Tuning Method for Increased Obstacle Detection Reliability Based on Internet of Things LiDAR Sensor Models.

    PubMed

    Castaño, Fernando; Beruvides, Gerardo; Villalonga, Alberto; Haber, Rodolfo E

    2018-05-10

    On-chip LiDAR sensors for vehicle collision avoidance are a rapidly expanding area of research and development. The assessment of reliable obstacle detection using data collected by LiDAR sensors has become a key issue that the scientific community is actively exploring. The design of a self-tuning methodology and its implementation are presented in this paper, to maximize the reliability of LiDAR sensors network for obstacle detection in the 'Internet of Things' (IoT) mobility scenarios. The Webots Automobile 3D simulation tool for emulating sensor interaction in complex driving environments is selected in order to achieve that objective. Furthermore, a model-based framework is defined that employs a point-cloud clustering technique, and an error-based prediction model library that is composed of a multilayer perceptron neural network, and k-nearest neighbors and linear regression models. Finally, a reinforcement learning technique, specifically a Q-learning method, is implemented to determine the number of LiDAR sensors that are required to increase sensor reliability for obstacle localization tasks. In addition, a IoT driving assistance user scenario, connecting a five LiDAR sensor network is designed and implemented to validate the accuracy of the computational intelligence-based framework. The results demonstrated that the self-tuning method is an appropriate strategy to increase the reliability of the sensor network while minimizing detection thresholds.

  1. Active noise control using noise source having adaptive resonant frequency tuning through stress variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Renshaw, Anthony A. (Inventor); Rajiyah, Harindra (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by an expandable ring embedded in the noise radiating element. Excitation of the ring causes expansion or contraction of the ring, thereby varying the stress in the noise radiating element. The ring is actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the ring, causing the ring to expand or contract. Instead of a single ring embedded in the noise radiating panel, a first expandable ring can be bonded to one side of the noise radiating element, and a second expandable ring can be bonded to the other side.

  2. Engine Tune-up Service. Unit 6: Emission Control Systems. Student Guide. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Bacon, E. Miles

    This student guide is for Unit 6, Emission Control Systems, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with inspecting, testing, and servicing an emission control system. A companion review exercise book and posttests are available separately as CE 031 221-222. An introduction tells how this unit fits…

  3. Controlling the Surface Chemistry of Graphite by Engineered Self-Assembled Peptides

    PubMed Central

    Khatayevich, Dmitriy; So, Christopher R.; Hayamizu, Yuhei; Gresswell, Carolyn; Sarikaya, Mehmet

    2012-01-01

    The systematic control over surface chemistry is a long-standing challenge in biomedical and nanotechnological applications for graphitic materials. As a novel approach, we utilize graphite-binding dodecapeptides that self-assemble into dense domains to form monolayer thick long-range ordered films on graphite. Specifically, the peptides are rationally designed through their amino acid sequences to predictably display hydrophilic and hydrophobic characteristics while maintaining their self-assembly capabilities on the solid substrate. The peptides are observed to maintain a high tolerance for sequence modification, allowing the control over surface chemistry via their amino acid sequence. Furthermore, through a single step co-assembly of two different designed peptides, we predictably and precisely tune the wettability of the resulting functionalized graphite surfaces from 44 to 83 degrees. The modular molecular structures and predictable behavior of short peptides demonstrated here give rise to a novel platform for functionalizing graphitic materials that offers numerous advantages, including non-invasive modification of the substrate, bio-compatible processing in an aqueous environment, and simple fusion with other functional biological molecules. PMID:22428620

  4. [Research on fuzzy proportional-integral-derivative control of master-slave minimally invasive operation robot driver].

    PubMed

    Zhao, Ximei; Ren, Chengyi; Liu, Hao; Li, Haogyi

    2014-12-01

    Robotic catheter minimally invasive operation requires that the driver control system has the advantages of quick response, strong anti-jamming and real-time tracking of target trajectory. Since the catheter parameters of itself and movement environment and other factors continuously change, when the driver is controlled using traditional proportional-integral-derivative (PID), the controller gain becomes fixed once the PID parameters are set. It can not change with the change of the parameters of the object and environmental disturbance so that its change affects the position tracking accuracy, and may bring a large overshoot endangering patients' vessel. Therefore, this paper adopts fuzzy PID control method to adjust PID gain parameters in the tracking process in order to improve the system anti-interference ability, dynamic performance and tracking accuracy. The simulation results showed that the fuzzy PID control method had a fast tracking performance and a strong robustness. Compared with those of traditional PID control, the feasibility and practicability of fuzzy PID control are verified in a robotic catheter minimally invasive operation.

  5. Spin Testing for Durability Began on a Self-Tuning Impact Damper for Turbomachinery Blades

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten; Mehmed, Oral

    2003-01-01

    NASA and Pratt & Whitney will collaborate under a Space Act Agreement to perform spin testing of the impact damper to verify damping effectiveness and durability. Pratt & Whitney will provide the turbine blade and damper hardware for the tests. NASA will provide the facility and perform the tests. Effectiveness and durability will be investigated during and after sustained sweeps of rotor speed through resonance. Tests of a platform wedge damper are also planned to compare its effectiveness with that of the impact damper. Results from baseline tests without dampers will be used to measure damping effectiveness. The self-tuning impact damper combines two damping methods-the tuned mass damper and the impact damper. It consists of a ball located within a cavity in the blade. This ball rolls back and forth on a spherical trough under centrifugal load (tuned mass damper) and can strike the walls of the cavity (impact damper). The ball s rolling natural frequency is proportional to the rotor speed and can be designed to follow an engine-order line (integer multiple of rotor speed). Aerodynamic forcing frequencies typically follow these engineorder lines, and a damper tuned to the engine order will most effectively reduce blade vibrations when the resonant frequency equals the engine-order forcing frequency. This damper has been tested in flat plates and turbine blades in the Dynamic Spin Facility. During testing, a pair of plates or blades rotates in vacuum. Excitation is provided by one of three methods--eddy-current engine-order excitation (ECE), electromechanical shakers, and magnetic bearing excitation. The eddy-current system consists of magnets located circumferentially around the rotor. As a blade passes a magnet, a force is imparted on the blade. The number of magnets used can be varied to change the desired engine order of the excitation. The magnets are remotely raised or lowered to change the magnitude of the force on the blades. The other two methods apply

  6. Using PIDs to Support the Full Research Data Publishing Lifecycle

    NASA Astrophysics Data System (ADS)

    Waard, A. D.

    2016-12-01

    Persistent identifiers can help support scientific research, track scientific impact and let researchers achieve recognition for their work. We discuss a number of ways in which Elsevier utilizes PIDs to support the scholarly lifecycle: To improve the process of storing and sharing data, Mendeley Data (http://data.mendeley.com) makes use of persistent identifiers to support the dynamic nature of data and software, by tracking and recording the provenance and versioning of datasets. This system now allows the comparison of different versions of a dataset, to see precisely what was changed during a versioning update. To present research data in context for the reader, we include PIDs in research articles as hyperlinks: https://www.elsevier.com/books-and-journals/content-innovation/data-base-linking. In some cases, PIDs fetch data files from the repositories provide that allow the embedding of visualizations, e.g. with PANGAEA and PubChem: https://www.elsevier.com/books-and-journals/content-innovation/protein-viewer; https://www.elsevier.com/books-and-journals/content-innovation/pubchem. To normalize referenced data elements, the Resource Identification Initiative - which we developed together with members of the Force11 RRID group - introduces a unified standard for resource identifiers (RRIDs) that can easily be interpreted by both humans and text mining tools. https://www.force11.org/group/resource-identification-initiative/update-resource-identification-initiative, as can be seen in our Antibody Data app: https://www.elsevier.com/books-and-journals/content-innovation/antibody-data To enable better citation practices and support robust metrics system for sharing research data, we have helped develop, and are early adopters of the Force11 Data Citation Principles and Implementation groups (https://www.force11.org/group/dcip) Lastly, through our work with the Research Data Alliance Publishing Data Services group, we helped create a set of guidelines (http

  7. Low order H∞ optimal control for ACFA blended wing body aircraft

    NASA Astrophysics Data System (ADS)

    Haniš, T.; Kucera, V.; Hromčík, M.

    2013-12-01

    Advanced nonconvex nonsmooth optimization techniques for fixed-order H∞ robust control are proposed in this paper for design of flight control systems (FCS) with prescribed structure. Compared to classical techniques - tuning of and successive closures of particular single-input single-output (SISO) loops like dampers, attitude stabilizers, etc. - all loops are designed simultaneously by means of quite intuitive weighting filters selection. In contrast to standard optimization techniques, though (H2, H∞ optimization), the resulting controller respects the prescribed structure in terms of engaged channels and orders (e. g., proportional (P), proportional-integral (PI), and proportional-integralderivative (PID) controllers). In addition, robustness with regard to multimodel uncertainty is also addressed which is of most importance for aerospace applications as well. Such a way, robust controllers for various Mach numbers, altitudes, or mass cases can be obtained directly, based only on particular mathematical models for respective combinations of the §ight parameters.

  8. Illusionary delusions. Willingness to exercise self-control can mask effects of glucose on self-control performance in experimental paradigms that use identical self-control tasks.

    PubMed

    Chatzisarantis, Nikos L D; Hagger, Martin S

    2015-01-01

    The purpose of the present article is to highlight limitations of Lange and Eggert's methodology of using identical self-control tasks in testing effects of glucose on depletion of self-control resources and self-control performance. We suggest that when participants engage in two identical self-control tasks, cognitions developed during initial act of self-control may mask the effects of glucose on self-control performance by undermining willingness to exert effort during the second act of self-control. As a consequence, glucose may increase ability to exercise self-control but participants may not want to capitalize on this "ability advantage" because they are unwilling to exercise self-control. The present article concludes that researchers who test the glucose hypothesis in the context of a depletion paradigm should employ dissimilar acts of self-control and ensure that depleted participants are sufficiently motivated to exercise self-control. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  9. High precision single qubit tuning via thermo-magnetic field control

    NASA Astrophysics Data System (ADS)

    Broadway, David A.; Lillie, Scott E.; Dontschuk, Nikolai; Stacey, Alastair; Hall, Liam T.; Tetienne, Jean-Philippe; Hollenberg, Lloyd C. L.

    2018-03-01

    Precise control of the resonant frequency of a spin qubit is of fundamental importance to quantum sensing protocols. We demonstrate a control technique on a single nitrogen-vacancy (NV) centre in diamond where the applied magnetic field is modified by fine-tuning a permanent magnet's magnetisation via temperature control. Through this control mechanism, nanoscale cross-relaxation spectroscopy of both electron and nuclear spins in the vicinity of the NV centre is performed. We then show that through maintaining the magnet at a constant temperature, an order of magnitude improvement in the stability of the NV qubit frequency can be achieved. This improved stability is tested in the polarisation of a small ensemble of nearby 13C spins via resonant cross-relaxation, and the lifetime of this polarisation explored. The effectiveness and relative simplicity of this technique may find use in the realisation of portable spectroscopy and/or hyperpolarisation systems.

  10. Development of a novel direct X-ray detector using photoinduced discharge (PID) readout for digital radiography

    NASA Astrophysics Data System (ADS)

    Heo, D.; Jeon, S.; Kim, J.-S.; Kim, R. K.; Cha, B. K.; Moon, B. J.; Yoon, J.

    2013-02-01

    We developed a novel direct X-ray detector using photoinduced discharge (PID) readout for digital radiography. The pixel resolution is 512 × 512 with 200 μm pixel and the overall active dimensions of the X-ray imaging panel is 10.24 cm × 10.24 cm. The detector consists of an X-ray absorption layer of amorphous selenium, a charge accumulation layer of metal, and a PID readout layer of amorphous silicon. In particular, the charge accumulation is pixelated because image charges generated by X-ray should be stored pixel by pixel. Here the image charges, or holes, are recombined with electrons generated by the PID method. We used a 405 nm laser diode and cylindrical lens to make a line beam source with a width of 50 μm for PID readout, which generates charges for each pixel lines during the scan. We obtained spatial frequencies of about 1.0 lp/mm for the X-direction (lateral direction) and 0.9 lp/mm for the Y-direction (scanning direction) at 50% modulation transfer function.

  11. Tuning maps for setpoint changes and load disturbance upsets in a three capacity process under multivariable control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Smith, Ira C.

    1991-01-01

    Tuning maps are an aid in the controller tuning process because they provide a convenient way for the plant operator to determine the consequences of adjusting different controller parameters. In this application the maps provide a graphical representation of the effect of varying the gains in the state feedback matrix on startup and load disturbance transients for a three capacity process. Nominally, the three tank system, represented in diagonal form, has a Proportional-Integral control on each loop. Cross coupling is then introduced between the loops by using non-zero off-diagonal proportional parameters. Changes in transient behavior due to setpoint and load changes are examined by varying the gains of the cross coupling terms.

  12. Experimental verification of a real-time tuning method of a model-based controller by perturbations to its poles

    NASA Astrophysics Data System (ADS)

    Kajiwara, Itsuro; Furuya, Keiichiro; Ishizuka, Shinichi

    2018-07-01

    Model-based controllers with adaptive design variables are often used to control an object with time-dependent characteristics. However, the controller's performance is influenced by many factors such as modeling accuracy and fluctuations in the object's characteristics. One method to overcome these negative factors is to tune model-based controllers. Herein we propose an online tuning method to maintain control performance for an object that exhibits time-dependent variations. The proposed method employs the poles of the controller as design variables because the poles significantly impact performance. Specifically, we use the simultaneous perturbation stochastic approximation (SPSA) to optimize a model-based controller with multiple design variables. Moreover, a vibration control experiment of an object with time-dependent characteristics as the temperature is varied demonstrates that the proposed method allows adaptive control and stably maintains the closed-loop characteristics.

  13. Reliability and validity of the personality inventory for DSM-5 (PID-5): predicting DSM-IV personality disorders and psychopathy in community-dwelling Italian adults.

    PubMed

    Fossati, Andrea; Krueger, Robert F; Markon, Kristian E; Borroni, Serena; Maffei, Cesare

    2013-12-01

    In order to assess the internal consistency, factor structure, and ability to recover DSM-IV personality disorders (PDs) of the Personality Inventory for DSM-5 (PID-5) scales, 710 Italian adult community dwelling volunteers were administered the Italian translation of the PID-5, as well as the Italian translation of the Personality Diagnostic Questionnaire-4+ (PDQ-4+). Cronbach's alpha values were >.70 for all PID-5 facet scales and greater than .90 for all PID-5 domain scales. Parallel analysis and confirmatory factor analysis supported the theoretical five-factor model of the PID-5 trait scales. Regression analyses showed that both PID-5 trait and domain scales explained a substantial amount of variance in the PDQ-4+ PD scales, with the exception of the Passive-Aggressive PD scale. When the PID-5 was administered to a second independent sample of 389 Italian adult community dwelling volunteers, the basic psychometric properties of the scale were replicated. In this second sample, the PID-5 trait and domain scales proved to be significant predictors of psychopathy measures. As a whole, the results of the present study support the hypothesis that the PID-5 is a reliable instrument which is able to recover DSM-IV PDs, as well as to capture personality pathology that is not included in the DSM-IV (namely, psychopathy).

  14. Active noise control using noise source having adaptive resonant frequency tuning through stiffness variation

    NASA Technical Reports Server (NTRS)

    Rajiyah, Harindra (Inventor); Hedeen, Robert A. (Inventor); Pla, Frederic G. (Inventor); Renshaw, Anthony A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by a plurality of force transmitting mechanisms which contact the noise radiating element. Each one of the force transmitting mechanisms includes an expandable element and a spring in contact with the noise radiating element so that excitation of the element varies the spring force applied to the noise radiating element. The elements are actuated by a controller which receives input of a signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the elements and causes the spring force applied to the noise radiating element to be varied. The force transmitting mechanisms can be arranged to either produce bending or linear stiffness variations in the noise radiating element.

  15. The "Cause" of Low Self-Control: The Influence of Maternal Self-Control

    ERIC Educational Resources Information Center

    Nofziger, Stacey

    2008-01-01

    Self-control theory is one of the most tested theories within the field of criminology. However, one of the basic assumptions of the theory has remained largely ignored. Gottfredson and Hirschi stated that the focus of their general theory of crime is the "connection between the self-control of the parent and the subsequent self-control of the…

  16. Teaching Your Child Self-Control

    MedlinePlus

    ... Educators Search English Español Teaching Your Child Self-Control KidsHealth / For Parents / Teaching Your Child Self-Control ... success later in life. Helping Kids Learn Self-Control By learning self-control, kids can make appropriate ...

  17. Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance Engineering.

    PubMed

    Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei

    2016-08-03

    Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic.

  18. Borderline Personality Disorder and Personality Inventory for DSM-5 (PID-5): Dimensional personality assessment with DSM-5.

    PubMed

    Calvo, Natalia; Valero, Sergi; Sáez-Francàs, Naia; Gutiérrez, Fernando; Casas, Miguel; Ferrer, Marc

    2016-10-01

    Borderline personality disorder (BPD) diagnosis has been considered highly controversial. The Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-5) proposes an alternative hybrid diagnostic model for personality disorders (PD), and the Personality Inventory for DSM-5 (PID-5) has adequate psychometric properties and has been widely used for the assessment of the dimensional component. Our aim was to analyze the utility of the personality traits presented in Section III of the DSM-5 for BPD diagnosis in an outpatient clinical sample, using the Spanish version of the PID-5. Two clinical samples were studied: BPD sample (n=84) and non-BPD sample (n=45). Between-sample differences in PID-5 scores were analyzed. The BPD sample obtained significantly higher scores in most PID-5 trait facets and domains. Specifically and after regression logistic analyses, in BPD patients, the domains of Negative Affectivity and Disinhibition, and the trait facets of emotional lability, [lack of] restricted affectivity, and impulsivity were more significantly associated with BPD. Although our findings are only partially consistent with the algorithm proposed by DSM-5, we consider that the combination of the PID-5 trait domains and facets could be useful for BPD dimensional diagnosis, and could further our understanding of BPD diagnosis complexity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    NASA Technical Reports Server (NTRS)

    Rajiyah, Harindra (Inventor); Pla, Frederic G. (Inventor); Hedeen, Robert A. (Inventor); Renshaw, Anthony A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.

  20. Engine Tune-up Service. Unit 6: Emission Control Systems. Review Exercise Book. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Bacon, E. Miles

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 6, Emission Control Systems, available separately as CE 031 220. Focus of the exercises and pretests is inspecting, testing, and servicing emission control systems. Pretests and performance checklists are provided for each of the…

  1. Gene therapy for PIDs: progress, pitfalls and prospects.

    PubMed

    Mukherjee, Sayandip; Thrasher, Adrian J

    2013-08-10

    Substantial progress has been made in the past decade in treating several primary immunodeficiency disorders (PIDs) with gene therapy. Current approaches are based on ex-vivo transfer of therapeutic transgene via viral vectors to patient-derived autologous hematopoietic stem cells (HSCs) followed by transplantation back to the patient with or without conditioning. The overall outcome from all the clinical trials targeting different PIDs has been extremely encouraging but not without caveats. Malignant outcomes from insertional mutagenesis have featured prominently in the adverse events associated with these trials and have warranted intense pre-clinical investigation into defining the tendencies of different viral vectors for genomic integration. Coupled with issues pertaining to transgene expression, the therapeutic landscape has undergone a paradigm shift in determining safety, stability and efficacy of gene therapy approaches. In this review, we aim to summarize the progress made in the gene therapy trials targeting ADA-SCID, SCID-X1, CGD and WAS, review the pitfalls, and outline the recent advancements which are expected to further enhance favourable risk benefit ratios for gene therapeutic approaches in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The maladaptive personality traits of the Personality Inventory for DSM-5 (PID-5) in relation to the HEXACO personality factors and schizotypy/dissociation.

    PubMed

    Ashton, Michael C; Lee, Kibeom; de Vries, Reinout E; Hendrickse, Joshua; Born, Marise Ph

    2012-10-01

    The Personality Inventory for DSM-5 (PID-5), a new measure of maladaptive personality traits, has recently been developed by the DSM-5 Personality and Personality Disorders Workgroup. The PID-5 variables were examined within the seven-factor space defined by the six HEXACO factors and the Schizotypy/Dissociation factor (Ashton & Lee, 2012) using participant samples from Canada (N = 378) and the Netherlands (N = 476). Extension analyses showed that several PID-5 facet-level scales represented each of the Honesty-Humility, Emotionality, Extraversion, Conscientiousness, and Schizotypy/Dissociation factors. In contrast, only one PID-5 scale loaded strongly on HEXACO Agreeableness, and no PID-5 scales loaded strongly on Openness to Experience. In addition, a joint factor analysis involving the PID-5 variables and facets of the Five-Factor Model was conducted in the Canadian sample and recovered a set of seven factors corresponding rather closely to the HEXACO factors plus Schizotypy/Dissociation. The authors discuss implications for the assessment and structure of normal and abnormal personality.

  3. Stability Assessment and Tuning of an Adaptively Augmented Classical Controller for Launch Vehicle Flight Control

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen; Zhu, J. Jim; Adami, Tony; Berry, Kyle; Grammar, Alex; Orr, Jeb S.; Best, Eric A.

    2014-01-01

    Recently, a robust and practical adaptive control scheme for launch vehicles [ [1] has been introduced. It augments a classical controller with a real-time loop-gain adaptation, and it is therefore called Adaptive Augmentation Control (AAC). The loop-gain will be increased from the nominal design when the tracking error between the (filtered) output and the (filtered) command trajectory is large; whereas it will be decreased when excitation of flex or sloshing modes are detected. There is a need to determine the range and rate of the loop-gain adaptation in order to retain (exponential) stability, which is critical in vehicle operation, and to develop some theoretically based heuristic tuning methods for the adaptive law gain parameters. The classical launch vehicle flight controller design technics are based on gain-scheduling, whereby the launch vehicle dynamics model is linearized at selected operating points along the nominal tracking command trajectory, and Linear Time-Invariant (LTI) controller design techniques are employed to ensure asymptotic stability of the tracking error dynamics, typically by meeting some prescribed Gain Margin (GM) and Phase Margin (PM) specifications. The controller gains at the design points are then scheduled, tuned and sometimes interpolated to achieve good performance and stability robustness under external disturbances (e.g. winds) and structural perturbations (e.g. vehicle modeling errors). While the GM does give a bound for loop-gain variation without losing stability, it is for constant dispersions of the loop-gain because the GM is based on frequency-domain analysis, which is applicable only for LTI systems. The real-time adaptive loop-gain variation of the AAC effectively renders the closed-loop system a time-varying system, for which it is well-known that the LTI system stability criterion is neither necessary nor sufficient when applying to a Linear Time-Varying (LTV) system in a frozen-time fashion. Therefore, a

  4. Self-affirmation improves self-control over snacking among participants low in eating self-efficacy.

    PubMed

    Churchill, Susan; Jessop, Donna C; Green, Ricky; Harris, Peter R

    2018-04-01

    Individuals low in eating self-efficacy are at particular risk of engaging in unhealthy eating behaviours, including the consumption of high calorie snacks. The elevated levels of snacking displayed by these individuals can largely be attributed to their experiencing low self-control over the avoidance of such foods (Hankonen, Kinnunen, Absetz, & Jallinoja, 2014). Interventions are thus required to boost self-control over snacking among those low in eating self-efficacy. Self-affirmation has been shown to boost self-control among individuals with depleted resources in other domains (Schmeichel & Vohs, 2009). The purpose of the current study was to test the hypothesis that a self-affirmation manipulation would similarly increase self-control over snacking for individuals low in eating self-efficacy. At baseline, participants (N = 70) completed measures of dietary restraint and eating self-efficacy. In the main study, participants completed either a self-affirmation or a control task immediately before undertaking a joystick category judgment task that assessed self-control over snacking. Hierarchical multiple regression analysis revealed the predicted significant interaction between eating self-efficacy and self-affirmation, demonstrating that self-affirmation moderated the association between eating self-efficacy and self-control over snacking. Johnson-Neyman regions of significance confirmed that for participants low in eating self-efficacy the self-affirmation manipulation resulted in higher levels of self-control. Unexpectedly, however, for participants high in eating self-efficacy the self-affirmation manipulation was found to be associated with lower levels of self-control. Findings supported the hypothesis that a self-affirmation manipulation would boost self-control over snacking among individuals low in eating self-efficacy. Self-affirmation may thus provide a useful technique for strengthening self-control in relation to the avoidance of unhealthy

  5. Loop shaping design for tracking performance in machine axes.

    PubMed

    Schinstock, Dale E; Wei, Zhouhong; Yang, Tao

    2006-01-01

    A modern interpretation of classical loop shaping control design methods is presented in the context of tracking control for linear motor stages. Target applications include noncontacting machines such as laser cutters and markers, water jet cutters, and adhesive applicators. The methods are directly applicable to the common PID controller and are pertinent to many electromechanical servo actuators other than linear motors. In addition to explicit design techniques a PID tuning algorithm stressing the importance of tracking is described. While the theory behind these techniques is not new, the analysis of their application to modern systems is unique in the research literature. The techniques and results should be important to control practitioners optimizing PID controller designs for tracking and in comparing results from classical designs to modern techniques. The methods stress high-gain controller design and interpret what this means for PID. Nothing in the methods presented precludes the addition of feedforward control methods for added improvements in tracking. Laboratory results from a linear motor stage demonstrate that with large open-loop gain very good tracking performance can be achieved. The resultant tracking errors compare very favorably to results from similar motions on similar systems that utilize much more complicated controllers.

  6. All About PID - Testing and Avoidance in the Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacke, Peter; Johnston, Steve

    2016-09-01

    Potential-induced degradation can cause significant power loss in modules if the appropriate precautions are not taken. In the first part of a new series in PV Tech Power on module failure, Peter Hacke and Steve Johnston assess the current state-of-the-art in detecting, avoiding and mitigating the worst effects of PID.

  7. Digital PI-PD controller design for arbitrary order systems: Dominant pole placement approach.

    PubMed

    Dincel, Emre; Söylemez, Mehmet Turan

    2018-05-02

    In this paper, a digital PI-PD controller design method is proposed for arbitrary order systems with or without time-delay to achieve desired transient response in the closed-loop via dominant pole placement approach. The digital PI-PD controller design problem is solved by converting the original problem to the digital PID controller design problem. Firstly, parametrization of the digital PID controllers which assign dominant poles to desired location is done. After that the subset of digital PID controller parameters in which the remaining poles are located away from the dominant pole pair is found via Chebyshev polynomials. The obtained PID controller parameters are then transformed into the PI-PD controller parameters by considering the closed-loop controller zero and the design is completed. Success of the proposed design method is firstly demonstrated on an example transfer function and compared with the well-known PID controller methods from the literature through simulations. After that the design method is implemented on the fan and plate laboratory system in a real environment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Systematic methods for the design of a class of fuzzy logic controllers

    NASA Astrophysics Data System (ADS)

    Yasin, Saad Yaser

    2002-09-01

    Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental

  9. Only one small sin: How self-construal affects self-control.

    PubMed

    Steinmetz, Janina; Mussweiler, Thomas

    2017-12-01

    Past research has shown that self-construal can influence self-control by reducing interdependent people's impulsivity in the presence of peers. We broaden these findings by examining the hypothesis that an interdependent (vs. independent) self-construal fosters self-control even in the absence of peers and for non-impulsive decisions. We further explore whether this effect could be mediated by the more interrelated (vs. isolated) processing style of interdependent (vs. independent) people. Such an interrelated (vs. isolated) processing style of temptations makes the impact of a single temptation more salient and can thereby increase self-control. Study 1 demonstrated that more interdependent participants show more self-control behaviour by refraining from chocolate consumption to secure a monetary benefit. Studies 2a and 2b highlighted a link between self-construal and trait self-control via the processing of temptations. Study 3 suggested that an interrelated (vs. isolated) perspective on temptations could mediate the effect of (primed) self-construal on self-control. Taken together, self-construal shapes self-control across various decision contexts. © 2017 The British Psychological Society.

  10. Adaptive control strategies for flexible robotic arm

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1993-01-01

    The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity if not unstable closed-loop behavior. Therefore a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.

  11. Auto-tuning system for NMR probe with LabView

    NASA Astrophysics Data System (ADS)

    Quen, Carmen; Mateo, Olivia; Bernal, Oscar

    2013-03-01

    Typical manual NMR-tuning method is not suitable for broadband spectra spanning several megahertz linewidths. Among the main problems encountered during manual tuning are pulse-power reproducibility, baselines, and transmission line reflections, to name a few. We present a design of an auto-tuning system using graphic programming language, LabVIEW, to minimize these problems. The program is designed to analyze the detected power signal of an antenna near the NMR probe and use this analysis to automatically tune the sample coil to match the impedance of the spectrometer (50 Ω). The tuning capacitors of the probe are controlled by a stepper motor through a LabVIEW/computer interface. Our program calculates the area of the power signal as an indicator to control the motor so disconnecting the coil to tune it through a network analyzer is unnecessary. Work supported by NSF-DMR 1105380

  12. The Magnetically-Tuned Transition-Edge Sensor

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.; Lee, Sang-Jun; Smith, Stephen J.; Busch, Sarah E.; Bandler, Simon R.; Adams, Joseph S.; Eckart, Megan E.; Chevenak, James A.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2014-01-01

    We present the first measurements on the proposed magnetically-tuned superconducting transition-edge sensor (MTES) and compare the modified resistive transition with the theoretical prediction. A TES's resistive transition is customarily characterized in terms of the unit less device parameters alpha and beta corresponding to the resistive response to changes in temperature and current respectively. We present a new relationship between measured IV quantities and the parameters alpha and beta and use these relations to confirm we have stably biased a TES with negative beta parameter with magnetic tuning. Motivated by access to this new unexplored parameter space, we investigate the conditions for bias stability of a TES taking into account both self and externally applied magnetic fields.

  13. Real-time discrete suboptimal control for systems with input and state delays: Experimental tests on a dehydration process.

    PubMed

    Rodríguez-Guerrero, Liliam; Santos-Sánchez, Omar-Jacobo; Cervantes-Escorcia, Nicolás; Romero, Hugo

    2017-11-01

    This article presents a suboptimal control strategy with finite horizon for affine nonlinear discrete systems with both state and input delays. The Dynamic Programming Approach is used to obtain the suboptimal control sequence, but in order to avoid the computation of the Bellman functional, a numerical approximation of this function is proposed in every step. The feasibility of our proposal is demonstrated via an experimental test on a dehydration process and the obtained results show a good performance and behavior of this process. Then in order to demonstrate the benefits of using this kind of control strategy, the results are compared with a non optimal control strategy, particularly with respect to results produced by an industrial Proportional Integral Derivative (PID) Honeywell controller, which is tuned using the Ziegler-Nichols method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Improving piezo actuators for nanopositioning tasks

    NASA Astrophysics Data System (ADS)

    Seeliger, Martin; Gramov, Vassil; Götz, Bernt

    2018-02-01

    In recent years, numerous applications emerged on the market with seemingly contradicting demands. On one side, the structure size decreased while on the other side, the overall sample size and speed of operation increased. Although the principle usage of piezoelectric positioning solutions has become a standard in the field of micro- and nanopositioning, surface inspection and manipulation, piezosystem jena now enhanced the performance beyond simple control loop tuning and actuator design. In automated manufacturing machines, a given signal has to be tracked fast and precise. However, control systems naturally decrease the ability to follow this signal in real time. piezosystem jena developed a new signal feed forward system bypassing the PID control. This way, we could reduce signal tracking errors by a factor of three compared to a conventionally optimized PID control. Of course, PID-values still have to be adjusted to specific conditions, e.g. changing additional mass, to optimize the performance. This can now be done with a new automatic tuning tool designed to analyze the current setup, find the best fitting configuration, and also gather and display theoretical as well as experimental performance data. Thus, the control quality of a mechanical setup can be improved within a few minutes without the need of external calibration equipment. Furthermore, new mechanical optimization techniques that focus not only on the positioning device, but also take the whole setup into account, prevent parasitic motion down to a few nanometers.

  15. Communication Range Dynamics and Performance Analysis for a Self-Adaptive Transmission Power Controller.

    PubMed

    Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; Del Toro Matamoros, Raúl M

    2016-05-12

    The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value.

  16. Injury depth control from combined wavelength and power tuning in scanned beam laser thermal therapy

    NASA Astrophysics Data System (ADS)

    Villiger, Martin; Soroka, Andrew; Tearney, Guillermo J.; Bouma, Brett E.; Vakoc, Benjamin J.

    2011-11-01

    Laser thermal therapy represents a possible method to treat premalignant epithelial lesions of the esophagus. Dynamically conforming the thermal injury profile to a specific lesion boundary is expected to improve the efficacy of such a treatment and avoid complications. In this work, we investigated wavelength tuning as a mechanism to achieve this aimed control over injury depth by using the strong variation of water absorption close to 1900 nm. We developed a numerical model simulating in steps the photon propagation in the tissue, the diffusion of the absorbed heat, and the resulting tissue damage. The model was compared with experimental results on porcine esophageal specimens ex vivo and showed good agreement. Combined with power tuning, the wavelength agility in the range of 1860 to 1895 nm extends the injury range compared to a fixed wavelength source beyond 1 mm, while at the same time improving control over shallow depths and avoiding vaporization at the tissue surface. The combination of two or three discrete wavelengths combined at variable ratios provides similar control, and may provide an improved strategy for the treatment of endothelial lesions.

  17. Integrated unaligned resonant modulator tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zortman, William A.; Lentine, Anthony L.

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, frommore » the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.« less

  18. Natural variation of rice blast resistance gene Pi-d2

    USDA-ARS?s Scientific Manuscript database

    Studying natural variation of rice resistance (R) genes in cultivated and wild rice relatives can predict resistance stability to rice blast fungus. In the present study, the protein coding regions of rice R gene Pi-d2 in 35 rice accessions of subgroups, aus (AUS), indica (IND), temperate japonica (...

  19. Influence of growth flux solvent on anneal-tuning of ground states in CaFe2As2

    NASA Astrophysics Data System (ADS)

    Roncaioli, Connor; Drye, Tyler; Saha, Shanta R.; Paglione, Johnpierre

    2018-04-01

    The effects of anneal-tuning of single-crystalline samples of CaFe2As2 synthesized via a molten Sn-flux method are investigated using x-ray diffraction, chemical composition, electrical transport, and magnetic susceptibility measurements in order to understand the role of growth conditions on the resultant phase diagram. Previous studies of CaFe2As2 crystals synthesized using a self-flux (FeAs) method revealed an ability to tune the structural and magnetic properties of this system by control of post-synthesis annealing conditions, resulting in an ambient pressure phase diagram that spans from tetragonal/orthorhombic antiferromagnetism to the collapsed tetragonal phase of this system. In this work, we compare previous results to those obtained on crystals synthesized via Sn flux, finding similar tunability in both self- and Sn-flux cases, but less sensitivity to annealing temperatures in the latter case, resulting in a temperature-shifted phase diagram.

  20. The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation

    PubMed Central

    Huang, Weishan; August, Avery

    2015-01-01

    T cell development, differentiation, and maintenance are orchestrated by 2 key signaling axes: the antigen-specific TCR and cytokine-mediated signals. The TCR signals the recognition of self- and foreign antigens to control T cell homeostasis for immune tolerance and immunity, which is regulated by a variety of cytokines to determine T cell subset homeostasis and differentiation. TCR signaling can synergize with or antagonize cytokine-mediated signaling to fine tune T cell fate; however, the latter is less investigated. Murine models with attenuated TCR signaling strength have revealed that TCR signaling can function as regulatory feedback machinery for T cell homeostasis and differentiation in differential cytokine milieus, such as IL-2-mediated Treg development; IL-7-mediated, naïve CD8+ T cell homeostasis; and IL-4-induced innate memory CD8+ T cell development. In this review, we discuss the symphonic cross-talk between TCR and cytokine-mediated responses that differentially control T cell behavior, with a focus on the negative tuning by TCR activation on the cytokine effects. PMID:25525115

  1. Exercising self-control increases approach motivation.

    PubMed

    Schmeichel, Brandon J; Harmon-Jones, Cindy; Harmon-Jones, Eddie

    2010-07-01

    The present research tested the hypothesis that exercising self-control causes an increase in approach motivation. Study 1 found that exercising (vs. not exercising) self-control increases self-reported approach motivation. Study 2a identified a behavior--betting on low-stakes gambles--that is correlated with approach motivation but is relatively uncorrelated with self-control, and Study 2b observed that exercising self-control temporarily increases this behavior. Last, Study 3 found that exercising self-control facilitates the perception of a reward-relevant symbol (i.e., a dollar sign) but not a reward-irrelevant symbol (i.e., a percent sign). Altogether, these results support the hypothesis that exercising self-control temporarily increases approach motivation. Failures of self-control that follow from prior efforts at self-control (i.e., ego depletion) may be explained in part by increased approach motivation.

  2. The Design of a Transparent Vertical Multizone Furnace: Application to Thermal Field Tuning and Crystal Growth

    NASA Technical Reports Server (NTRS)

    Duvual, Walter M. B.; Batur, Celal; Bennett, Robert J.

    1998-01-01

    We present an innovative design of a vertical transparent multizone furnace which can operate in the temperature range of 25 C to 750 C and deliver thermal gradients of 2 C/cm to 45 C/cm for the commercial applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques, and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency and ease of programming thermal profiles make the furnace useful in scientific and commercial applications for determining the optimized process parameters for crystal growth.

  3. Multi-objective LQR with optimum weight selection to design FOPID controllers for delayed fractional order processes.

    PubMed

    Das, Saptarshi; Pan, Indranil; Das, Shantanu

    2015-09-01

    An optimal trade-off design for fractional order (FO)-PID controller is proposed with a Linear Quadratic Regulator (LQR) based technique using two conflicting time domain objectives. A class of delayed FO systems with single non-integer order element, exhibiting both sluggish and oscillatory open loop responses, have been controlled here. The FO time delay processes are handled within a multi-objective optimization (MOO) formalism of LQR based FOPID design. A comparison is made between two contemporary approaches of stabilizing time-delay systems withinLQR. The MOO control design methodology yields the Pareto optimal trade-off solutions between the tracking performance and total variation (TV) of the control signal. Tuning rules are formed for the optimal LQR-FOPID controller parameters, using median of the non-dominated Pareto solutions to handle delayed FO processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. A Novel Controller Design for the Next Generation Space Electrostatic Accelerometer Based on Disturbance Observation and Rejection.

    PubMed

    Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing

    2016-12-23

    The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8 × 10 - 13 m / s 2 / H z 1 / 2 , which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm / Hz 1 / 2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching.

  5. A Novel Controller Design for the Next Generation Space Electrostatic Accelerometer Based on Disturbance Observation and Rejection

    PubMed Central

    Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing

    2016-01-01

    The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8×10−13m/s2/Hz1/2, which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm/Hz1/2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching. PMID:28025534

  6. Effectiveness and cost-utility of a guided self-help exercise program for patients treated with total laryngectomy: protocol of a multi-center randomized controlled trial.

    PubMed

    Jansen, Femke; Cnossen, Ingrid C; Eerenstein, Simone E J; Coupé, Veerle M H; Witte, Birgit I; van Uden-Kraan, Cornelia F; Doornaert, Patricia; Braunius, Weibel W; De Bree, Remco; Hardillo, José A U; Honings, Jimmie; Halmos, György B; Leemans, C René; Verdonck-de Leeuw, Irma M

    2016-08-02

    Total laryngectomy with or without adjuvant (chemo)radiation often induces speech, swallowing and neck and shoulder problems. Speech, swallowing and shoulder exercises may prevent or diminish these problems. The aim of the present paper is to describe the study, which is designed to investigate the effectiveness and cost-utility of a guided self-help exercise program built into the application "In Tune without Cords" among patients treated with total laryngectomy. Patients, up to 5 years earlier treated with total laryngectomy with or without (chemo)radiation will be recruited for participation in this study. Patients willing to participate will be randomized to the intervention or control group (1:1). Patients in the intervention group will be provided access to a guided self-help exercise program and a self-care education program built into the application "In Tune without Cords". Patients in the control group will only be provided access to the self-care education program. The primary outcome is the difference in swallowing quality (SWAL-QOL) between the intervention and control group. Secondary outcome measures address speech problems (SHI), shoulder disability (SDQ), quality of life (EORTC QLQ-C30, QLQ-H&N35 and EQ-5D), direct and indirect costs (adjusted iMCQ and iPCQ measures) and self-management (PAM). Patients will be asked to complete these outcome measures at baseline, immediately after the intervention or control period (i.e. at 3 months follow-up) and at 6 months follow-up. This randomized controlled trial will provide knowledge on the effectiveness of a guided self-help exercise program for patients treated with total laryngectomy. In addition, information on the value for money of such an exercise program will be provided. If this guided self-help program is (cost)effective for patients treated with total laryngectomy, the next step will be to implement this exercise program in current clinical practice. NTR5255 Protocol version 4 date September

  7. Self-Control Strength Depletion Reduces Self-Efficacy and Impairs Exercise Performance.

    PubMed

    Graham, Jeffrey D; Bray, Steven R

    2015-10-01

    The purpose of this study was to investigate the role of task self-efficacy as a psychological factor involved in the relationship between self-control depletion and physical endurance. Participants (N = 37) completed two isometric handgrip endurance trials, separated by a Stroop task, which was either congruent (control) or incongruent (causing depletion). Task self-efficacy for the second endurance trial was measured following the Stroop task. Participants in the depletion condition reported lower task self-efficacy and showed a greater reduction in performance on the second endurance trial when compared with controls. Task self-efficacy also mediated the relationship between self-control depletion and endurance performance. The results of this study provide evidence that task self-efficacy is negatively affected following self-control depletion. We recommend that task self-efficacy be further investigated as a psychological factor accounting for the negative change in self-control performance of physical endurance and sport tasks following self-control strength depletion.

  8. Modeling and simulation of permanent magnet synchronous motor based on neural network control strategy

    NASA Astrophysics Data System (ADS)

    Luo, Bingyang; Chi, Shangjie; Fang, Man; Li, Mengchao

    2017-03-01

    Permanent magnet synchronous motor is used widely in industry, the performance requirements wouldn't be met by adopting traditional PID control in some of the occasions with high requirements. In this paper, a hybrid control strategy - nonlinear neural network PID and traditional PID parallel control are adopted. The high stability and reliability of traditional PID was combined with the strong adaptive ability and robustness of neural network. The permanent magnet synchronous motor will get better control performance when switch different working modes according to different controlled object conditions. As the results showed, the speed response adopting the composite control strategy in this paper was faster than the single control strategy. And in the case of sudden disturbance, the recovery time adopting the composite control strategy designed in this paper was shorter, the recovery ability and the robustness were stronger.

  9. Total OH reactivity measurements using a new fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-12-01

    The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date, direct measurements of total OH reactivity have been either performed using a Laser-Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photoionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were similar to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical

  10. A pilot Tuning Project-based national study on recently graduated medical students' self-assessment of competences--the TEST study.

    PubMed

    Grilo Diogo, Pedro; Barbosa, Joselina; Ferreira, Maria Amélia

    2015-12-19

    The Tuning Project is an initiative funded by the European Commission that developed core competences for primary medical degrees in Europe. Students' grouped self-assessments are used for program evaluation and improvement of curricula. The TEST study aimed to assess how do Portuguese medical graduates self-assess their acquisition of core competences and experiences of contact with patients in core settings according to the Tuning framework. Translation of the Tuning's competences (Clinical Practice - CP), Knowledge (K) items and Clinical Settings (CS) was performed. Questionnaires were created in paper and electronic formats and distributed to 1591 graduates from seven Portuguese medical schools (July 2014). Items were rated in a 6-point Likert scale (0-5) of levels of competence. Exploratory factor analysis (EFA) was conducted and Cronbach's alpha was used to evaluate the internal consistency of the questionnaire. Kruskal-Wallis and Dunn's tests were used for multiple comparisons. Three hundred eighty seven questionnaires were analyzed, corresponding to 24% of the target population. EFA yielded an 11-factor solution for CP and a 6-factor solution for K items. The median value of CP factors was 2.8 (p25 = 2.0; p75 = 3.5) and the median value of K factors was 2.6 (2.0; 3.2). Factor scores ranged from 1.3 (Legal principles) to 4.0 (Ethical principles). Clinical presentations, psychological aspects of illness, evidence-based medicine and promotion of health showed the highest results. Lower scores were detected in medical emergencies, practical procedures, prescribing drugs and legal principles. More than 90% of graduates experienced having contact with patients in 8 CS but only 24% of graduates had contact in all 14 CS. Graduates had the least contact with patients in the emergency rooms, intensive care units, palliative, rehabilitation and anesthetic care. Significant differences (p < 0.05) among schools were detected in 8 factors and 7 settings. We

  11. One ring to rule them all: tuning bacteria collective motion via geometric confinement

    NASA Astrophysics Data System (ADS)

    Giomi, Luca

    2016-08-01

    Suspensions of swimming bacteria are known to self-organize into turbulent-like flows for sufficiently high density and nutrients concentration. This spectacular example of collective behavior, on which the survival of the colony itself is believed to rely, appears however impossible to control. In a recent experimental and computational study, Wioland et al (2016 New J. Phys. 18 075002) have demonstrated that the collective motion of B. subtilis can be in fact selectively tuned by confining the system into a ring-shaped channel.

  12. Communication Range Dynamics and Performance Analysis for a Self-Adaptive Transmission Power Controller

    PubMed Central

    Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; del Toro Matamoros, Raúl M.

    2016-01-01

    The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value. PMID:27187397

  13. Injury depth control from combined wavelength and power tuning in scanned beam laser thermal therapy

    PubMed Central

    Villiger, Martin; Soroka, Andrew; Tearney, Guillermo J.; Bouma, Brett E.; Vakoc, Benjamin J.

    2011-01-01

    Laser thermal therapy represents a possible method to treat premalignant epithelial lesions of the esophagus. Dynamically conforming the thermal injury profile to a specific lesion boundary is expected to improve the efficacy of such a treatment and avoid complications. In this work, we investigated wavelength tuning as a mechanism to achieve this aimed control over injury depth by using the strong variation of water absorption close to 1900 nm. We developed a numerical model simulating in steps the photon propagation in the tissue, the diffusion of the absorbed heat, and the resulting tissue damage. The model was compared with experimental results on porcine esophageal specimens ex vivo and showed good agreement. Combined with power tuning, the wavelength agility in the range of 1860 to 1895 nm extends the injury range compared to a fixed wavelength source beyond 1 mm, while at the same time improving control over shallow depths and avoiding vaporization at the tissue surface. The combination of two or three discrete wavelengths combined at variable ratios provides similar control, and may provide an improved strategy for the treatment of endothelial lesions. PMID:22112139

  14. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    NASA Astrophysics Data System (ADS)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  15. Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor.

    PubMed

    Zhang, BiTao; Pi, YouGuo; Luo, Ying

    2012-09-01

    A fractional order sliding mode control (FROSMC) scheme based on parameters auto-tuning for the velocity control of permanent magnet synchronous motor (PMSM) is proposed in this paper. The control law of the proposed F(R)OSMC scheme is designed according to Lyapunov stability theorem. Based on the property of transferring energy with adjustable type in F(R)OSMC, this paper analyzes the chattering phenomenon in classic sliding mode control (SMC) is attenuated with F(R)OSMC system. A fuzzy logic inference scheme (FLIS) is utilized to obtain the gain of switching control. Simulations and experiments demonstrate that the proposed FROSMC not only achieve better control performance with smaller chatting than that with integer order sliding mode control, but also is robust to external load disturbance and parameter variations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Situational Strategies for Self-Control

    PubMed Central

    Duckworth, Angela L.; Gendler, Tamar Szabó; Gross, James J.

    2015-01-01

    Exercising self-control is often difficult, whether declining a drink in order to drive home safely, passing on the chocolate cake to stay on a diet, or ignoring text messages to finish reading an important paper. But enacting self-control isn’t always difficult, particularly when it takes the form of proactively choosing or changing situations in ways that weaken undesirable impulses or potentiate desirable ones. Examples of situational self-control include the partygoer who chooses a seat far from where drinks are being poured, the dieter who asks the waiter not to bring around the dessert cart, and the student who goes to the library without a cell phone. Using the process model of self-control, we argue that the full range of self-control strategies can be organized by considering the timeline of the developing tempting impulse. Because impulses tend to grow stronger over time, situational self-control strategies—which can nip a tempting impulse in the bud— may be especially effective in preventing undesirable action. Ironically, we may underappreciate situational self-control for the same reason it is so effective, namely that by manipulating our circumstances to advantage we are often able to minimize the in-the-moment experience of intrapsychic struggle typically associated with exercising self-control. The supreme art of war is to subdue the enemy without fighting.—Sun Tzu, The Art of War PMID:26817725

  17. Tunable self-organization of nanocomposite multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C. Q.; Pei, Y. T.; Shaha, K. P.

    In this letter we report the controlled growth and microstructural evolution of self-assembled nanocomposite multilayers that are induced by surface ion-impingement. The nanoscale structures together with chemical composition, especially at the growing front, have been investigated with high-resolution transmission electron microscopy. Concurrent ion impingement of growing films produces an amorphous capping layer 3 nm in thickness where spatially modulated phase separation is initiated. It is shown that the modulation of multilayers as controlled by the self-organization of nanocrystallites below the capping layer, can be tuned through the entire film.

  18. PID techniques: Alternatives to RICH Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavra, J.; /SLAC

    2011-03-01

    In this review article we discuss the recent progress in PID techniques other than the RICH methods. In particular we mention the recent progress in the Transition Radiation Detector (TRD), dE/dx cluster counting, and Time Of Flight (TOF) techniques. The TRD technique is mature and has been tried in many hadron colliders. It needs space though, about 20cm of detector radial space for every factor of 10 in the {pi}/e rejection power, and this tends to make such detectors large. Although the cluster counting technique is an old idea, it was never tried in a real physics experiment. Recently, theremore » are efforts to revive it for the SuperB experiment using He-based gases and waveform digitizing electronics. A factor of almost 2 improvement, compared to the classical dE/dx performance, is possible in principle. However, the complexity of the data analysis will be substantial. The TOF technique is well established, but introduction of new fast MCP-PMT and G-APD detectors creates new possibilities. It seems that resolutions below 20-30ps may be possible at some point in the future with relatively small systems, and perhaps this could be pushed down to 10-15ps with very small systems, assuming that one can solve many systematic issues. However, the cost, rate limitation, aging and cross-talk in multi-anode devices at high BW are problems. There are several groups working on these issues, so progress is likely. Table 6 summarizes the author's opinion of pros and cons of various detectors presented in this paper based on their operational capabilities. We refer the reader to Ref.40 for discussion of other more general limits from the PID point of view.« less

  19. Individual differences in self-reported self-control predict successful emotion regulation

    PubMed Central

    Dörfel, Denise; Steimke, Rosa; Trempler, Ima; Magrabi, Amadeus; Ludwig, Vera U.; Schubert, Torsten; Stelzel, Christine; Walter, Henrik

    2016-01-01

    Both self-control and emotion regulation enable individuals to adapt to external circumstances and social contexts, and both are assumed to rely on the overlapping neural resources. Here, we tested whether high self-reported self-control is related to successful emotion regulation on the behavioral and neural level. One hundred eight participants completed three self-control questionnaires and regulated their negative emotions during functional magnetic resonance imaging using reappraisal (distancing). Trait self-control correlated positively with successful emotion regulation both subjectively and neurally, as indicated by online ratings of negative emotions and functional connectivity strength between the amygdala and prefrontal areas, respectively. This stronger overall connectivity of the left amygdala was related to more successful subjective emotion regulation. Comparing amygdala activity over time showed that high self-controllers successfully maintained down-regulation of the left amygdala over time, while low self-controllers failed to down-regulate towards the end of the experiment. This indicates that high self-controllers are better at maintaining a motivated state supporting emotion regulation over time. Our results support assumptions concerning a close relation of self-control and emotion regulation as two domains of behavioral control. They further indicate that individual differences in functional connectivity between task-related brain areas directly relate to differences in trait self-control. PMID:27013102

  20. Active tuning of high-Q dielectric metasurfaces

    DOE PAGES

    Parry, Matthew; Komar, Andrei; Hopkins, Ben; ...

    2017-08-02

    Here, we demonstrate the active tuning of all-dielectric metasurfaces exhibiting high-quality factor (high-Q) resonances. The active control is provided by embedding the asymmetric silicon meta-atoms with liquid crystals, which allows the relative index of refraction to be controlled through heating. It is found that high quality factor resonances (Q = 270 ± 30) can be tuned over more than three resonance widths. Our results demonstrate the feasibility of using all-dielectric metasurfaces to construct tunable narrow-band filters.

  1. Optimization of hydraulic turbine governor parameters based on WPA

    NASA Astrophysics Data System (ADS)

    Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao

    2018-01-01

    The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.

  2. On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction.

    PubMed

    Zhang, Qiang; Zhang, Peiran; Su, Yetian; Mou, Chunbo; Zhou, Teng; Yang, Menglong; Xu, Jian; Ma, Bo

    2014-12-21

    A simple, low-cost and on-demand microfluidic flow controlling platform was developed based on a unique capillary-tuned solenoid microvalve suction effect without any outer pressure source. The suction effect was innovatively employed as a stable and controllable driving force for the manipulation of the microfluidic system by connecting a piece of capillary between the microvalve and the microfluidic chip, which caused significant hydrodynamic resistance differences among the solenoid valve ports and changed the flowing mode inside the valve. The volume of sucked liquid could be controlled from microliters even down to picoliters either by decreasing the valve energized duration (from a maximum energized duration to the valve response time of 20 ms) or by increasing the inserted capillary length (i.e., its hydrodynamic resistance). Several important microfluidic unit operations such as cell/droplet sorting and on-demand size-controllable droplet generation have been demonstrated on the developed platform and both simulations and experiments confirmed that this platform has good controllability and stability.

  3. Independent tuning of excitonic emission energy and decay time in single semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Höfer, B.; Zhang, J.; Wildmann, J.; Zallo, E.; Trotta, R.; Ding, F.; Rastelli, A.; Schmidt, O. G.

    2017-04-01

    Independent tuning of emission energy and decay time of neutral excitons confined in single self-assembled In(Ga)As/GaAs quantum dots is achieved by simultaneously employing vertical electric fields and lateral biaxial strain fields. By locking the emission energy via a closed-loop feedback on the piezoelectric actuator used to control the strain in the quantum dot, we continuously decrease the decay time of an exciton from 1.4 to 0.7 ns. Both perturbations are fully electrically controlled and their combination offers a promising route to engineer the indistinguishability of photons emitted from spatially separated single photon sources.

  4. Individual differences in self-reported self-control predict successful emotion regulation.

    PubMed

    Paschke, Lena M; Dörfel, Denise; Steimke, Rosa; Trempler, Ima; Magrabi, Amadeus; Ludwig, Vera U; Schubert, Torsten; Stelzel, Christine; Walter, Henrik

    2016-08-01

    Both self-control and emotion regulation enable individuals to adapt to external circumstances and social contexts, and both are assumed to rely on the overlapping neural resources. Here, we tested whether high self-reported self-control is related to successful emotion regulation on the behavioral and neural level. One hundred eight participants completed three self-control questionnaires and regulated their negative emotions during functional magnetic resonance imaging using reappraisal (distancing). Trait self-control correlated positively with successful emotion regulation both subjectively and neurally, as indicated by online ratings of negative emotions and functional connectivity strength between the amygdala and prefrontal areas, respectively. This stronger overall connectivity of the left amygdala was related to more successful subjective emotion regulation. Comparing amygdala activity over time showed that high self-controllers successfully maintained down-regulation of the left amygdala over time, while low self-controllers failed to down-regulate towards the end of the experiment. This indicates that high self-controllers are better at maintaining a motivated state supporting emotion regulation over time. Our results support assumptions concerning a close relation of self-control and emotion regulation as two domains of behavioral control. They further indicate that individual differences in functional connectivity between task-related brain areas directly relate to differences in trait self-control. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Laser therapy in women genital Chlamydia trachomatis infection complicated with PID and infertility

    NASA Astrophysics Data System (ADS)

    Brinzan, Daniela; Paiusan, Lucian; Smeu, Claudia-Ramona

    2018-04-01

    Genital Chlamydia Trachomatis infection is one of the most common sexually transmitted infections with more than 50 million new cases occurred globally every year. Underdiagnosed and untreated, it can generate long term severe complications including PID, infertility, ectopic pregnancy and chronic pelvic pain. Among 20 patients diagnosed with PID and infertility in our medical office during one year, we selected a study group of 10 patients with genital Chlamydia Trachomatis infection. The diagnostic methods used were anamnesis, clinical examination, Pap smear, bacteriological and serological tests, ultra sound examination. The group of patients selected was monitored for one year. The treatment took into account general measures for both partners and specific measures (antibiotic treatment and focused laser therapy). The initial group was split in two, group A treated only with antibiotics and group B treated with both antibiotics and laser therapy. All the 5 patients of group B presented an improvement of the clinical manifestations and 3 of them ended up with pregnancy. On the other hand, in group B, only one patient manifested total disappearance of pains and the infertility persisted for all. It is noteworthy that the association of laser therapy in the treatment of Chlamydia Trachomatis infection has brought significant improvement in the inflammatory processes of internal genitalia (PID) and in the fertility of the couple.

  6. Elucidating PID Degradation Mechanisms and In Situ Dark I–V Monitoring for Modeling Degradation Rate in CdTe Thin-Film Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacke, Peter; Spataru, Sergiu; Johnston, Steve

    A progression of potential-induced degradation (PID) mechanisms are observed in CdTe modules, including shunting/junction degradation and two different manifestations of series resistance depending on the stress level and water ingress. The dark I-V method for in-situ characterization of Pmax based on superposition was adapted for the thin-film modules undergoing PID in view of the degradation mechanisms observed. An exponential model based on module temperature and relative humidity was fit to the PID rate for multiple stress levels in chamber tests and validated by predicting the observed degradation of the module type in the field.

  7. Hematite Thin Films with Various Nanoscopic Morphologies Through Control of Self-Assembly Structures

    NASA Astrophysics Data System (ADS)

    Liu, Jingling; Kim, Yong-Tae; Kwon, Young-Uk

    2015-05-01

    Hematite (α-Fe2O3) thin films with various nanostructures were synthesized through self-assembly between iron oxide hydroxide particles, generated by hydrolysis and condensation of Fe(NO3)3 · 6H2O, and a Pluronic triblock copolymer (F127, (EO)106(PO)70(EO)106, EO = ethylene oxide, PO = propylene oxide), followed by calcination. The self-assembly structure can be tuned by introducing water in a controlled manner through the control of the humidity level in the surrounding of the as-cast films during aging stage. For the given Fe(NO3)3 · 6H2O:F127 ratio, there appear to be three different thermodynamically stable self-assembly structures depending on the water content in the film material, which correspond to mesoporous, spherical micellar, and rod-like micellar structures after removal of F127. Coupled with the thermodynamic driving forces, the kinetics of the irreversible reactions of coalescence of iron oxide hydroxide particles into larger ones induce diverse nanostructures of the resultant films. The length scale of so-obtained nanostructures ranges from 6 nm to a few hundred nanometers. In addition to water content, the effects of other experimental parameters such as aging temperature, spin rate during spin coating, type of substrate, and type of iron reagent were investigated.

  8. Heading Tuning in Macaque Area V6.

    PubMed

    Fan, Reuben H; Liu, Sheng; DeAngelis, Gregory C; Angelaki, Dora E

    2015-12-16

    Cortical areas, such as the dorsal subdivision of the medial superior temporal area (MSTd) and the ventral intraparietal area (VIP), have been shown to integrate visual and vestibular self-motion signals. Area V6 is interconnected with areas MSTd and VIP, allowing for the possibility that V6 also integrates visual and vestibular self-motion cues. An alternative hypothesis in the literature is that V6 does not use these sensory signals to compute heading but instead discounts self-motion signals to represent object motion. However, the responses of V6 neurons to visual and vestibular self-motion cues have never been studied, thus leaving the functional roles of V6 unclear. We used a virtual reality system to examine the 3D heading tuning of macaque V6 neurons in response to optic flow and inertial motion stimuli. We found that the majority of V6 neurons are selective for heading defined by optic flow. However, unlike areas MSTd and VIP, V6 neurons are almost universally unresponsive to inertial motion in the absence of optic flow. We also explored the spatial reference frames of heading signals in V6 by measuring heading tuning for different eye positions, and we found that the visual heading tuning of most V6 cells was eye-centered. Similar to areas MSTd and VIP, the population of V6 neurons was best able to discriminate small variations in heading around forward and backward headings. Our findings support the idea that V6 is involved primarily in processing visual motion signals and does not appear to play a role in visual-vestibular integration for self-motion perception. To understand how we successfully navigate our world, it is important to understand which parts of the brain process cues used to perceive our direction of self-motion (i.e., heading). Cortical area V6 has been implicated in heading computations based on human neuroimaging data, but direct measurements of heading selectivity in individual V6 neurons have been lacking. We provide the first

  9. Alcohol self-control behaviors of adolescents.

    PubMed

    Glassman, Tavis; Werch, Chudley Chad; Jobli, Edessa

    2007-03-01

    The aims of the present study were to: (1) factor analyze a 13-item adolescent alcohol self-control behavior scale, (2) examine associations between frequency of self-control behavior use and alcohol consumption, and (3) to determine which self-control behaviors best predict alcohol use and consequences. A confidential standardized survey was used to collect data on participant's 30-day frequency, quantity, and heavy use of alcohol; alcohol-related consequences; and alcohol self-control behaviors. A principal component factor analysis produced the following three components: Healthy Alternatives (alpha=.81), Self-regulation (alpha=.72), and Assertive Communication (alpha=.73). MANOVAs indicated strong associations between frequency of use of the three types of self-control behaviors and alcohol consumption (p values< or =.001). Logistic regression analysis revealed that Self-regulation behaviors were the best predictor for all alcohol use measures and consequences (p values< or =.001). Self-control behaviors differ in their ability to predict alcohol use and consequences. Self-regulation strategies emerged as the most consistent predictor of alcohol use patterns and consequences among adolescents, followed by Healthy Alternatives.

  10. Tuning of the Hanle effect from EIT to EIA using spatially separated probe and control beams.

    PubMed

    Bhattarai, Mangesh; Bharti, Vineet; Natarajan, Vasant

    2018-05-14

    We demonstrate a technique for continuous tuning of the Hanle effect from electromagnetically induced transparency (EIT) to electromagnetically induced absorption (EIA) by changing the polarization ellipticity of a control beam. In contrast to previous work in this field, we use spatially separated probe and control beams. The experiments are done using magnetic sublevels of the F g  = 4 → F e  = 5 closed hyperfine transition in the 852 nm D 2 line of 133 Cs. The atoms are contained in a room temperature vapor cell with anti-relaxation (paraffin) coating on the walls. The paraffin coating is necessary for the atomic coherence to be transported between the beams. The experimental results are supported by a density-matrix analysis of the system, which also explains the observed amplitude and zero-crossing of the resonances. Such continuous tuning of the sign of a resonance has important applications in quantum memory and other precision measurements.

  11. Characteristics of an aerosol photometer while automatically controlling chamber dilution-air flow rate.

    PubMed

    O'Shaughnessy, P T; Hemenway, D R

    2000-10-01

    Trials were conducted to determine those factors that affect the accuracy of a direct-reading aerosol photometer when automatically controlling airflow rate within an exposure chamber to regulate airborne dust concentrations. Photometer response was affected by a shift in the aerosol size distribution caused by changes in chamber flow rate. In addition to a dilution effect, flow rate also determined the relative amount of aerosol lost to sedimentation within the chamber. Additional calculations were added to a computer control algorithm to compensate for these effects when attempting to automatically regulate flow based on a proportional-integral-derivative (PID) feedback control algorithm. A comparison between PID-controlled trials and those performed with a constant generator output rate and dilution-air flow rate demonstrated that there was no significant decrease in photometer accuracy despite the many changes in flow rate produced when using PID control. Likewise, the PID-controlled trials produced chamber aerosol concentrations within 1% of a desired level.

  12. [Validation of a French translation of Krueger's personality inventory for DSM-5 in its brief form (PID-5 BF)].

    PubMed

    Combaluzier, S; Gouvernet, B; Menant, F; Rezrazi, A

    2018-02-01

    Since the publication of the DSM-5 (APA, 2013), the dimensional conception of the personality disorders is co-existing with the classical categorical paradigm. Tools have been proposed for the evaluations of five big pathological factors to be explored further according to the APA (negative affectivity, detachment, antagonism, disinhibition, psychoticism). Despite numerous works using these questionnaires (30 works in 3 years according to Al-Adjani et al., 2015), none of them have yet been translated into French. Also, the main objective of the paper is to present a French translation of the Personality Inventory for DSM -5 by Kruegger et al. (2013) in its brief form of 25 items (PID-5 BF). To reach this goal, we have employed the classic translation-retranslation method (Vallerand, 1989) and tested the consistence and the validity of this French version among a non-clinical sample (n=216) of young adults (age=31.4, SD=4.8), in joining some other questionnaires in their short forms to study the external validity of the PID-5 about the psychological distress (SCL-10, Nguyen, 1983), the categorical diagnosis of personality disorders (SAPAS, Moran et al., 2003) and the classical Big Five dimensions of the personality (BDI 10, Ramamstedt and John, 2007). The internal consistency of this translation has been studied through the classical outcomes on factor analysis for the dimensional repartitions of the items in 5 scales and Cronbach's alpha for the consistency of each found dimensions. The external validity has been explored by studying Pearson's correlations between the outcomes on each dimension of the PID-5 BF and both the clinical dimensions of SCL-10, personality dimensions of the BFI-10 or personality disorders (SAPAS). Factor analysis led to the same repartition of the 25 items as the original versions. Each of the dimensions is consistent enough (α>.65) to be taken into account as clinically significant. The items of the French version of the PID-5 BF follow

  13. Mutations in CsPID encoding a Ser/Thr protein kinase are responsible for round leaf shape in cucumber (Cucumis sativus L.)

    USDA-ARS?s Scientific Manuscript database

    Leaf shape is an important plant architecture trait that is affected by plant hormones, especially auxin. In Arabidopsis, PINOID (PID), a regulator for the auxin polar transporter PIN (PIN-FORMED) affects leaf shape formation, but this function of PID in crop plants has not been well studied. From a...

  14. Self-tuning stochastic resonance energy harvester for smart tires

    NASA Astrophysics Data System (ADS)

    Kim, Hongjip; Tai, Wei Che; Zuo, Lei

    2018-03-01

    Energy harvesting from smart tire has been an influential topic for researchers over several years. In this paper, we propose novel energy harvester for smart tire taking advantage of adaptive tuning stochastic resonance. Compared to previous tire energy harvesters, it can generate large power and has wide bandwidth. Large power is achieved by stochastic resonance while wide-bandwidth is accomplished by adaptive tuning via centrifugal stiffening effect. Energy harvesting configuration for modulated noise is described first. It is an electromagnetic energy harvester consists of rotating beam subject to centrifugal buckling. Equation of motion for energy harvester is derived to investigate the effect of centrifugal stiffening. Numerical analysis was conducted to simulate response. The result show that high power is achieved with wide bandwidth. To verify the theoretical and simulation results, the experiment was conducted. Equivalent horizontal rotating platform is built to mimic tire environment. Experiment results showed good agreement with the numerical result with around 10% of errors, which verified feasibility of proposed harvester. Maximum power 1.8mW is achieved from 3:1 scale experiment setup. The equivalent working range of harvester is around 60-105 km/h which is typical speed for car in general road and highway.

  15. Antenna Linear-Quadratic-Gaussian (LQG) Ccontrollers: Properties, Limits of Performance, and Tuning

    NASA Technical Reports Server (NTRS)

    Gawronski, Wodek K.

    2004-01-01

    The LQG controllers significantly improve antenna tracking precision, but their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller, and the selection of weights of the LQG performance index. The paper selects the coordinates of the open-loop model that simplify the shaping of the closed-loop performance. and analyzes the impact of thc weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. Finally, it presents the LQG controller tuning procedure that rationally shapes the closed-loop performance.

  16. Decentralized automatic generation control of interconnected power systems incorporating asynchronous tie-lines.

    PubMed

    Ibraheem; Hasan, Naimul; Hussein, Arkan Ahmed

    2014-01-01

    This Paper presents the design of decentralized automatic generation controller for an interconnected power system using PID, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The designed controllers are tested on identical two-area interconnected power systems consisting of thermal power plants. The area interconnections between two areas are considered as (i) AC tie-line only (ii) Asynchronous tie-line. The dynamic response analysis is carried out for 1% load perturbation. The performance of the intelligent controllers based on GA and PSO has been compared with the conventional PID controller. The investigations of the system dynamic responses reveal that PSO has the better dynamic response result as compared with PID and GA controller for both type of area interconnection.

  17. Data Driven Synthesis of Three Term Digital Controllers

    NASA Astrophysics Data System (ADS)

    Keel, Lee H.; Mitra, Sandipan; Bhattacharyya, Shankar P.

    This paper presents a method for digital PID and first order controller synthesis based on frequency domain data alone. The techniques given here first determine all stabilizing controllers from measurement data. In both PID and first order controller cases, the only information required are frequency domain data (Nyquist-Bode data) and the number of open-loop RHP poles. Specifically no identification of the plant model is required. Examples are given for illustration.

  18. Research on pressure control of pressurizer in pressurized water reactor nuclear power plant

    NASA Astrophysics Data System (ADS)

    Dai, Ling; Yang, Xuhong; Liu, Gang; Ye, Jianhua; Qian, Hong; Xue, Yang

    2010-07-01

    Pressurizer is one of the most important components in the nuclear reactor system. Its function is to keep the pressure of the primary circuit. It can prevent shutdown of the system from the reactor accident under the normal transient state while keeping the setting value in the normal run-time. This paper is mainly research on the pressure system which is running in the Daya Bay Nuclear Power Plant. A conventional PID controller and a fuzzy controller are designed through analyzing the dynamic characteristics and calculating the transfer function. Then a fuzzy PID controller is designed by analyzing the results of two controllers. The fuzzy PID controller achieves the optimal control system finally.

  19. Progress on Development of the New FDIRC PID Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavra, Jerry

    2012-08-03

    We present a progress status of a new concept of PID detector called FDIRC, intended to be used at the SuperB experiment, which requires {pi}/K separation up to a few GeV/c. The new photon camera is made of the solid fused-silica optics with a volume 25x smaller and speed increased by a factor of ten compared to the BaBar DIRC, and therefore will be much less sensitive to electromagnetic and neutron background

  20. Stability of Black Holes and the Speed of Gravitational Waves within Self-Tuning Cosmological Models

    NASA Astrophysics Data System (ADS)

    Babichev, Eugeny; Charmousis, Christos; Esposito-Farèse, Gilles; Lehébel, Antoine

    2018-06-01

    The gravitational wave event GW170817 together with its electromagnetic counterparts constrains the speed of gravity to be extremely close to that of light. We first show, on the example of an exact Schwarzschild-de Sitter solution of a specific beyond-Horndeski theory, that imposing the strict equality of these speeds in the asymptotic homogeneous Universe suffices to guarantee so even in the vicinity of the black hole, where large curvature and scalar-field gradients are present. We also find that the solution is stable in a range of the model parameters. We finally show that an infinite class of beyond-Horndeski models satisfying the equality of gravity and light speeds still provides an elegant self-tuning: the very large bare cosmological constant entering the Lagrangian is almost perfectly counterbalanced by the energy-momentum tensor of the scalar field, yielding a tiny observable effective cosmological constant.

  1. Dysfunction of Self-Regulation and Self-Control in Facebook Addiction.

    PubMed

    Błachnio, Agata; Przepiorka, Aneta

    2016-09-01

    Nowadays, Facebook has become one of the most popular communication tools. With its increasing popularity, a new phenomenon connected with extensive use has appeared: namely, Facebook intrusion. The answer to the question of who is prone to become addicted still remains open. This study aimed to explore whether insufficient self-control and self-regulation resources in Facebook users are related to Facebook addiction. The participants in the study were 284 people. The Facebook Intrusion Questionnaire, the Brief Self-Control Scale, the Self-Regulation Scale, Action Control Scale, and the Multitasking Scale were used. We found that dysfunctional self-control system can be related to Facebook addiction. An insufficient self-control and low level of failure-related action orientation are those psychological characteristics that put Facebook users "at-risk" of Facebook addiction. The study reveals a picture showing that those Facebook users who are able to resist an impulse or temptation, are more self-disciplined, and do not focus on negative emotions are less likely to develop Facebook addiction. The obtained findings may serve as a basis for prevention programs for people at risk of Facebook addiction.

  2. A Family Study of the DSM-5 Section III Personality Pathology Model Using the Personality Inventory for the DSM-5 (PID-5).

    PubMed

    Katz, Andrea C; Hee, Danelle; Hooker, Christine I; Shankman, Stewart A

    2017-10-03

    In Section III of the DSM-5, the American Psychiatric Association (APA) proposes a pathological personality trait model of personality disorders. The recommended assessment instrument is the Personality Inventory for the DSM-5 (PID-5), an empirically derived scale that assesses personality pathology along five domains and 25 facets. Although the PID-5 demonstrates strong convergent validity with other personality measures, no study has examined whether it identifies traits that run in families, another important step toward validating the DSM-5's dimensional model. Using a family study method, we investigated familial associations of PID-5 domain and facet scores in 195 families, examining associations between parents and offspring and across siblings. The Psychoticism, Antagonism, and Detachment domains showed significant familial aggregation, as did facets of Negative Affect and Disinhibition. Results are discussed in the context of personality pathology and family study methodology. The results also help validate the PID-5, given the familial nature of personality traits.

  3. Sex Roles and Yielded/Expressed Self-Control.

    ERIC Educational Resources Information Center

    Ganong, Lawrence H.; Coleman, Marilyn

    1987-01-01

    Results of a study of the impact of sex and sex role orientation on reported self-control behaviors showed that sex did not affect self-control or satisfaction with self-control, but sex role orientation did. Androgynous persons reported using more expressed self-control than others. (PS)

  4. SU-F-J-10: Sliding Mode Control of a SMA Actuated Active Flexible Needle for Medical Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podder, T

    Purpose: In medical interventional procedures such as brachytherapy, ablative therapies and biopsy precise steering and accurate placement of needles are very important for anatomical obstacle avoidance and accurate targeting. This study presents the efficacy of a sliding mode controller for Shape Memory Alloy (SMA) actuated flexible needle for medical procedures. Methods: Second order system dynamics of the SMA actuated active flexible needle was used for deriving the sliding mode control equations. Both proportional-integral-derivative (PID) and adaptive PID sliding mode control (APIDSMC) algorithms were developed and implemented. The flexible needle was attached at the end of a 6 DOF robotic system.more » Through LabView programming environment, the control commands were generated using the PID and APIDSMC algorithms. Experiments with artificial tissue mimicking phantom were performed to evaluate the performance of the controller. The actual needle tip position was obtained using an electromagnetic (EM) tracking sensor (Aurora, NDI, waterloo, Canada) at a sampling period of 1ms. During experiment, external disturbances were created applying force and thermal shock to investigate the robustness of the controllers. Results: The root mean square error (RMSE) values for APIDSMC and PID controllers were 0.75 mm and 0.92 mm, respectively, for sinusoidal reference input. In the presence of external disturbances, the APIDSMC controller showed much smoother and less overshooting response compared to that of the PID controller. Conclusion: Performance of the APIDSMC was superior to the PID controller. The APIDSMC was proved to be more effective controller in compensating the SMA uncertainties and external disturbances with clinically acceptable thresholds.« less

  5. Mode tuning of a simplified string instrument using time-dimensionless state-derivative control

    NASA Astrophysics Data System (ADS)

    Benacchio, Simon; Chomette, Baptiste; Mamou-Mani, Adrien; Finel, Victor

    2015-01-01

    In recent years, there has been a growing interest in smart structures, particularly in the field of musical acoustics. Control methods, initially developed to reduce vibration and damage, can be a good way to shift modal parameters of a structure in order to modify its dynamic response. This study focuses on smart musical instruments and aims to modify their radiated sound. This is achieved by controlling the modal parameters of the soundboard of a simplified string instrument. A method combining a pole placement algorithm and a time-dimensionless state-derivative control is used and quickly compared to a usual state control method. Then the effect of the mode tuning on the coupling between the string and the soundboard is experimentally studied. Controlling two vibration modes of the soundboard, its acoustic response and the damping of the third partial of the sound are modified. Finally these effects are listened in the radiated sound.

  6. Tuning the self-assembled 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol nanoarchitectures using the phase inversion method

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Chi; Tseng, Shen-Jhen

    2013-11-01

    1,3:2,4-Di(3,4-dimethylbenzylidene) sorbitol (DMDBS) molecules can self-assemble into nanoscaled structures in organic solvents and polymer melts. The nanofibril structures were the mostly found. In this study, we used two phase inversion methods, i.e., dry and wet methods, to obtain different DMDBS nanoarchitectures. Poly(vinylidene fluoride) (PVDF) was chosen as polymer matrix, and the DMDBS structures were tuned by the process of PVDF membrane formation (crystallization and liquid-liquid demixing). When the membrane was prepared using the dry method, the DMDBS structure is controlled by the PVDF crystallization. Fewer DMDBS nanofibrils formed on the surfaces, and no nanofibrils were found in the cross-sections. On the other hand, when the membrane was prepared using the wet method, the liquid-liquid demixing (nonsolvent induced phase separation) occurred simultaneously as PVDF crystallized, and thus influenced the aggregation of DMDBS molecules. DMDBS is an amphiphilic molecule with two hydrophilic hydroxyl groups. The addition of nonsolvent (water) caused a large number of DMDBS molecules to aggregate outside the hydrophobic PVDF. In addition, a new structure "nanomat" was found. The mat was composed of DMDBS nanofibrils with diameters of 10-20 nm, similar to those observed in the dry method membranes. Fourier transform infra-red spectroscopy indicates that the DMDBS molecules self-assembled (aggregated) mainly through intermolecular hydrogen bonding in the presence of PVDF. The more intermolecular hydrogen bonding between DMDBS existed, the more excessive amounts of DMDBS molecules were, leading to the formation of nanomats.

  7. Smoothing PV System’s Output by Tuning MPPT Control

    NASA Astrophysics Data System (ADS)

    Ina, Nobuhiko; Yanagawa, Shigeyuki; Kato, Takeyoshi; Suzuoki, Yasuo

    A PV system’s output is not stable and fluctuates depending on a weather condition. Using a battery is one of the feasible ways to stabilize a PV system’s output, although it requires an additional cost and provides an additional waste of the used battery. In this paper, we propose tuning a characteristic of Maxiumum Power Point Tracking (MPPT) control for smoothing a short term change of PV system’s output during a sharp insolation fluctuation, as an approach without additional equipments. In our proposed method, when an insolation increases rapidly, the operation point of MPPT control changes to the new point where the maximum power is not generated with present insolation, so that the speed of PV system’s output increase is limited to a certain value, i. e. 1%/min. In order to evaluate the effect of our proposed method in terms of reducing the additional operation task of the electric power system, we evaluated the additional LFC capacity for a large-scale installation of PV systems. As a result, it was revealed that the additional LFC capacity is not required even if a PV system is installed by 5% of utility system, when our proposed method is applied to all PV systems.

  8. Note: Wide-operating-range control for thermoelectric coolers.

    PubMed

    Peronio, P; Labanca, I; Ghioni, M; Rech, I

    2017-11-01

    A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.

  9. Note: Wide-operating-range control for thermoelectric coolers

    NASA Astrophysics Data System (ADS)

    Peronio, P.; Labanca, I.; Ghioni, M.; Rech, I.

    2017-11-01

    A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.

  10. Hypo-egoic self-regulation: exercising self-control by diminishing the influence of the self.

    PubMed

    Leary, Mark R; Adams, Claire E; Tate, Eleanor B

    2006-12-01

    Theory and research dealing with self-regulation have focused primarily on instances of self-regulation that involve high levels of self-reflection and effortful self-control. However, intentionally trying to control one's behavior sometimes reduces the likelihood of achieving one's goals. This article examines the process of hypo-egoic self-regulation in which people relinquish deliberate, conscious control over their own behavior so that they will respond more naturally, spontaneously, or automatically. An examination of spontaneously occurring hypo-egoic states (such as flow, deindividuation, and transcendence) suggests that hypo-egoic states are characterized by lowered self-awareness and/or an increase in concrete and present-focused self-thoughts. In light of this, people may intentionally foster hypo-egoism via two pathways-(a) taking steps to reduce the proportion of time that they are self-aware (such as repeating a behavior until it is automatic or practicing meditation) or (b) increasing the concreteness of their self-thoughts (such as inducing a concrete mindset or practicing mindfulness). In this way, people may deliberately choose to regulate hypo-egoically when effortful control might be detrimental to their performance.

  11. 0.5 V 5.8 GHz highly linear current-reuse voltage-controlled oscillator with back-gate tuning technique

    NASA Astrophysics Data System (ADS)

    Ikeda, Sho; Lee, Sang-Yeop; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2015-04-01

    In this paper, we present a voltage-controlled oscillator (VCO), which achieves highly linear frequency tuning under a low supply voltage of 0.5 V. To obtain the linear frequency tuning of a VCO, the high linearity of the threshold voltage of a varactor versus its back-gate voltage is utilized. This enables the linear capacitance tuning of the varactor; thus, a highly linear VCO can be achieved. In addition, to decrease the power consumption of the VCO, a current-reuse structure is employed as a cross-coupled pair. The proposed VCO was fabricated using a 65 nm Si complementary metal oxide semiconductor (CMOS) process. It shows the ratio of the maximum VCO gain (KVCO) to the minimum one to be 1.28. The dc power consumption is 0.33 mW at a supply voltage of 0.5 V. The measured phase noise at 10 MHz offset is -123 dBc/Hz at an output frequency of 5.8 GHz.

  12. The High Momentum Particle IDentification (HMPID) detector PID performance and its contribution to the ALICE physics program

    NASA Astrophysics Data System (ADS)

    Volpe, Giacomo; ALICE Collaboration

    2017-12-01

    The ALICE apparatus is dedicated to study the properties of strongly interacting matter under extremely high temperature and energy density conditions. For this, enhanced particle identification (PID) capabilities are required. Among the PID ALICE detectors, the ALICE-HMPID (High Momentum Particle IDentification) detector is devoted to the identification of charged hadrons, exploiting the Cherenkov effect. It consists of seven identical RICH modules, with liquid C6F14 as Cherenkov radiator (n ≈1.298 at λ=175 nm). Photon and charged particle detection is performed by a MWPC, coupled with a pad segmented CsI coated photo-cathode. The total CsI active area is 10.3 m2. The HMPID provides 3 sigma separation for pions and kaons up to pT = 3 GeV / c and for kaons and (anti-)protons up to pT = 5 GeV / c . A review of the HMPID PID performance, in particular in the challenging central Pb-Pb collisions, and its contribution to the ALICE physics program, using the LHC RUN1 (2010-2013) and RUN2 (2015) data, are presented.

  13. Genes, Parenting, Self-Control, and Criminal Behavior.

    PubMed

    Watts, Stephen J; McNulty, Thomas L

    2016-03-01

    Self-control has been found to predict a wide variety of criminal behaviors. In addition, studies have consistently shown that parenting is an important influence on both self-control and offending. However, few studies have examined the role that biological factors may play in moderating the relationship between parenting, self-control, and offending. Using a sample of adolescent males drawn from the National Longitudinal Study of Adolescent Health (N = 3,610), we explore whether variants of the monoamine oxidase A gene (MAOA) and the dopamine transporter (DAT1) gene interact with parenting to affect self-control and offending. Results reveal that parenting interacts with these genes to influence self-control and offending, and that the parenting-by-gene interaction effect on offending is mediated by self-control. The effects of parenting on self-control and offending are most pronounced for those who carry plasticity alleles for both MAOA and DAT1. Thus, MAOA and DAT1 may be implicated in offending because they increase the negative effects of parenting on self-control. Implications for theory are discussed. © The Author(s) 2014.

  14. Rule-based navigation control design for autonomous flight

    NASA Astrophysics Data System (ADS)

    Contreras, Hugo; Bassi, Danilo

    2008-04-01

    This article depicts a navigation control system design that is based on a set of rules in order to follow a desired trajectory. The full control of the aircraft considered here comprises: a low level stability control loop, based on classic PID controller and the higher level navigation whose main job is to exercise lateral control (course) and altitude control, trying to follow a desired trajectory. The rules and PID gains were adjusted systematically according to the result of flight simulation. In spite of its simplicity, the rule-based navigation control proved to be robust, even with big perturbation, like crossing winds.

  15. Molecular dynamics of reversible self-healing materials

    NASA Astrophysics Data System (ADS)

    Madden, Ian; Luijten, Erik

    Hydrolyzable polymers have numerous industrial applications as degradable materials. Recent experimental work by Cheng and co-workers has introduced the concept of hindered urea bond (HUB) chemistry to design self-healing systems. Important control parameters are the steric hindrance of the HUB structures, which is used to tune the hydrolytic degradation kinetics, and their density. We employ molecular dynamics simulations of polymeric interfaces to systematically explore the role of these properties in a coarse-grained model, and make direct comparison to experimental data. Our model provides direct insight into the self-healing process, permitting optimization of the control parameters.

  16. Simulation Analysis of Computer-Controlled pressurization for Mixture Ratio Control

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie A.; Bishop-Behel, Karen; Benfield, Michael P. J.; Kelley, Anthony; Woodcock, Gordon R.

    2005-01-01

    A procedural code (C++) simulation was developed to investigate potentials for mixture ratio control of pressure-fed spacecraft rocket propulsion systems by measuring propellant flows, tank liquid quantities, or both, and using feedback from these measurements to adjust propellant tank pressures to set the correct operating mixture ratio for minimum propellant residuals. The pressurization system eliminated mechanical regulators in favor of a computer-controlled, servo- driven throttling valve. We found that a quasi-steady state simulation (pressure and flow transients in the pressurization systems resulting from changes in flow control valve position are ignored) is adequate for this purpose. Monte-Carlo methods are used to obtain simulated statistics on propellant depletion. Mixture ratio control algorithms based on proportional-integral-differential (PID) controller methods were developed. These algorithms actually set target tank pressures; the tank pressures are controlled by another PID controller. Simulation indicates this approach can provide reductions in residual propellants.

  17. Application of an Optimal Tuner Selection Approach for On-Board Self-Tuning Engine Models

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Armstrong, Jeffrey B.; Garg, Sanjay

    2012-01-01

    An enhanced design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented in this paper. It specific-ally addresses the under-determined estimation problem, in which there are more unknown parameters than available sensor measurements. This work builds upon an existing technique for systematically selecting a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. While the existing technique was optimized for open-loop engine operation at a fixed design point, in this paper an alternative formulation is presented that enables the technique to be optimized for an engine operating under closed-loop control throughout the flight envelope. The theoretical Kalman filter mean squared estimation error at a steady-state closed-loop operating point is derived, and the tuner selection approach applied to minimize this error is discussed. A technique for constructing a globally optimal tuning parameter vector, which enables full-envelope application of the technology, is also presented, along with design steps for adjusting the dynamic response of the Kalman filter state estimates. Results from the application of the technique to linear and nonlinear aircraft engine simulations are presented and compared to the conventional approach of tuner selection. The new methodology is shown to yield a significant improvement in on-line Kalman filter estimation accuracy.

  18. Facile formation of biomimetic color-tuned superhydrophobic magnesium alloy with corrosion resistance.

    PubMed

    Ishizaki, Takahiro; Sakamoto, Michiru

    2011-03-15

    The design of color-tuned magnesium alloy with anticorrosive properties and damping capacity was created by means of a simple and inexpensive method. The vertically self-aligned nano- and microsheets were formed on magnesium alloy AZ31 by a chemical-free immersion process in ultrapure water at a temperature of 120 °C, resulting in the color expression. The color changed from silver with metallic luster to some specific colors such as orange, green, and orchid, depending on the immersion time. The color-tuned magnesium alloy showed anticorrosive performance and damping capacity. In addition, the colored surface with minute surface textures was modified with n-octadecyltrimethoxysilane (ODS), leading to the formation of color-tuned superhydrophobic surfaces. The corrosion resistance of the color-tuned superhydrophobic magnesium alloy was also investigated using electrochemical potentiodynamic measurements. Moreover, the color-tuned superhydrophobic magnesium alloy showed high hydrophobicity not just for pure water but also for corrosive liquids, such as acidic, basic, and some aqueous salt solutions. In addition, the American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the color-tuned superhydrophobic film to the magnesium alloy surface.

  19. Bilateral control of master-slave manipulators with constant time delay.

    PubMed

    Forouzantabar, A; Talebi, H A; Sedigh, A K

    2012-01-01

    This paper presents a novel teleoperation controller for a nonlinear master-slave robotic system with constant time delay in communication channel. The proposed controller enables the teleoperation system to compensate human and environmental disturbances, while achieving master and slave position coordination in both free motion and contact situation. The current work basically extends the passivity based architecture upon the earlier work of Lee and Spong (2006) [14] to improve position tracking and consequently transparency in the face of disturbances and environmental contacts. The proposed controller employs a PID controller in each side to overcome some limitations of a PD controller and guarantee an improved performance. Moreover, by using Fourier transform and Parseval's identity in the frequency domain, we demonstrate that this new PID controller preserves the passivity of the system. Simulation and semi-experimental results show that the PID controller tracking performance is superior to that of the PD controller tracking performance in slave/environmental contacts. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Electrical birefringence tuning of VCSELs

    NASA Astrophysics Data System (ADS)

    Pusch, Tobias; Lindemann, Markus; Gerhardt, Nils C.; Hofmann, Martin R.; Michalzik, Rainer

    2018-02-01

    The birefringence splitting B, which is the frequency difference between the two fundamental linear polarization modes in vertical-cavity surface-emitting lasers (VCSELs), is the key parameter determining the polarization dynamics of spin-VCSELs that can be much faster than the intensity dynamics. For easy handling and control, electrical tuning of B is favored. This was realized in an integrated chip by thermally induced strain via asymmetric heating with a birefringence tuning range of 45 GHz. In this paper we present our work on VCSEL structures mounted on piezoelectric transducers for strain generation. Furthermore we show a combination of both techniques, namely VCSELs with piezo-thermal birefringence tunability.

  1. Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories

    NASA Technical Reports Server (NTRS)

    Burchett, Bradley T.

    2003-01-01

    The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.

  2. Binocular disparity tuning and visual-vestibular congruency of multisensory neurons in macaque parietal cortex

    PubMed Central

    Yang, Yun; Liu, Sheng; Chowdhury, Syed A.; DeAngelis, Gregory C.; Angelaki, Dora E.

    2012-01-01

    Many neurons in the dorsal medial superior temporal (MSTd) and ventral intraparietal (VIP) areas of the macaque brain are multisensory, responding to both optic flow and vestibular cues to self-motion. The heading tuning of visual and vestibular responses can be either congruent or opposite, but only congruent cells have been implicated in cue integration for heading perception. Because of the geometric properties of motion parallax, however, both congruent and opposite cells could be involved in coding self-motion when observers fixate a world-fixed target during translation, if congruent cells prefer near disparities and opposite cells prefer far disparities. We characterized the binocular disparity selectivity and heading tuning of MSTd and VIP cells using random-dot stimuli. Most (70%) MSTd neurons were disparity-selective with monotonic tuning, and there was no consistent relationship between depth preference and congruency of visual and vestibular heading tuning. One-third of disparity-selective MSTd cells reversed their depth preference for opposite directions of motion (direction-dependent disparity tuning, DDD), but most of these cells were unisensory with no tuning for vestibular stimuli. Inconsistent with previous reports, the direction preferences of most DDD neurons do not reverse with disparity. By comparison to MSTd, VIP contains fewer disparity-selective neurons (41%) and very few DDD cells. On average, VIP neurons also preferred higher speeds and nearer disparities than MSTd cells. Our findings are inconsistent with the hypothesis that visual/vestibular congruency is linked to depth preference, and also suggest that DDD cells are not involved in multisensory integration for heading perception. PMID:22159105

  3. Stoichiometric control of DNA-grafted colloid self-assembly

    DOE PAGES

    Vo, Thi; Venkatasubramanian, Venkat; Kumar, Sanat; ...

    2015-04-06

    In this study, there has been considerable interest in understanding the self-assembly of DNA-grafted nanoparticles into different crystal structures, e.g., CsCl, AlB₂, and Cr₃Si. Although there are important exceptions, a generally accepted view is that the right stoichiometry of the two building block colloids needs to be mixed to form the desired crystal structure. To incisively probe this issue, we combine experiments and theory on a series of DNA-grafted nanoparticles at varying stoichiometries, including noninteger values. We show that stoichiometry can couple with the geometries of the building blocks to tune the resulting equilibrium crystal morphology. As a concrete example,more » a stoichiometric ratio of 3:1 typically results in the Cr₃Si structure. However, AlB₂ can form when appropriate building blocks are used so that the AlB₂ standard-state free energy is low enough to overcome the entropic preference for Cr₃Si. These situations can also lead to an undesirable phase coexistence between crystal polymorphs. Thus, whereas stoichiometry can be a powerful handle for direct control of lattice formation, care must be taken in its design and selection to avoid polymorph coexistence.« less

  4. The Science and Practice of Self-Control.

    PubMed

    Duckworth, Angela L; Seligman, Martin E P

    2017-09-01

    In 2005, we discovered that self-control "outdoes" talent in predicting academic success during adolescence. Since then, a surfeit of longitudinal evidence has affirmed the importance of self-control to achieving everyday goals that conflict with momentary temptations. In parallel, research that has "lumped" self-control with other facets of Big Five conscientiousness has shown the superior predictive power of this broad family of individual differences for diverse life outcomes. Self-control can also be "split" from related traits that in certain contexts demonstrate superior predictive power for achievement. Most important, both the "lumping" and "splitting" traditions have enhanced our understanding of the underlying mechanisms and antecedents of self-control. Collectively, progress over the past decade and a half suggests a bright future for the science and practice of self-control.

  5. Refinement and evaluation of helicopter real-time self-adaptive active vibration controller algorithms

    NASA Technical Reports Server (NTRS)

    Davis, M. W.

    1984-01-01

    A Real-Time Self-Adaptive (RTSA) active vibration controller was used as the framework in developing a computer program for a generic controller that can be used to alleviate helicopter vibration. Based upon on-line identification of system parameters, the generic controller minimizes vibration in the fuselage by closed-loop implementation of higher harmonic control in the main rotor system. The new generic controller incorporates a set of improved algorithms that gives the capability to readily define many different configurations by selecting one of three different controller types (deterministic, cautious, and dual), one of two linear system models (local and global), and one or more of several methods of applying limits on control inputs (external and/or internal limits on higher harmonic pitch amplitude and rate). A helicopter rotor simulation analysis was used to evaluate the algorithms associated with the alternative controller types as applied to the four-bladed H-34 rotor mounted on the NASA Ames Rotor Test Apparatus (RTA) which represents the fuselage. After proper tuning all three controllers provide more effective vibration reduction and converge more quickly and smoothly with smaller control inputs than the initial RTSA controller (deterministic with external pitch-rate limiting). It is demonstrated that internal limiting of the control inputs a significantly improves the overall performance of the deterministic controller.

  6. Frequency Tuning of Vibration Absorber Using Topology Optimization

    NASA Astrophysics Data System (ADS)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  7. A new method for total OH reactivity measurements using a fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-05-01

    The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date direct measurements of total OH reactivity have been either performed using a Laser Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton Transfer Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photo-Ionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were equivalent to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical

  8. Tuning Higher Education

    NASA Astrophysics Data System (ADS)

    Carroll, Bradley

    2011-03-01

    In April 2009, the Lumina Foundation launched its Tuning USA project. Faculty teams in selected disciplines from Indiana, Minnesota, and Utah started pilot Tuning programs at their home institutions. Using Europe's Bologna Process as a guide, Utah physicists worked to reach a consensus about the knowledge and skills that should characterize the 2-year, batchelor's, and master's degree levels. I will share my experience as a member of Utah's physics Tuning team, and describe our progress, frustrations, and evolving understanding of the Tuning project's history, methods, and goals.

  9. Sleep deprivation, low self-control, and delinquency: a test of the strength model of self-control.

    PubMed

    Meldrum, Ryan C; Barnes, J C; Hay, Carter

    2015-02-01

    Recent work provides evidence that sleep deprivation is positively related to delinquency. In this study, we draw on Baumeister and colleagues' strength model of self-control to propose an explanation for this association. Specifically, we argue that low self-control is the construct that bridges the relationship between sleep deprivation and delinquency. To test the proposed model, we examine survey data drawn from a longitudinal multi-city cohort study of adolescents who were followed from birth through age 15 (N = 825; 50% female; 82% non-Hispanic white, 59% two-parent nuclear family). The results from regression models using latent factors indicate: sleep deprivation is positively related to low self-control; low self-control is positively related to delinquency; and the relationship between sleep deprivation and delinquency is indirect and operates through low self-control. Impressively, these relationships emerged when accounting for potential background sources of spuriousness, including neighborhood context, depressive symptoms, parenting practices, unstructured socializing with peers, and prior delinquency. Implications and directions for future research are discussed.

  10. Rational Design and Tuning of Functional RNA Switch to Control an Allosteric Intermolecular Interaction.

    PubMed

    Endoh, Tamaki; Sugimoto, Naoki

    2015-08-04

    Conformational transitions of biomolecules in response to specific stimuli control many biological processes. In natural functional RNA switches, often called riboswitches, a particular RNA structure that has a suppressive or facilitative effect on gene expression transitions to an alternative structure with the opposite effect upon binding of a specific metabolite to the aptamer region. Stability of RNA secondary structure (-ΔG°) can be predicted based on thermodynamic parameters and is easily tuned by changes in nucleobases. We envisioned that tuning of a functional RNA switch that causes an allosteric interaction between an RNA and a peptide would be possible based on a predicted switching energy (ΔΔG°) that corresponds to the energy difference between the RNA secondary structure before (-ΔG°before) and after (-ΔG°after) the RNA conformational transition. We first selected functional RNA switches responsive to neomycin with predicted ΔΔG° values ranging from 5.6 to 12.2 kcal mol(-1). We then demonstrated a simple strategy to rationally convert the functional RNA switch to switches responsive to natural metabolites thiamine pyrophosphate, S-adenosyl methionine, and adenine based on the predicted ΔΔG° values. The ΔΔG° values of the designed RNA switches proportionally correlated with interaction energy (ΔG°interaction) between the RNA and peptide, and we were able to tune the sensitivity of the RNA switches for the trigger molecule. The strategy demonstrated here will be generally applicable for construction of functional RNA switches and biosensors in which mechanisms are based on conformational transition of nucleic acids.

  11. Research of digital controlled DC/DC converter based on STC12C5410AD

    NASA Astrophysics Data System (ADS)

    Chen, Dan-Jiang; Jin, Xin; Xiao, Zhi-Hong

    2010-02-01

    In order to study application of digital control technology on DC/DC converter, principle of increment mode PID control algorithm was analyzed in the paper. Then, a SCM named STC12C5410AD was introduced with its internal resources and characteristics. The PID control algorithm can be implemented easily based on it. The output of PID control was used to change the value of a variable that is 255 times than duty cycle, and this reduced the error of calculation. The valid of the presented algorithm was verified by an experiment for a BUCK DC/DC converter. The experimental results indicated that output voltage of the BUCK converter is stable with low ripple.

  12. Modeling and control of tissue compression and temperature for automation in robot-assisted surgery.

    PubMed

    Sinha, Utkarsh; Li, Baichun; Sankaranarayanan, Ganesh

    2014-01-01

    Robotic surgery is being used widely due to its various benefits that includes reduced patient trauma and increased dexterity and ergonomics for the operating surgeon. Making the whole or part of the surgical procedure autonomous increases patient safety and will enable the robotic surgery platform to be used in telesurgery. In this work, an Electrosurgery procedure that involves tissue compression and application of heat such as the coaptic vessel closure has been automated. A MIMO nonlinear model characterizing the tissue stiffness and conductance under compression was feedback linearized and tuned PID controllers were used to control the system to achieve both the displacement and temperature constraints. A reference input for both the constraints were chosen as a ramp and hold trajectory which reflect the real constraints that exist in an actual surgical procedure. Our simulations showed that the controllers successfully tracked the reference trajectories with minimal deviation and in finite time horizon. The MIMO system with controllers developed in this work can be used to drive a surgical robot autonomously and perform electrosurgical procedures such as coaptic vessel closures.

  13. An Optimal Control Method for Maximizing the Efficiency of Direct Drive Ocean Wave Energy Extraction System

    PubMed Central

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng

    2014-01-01

    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913

  14. An optimal control method for maximizing the efficiency of direct drive ocean wave energy extraction system.

    PubMed

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng

    2014-01-01

    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.

  15. Self-assembled tunable networks of sticky colloidal particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demortiere, Arnaud; Snezhko, Oleksiy Alexey; Sapozhnikov, Maksim

    Self-assembled tunable networks of microscopic polymer fibers ranging from wavy colloidal "fur" to highly interconnected networks are created from polymer systems and an applied electric field. The networks emerge via dynamic self-assembly in an alternating (ac) electric field from a non-aqueous suspension of "sticky" polymeric colloidal particles with a controlled degree of polymerization. The resulting architectures are tuned by the frequency and amplitude of the electric field and surface properties of the particles.

  16. Brain stimulation reveals crucial role of overcoming self-centeredness in self-control.

    PubMed

    Soutschek, Alexander; Ruff, Christian C; Strombach, Tina; Kalenscher, Tobias; Tobler, Philippe N

    2016-10-01

    Neurobiological models of self-control predominantly focus on the role of prefrontal brain mechanisms involved in emotion regulation and impulse control. We provide evidence for an entirely different neural mechanism that promotes self-control by overcoming bias for the present self, a mechanism previously thought to be mainly important for interpersonal decision-making. In two separate studies, we show that disruptive transcranial magnetic stimulation (TMS) of the temporo-parietal junction-a brain region involved in overcoming one's self-centered perspective-increases the discounting of delayed and prosocial rewards. This effect of TMS on temporal and social discounting is accompanied by deficits in perspective-taking and does not reflect altered spatial reorienting and number recognition. Our findings substantiate a fundamental commonality between the domains of self-control and social decision-making and highlight a novel aspect of the neurocognitive processes involved in self-control.

  17. Self-assembly Morphology and Crystallinity Control of Di-block Copolymer Inspired by Spider Silk

    NASA Astrophysics Data System (ADS)

    Huang, Wenwen; Krishnaji, Sreevidhya; Kaplan, David; Cebe, Peggy

    2012-02-01

    To obtain a fuller understanding of the origin of self-assembly behavior, and thus be able to control the morphology of biomaterials with well defined amino acid sequences for tissue regeneration and drug delivery, we created a family of synthetic silk-based block copolymers inspired by the genetic sequences found in spider dragline, HABn and HBAn (n=1,2,3,6), where B = hydrophilic block, A = hydrophobic block, and H is a histidine tag. We assessed the secondary structure of water cast films by Fourier transform infrared spectroscopy (FTIR). The crystallinity was determined by Fourier self-deconvolution of amide I spectra and confirmed by wide angle X-ray diffraction (WAXD). Results indicate that we can control the self-assembled morphology and the crystallinity by varying the block length, and a minimum of 3 A-blocks are required to form beta sheet crystalline regions in water-cast spider silk block copolymers. The morphology and crystallinity can also be tuned by annealing. Thermal properties of water cast films and films annealed at 120 C were determined by differential scanning calorimetry and thermogravimetry. The sample films were also treated with 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) to obtain wholly amorphous samples, and crystallized by exposure to methanol. Using scanning and transmission electron microscopies, we observe that fibrillar networks and hollow micelles are formed in water cast and methanol cast samples, but not in samples cast from HFIP.

  18. A multi-process model of self-regulation: influences of mindfulness, integrative self-knowledge and self-control in Iran.

    PubMed

    Ghorbani, Nima; Watson, P J; Farhadi, Mehran; Chen, Zhuo

    2014-04-01

    Self-regulation presumably rests upon multiple processes that include an awareness of ongoing self-experience, enduring self-knowledge and self-control. The present investigation tested this multi-process model using the Five-Facet Mindfulness Questionnaire (FFMQ) and the Integrative Self-Knowledge and Brief Self-Control Scales. Using a sample of 1162 Iranian university students, we confirmed the five-factor structure of the FFMQ in Iran and documented its factorial invariance across males and females. Self-regulatory variables correlated negatively with Perceived Stress, Depression, and Anxiety and positively with Self-Esteem and Satisfaction with Life. Partial mediation effects confirmed that self-regulatory measures ameliorated the disturbing effects of Perceived Stress. Integrative Self-Knowledge and Self-Control interacted to partially mediate the association of Perceived Stress with lower levels of Satisfaction with Life. Integrative Self-Knowledge, alone or in interaction with Self-Control, was the only self-regulation variable to display the expected mediation of Perceived Stress associations with all other measures. Self-Control failed to be implicated in self-regulation only in the mediation of Anxiety. These data confirmed the need to further examine this multi-process model of self-regulation. © 2014 International Union of Psychological Science.

  19. Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter

    NASA Astrophysics Data System (ADS)

    Jafri, M. H.; Mansor, H.; Gunawan, T. S.

    2017-11-01

    Bench-top helicopter is a laboratory scale helicopter that usually used as a testing bench of the real helicopter behavior. This helicopter is a 3 Degree of Freedom (DOF) helicopter which works by three different axes wshich are elevation, pitch and travel. Thus, fuzzy logic controller has been proposed to be implemented into Quanser bench-top helicopter because of its ability to work with non-linear system. The objective for this project is to design and apply fuzzy logic controller for Quanser bench-top helicopter. Other than that, fuzzy logic controller performance system has been simulated to analyze and verify its behavior over existing PID controller by using Matlab & Simulink software. In this research, fuzzy logic controller has been designed to control the elevation angle. After simulation has been performed, it can be seen that simulation result shows that fuzzy logic elevation control is working for 4°, 5° and 6°. These three angles produce zero steady state error and has a fast response. Other than that, performance comparisons have been performed between fuzzy logic controller and PID controller. Fuzzy logic elevation control has a better performance compared to PID controller where lower percentage overshoot and faster settling time have been achieved in 4°, 5° and 6° step response test. Both controller are have zero steady state error but fuzzy logic controller is managed to produce a better performance in term of settling time and percentage overshoot which make the proposed controller is reliable compared to the existing PID controller.

  20. New design deforming controlling system of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Ying, Li; Wang, Daxing

    2008-07-01

    A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.

  1. PSO algorithm enhanced with Lozi Chaotic Map - Tuning experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan

    2015-03-10

    In this paper it is investigated the effect of tuning of control parameters of the Lozi Chaotic Map employed as a chaotic pseudo-random number generator for the particle swarm optimization algorithm. Three different benchmark functions are selected from the IEEE CEC 2013 competition benchmark set. The Lozi map is extensively tuned and the performance of PSO is evaluated.

  2. Brain stimulation reveals crucial role of overcoming self-centeredness in self-control

    PubMed Central

    Soutschek, Alexander; Ruff, Christian C.; Strombach, Tina; Kalenscher, Tobias; Tobler, Philippe N.

    2016-01-01

    Neurobiological models of self-control predominantly focus on the role of prefrontal brain mechanisms involved in emotion regulation and impulse control. We provide evidence for an entirely different neural mechanism that promotes self-control by overcoming bias for the present self, a mechanism previously thought to be mainly important for interpersonal decision-making. In two separate studies, we show that disruptive transcranial magnetic stimulation (TMS) of the temporo-parietal junction—a brain region involved in overcoming one’s self-centered perspective—increases the discounting of delayed and prosocial rewards. This effect of TMS on temporal and social discounting is accompanied by deficits in perspective-taking and does not reflect altered spatial reorienting and number recognition. Our findings substantiate a fundamental commonality between the domains of self-control and social decision-making and highlight a novel aspect of the neurocognitive processes involved in self-control. PMID:27774513

  3. Fuzzy logic-based flight control system design

    NASA Astrophysics Data System (ADS)

    Nho, Kyungmoon

    The application of fuzzy logic to aircraft motion control is studied in this dissertation. The self-tuning fuzzy techniques are developed by changing input scaling factors to obtain a robust fuzzy controller over a wide range of operating conditions and nonlinearities for a nonlinear aircraft model. It is demonstrated that the properly adjusted input scaling factors can meet the required performance and robustness in a fuzzy controller. For a simple demonstration of the easy design and control capability of a fuzzy controller, a proportional-derivative (PD) fuzzy control system is compared to the conventional controller for a simple dynamical system. This thesis also describes the design principles and stability analysis of fuzzy control systems by considering the key features of a fuzzy control system including the fuzzification, rule-base and defuzzification. The wing-rock motion of slender delta wings, a linear aircraft model and the six degree of freedom nonlinear aircraft dynamics are considered to illustrate several self-tuning methods employing change in input scaling factors. Finally, this dissertation is concluded with numerical simulation of glide-slope capture in windshear demonstrating the robustness of the fuzzy logic based flight control system.

  4. Trait Self-esteem Moderates Decreases in Self-control Following Rejection: An Information-processing Account.

    PubMed

    Vandellen, Michelle; Knowles, Megan L; Krusemark, Elizabeth; Sabet, Raha F; Campbell, W Keith; McDowell, Jennifer E; Clementz, Brett A

    2012-03-01

    In the current paper, the authors posit that trait self-esteem moderates the relationship between social rejection and decrements in self-control, propose an information-processing account of trait self-esteem's moderating influence and discuss three tests of this theory. The authors measured trait self-esteem, experimentally manipulated social rejection and assessed subsequent self-control in Studies 1 and 2. Additionally, Study 3 framed a self-control task as diagnostic of social skills to examine motivational influences. Together, the results reveal that rejection impairs self-control, but only among low self-esteem individuals. Moreover, this decrement in self-control only emerged when the task had no social implications-suggesting that low self-esteem individuals exert effort on tasks of social value and are otherwise preoccupied with belonging needs when completing nonsocial tasks.

  5. Trait Self-esteem Moderates Decreases in Self-control Following Rejection: An Information-processing Account

    PubMed Central

    Vandellen, Michelle; Knowles, Megan L.; Krusemark, Elizabeth; Sabet, Raha F.; Campbell, W. Keith; McDowell, Jennifer E.; Clementz, Brett A.

    2012-01-01

    In the current paper, the authors posit that trait self-esteem moderates the relationship between social rejection and decrements in self-control, propose an information-processing account of trait self-esteem’s moderating influence and discuss three tests of this theory. The authors measured trait self-esteem, experimentally manipulated social rejection and assessed subsequent self-control in Studies 1 and 2. Additionally, Study 3 framed a self-control task as diagnostic of social skills to examine motivational influences. Together, the results reveal that rejection impairs self-control, but only among low self-esteem individuals. Moreover, this decrement in self-control only emerged when the task had no social implications—suggesting that low self-esteem individuals exert effort on tasks of social value and are otherwise preoccupied with belonging needs when completing nonsocial tasks. PMID:22611304

  6. Failure to replicate depletion of self-control.

    PubMed

    Xu, Xiaomeng; Demos, Kathryn E; Leahey, Tricia M; Hart, Chantelle N; Trautvetter, Jennifer; Coward, Pamela; Middleton, Kathryn R; Wing, Rena R

    2014-01-01

    The limited resource or strength model of self-control posits that the use of self-regulatory resources leads to depletion and poorer performance on subsequent self-control tasks. We conducted four studies (two with community samples, two with young adult samples) utilizing a frequently used depletion procedure (crossing out letters protocol) and the two most frequently used dependent measures of self-control (handgrip perseverance and modified Stroop). In each study, participants completed a baseline self-control measure, a depletion or control task (randomized), and then the same measure of self-control a second time. There was no evidence for significant depletion effects in any of these four studies. The null results obtained in four attempts to replicate using strong methodological approaches may indicate that depletion has more limited effects than implied by prior publications. We encourage further efforts to replicate depletion (particularly among community samples) with full disclosure of positive and negative results.

  7. Design and Experimental Evaluation of a Robust Position Controller for an Electrohydrostatic Actuator Using Adaptive Antiwindup Sliding Mode Scheme

    PubMed Central

    Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik

    2013-01-01

    A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. PMID:23983640

  8. Measurement of Beam Tunes in the Tevatron Using the BBQ System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edstrom, Dean R.; /Indiana U.

    Measuring the betatron tunes in any synchrotron is of critical importance to ensuring the stability of beam in the synchrotron. The Base Band Tune, or BBQ, measurement system was developed by Marek Gasior of CERN and has been installed at Brookhaven and Fermilab as a part of the LHC Accelerator Research Program, or LARP. The BBQ was installed in the Tevatron to evaluate its effectiveness at reading proton and antiproton tunes at its flattop energy of 980 GeV. The primary objectives of this thesis are to examine the methods used to measure the tune using the BBQ tune measurement system,more » to incorporate the system into the Fermilab accelerator controls system, ACNET, and to compare the BBQ to existing tune measurement systems in the Tevatron.« less

  9. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Gottwald, James A.; Bliss, Donald B.

    1990-01-01

    The focus is on a noise control method which considers aircraft fuselages lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. An interior noise reduction called alternate resonance tuning (ART) is described both theoretically and experimentally. Problems dealing with tuning single paneled wall structures for optimum noise reduction using the ART methodology are presented, and three theoretical problems are analyzed. The first analysis is a three dimensional, full acoustic solution for tuning a panel wall composed of repeating sections with four different panel tunings within that section, where the panels are modeled as idealized spring-mass-damper systems. The second analysis is a two dimensional, full acoustic solution for a panel geometry influenced by the effect of a propagating external pressure field such as that which might be associated with propeller passage by a fuselage. To reduce the analysis complexity, idealized spring-mass-damper panels are again employed. The final theoretical analysis presents the general four panel problem with real panel sections, where the effect of higher structural modes is discussed. Results from an experimental program highlight real applications of the ART concept and show the effectiveness of the tuning on real structures.

  10. An iterative learning strategy for the auto-tuning of the feedforward and feedback controller in type-1 diabetes.

    PubMed

    Fravolini, M L; Fabietti, P G

    2014-01-01

    This paper proposes a scheme for the control of the blood glucose in subjects with type-1 diabetes mellitus based on the subcutaneous (s.c.) glucose measurement and s.c. insulin administration. The tuning of the controller is based on an iterative learning strategy that exploits the repetitiveness of the daily feeding habit of a patient. The control consists of a mixed feedback and feedforward contribution whose parameters are tuned through an iterative learning process that is based on the day-by-day automated analysis of the glucose response to the infusion of exogenous insulin. The scheme does not require any a priori information on the patient insulin/glucose response, on the meal times and on the amount of ingested carbohydrates (CHOs). Thanks to the learning mechanism the scheme is able to improve its performance over time. A specific logic is also introduced for the detection and prevention of possible hypoglycaemia events. The effectiveness of the methodology has been validated using long-term simulation studies applied to a set of nine in silico patients considering realistic uncertainties on the meal times and on the quantities of ingested CHOs.

  11. Self-concept and self-esteem after acquired brain injury: a control group comparison.

    PubMed

    Ponsford, Jennie; Kelly, Amber; Couchman, Grace

    2014-01-01

    This study examined the multidimensional self-concept, global self-esteem and psychological adjustment of individuals with traumatic brain injury (TBI) as compared with healthy controls. Group comparison on self-report questionnaires. Forty-one individuals who had sustained a TBI were compared with an age- and gender-matched sample of 41 trauma-free control participants on the Rosenberg Self Esteem Scale, the Tennessee Self Concept Scale (second edition) and the Hospital Anxiety and Depression Scales (HADS). Participants with TBI rated significantly lower mean levels of global self-esteem and self-concept on the Rosenberg Self Esteem Scale and Tennessee Self Concept Scale than the control group. Survivors of TBI rated themselves more poorly on a range of self-dimensions, including social, family, academic/work and personal self-concept compared to controls. They also reported higher mean levels of depression and anxiety on the Hospital Anxiety and Depression Scale. Overall self-concept was most strongly associated with depressive symptoms and anxiety. Self-concept may be lowered following TBI and is associated with negative emotional consequences. Clinicians may improve the emotional adjustment of survivors of TBI by considering particular dimensions of self-concept for intervention focus.

  12. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System.

    PubMed

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-20

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.

  13. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System

    PubMed Central

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-01

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input–output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy. PMID:26805833

  14. No evidence for common processes of cognitive control and self-control.

    PubMed

    Scherbaum, Stefan; Frisch, Simon; Holfert, Anna-Maria; O'Hora, Denis; Dshemuchadse, Maja

    2018-01-01

    Cognitive control and self-control are often used as interchangeable terms. Both terms refer to the ability to pursue long-term goals, but the types of controlled behavior that are typically associated with these terms differ, at least superficially. Cognitive control is observed in the control of attention and the overcoming of habitual responses, while self-control is observed in resistance to short-term impulses and temptations. Evidence from clinical studies and neuroimaging studies suggests that below these superficial differences, common control process (e.g., inhibition) might guide both types of controlled behavior. Here, we study this hypothesis in a behavioral experiment, which interlaced trials of a Simon task with trials of an intertemporal decision task. If cognitive control and self-control depend on a common control process, we expected conflict adaptation from Simon task trials to lead to increased self-control in the intertemporal decision trials. However, despite successful manipulations of conflict and conflict adaptation, we found no evidence for this hypothesis. We investigate a number of alternative explanations of this result and conclude that the differences between cognitive control and self-control are not superficial, but rather reflect differences at the process level. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Self-Control Behavior of Drinking Drivers beyond the Context of a Behavioral Self-Control Program.

    ERIC Educational Resources Information Center

    Werch, Chudley E.

    This paper reports on the post hoc analysis of specific types of self-control behaviors being employed by drinking drivers who were exposed to a behavioral self-control training program. The underlying assumption of this study is that the success of health promotion and intervention programs most probably depends on the development of greater…

  16. H∞ controller design for a 4-meter direct-drive azimuth axis

    NASA Astrophysics Data System (ADS)

    Chen, Li-Yan; Zhang, Zhen-Chao; Song, Xiao-Li; Wang, Da-Xing

    2015-11-01

    To pursue a higher imaging resolution for exploring more details in the information conveyed by the Universe, the next generation of optical telescopes based on a direct drive widely employ the extremely large aperture structure, which also introduces more disturbances and uncertain factors to the control system. Facing this new challenge, the PID control method in main-axis control systems of traditional astronomical telescopes cannot suffice for the requirement of the tracking precision and disturbance sensitivity in angular velocity. To overcome this shortcoming, we establish a dynamic model and propose an H∞ controller for a 4-meter azimuth direct drive control system that consists of a revolving platform (azimuth axis), a three-phase torque motor, a motor drive, an encoder, a data acquisition card and a small computers. Simulations are carried out to analyze the model and guide the real experiments. Experimental results show that the proposed H∞ controller reduces the tracking error by a maximum of 80.69% (average 57.8%) and the disturbance sensitivity by a maximum of 82.3% (average 50.96%) compared with the traditional tuned PI controller; furthermore, the order of the model describing the proposed controller can be reduced to three, thus its feasibility in real systems is guaranteed.

  17. PIDs for digital content: Are they used as they should be? The example of DOI and ORCID, told from a research library perspective

    NASA Astrophysics Data System (ADS)

    Kraft, Angelina; Dreyer, Britta; Löwe, Peter

    2017-04-01

    For finding, linking and citing research content, persistent digital identifiers are the key, as a persistent identifier is a long-lasting reference to a resource. But are PIDs really used as they should be? With respect to the obstacles of the PID systems, we face a diverse landscape of stakeholders, legacy systems, competing interests and often incomprehensible messaging filled with technical jargon around PIDs. Insufficient metadata quality is another major challenge for these systems. While the principal task for service providers lies in collaborating to provide a shared and easy to use PID infrastructure, it is the key responsibility for data centers to provide rich metadata and structured access to research content. Especially metadata and structured access are imperative for the most basic services such as search, citation tracking and reuse. And of course all needs to be human- and machine interoperable, as we want our machines to be able to interpret PIDs depended on a specific use case. Since 2004, the German National Library of Science and Technology (TIB) has been providing DOI services to data centers in Germany. Recent developments make clear that requirements for PIDs have changed. Science has developed a need for PIDs at multiple content levels: In addition to DOIs for journal articles and research data, PIDs for people, physical objects, collections, software, funders, organizations, expeditions, resources, instruments and even for data management plans are required to enable different platforms to exchange information consistently and unambiguously. In this work we want to emphasize on the distinct increases of total DOI registrations for research data and other research output such as images, videos or software in Germany within the past decade and how research institutes and universities differ in their DOI registration workflows. We present use cases which illustrate the deployment of DOIs e.g. for dynamic data, and demonstrate the need of

  18. Optimization of Easy Atomic Force Microscope (ezAFM) Controls for Semiconductor Nanostructure Profiling

    DTIC Science & Technology

    2017-09-01

    in the vertical (z) directions. There are several instruments controls like proportional, integral , and derivative (PID) gain as well as tip force...the PID control, where P stands for proportional gain, I stands for integral gain, and D stands for derivative gain. An additional parameter that...contributes to the scanned image quality is set point. Proportional gain is multiplied by the error to adjust controller output and integral gain sums

  19. The self-control consequences of political ideology.

    PubMed

    Clarkson, Joshua J; Chambers, John R; Hirt, Edward R; Otto, Ashley S; Kardes, Frank R; Leone, Christopher

    2015-07-07

    Evidence from three studies reveals a critical difference in self-control as a function of political ideology. Specifically, greater endorsement of political conservatism (versus liberalism) was associated with greater attention regulation and task persistence. Moreover, this relationship is shown to stem from varying beliefs in freewill; specifically, the association between political ideology and self-control is mediated by differences in the extent to which belief in freewill is endorsed, is independent of task performance or motivation, and is reversed when freewill is perceived to impede (rather than enhance) self-control. Collectively, these findings offer insight into the self-control consequences of political ideology by detailing conditions under which conservatives and liberals are better suited to engage in self-control and outlining the role of freewill beliefs in determining these conditions.

  20. The self-control consequences of political ideology

    PubMed Central

    Clarkson, Joshua J.; Chambers, John R.; Hirt, Edward R.; Otto, Ashley S.; Kardes, Frank R.; Leone, Christopher

    2015-01-01

    Evidence from three studies reveals a critical difference in self-control as a function of political ideology. Specifically, greater endorsement of political conservatism (versus liberalism) was associated with greater attention regulation and task persistence. Moreover, this relationship is shown to stem from varying beliefs in freewill; specifically, the association between political ideology and self-control is mediated by differences in the extent to which belief in freewill is endorsed, is independent of task performance or motivation, and is reversed when freewill is perceived to impede (rather than enhance) self-control. Collectively, these findings offer insight into the self-control consequences of political ideology by detailing conditions under which conservatives and liberals are better suited to engage in self-control and outlining the role of freewill beliefs in determining these conditions. PMID:26100890